WO2012148223A2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2012148223A2
WO2012148223A2 PCT/KR2012/003301 KR2012003301W WO2012148223A2 WO 2012148223 A2 WO2012148223 A2 WO 2012148223A2 KR 2012003301 W KR2012003301 W KR 2012003301W WO 2012148223 A2 WO2012148223 A2 WO 2012148223A2
Authority
WO
WIPO (PCT)
Prior art keywords
tube
tubes
heat exchanger
header
distance
Prior art date
Application number
PCT/KR2012/003301
Other languages
French (fr)
Korean (ko)
Other versions
WO2012148223A3 (en
Inventor
박태균
박내현
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2012148223A2 publication Critical patent/WO2012148223A2/en
Publication of WO2012148223A3 publication Critical patent/WO2012148223A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05325Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines

Definitions

  • the present invention relates to a heat exchanger.
  • the heat exchanger performs heat exchange between the refrigerant flowing therein and the air.
  • a heat exchanger generally includes a plurality of tubes through which refrigerant flows, a plurality of fins stacked on the tubes, and two headers respectively connected to both ends of the tubes.
  • the interior of the header is partitioned by a baffle such that the flow path formed by the tube substantially forms a sandpaper that is bent a number of times throughout.
  • the header is connected to a suction pipe for suction of the refrigerant and a discharge pipe for discharge of the refrigerant, respectively.
  • the suction pipe and the discharge pipe may be located in each of the two headers, or both of the two headers.
  • the heat exchanger When the heat exchanger is used as an evaporator, the liquid refrigerant is sucked through the suction pipe. Therefore, by the centrifugal force acting in the process of changing the flow direction of the refrigerant inside the header, the refrigerant is concentrated in a portion of the tube and flows. In addition, a disadvantage in that the heat exchange efficiency of the refrigerant and air is substantially lowered due to the nonuniform flow of the refrigerant.
  • the present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a heat exchanger configured to allow the refrigerant to flow evenly through the tube.
  • Another object of the present invention is to provide a heat exchanger configured to perform heat exchange more efficiently.
  • One aspect of an embodiment of a heat exchanger according to the present invention for achieving the above object is composed of a plurality of spaced apart from each other in a direction perpendicular to the longitudinal direction having a predetermined length, the flow of the refrigerant is made continuously
  • a plurality of tubes divided into a plurality of groups A plurality of fins for increasing the contact area of air with the tube;
  • each group of tubes comprises three or more tubes, the region comprising: a suction region provided inside the first header and communicating the suction tube and a portion of the tube; A discharge area provided inside the first header and communicating the discharge pipe with another part of the tube;
  • the suction pipe is spaced apart from an imaginary straight line bisecting a distance between a center of a tube located at the top and the bottom of the tube communicating with the suction area, or the discharge pipe is in communication with the discharge area. It is positioned away from an imaginary straight line that bisects the distance between the centers of the tubes located at the top and bottom of the tubes.
  • Another aspect of an embodiment of the present invention includes a plurality of tubes in which a refrigerant flows, has a predetermined length, and is spaced apart in a direction orthogonal to the longitudinal direction; A plurality of fins for increasing the contact area of air with the tube; First and second headers connected to both ends of the tube, respectively; A suction pipe connected to the first header and into which a refrigerant flowing through the tube is sucked; A discharge pipe connected to the first header and discharging the refrigerant flowing through the tube; A heat exchanger comprising: the tube includes an inlet-side tube which is composed of a plurality of refrigerants flowing in a predetermined direction and receives the refrigerant sucked through the suction pipe; And an outlet tube configured to have a plurality of refrigerants flowing in a direction opposite to the inlet tube, and to deliver the refrigerant to the discharge tube.
  • a distance l1 between the center of the tube closest to the outlet tube among the inlet tubes and the center of the suction tube is located at the outermost side in a direction orthogonal to the longitudinal direction of the inlet tubes. Less than 1/2 of the distance L1 between the centers of the two tubes, or the distance l2 between the center of the tube closest to the inlet tube and the center of the discharge tube among the outlet tubes is the outlet It is less than 1/2 of the distance L2 between the centers of the two tubes located outermost in the direction orthogonal to the longitudinal direction of the side tubes.
  • a suction tube for supplying the refrigerant to the tube and a discharge tube for discharging the refrigerant flowing through the tube are positioned to allow the refrigerant to flow evenly through the tube. Therefore, according to the embodiment of the present invention, the heat exchange efficiency of the heat exchanger can be substantially improved.
  • FIG. 1 is a cross-sectional view showing a first embodiment of a heat exchanger according to the present invention.
  • Figure 2 is a cross-sectional view showing a second embodiment of the heat exchanger according to the present invention.
  • Figure 3 is a cross-sectional view showing a third embodiment of the heat exchanger according to the present invention.
  • Figure 4 is a sectional view showing a fourth embodiment of the heat exchanger according to the present invention.
  • FIG. 1 is a cross-sectional view showing a first embodiment of a heat exchanger according to the present invention.
  • the heat exchanger 100 includes a plurality of tubes 110 through which refrigerant flows, a plurality of fins 120 stacked on the tubes 110, and a plurality of tubes 110.
  • Two headers 130 and 140 connected to both ends, a suction pipe 150 for sucking the refrigerant flowing through the tube 110, and a discharge pipe 160 for discharging the refrigerant flowing through the tube 110.
  • the tube 110 has a predetermined length and is disposed to extend in parallel with each other in the horizontal direction.
  • the tubes 110 are spaced apart from each other in a direction orthogonal to the longitudinal direction.
  • the tube 110 is formed in a tubular shape in which one or a plurality of flow paths through which refrigerant flows are provided.
  • a plurality of flow paths are provided inside the tube 110, it may be called a micro channel type tube.
  • the tube 110 is divided into a plurality of groups. That is, the first tube 111 receives the refrigerant sucked through the suction pipe 150, the second tube 112 receives the refrigerant from the first tube 111, and the refrigerant from the second tube 112.
  • Receiving a third tube 113, and receives the refrigerant from the third tube 113 includes a fourth tube 114 to deliver to the discharge pipe (160).
  • the first and fourth tubes 111 and 114 are located at the inlet and outlet sides relative to the flow direction of the refrigerant. Therefore, the first tube 111 may be referred to as an inlet side tube and the fourth tube 114 may be referred to as an outlet side tube.
  • the second and third tubes 112 and 113 may serve to substantially connect the first and fourth tubes 111 and 114. Accordingly, the second and third tubes 112 and 113 may be referred to as connection tubes, respectively.
  • first to fourth tubes 111, 112, 113, and 114 are respectively configured as three, the first to fourth tubes 111, 112, and 113 are respectively configured. 114 may be comprised of four or more. In addition, the first to fourth tubes 111, 112, 113, and 114 do not necessarily have the same number. That is, the number of the first to fourth tubes 111, 112, 113, and 114 may be gradually increased. For example, the first tube 111 is composed of three, the second tube 112 is composed of four, the third tube 113 is composed of five, the fourth tube 114 May be composed of six.
  • the pins 120 are stacked on the tube 110. At this time, the pins 120 are stacked in a direction orthogonal to the longitudinal direction of the tube 110.
  • the fins 120 adjacent to each other are spaced apart from each other in the longitudinal direction of the tube 110. The fin 120 serves to increase the contact area between the tube 110 and the air.
  • the headers 130 and 140 are connected to both ends of the tube 110, respectively.
  • the right header in FIG. 1 is referred to as the first header 130 and the left header in the drawing is referred to as a second header 140.
  • a plurality of baffles 131 and 141 are provided in the first and second headers 130 and 140, respectively.
  • the baffles 131 and 141 divide the interior of the first and second headers 130 and 140 into a plurality of regions, respectively.
  • two baffles 131 hereinafter referred to as 'first baffles') are provided inside the first header 130.
  • the first baffle 131 is an area in which the inside of the first header 130 communicates with the right end of the drawing of the first tube 111, and the second and third tubes 112 and 113. And the area communicating with the right end in the drawing, and the area communicating with the right end in the drawing of the fourth tube 114.
  • one baffle 141 (hereinafter referred to as a “second baffle” for convenience of description) is provided inside the second header 140.
  • the second baffle 141 is a region in which the left end portion of the second header 140 communicates with each other in the drawing of the first and second tubes 111 and 112, and the third and fourth portions.
  • the left end of the tube 113, 114 is divided into areas in communication with each other.
  • each of the inner end portions of the first header 130 which communicates with the right end portion in the drawing of the first tube 111 and the right end portion in the drawing of the fourth tube 114 are respectively sucked.
  • the area S1 and the discharge area S5 are called.
  • the first to third connection regions S2, S3, and S4 are referred to.
  • the suction region S1-> the first tube 111-> the first connection region S2-> the second tube 112-> the second connection region (S3)-> the third tube 113-> the third connection region (S4)-> the fourth tube 114-> the discharge region (S5) in the order can be said to be formed.
  • the suction pipe 150 and the discharge pipe 160 are connected to the first header 130, respectively.
  • the suction pipe 150 is in communication with the suction area S1
  • the discharge pipe 160 is in communication with the discharge area S5. Therefore, the refrigerant sucked through the suction pipe 150 is transferred to the first tube 111 via the suction region S1.
  • the refrigerant delivered to the first tube 111 flows from the right side to the left side of the first tube 111, and the flow direction thereof is changed while passing through the first connection region S2.
  • the refrigerant transferred to the second tube 112 flows the second tube 112 from the left to the right in the drawing, and the flow direction thereof is changed while passing through the second connection region S3 to the third tube.
  • the refrigerant delivered to the third tube 113 flows from the right side to the left side of the third tube 113, and the flow direction thereof is changed while passing through the third connection region S4. It is delivered to four tubes 114. Finally, the refrigerant transferred to the fourth tube 114 flows the fourth tube 114 from the left to the right in the drawing, and the heat exchange is performed through the discharge pipe 160 via the discharge area S5. It is discharged to the outside of the machine (100).
  • the position of the suction pipe 150 is designed to evenly flow the entire first to fourth tubes 111, 112, 113, 114. More specifically, the suction pipe 150 is located between the tube located at the top of the first tube 111 and the tube located directly below it. In addition, the discharge pipe 160 is located at the center of the discharge area S5 in the vertical direction.
  • the refrigerant may flow evenly through the first to fourth tubes 111, 112, 113, and 114.
  • (A) is the same as in the prior art in which the suction pipe 150 and the discharge pipe 160 are respectively positioned at the center of the suction area S1 and the discharge area S5 in the vertical direction.
  • (B) is the case where the suction pipe 150 and the discharge pipe 160 are positioned as in this embodiment.
  • the pressure loss refers to a pressure between the pressure of the refrigerant sucked into the heat exchanger 100 through the suction pipe 150 and the pressure of the refrigerant discharged to the outside of the heat exchanger 100 through the discharge pipe 160. Means tea. Therefore, as the pressure loss increases, the load on the compressor constituting the heat exchange cycle together with the heat exchanger 100 increases substantially.
  • Qi is the designed heat exchange output of the heat exchanger 100
  • Q is the actual heat exchange output of the heat exchanger 100. Therefore, a percentage of a value obtained by dividing the difference between the designed heat exchanger output Qi of the heat exchanger 100 and the actual heat exchanger output Q of the heat exchanger 100 by the designed heat exchanger output Qi of the heat exchanger 100.
  • FIG. 2 is a cross-sectional view showing a second embodiment of a heat exchanger according to the present invention.
  • the same reference numerals as in FIG. 1 are used for the same components as those of the first embodiment of the present invention, and detailed description thereof will be omitted.
  • the positions of the suction pipe 150 and the discharge pipe 160 are designed to evenly flow the entire first to fourth tubes 111, 112, 113, and 114. do. More specifically, the suction pipe 150 is located between the tube located at the top of the first tube 111 and the tube located directly below it. This is the same as the first embodiment of the present invention described above. In the present embodiment, the discharge pipe 160 is positioned between the tube located at the lowermost end of the fourth tube 114 and the tube located directly above it.
  • the suction pipe 150 and the discharge pipe 160 are each positioned in the center of the suction area S1 and the discharge area S5 in the vertical direction, respectively.
  • FIG 3 is a cross-sectional view showing a third embodiment of a heat exchanger according to the present invention.
  • the heat exchanger 200 includes a plurality of tubes 210, a plurality of fins 220, first and second headers 230 and 240, a suction pipe 250, and the like.
  • the discharge pipe 260 is included.
  • the tube 210 includes first to fourth tubes 211, 212, 213, and 214.
  • the suction area S1, the discharge area S5, and the first area which are partitioned by the first and second baffles 231 and 241, respectively.
  • the suction pipe 250 and the discharge pipe 260 are connected to the first header 230 so as to communicate with the suction area S1 and the discharge area S5, respectively.
  • Such a configuration can be said to be the same as the first embodiment of the present invention described above.
  • a tube of a micro channel type having a plurality of flow paths therein is used as the tube 210.
  • the fin 220 is bent several times and positioned between the tubes 210 adjacent to each other.
  • the suction pipe 250 is positioned to be spaced apart from an imaginary straight line that bisects the distance L1 between the centers of the tubes located at the top and bottom of the first tube 211.
  • the discharge pipe 260 is positioned to be spaced apart from an imaginary straight line bisecting the distance (L2) between the center of the tube located at the top and bottom of the fourth tube (214).
  • the distance l1 between the center of the tube located at the top of the first tube 211 and the center of the suction tube 250 is the first tube 211. It is located at a position which is less than 1/2 of the distance L1 between the centers of the tubes located at the top and bottom of the middle.
  • the discharge pipe 260 has a distance l2 between the center of the tube located at the lowest end of the fourth tube 214 and the center of the discharge pipe 260, the top and bottom of the fourth tube 214. It is located at a position that is less than 1/2 of the distance L2 between the centers of the tubes located at.
  • the distance l1 between the center of the tube located at the top of the first tube 211 and the center of the suction tube 250 is located at the top and the bottom of the first tube 211. It is at least 1/4 and less than 1/2 of the distance L1 between the centers of.
  • the distance l2 between the center of the tube located at the bottom of the fourth tube 214 and the center of the discharge tube 260 is between the center of the tube located at the top and bottom of the fourth tube 214. Is 1/4 or more and 1/3 or less of the distance L2. If this is expressed as an expression, it is as follows.
  • the refrigerant may flow evenly through the entire first to fourth tubes 211, 212, 213, 214. Therefore, according to this embodiment, it will be expected to substantially increase the heat exchange efficiency of the heat exchanger 200.
  • FIG. 4 is a cross-sectional view showing a fourth embodiment of a heat exchanger according to the present invention.
  • the heat exchanger 300 includes a plurality of tubes 310, a plurality of fins 320, first and second headers 330, 340, a suction pipe 350, and the like.
  • the discharge pipe 360 is included.
  • the tube 310 includes first and second tubes 311 and 312.
  • the number of the first and second tubes 311 and 312 may be configured in a ratio of 4: 5.
  • the first tube 311 is composed of eight
  • the second tube 312 may be composed of ten.
  • an inside of the first header 340 is provided with a suction region S1 and a discharge region S5, which are partitioned off by the first baffle 331.
  • a connection area S3 is provided inside the second header 340.
  • the suction pipe 350 and the discharge pipe 360 are connected to the first header 330 so as to communicate with the suction area S1 and the discharge area S5, respectively.
  • Such a configuration can be said to be the same as the first embodiment of the present invention described above.
  • a tube of a micro channel type having a plurality of flow paths is used as the tube 310.
  • the fin 320 is composed of a plurality of stacked in the direction orthogonal to the longitudinal direction of the tube (310).
  • the suction pipe 350 and the discharge pipe 360 are positioned similarly to the third embodiment of the present invention described above. That is, the suction pipe 350 has a distance l1 between the center of the tube located at the uppermost end of the first tube 311 and the center of the suction pipe 350, and is the uppermost and lowermost end of the first tube 311. It is located at a position that is less than 1/2 of the distance L1 between the centers of the tubes located at. Preferably, a distance l1 between the center of the tube located at the top of the first tube 311 and the center of the suction tube 350 is located at the top and bottom of the first tube 311. It is at least 1/4 and less than 1/2 of the distance L1 between the centers of.
  • the discharge pipe 360 has a distance l2 between the center of the tube located at the lowermost end of the second tube 312 and the center of the discharge pipe 360. It is located at a position that is less than 1/2 of the distance L2 between the centers of the tubes located at.
  • the distance l2 between the center of the tube located at the bottom of the second tube 312 and the center of the discharge pipe 360 is a tube located at the top and bottom of the second tube 312. Is equal to or greater than 1/4 and less than 1/3 of the distance L2 between the centers.
  • (A) is the prior art, that is, the distance l1 between the center of the tube located at the top of the first tube 311 and the center of the suction pipe 350 is the top of the first tube 311 And a half of the distance L1 between the center of the tube located at the bottom end, and the distance l2 between the center of the tube located at the bottom of the second tube 312 and the center of the discharge pipe 360 is In this case, 1/2 of the distance (L2) between the center of the tube located at the top and the bottom of the second tube (312).
  • the distance l1 between the center of the tube located at the top of the first tube 311 and the center of the suction tube 350 is located at the top and the bottom of the first tube 311. 1/4 of the distance L1 between the center of the tube, and the distance l2 between the center of the tube located at the bottom of the second tube 312 and the center of the discharge pipe 360 is the second. It is the case of 1/2 of the distance L2 between the center of the tube located in the uppermost and lowermost part of the tube 312.
  • the distance l1 between the center of the tube located at the top of the first tube 311 and the center of the suction pipe 350 is located at the top and the bottom of the first tube 311.
  • 1/4 of the distance L1 between the center of the tube, and the distance l2 between the center of the tube located at the bottom of the second tube 312 and the center of the discharge pipe 360 is the second. This is the case of 1/3 of the distance L2 between the center of the tube located at the top and bottom of the tube 312.

Abstract

The present invention relates to a heat exchanger. In one aspect of one embodiment of the present invention, an inlet region and an outlet region are arranged inside a first header, a connection region is provided only inside a second header or inside both said second header and inside a portion of said first header corresponding to a region between said inlet region and said outlet region, and an inlet tube is arranged so as to be spaced apart from a virtual straight line which bisects the distance between the centers of the uppermost and lowermost tubes from among said tubes in communication with said inlet region. Alternatively, an outlet tube is arranged so as to be spaced apart from a virtual straight line which bisects the distance between the centers of the uppermost and lowermost tubes from among said tubes in communication with said outlet region. According to said embodiment of the present invention, the heat-exchange efficiency of the heat exchanger may be substantially improved.

Description

열교환기heat exchanger
본 발명은 열교환기에 관한 것이다.The present invention relates to a heat exchanger.
열교환기는, 그 내부를 유동하는 냉매와 공기와의 열교환을 수행한다. 이와 같은 열교환기는 일반적으로, 냉매가 유동되는 다수개의 튜브, 상기 튜브에 적층되는 다수개의 핀, 및 상기 튜브의 양단부에 각각 연결되는 2개의 헤더를 포함한다. 상기 헤더의 내부는, 실질적으로 상기 튜브에 의하여 형성되는 유로가 전체적으로 다수회 절곡되는 사형을 형성하도록 배플에 의하여 구획된다. 그리고 상기 헤더에는 냉매의 흡입을 위한 흡입관 및 냉매의 배출을 위한 배출관이 각각 연결된다. 상기 흡입관 및 배출관은, 2개의 상기 헤더에 각각 위치되거나, 2개의 상기 헤더 중 어느 하나에 모두 위치될 수 있다. The heat exchanger performs heat exchange between the refrigerant flowing therein and the air. Such a heat exchanger generally includes a plurality of tubes through which refrigerant flows, a plurality of fins stacked on the tubes, and two headers respectively connected to both ends of the tubes. The interior of the header is partitioned by a baffle such that the flow path formed by the tube substantially forms a sandpaper that is bent a number of times throughout. The header is connected to a suction pipe for suction of the refrigerant and a discharge pipe for discharge of the refrigerant, respectively. The suction pipe and the discharge pipe may be located in each of the two headers, or both of the two headers.
그러나 종래 기술에 의한 열교환기에는 다음과 같은 문제점이 발생된다.However, the following problems occur in the heat exchanger according to the prior art.
상기 열교환기가 증발기로 사용되는 경우에는, 상기 흡입관을 통하여 액상의 냉매가 흡입된다. 따라서 상기 헤더의 내부에서 냉매의 유동 방향이 변환되는 과정에서 작용하는 원심력에 의하여, 냉매가 상기 튜브 중 일부로 집중되어 유동된다. 그리고 이와 같은 냉매의 불균일한 유동에 의하여 실질적으로 냉매와 공기의 열교환 효율이 저하되는 단점이 발생된다. When the heat exchanger is used as an evaporator, the liquid refrigerant is sucked through the suction pipe. Therefore, by the centrifugal force acting in the process of changing the flow direction of the refrigerant inside the header, the refrigerant is concentrated in a portion of the tube and flows. In addition, a disadvantage in that the heat exchange efficiency of the refrigerant and air is substantially lowered due to the nonuniform flow of the refrigerant.
본 발명은 상술한 종래의 문제점을 해결하기 위한 것으로, 본 발명의 목적은, 냉매가 튜브 전체를 고르게 유동하도록 구성되는 열교환기를 제공하는 것이다.The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a heat exchanger configured to allow the refrigerant to flow evenly through the tube.
본 발명의 다른 목적은, 보다 효율적으로 열교환이 이루어지도록 구성되는 열교환기를 제공하는 것이다.Another object of the present invention is to provide a heat exchanger configured to perform heat exchange more efficiently.
상술한 목적을 달성하기 위한 본 발명에 의한 열교환기의 실시예의 일 양태는, 기설정된 길이를 가지고 그 길이 방향에 직교되는 방향으로 서로 이격되게 배치되는 다수개로 구성되고, 냉매의 유동이 연속적으로 이루어지는 다수개의 그룹으로 구분되는 다수개의 튜브; 상기 튜브와 공기의 접촉 면적을 증가시키는 다수개의 핀; 상기 튜브의 양단부에 각각 연결되고, 그 내부가 다수개의 영역으로 구분되는 제1 및 제2헤더; 상기 제1헤더에 연결되고, 상기 튜브를 유동하는 냉매가 흡입되는 흡입관; 및 상기 제1헤더에 연결되고, 상기 튜브를 유동한 냉매가 배출되는 배출관; 을 포함하고, 상기 튜브의 각 그룹은, 3개 이상의 튜브로 구성되고, 상기 영역은, 상기 제1헤더의 내부에 구비되고, 상기 흡입관 및 상기 튜브 중 일부를 연통시키는 흡입 영역; 상기 제1헤더의 내부에 구비되고, 상기 배출관 및 상기 튜브의 다른 일부를 연통시키는 배출 영역; 및 상기 제2헤더의 내부 또는 상기 제2헤더의 내부 및 상기 흡입 영역 및 배출 영역 사이에 해당하는 상기 제1헤더의 내부에 구비되고, 서로 인접하는 상기 튜브의 나머지를 연통시키는 적어도 1개의 연결 영역; 을 포함하고, 상기 흡입관이 상기 흡입 영역과 연통되는 상기 튜브 중 최상단 및 최하단에 위치되는 튜브의 중심 사이의 거리를 이등분하는 가상의 직선으로부터 이격되게 위치되거나, 상기 배출관이 상기 배출 영역과 연통되는 상기 튜브 중 최상단 및 최하단에 위치되는 튜브의 중심 사이의 거리를 이등분하는 가상의 직선으로부터 이격되게 위치된다.One aspect of an embodiment of a heat exchanger according to the present invention for achieving the above object is composed of a plurality of spaced apart from each other in a direction perpendicular to the longitudinal direction having a predetermined length, the flow of the refrigerant is made continuously A plurality of tubes divided into a plurality of groups; A plurality of fins for increasing the contact area of air with the tube; First and second headers respectively connected to both ends of the tube, the inside of the tube being divided into a plurality of regions; A suction pipe connected to the first header and into which a refrigerant flowing through the tube is sucked; A discharge pipe connected to the first header and discharging the refrigerant flowing through the tube; Wherein each group of tubes comprises three or more tubes, the region comprising: a suction region provided inside the first header and communicating the suction tube and a portion of the tube; A discharge area provided inside the first header and communicating the discharge pipe with another part of the tube; And at least one connection area provided in the second header or in the first header corresponding to the inside of the second header and between the suction area and the discharge area and communicating with the rest of the tubes adjacent to each other. ; Wherein the suction pipe is spaced apart from an imaginary straight line bisecting a distance between a center of a tube located at the top and the bottom of the tube communicating with the suction area, or the discharge pipe is in communication with the discharge area. It is positioned away from an imaginary straight line that bisects the distance between the centers of the tubes located at the top and bottom of the tubes.
본 발명의 실시예의 다른 양태는, 냉매가 유동되고, 기설정된 길이를 가지며, 그 길이 방향에 직교되는 방향으로 이격되게 배치되는 다수개의 튜브; 상기 튜브와 공기의 접촉 면적을 증가시키는 다수개의 핀; 상기 튜브의 양단부에 각각 연결되는 제1 및 제2헤더; 상기 제1헤더에 연결되고, 상기 튜브를 유동하는 냉매가 흡입되는 흡입관; 및 상기 제1헤더에 연결되고, 상기 튜브를 유동한 냉매가 배출되는 배출관; 을 포함하는 열교환기에 있어서: 상기 튜브는, 기설정된 방향으로 냉매가 유동되는 다수개로 구성되고, 상기 흡입관을 통하여 흡입된 냉매를 전달받는 입구측 튜브; 및 상기 입구측 튜브와 반대 방향으로 냉매가 유동되는 다수개로 구성되고, 상기 배출관으로 냉매를 전달하는 출구측 튜브; 를 포함하고, 상기 입구측 튜브 중 상기 출구측 튜브에 가장 인접하는 튜브의 중심과 상기 흡입관의 중심 사이의 거리(l1)는, 상기 입구측 튜브 중 그 길이 방향에 직교되는 방향으로 최외측에 위치되는 2개의 튜브의 중심 사이의 거리(L1)의 1/2 미만이거나, 상기 출구측 튜브 중 상기 입구측 튜브에 가장 인접하는 튜브의 중심과 상기 배출관의 중심 사이의 거리(l2)는, 상기 출구측 튜브 중 그 길이 방향에 직교되는 방향으로 최외측에 위치되는 2개의 튜브의 중심 사이의 거리(L2)의 1/2 미만이다.Another aspect of an embodiment of the present invention includes a plurality of tubes in which a refrigerant flows, has a predetermined length, and is spaced apart in a direction orthogonal to the longitudinal direction; A plurality of fins for increasing the contact area of air with the tube; First and second headers connected to both ends of the tube, respectively; A suction pipe connected to the first header and into which a refrigerant flowing through the tube is sucked; A discharge pipe connected to the first header and discharging the refrigerant flowing through the tube; A heat exchanger comprising: the tube includes an inlet-side tube which is composed of a plurality of refrigerants flowing in a predetermined direction and receives the refrigerant sucked through the suction pipe; And an outlet tube configured to have a plurality of refrigerants flowing in a direction opposite to the inlet tube, and to deliver the refrigerant to the discharge tube. And a distance l1 between the center of the tube closest to the outlet tube among the inlet tubes and the center of the suction tube is located at the outermost side in a direction orthogonal to the longitudinal direction of the inlet tubes. Less than 1/2 of the distance L1 between the centers of the two tubes, or the distance l2 between the center of the tube closest to the inlet tube and the center of the discharge tube among the outlet tubes is the outlet It is less than 1/2 of the distance L2 between the centers of the two tubes located outermost in the direction orthogonal to the longitudinal direction of the side tubes.
본 발명에 의한 열교환기의 실시예에서는, 튜브로 냉매를 공급하는 흡입관 및 튜브를 유동한 냉매를 배출하는 배출관이 냉매가 튜브 전체를 고르게 유동할 수 있도록 위치된다. 따라서 본 발명의 실시예에 의하면, 실질적으로 열교환기의 열교환 효율이 증진될 수 있다.In an embodiment of the heat exchanger according to the present invention, a suction tube for supplying the refrigerant to the tube and a discharge tube for discharging the refrigerant flowing through the tube are positioned to allow the refrigerant to flow evenly through the tube. Therefore, according to the embodiment of the present invention, the heat exchange efficiency of the heat exchanger can be substantially improved.
도 1은 본 발명에 의한 열교환기의 제1실시예를 보인 단면도.1 is a cross-sectional view showing a first embodiment of a heat exchanger according to the present invention.
도 2는 본 발명에 의한 열교환기의 제2실시예를 보인 단면도.Figure 2 is a cross-sectional view showing a second embodiment of the heat exchanger according to the present invention.
도 3은 본 발명에 의한 열교환기의 제3실시예를 보인 단면도.Figure 3 is a cross-sectional view showing a third embodiment of the heat exchanger according to the present invention.
도 4는 본 발명에 의한 열교환기의 제4실시예를 보인 단면도.Figure 4 is a sectional view showing a fourth embodiment of the heat exchanger according to the present invention.
이하에서는 본 발명에 의한 열교환기의 제1실시예의 구성을 첨부된 도면을 참조하여 보다 상세하게 설명한다.Hereinafter, a configuration of a first embodiment of a heat exchanger according to the present invention will be described in more detail with reference to the accompanying drawings.
도 1은 본 발명에 의한 열교환기의 제1실시예를 보인 단면도이다. 1 is a cross-sectional view showing a first embodiment of a heat exchanger according to the present invention.
도 1을 참조하면, 본 실시예에 의한 열교환기(100)는, 냉매가 유동되는 다수개의 튜브(110), 상기 튜브(110)에 적층되는 다수개의 핀(120), 상기 튜브(110)의 양단에 연결되는 2개의 헤더(130)(140), 상기 튜브(110)를 유동하는 냉매를 흡입하는 흡입관(150) 및 상기 튜브(110)를 유동한 냉매를 배출하는 배출되는 배출관(160)을 포함한다.Referring to FIG. 1, the heat exchanger 100 according to the present embodiment includes a plurality of tubes 110 through which refrigerant flows, a plurality of fins 120 stacked on the tubes 110, and a plurality of tubes 110. Two headers 130 and 140 connected to both ends, a suction pipe 150 for sucking the refrigerant flowing through the tube 110, and a discharge pipe 160 for discharging the refrigerant flowing through the tube 110. Include.
보다 상세하게는, 상기 튜브(110)는, 소정의 길이를 가지고 수평 방향으로 서로 평행하게 길게 배치된다. 그리고 상기 튜브(110)는, 그 길이 방향에 직교되는 방향으로 서로 이격되게 위치된다. 상기 튜브(110)는, 그 내부에 냉매가 유동하는 유로가 각각 1개 또는 다수개가 구비되는 관 형상으로 형성된다. 특히, 상기 튜브(110)의 내부에 다수개의 유로가 구비되는 경우에는, 마이크로 채널 타입의 튜브라고 명명될 수 있다. In more detail, the tube 110 has a predetermined length and is disposed to extend in parallel with each other in the horizontal direction. The tubes 110 are spaced apart from each other in a direction orthogonal to the longitudinal direction. The tube 110 is formed in a tubular shape in which one or a plurality of flow paths through which refrigerant flows are provided. In particular, when a plurality of flow paths are provided inside the tube 110, it may be called a micro channel type tube.
한편 상기 튜브(110)는 다수개의 그룹으로 구분된다. 즉, 상기 흡입관(150)을 통하여 흡입된 냉매를 전달받는 제1튜브(111), 상기 제1튜브(111)로부터 냉매를 전달받는 제2튜브(112), 상기 제2튜브(112)로부터 냉매를 전달받는 제3튜브(113), 및 상기 제3튜브(113)로부터 냉매를 전달받아서 상기 배출관(160)으로 전달하는 제4튜브(114)를 포함한다. 실질적으로 상기 제1 및 제4튜브(111)(114)는, 냉매의 유동 방향을 기준으로 상대적으로 입구 및 출구측에 위치된다. 따라서 상기 제1튜브(111)를 입구측 튜브, 상기 제4튜브(114)를 출구측 튜브라 칭할 수 있다. 그리고 상기 제2 및 제3튜브(112)(113)는, 실질적으로 상기 제1 및 제4튜브(111)(114)를 연결하는 역할을 한다고 할 수 있다. 따라서 상기 제2 및 제3튜브(112)(113)는 각각 연결 튜브라고 명명될 수도 있다. Meanwhile, the tube 110 is divided into a plurality of groups. That is, the first tube 111 receives the refrigerant sucked through the suction pipe 150, the second tube 112 receives the refrigerant from the first tube 111, and the refrigerant from the second tube 112. Receiving a third tube 113, and receives the refrigerant from the third tube 113 includes a fourth tube 114 to deliver to the discharge pipe (160). Substantially, the first and fourth tubes 111 and 114 are located at the inlet and outlet sides relative to the flow direction of the refrigerant. Therefore, the first tube 111 may be referred to as an inlet side tube and the fourth tube 114 may be referred to as an outlet side tube. The second and third tubes 112 and 113 may serve to substantially connect the first and fourth tubes 111 and 114. Accordingly, the second and third tubes 112 and 113 may be referred to as connection tubes, respectively.
도 1에는, 상기 제1 내지 제4튜브(111)(112)(113)(114)가 각각 3개로 구성되는 것으로 도시되어 있으나, 상기 제1 내지 제4튜브(111)(112)(113)(114)는 4개 이상으로 구성될 수도 있다. 또한 상기 제1 내지 제4튜브(111)(112)(113)(114)가 반드시 동일한 개수로 구성되어야 하는 것은 아니다. 즉, 상기 제1 내지 제4튜브(111)(112)(113)(114)의 개수가 점차적으로 증가될 수 있다. 예를 들면, 상기 제1튜브(111)는 3개로 구성되고, 상기 제2튜브(112)는 4개로 구성되며, 상기 제3튜브(113)는 5개로 구성되고, 상기 제4튜브(114)는 6개로 구성될 수 있다.In FIG. 1, although the first to fourth tubes 111, 112, 113, and 114 are respectively configured as three, the first to fourth tubes 111, 112, and 113 are respectively configured. 114 may be comprised of four or more. In addition, the first to fourth tubes 111, 112, 113, and 114 do not necessarily have the same number. That is, the number of the first to fourth tubes 111, 112, 113, and 114 may be gradually increased. For example, the first tube 111 is composed of three, the second tube 112 is composed of four, the third tube 113 is composed of five, the fourth tube 114 May be composed of six.
상기 핀(120)은, 상기 튜브(110)에 다수개가 적층된다. 이때 상기 핀(120)은, 상기 튜브(110)의 길이 방향에 직교되는 방향으로 적층된다. 그리고 서로 인접하는 상기 핀(120)은, 상기 튜브(110)의 길이 방향으로 서로 이격된다. 상기 핀(120)은 상기 튜브(110)와 공기와의 접촉 면적을 증가시키는 역할을 한다.The pins 120 are stacked on the tube 110. At this time, the pins 120 are stacked in a direction orthogonal to the longitudinal direction of the tube 110. The fins 120 adjacent to each other are spaced apart from each other in the longitudinal direction of the tube 110. The fin 120 serves to increase the contact area between the tube 110 and the air.
상기 헤더(130)(140)는, 상기 튜브(110)의 양단부에 각각 연결된다. 이하에서는 설명의 편의상 도 1에서 도면상 우측의 것을 제1헤더(130), 도면상 좌측의 것을 제2헤더(140)라 칭한다. 상기 제1 및 제2헤더(130)(140)의 내부에는 각각 다수개의 베플(131)(141)이 구비된다. 상기 베플(131)(141)은 상기 제1 및 제2헤더(130)(140)의 내부를 각각 다수개의 영역으로 구획한다. 보다 상세하게는, 상기 제1헤더(130)의 내부에는 2개의 베플(131)(이하에서는 설명의 편의상 '제1베플'이라 칭함)이 구비된다. 상기 제1베플(131)은, 상기 제1헤더(130)의 내부를, 상기 제1튜브(111)의 도면상 우측 단부와 연통되는 영역, 상기 제2 및 제3튜브(112)(113)의 도면상 우측단부와 연통되는 영역, 및 상기 제4튜브(114)의 도면상 우측 단부와 연통되는 영역으로 구획한다. 그리고 상기 제2헤더(140)의 내부에는 1개의 베플(141)(이하에서는 설명의 편의상 '제2베플'이라 칭함)이 구비된다. 상기 제2베플(141)은, 상기 제2헤더(140)의 내부를, 상기 제1 및 제2튜브(111)(112)의 도면상 좌측 단부가 연통되는 영역, 및 상기 제3 및 제4튜브(113)(114)의 도면상 좌측 단부가 연통되는 영역으로 구획한다. 이하에서는 설명의 편의상, 상기 제1튜브(111)의 도면상 우측 단부, 및 상기 제4튜브(114)의 도면상 우측 단부와 각각 연통되는 상기 제1헤더(130)의 내부 일부를, 각각 흡입 영역(S1) 및 배출 영역(S5)이라 칭한다. 그리고 상기 제1 및 제2튜브(111)(112)의 도면상 좌측 단부와 연통되는 상기 제2헤더(140)의 내부 일부, 상기 제2 및 제3튜브(112)(113)의 도면상 우측 단부와 연통되는 상기 제1헤더(130)의 내부 나머지, 상기 제3 및 제4튜브(113)(114)의 도면상 좌측 단부와 연통되는 상기 제2헤더(140)의 내부 나머지를, 각각 제1 내지 제3연결 영역(S2)(S3)(S4)이라 칭한다. 따라서 상기 열교환기(100)에는, 상기 흡입 영역(S1) -> 상기 제1튜브(111) -> 상기 제1연결 영역(S2) -> 상기 제2튜브(112) -> 상기 제2연결 영역(S3) -> 상기 제3튜브(113) -> 상기 제3연결 영역(S4) -> 상기 제4튜브(114) -> 상기 배출 영역(S5)의 순서로 형성되는 유로가 형성된다고 할 수 있다.The headers 130 and 140 are connected to both ends of the tube 110, respectively. Hereinafter, for convenience of description, the right header in FIG. 1 is referred to as the first header 130 and the left header in the drawing is referred to as a second header 140. A plurality of baffles 131 and 141 are provided in the first and second headers 130 and 140, respectively. The baffles 131 and 141 divide the interior of the first and second headers 130 and 140 into a plurality of regions, respectively. In more detail, two baffles 131 (hereinafter referred to as 'first baffles') are provided inside the first header 130. The first baffle 131 is an area in which the inside of the first header 130 communicates with the right end of the drawing of the first tube 111, and the second and third tubes 112 and 113. And the area communicating with the right end in the drawing, and the area communicating with the right end in the drawing of the fourth tube 114. In addition, one baffle 141 (hereinafter referred to as a “second baffle” for convenience of description) is provided inside the second header 140. The second baffle 141 is a region in which the left end portion of the second header 140 communicates with each other in the drawing of the first and second tubes 111 and 112, and the third and fourth portions. The left end of the tube 113, 114 is divided into areas in communication with each other. Hereinafter, for convenience of description, each of the inner end portions of the first header 130 which communicates with the right end portion in the drawing of the first tube 111 and the right end portion in the drawing of the fourth tube 114 are respectively sucked. The area S1 and the discharge area S5 are called. And an inner portion of the second header 140 in communication with the left end of the first and second tubes 111 and 112, and a right side in the drawings of the second and third tubes 112 and 113. The inner rest of the first header 130 in communication with the end, the inner rest of the second header 140 in communication with the left end in the drawings of the third and fourth tubes 113, 114, respectively, The first to third connection regions S2, S3, and S4 are referred to. Therefore, in the heat exchanger 100, the suction region S1-> the first tube 111-> the first connection region S2-> the second tube 112-> the second connection region (S3)-> the third tube 113-> the third connection region (S4)-> the fourth tube 114-> the discharge region (S5) in the order can be said to be formed. have.
한편 상기 흡입관(150) 및 배출관(160)은, 각각 상기 제1헤더(130)에 연결된다. 실질적으로 상기 흡입관(150)은 상기 흡입 영역(S1)과 연통되고, 상기 배출관(160)은 상기 배출 영역(S5)과 연통된다. 따라서 상기 흡입관(150)을 통하여 흡입되는 냉매는, 상기 흡입 영역(S1)을 경유하여 상기 제1튜브(111)로 전달된다. 상기 제1튜브(111)로 전달된 냉매는, 상기 제1튜브(111)를 도면상 우측에서 좌측으로 유동하고, 상기 제1연결 영역(S2)을 경유하면서 그 유동 방향이 변환되어 상기 제2튜브(112)로 전달된다. 상기 제2튜브(112)로 전달된 냉매는, 상기 제2튜브(112)를 도면상 좌측에서 우측으로 유동하고, 상기 제2연결 영역(S3)을 경유하면서 그 유동 방향이 변환되어 상기 제3튜브(113)로 전달된다. 그리고 상기 제3튜브(113)로 전달된 냉매는, 상기 제3튜브(113)를 도면상 우측에서 좌측으로 유동하고, 상기 제3연결 영역(S4)을 경유하면서 그 유동 방향이 변환되어 상기 제4튜브(114)로 전달된다. 마지막으로 상기 제4튜브(114)로 전달된 냉매는, 상기 제4튜브(114)를 도면상 좌측에서 우측으로 유동하고, 상기 배출 영역(S5)을 경유하여 상기 배출관(160)을 통하여 상기 열교환기(100)의 외부로 배출된다. Meanwhile, the suction pipe 150 and the discharge pipe 160 are connected to the first header 130, respectively. Substantially, the suction pipe 150 is in communication with the suction area S1, and the discharge pipe 160 is in communication with the discharge area S5. Therefore, the refrigerant sucked through the suction pipe 150 is transferred to the first tube 111 via the suction region S1. The refrigerant delivered to the first tube 111 flows from the right side to the left side of the first tube 111, and the flow direction thereof is changed while passing through the first connection region S2. Delivered to tube 112. The refrigerant transferred to the second tube 112 flows the second tube 112 from the left to the right in the drawing, and the flow direction thereof is changed while passing through the second connection region S3 to the third tube. It is delivered to the tube 113. The refrigerant delivered to the third tube 113 flows from the right side to the left side of the third tube 113, and the flow direction thereof is changed while passing through the third connection region S4. It is delivered to four tubes 114. Finally, the refrigerant transferred to the fourth tube 114 flows the fourth tube 114 from the left to the right in the drawing, and the heat exchange is performed through the discharge pipe 160 via the discharge area S5. It is discharged to the outside of the machine (100).
본 실시예에서는, 상기 흡입관(150)의 위치가, 상기 제1 내지 제4튜브(111)(112)(113)(114) 전체를 고르게 유동할 수 있도록 설계된다. 보다 상세하게는, 상기 흡입관(150)이, 상기 제1튜브(111) 중 최상단에 위치되는 튜브 및 그 직하방에 위치되는 튜브 사이에 위치된다. 그리고 상기 배출관(160)은, 수직 방향으로 상기 배출 영역(S5)의 중앙에 위치된다.In the present embodiment, the position of the suction pipe 150 is designed to evenly flow the entire first to fourth tubes 111, 112, 113, 114. More specifically, the suction pipe 150 is located between the tube located at the top of the first tube 111 and the tube located directly below it. In addition, the discharge pipe 160 is located at the center of the discharge area S5 in the vertical direction.
상기 흡입관(150)이 상술한 바와 같이 위치되는 경우에는, 냉매가 상기 제1 내지 제4튜브(111)(112)(113)(114)를 전체적으로 고르게 유동될 수 있게 된다. 아래의 [표 1]에서 (A)는, 상기 흡입관(150) 및 배출관(160)이 각각 수직 방향으로 상기 흡입 영역(S1) 및 배출 영역(S5)의 중앙에 위치되는 종래 기술과 같은 경우이다. 그리고 [표 1]에서 (B)는, 상기 흡입관(150) 및 배출관(160)이 본 실시예와 같이 위치되는 경우이다. When the suction pipe 150 is positioned as described above, the refrigerant may flow evenly through the first to fourth tubes 111, 112, 113, and 114. In Table 1 below, (A) is the same as in the prior art in which the suction pipe 150 and the discharge pipe 160 are respectively positioned at the center of the suction area S1 and the discharge area S5 in the vertical direction. . In Table 1, (B) is the case where the suction pipe 150 and the discharge pipe 160 are positioned as in this embodiment.
표 1
압력 손실(psi) (Qi-Q)/Qi×100(%)
A 1.46 13.19
B 1.37 6.49
Table 1
Pressure loss (psi) (Qi-Q) / Qi × 100 (%)
A 1.46 13.19
B 1.37 6.49
여기서 압력 손실이란, 상기 흡입관(150)을 통하여 상기 열교환기(100)의 내부로 흡입되는 냉매의 압력과 상기 배출관(160)을 통하여 상기 열교환기(100)의 외부로 배출되는 냉매의 압력 사이의 차를 의미한다. 따라서 압력 손실이 증가될수록 실질적으로 상기 열교환기(100)와 함께 열교환사이클을 구성하는 압축기에 작용하는 부하가 증가된다. 또한 Qi는 상기 열교환기(100)의 설계된 열교환 출력이고, Q는 상기 열교환기(100)의 실제 열교환 출력을 의미한다. 따라서 상기 열교환기(100)의 설계된 열교환 출력(Qi)과 상기 열교환기(100)의 실제 열교환 출력(Q)의 차이를 상기 열교환기(100)의 설계된 열교환 출력(Qi)으로 나눈 값에 대한 백분율이 작을수록 실질적으로 설계된 열교환 출력에 근접한 출력을 나타낸다고 할 수 있다. 그런데 [표 1]을 참조하면, (A)에 비하여 (B)의 경우, 즉 본 실시예와 같이 상기 흡입관(150)이 위치되는 경우가 압력 손실 및 상기 열교환기(100)의 설계된 열교환 출력(Qi)과 상기 열교환기(100)의 실제 열교환 출력(Q)의 차이를 상기 열교환기(100)의 설계된 열교환 출력(Qi)으로 나눈 값에 대한 백분율이 상대적으로 감소됨을 알 수 있다. 이는, 실질적으로 본 실시예에서는, 냉매가 상기 제1 내지 제4튜브(111)(112)(113)(114)를 전체적으로 고르게 유동하기 때문이다.Here, the pressure loss refers to a pressure between the pressure of the refrigerant sucked into the heat exchanger 100 through the suction pipe 150 and the pressure of the refrigerant discharged to the outside of the heat exchanger 100 through the discharge pipe 160. Means tea. Therefore, as the pressure loss increases, the load on the compressor constituting the heat exchange cycle together with the heat exchanger 100 increases substantially. In addition, Qi is the designed heat exchange output of the heat exchanger 100, and Q is the actual heat exchange output of the heat exchanger 100. Therefore, a percentage of a value obtained by dividing the difference between the designed heat exchanger output Qi of the heat exchanger 100 and the actual heat exchanger output Q of the heat exchanger 100 by the designed heat exchanger output Qi of the heat exchanger 100. It can be said that the smaller this is, the output close to the substantially designed heat exchange output. However, referring to [Table 1], in the case of (B) compared to (A), that is, the case in which the suction pipe 150 is positioned as in this embodiment, the pressure loss and the designed heat exchange output of the heat exchanger 100 ( It can be seen that the percentage of the difference between the difference between Qi) and the actual heat exchanger output Q of the heat exchanger 100 divided by the designed heat exchanger output Qi of the heat exchanger 100 is relatively reduced. This is substantially because in the present embodiment, the refrigerant flows evenly throughout the first to fourth tubes 111, 112, 113, and 114.
이하에서는 본 발명에 의한 열교환기의 제2실시예를 첨부된 도면을 참조하여 보다 상세하게 설명한다.Hereinafter, a second embodiment of a heat exchanger according to the present invention will be described in more detail with reference to the accompanying drawings.
도 2는 본 발명에 의한 열교환기의 제2실시예를 보인 단면도이다. 본 실시예의 구성 요소 중 상술한 본 발명의 제1실시예와 동일한 구성 요소에 대해서는 도 1의 도면 부호를 원용하고, 이에 대한 상세한 설명을 생략하기로 한다.2 is a cross-sectional view showing a second embodiment of a heat exchanger according to the present invention. The same reference numerals as in FIG. 1 are used for the same components as those of the first embodiment of the present invention, and detailed description thereof will be omitted.
도 2를 참조하면, 본 실시예에서는, 흡입관(150) 및 배출관(160)의 위치가, 제1 내지 제4튜브(111)(112)(113)(114) 전체를 고르게 유동할 수 있도록 설계된다. 보다 상세하게는, 상기 흡입관(150)은, 상기 제1튜브(111) 중 최상단에 위치되는 튜브 및 그 직하방에 위치되는 튜브 사이에 위치된다. 이는 상술한 본 발명의 제1실시예와 동일하다. 그리고 본 실시예에서는, 상기 배출관(160)이, 상기 제4튜브(114) 중 최하단에 위치되는 튜브 및 그 직상방에 위치되는 튜브 사이에 위치된다. Referring to FIG. 2, in this embodiment, the positions of the suction pipe 150 and the discharge pipe 160 are designed to evenly flow the entire first to fourth tubes 111, 112, 113, and 114. do. More specifically, the suction pipe 150 is located between the tube located at the top of the first tube 111 and the tube located directly below it. This is the same as the first embodiment of the present invention described above. In the present embodiment, the discharge pipe 160 is positioned between the tube located at the lowermost end of the fourth tube 114 and the tube located directly above it.
아래의 [표 2]에는, 상기 흡입관(150) 및 배출관(160)이 각각 수직 방향으로 상기 흡입 영역(S1) 및 배출 영역(S5)의 중앙에 위치되는 종래 기술의 경우(A)와, 본 실시예와 같이, 상기 흡입관(150) 및 배출관(160)이 각각 위치되는 경우(C)의 실험 데이터를 나타낸다.In Table 2 below, the suction pipe 150 and the discharge pipe 160 are each positioned in the center of the suction area S1 and the discharge area S5 in the vertical direction, respectively. As in the embodiment, the experimental data in the case where the suction pipe 150 and the discharge pipe 160 are located (C), respectively.
표 2
압력 손실(psi) (Qi-Q)/Qi×100(%)
A 1.46 13.19
C 0.90 2.15
TABLE 2
Pressure loss (psi) (Qi-Q) / Qi × 100 (%)
A 1.46 13.19
C 0.90 2.15
따라서 [표 2]를 참조하면, 본 실시예와 같이 상기 흡입관(150) 및 배출관(160)이 위치되는 경우(C)가, (A)에 비하여 압력 손실 및 출력 편차가 상대적으로 감소됨을 알 수 있다. 또한 본 실시예에 의한 경우(C)는, 실질적으로 상술한 본 발명의 제1실시예의 경우(B)에 비해서도, 압력 손실 및 상기 열교환기(100)의 설계된 열교환 출력(Qi)과 상기 열교환기(100)의 실제 열교환 출력(Q)의 차이를 상기 열교환기(100)의 설계된 열교환 출력(Qi)으로 나눈 값에 대한 백분율이 보다 더 감소됨을 알 수 있다.Therefore, referring to [Table 2], it can be seen that in the case where the suction pipe 150 and the discharge pipe 160 are positioned as in the present embodiment (C), the pressure loss and the output deviation are relatively reduced compared to (A). have. In addition, in the case (C) according to the present embodiment, the pressure loss and the designed heat exchange output Qi of the heat exchanger 100 and the heat exchanger are substantially reduced as compared with the case (B) of the first embodiment of the present invention. It can be seen that the percentage of the difference between the actual heat exchange output Q of 100 divided by the designed heat exchange output Q i of the heat exchanger 100 is further reduced.
이하에서는 본 발명에 의한 열교환기의 제3실시예를 첨부된 도면을 참조하여 보다 상세하게 설명한다.Hereinafter, a third embodiment of a heat exchanger according to the present invention will be described in more detail with reference to the accompanying drawings.
도 3은 본 발명에 의한 열교환기의 제3실시예를 보인 단면도이다. 3 is a cross-sectional view showing a third embodiment of a heat exchanger according to the present invention.
도 3을 참조하면, 본 실시예에서도, 열교환기(200)가, 다수개의 튜브(210), 다수개의 핀(220), 제1 및 제2헤더(230)(240), 흡입관(250) 및 배출관(260)을 포함한다. 상기 튜브(210)는 제1 내지 제4튜브(211)(212)(213)(214)를 포함한다. 그리고 상기 제1 및 제2헤더(230)(240)의 내부에는, 각각 제1 및 제2베플(231)(241)에 의하여 구획되는, 흡입 영역(S1), 배출 영역(S5) 및 제1 내지 제3연결 영역(S3)(S4)(S5)이 구비된다. 그리고 상기 흡입관(250) 및 배출관(260)은, 각각 상기 흡입 영역(S1) 및 배출 영역(S5)과 연통되도록 상기 제1헤더(230)에 연결된다. 이와 같은 구성은, 상술한 본 발명의 제1실시예와 동일하다고 할 수 있다.Referring to FIG. 3, even in this embodiment, the heat exchanger 200 includes a plurality of tubes 210, a plurality of fins 220, first and second headers 230 and 240, a suction pipe 250, and the like. The discharge pipe 260 is included. The tube 210 includes first to fourth tubes 211, 212, 213, and 214. In the first and second headers 230 and 240, the suction area S1, the discharge area S5, and the first area, which are partitioned by the first and second baffles 231 and 241, respectively. To third connection regions S3, S4, and S5. The suction pipe 250 and the discharge pipe 260 are connected to the first header 230 so as to communicate with the suction area S1 and the discharge area S5, respectively. Such a configuration can be said to be the same as the first embodiment of the present invention described above.
다만, 본 실시예에서는, 상기 튜브(210)로 그 내부에 다수개의 유로가 구비되는 마이크로 채널 타입의 튜브가 사용된다. 그리고 상기 핀(220)은 다수회 절곡되어 서로 인접하는 상기 튜브(210) 사이에 위치된다.However, in the present embodiment, a tube of a micro channel type having a plurality of flow paths therein is used as the tube 210. The fin 220 is bent several times and positioned between the tubes 210 adjacent to each other.
또한 본 실시예에서는, 상기 흡입관(250)이 상기 제1튜브(211) 중 최상단 및 최하단에 위치되는 튜브의 중심 사이의 거리(L1)를 이등분하는 가상의 직선으로부터 이격되게 위치된다. 또한 상기 배출관(260)은 상기 제4튜브(214) 중 최상단 및 최하단에 위치되는 튜브의 중심 사이의 거리(L2)를 이등분하는 가상의 직선으로부터 이격되게 위치된다. In addition, in the present embodiment, the suction pipe 250 is positioned to be spaced apart from an imaginary straight line that bisects the distance L1 between the centers of the tubes located at the top and bottom of the first tube 211. In addition, the discharge pipe 260 is positioned to be spaced apart from an imaginary straight line bisecting the distance (L2) between the center of the tube located at the top and bottom of the fourth tube (214).
보다 상세하게는, 상기 흡입관(250)이, 상기 제1튜브(211) 중 최상단에 위치되는 튜브의 중심과 상기 흡입관(250)의 중심 사이의 거리(l1)가, 상기 제1튜브(211) 중 최상단 및 최하단에 위치되는 튜브의 중심 사이의 거리(L1)의 1/2 미만의 값이 되는 위치에 위치된다. 그리고 상기 배출관(260)은, 상기 제4튜브(214) 중 최하단에 위치되는 튜브의 중심과 상기 배출관(260)의 중심 사이의 거리(l2)가, 상기 제4튜브(214) 중 최상단 및 최하단에 위치되는 튜브의 중심 사이의 거리(L2)의 1/2 미만의 값이 되는 위치에 위치된다. 바람직하게는, 상기 제1튜브(211) 중 최상단에 위치되는 튜브의 중심과 상기 흡입관(250)의 중심 사이의 거리(l1)가, 상기 제1튜브(211) 중 최상단 및 최하단에 위치되는 튜브의 중심 사이의 거리(L1)의 1/4 이상 및 1/2 미만이다. 그리고 상기 제4튜브(214) 중 최하단에 위치되는 튜브의 중심과 상기 배출관(260)의 중심 사이의 거리(l2)는, 상기 제4튜브(214) 중 최상단 및 최하단에 위치되는 튜브의 중심 사이의 거리(L2)의 1/4 이상 및 1/3 이하이다. 이를 수식으로 표현하면 다음과 같다.More specifically, the distance l1 between the center of the tube located at the top of the first tube 211 and the center of the suction tube 250 is the first tube 211. It is located at a position which is less than 1/2 of the distance L1 between the centers of the tubes located at the top and bottom of the middle. In addition, the discharge pipe 260 has a distance l2 between the center of the tube located at the lowest end of the fourth tube 214 and the center of the discharge pipe 260, the top and bottom of the fourth tube 214. It is located at a position that is less than 1/2 of the distance L2 between the centers of the tubes located at. Preferably, the distance l1 between the center of the tube located at the top of the first tube 211 and the center of the suction tube 250 is located at the top and the bottom of the first tube 211. It is at least 1/4 and less than 1/2 of the distance L1 between the centers of. The distance l2 between the center of the tube located at the bottom of the fourth tube 214 and the center of the discharge tube 260 is between the center of the tube located at the top and bottom of the fourth tube 214. Is 1/4 or more and 1/3 or less of the distance L2. If this is expressed as an expression, it is as follows.
(1) 1/4 ≤ l1/L1 < 1/2(1) 1/4 ≤ l1 / L1 <1/2
(2) 1/4 ≤ l2/L2 ≤ 1/3(2) 1/4 ≤ l2 / L2 ≤ 1/3
본 실시예에서도, 상술한 본 발명의 제2실시예와 유사하게, 상기 제1 내지 제4튜브(211)(212)(213)(214) 전체를 고르게 냉매가 유동할 수 있다. 따라서 본 실시예에 의하면, 실질적으로 상기 열교환기(200)의 열교환 효율의 증진을 기대할 수 있게 될 것이다.Also in this embodiment, similar to the second embodiment of the present invention described above, the refrigerant may flow evenly through the entire first to fourth tubes 211, 212, 213, 214. Therefore, according to this embodiment, it will be expected to substantially increase the heat exchange efficiency of the heat exchanger 200.
이하에서는 본 발명에 의한 열교환기의 제4실시예를 첨부된 도면을 참조하여 보다 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings a fourth embodiment of the heat exchanger according to the present invention will be described in more detail.
도 4는 본 발명에 의한 열교환기의 제4실시예를 보인 단면도이다.4 is a cross-sectional view showing a fourth embodiment of a heat exchanger according to the present invention.
도 4를 참조하면, 본 실시예에서도, 열교환기(300)가, 다수개의 튜브(310), 다수개의 핀(320), 제1 및 제2헤더(330)(340), 흡입관(350) 및 배출관(360)을 포함한다. 그리고 본 실시예에서는, 상기 튜브(310)가 제1 및 제2튜브(311)(312)를 포함한다. 상기 제1 및 제2튜브(311)(312)의 갯수는, 4:5의 비율로 구성될 수 있다. 예를 들면, 상기 제1튜브(311)가 8개로 구성되고, 상기 제2튜브(312)는 10개로 구성될 수 있다. 또한 상기 제1헤더(340)의 내부에는, 제1베플(331)에 의하여 구획되는, 흡입 영역(S1) 및 배출 영역(S5)이 구비된다. 그리고 상기 제2헤더(340)의 내부에는, 연결 영역(S3)이 구비된다. 그리고 상기 흡입관(350) 및 배출관(360)은, 각각 상기 흡입 영역(S1) 및 배출 영역(S5)과 연통되도록 상기 제1헤더(330)에 연결된다. 이와 같은 구성은, 상술한 본 발명의 제1실시예와 동일하다고 할 수 있다.Referring to FIG. 4, even in this embodiment, the heat exchanger 300 includes a plurality of tubes 310, a plurality of fins 320, first and second headers 330, 340, a suction pipe 350, and the like. The discharge pipe 360 is included. In this embodiment, the tube 310 includes first and second tubes 311 and 312. The number of the first and second tubes 311 and 312 may be configured in a ratio of 4: 5. For example, the first tube 311 is composed of eight, the second tube 312 may be composed of ten. In addition, an inside of the first header 340 is provided with a suction region S1 and a discharge region S5, which are partitioned off by the first baffle 331. In addition, a connection area S3 is provided inside the second header 340. In addition, the suction pipe 350 and the discharge pipe 360 are connected to the first header 330 so as to communicate with the suction area S1 and the discharge area S5, respectively. Such a configuration can be said to be the same as the first embodiment of the present invention described above.
그리고 본 실시예에서는, 상기 튜브(310)로 그 내부에 다수개의 유로가 구비되는 마이크로 채널 타입의 튜브가 사용된다. 또한 상기 핀(320)은 상기 튜브(310)의 길이 방향에 직교되는 방향으로 적층되는 다수개로 구성된다. In this embodiment, a tube of a micro channel type having a plurality of flow paths is used as the tube 310. In addition, the fin 320 is composed of a plurality of stacked in the direction orthogonal to the longitudinal direction of the tube (310).
또한 본 실시예에서는, 상기 흡입관(350) 및 배출관(360)이, 상술한 본 발명의 제3실시예와 유사하게, 위치된다. 즉 상기 흡입관(350)은, 상기 제1튜브(311) 중 최상단에 위치되는 튜브의 중심과 상기 흡입관(350)의 중심 사이의 거리(l1)가, 상기 제1튜브(311) 중 최상단 및 최하단에 위치되는 튜브의 중심 사이의 거리(L1)의 1/2 미만의 값이 되는 위치에 위치된다. 바람직하게는, 상기 제1튜브(311) 중 최상단에 위치되는 튜브의 중심과 상기 흡입관(350)의 중심 사이의 거리(l1)가, 상기 제1튜브(311) 중 최상단 및 최하단에 위치되는 튜브의 중심 사이의 거리(L1)의 1/4 이상 및 1/2 미만이다. 그리고 상기 배출관(360)은, 상기 제2튜브(312) 중 최하단에 위치되는 튜브의 중심과 상기 배출관(360)의 중심 사이의 거리(l2)가, 상기 제2튜브(312) 중 최상단 및 최하단에 위치되는 튜브의 중심 사이의 거리(L2)의 1/2 미만의 값이 되는 위치에 위치된다. 바람직하게는, 상기 제2튜브(312) 중 최하단에 위치되는 튜브의 중심과 상기 배출관(360)의 중심 사이의 거리(l2)는, 상기 제2튜브(312) 중 최상단 및 최하단에 위치되는 튜브의 중심 사이의 거리(L2)의 1/4 이상 및 1/3 이하이다. Also, in this embodiment, the suction pipe 350 and the discharge pipe 360 are positioned similarly to the third embodiment of the present invention described above. That is, the suction pipe 350 has a distance l1 between the center of the tube located at the uppermost end of the first tube 311 and the center of the suction pipe 350, and is the uppermost and lowermost end of the first tube 311. It is located at a position that is less than 1/2 of the distance L1 between the centers of the tubes located at. Preferably, a distance l1 between the center of the tube located at the top of the first tube 311 and the center of the suction tube 350 is located at the top and bottom of the first tube 311. It is at least 1/4 and less than 1/2 of the distance L1 between the centers of. The discharge pipe 360 has a distance l2 between the center of the tube located at the lowermost end of the second tube 312 and the center of the discharge pipe 360. It is located at a position that is less than 1/2 of the distance L2 between the centers of the tubes located at. Preferably, the distance l2 between the center of the tube located at the bottom of the second tube 312 and the center of the discharge pipe 360 is a tube located at the top and bottom of the second tube 312. Is equal to or greater than 1/4 and less than 1/3 of the distance L2 between the centers.
그리고 상기 흡입관(350) 및 배출관(360)의 위치에 따른 실험 데이터는 아래의 [표 3]과 같이 확인할 수 있다. 여기서 (A)는, 종래 기술, 즉 상기 제1튜브(311) 중 최상단에 위치되는 튜브의 중심과 상기 흡입관(350)의 중심 사이의 거리(l1)가, 상기 제1튜브(311) 중 최상단 및 최하단에 위치되는 튜브의 중심 사이의 거리(L1)의 1/2이고, 상기 제2튜브(312) 중 최하단에 위치되는 튜브의 중심과 상기 배출관(360)의 중심 사이의 거리(l2)가, 상기 제2튜브(312) 중 최상단 및 최하단에 위치되는 튜브의 중심 사이의 거리(L2)의 1/2인 경우이다. 그리고 (D)는, 상기 제1튜브(311) 중 최상단에 위치되는 튜브의 중심과 상기 흡입관(350)의 중심 사이의 거리(l1)가, 상기 제1튜브(311) 중 최상단 및 최하단에 위치되는 튜브의 중심 사이의 거리(L1)의 1/4이고, 상기 제2튜브(312) 중 최하단에 위치되는 튜브의 중심과 상기 배출관(360)의 중심 사이의 거리(l2)가, 상기 제2튜브(312) 중 최상단 및 최하단에 위치되는 튜브의 중심 사이의 거리(L2)의 1/2인 경우이다. 또한 (E)는, 상기 제1튜브(311) 중 최상단에 위치되는 튜브의 중심과 상기 흡입관(350)의 중심 사이의 거리(l1)가, 상기 제1튜브(311) 중 최상단 및 최하단에 위치되는 튜브의 중심 사이의 거리(L1)의 1/4이고, 상기 제2튜브(312) 중 최하단에 위치되는 튜브의 중심과 상기 배출관(360)의 중심 사이의 거리(l2)가, 상기 제2튜브(312) 중 최상단 및 최하단에 위치되는 튜브의 중심 사이의 거리(L2)의 1/3인 경우이다. And the experimental data according to the position of the suction pipe 350 and the discharge pipe 360 can be confirmed as shown in Table 3 below. Here, (A) is the prior art, that is, the distance l1 between the center of the tube located at the top of the first tube 311 and the center of the suction pipe 350 is the top of the first tube 311 And a half of the distance L1 between the center of the tube located at the bottom end, and the distance l2 between the center of the tube located at the bottom of the second tube 312 and the center of the discharge pipe 360 is In this case, 1/2 of the distance (L2) between the center of the tube located at the top and the bottom of the second tube (312). And (D), the distance l1 between the center of the tube located at the top of the first tube 311 and the center of the suction tube 350 is located at the top and the bottom of the first tube 311. 1/4 of the distance L1 between the center of the tube, and the distance l2 between the center of the tube located at the bottom of the second tube 312 and the center of the discharge pipe 360 is the second. It is the case of 1/2 of the distance L2 between the center of the tube located in the uppermost and lowermost part of the tube 312. In addition, (E), the distance l1 between the center of the tube located at the top of the first tube 311 and the center of the suction pipe 350 is located at the top and the bottom of the first tube 311. 1/4 of the distance L1 between the center of the tube, and the distance l2 between the center of the tube located at the bottom of the second tube 312 and the center of the discharge pipe 360 is the second. This is the case of 1/3 of the distance L2 between the center of the tube located at the top and bottom of the tube 312.
표 3
흡입관의 위치(l1/L1) 배출관의 위치(l2/L2) 압력 손실 (Qi-Q)/Qi×100(%)
A 1/2 1/2 1.46 9.63
D 1/4 1/2 1.37 6.49
E 1/3 0.90 1.4
TABLE 3
Suction tube position (l1 / l1) Location of discharge pipe (l2 / l2) Pressure loss (Qi-Q) / Qi × 100 (%)
A 1/2 1/2 1.46 9.63
D 1/4 1/2 1.37 6.49
E 1/3 0.90 1.4
[표 3]에서와 같이, 종래의 경우(A)에 비하여 상기 흡입관(350) 또는 상기 흡입관(350) 및 배출관(360)의 위치가 가변되는 경우(D)(E)의 압력 손실 및 상기 열교환기(100)의 설계된 열교환 출력(Qi)과 상기 열교환기(100)의 실제 열교환 출력(Q)의 차이를 상기 열교환기(100)의 설계된 열교환 출력(Qi)으로 나눈 값에 대한 백분율이 상대적으로 감소됨을 확인할 수 있다.As shown in Table 3, the pressure loss and the heat exchange of the suction pipe 350 or the suction pipe 350 and the discharge pipe 360 are changed in comparison with the conventional case (A). The percentage of the difference between the designed heat exchanger output Qi of the heat exchanger 100 and the actual heat exchanger output Q of the heat exchanger 100 divided by the designed heat exchanger output Qi of the heat exchanger 100 is relatively It can be seen that the decrease.
이와 같은 본 발명의 기본적인 기술적 사상의 범주 내에서 당업계의 통상의 지식을 가진 자에게 있어서는 다른 많은 변형이 가능함은 물론이고, 본 발명의 권리범위는 첨부한 특허청구범위에 기초하여 해석되어야 할 것이다. Within the scope of the basic technical idea of the present invention as well as many other modifications are possible to those skilled in the art, the scope of the present invention should be interpreted based on the appended claims. .

Claims (15)

  1. 기설정된 길이를 가지고 그 길이 방향에 직교되는 방향으로 서로 이격되게 배치되는 다수개로 구성되고, 냉매의 유동이 연속적으로 이루어지는 다수개의 그룹으로 구분되는 다수개의 튜브; A plurality of tubes having a predetermined length and arranged to be spaced apart from each other in a direction orthogonal to the longitudinal direction, the plurality of tubes being divided into a plurality of groups in which the flow of the refrigerant is continuously formed;
    상기 튜브와 공기의 접촉 면적을 증가시키는 다수개의 핀; A plurality of fins for increasing the contact area of air with the tube;
    상기 튜브의 양단부에 각각 연결되고, 그 내부가 다수개의 영역으로 구분되는 제1 및 제2헤더; First and second headers respectively connected to both ends of the tube, the inside of the tube being divided into a plurality of regions;
    상기 제1헤더에 연결되고, 상기 튜브를 유동하는 냉매가 흡입되는 흡입관; 및 A suction pipe connected to the first header and into which a refrigerant flowing through the tube is sucked; And
    상기 제1헤더에 연결되고, 상기 튜브를 유동한 냉매가 배출되는 배출관; 을 포함하고, A discharge pipe connected to the first header and discharging the refrigerant flowing through the tube; Including,
    상기 튜브의 각 그룹은, 3개 이상의 튜브로 구성되고,  Each group of tubes consists of three or more tubes,
    상기 영역은,  The area is,
    상기 제1헤더의 내부에 구비되고, 상기 흡입관 및 상기 튜브 중 일부를 연통시키는 흡입 영역;  A suction area provided inside the first header and communicating part of the suction pipe and the tube;
    상기 제1헤더의 내부에 구비되고, 상기 배출관 및 상기 튜브의 다른 일부를 연통시키는 배출 영역; 및  A discharge area provided inside the first header and communicating the discharge pipe with another part of the tube; And
    및 상기 제2헤더의 내부 또는 상기 제2헤더의 내부 및 상기 흡입 영역 및 배출 영역 사이에 해당하는 상기 제1헤더의 내부에 구비되고, 서로 인접하는 상기 튜브의 나머지를 연통시키는 적어도 1개의 연결 영역; 을 포함하고,  And at least one connection area provided in the second header or in the first header corresponding to the inside of the second header and between the suction area and the discharge area and communicating with the rest of the tubes adjacent to each other. ; Including,
    상기 흡입관이 상기 흡입 영역과 연통되는 상기 튜브 중 최상단 및 최하단에 위치되는 튜브의 중심 사이의 거리를 이등분하는 가상의 직선으로부터 이격되게 위치되거나, 상기 배출관이 상기 배출 영역과 연통되는 상기 튜브 중 최상단 및 최하단에 위치되는 튜브의 중심 사이의 거리를 이등분하는 가상의 직선으로부터 이격되게 위치되는 열교환기. The suction pipe is located away from an imaginary straight line bisecting the distance between the center of the tube located at the top and bottom of the tube in communication with the suction area, or the top of the tube in which the discharge pipe is in communication with the discharge area; A heat exchanger positioned spaced apart from an imaginary straight line that bisects the distance between the centers of the tubes located at the lowest end.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 흡입관이 상기 흡입 영역과 연통되는 상기 튜브 중 상대적으로 상기 연결 영역 또는 상기 배출 영역에 가장 인접하는 튜브 및 그것에 가장 인접되는 튜브 사이에 위치되는 열교환기.And a heat exchanger located between the tube closest to the connection area or the discharge area among the tubes in communication with the suction area and the tube closest to it.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 배출관은, 상기 배출 영역과 연통되는 상기 튜브 중 상대적으로 상기 연결 영역 또는 상기 흡입 영역에 가장 인접하는 튜브 및 그것에 가장 인접되는 튜브 사이에 위치되는 열교환기.And the discharge pipe is located between a tube most adjacent to the connection area or the suction area among the tubes in communication with the discharge area and a tube closest to it.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 흡입 영역과 연통되는 상기 튜브에 비하여 상기 배출 영역과 연통되는 상기 튜브가 상대적으로 다수개로 구성되는 더 큰 열교환기.A larger heat exchanger comprising a relatively large number of said tubes in communication with said discharge zone as compared to said tubes in communication with said suction zone.
  5. 제 1 항에 있어서, The method of claim 1,
    상기 튜브의 내부에는, 1개의 유로가 구비되고, Inside the tube, one flow path is provided,
    상기 핀은, 상기 튜브의 길이 방향에 직교되는 방향으로 다수개가 적층되는 열교환기.And a plurality of fins are stacked in a direction orthogonal to the longitudinal direction of the tube.
  6. 제 1 항에 있어서, The method of claim 1,
    상기 튜브의 내부에는, 서로 구획되는 다수개의 유로가 구비되고, The inside of the tube is provided with a plurality of flow paths partitioned from each other,
    상기 핀은, 서로 인접하는 상기 튜브 사이에 위치되거나 상기 튜브의 길이 방향에 직교되는 방향으로 다수개가 적층되는 열교환기.And a plurality of fins stacked between the tubes adjacent to each other or in a direction orthogonal to a length direction of the tubes.
  7. 제 1 항에 있어서, The method of claim 1,
    상기 튜브의 내부에는, 서로 구획되는 다수개의 유로가 구비되고, The inside of the tube is provided with a plurality of flow paths partitioned from each other,
    상기 핀은, 서로 인접하는 상기 튜브 사이에 위치되는 열교환기.And the fins are located between the tubes adjacent to each other.
  8. 냉매가 유동되고, 기설정된 길이를 가지며, 그 길이 방향에 직교되는 방향으로 이격되게 배치되는 다수개의 튜브; 상기 튜브와 공기의 접촉 면적을 증가시키는 다수개의 핀; 상기 튜브의 양단부에 각각 연결되는 제1 및 제2헤더; 상기 제1헤더에 연결되고, 상기 튜브를 유동하는 냉매가 흡입되는 흡입관; 및 상기 제1헤더에 연결되고, 상기 튜브를 유동한 냉매가 배출되는 배출관; 을 포함하는 열교환기에 있어서: A plurality of tubes in which the refrigerant flows, has a predetermined length, and is spaced apart in a direction orthogonal to the length direction; A plurality of fins for increasing the contact area of air with the tube; First and second headers connected to both ends of the tube, respectively; A suction pipe connected to the first header and into which a refrigerant flowing through the tube is sucked; A discharge pipe connected to the first header and discharging the refrigerant flowing through the tube; In a heat exchanger comprising:
    상기 튜브는, The tube,
    기설정된 방향으로 냉매가 유동되는 다수개로 구성되고, 상기 흡입관을 통하여 흡입된 냉매를 전달받는 입구측 튜브; 및 An inlet-side tube composed of a plurality of refrigerants flowing in a predetermined direction and receiving refrigerant sucked through the suction pipe; And
    상기 입구측 튜브와 반대 방향으로 냉매가 유동되는 다수개로 구성되고, 상기 배출관으로 냉매를 전달하는 출구측 튜브; 를 포함하고, An outlet tube configured to have a plurality of refrigerants flowing in a direction opposite to the inlet tube, and to deliver the refrigerant to the discharge tube; Including,
    상기 입구측 튜브 중 상기 출구측 튜브에 가장 인접하는 튜브의 중심과 상기 흡입관의 중심 사이의 거리(l1)는, 상기 입구측 튜브 중 그 길이 방향에 직교되는 방향으로 최외측에 위치되는 2개의 튜브의 중심 사이의 거리(L1)의 1/2 미만이거나, 상기 출구측 튜브 중 상기 입구측 튜브에 가장 인접하는 튜브의 중심과 상기 배출관의 중심 사이의 거리(l2)는, 상기 출구측 튜브 중 그 길이 방향에 직교되는 방향으로 최외측에 위치되는 2개의 튜브의 중심 사이의 거리(L2)의 1/2 미만인 열교환기.The distance l1 between the center of the tube closest to the outlet tube among the inlet tubes and the center of the suction tube is located at the outermost side in the direction orthogonal to the longitudinal direction of the inlet tubes. The distance l2 between less than half of the distance L1 between the centers of the outlet tubes or the center of the tube closest to the inlet tube among the outlet tubes and the center of the outlet tube is equal to that of the outlet tube. A heat exchanger of less than one half of the distance (L2) between the centers of two tubes located at the outermost side in a direction orthogonal to the longitudinal direction.
  9. 제 8 항에 있어서, The method of claim 8,
    상기 입구측 튜브 중 상기 출구측 튜브에 가장 인접하는 튜브의 중심과 상기 흡입관의 중심 사이의 거리(l1)는, 상기 입구측 튜브 중 그 길이 방향에 직교되는 방향으로 최외측에 위치되는 2개의 튜브의 중심 사이의 거리(L1)의 1/4 이상 및 1/2 미만인 열교환기.The distance l1 between the center of the tube closest to the outlet tube among the inlet tubes and the center of the suction tube is located at the outermost side in the direction orthogonal to the longitudinal direction of the inlet tubes. A heat exchanger of at least 1/4 and less than 1/2 of the distance L1 between the centers of the.
  10. 제 8 항에 있어서, The method of claim 8,
    상기 출구측 튜브 중 상기 입구측 튜브에 가장 인접하는 튜브의 중심과 상기 배출관의 중심 사이의 거리(l2)는, 상기 출구측 튜브 중 그 길이 방향에 직교되는 방향으로 최외측에 위치되는 2개의 튜브의 중심 사이의 거리(L2)의 1/4 이상 및 1/3 이하인 열교환기.The distance l2 between the center of the tube closest to the inlet side tube and the center of the discharge tube among the outlet side tubes is located at the outermost side in the direction orthogonal to the longitudinal direction of the outlet side tubes. A heat exchanger of at least 1/4 and less than 1/3 of the distance (L2) between the centers of the.
  11. 제 8 항에 있어서, The method of claim 8,
    상기 입구측 튜브 및 출구측 튜브는, 각각 3개 이상의 튜브로 구성되는 열교환기.The inlet tube and the outlet tube are each composed of three or more tubes.
  12. 제 8 항에 있어서, The method of claim 8,
    상기 입구측 튜브에 비하여 상기 출구측 튜브가 상대적으로 다수개로 구성되는 열교환기.A heat exchanger comprising a plurality of the outlet tube relatively compared to the inlet tube.
  13. 제 8 항에 있어서, The method of claim 8,
    상기 입구측 튜브 및 출구측 튜브 중 어느 하나와 동일한 방향으로 각각 유동되는 다수개로 구성되고, 상기 입구측 튜브로부터 냉매를 전달받아서 상기 출구측 튜브로 냉매를 전달하는 연결 튜브를 더 포함하는 열교환기. And a plurality of connection tubes configured to flow in the same direction as any one of the inlet tube and the outlet tube, and receive a refrigerant from the inlet tube and deliver the refrigerant to the outlet tube.
  14. 제 8 항에 있어서, The method of claim 8,
    상기 튜브는, 1개의 유로가 내부에 구비되는 관 타입이고, The tube is a tube type provided with one flow path therein,
    상기 핀은, 상기 튜브의 길이 방향에 직교되는 방향으로 다수개가 적층되는 열교환기.And a plurality of fins are stacked in a direction orthogonal to the longitudinal direction of the tube.
  15. 제 8 항에 있어서, The method of claim 8,
    상기 튜브는, 서로 구획되는 다수개의 유로가 내부에 구비되는 마이크로 채널 타입이고, The tube is of a micro channel type having a plurality of flow paths partitioned therein,
    상기 핀은, 서로 인접하는 상기 튜브 사이에 위치되거나 상기 튜브의 길이 방향에 직교되는 방향으로 다수개가 적층되는 열교환기.And a plurality of fins stacked between the tubes adjacent to each other or in a direction orthogonal to the longitudinal direction of the tubes.
PCT/KR2012/003301 2011-04-29 2012-04-27 Heat exchanger WO2012148223A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110040794A KR20120122560A (en) 2011-04-29 2011-04-29 Heat exchanger
KR10-2011-0040794 2011-04-29

Publications (2)

Publication Number Publication Date
WO2012148223A2 true WO2012148223A2 (en) 2012-11-01
WO2012148223A3 WO2012148223A3 (en) 2013-01-17

Family

ID=47072945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003301 WO2012148223A2 (en) 2011-04-29 2012-04-27 Heat exchanger

Country Status (2)

Country Link
KR (1) KR20120122560A (en)
WO (1) WO2012148223A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2678468A1 (en) * 2017-02-10 2018-08-13 Radiadores Ordoñez, S.A. RADIATOR FOR VEHICLE (Machine-translation by Google Translate, not legally binding)
FR3103884A1 (en) * 2019-12-02 2021-06-04 Jean Inel MAURY Compact storage tank and sanitary water heater assembly

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102055842B1 (en) 2018-05-03 2020-01-22 오텍캐리어 주식회사 microchannel heat exchanger for reducing driving load of a compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030056590A (en) * 2001-12-28 2003-07-04 한라공조주식회사 Heat exchanger
JP2006284134A (en) * 2005-04-04 2006-10-19 Matsushita Electric Ind Co Ltd Heat exchanger
KR20080026914A (en) * 2006-09-22 2008-03-26 한라공조주식회사 A condenser having multiple gas-liquid separators
KR20100060442A (en) * 2008-11-27 2010-06-07 주식회사 두원공조 Heat exchanger of symmetry flow pass type

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030056590A (en) * 2001-12-28 2003-07-04 한라공조주식회사 Heat exchanger
JP2006284134A (en) * 2005-04-04 2006-10-19 Matsushita Electric Ind Co Ltd Heat exchanger
KR20080026914A (en) * 2006-09-22 2008-03-26 한라공조주식회사 A condenser having multiple gas-liquid separators
KR20100060442A (en) * 2008-11-27 2010-06-07 주식회사 두원공조 Heat exchanger of symmetry flow pass type

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2678468A1 (en) * 2017-02-10 2018-08-13 Radiadores Ordoñez, S.A. RADIATOR FOR VEHICLE (Machine-translation by Google Translate, not legally binding)
EP3361204A1 (en) * 2017-02-10 2018-08-15 Radiadores Ordonez, S.A. Radiator for vehicles
EP3361204B1 (en) 2017-02-10 2019-07-10 Radiadores Ordonez, S.A. Radiator for vehicles
FR3103884A1 (en) * 2019-12-02 2021-06-04 Jean Inel MAURY Compact storage tank and sanitary water heater assembly

Also Published As

Publication number Publication date
WO2012148223A3 (en) 2013-01-17
KR20120122560A (en) 2012-11-07

Similar Documents

Publication Publication Date Title
US6286590B1 (en) Heat exchanger with flat tubes of two columns
JP3879032B2 (en) Cooling system
WO2015009028A1 (en) Heat exchanger
WO2012148223A2 (en) Heat exchanger
WO2011087203A2 (en) Heat exchanger, a food handler including the heat exchanger, and a manufacturing method of the heat exchanger
WO2017200362A1 (en) Double tube for heat-exchange
WO2020166885A1 (en) Reverse header design for thermal cycle
JP2015203506A (en) heat exchanger
WO2012144845A2 (en) Heat exchanger
EP3971508A1 (en) Heat exchanger
CN104764258A (en) Shell and tube type condenser
WO2012169688A1 (en) Heat exchanger also used as vaporizer/condenser
EP3355023A1 (en) Heat exchanger and air conditioner
KR101345840B1 (en) Heat pump having a heat exchanger of dual construction
US10883767B2 (en) Multi-fluid heat exchanger
WO2016010389A1 (en) Heat exchanger and heat pump having same
WO2013048021A1 (en) Welded plate heat exchanger
WO2011037302A1 (en) Outdoor unit of air-conditioner
WO2017099434A1 (en) Refrigerator
KR20120082518A (en) Evaporator for vehicle
KR101770432B1 (en) Heat exchanger
US20230358486A1 (en) Heat exchanger and air conditioning unit having multiple refrigeration systems
JP2002071282A (en) Laminated type evaporator
CN219976801U (en) Heat exchanger
WO2021167391A1 (en) Heat exchanger having header structure for dispersing thermal stress

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12777369

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12777369

Country of ref document: EP

Kind code of ref document: A2