WO2012147990A1 - Organic electroluminescence element and method for producing same - Google Patents

Organic electroluminescence element and method for producing same Download PDF

Info

Publication number
WO2012147990A1
WO2012147990A1 PCT/JP2012/061628 JP2012061628W WO2012147990A1 WO 2012147990 A1 WO2012147990 A1 WO 2012147990A1 JP 2012061628 W JP2012061628 W JP 2012061628W WO 2012147990 A1 WO2012147990 A1 WO 2012147990A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cathode
organic
coating
light emitting
Prior art date
Application number
PCT/JP2012/061628
Other languages
French (fr)
Japanese (ja)
Inventor
上谷 保則
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012147990A1 publication Critical patent/WO2012147990A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1425Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1433Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1458Heterocyclic containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom

Definitions

  • the present invention relates to an organic electroluminescence element and a method for manufacturing the same.
  • organic electroluminescence element (hereinafter sometimes referred to as an organic EL element).
  • the organic EL element is formed, for example, by sequentially laminating an anode, a light emitting layer, an electron transport layer, and a cathode (see, for example, JP-A-2005-63834).
  • the objective of this invention is providing the manufacturing method of the organic EL element which can prevent the functional layer provided in the lower layer of a cathode dissolving in the coating liquid used when forming a cathode by the apply
  • the present invention includes the following aspects [1] to [8].
  • An organic electroluminescence device in which an anode is formed, a light emitting layer is formed, a functional layer is formed by coating a coating liquid containing a particulate electron transporting material, and a cathode is further formed by a coating method Manufacturing method.
  • the coating liquid containing the particulate electron transport material is at least one selected from the group consisting of an alkali metal complex, an alkali metal salt, an alkaline earth metal complex, and an alkaline earth metal salt.
  • An organic electroluminescence device having a structure in which a light emitting layer, a functional layer, and a cathode are laminated in this order on an anode on a support substrate, wherein the functional layer contains a particulate electron transport material.
  • An organic electroluminescence element formed by coating film formation.
  • a display device comprising a reflective display body and a transmissive display body disposed on the reflective display body,
  • the reflective display has a reflective display layer capable of selectively displaying the first color and the second color according to a predetermined position;
  • the transmissive display has an organic electroluminescence element produced by the method according to any one of [1] to [6] or an organic electroluminescence element of [7] as a pixel light source,
  • the organic electroluminescence element is a display device in which an anode and a cathode are realized by electrodes exhibiting optical transparency.
  • Organic EL element of the present invention is an organic electroluminescence element having a configuration in which a light emitting layer, a functional layer, and a cathode are laminated in this order on an anode, and the functional layer has a particulate electron transport. It is formed by coating a coating solution containing a functional material.
  • the anode is usually laminated on a support substrate. At least one of the anode and the cathode is constituted by a transparent or translucent electrode.
  • the anode is constituted by a transparent or translucent electrode.
  • the cathode is constituted by a transparent or translucent electrode.
  • the anode and the cathode are made of transparent or translucent electrodes. Composed.
  • the support substrate may be any substrate that does not change chemically when an organic EL element is produced. Examples of the material include glass, plastic, polymer film, and silicon. In the case of the top emission type organic EL element, an opaque substrate can be used as the support substrate. However, in the case of the bottom emission type and see-through type organic EL elements, the support substrate is transparent or semi-transparent. A transparent substrate is used.
  • anode For the anode, a conductive metal oxide film, a metal thin film, a conductive film containing an organic substance, or the like is used.
  • the anode includes indium oxide, zinc oxide, tin oxide, indium tin oxide (abbreviated as ITO), indium zinc oxide (abbreviated as IZO), gold, platinum, silver, Thin films such as copper, aluminum, polyaniline and derivatives thereof, and polythiophene and derivatives thereof are used.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • Thin films such as copper, aluminum, polyaniline and derivatives thereof, and polythiophene and derivatives thereof are used.
  • a thin film of ITO, IZO, or tin oxide is preferably used for the anode.
  • a transparent or translucent electrode in which the film thickness of the above-described anode is set to a thickness that allows light to pass therethrough is used as the anode.
  • the thickness of the anode is usually 1 nm to 1 mm, preferably 10 nm to 100 ⁇ m, and more preferably 20 nm to 10 ⁇ m.
  • the light emitting layer is usually formed of an organic substance that mainly emits fluorescence and / or phosphorescence, or an organic substance and a dopant that assists the organic substance.
  • the light emitting layer is preferably formed by a coating method.
  • the light emitting layer preferably contains a polymer compound, may contain one kind of polymer compound alone, or may contain two or more kinds in combination, and further comprises a conjugated polymer compound. preferable.
  • an electron transporting compound and / or a hole transporting compound may be mixed and used in the light emitting layer.
  • the light emitting material constituting the light emitting layer include the following dye materials, metal complex materials, polymer materials, and dopant materials.
  • Dye-type material examples include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, pyrrole derivatives, Examples thereof include thiophene ring compounds, pyridine ring compounds, perinone derivatives, perylene derivatives, oligothiophene derivatives, trifumanylamine derivatives, oxadiazole dimers, pyrazoline dimers, quinacridone derivatives, and coumarin derivatives.
  • a central metal includes a typical metal or transition metal such as Al, Zn, Be, Ir, Pt, or a rare earth metal such as Tb, Eu, Dy, and a ligand.
  • a typical metal or transition metal such as Al, Zn, Be, Ir, Pt, or a rare earth metal such as Tb, Eu, Dy, and a ligand.
  • metal complex materials include metal complexes that emit light from triplet excited states such as iridium complexes and platinum complexes, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc complexes, benzothiazole zinc complexes, azomethyl zinc A complex, a porphyrin zinc complex, a europium complex, etc. can be mentioned.
  • Polymeric materials include polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, the above-mentioned dye materials and metal complex light emitting materials.
  • a polymerized product can be exemplified.
  • examples of materials that emit blue light include distyrylarylene derivatives, oxadiazole derivatives, and polymers thereof, polyvinylcarbazole derivatives, polyparaphenylene derivatives, and polyfluorene derivatives.
  • polymer materials such as polyvinyl carbazole derivatives, polyparaphenylene derivatives, and polyfluorene derivatives are preferred.
  • materials that emit green light include quinacridone derivatives, coumarin derivatives, and polymers thereof, polyparaphenylene vinylene derivatives, polyfluorene derivatives, and the like.
  • polymer materials such as polyparaphenylene vinylene derivatives and polyfluorene derivatives are preferred.
  • the material that emits red light include a coumarin derivative, a thiophene ring compound, a polymer thereof, a polyparaphenylene vinylene derivative, a polythiophene derivative, and a polyfluorene derivative.
  • dopant material examples include perylene derivatives, coumarin derivatives, rubrene derivatives, quinacridone derivatives, squalium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazolone derivatives, decacyclene, phenoxazone, and the like.
  • the thickness of the light emitting layer is usually 1 nm to 100 ⁇ m, preferably 2 nm to 1000 nm, more preferably 2 nm to 200 nm, still more preferably 5 nm to 500 nm, and particularly preferably 20 nm to 200 nm.
  • the functional layer is provided between the light emitting layer and the cathode, and is formed by coating a coating solution containing a particulate electron transporting material. First, when a coating liquid containing a particulate electron transporting material is formed into a film and then dried, a functional layer that is difficult to dissolve in a solvent such as water can be obtained.
  • the coating solution includes a dispersion such as an emulsion (emulsion) or a suspension (suspension).
  • the particulate electron transport material include zinc oxide, titanium oxide, zirconium oxide, tin oxide, indium oxide, ITO (indium tin oxide), FTO (fluorine-doped tin oxide), and GZO (gallium-doped zinc oxide).
  • ATO antimony-doped tin oxide
  • AZO aluminum-doped zinc oxide
  • zinc oxide, GZO (gallium-doped zinc oxide), and AZO aluminum-doped zinc oxide
  • Zinc oxide is more preferred.
  • a coating liquid containing particulate zinc oxide, GZO or AZO preferably zinc oxide
  • the average particle diameter corresponding to the spheres of the electron transport material, particulate zinc oxide, GZO and AZO is preferably 1 nm to 1000 nm, more preferably 10 nm to 100 nm.
  • the average particle diameter is measured by a laser light scattering method or X-ray diffraction.
  • the functional layer is preferably provided in contact with the light emitting layer, and more preferably provided in contact with the cathode.
  • the functional layer including the electron transporting material as described above, it is possible to prevent the cathode from being peeled off and to further increase the efficiency of electron injection from the cathode to the light emitting layer.
  • an organic EL element with high reliability and high luminous efficiency can be realized.
  • the functional layer containing the particulate electron transporting material functions as a so-called electron transport layer and / or electron injection layer.
  • the functional layer containing the particulate electron transporting material is preferably composed of a material having high wettability with respect to a coating solution used when the cathode is applied and formed.
  • the functional layer containing the particulate electron transport material preferably has higher wettability with respect to the coating liquid than the wettability of the light emitting layer with respect to the coating liquid used when the cathode is applied and formed.
  • the wettability of the functional layer or the light emitting layer with respect to the coating liquid can be evaluated by, for example, the contact angle between the coating liquid and the functional layer or the light emitting layer. The smaller the contact angle, the higher the wettability.
  • the coating liquid containing the particulate electron transport material is at least one selected from the group consisting of an alkali metal complex, an alkali metal salt, an alkaline earth metal complex, and an alkaline earth metal salt (hereinafter, It may preferably be referred to as “alkaline metal, alkaline earth metal complex or salt”.
  • an alkali metal complex an alkali metal salt, an alkaline earth metal complex, and an alkaline earth metal salt
  • alkaline metal, alkaline earth metal complex or salt By using such a coating solution, a functional layer containing an alkali metal, alkaline earth metal complex or salt can be formed.
  • the alkali metal or alkaline earth metal complex or salt is preferably soluble in the solvent of the coating solution. Examples of the alkali metal include lithium, sodium, potassium, rubidium, and cesium.
  • alkaline earth metal examples include magnesium, calcium, strontium, and barium.
  • the complex examples include ⁇ -diketone complexes, and examples of the salt include alkoxide, phenoxide, carboxylate, carbonate, and hydroxide.
  • alkali metal or alkaline earth metal complexes or salts include sodium acetylacetonate, cesium acetylacetonate, calcium bisacetylacetonate, barium bisacetylacetonate, sodium methoxide, sodium phenoxide, sodium tert-butoxide Sodium tert-pentoxide, sodium acetate, sodium citrate, cesium carbonate, cesium acetate, sodium hydroxide, cesium hydroxide and the like.
  • the cathode can take the form of a single layer or a stack of a plurality of layers. In this embodiment, the cathode is formed by a coating method (wet process).
  • the coating liquid used when forming the cathode by a coating method includes a constituent material of the cathode and a solvent.
  • the cathode preferably contains a polymer compound exhibiting conductivity, and is preferably made of a polymer compound substantially exhibiting conductivity.
  • the constituent material of the cathode include organic materials such as polyaniline and derivatives thereof, polythiophene and derivatives thereof, and polypyrrole and derivatives thereof.
  • the cathode is preferably composed of polythiophene and / or polythiophene derivatives, and is preferably substantially composed of polythiophene and / or polythiophene derivatives.
  • the cathode is preferably composed of polyaniline and / or a polyaniline derivative, and is preferably composed of polyaniline and / or a polyaniline derivative.
  • polythiophene and derivatives thereof include compounds containing one or more of the following structural formulas.
  • polypyrrole and derivatives thereof include compounds containing one or more of a plurality of structural formulas shown below.
  • polyaniline and derivatives thereof include compounds containing one or more of the following structural formulas.
  • PEDOT / PSS composed of poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (4-styrenesulfonic acid) (PSS) has a high luminous efficiency.
  • the cathode is not limited to the coating liquid containing the organic material, but an emulsion (emulsion) or suspension (suspension) containing conductive material nanoparticles, conductive material nanowires, or conductive material nanotubes. Alternatively, it may be formed by a coating method using a dispersion such as a metal paste, a low melting point metal in a molten state, or the like.
  • a dispersion such as a metal paste, a low melting point metal in a molten state, or the like.
  • the conductive substance include metals such as gold and silver, oxides such as ITO (indium tin oxide), and carbon nanotubes.
  • the cathode may be composed only of nanoparticles or nanofibers of a conductive material.
  • the cathode is composed of conductive particles or nanofibers. You may have the structure disperse
  • the organic EL element is not limited to the element configuration described above, and an additional layer may be further provided between the anode and the cathode. That is, an additional layer may be provided between the anode and the light emitting layer, between the light emitting layer and the functional layer, and between the functional layer and the cathode. Examples of such an additional layer include a hole transport layer that transports holes, an electron transport layer that transports electrons, and a buffer layer.
  • the hole transport layer is provided between the anode and the light emitting layer
  • the electron transport layer is provided between the light emitting layer and the functional layer
  • the buffer layer is provided, for example, between the cathode and the functional layer.
  • planarization of the surface and charge injection can be promoted.
  • the material used for the hole transport layer or the electron transport layer as the additional layer the above-described electron donating compound and electron accepting compound can be used, respectively.
  • an alkali metal such as lithium fluoride, a halide of an alkaline earth metal, an oxide, or the like can be used.
  • an anode is formed, a light emitting layer is formed, and a coating liquid containing a particulate electron transporting material is applied and formed into a film.
  • a layer is formed, and a cathode is further formed by a coating method.
  • an organic EL element is formed by forming each layer in order of an anode, a light emitting layer, a functional layer, and a cathode.
  • the anode is formed by depositing the anode material described as an example on the above-described support substrate by vacuum deposition, sputtering, ion plating, plating, or the like.
  • the anode may be formed by a coating method using a coating liquid containing an organic material such as polyaniline and its derivative, polythiophene and its derivative, a metal ink, a metal paste, a molten low melting point metal, or the like.
  • the light emitting layer is preferably formed by a coating method.
  • the light emitting layer can be formed, for example, by a coating method using a coating solution containing the constituent material of the light emitting layer and a solvent.
  • the light emitting layer is formed by a coating method using a coating solution containing a polymer phosphor compound and a solvent. be able to.
  • solvent examples include hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, s-butylbezen, and t-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, and chlorobutane.
  • hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, s-butylbezen, and t-butylbenzene
  • carbon tetrachloride chloroform
  • dichloromethane dichloroethane
  • chlorobutane examples of the solvent
  • hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexy
  • Halogenated saturated hydrocarbon solvents such as bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, halogenated unsaturated hydrocarbon solvents such as chlorobenzene, dichlorobenzene, trichlorobenzene, tetrahydrofuran, And ether solvents such as tetrahydropyran.
  • the coating liquid used in the present invention may contain two or more kinds of solvents, and may contain two or more kinds of the solvents exemplified above.
  • spray coating method screen printing method, flexographic printing method, offset printing method, ink jet printing method, dispenser printing method, nozzle coating method, capillary coating method, and the like
  • spin coating method and flexographic method examples include spin coating method and flexographic method.
  • a printing method, an inkjet printing method, and a dispenser printing method are preferable.
  • the functional layer is formed by coating and forming a coating liquid containing the above-described particulate electron transporting material on the light emitting layer.
  • the functional layer containing the particulate electron transporting material is provided in contact with the light emitting layer, the functional layer is formed by applying the coating solution on the surface of the light emitting layer.
  • a coating solution that causes little damage to a layer to which the coating solution is applied such as a light emitting layer.
  • a layer to which the coating solution is applied such as a light emitting layer. It is preferable to use a coating solution that hardly dissolves.
  • the coating liquid used for coating and forming the functional layer includes a solvent and the particle electron transport material described above.
  • the solvent for the coating solution include water and alcohol.
  • Specific examples of the alcohol include methanol, ethanol, isopropanol, butanol, ethylene glycol, propylene glycol, butoxyethanol, methoxybutanol and the like.
  • the coating liquid used in the present invention may contain two or more kinds of solvents, and may contain two or more kinds of the solvents exemplified above.
  • the thin film is dried, for example, by vacuum drying, heat drying, or natural drying.
  • the cathode is formed on the surface of the functional layer or the like by a coating method. Specifically, the cathode is formed by applying a coating liquid containing a solvent and the above-described cathode constituent material onto the surface of a functional layer or the like.
  • Examples of the solvent for the coating solution used for forming the cathode include hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, s-butylbezen, t-butylbenzene, and the like.
  • Halogenated saturated hydrocarbon solvents such as carbon chloride, chloroform, dichloromethane, dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, halogens such as chlorobenzene, dichlorobenzene, and trichlorobenzene
  • Unsaturated hydrocarbon solvents, ether solvents such as tetrahydrofuran and tetrahydropyran, water, alcohols and the like.
  • the coating liquid used in the present invention may contain two or more kinds of solvents, and may contain two or more kinds of the solvents exemplified above.
  • the cathode is formed using a coating solution that damages the light emitting layer or the functional layer, for example, the cathode has a two-layer structure, and the first thin film does not damage the light emitting layer or the functional layer. It may be formed using a coating solution, and then the second thin film may be formed using a coating solution capable of damaging the light emitting layer and the functional layer.
  • the first thin film functions as a protective layer. Therefore, damage to the light emitting layer and the functional layer can be suppressed.
  • the functional layer made of zinc oxide is easily damaged by an acidic solution
  • the first thin film is formed using a neutral coating solution.
  • a two-layered cathode may be formed by forming a second-layer thin film using an acidic solution. In the present embodiment, it is preferable to form the remaining constituent elements excluding the anode among the constituent elements of the organic EL element by a coating method.
  • each element by forming each element by a simple coating method as a process, an organic EL element can be easily formed, productivity can be improved, and the cost of element manufacture can be reduced.
  • an organic EL element can be easily formed, productivity can be improved, and the cost of element manufacture can be reduced.
  • the organic EL element described above can be suitably used for a curved or flat illumination device, for example, a planar light source used as a light source of a scanner, and a display device.
  • an apparatus including an organic EL element that can be manufactured by a simple process can be manufactured at a low cost by a simple process as in the case of the organic EL element.
  • the display device including an organic EL element include a segment display device and a dot matrix display device.
  • the dot matrix display device includes an active matrix display device and a passive matrix display device.
  • An organic EL element is used as a light emitting element constituting each pixel in an active matrix display device and a passive matrix display device.
  • the organic EL element is used as a light emitting element constituting each segment in the segment display device, and is used as a backlight in the liquid crystal display device.
  • the display device including the organic EL element is a display device including a reflective display body and a transmissive display body disposed on the reflective display body, and the reflective display body is at a predetermined position. Accordingly, it has a reflective display layer that can selectively display the first color and the second color, and the transmissive display has the organic EL element described above as a pixel light source.
  • the organic EL element includes a display device in which an anode and a cathode are realized by an electrode having optical transparency.
  • An organic EL element in which the anode and the cathode are realized by an electrode having optical transparency is an optically transparent element.
  • the transmissive display body constitutes a transmissive display body, for example, by arranging a large number of organic EL elements exhibiting light transmittance as light sources of pixels on a substrate exhibiting light transmittance.
  • the reflective display body is realized by so-called electronic paper or the like.
  • This reflection type display body includes a reflection type display body layer capable of selectively displaying the first color and the second color.
  • the first color and the second color are not particularly limited as long as the colors are different. For example, one color is white and the other color is black.
  • the reflective display layer can display, for example, image information, for example, in black and white, by selectively displaying the first color and the second color according to a predetermined position.
  • This display device includes control means for controlling display states of the reflective display body and the transmissive display body. For example, when the image information to be displayed on the display device is a so-called moving image that changes with time, the control means displays the entire surface of the reflective display body in black, displays the moving image on the transmissive display body, When the image information to be displayed on the display device is a still image such as character information that does not change over time, the still image is displayed on the reflective display body, and the transmissive display body is made non-luminous and transparent. Control to maintain. By controlling in this way, an organic EL element having a high response is used as a light source even when a device that is not highly responsive, such as electronic paper, and is not suitable for moving image display is used as a reflective display.
  • the moving image is displayed on the used transmissive display body suitable for moving image display, the moving image can be appropriately displayed.
  • an apparatus such as electronic paper is generally not suitable for moving image display, since power consumption is small, power consumption of the entire display device can be suppressed by displaying a still image on a reflective display.
  • a still image does not mean that image information does not change completely over time. For example, when displaying character information, the image information changes when the character information is updated according to the user's action. Such image information is also included in the still image.
  • Such a display device is realized by, for example, a device described in Japanese Patent Application Laid-Open No. 2004-30321.
  • an organic EL element exhibiting light transmittance can be constituted.
  • Such an organic EL element can be easily configured as a parallel-type or series-type multi-junction element by being superimposed with a light-transmitting organic EL element or a light-transmitting organic EL element.
  • the obtained precipitate was filtered, dried under reduced pressure, dissolved in toluene, passed through a silica gel-alumina column, and washed with toluene.
  • the obtained toluene solution was dropped into methanol, precipitation occurred.
  • the obtained precipitate was filtered, dried under reduced pressure, dissolved in toluene, and dropped into methanol, resulting in precipitation.
  • the obtained precipitate was filtered and dried under reduced pressure to obtain 7.72 g of polymer compound 2 which is a conjugated polymer compound.
  • the number average molecular weight Mn in terms of polystyrene of the polymer compound 2 was 1.2 ⁇ 10 5
  • the weight average molecular weight Mw in terms of polystyrene was 2.9 ⁇ 10 5 .
  • Example 1 (Production and evaluation of organic EL elements) On a glass substrate on which an indium tin oxide (ITO) film corresponding to the anode (film thickness: 150 nm, formed by sputtering) is formed, a hole injection layer solution (trade name: CLEVIOS, manufactured by HC Starck Co., Ltd.) AI4083) was applied by spin coating to form a hole injection layer (film thickness: 50 nm) by drying at 200 ° C. for 10 minutes on an air hot plate.
  • ITO indium tin oxide
  • CLEVIOS manufactured by HC Starck Co., Ltd.
  • the xylene solution of polymer compound 1 was filtered through a Teflon (registered trademark) filter having a pore diameter of 0.2 ⁇ m, and this solution was applied onto the hole injection layer by spin coating to form a nitrogen atmosphere in the glove box. Below, it baked at 180 degreeC for 15 minute (s), and the positive hole transport layer (film thickness: 20 nm) was formed. Next, a 1 wt% xylene solution of a green light emitting organic material (Lumation GP1300, manufactured by Summation) was applied onto the hole transport layer by spin coating to form a light emitting layer (film thickness: about 100 nm).
  • a green light emitting organic material Liation GP1300, manufactured by Summation
  • a 45 wt% isopropanol dispersion (HTD-711Z, manufactured by Teika) of zinc oxide nanoparticles (particle size 20-30 nm) is diluted with 5 parts by weight of isopropanol of the dispersion to prepare a coating solution.
  • This coating solution was applied onto the light emitting layer with a film thickness of 220 nm by spin coating, and dried to form a functional layer insoluble in an aqueous solvent.
  • a conductive wire layer having a thickness of 120 nm is formed by applying a wire-like conductor dispersion liquid (ClearOhm (registered trademark) Ink-N AQ: manufactured by Cambrios Technologies Corporation) in an aqueous solvent with a spin coater and drying. Obtained.
  • the conductive wire layer formed in an unnecessary part was peeled off with a cotton swab soaked with water to obtain a conductive wire layer having a predetermined pattern corresponding to the cathode.
  • the organic EL element was obtained by sealing with UV curable sealing agent. A voltage was applied stepwise to the obtained organic EL element, and the current density and the luminance of EL emission at each voltage were measured. The current efficiency value was obtained from the measurement result.
  • Example 2 (Production and evaluation of organic EL elements) Instead of the wire-like conductor dispersion of the aqueous solvent of Example 1, a low-temperature sinterable silver ink (Flow Metal SW-1020 manufactured by Bando Chemical Co., Ltd.) A silver nanoparticle dispersion) was applied onto the functional layer by spin coating, and sintered at 130 ° C. for 30 minutes in a nitrogen atmosphere to form a cathode having a thickness of 700 nm. Then, the organic EL element was obtained by sealing with UV curable sealing agent.
  • a low-temperature sinterable silver ink Flow Metal SW-1020 manufactured by Bando Chemical Co., Ltd.
  • a voltage was applied stepwise to the obtained organic EL element, and the current density and the luminance of EL emission at each voltage were measured.
  • the current efficiency value was obtained from the measurement result.
  • the maximum value of current efficiency of the obtained element was 0.49 cd / A.
  • the EL emission was green emission with CIE chromaticity coordinates of (0.38, 0.59).
  • Example 3 (Production and evaluation of organic EL elements) On a glass substrate on which an indium tin oxide (ITO) film corresponding to the anode (film thickness: 150 nm, formed by sputtering) is formed, a hole injection layer solution (trade name: CLEVIOS, manufactured by HC Starck Co., Ltd.) AI4083) was applied by spin coating to form a hole injection layer (film thickness: 50 nm) by drying at 200 ° C. for 10 minutes on an air hot plate.
  • ITO indium tin oxide
  • AI4083 hole injection layer solution
  • the xylene solution of polymer compound 1 was filtered through a Teflon (registered trademark) filter having a pore diameter of 0.2 ⁇ m, and this solution was applied onto the hole injection layer by spin coating to form a nitrogen atmosphere in the glove box. Below, it baked at 180 degreeC for 15 minute (s), and the positive hole transport layer (film thickness: 20 nm) was formed. Next, a xylene solution of the polymer compound 2 was applied onto the hole transport layer by spin coating to form a light emitting layer (film thickness of about 100 nm).
  • a conductive wire layer having a thickness of 120 nm is formed by applying a wire-like conductor dispersion liquid (ClearOhm (registered trademark) Ink-N AQ: manufactured by Cambrios Technologies Corporation) in an aqueous solvent with a spin coater and drying. Obtained.
  • the conductive wire layer formed in an unnecessary part was peeled off with a cotton swab soaked with water to obtain a conductive wire layer having a predetermined pattern corresponding to the cathode.
  • the organic EL element was obtained by sealing with UV curable sealing agent. A voltage was applied stepwise to the obtained organic EL element, and the current density and the luminance of EL emission at each voltage were measured. The current efficiency value was obtained from the measurement result.
  • Example 4 (Production and evaluation of organic EL elements) On a glass substrate on which an indium tin oxide (ITO) film corresponding to the anode (film thickness: 150 nm, formed by sputtering) is formed, a hole injection layer solution (trade name: CLEVIOS, manufactured by HC Starck Co., Ltd.) AI4083) was applied by spin coating to form a hole injection layer (film thickness: 50 nm) by drying at 200 ° C. for 10 minutes on an air hot plate.
  • ITO indium tin oxide
  • CLEVIOS manufactured by HC Starck Co., Ltd.
  • the xylene solution of polymer compound 1 was filtered through a Teflon (registered trademark) filter having a pore diameter of 0.2 ⁇ m, and this solution was applied onto the hole injection layer by spin coating to form a nitrogen atmosphere in the glove box. Below, it baked at 180 degreeC for 15 minute (s), and the positive hole transport layer (film thickness: 20 nm) was formed. Next, a xylene solution of the polymer compound 2 was applied onto the hole transport layer by spin coating to form a light emitting layer (film thickness of about 100 nm).
  • a conductive wire layer having a thickness of 120 nm is formed by applying a wire-like conductor dispersion liquid (ClearOhm (registered trademark) Ink-N AQ: manufactured by Cambrios Technologies Corporation) in an aqueous solvent with a spin coater and drying. Obtained.
  • the conductive wire layer formed in an unnecessary part was peeled off with a cotton swab soaked with water to obtain a conductive wire layer having a predetermined pattern corresponding to the cathode.
  • the organic EL element was obtained by sealing with UV curable sealing agent. A voltage was applied stepwise to the obtained organic EL element, and the current density and the luminance of EL emission at each voltage were measured. The current efficiency value was obtained from the measurement result.
  • Example 5 Provide and evaluation of organic EL elements
  • a hole injection layer solution (trade name: CLEVIOS, manufactured by HC Starck Co., Ltd.) AI4083) was applied by spin coating to form a hole injection layer (film thickness: 50 nm) by drying at 200 ° C. for 10 minutes on an air hot plate.
  • the xylene solution of polymer compound 1 was filtered through a Teflon (registered trademark) filter having a pore diameter of 0.2 ⁇ m, and this solution was applied onto the hole injection layer by spin coating to form a nitrogen atmosphere in the glove box. Below, it baked at 180 degreeC for 15 minute (s), and the positive hole transport layer (film thickness: 20 nm) was formed. Next, a xylene solution of the polymer compound 2 was applied onto the hole transport layer by spin coating to form a light emitting layer (film thickness of about 100 nm).
  • a conductive wire layer having a thickness of 120 nm is formed by applying a wire-like conductor dispersion liquid (ClearOhm (registered trademark) Ink-N AQ: manufactured by Cambrios Technologies Corporation) in an aqueous solvent with a spin coater and drying. Obtained.
  • the conductive wire layer formed in an unnecessary part was peeled off with a cotton swab soaked with water to obtain a conductive wire layer having a predetermined pattern corresponding to the cathode.
  • the organic EL element was obtained by sealing with UV curable sealing agent. A voltage was applied stepwise to the obtained organic EL element, and the current density and the luminance of EL emission at each voltage were measured. The current efficiency value was obtained from the measurement result.
  • Example 6 Provide and evaluation of organic EL elements
  • a hole injection layer solution (trade name: CLEVIOS, manufactured by HC Starck Co., Ltd.) AI4083) was applied by spin coating to form a hole injection layer (film thickness: 50 nm) by drying at 200 ° C. for 10 minutes on an air hot plate.
  • the xylene solution of polymer compound 1 was filtered through a Teflon (registered trademark) filter having a pore diameter of 0.2 ⁇ m, and this solution was applied onto the hole injection layer by spin coating to form a nitrogen atmosphere in the glove box. Below, it baked at 180 degreeC for 15 minute (s), and the positive hole transport layer (film thickness: 20 nm) was formed. Next, a xylene solution of the polymer compound 2 was applied onto the hole transport layer by spin coating to form a light emitting layer (film thickness of about 100 nm).
  • a conductive wire layer having a thickness of 120 nm is formed by applying a wire-like conductor dispersion liquid (ClearOhm (registered trademark) Ink-N AQ: manufactured by Cambrios Technologies Corporation) in an aqueous solvent with a spin coater and drying. Obtained.
  • the conductive wire layer formed in an unnecessary part was peeled off with a cotton swab soaked with water to obtain a conductive wire layer having a predetermined pattern corresponding to the cathode.
  • the organic EL element was obtained by sealing with UV curable sealing agent. A voltage was applied stepwise to the obtained organic EL element, and the current density and the luminance of EL emission at each voltage were measured. The current efficiency value was obtained from the measurement result.
  • Example 7 (Production and evaluation of organic EL elements) On a glass substrate on which an indium tin oxide (ITO) film corresponding to the anode (film thickness: 150 nm, formed by sputtering) is formed, a hole injection layer solution (trade name: CLEVIOS, manufactured by HC Starck Co., Ltd.) AI4083) was applied by spin coating to form a hole injection layer (film thickness: 50 nm) by drying at 200 ° C. for 10 minutes on an air hot plate.
  • ITO indium tin oxide
  • CLEVIOS manufactured by HC Starck Co., Ltd.
  • the xylene solution of polymer compound 1 was filtered through a Teflon (registered trademark) filter having a pore diameter of 0.2 ⁇ m, and this solution was applied onto the hole injection layer by spin coating to form a nitrogen atmosphere in the glove box. Below, it baked at 180 degreeC for 15 minute (s), and the positive hole transport layer (film thickness: 20 nm) was formed. Next, a xylene solution of the polymer compound 2 was applied onto the hole transport layer by spin coating to form a light emitting layer (film thickness of about 100 nm).
  • a conductive wire layer having a thickness of 120 nm is formed by applying a wire-like conductor dispersion liquid (ClearOhm (registered trademark) Ink-N AQ: manufactured by Cambrios Technologies Corporation) in an aqueous solvent with a spin coater and drying. Obtained.
  • the conductive wire layer formed in an unnecessary part was peeled off with a cotton swab soaked with water to obtain a conductive wire layer having a predetermined pattern corresponding to the cathode.
  • the organic EL element was obtained by sealing with UV curable sealing agent. A voltage was applied stepwise to the obtained organic EL element, and the current density and the luminance of EL emission at each voltage were measured. The current efficiency value was obtained from the measurement result.
  • Example 8 Provide and evaluation of organic EL elements
  • a hole injection layer solution (trade name: CLEVIOS, manufactured by HC Starck Co., Ltd.) AI4083) was applied by spin coating to form a hole injection layer (film thickness: 50 nm) by drying at 200 ° C. for 10 minutes on an air hot plate.
  • the xylene solution of polymer compound 1 was filtered through a Teflon (registered trademark) filter having a pore diameter of 0.2 ⁇ m, and this solution was applied onto the hole injection layer by spin coating to form a nitrogen atmosphere in the glove box. Below, it baked at 180 degreeC for 15 minute (s), and the positive hole transport layer (film thickness: 20 nm) was formed. Next, a xylene solution of the polymer compound 2 was applied onto the hole transport layer by spin coating to form a light emitting layer (film thickness of about 100 nm).
  • a conductive wire layer having a thickness of 120 nm is formed by applying a wire-like conductor dispersion liquid (ClearOhm (registered trademark) Ink-N AQ: manufactured by Cambrios Technologies Corporation) in an aqueous solvent with a spin coater and drying. Obtained.
  • the conductive wire layer formed in an unnecessary part was peeled off with a cotton swab soaked with water to obtain a conductive wire layer having a predetermined pattern corresponding to the cathode.
  • the organic EL element was obtained by sealing with UV curable sealing agent. A voltage was applied stepwise to the obtained organic EL element, and the current density and the luminance of EL emission at each voltage were measured. The current efficiency value was obtained from the measurement result.
  • Example 9 Provide and evaluation of organic EL elements
  • a hole injection layer solution (trade name: CLEVIOS, manufactured by HC Starck Co., Ltd.) AI4083) was applied by spin coating to form a hole injection layer (film thickness: 50 nm) by drying at 200 ° C. for 10 minutes on an air hot plate.
  • the xylene solution of polymer compound 1 was filtered through a Teflon (registered trademark) filter having a pore diameter of 0.2 ⁇ m, and this solution was applied onto the hole injection layer by spin coating to form a nitrogen atmosphere in the glove box. Below, it baked at 180 degreeC for 15 minute (s), and the positive hole transport layer (film thickness: 20 nm) was formed. Next, a xylene solution of the polymer compound 2 was applied onto the hole transport layer by spin coating to form a light emitting layer (film thickness of about 100 nm).
  • a conductive wire layer having a thickness of 120 nm is formed by applying a wire-like conductor dispersion liquid (ClearOhm (registered trademark) Ink-N AQ: manufactured by Cambrios Technologies Corporation) in an aqueous solvent with a spin coater and drying. Obtained.
  • the conductive wire layer formed in an unnecessary part was peeled off with a cotton swab soaked with water to obtain a conductive wire layer having a predetermined pattern corresponding to the cathode.
  • the organic EL element was obtained by sealing with UV curable sealing agent. A voltage was applied stepwise to the obtained organic EL element, and the current density and the luminance of EL emission at each voltage were measured. The current efficiency value was obtained from the measurement result.
  • the maximum value of current efficiency of the obtained device was 2.37 cd / A.
  • the EL emission was blue emission with a CIE chromaticity coordinate of (0.15, 0.21).
  • Comparative Example 1 (Production and evaluation of organic EL elements)
  • a hole injection layer solution (trade name: CLEVIOS, manufactured by HC Starck Co., Ltd.) AI4083) was applied by spin coating to form a hole injection layer (film thickness: 50 nm) by drying at 200 ° C. for 10 minutes on an air hot plate.
  • the xylene solution of polymer compound 1 was filtered through a Teflon (registered trademark) filter having a pore diameter of 0.2 ⁇ m, and this solution was applied onto the hole injection layer by spin coating to form a nitrogen atmosphere in the glove box. Below, it baked at 180 degreeC for 15 minute (s), and the positive hole transport layer (film thickness: 20 nm) was formed. Next, a 1 wt% xylene solution of a green light emitting organic material (Lumation GP1300, manufactured by Summation) was applied onto the hole transport layer by spin coating to form a light emitting layer (film thickness: about 100 nm).
  • a green light emitting organic material Liation GP1300, manufactured by Summation
  • a wire-like conductor dispersion liquid (ClearOhm (registered trademark) Ink-N AQ: manufactured by Cambridge Technologies Corporation) in an aqueous solvent is applied by a spin coater and dried to form a conductive wire layer having a thickness of 120 nm. Obtained.
  • the conductive wire layer formed in an unnecessary part was peeled off with a cotton swab soaked with water to obtain a conductive wire layer having a predetermined pattern corresponding to the cathode.
  • the organic EL element was obtained by sealing with UV curable sealing agent. A voltage was applied stepwise to the obtained organic EL element, and the current density and the luminance of EL emission at each voltage were measured. The current efficiency value was obtained from the measurement result.
  • Comparative Example 2 (Production and evaluation of organic EL elements) Instead of the wire-like conductor dispersion liquid of the aqueous solvent of Comparative Example 1, a low-temperature sinterable silver ink (Flow Metal SW-1020 manufactured by Bando Chemical Co., Ltd.) is used as an aqueous solvent containing 40% by weight of silver nanoparticles having a particle diameter of 20 to 40 nm.
  • a low-temperature sinterable silver ink Flow Metal SW-1020 manufactured by Bando Chemical Co., Ltd.
  • the organic EL device of the present invention forms a functional layer by coating a coating solution containing a particulate electron transporting material. Therefore, when forming a cathode on the functional layer, the coating for forming a cathode is used. It is possible to prevent the functional layer from being dissolved again in the liquid.

Abstract

The present invention pertains to a method for producing an organic electroluminescence element involving forming an anode, forming a light-emitting layer, and forming a functional layer by applying a coating liquid containing a particulate electron-transporting material, and further forming a cathode by a coating method.

Description

有機エレクトロルミネッセンス素子およびその製造方法Organic electroluminescence device and method for producing the same
 本発明は、有機エレクトロルミネッセンス素子およびその製造方法に関する。 The present invention relates to an organic electroluminescence element and a method for manufacturing the same.
 近年、エレクトロニクス分野において、シリコン等の無機半導体材料の替わりとして有機半導体材料を用いた有機機能デバイスの研究開発が活発におこなわれている。このような有機機能デバイスの1つとして有機エレクトロルミネッセンス素子(以下、有機EL素子という場合がある。)が挙げられる。有機EL素子は、たとえば陽極、発光層、電子輸送層、陰極を順次積層することによって形成される(例えば、特開2005−63834号公報参照)。 In recent years, research and development of organic functional devices using organic semiconductor materials instead of inorganic semiconductor materials such as silicon have been actively conducted in the electronics field. One example of such an organic functional device is an organic electroluminescence element (hereinafter sometimes referred to as an organic EL element). The organic EL element is formed, for example, by sequentially laminating an anode, a light emitting layer, an electron transport layer, and a cathode (see, for example, JP-A-2005-63834).
 上述の有機EL素子において、電子輸送層および陰極を順次塗布法によって形成することが検討されているが、陰極を塗布法によって形成する場合、この陰極の形成に用いられる塗布液に、電子輸送層が再び溶解することがある。このような電子輸送層の再溶解のために、作製された有機EL素子の特性が低下するおそれがある。
 本発明の目的は、陰極の下層に設けられる機能層が、陰極を塗布法によって形成するさいに使用する塗布液に溶解することを防ぐことが可能な有機EL素子の製造方法を提供することにある。
 本発明は、以下の[1]~[8]の態様を含む。
[1]陽極を形成し、発光層を形成し、粒子状の電子輸送性材料を含む塗布液を塗布成膜することによって機能層を形成し、さらに塗布法によって陰極を形成する有機エレクトロルミネッセンス素子の製造方法。
[2]前記粒子状の電子輸送性材料が、粒子状の酸化亜鉛である[1]の有機エレクトロルミネッセンス素子の製造方法。
[3]前記粒子状の電子輸送性材料を含む塗布液が、アルカリ金属の錯体、アルカリ金属の塩、アルカリ土類金属の錯体、およびアルカリ土類金属の塩からなる群から選ばれた少なくとも1種を含有する[1]または[2]の有機エレクトロルミネッセンス素子の製造方法。
[4]前記陰極が、ポリチオフェン及び/又はポリチオフェンの誘導体を含む、[1]~[3]のいずれかに記載の有機エレクトロルミネッセンス素子の製造方法。
[5]前記陰極が、ポリアニリン及び/又はポリアニリンの誘導体を含む、[1]~[4]のいずれかに記載の有機エレクトロルミネッセンス素子の製造方法。
[6]前記陰極が、導電性物質のナノ粒子、導電性物質のナノワイヤ、または導電性物質のナノチューブを含む、[1]~[4]のいずれかに記載の有機エレクトロルミネッセンス素子の製造方法。
[7]支持基板上の陽極上に、発光層、機能層、および陰極がこの順に積層された構成の有機エレクトロルミネッセンス素子であって、機能層が粒子状の電子輸送性材料を含む塗布液を塗布成膜することによって形成されてなる、有機エレクトロルミネッセンス素子。
[8] 反射型表示体と、当該反射型表示体上に配置される透過型表示体とを備える表示装置であって、
 前記反射型表示体は、所定の位置に応じて、第1の色と第2の色とを選択的に表示することが可能な反射型表示体層を有し、
 前記透過型表示体は、[1]~[6]のいずれかに記載の方法によって作製される有機エレクトロルミネッセンス素子または[7]の有機エレクトロルミネッセンス素子を、画素光源として有し、
 前記有機エレクトロルミネッセンス素子は、陽極および陰極が、光透過性を示す電極によって実現される、表示装置。
In the organic EL element described above, it has been studied to sequentially form an electron transport layer and a cathode by a coating method. May dissolve again. Due to such re-dissolution of the electron transport layer, the characteristics of the produced organic EL device may be deteriorated.
The objective of this invention is providing the manufacturing method of the organic EL element which can prevent the functional layer provided in the lower layer of a cathode dissolving in the coating liquid used when forming a cathode by the apply | coating method. is there.
The present invention includes the following aspects [1] to [8].
[1] An organic electroluminescence device in which an anode is formed, a light emitting layer is formed, a functional layer is formed by coating a coating liquid containing a particulate electron transporting material, and a cathode is further formed by a coating method Manufacturing method.
[2] The method for producing an organic electroluminescence element according to [1], wherein the particulate electron transporting material is particulate zinc oxide.
[3] The coating liquid containing the particulate electron transport material is at least one selected from the group consisting of an alkali metal complex, an alkali metal salt, an alkaline earth metal complex, and an alkaline earth metal salt. The manufacturing method of the organic electroluminescent element of [1] or [2] containing a seed.
[4] The method for producing an organic electroluminescent element according to any one of [1] to [3], wherein the cathode includes polythiophene and / or a polythiophene derivative.
[5] The method for producing an organic electroluminescent element according to any one of [1] to [4], wherein the cathode includes polyaniline and / or a polyaniline derivative.
[6] The method for manufacturing an organic electroluminescence element according to any one of [1] to [4], wherein the cathode includes nanoparticles of a conductive substance, nanowires of a conductive substance, or nanotubes of a conductive substance.
[7] An organic electroluminescence device having a structure in which a light emitting layer, a functional layer, and a cathode are laminated in this order on an anode on a support substrate, wherein the functional layer contains a particulate electron transport material. An organic electroluminescence element formed by coating film formation.
[8] A display device comprising a reflective display body and a transmissive display body disposed on the reflective display body,
The reflective display has a reflective display layer capable of selectively displaying the first color and the second color according to a predetermined position;
The transmissive display has an organic electroluminescence element produced by the method according to any one of [1] to [6] or an organic electroluminescence element of [7] as a pixel light source,
The organic electroluminescence element is a display device in which an anode and a cathode are realized by electrodes exhibiting optical transparency.
 以下、本発明を詳細に説明する。
 <1>有機EL素子
 本発明の有機EL素子は、陽極上に、発光層、機能層、および陰極がこの順に積層された構成の有機エレクトロルミネッセンス素子であって、機能層が粒子状の電子輸送性材料を含む塗布液を塗布成膜することによって形成されてなる。陽極は、通常、支持基板上に積層される。
 陽極および陰極のうちの少なくとも一方は、透明又は半透明の電極によって構成される。発光層から放射される光が、支持基板を通って出射するいわゆるボトムエミッション型の有機EL素子の場合、陽極が透明又は半透明の電極によって構成される。発光層から放射される光が、支持基板とは離間する向きに出射するいわゆるトップエミッション型の有機EL素子の場合、陰極が透明又は半透明の電極によって構成される。発光層から放射される光が、支持基板を通って出射するとともに、支持基板とは離間する向きにも出射するシースルー型の有機EL素子の場合、陽極および陰極が、透明又は半透明の電極によって構成される。
 (支持基板)
 支持基板は、有機EL素子を作製する際に化学的に変化しないものであればよく、その材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコン等が挙げられる。上記トップエミッション型の有機EL素子の場合には、支持基板には不透明な基板も用いることができるが、上記ボトムエミッション型およびシースルー型の有機EL素子の場合には、支持基板には透明又は半透明な基板が用いられる。
 (陽極)
 陽極には、導電性の金属酸化物膜、金属薄膜、および有機物を含む導電膜等が用いられる。陽極には、具体的には、酸化インジウム、酸化亜鉛、酸化スズ、インジウムスズ酸化物(Indium Tin Oxide:略称ITO)、インジウム亜鉛酸化物(Indium Zinc Oxide:略称IZO)、金、白金、銀、銅、アルミニウム、ポリアニリン及びその誘導体、並びにポリチオフェン及びその誘導体等の薄膜が用いられる。これらのなかでも陽極には、ITO、IZO、酸化スズの薄膜が好適に用いられる。陽極から光を取り出す構成の有機EL素子では、たとえば上述の陽極を構成する薄膜の膜厚を、光が透過する程度の厚さにした透明又は半透明な電極が、陽極として用いられる。
 陽極の膜厚は、通常、1nm~1mmであり、好ましくは10nm~100μmであり、より好ましくは20nm~10μmである。
 (発光層)
 発光層は、通常、主として蛍光及び/又はりん光を発光する有機物、または該有機物とこれを補助するドーパントとから形成される。発光層は、塗布法により形成されることが好ましい。発光層は、高分子化合物を含むことが好ましく、高分子化合物を一種単独で含んでいても二種以上を組み合わせて含んでいてもよく、共役系高分子化合物を含んで構成されることがさらに好ましい。前記発光層の電荷輸送性を高めるために、前記発光層中に電子輸送性化合物及び/又はホール輸送性化合物を混合して用いることもできる。発光層を構成する発光材料としては、例えば以下の色素系材料、金属錯体系材料、高分子系材料、ドーパント材料を挙げることができる。
 色素系材料
 色素系材料としては、例えば、シクロペンダミン誘導体、テトラフェニルブタジエン誘導体化合物、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、トリフマニルアミン誘導体、オキサジアゾールダイマー、ピラゾリンダイマー、キナクリドン誘導体、クマリン誘導体などを挙げることができる。
 金属錯体系材料
 金属錯体系材料としては、例えば中心金属に、Al、Zn、Be、Ir、Ptなどの典型金属または遷移金属、またはTb、Eu、Dyなどの希土類金属を有し、配位子にオキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造などを有する金属錯体を挙げることができる。金属錯体系材料としては、例えばイリジウム錯体、白金錯体などの三重項励起状態からの発光を有する金属錯体、アルミキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、ユーロピウム錯体などを挙げることができる。
 高分子系材料
 高分子系材料としては、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、上記色素系材料や金属錯体系発光材料を高分子化したものなどを挙げることができる。
 上記発光材料のうち、青色に発光する材料としては、ジスチリルアリーレン誘導体、オキサジアゾール誘導体、およびそれらの重合体、ポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体などを挙げることができる。なかでも高分子材料のポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体やポリフルオレン誘導体などが好ましい。
 緑色に発光する材料としては、キナクリドン誘導体、クマリン誘導体、およびそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体などを挙げることができる。なかでも高分子材料のポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体などが好ましい。
 赤色に発光する材料としては、クマリン誘導体、チオフェン環化合物、およびそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体などを挙げることができる。なかでも高分子材料のポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体などが好ましい。
 ドーパント材料
 ドーパント材料としては、例えばペリレン誘導体、クマリン誘導体、ルブレン誘導体、キナクリドン誘導体、スクアリウム誘導体、ポルフィリン誘導体、スチリル系色素、テトラセン誘導体、ピラゾロン誘導体、デカシクレン、フェノキサゾンなどを挙げることができる。
 発光層の膜厚は、通常、1nm~100μmであり、好ましくは2nm~1000nmであり、より好ましくは2nm~200nmであり、さらに好ましくは5nm~500nmであり、特に好ましくは20nm~200nmである。
 (機能層)
 機能層は、発光層と陰極との間に設けられ、粒子状の電子輸送性材料を含む塗布液を塗布成膜することによって形成される。まず粒子状の電子輸送性材料を含む塗布液を成膜し、これをさらに乾燥すると、水等の溶剤に溶解しにくい機能層とすることができる。このような機能層上に、塗布法によって陰極などを形成する場合、塗布液に機能層が溶解することを防ぐことができるため、陰極などの塗布法による形成が容易になる。本発明において、塗布液は、エマルション(乳濁液)、サスペンション(懸濁液)等の分散液も含む。
 粒子状の電子輸送性材料としては、例えば、酸化亜鉛、酸化チタン、酸化ジルコニウム、酸化スズ、酸化インジウム、ITO(インジウムスズ酸化物)、FTO(フッ素ドープ酸化スズ)、GZO(ガリウムドープ酸化亜鉛)、ATO(アンチモンドープ酸化スズ)、AZO(アルミニウムドープ酸化亜鉛)が挙げられ、これらの中でも、酸化亜鉛、GZO(ガリウムドープ酸化亜鉛)、AZO(アルミニウムドープ酸化亜鉛)が好ましく、価格の観点からは、酸化亜鉛がより好ましい。
機能層を形成するさいには、粒子状の酸化亜鉛、GZOまたはAZO(好ましくは酸化亜鉛)を含む塗布液を成膜して、当該機能層を形成することが好ましい。このような電子輸送材料としては、酸化亜鉛、GZOまたはAZO(好ましくは酸化亜鉛)のいわゆるナノ粒子を用いることが好ましく、酸化亜鉛、GZOまたはAZO(好ましくは酸化亜鉛)のナノ粒子のみからなる電子輸送性材料を用いて、機能層を形成することがより好ましい。電子輸送材料、粒子状の酸化亜鉛、GZOおよびAZOの球相当の平均粒子径は、1nm~1000nmが好ましく、10nm~100nmが好ましい。平均粒子径はレーザー光散乱法や、X線回折によって測定される。
 陰極と発光層との間に、粒子状の電子輸送性材料を含む機能層を設けることによって、陰極の剥離を防ぐとともに、陰極から発光層への電子注入効率を高めることができる。機能層は、発光層に接して設けることが好ましく、さらには陰極にも接して設けられることが好ましい。このように電子輸送性材料を含む機能層を設けることによって、陰極の剥離を防ぐとともに、陰極から発光層への電子注入効率をさらに高めることができる。このような機能層を設けることによって、信頼性が高く、発光効率の高い有機EL素子を実現することができる。
 粒子状の電子輸送性材料を含む機能層は、いわゆる電子輸送層及び/又は電子注入層として機能する。このような機能層を設けることによって、陰極からの電子の注入効率を高めたり、発光層からの正孔の注入を防いだり、電子の輸送能を高めたり、陰極を塗布法で形成する際に用いられる塗布液による侵食から発光層を保護したり、発光層の劣化を抑制したりすることができる。
 粒子状の電子輸送性材料を含む機能層は、陰極を塗布形成する際に用いられる塗布液に対して濡れ性が高い材料によって構成されることが好ましい。具体的には粒子状の電子輸送性材料を含む機能層は、陰極を塗布形成する際に用いられる塗布液に対する発光層の濡れ性よりも、当該塗布液に対する濡れ性が高い方が好ましい。塗布液に対する機能層又は発光層の濡れ性は、例えば、塗布液と機能層又は発光層との接触角により評価できる。接触角が小さいほど、濡れ性が高い。このような機能層上に陰極を塗布形成することにより、陰極を形成する際に、塗布液が機能層の表面上に良好に濡れ広がり、膜厚が均一な陰極を形成することができる。
 粒子状の電子輸送性材料を含む塗布液は、アルカリ金属の錯体、アルカリ金属の塩、アルカリ土類金属の錯体、およびアルカリ土類金属の塩からなる群から選ばれた少なくとも1種(以下、「アルカリ金属、アルカリ土類金属の錯体または塩」ということがある。)を含むことが好ましい。このような塗布液を用いることにより、アルカリ金属、アルカリ土類金属の錯体または塩を含む機能層を形成することができる。アルカリ金属、アルカリ土類金属の錯体または塩を含有することで、さらに電子注入効率を高めることができる。
 アルカリ金属、アルカリ土類金属の錯体または塩は、上記塗布液の溶媒に可溶であることが好ましい。アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムがあげられる。アルカリ土類金属としては、マグネシウム、カルシウム、ストロンチウム、バリウム、があげられる。錯体としては、β−ジケトン錯体、塩としては、アルコキシド、フェノキシド、カルボン酸塩、炭酸塩、水酸化物があげられる。
 アルカリ金属、アルカリ土類金属の錯体または塩の具体例としては、ナトリウムアセチルアセトナト、セシウムアセチルアセトナト、カルシウムビスアセチルアセトナト、バリウムビスアセチルアセトナト、ナトリウムメトキシド、ナトリウムフェノキシド、ナトリウムtert−ブトキシド、ナトリウムtert−五酸化物、酢酸ナトリウム、クエン酸ナトリウム、炭酸セシウム、酢酸セシウム、水酸化ナトリウム、水酸化セシウム等があげられる。
 これらのなかでも、ナトリウムアセチルアセトナト、セシウムアセチルアセトナト、酢酸セシウムが好ましく、粒子状の電子輸送性材料を含む塗布液に対する溶解性の点からは、酢酸セシウムがさらに好ましい。
 粒子状の電子輸送性材料を含む塗布液において、粒子状の電子輸送性材料を100重量部とすると、アルカリ金属、アルカリ土類金属の錯体または塩の合計重量は1~1000重量部であることが好ましく、5~500重量部がより好ましい。
 (陰極)
 陰極は、単層の形態または複数の層が積層された形態をとりうる。本実施形態では陰極は塗布法(ウエットプロセス)により形成される。陰極を塗布法により形成する際に用いられる塗布液は、陰極の構成材料と溶媒とを含む。陰極は導電性を示す高分子化合物を含むことが好ましく、実質的に導電性を示す高分子化合物から成ることが好ましい。陰極の構成材料としては、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体等の有機材料が挙げられる。
 陰極は、ポリチオフェン及び/又はポリチオフェンの誘導体を含んで構成されることが好ましく、実質的にポリチオフェン及び/又はポリチオフェンの誘導体から成ることが好ましい。陰極は、ポリアニリン及び/又はポリアニリンの誘導体を含んで構成されることが好ましく、ポリアニリン及び/又はポリアニリンの誘導体から成ることが好ましい。
 ポリチオフェン及びその誘導体の具体例としては、以下に示す複数の構造式のうちの1つ以上を含む化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000001
 ポリピロール及びその誘導体の具体例としては、以下に示す複数の構造式のうちの1つ以上を含む化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000002
 ポリアニリン及びその誘導体の具体例としては、以下に示す複数の構造式のうちの1つ以上を含む化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000003
 上記陰極の構成材料のなかでも、ポリ(3,4−エチレンジオキシチオフェン)(PEDOT)とポリ(4−スチレンスルホン酸)(PSS)からなるPEDOT/PSSは、高い発光効率を示す点から、陰極の構成材料として好適に用いられる。
 陰極は、上記有機材料を含む塗布液に限らずに、導電性物質のナノ粒子、導電性物質のナノワイヤ、または導電性物質のナノチューブを含む、エマルション(乳濁液)やサスペンション(懸濁液)、金属ペーストなどの分散液、溶融状態の低融点金属等を用いて塗布法により形成してもよい。導電性物質としては、金、銀、等の金属、ITO(インジウムスズ酸化物)等の酸化物、カーボンナノチューブ等が挙げられる。陰極は、導電性物質のナノ粒子またはナノファイバーのみから構成されていてもよいが、陰極は、特表2010−525526号に示されるように、導電性物質のナノ粒子またはナノファイバーが、導電性ポリマーなどの所定の媒体中に分散して配置された構成を有していてもよい。
 有機EL素子としては、前述した素子構成に限らず、陽極と陰極との間に付加的な層をさらに設けてもよい。すなわち陽極と発光層との間、発光層と機能層との間、および機能層と陰極との間などに、付加的な層が設けられることがある。このような付加的な層としては、例えば、ホールを輸送する正孔輸送層、電子を輸送する電子輸送層、バッファ層等が挙げられる。例えば正孔輸送層は陽極と発光層との間に設けられ、電子輸送層は発光層と機能層との間に設けられ、バッファ層は例えば陰極と機能層の間などに設けられる。バッファ層を設けることによって、表面の平坦化や、電荷注入を促進することができる。
 前記付加的な層としてのホール輸送層または電子輸送層に用いられる材料としては、それぞれ前述した電子供与性化合物、電子受容性化合物を用いることができる。付加的な層としてのバッファ層に用いられる材料としては、フッ化リチウム等のアルカリ金属、アルカリ土類金属のハロゲン化物、酸化物等を用いることができる。
 <2>有機EL素子の製造方法
 本発明の有機EL素子の製造方法では、陽極を形成し、発光層を形成し、粒子状の電子輸送性材料を含む塗布液を塗布成膜することによって機能層を形成し、さらに塗布法によって陰極を形成する。このように、陽極、発光層、機能層、陰極の順に各層を形成することによって有機EL素子を形成する。
 <陽極形成工程>
 陽極は、例としてあげた陽極の材料を真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等によって前述した支持基板上に成膜することで形成される。ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機材料を含む塗布液、金属インク、金属ペースト、溶融状態の低融点金属等を用いて、塗布法によって陽極を形成してもよい。
 <発光層形成工程>
 発光層は塗布法によって形成することが好ましい。発光層は例えば前述した発光層の構成材料と溶媒とを含む塗布液を用いる塗布法により形成することができ、例えば高分子発光体化合物と、溶媒とを含む塗布液を用いる塗布法により形成することができる。
 溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、n−ブチルベンゼン、s−ブチルベゼン、t−ブチルベンゼン等の炭化水素系溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素系溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素系溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル類系溶媒等が挙げられる。
本発明に用いられる塗布液は、2種類以上の溶媒を含んでいてもよく、上記で例示した溶媒を2種類以上含んでいてもよい。
 前記発光層の構成材料を含む塗布液を塗布する方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を挙げることができ、これらのなかでもスピンコート法、フレキソ印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。
 <機能層形成工程>
 前述したように、発光層と陰極との間に、粒子状の電子輸送性材料を含む機能層を形成する。すなわち前記発光層の形成後、かつ前記陰極の形成前に、上述した粒子状の電子輸送性材料を含む塗布液を発光層上に塗布成膜することによって機能層を形成する。
 粒子状の電子輸送性材料を含む機能層が発光層に接して設けられる場合には、前記塗布液を発光層の表面上に塗布することによって機能層が形成される。機能層を形成するさいには、塗布液が塗布される層(発光層など)に与える損傷が少ない塗布液を用いることが好ましく、具体的には塗布液が塗布される層(発光層など)を溶解し難い塗布液を用いることが好ましい。
 機能層を塗布形成する際に用いる塗布液は、溶媒と、前述した粒子電子輸送性材料とを含む。前記塗布液の溶媒としては、水、アルコール等があげられ、アルコールの具体例としては、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール、ブトキシエタノール、メトキシブタノール等があげられる。本発明に用いられる塗布液は、2種類以上の溶媒を含んでいてもよく、上記で例示した溶媒を2種類以上含んでいてもよい。
 機能層を形成するさいには、塗布液を成膜した後に、成膜した薄膜を乾燥することが好ましい。薄膜の乾燥は、たとえば真空乾燥や加熱乾燥、自然乾燥によっておこなわれる。このように薄膜を乾燥することによって、この機能層上に塗布される塗布液にたいして、当該機能層を不溶化することができる。
 <陰極形成工程>
 陰極は、機能層などの表面上に塗布法により形成される。具体的には溶媒と、前述した陰極の構成材料とを含む塗布液を機能層などの表面上に塗布することによって陰極が形成される。陰極を形成する際に用いる塗布液の溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、n−ブチルベンゼン、s−ブチルベゼン、t−ブチルベンゼン等の炭化水素系溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素系溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素系溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル類系溶媒、水、アルコール等があげられる。アルコールの具体例としては、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール、ブトキシエタノール、メトキシブタノール等があげられる。本発明に用いられる塗布液は、2種類以上の溶媒を含んでいてもよく、上記で例示した溶媒を2種類以上含んでいてもよい。
 発光層や機能層に損傷を与えるような塗布液を用いて陰極を形成する場合には、たとえば陰極を二層構成とし、一層目の薄膜を、発光層や機能層に損傷を与えないような塗布液を用いて形成し、つぎに、二層目の薄膜を、発光層や機能層に損傷を与えうる塗布液を用いて形成してもよい。このように二層構成の陰極とすることにより、たとえ発光層や機能層に損傷を与えうる塗布液を用いて二層目の薄膜を形成したとしても、一層目の薄膜が保護層として機能するため、発光層や機能層に損傷を与えることを抑制することができる。たとえば、酸化亜鉛からなる機能層は、酸性の溶液によって損傷を受けやすいため、酸化亜鉛からなる機能層上に陰極を形成する場合には、中性の塗布液を用いて一層目の薄膜を形成し、つづいて酸性の溶液を用いて二層目の薄膜を形成することによって二層構成の陰極を形成してもよい。
 本実施の形態では、有機EL素子を構成する要素のうちの陽極を除く残余の構成要素を塗布法によって形成することが好ましい。このように、工程として簡易な塗布法によって各要素を形成することによって、簡易に有機EL素子を形成することができ、生産性が向上するとともに、素子製造のコストを低減することができる。陽極も加えて、有機EL素子を構成する全ての構成要素を塗布法によって形成することがさらに好ましい。このように工程として簡易な塗布法によって全ての要素を形成することによって、簡易に有機EL素子を形成することができ、生産性が向上するとともに、素子製造のコストを低減することができる。
 以上説明した有機EL素子は、曲面状や平面状の照明装置、例えばスキャナの光源として用いられる面状光源、および表示装置に好適に用いることができる。前述したように簡易な工程で製造可能な有機EL素子を備える装置は、有機EL素子と同様に簡易な工程で安価に製造することができる。
 有機EL素子を備える表示装置としては、セグメント表示装置、ドットマトリックス表示装置などを挙げることができる。ドットマトリックス表示装置には、アクティブマトリックス表示装置およびパッシブマトリックス表示装置などがある。有機EL素子は、アクティブマトリックス表示装置、パッシブマトリックス表示装置において、各画素を構成する発光素子として用いられる。有機EL素子は、セグメント表示装置において、各セグメントを構成する発光素子として用いられ、液晶表示装置において、バックライトとして用いられる。
 有機EL素子を備える表示装置としては、反射型表示体と、当該反射型表示体上に配置される透過型表示体とを備える表示装置であって、前記反射型表示体は、所定の位置に応じて、第1の色と第2の色とを選択的に表示することが可能な反射型表示体層を有し、前記透過型表示体は、上述の有機EL素子を画素光源として有し、前記有機EL素子は、陽極および陰極が、光透過性を示す電極によって実現される、表示装置があげられる。
 陽極および陰極が、光透過性を示す電極によって実現される有機EL素子は、光透過性の素子となる。そして透過型表示体は、たとえば光透過性を示す基板上に、光透過性を示す多数の有機EL素子を画素の光源として配置することにより、透過型の表示体を構成する。
 反射型表示体は、いわゆる電子ペーパーなどによって実現される。この反射型表示体は、第1の色と第2の色とを選択的に表示することが可能な反射型表示体層を備える。第1の色および第2の色としては、色が異なる限りとくに制限はないが、たとえば一方の色が白色、他方の色が黒色である。反射型表示体層は、所定の位置に応じて、第1の色と第2の色とを選択的に表示することにより、たとえば画像情報を、たとえば白黒表示することができる。
 この表示装置は、反射型表示体と透過型表示体との表示状態を制御する制御手段を備える。たとえば制御手段は、表示装置に表示すべき画像情報が、経時的に変化するいわゆる動画の場合には、反射型表示体の全面を黒色に表示し、透過型表示体に動画を表示させ、他方、表示装置に表示すべき画像情報が、経時的に変化しない文字情報などの静止画の場合には、反射型表示体に静止画を表示し、透過型表示体は非発光とさせて透明に維持するように制御する。このように制御することにより、たとえば電子ペーパーのように応答性が高くなく、動画表示に適さない装置を反射型表示体に使用した場合であっても、応答性の高い有機EL素子を光源として使用した、動画表示に適した透過型表示体に動画を表示させるため、適切に動画を表示することができる。他方、一般に電子ペーパーのような装置は動画表示に適さないものの、消費電力が小さいため、静止画を反射型表示体に表示させることにより、表示装置全体としての消費電力を抑えることができる。静止画とは、画像情報が完全に経時的に変化しないわけではない。たとえば文字情報を表示させる場合には、使用者の動作に応じて文字情報を更新するさいに、画像情報が変化するが、このような画像情報も静止画像に含まれる。
 このような表示装置はたとえば特開2004−302321号公報に記載の装置によって実現される。
 陰極および陽極を、透明又は半透明な電極によって構成した場合、光透過性を示す有機EL素子を構成することができる。このような有機EL素子は、不透光性の有機EL素子、または光透過性を示す有機EL素子と重ね合わせることによって、容易に並列型または直列型の多接合素子を構成することができるという利点を有する。
Hereinafter, the present invention will be described in detail.
<1> Organic EL Element The organic EL element of the present invention is an organic electroluminescence element having a configuration in which a light emitting layer, a functional layer, and a cathode are laminated in this order on an anode, and the functional layer has a particulate electron transport. It is formed by coating a coating solution containing a functional material. The anode is usually laminated on a support substrate.
At least one of the anode and the cathode is constituted by a transparent or translucent electrode. In the case of a so-called bottom emission type organic EL element in which light emitted from the light emitting layer is emitted through the support substrate, the anode is constituted by a transparent or translucent electrode. In the case of a so-called top emission type organic EL element in which light emitted from the light emitting layer is emitted in a direction away from the support substrate, the cathode is constituted by a transparent or translucent electrode. In the case of a see-through type organic EL element in which light emitted from the light emitting layer is emitted through the support substrate and also emitted in a direction away from the support substrate, the anode and the cathode are made of transparent or translucent electrodes. Composed.
(Support substrate)
The support substrate may be any substrate that does not change chemically when an organic EL element is produced. Examples of the material include glass, plastic, polymer film, and silicon. In the case of the top emission type organic EL element, an opaque substrate can be used as the support substrate. However, in the case of the bottom emission type and see-through type organic EL elements, the support substrate is transparent or semi-transparent. A transparent substrate is used.
(anode)
For the anode, a conductive metal oxide film, a metal thin film, a conductive film containing an organic substance, or the like is used. Specifically, the anode includes indium oxide, zinc oxide, tin oxide, indium tin oxide (abbreviated as ITO), indium zinc oxide (abbreviated as IZO), gold, platinum, silver, Thin films such as copper, aluminum, polyaniline and derivatives thereof, and polythiophene and derivatives thereof are used. Among these, a thin film of ITO, IZO, or tin oxide is preferably used for the anode. In the organic EL element configured to extract light from the anode, for example, a transparent or translucent electrode in which the film thickness of the above-described anode is set to a thickness that allows light to pass therethrough is used as the anode.
The thickness of the anode is usually 1 nm to 1 mm, preferably 10 nm to 100 μm, and more preferably 20 nm to 10 μm.
(Light emitting layer)
The light emitting layer is usually formed of an organic substance that mainly emits fluorescence and / or phosphorescence, or an organic substance and a dopant that assists the organic substance. The light emitting layer is preferably formed by a coating method. The light emitting layer preferably contains a polymer compound, may contain one kind of polymer compound alone, or may contain two or more kinds in combination, and further comprises a conjugated polymer compound. preferable. In order to enhance the charge transporting property of the light emitting layer, an electron transporting compound and / or a hole transporting compound may be mixed and used in the light emitting layer. Examples of the light emitting material constituting the light emitting layer include the following dye materials, metal complex materials, polymer materials, and dopant materials.
Dye-type material Examples of the dye-type material include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, pyrrole derivatives, Examples thereof include thiophene ring compounds, pyridine ring compounds, perinone derivatives, perylene derivatives, oligothiophene derivatives, trifumanylamine derivatives, oxadiazole dimers, pyrazoline dimers, quinacridone derivatives, and coumarin derivatives.
Metal complex material As a metal complex material, for example, a central metal includes a typical metal or transition metal such as Al, Zn, Be, Ir, Pt, or a rare earth metal such as Tb, Eu, Dy, and a ligand. Examples thereof include metal complexes having an oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, quinoline structure, and the like. Examples of metal complex materials include metal complexes that emit light from triplet excited states such as iridium complexes and platinum complexes, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc complexes, benzothiazole zinc complexes, azomethyl zinc A complex, a porphyrin zinc complex, a europium complex, etc. can be mentioned.
Polymeric materials Polymeric materials include polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, the above-mentioned dye materials and metal complex light emitting materials. A polymerized product can be exemplified.
Among the above light-emitting materials, examples of materials that emit blue light include distyrylarylene derivatives, oxadiazole derivatives, and polymers thereof, polyvinylcarbazole derivatives, polyparaphenylene derivatives, and polyfluorene derivatives. Of these, polymer materials such as polyvinyl carbazole derivatives, polyparaphenylene derivatives, and polyfluorene derivatives are preferred.
Examples of materials that emit green light include quinacridone derivatives, coumarin derivatives, and polymers thereof, polyparaphenylene vinylene derivatives, polyfluorene derivatives, and the like. Of these, polymer materials such as polyparaphenylene vinylene derivatives and polyfluorene derivatives are preferred.
Examples of the material that emits red light include a coumarin derivative, a thiophene ring compound, a polymer thereof, a polyparaphenylene vinylene derivative, a polythiophene derivative, and a polyfluorene derivative. Among these, polymer materials such as polyparaphenylene vinylene derivatives, polythiophene derivatives, and polyfluorene derivatives are preferable.
Dopant material Examples of the dopant material include perylene derivatives, coumarin derivatives, rubrene derivatives, quinacridone derivatives, squalium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazolone derivatives, decacyclene, phenoxazone, and the like.
The thickness of the light emitting layer is usually 1 nm to 100 μm, preferably 2 nm to 1000 nm, more preferably 2 nm to 200 nm, still more preferably 5 nm to 500 nm, and particularly preferably 20 nm to 200 nm.
(Functional layer)
The functional layer is provided between the light emitting layer and the cathode, and is formed by coating a coating solution containing a particulate electron transporting material. First, when a coating liquid containing a particulate electron transporting material is formed into a film and then dried, a functional layer that is difficult to dissolve in a solvent such as water can be obtained. When a cathode or the like is formed on such a functional layer by a coating method, the functional layer can be prevented from being dissolved in the coating liquid, so that formation by a coating method such as a cathode is facilitated. In the present invention, the coating solution includes a dispersion such as an emulsion (emulsion) or a suspension (suspension).
Examples of the particulate electron transport material include zinc oxide, titanium oxide, zirconium oxide, tin oxide, indium oxide, ITO (indium tin oxide), FTO (fluorine-doped tin oxide), and GZO (gallium-doped zinc oxide). , ATO (antimony-doped tin oxide), AZO (aluminum-doped zinc oxide), among these, zinc oxide, GZO (gallium-doped zinc oxide), and AZO (aluminum-doped zinc oxide) are preferable, and from the viewpoint of price Zinc oxide is more preferred.
In forming the functional layer, it is preferable to form a coating liquid containing particulate zinc oxide, GZO or AZO (preferably zinc oxide) to form the functional layer. As such an electron transporting material, it is preferable to use so-called nanoparticles of zinc oxide, GZO or AZO (preferably zinc oxide), and electrons consisting only of nanoparticles of zinc oxide, GZO or AZO (preferably zinc oxide). It is more preferable to form a functional layer using a transport material. The average particle diameter corresponding to the spheres of the electron transport material, particulate zinc oxide, GZO and AZO is preferably 1 nm to 1000 nm, more preferably 10 nm to 100 nm. The average particle diameter is measured by a laser light scattering method or X-ray diffraction.
By providing a functional layer containing a particulate electron-transporting material between the cathode and the light-emitting layer, it is possible to prevent peeling of the cathode and increase the efficiency of electron injection from the cathode to the light-emitting layer. The functional layer is preferably provided in contact with the light emitting layer, and more preferably provided in contact with the cathode. By providing the functional layer including the electron transporting material as described above, it is possible to prevent the cathode from being peeled off and to further increase the efficiency of electron injection from the cathode to the light emitting layer. By providing such a functional layer, an organic EL element with high reliability and high luminous efficiency can be realized.
The functional layer containing the particulate electron transporting material functions as a so-called electron transport layer and / or electron injection layer. By providing such a functional layer, the efficiency of electron injection from the cathode is increased, the injection of holes from the light emitting layer is prevented, the electron transport capability is increased, and the cathode is formed by a coating method. It is possible to protect the light emitting layer from erosion by the coating solution used and to suppress deterioration of the light emitting layer.
The functional layer containing the particulate electron transporting material is preferably composed of a material having high wettability with respect to a coating solution used when the cathode is applied and formed. Specifically, the functional layer containing the particulate electron transport material preferably has higher wettability with respect to the coating liquid than the wettability of the light emitting layer with respect to the coating liquid used when the cathode is applied and formed. The wettability of the functional layer or the light emitting layer with respect to the coating liquid can be evaluated by, for example, the contact angle between the coating liquid and the functional layer or the light emitting layer. The smaller the contact angle, the higher the wettability. By coating and forming the cathode on such a functional layer, when forming the cathode, the coating liquid can be well spread on the surface of the functional layer, and a cathode having a uniform film thickness can be formed.
The coating liquid containing the particulate electron transport material is at least one selected from the group consisting of an alkali metal complex, an alkali metal salt, an alkaline earth metal complex, and an alkaline earth metal salt (hereinafter, It may preferably be referred to as “alkaline metal, alkaline earth metal complex or salt”. By using such a coating solution, a functional layer containing an alkali metal, alkaline earth metal complex or salt can be formed. By containing an alkali metal, alkaline earth metal complex or salt, the electron injection efficiency can be further increased.
The alkali metal or alkaline earth metal complex or salt is preferably soluble in the solvent of the coating solution. Examples of the alkali metal include lithium, sodium, potassium, rubidium, and cesium. Examples of the alkaline earth metal include magnesium, calcium, strontium, and barium. Examples of the complex include β-diketone complexes, and examples of the salt include alkoxide, phenoxide, carboxylate, carbonate, and hydroxide.
Specific examples of alkali metal or alkaline earth metal complexes or salts include sodium acetylacetonate, cesium acetylacetonate, calcium bisacetylacetonate, barium bisacetylacetonate, sodium methoxide, sodium phenoxide, sodium tert-butoxide Sodium tert-pentoxide, sodium acetate, sodium citrate, cesium carbonate, cesium acetate, sodium hydroxide, cesium hydroxide and the like.
Among these, sodium acetylacetonate, cesium acetylacetonate, and cesium acetate are preferable, and cesium acetate is more preferable from the viewpoint of solubility in a coating solution containing a particulate electron transporting material.
In the coating solution containing the particulate electron transporting material, the total weight of the alkali metal, alkaline earth metal complex or salt is 1 to 1000 parts by weight when the particulate electron transporting material is 100 parts by weight. It is preferably 5 to 500 parts by weight.
(cathode)
The cathode can take the form of a single layer or a stack of a plurality of layers. In this embodiment, the cathode is formed by a coating method (wet process). The coating liquid used when forming the cathode by a coating method includes a constituent material of the cathode and a solvent. The cathode preferably contains a polymer compound exhibiting conductivity, and is preferably made of a polymer compound substantially exhibiting conductivity. Examples of the constituent material of the cathode include organic materials such as polyaniline and derivatives thereof, polythiophene and derivatives thereof, and polypyrrole and derivatives thereof.
The cathode is preferably composed of polythiophene and / or polythiophene derivatives, and is preferably substantially composed of polythiophene and / or polythiophene derivatives. The cathode is preferably composed of polyaniline and / or a polyaniline derivative, and is preferably composed of polyaniline and / or a polyaniline derivative.
Specific examples of polythiophene and derivatives thereof include compounds containing one or more of the following structural formulas.
Figure JPOXMLDOC01-appb-I000001
Specific examples of polypyrrole and derivatives thereof include compounds containing one or more of a plurality of structural formulas shown below.
Figure JPOXMLDOC01-appb-I000002
Specific examples of polyaniline and derivatives thereof include compounds containing one or more of the following structural formulas.
Figure JPOXMLDOC01-appb-I000003
Among the constituent materials of the above cathode, PEDOT / PSS composed of poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (4-styrenesulfonic acid) (PSS) has a high luminous efficiency. It is suitably used as a constituent material for the cathode.
The cathode is not limited to the coating liquid containing the organic material, but an emulsion (emulsion) or suspension (suspension) containing conductive material nanoparticles, conductive material nanowires, or conductive material nanotubes. Alternatively, it may be formed by a coating method using a dispersion such as a metal paste, a low melting point metal in a molten state, or the like. Examples of the conductive substance include metals such as gold and silver, oxides such as ITO (indium tin oxide), and carbon nanotubes. The cathode may be composed only of nanoparticles or nanofibers of a conductive material. However, as shown in Japanese Translation of PCT International Publication No. 2010-525526, the cathode is composed of conductive particles or nanofibers. You may have the structure disperse | distributed and arrange | positioned in predetermined media, such as a polymer.
The organic EL element is not limited to the element configuration described above, and an additional layer may be further provided between the anode and the cathode. That is, an additional layer may be provided between the anode and the light emitting layer, between the light emitting layer and the functional layer, and between the functional layer and the cathode. Examples of such an additional layer include a hole transport layer that transports holes, an electron transport layer that transports electrons, and a buffer layer. For example, the hole transport layer is provided between the anode and the light emitting layer, the electron transport layer is provided between the light emitting layer and the functional layer, and the buffer layer is provided, for example, between the cathode and the functional layer. By providing the buffer layer, planarization of the surface and charge injection can be promoted.
As the material used for the hole transport layer or the electron transport layer as the additional layer, the above-described electron donating compound and electron accepting compound can be used, respectively. As a material used for the buffer layer as an additional layer, an alkali metal such as lithium fluoride, a halide of an alkaline earth metal, an oxide, or the like can be used.
<2> Method for Producing Organic EL Element In the method for producing an organic EL element of the present invention, an anode is formed, a light emitting layer is formed, and a coating liquid containing a particulate electron transporting material is applied and formed into a film. A layer is formed, and a cathode is further formed by a coating method. Thus, an organic EL element is formed by forming each layer in order of an anode, a light emitting layer, a functional layer, and a cathode.
<Anode formation process>
The anode is formed by depositing the anode material described as an example on the above-described support substrate by vacuum deposition, sputtering, ion plating, plating, or the like. The anode may be formed by a coating method using a coating liquid containing an organic material such as polyaniline and its derivative, polythiophene and its derivative, a metal ink, a metal paste, a molten low melting point metal, or the like.
<Light emitting layer forming step>
The light emitting layer is preferably formed by a coating method. The light emitting layer can be formed, for example, by a coating method using a coating solution containing the constituent material of the light emitting layer and a solvent. For example, the light emitting layer is formed by a coating method using a coating solution containing a polymer phosphor compound and a solvent. be able to.
Examples of the solvent include hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, s-butylbezen, and t-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, and chlorobutane. , Halogenated saturated hydrocarbon solvents such as bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, halogenated unsaturated hydrocarbon solvents such as chlorobenzene, dichlorobenzene, trichlorobenzene, tetrahydrofuran, And ether solvents such as tetrahydropyran.
The coating liquid used in the present invention may contain two or more kinds of solvents, and may contain two or more kinds of the solvents exemplified above.
As a method of applying a coating solution containing the constituent material of the light emitting layer, a spin coating method, a casting method, a micro gravure coating method, a gravure coating method, a bar coating method, a roll coating method, a wire bar coating method, a dip coating method, Examples of the spray coating method, screen printing method, flexographic printing method, offset printing method, ink jet printing method, dispenser printing method, nozzle coating method, capillary coating method, and the like include spin coating method and flexographic method. A printing method, an inkjet printing method, and a dispenser printing method are preferable.
<Functional layer formation process>
As described above, a functional layer containing a particulate electron transport material is formed between the light emitting layer and the cathode. That is, after the formation of the light emitting layer and before the formation of the cathode, the functional layer is formed by coating and forming a coating liquid containing the above-described particulate electron transporting material on the light emitting layer.
When the functional layer containing the particulate electron transporting material is provided in contact with the light emitting layer, the functional layer is formed by applying the coating solution on the surface of the light emitting layer. When forming the functional layer, it is preferable to use a coating solution that causes little damage to a layer to which the coating solution is applied (such as a light emitting layer). Specifically, a layer to which the coating solution is applied (such as a light emitting layer). It is preferable to use a coating solution that hardly dissolves.
The coating liquid used for coating and forming the functional layer includes a solvent and the particle electron transport material described above. Examples of the solvent for the coating solution include water and alcohol. Specific examples of the alcohol include methanol, ethanol, isopropanol, butanol, ethylene glycol, propylene glycol, butoxyethanol, methoxybutanol and the like. The coating liquid used in the present invention may contain two or more kinds of solvents, and may contain two or more kinds of the solvents exemplified above.
In forming the functional layer, it is preferable to dry the formed thin film after forming the coating solution. The thin film is dried, for example, by vacuum drying, heat drying, or natural drying. By drying the thin film in this manner, the functional layer can be insolubilized with respect to the coating liquid applied on the functional layer.
<Cathode formation process>
The cathode is formed on the surface of the functional layer or the like by a coating method. Specifically, the cathode is formed by applying a coating liquid containing a solvent and the above-described cathode constituent material onto the surface of a functional layer or the like. Examples of the solvent for the coating solution used for forming the cathode include hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, s-butylbezen, t-butylbenzene, and the like. Halogenated saturated hydrocarbon solvents such as carbon chloride, chloroform, dichloromethane, dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, halogens such as chlorobenzene, dichlorobenzene, and trichlorobenzene Unsaturated hydrocarbon solvents, ether solvents such as tetrahydrofuran and tetrahydropyran, water, alcohols and the like. Specific examples of the alcohol include methanol, ethanol, isopropanol, butanol, ethylene glycol, propylene glycol, butoxyethanol, methoxybutanol and the like. The coating liquid used in the present invention may contain two or more kinds of solvents, and may contain two or more kinds of the solvents exemplified above.
When the cathode is formed using a coating solution that damages the light emitting layer or the functional layer, for example, the cathode has a two-layer structure, and the first thin film does not damage the light emitting layer or the functional layer. It may be formed using a coating solution, and then the second thin film may be formed using a coating solution capable of damaging the light emitting layer and the functional layer. Thus, by using a two-layer cathode, even if the second thin film is formed using a coating solution that can damage the light-emitting layer or the functional layer, the first thin film functions as a protective layer. Therefore, damage to the light emitting layer and the functional layer can be suppressed. For example, since the functional layer made of zinc oxide is easily damaged by an acidic solution, when forming a cathode on the functional layer made of zinc oxide, the first thin film is formed using a neutral coating solution. Then, a two-layered cathode may be formed by forming a second-layer thin film using an acidic solution.
In the present embodiment, it is preferable to form the remaining constituent elements excluding the anode among the constituent elements of the organic EL element by a coating method. Thus, by forming each element by a simple coating method as a process, an organic EL element can be easily formed, productivity can be improved, and the cost of element manufacture can be reduced. In addition to the anode, it is more preferable to form all components constituting the organic EL element by a coating method. Thus, by forming all the elements by a simple coating method as a process, an organic EL element can be easily formed, productivity can be improved, and the cost of element manufacture can be reduced.
The organic EL element described above can be suitably used for a curved or flat illumination device, for example, a planar light source used as a light source of a scanner, and a display device. As described above, an apparatus including an organic EL element that can be manufactured by a simple process can be manufactured at a low cost by a simple process as in the case of the organic EL element.
Examples of the display device including an organic EL element include a segment display device and a dot matrix display device. The dot matrix display device includes an active matrix display device and a passive matrix display device. An organic EL element is used as a light emitting element constituting each pixel in an active matrix display device and a passive matrix display device. The organic EL element is used as a light emitting element constituting each segment in the segment display device, and is used as a backlight in the liquid crystal display device.
The display device including the organic EL element is a display device including a reflective display body and a transmissive display body disposed on the reflective display body, and the reflective display body is at a predetermined position. Accordingly, it has a reflective display layer that can selectively display the first color and the second color, and the transmissive display has the organic EL element described above as a pixel light source. The organic EL element includes a display device in which an anode and a cathode are realized by an electrode having optical transparency.
An organic EL element in which the anode and the cathode are realized by an electrode having optical transparency is an optically transparent element. The transmissive display body constitutes a transmissive display body, for example, by arranging a large number of organic EL elements exhibiting light transmittance as light sources of pixels on a substrate exhibiting light transmittance.
The reflective display body is realized by so-called electronic paper or the like. This reflection type display body includes a reflection type display body layer capable of selectively displaying the first color and the second color. The first color and the second color are not particularly limited as long as the colors are different. For example, one color is white and the other color is black. The reflective display layer can display, for example, image information, for example, in black and white, by selectively displaying the first color and the second color according to a predetermined position.
This display device includes control means for controlling display states of the reflective display body and the transmissive display body. For example, when the image information to be displayed on the display device is a so-called moving image that changes with time, the control means displays the entire surface of the reflective display body in black, displays the moving image on the transmissive display body, When the image information to be displayed on the display device is a still image such as character information that does not change over time, the still image is displayed on the reflective display body, and the transmissive display body is made non-luminous and transparent. Control to maintain. By controlling in this way, an organic EL element having a high response is used as a light source even when a device that is not highly responsive, such as electronic paper, and is not suitable for moving image display is used as a reflective display. Since the moving image is displayed on the used transmissive display body suitable for moving image display, the moving image can be appropriately displayed. On the other hand, although an apparatus such as electronic paper is generally not suitable for moving image display, since power consumption is small, power consumption of the entire display device can be suppressed by displaying a still image on a reflective display. A still image does not mean that image information does not change completely over time. For example, when displaying character information, the image information changes when the character information is updated according to the user's action. Such image information is also included in the still image.
Such a display device is realized by, for example, a device described in Japanese Patent Application Laid-Open No. 2004-30321.
When the cathode and the anode are constituted by transparent or translucent electrodes, an organic EL element exhibiting light transmittance can be constituted. Such an organic EL element can be easily configured as a parallel-type or series-type multi-junction element by being superimposed with a light-transmitting organic EL element or a light-transmitting organic EL element. Have advantages.
 以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。
 −分子量の測定方法−
 合成例において、数平均分子量(Mn)及び重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算のものを求めた。具体的には、GPC(東ソー製、商品名:HLC−8220GPC)により、TSKgel SuperHM−H(東ソー製)3本を直列に繋げたカラムを用いて、テトラヒドロフランを展開溶媒として0.5mL/分の流速で流し、40℃で測定した。検出器には、示差屈折率検出器を用いた。
<合成例1>(高分子化合物1の合成)
 5Lセパラブルフラスコにトリスカプリリルメチルアンモニウムクロリド(Triscaprylylmethylammoniumchloride、商品名:Aliquat336「登録商標」、Aldrich製)40.18g、下記式:
Figure JPOXMLDOC01-appb-I000004
で表される化合物E 234.06g、下記式:
Figure JPOXMLDOC01-appb-I000005
で表される化合物F 172.06g、及び下記式:
Figure JPOXMLDOC01-appb-I000006
で表される化合物G 28.5528gを取り、フラスコ内の気体を窒素置換した。アルゴンバブリングしたトルエン2620gを加え、攪拌しながら更に30分間アルゴンバブリングした。酢酸パラジウム 99.1mg、トリス(o−トリル)ホスフィン 937.0mgを加え、158gのトルエンで洗い流し、95℃に加熱した。17.5重量%炭酸ナトリウム水溶液855gを滴下後、バス温を110℃に昇温し、9.5時間攪拌した後、フェニルホウ酸5.39gをトルエン96mlに溶解して加え、14時間攪拌した。200mlのトルエンを加え、反応液を分液し、有機相を3重量%酢酸水溶液850mlで2回洗浄し、さらに850mlの水とナトリウムN,N−ジエチルジチオカルバメート 19.89gを加え、4時間攪拌した。分液後、シリカゲル−アルミナカラムを通し、トルエンで洗浄した。得られたトルエン溶液をメタノール50Lに滴下したところ、沈殿が生じた。得られた沈殿を、メタノールで洗浄した。減圧乾燥後、11Lのトルエンに溶解させ、得られたトルエン溶液をメタノール50Lに滴下したところ、沈殿が生じた。
得られた沈殿を、ろ過し、減圧乾燥して、278.39gの高分子化合物1を得た。高分子化合物1のポリスチレン換算の数平均分子量Mnは7.7×10であり、ポリスチレン換算の重量平均分子量Mwは3.8×10であった。
 <合成例2>(高分子化合物2の合成)
 500mlの4口フラスコにトリスカプリリルメチルアンモニウムクロリド(Triscaprylylmethylammoniumchloride、商品名:Aliquat336「登録商標」、Aldrich製)1.72g、下記式:
Figure JPOXMLDOC01-appb-I000007
で表される化合物A 6.2171g、下記式:
Figure JPOXMLDOC01-appb-I000008
で表される化合物B 0.5085g、下記式:
Figure JPOXMLDOC01-appb-I000009
で表される化合物C 6.2225g、及び下記式:
Figure JPOXMLDOC01-appb-I000010
で表される化合物D 0.5487gを取り、フラスコ内の気体を窒素置換した。トルエン100mlを加え、ジクロロビス(トリフェニルホスフィン)パラジウム(II) 7.6mg、炭酸ナトリウム水溶液24mlを加え、還流下で3時間攪拌した。その後、フェニルホウ酸0.40gを加え、終夜攪拌した。その後、ナトリウムN,N−ジエチルジチオカルバメート水溶液を加え、さらに還流下で3時間攪拌した。得られた反応液を分液し、有機相を酢酸水溶液及び水で洗浄した後、メタノール中に滴下したところ、沈殿が生じた。得られた沈殿を、ろ過し、減圧乾燥した後、トルエンに溶解させ、シリカゲル−アルミナカラムを通し、トルエンで洗浄した。得られたトルエン溶液をメタノール中に滴下したところ、沈殿が生じた。得られた沈殿を、ろ過し、減圧乾燥した後、トルエンに溶解させ、メタノールに滴下ところ、沈殿が生じた。得られた沈殿を、ろ過し、減圧乾燥して、7.72gの共役高分子化合物である高分子化合物2を得た。高分子化合物2のポリスチレン換算の数平均分子量Mnは1.2×10であり、ポリスチレン換算の重量平均分子量Mwは2.9×10であった。
 実施例1
(有機EL素子の作製、評価)
 陽極に相当するインジウムスズ酸化物(ITO)膜(膜厚:150nm、スパッタ法により形成)が形成されたガラス基板上に、正孔注入層溶液(エイチ・シー・スタルク社製、商品名:CLEVIOS AI4083)をスピンコートにより塗布成膜し、大気中ホットプレート上で、200℃で10分間乾燥して正孔注入層(膜厚:50nm)を形成した。
 次に、高分子化合物1のキシレン溶液を孔径0.2μmのテフロン(登録商標)フィルターで濾過し、この溶液を、スピンコートにより正孔注入層上に塗布成膜し、グローブボックス中の窒素雰囲気下で、180℃で15分間ベークして、正孔輸送層(膜厚:20nm)を形成した。
 次に緑色発光有機材料(サメイション製、Lumation GP1300)の1重量%キシレン溶液をスピンコートにより正孔輸送層上に塗布し、発光層(膜厚約100nm)を形成した。
 次に、酸化亜鉛ナノ粒子(粒径20~30nm)の45重量%イソプロパノール分散液(HTD−711Z、テイカ社製)を、当該分散液の5倍重量部のイソプロパノールで希釈し、塗布液を調製した。この塗布液を、スピンコートにより発光層上に220nmの膜厚で塗布し、乾燥させることにより水溶媒に不溶である機能層を形成した。
 次に、水溶媒のワイヤー状導電体分散液(ClearOhm(登録商標)Ink−N AQ:Cambrios Technologies Corporation社製)をスピンコーターによって塗布し、乾燥させることで、膜厚120nmの導電性ワイヤー層を得た。不要な部位に形成された導
電性ワイヤー層を、水をつけた綿棒で剥離し、陰極に相当する所定のパターンの導電性ワイヤー層を得た。その後、UV硬化性封止剤で封止することで有機EL素子を得た。
 得られた有機EL素子に電圧を段階的に印加し、各電圧における電流密度とEL発光の輝度を測定した。測定結果から電流効率値を得た。得られた素子の電流効率の最大値は、5.85cd/Aであった。EL発光はCIE色度座標が(0.40,0.58)の緑色発光であった。
 実施例2
(有機EL素子の作製、評価)
 実施例1の水溶媒のワイヤー状導電体分散液の代わりに、低温焼結性銀インク(バンドー化学製フローメタルSW−1020。粒径20~40nmの銀ナノ粒子を40重量%含む水溶媒の銀ナノ粒子分散液)をスピンコートにより機能層上に塗布し、窒素雰囲気下130℃で30分間焼結を行うことで、700nmの膜厚の陰極を形成した。その後、UV硬化性封止剤で封止することで有機EL素子を得た。
 得られた有機EL素子に電圧を段階的に印加し、各電圧における電流密度とEL発光の輝度を測定した。測定結果から電流効率値を得た。得られた素子の電流効率の最大値は、0.49cd/Aであった。EL発光はCIE色度座標が(0.38,0.59)の緑色発光であった。
 実施例3
(有機EL素子の作製、評価)
 陽極に相当するインジウムスズ酸化物(ITO)膜(膜厚:150nm、スパッタ法により形成)が形成されたガラス基板上に、正孔注入層溶液(エイチ・シー・スタルク社製、商品名:CLEVIOS AI4083)をスピンコートにより塗布成膜し、大気中ホットプレート上で、200℃で10分間乾燥して正孔注入層(膜厚:50nm)を形成した。
 次に、高分子化合物1のキシレン溶液を孔径0.2μmのテフロン(登録商標)フィルターで濾過し、この溶液を、スピンコートにより正孔注入層上に塗布成膜し、グローブボックス中の窒素雰囲気下で、180℃で15分間ベークして、正孔輸送層(膜厚:20nm)を形成した。
 次に高分子化合物2のキシレン溶液をスピンコートにより正孔輸送層上に塗布し、発光層(膜厚約100nm)を形成した。
 次に、酸化亜鉛ナノ粒子(粒径20~30nm)の45重量%イソプロパノール分散液(HTD−711Z、テイカ社製)1重量部と、カルシウムビスアセチルアセトナトを1重量%溶解させたイソプロパノール5重量部とを混合し、塗布液を調製した。この塗布液を、スピンコートにより発光層上に210nmの膜厚で塗布し、乾燥させることにより水溶媒に不溶である機能層を形成した。
 次に、水溶媒のワイヤー状導電体分散液(ClearOhm(登録商標)Ink−N AQ:Cambrios Technologies Corporation社製)をスピンコーターによって塗布し、乾燥させることで、膜厚120nmの導電性ワイヤー層を得た。不要な部位に形成された導電性ワイヤー層を、水をつけた綿棒で剥離し、陰極に相当する所定のパターンの導電性ワイヤー層を得た。その後、UV硬化性封止剤で封止することで有機EL素子を得た。
 得られた有機EL素子に電圧を段階的に印加し、各電圧における電流密度とEL発光の輝度を測定した。測定結果から電流効率値を得た。得られた素子の電流効率の最大値は、0.47cd/Aであった。EL発光はCIE色度座標が(0.15,0.23)の青色発光であった。
 実施例4
(有機EL素子の作製、評価)
 陽極に相当するインジウムスズ酸化物(ITO)膜(膜厚:150nm、スパッタ法により形成)が形成されたガラス基板上に、正孔注入層溶液(エイチ・シー・スタルク社製、商品名:CLEVIOS AI4083)をスピンコートにより塗布成膜し、大気中ホットプレート上で、200℃で10分間乾燥して正孔注入層(膜厚:50nm)を形成した。
 次に、高分子化合物1のキシレン溶液を孔径0.2μmのテフロン(登録商標)フィルターで濾過し、この溶液を、スピンコートにより正孔注入層上に塗布成膜し、グローブボックス中の窒素雰囲気下で、180℃で15分間ベークして、正孔輸送層(膜厚:20nm)を形成した。
 次に高分子化合物2のキシレン溶液をスピンコートにより正孔輸送層上に塗布し、発光層(膜厚約100nm)を形成した。
 次に、酸化亜鉛ナノ粒子(粒径20~30nm)の45重量%イソプロパノール分散液(HTD−711Z、テイカ社製)1重量部と、炭酸セシウムを1重量%溶解させたメタノール5重量部とを混合し、塗布液を調製した。この塗布液を、スピンコートにより発光層上に290nmの膜厚で塗布し、乾燥させることにより水溶媒に不溶である機能層を形成した。
 次に、水溶媒のワイヤー状導電体分散液(ClearOhm(登録商標)Ink−N AQ:Cambrios Technologies Corporation社製)をスピンコーターによって塗布し、乾燥させることで、膜厚120nmの導電性ワイヤー層を得た。不要な部位に形成された導電性ワイヤー層を、水をつけた綿棒で剥離し、陰極に相当する所定のパターンの導電性ワイヤー層を得た。その後、UV硬化性封止剤で封止することで有機EL素子を得た。
 得られた有機EL素子に電圧を段階的に印加し、各電圧における電流密度とEL発光の輝度を測定した。測定結果から電流効率値を得た。得られた素子の電流効率の最大値は、1.4cd/Aであった。EL発光はCIE色度座標が(0.15,0.22)の青色発光であった。
 実施例5
(有機EL素子の作製、評価)
 陽極に相当するインジウムスズ酸化物(ITO)膜(膜厚:150nm、スパッタ法により形成)が形成されたガラス基板上に、正孔注入層溶液(エイチ・シー・スタルク社製、商品名:CLEVIOS AI4083)をスピンコートにより塗布成膜し、大気中ホットプレート上で、200℃で10分間乾燥して正孔注入層(膜厚:50nm)を形成した。
 次に、高分子化合物1のキシレン溶液を孔径0.2μmのテフロン(登録商標)フィルターで濾過し、この溶液を、スピンコートにより正孔注入層上に塗布成膜し、グローブボックス中の窒素雰囲気下で、180℃で15分間ベークして、正孔輸送層(膜厚:20nm)を形成した。
 次に高分子化合物2のキシレン溶液をスピンコートにより正孔輸送層上に塗布し、発光層(膜厚約100nm)を形成した。
 次に、酸化亜鉛ナノ粒子(粒径20~30nm)の45重量%イソプロパノール分散液(HTD−711Z、テイカ社製)1重量部と、ナトリウムtert−ブトキシドを1重量%溶解させたイソプロパノール5重量部とを混合し、塗布液を調製した。この塗布液を、スピンコートにより発光層上に330nmの膜厚で塗布し、乾燥させることにより水溶媒に不溶である機能層を形成した。
 次に、水溶媒のワイヤー状導電体分散液(ClearOhm(登録商標)Ink−N AQ:Cambrios Technologies Corporation社製)をスピンコーターによって塗布し、乾燥させることで、膜厚120nmの導電性ワイヤー層を得た。不要な部位に形成された導電性ワイヤー層を、水をつけた綿棒で剥離し、陰極に相当する所定のパターンの導電性ワイヤー層を得た。その後、UV硬化性封止剤で封止することで有機EL素子を得た。
 得られた有機EL素子に電圧を段階的に印加し、各電圧における電流密度とEL発光の輝度を測定した。測定結果から電流効率値を得た。得られた素子の電流効率の最大値は、1.9cd/Aであった。EL発光はCIE色度座標が(0.15,0.22)の青色発光であった。
 実施例6
(有機EL素子の作製、評価)
 陽極に相当するインジウムスズ酸化物(ITO)膜(膜厚:150nm、スパッタ法により形成)が形成されたガラス基板上に、正孔注入層溶液(エイチ・シー・スタルク社製、商品名:CLEVIOS AI4083)をスピンコートにより塗布成膜し、大気中ホットプレート上で、200℃で10分間乾燥して正孔注入層(膜厚:50nm)を形成した。
 次に、高分子化合物1のキシレン溶液を孔径0.2μmのテフロン(登録商標)フィルターで濾過し、この溶液を、スピンコートにより正孔注入層上に塗布成膜し、グローブボックス中の窒素雰囲気下で、180℃で15分間ベークして、正孔輸送層(膜厚:20nm)を形成した。
 次に高分子化合物2のキシレン溶液をスピンコートにより正孔輸送層上に塗布し、発光層(膜厚約100nm)を形成した。
 次に、酸化亜鉛ナノ粒子(粒径20~30nm)の45重量%イソプロパノール分散液(HTD−711Z、テイカ社製)1重量部と、ナトリウムアセチルアセトナトを1重量%溶解させたイソプロパノール5重量部とを混合し、塗布液を調製した。この塗布液を、スピンコートにより発光層上に210nmの膜厚で塗布し、乾燥させることにより水溶媒に不溶である機能層を形成した。
 次に、水溶媒のワイヤー状導電体分散液(ClearOhm(登録商標)Ink−N AQ:Cambrios Technologies Corporation社製)をスピンコーターによって塗布し、乾燥させることで、膜厚120nmの導電性ワイヤー層を得た。不要な部位に形成された導電性ワイヤー層を、水をつけた綿棒で剥離し、陰極に相当する所定のパターンの導電性ワイヤー層を得た。その後、UV硬化性封止剤で封止することで有機EL素子を得た。
 得られた有機EL素子に電圧を段階的に印加し、各電圧における電流密度とEL発光の輝度を測定した。測定結果から電流効率値を得た。得られた素子の電流効率の最大値は、3.08cd/Aであった。EL発光はCIE色度座標が(0.15,0.23)の青色発光であった。
 実施例7
(有機EL素子の作製、評価)
 陽極に相当するインジウムスズ酸化物(ITO)膜(膜厚:150nm、スパッタ法により形成)が形成されたガラス基板上に、正孔注入層溶液(エイチ・シー・スタルク社製、商品名:CLEVIOS AI4083)をスピンコートにより塗布成膜し、大気中ホットプレート上で、200℃で10分間乾燥して正孔注入層(膜厚:50nm)を形成した。
 次に、高分子化合物1のキシレン溶液を孔径0.2μmのテフロン(登録商標)フィルターで濾過し、この溶液を、スピンコートにより正孔注入層上に塗布成膜し、グローブボックス中の窒素雰囲気下で、180℃で15分間ベークして、正孔輸送層(膜厚:20nm)を形成した。
 次に高分子化合物2のキシレン溶液をスピンコートにより正孔輸送層上に塗布し、発光層(膜厚約100nm)を形成した。
 次に、酸化亜鉛ナノ粒子(粒径20~30nm)の45重量%イソプロパノール分散液(HTD−711Z、テイカ社製)1重量部と、酢酸セシウムを1重量%溶解させたイソプロパノール5重量部とを混合し、塗布液を調製した。この塗布液を、スピンコートにより発光層上に210nmの膜厚で塗布し、乾燥させることにより水溶媒に不溶である機能層を形成した。
 次に、水溶媒のワイヤー状導電体分散液(ClearOhm(登録商標)Ink−N AQ:Cambrios Technologies Corporation社製)をスピンコーターによって塗布し、乾燥させることで、膜厚120nmの導電性ワイヤー層を得た。不要な部位に形成された導
電性ワイヤー層を、水をつけた綿棒で剥離し、陰極に相当する所定のパターンの導電性ワイヤー層を得た。その後、UV硬化性封止剤で封止することで有機EL素子を得た。
 得られた有機EL素子に電圧を段階的に印加し、各電圧における電流密度とEL発光の輝度を測定した。測定結果から電流効率値を得た。得られた素子の電流効率の最大値は、1.91cd/Aであった。EL発光はCIE色度座標が(0.15,0.22)の青色発光であった。
 実施例8
(有機EL素子の作製、評価)
 陽極に相当するインジウムスズ酸化物(ITO)膜(膜厚:150nm、スパッタ法により形成)が形成されたガラス基板上に、正孔注入層溶液(エイチ・シー・スタルク社製、商品名:CLEVIOS AI4083)をスピンコートにより塗布成膜し、大気中ホットプレート上で、200℃で10分間乾燥して正孔注入層(膜厚:50nm)を形成した。
 次に、高分子化合物1のキシレン溶液を孔径0.2μmのテフロン(登録商標)フィルターで濾過し、この溶液を、スピンコートにより正孔注入層上に塗布成膜し、グローブボックス中の窒素雰囲気下で、180℃で15分間ベークして、正孔輸送層(膜厚:20nm)を形成した。
 次に高分子化合物2のキシレン溶液をスピンコートにより正孔輸送層上に塗布し、発光層(膜厚約100nm)を形成した。
 次に、酸化亜鉛ナノ粒子(粒径20~30nm)の45重量%イソプロパノール分散液(HTD−711Z、テイカ社製)1重量部と、酢酸セシウムを5重量%溶解させたイソプロパノール5重量部とを混合し、塗布液を調製した。この塗布液を、スピンコートにより発光層上に210nmの膜厚で塗布し、乾燥させることにより水溶媒に不溶である機能層を形成した。
 次に、水溶媒のワイヤー状導電体分散液(ClearOhm(登録商標)Ink−N AQ:Cambrios Technologies Corporation社製)をスピンコーターによって塗布し、乾燥させることで、膜厚120nmの導電性ワイヤー層を得た。不要な部位に形成された導電性ワイヤー層を、水をつけた綿棒で剥離し、陰極に相当する所定のパターンの導電性ワイヤー層を得た。その後、UV硬化性封止剤で封止することで有機EL素子を得た。
 得られた有機EL素子に電圧を段階的に印加し、各電圧における電流密度とEL発光の輝度を測定した。測定結果から電流効率値を得た。得られた素子の電流効率の最大値は、2.17cd/Aであった。EL発光はCIE色度座標が(0.15,0.22)の青色発光であった。
 実施例9
(有機EL素子の作製、評価)
 陽極に相当するインジウムスズ酸化物(ITO)膜(膜厚:150nm、スパッタ法により形成)が形成されたガラス基板上に、正孔注入層溶液(エイチ・シー・スタルク社製、商品名:CLEVIOS AI4083)をスピンコートにより塗布成膜し、大気中ホットプレート上で、200℃で10分間乾燥して正孔注入層(膜厚:50nm)を形成した。
 次に、高分子化合物1のキシレン溶液を孔径0.2μmのテフロン(登録商標)フィルターで濾過し、この溶液を、スピンコートにより正孔注入層上に塗布成膜し、グローブボックス中の窒素雰囲気下で、180℃で15分間ベークして、正孔輸送層(膜厚:20nm)を形成した。
 次に高分子化合物2のキシレン溶液をスピンコートにより正孔輸送層上に塗布し、発光層(膜厚約100nm)を形成した。
 次に、酸化亜鉛ナノ粒子(粒径20~30nm)の45重量%イソプロパノール分散液(HTD−711Z、テイカ社製)1重量部と、水酸化セシウムを1重量%溶解させたイソプロパノール5重量部とを混合し、塗布液を調製した。この塗布液を、スピンコートにより発光層上に210nmの膜厚で塗布し、乾燥させることにより水溶媒に不溶である機能層を形成した。
 次に、水溶媒のワイヤー状導電体分散液(ClearOhm(登録商標)Ink−N AQ:Cambrios Technologies Corporation社製)をスピンコーターによって塗布し、乾燥させることで、膜厚120nmの導電性ワイヤー層を得た。不要な部位に形成された導電性ワイヤー層を、水をつけた綿棒で剥離し、陰極に相当する所定のパターンの導電性ワイヤー層を得た。その後、UV硬化性封止剤で封止することで有機EL素子を得た。
 得られた有機EL素子に電圧を段階的に印加し、各電圧における電流密度とEL発光の輝度を測定した。測定結果から電流効率値を得た。得られた素子の電流効率の最大値は、2.37cd/Aであった。EL発光はCIE色度座標が(0.15,0.21)の青色発光であった。
 比較例1
(有機EL素子の作製、評価)
 陽極に相当するインジウムスズ酸化物(ITO)膜(膜厚:150nm、スパッタ法により形成)が形成されたガラス基板上に、正孔注入層溶液(エイチ・シー・スタルク社製、商品名:CLEVIOS AI4083)をスピンコートにより塗布成膜し、大気中ホットプレート上で、200℃で10分間乾燥して正孔注入層(膜厚:50nm)を形成した。
 次に、高分子化合物1のキシレン溶液を孔径0.2μmのテフロン(登録商標)フィルターで濾過し、この溶液を、スピンコートにより正孔注入層上に塗布成膜し、グローブボックス中の窒素雰囲気下で、180℃で15分間ベークして、正孔輸送層(膜厚:20nm)を形成した。
 次に緑色発光有機材料(サメイション製、Lumation GP1300)の1重量%キシレン溶液をスピンコートにより正孔輸送層上に塗布し、発光層(膜厚約100nm)を形成した。
 次に、水溶媒のワイヤー状導電体分散液(ClearOhm(登録商標) Ink−N AQ:Cambrios Technologies Corporation社製)をスピンコーターによって塗布し、乾燥させることで、膜厚120nmの導電性ワイヤー層を得た。不要な部位に形成された導電性ワイヤー層を、水をつけた綿棒で剥離し、陰極に相当する所定のパターンの導電性ワイヤー層を得た。その後、UV硬化性封止剤で封止することで有機EL素子を得た。
 得られた有機EL素子に電圧を段階的に印加し、各電圧における電流密度とEL発光の輝度を測定した。測定結果から電流効率値を得た。得られた素子の電流効率の最大値は、0.33cd/Aであった。EL発光はCIE色度座標が(0.40,0.58)の緑色発光であった。
 比較例2
(有機EL素子の作製、評価)
 比較例1の水溶媒のワイヤー状導電体分散液の代わりに、低温焼結性銀インク(バンドー化学製フローメタルSW−1020。粒径20~40nmの銀ナノ粒子を40重量%含む水溶媒の銀ナノ粒子分散液)をスピンコートにより発光層上に塗布したが、発光層表面での低温焼結製銀インクの濡れ性が悪く、はじいてしまい、陰極の塗布膜を得ることができなかった。
Examples will be shown below for illustrating the present invention in more detail, but the present invention is not limited to these examples.
-Method for measuring molecular weight-
In the synthesis examples, the number average molecular weight (Mn) and the weight average molecular weight (Mw) were determined in terms of polystyrene by gel permeation chromatography (GPC). Specifically, using a column in which three TSKgel SuperHM-H (manufactured by Tosoh) are connected in series by GPC (manufactured by Tosoh, product name: HLC-8220GPC), tetrahydrofuran is used as a developing solvent at 0.5 mL / min. Flowed at a flow rate and measured at 40 ° C. A differential refractive index detector was used as the detector.
<Synthesis Example 1> (Synthesis of Polymer Compound 1)
In a 5 L separable flask, triscaprylylmethylammonium chloride (Tricaprylmethylmethylammonium chloride, trade name: Aliquat 336 “registered trademark”, manufactured by Aldrich) 40.18 g, the following formula:
Figure JPOXMLDOC01-appb-I000004
Compound E 234.06g represented by the following formula:
Figure JPOXMLDOC01-appb-I000005
172.06 g of the compound F represented by the formula:
Figure JPOXMLDOC01-appb-I000006
28.5528 g of the compound G represented by the formula (1) was taken, and the gas in the flask was replaced with nitrogen. Argon bubbling 2620 g of toluene was added and argon bubbling was continued for 30 minutes with stirring. 99.1 mg of palladium acetate and 937.0 mg of tris (o-tolyl) phosphine were added, washed with 158 g of toluene, and heated to 95 ° C. After dropwise addition of 855 g of a 17.5 wt% aqueous sodium carbonate solution, the bath temperature was raised to 110 ° C. and stirred for 9.5 hours, and then 5.39 g of phenylboric acid was dissolved in 96 ml of toluene and stirred for 14 hours. 200 ml of toluene was added, the reaction solution was separated, and the organic phase was washed twice with 850 ml of 3% by weight acetic acid aqueous solution. Further, 850 ml of water and 19.89 g of sodium N, N-diethyldithiocarbamate were added and stirred for 4 hours. did. After separation, the solution was passed through a silica gel-alumina column and washed with toluene. When the obtained toluene solution was dropped into 50 L of methanol, precipitation occurred. The resulting precipitate was washed with methanol. After drying under reduced pressure, the product was dissolved in 11 L of toluene, and the resulting toluene solution was dropped into 50 L of methanol, resulting in precipitation.
The obtained precipitate was filtered and dried under reduced pressure to obtain 278.39 g of the polymer compound 1. The number average molecular weight Mn in terms of polystyrene of the polymer compound 1 was 7.7 × 10 4 , and the weight average molecular weight Mw in terms of polystyrene was 3.8 × 10 5 .
<Synthesis Example 2> (Synthesis of Polymer Compound 2)
In a 500 ml four-necked flask, 1.72 g of triscaprylylmethyl ammonium chloride (Triscaprylmethylmethylammonium chloride, trade name: Aliquat 336 “registered trademark”, manufactured by Aldrich), the following formula:
Figure JPOXMLDOC01-appb-I000007
6.2171 g of the compound A represented by the following formula:
Figure JPOXMLDOC01-appb-I000008
Compound B 0.5085 g represented by the following formula:
Figure JPOXMLDOC01-appb-I000009
Compound C 6.2225g represented by the following formula:
Figure JPOXMLDOC01-appb-I000010
0.5487 g of the compound D represented by the above was taken, and the gas in the flask was replaced with nitrogen. Toluene (100 ml) was added, dichlorobis (triphenylphosphine) palladium (II) (7.6 mg) and sodium carbonate aqueous solution (24 ml) were added, and the mixture was stirred under reflux for 3 hours. Thereafter, 0.40 g of phenylboric acid was added and stirred overnight. Thereafter, an aqueous sodium N, N-diethyldithiocarbamate solution was added, and the mixture was further stirred for 3 hours under reflux. The obtained reaction solution was separated, and the organic phase was washed with an aqueous acetic acid solution and water, and then dropped into methanol, resulting in precipitation. The obtained precipitate was filtered, dried under reduced pressure, dissolved in toluene, passed through a silica gel-alumina column, and washed with toluene. When the obtained toluene solution was dropped into methanol, precipitation occurred. The obtained precipitate was filtered, dried under reduced pressure, dissolved in toluene, and dropped into methanol, resulting in precipitation. The obtained precipitate was filtered and dried under reduced pressure to obtain 7.72 g of polymer compound 2 which is a conjugated polymer compound. The number average molecular weight Mn in terms of polystyrene of the polymer compound 2 was 1.2 × 10 5 , and the weight average molecular weight Mw in terms of polystyrene was 2.9 × 10 5 .
Example 1
(Production and evaluation of organic EL elements)
On a glass substrate on which an indium tin oxide (ITO) film corresponding to the anode (film thickness: 150 nm, formed by sputtering) is formed, a hole injection layer solution (trade name: CLEVIOS, manufactured by HC Starck Co., Ltd.) AI4083) was applied by spin coating to form a hole injection layer (film thickness: 50 nm) by drying at 200 ° C. for 10 minutes on an air hot plate.
Next, the xylene solution of polymer compound 1 was filtered through a Teflon (registered trademark) filter having a pore diameter of 0.2 μm, and this solution was applied onto the hole injection layer by spin coating to form a nitrogen atmosphere in the glove box. Below, it baked at 180 degreeC for 15 minute (s), and the positive hole transport layer (film thickness: 20 nm) was formed.
Next, a 1 wt% xylene solution of a green light emitting organic material (Lumation GP1300, manufactured by Summation) was applied onto the hole transport layer by spin coating to form a light emitting layer (film thickness: about 100 nm).
Next, a 45 wt% isopropanol dispersion (HTD-711Z, manufactured by Teika) of zinc oxide nanoparticles (particle size 20-30 nm) is diluted with 5 parts by weight of isopropanol of the dispersion to prepare a coating solution. did. This coating solution was applied onto the light emitting layer with a film thickness of 220 nm by spin coating, and dried to form a functional layer insoluble in an aqueous solvent.
Next, a conductive wire layer having a thickness of 120 nm is formed by applying a wire-like conductor dispersion liquid (ClearOhm (registered trademark) Ink-N AQ: manufactured by Cambrios Technologies Corporation) in an aqueous solvent with a spin coater and drying. Obtained. The conductive wire layer formed in an unnecessary part was peeled off with a cotton swab soaked with water to obtain a conductive wire layer having a predetermined pattern corresponding to the cathode. Then, the organic EL element was obtained by sealing with UV curable sealing agent.
A voltage was applied stepwise to the obtained organic EL element, and the current density and the luminance of EL emission at each voltage were measured. The current efficiency value was obtained from the measurement result. The maximum value of current efficiency of the obtained device was 5.85 cd / A. The EL emission was green emission with CIE chromaticity coordinates of (0.40, 0.58).
Example 2
(Production and evaluation of organic EL elements)
Instead of the wire-like conductor dispersion of the aqueous solvent of Example 1, a low-temperature sinterable silver ink (Flow Metal SW-1020 manufactured by Bando Chemical Co., Ltd.) A silver nanoparticle dispersion) was applied onto the functional layer by spin coating, and sintered at 130 ° C. for 30 minutes in a nitrogen atmosphere to form a cathode having a thickness of 700 nm. Then, the organic EL element was obtained by sealing with UV curable sealing agent.
A voltage was applied stepwise to the obtained organic EL element, and the current density and the luminance of EL emission at each voltage were measured. The current efficiency value was obtained from the measurement result. The maximum value of current efficiency of the obtained element was 0.49 cd / A. The EL emission was green emission with CIE chromaticity coordinates of (0.38, 0.59).
Example 3
(Production and evaluation of organic EL elements)
On a glass substrate on which an indium tin oxide (ITO) film corresponding to the anode (film thickness: 150 nm, formed by sputtering) is formed, a hole injection layer solution (trade name: CLEVIOS, manufactured by HC Starck Co., Ltd.) AI4083) was applied by spin coating to form a hole injection layer (film thickness: 50 nm) by drying at 200 ° C. for 10 minutes on an air hot plate.
Next, the xylene solution of polymer compound 1 was filtered through a Teflon (registered trademark) filter having a pore diameter of 0.2 μm, and this solution was applied onto the hole injection layer by spin coating to form a nitrogen atmosphere in the glove box. Below, it baked at 180 degreeC for 15 minute (s), and the positive hole transport layer (film thickness: 20 nm) was formed.
Next, a xylene solution of the polymer compound 2 was applied onto the hole transport layer by spin coating to form a light emitting layer (film thickness of about 100 nm).
Next, 1 part by weight of 45% by weight isopropanol dispersion (HTD-711Z, manufactured by Teika) of zinc oxide nanoparticles (particle size 20 to 30 nm) and 5% by weight of isopropanol in which 1% by weight of calcium bisacetylacetonate is dissolved. The coating liquid was prepared. This coating solution was applied onto the light emitting layer with a film thickness of 210 nm by spin coating, and dried to form a functional layer insoluble in an aqueous solvent.
Next, a conductive wire layer having a thickness of 120 nm is formed by applying a wire-like conductor dispersion liquid (ClearOhm (registered trademark) Ink-N AQ: manufactured by Cambrios Technologies Corporation) in an aqueous solvent with a spin coater and drying. Obtained. The conductive wire layer formed in an unnecessary part was peeled off with a cotton swab soaked with water to obtain a conductive wire layer having a predetermined pattern corresponding to the cathode. Then, the organic EL element was obtained by sealing with UV curable sealing agent.
A voltage was applied stepwise to the obtained organic EL element, and the current density and the luminance of EL emission at each voltage were measured. The current efficiency value was obtained from the measurement result. The maximum value of current efficiency of the obtained element was 0.47 cd / A. The EL emission was blue emission with CIE chromaticity coordinates of (0.15, 0.23).
Example 4
(Production and evaluation of organic EL elements)
On a glass substrate on which an indium tin oxide (ITO) film corresponding to the anode (film thickness: 150 nm, formed by sputtering) is formed, a hole injection layer solution (trade name: CLEVIOS, manufactured by HC Starck Co., Ltd.) AI4083) was applied by spin coating to form a hole injection layer (film thickness: 50 nm) by drying at 200 ° C. for 10 minutes on an air hot plate.
Next, the xylene solution of polymer compound 1 was filtered through a Teflon (registered trademark) filter having a pore diameter of 0.2 μm, and this solution was applied onto the hole injection layer by spin coating to form a nitrogen atmosphere in the glove box. Below, it baked at 180 degreeC for 15 minute (s), and the positive hole transport layer (film thickness: 20 nm) was formed.
Next, a xylene solution of the polymer compound 2 was applied onto the hole transport layer by spin coating to form a light emitting layer (film thickness of about 100 nm).
Next, 1 part by weight of 45% by weight isopropanol dispersion (HTD-711Z, manufactured by Teica) of zinc oxide nanoparticles (particle size 20-30 nm) and 5 parts by weight of methanol in which 1% by weight of cesium carbonate was dissolved Mixing was performed to prepare a coating solution. This coating solution was applied to the light emitting layer with a thickness of 290 nm by spin coating and dried to form a functional layer insoluble in an aqueous solvent.
Next, a conductive wire layer having a thickness of 120 nm is formed by applying a wire-like conductor dispersion liquid (ClearOhm (registered trademark) Ink-N AQ: manufactured by Cambrios Technologies Corporation) in an aqueous solvent with a spin coater and drying. Obtained. The conductive wire layer formed in an unnecessary part was peeled off with a cotton swab soaked with water to obtain a conductive wire layer having a predetermined pattern corresponding to the cathode. Then, the organic EL element was obtained by sealing with UV curable sealing agent.
A voltage was applied stepwise to the obtained organic EL element, and the current density and the luminance of EL emission at each voltage were measured. The current efficiency value was obtained from the measurement result. The maximum value of current efficiency of the obtained element was 1.4 cd / A. The EL emission was blue emission with CIE chromaticity coordinates of (0.15, 0.22).
Example 5
(Production and evaluation of organic EL elements)
On a glass substrate on which an indium tin oxide (ITO) film corresponding to the anode (film thickness: 150 nm, formed by sputtering) is formed, a hole injection layer solution (trade name: CLEVIOS, manufactured by HC Starck Co., Ltd.) AI4083) was applied by spin coating to form a hole injection layer (film thickness: 50 nm) by drying at 200 ° C. for 10 minutes on an air hot plate.
Next, the xylene solution of polymer compound 1 was filtered through a Teflon (registered trademark) filter having a pore diameter of 0.2 μm, and this solution was applied onto the hole injection layer by spin coating to form a nitrogen atmosphere in the glove box. Below, it baked at 180 degreeC for 15 minute (s), and the positive hole transport layer (film thickness: 20 nm) was formed.
Next, a xylene solution of the polymer compound 2 was applied onto the hole transport layer by spin coating to form a light emitting layer (film thickness of about 100 nm).
Next, 1 part by weight of 45% by weight isopropanol dispersion (HTD-711Z, manufactured by Teica) of zinc oxide nanoparticles (particle size 20-30 nm) and 5 parts by weight of isopropanol in which 1% by weight of sodium tert-butoxide is dissolved. Were mixed to prepare a coating solution. This coating solution was applied on the light emitting layer with a film thickness of 330 nm by spin coating and dried to form a functional layer insoluble in an aqueous solvent.
Next, a conductive wire layer having a thickness of 120 nm is formed by applying a wire-like conductor dispersion liquid (ClearOhm (registered trademark) Ink-N AQ: manufactured by Cambrios Technologies Corporation) in an aqueous solvent with a spin coater and drying. Obtained. The conductive wire layer formed in an unnecessary part was peeled off with a cotton swab soaked with water to obtain a conductive wire layer having a predetermined pattern corresponding to the cathode. Then, the organic EL element was obtained by sealing with UV curable sealing agent.
A voltage was applied stepwise to the obtained organic EL element, and the current density and the luminance of EL emission at each voltage were measured. The current efficiency value was obtained from the measurement result. The maximum value of current efficiency of the obtained device was 1.9 cd / A. The EL emission was blue emission with CIE chromaticity coordinates of (0.15, 0.22).
Example 6
(Production and evaluation of organic EL elements)
On a glass substrate on which an indium tin oxide (ITO) film corresponding to the anode (film thickness: 150 nm, formed by sputtering) is formed, a hole injection layer solution (trade name: CLEVIOS, manufactured by HC Starck Co., Ltd.) AI4083) was applied by spin coating to form a hole injection layer (film thickness: 50 nm) by drying at 200 ° C. for 10 minutes on an air hot plate.
Next, the xylene solution of polymer compound 1 was filtered through a Teflon (registered trademark) filter having a pore diameter of 0.2 μm, and this solution was applied onto the hole injection layer by spin coating to form a nitrogen atmosphere in the glove box. Below, it baked at 180 degreeC for 15 minute (s), and the positive hole transport layer (film thickness: 20 nm) was formed.
Next, a xylene solution of the polymer compound 2 was applied onto the hole transport layer by spin coating to form a light emitting layer (film thickness of about 100 nm).
Next, 1 part by weight of a 45% by weight isopropanol dispersion (HTD-711Z, manufactured by Teika) of zinc oxide nanoparticles (particle size: 20 to 30 nm) and 5 parts by weight of isopropanol in which 1% by weight of sodium acetylacetonate is dissolved Were mixed to prepare a coating solution. This coating solution was applied onto the light emitting layer with a film thickness of 210 nm by spin coating, and dried to form a functional layer insoluble in an aqueous solvent.
Next, a conductive wire layer having a thickness of 120 nm is formed by applying a wire-like conductor dispersion liquid (ClearOhm (registered trademark) Ink-N AQ: manufactured by Cambrios Technologies Corporation) in an aqueous solvent with a spin coater and drying. Obtained. The conductive wire layer formed in an unnecessary part was peeled off with a cotton swab soaked with water to obtain a conductive wire layer having a predetermined pattern corresponding to the cathode. Then, the organic EL element was obtained by sealing with UV curable sealing agent.
A voltage was applied stepwise to the obtained organic EL element, and the current density and the luminance of EL emission at each voltage were measured. The current efficiency value was obtained from the measurement result. The maximum value of current efficiency of the obtained device was 3.08 cd / A. The EL emission was blue emission with CIE chromaticity coordinates of (0.15, 0.23).
Example 7
(Production and evaluation of organic EL elements)
On a glass substrate on which an indium tin oxide (ITO) film corresponding to the anode (film thickness: 150 nm, formed by sputtering) is formed, a hole injection layer solution (trade name: CLEVIOS, manufactured by HC Starck Co., Ltd.) AI4083) was applied by spin coating to form a hole injection layer (film thickness: 50 nm) by drying at 200 ° C. for 10 minutes on an air hot plate.
Next, the xylene solution of polymer compound 1 was filtered through a Teflon (registered trademark) filter having a pore diameter of 0.2 μm, and this solution was applied onto the hole injection layer by spin coating to form a nitrogen atmosphere in the glove box. Below, it baked at 180 degreeC for 15 minute (s), and the positive hole transport layer (film thickness: 20 nm) was formed.
Next, a xylene solution of the polymer compound 2 was applied onto the hole transport layer by spin coating to form a light emitting layer (film thickness of about 100 nm).
Next, 1 part by weight of 45% by weight isopropanol dispersion (HTD-711Z, manufactured by Teica) of zinc oxide nanoparticles (particle size 20-30 nm) and 5 parts by weight of isopropanol in which 1% by weight of cesium acetate was dissolved Mixing was performed to prepare a coating solution. This coating solution was applied onto the light emitting layer with a film thickness of 210 nm by spin coating, and dried to form a functional layer insoluble in an aqueous solvent.
Next, a conductive wire layer having a thickness of 120 nm is formed by applying a wire-like conductor dispersion liquid (ClearOhm (registered trademark) Ink-N AQ: manufactured by Cambrios Technologies Corporation) in an aqueous solvent with a spin coater and drying. Obtained. The conductive wire layer formed in an unnecessary part was peeled off with a cotton swab soaked with water to obtain a conductive wire layer having a predetermined pattern corresponding to the cathode. Then, the organic EL element was obtained by sealing with UV curable sealing agent.
A voltage was applied stepwise to the obtained organic EL element, and the current density and the luminance of EL emission at each voltage were measured. The current efficiency value was obtained from the measurement result. The maximum value of current efficiency of the obtained device was 1.91 cd / A. The EL emission was blue emission with CIE chromaticity coordinates of (0.15, 0.22).
Example 8
(Production and evaluation of organic EL elements)
On a glass substrate on which an indium tin oxide (ITO) film corresponding to the anode (film thickness: 150 nm, formed by sputtering) is formed, a hole injection layer solution (trade name: CLEVIOS, manufactured by HC Starck Co., Ltd.) AI4083) was applied by spin coating to form a hole injection layer (film thickness: 50 nm) by drying at 200 ° C. for 10 minutes on an air hot plate.
Next, the xylene solution of polymer compound 1 was filtered through a Teflon (registered trademark) filter having a pore diameter of 0.2 μm, and this solution was applied onto the hole injection layer by spin coating to form a nitrogen atmosphere in the glove box. Below, it baked at 180 degreeC for 15 minute (s), and the positive hole transport layer (film thickness: 20 nm) was formed.
Next, a xylene solution of the polymer compound 2 was applied onto the hole transport layer by spin coating to form a light emitting layer (film thickness of about 100 nm).
Next, 1 part by weight of 45% by weight isopropanol dispersion (HTD-711Z, manufactured by Teica) of zinc oxide nanoparticles (particle size 20-30 nm) and 5 parts by weight of isopropanol in which 5% by weight of cesium acetate were dissolved Mixing was performed to prepare a coating solution. This coating solution was applied onto the light emitting layer with a film thickness of 210 nm by spin coating, and dried to form a functional layer insoluble in an aqueous solvent.
Next, a conductive wire layer having a thickness of 120 nm is formed by applying a wire-like conductor dispersion liquid (ClearOhm (registered trademark) Ink-N AQ: manufactured by Cambrios Technologies Corporation) in an aqueous solvent with a spin coater and drying. Obtained. The conductive wire layer formed in an unnecessary part was peeled off with a cotton swab soaked with water to obtain a conductive wire layer having a predetermined pattern corresponding to the cathode. Then, the organic EL element was obtained by sealing with UV curable sealing agent.
A voltage was applied stepwise to the obtained organic EL element, and the current density and the luminance of EL emission at each voltage were measured. The current efficiency value was obtained from the measurement result. The maximum value of current efficiency of the obtained device was 2.17 cd / A. The EL emission was blue emission with CIE chromaticity coordinates of (0.15, 0.22).
Example 9
(Production and evaluation of organic EL elements)
On a glass substrate on which an indium tin oxide (ITO) film corresponding to the anode (film thickness: 150 nm, formed by sputtering) is formed, a hole injection layer solution (trade name: CLEVIOS, manufactured by HC Starck Co., Ltd.) AI4083) was applied by spin coating to form a hole injection layer (film thickness: 50 nm) by drying at 200 ° C. for 10 minutes on an air hot plate.
Next, the xylene solution of polymer compound 1 was filtered through a Teflon (registered trademark) filter having a pore diameter of 0.2 μm, and this solution was applied onto the hole injection layer by spin coating to form a nitrogen atmosphere in the glove box. Below, it baked at 180 degreeC for 15 minute (s), and the positive hole transport layer (film thickness: 20 nm) was formed.
Next, a xylene solution of the polymer compound 2 was applied onto the hole transport layer by spin coating to form a light emitting layer (film thickness of about 100 nm).
Next, 1 part by weight of a 45% by weight isopropanol dispersion (HTD-711Z, manufactured by Teica) of zinc oxide nanoparticles (particle size 20 to 30 nm), 5 parts by weight of isopropanol in which 1% by weight of cesium hydroxide was dissolved, Were mixed to prepare a coating solution. This coating solution was applied onto the light emitting layer with a film thickness of 210 nm by spin coating, and dried to form a functional layer insoluble in an aqueous solvent.
Next, a conductive wire layer having a thickness of 120 nm is formed by applying a wire-like conductor dispersion liquid (ClearOhm (registered trademark) Ink-N AQ: manufactured by Cambrios Technologies Corporation) in an aqueous solvent with a spin coater and drying. Obtained. The conductive wire layer formed in an unnecessary part was peeled off with a cotton swab soaked with water to obtain a conductive wire layer having a predetermined pattern corresponding to the cathode. Then, the organic EL element was obtained by sealing with UV curable sealing agent.
A voltage was applied stepwise to the obtained organic EL element, and the current density and the luminance of EL emission at each voltage were measured. The current efficiency value was obtained from the measurement result. The maximum value of current efficiency of the obtained device was 2.37 cd / A. The EL emission was blue emission with a CIE chromaticity coordinate of (0.15, 0.21).
Comparative Example 1
(Production and evaluation of organic EL elements)
On a glass substrate on which an indium tin oxide (ITO) film corresponding to the anode (film thickness: 150 nm, formed by sputtering) is formed, a hole injection layer solution (trade name: CLEVIOS, manufactured by HC Starck Co., Ltd.) AI4083) was applied by spin coating to form a hole injection layer (film thickness: 50 nm) by drying at 200 ° C. for 10 minutes on an air hot plate.
Next, the xylene solution of polymer compound 1 was filtered through a Teflon (registered trademark) filter having a pore diameter of 0.2 μm, and this solution was applied onto the hole injection layer by spin coating to form a nitrogen atmosphere in the glove box. Below, it baked at 180 degreeC for 15 minute (s), and the positive hole transport layer (film thickness: 20 nm) was formed.
Next, a 1 wt% xylene solution of a green light emitting organic material (Lumation GP1300, manufactured by Summation) was applied onto the hole transport layer by spin coating to form a light emitting layer (film thickness: about 100 nm).
Next, a wire-like conductor dispersion liquid (ClearOhm (registered trademark) Ink-N AQ: manufactured by Cambridge Technologies Corporation) in an aqueous solvent is applied by a spin coater and dried to form a conductive wire layer having a thickness of 120 nm. Obtained. The conductive wire layer formed in an unnecessary part was peeled off with a cotton swab soaked with water to obtain a conductive wire layer having a predetermined pattern corresponding to the cathode. Then, the organic EL element was obtained by sealing with UV curable sealing agent.
A voltage was applied stepwise to the obtained organic EL element, and the current density and the luminance of EL emission at each voltage were measured. The current efficiency value was obtained from the measurement result. The maximum value of current efficiency of the obtained device was 0.33 cd / A. The EL emission was green emission with CIE chromaticity coordinates of (0.40, 0.58).
Comparative Example 2
(Production and evaluation of organic EL elements)
Instead of the wire-like conductor dispersion liquid of the aqueous solvent of Comparative Example 1, a low-temperature sinterable silver ink (Flow Metal SW-1020 manufactured by Bando Chemical Co., Ltd.) is used as an aqueous solvent containing 40% by weight of silver nanoparticles having a particle diameter of 20 to 40 nm. (Silver nanoparticle dispersion) was applied onto the light emitting layer by spin coating, but the wettability of the low-temperature sintered silver ink on the surface of the light emitting layer was poor and repelled, and a cathode coating film could not be obtained. .
 本発明の有機EL素子は、粒子状の電子輸送性材料を含む塗布液を塗布成膜することにより機能層を形成するため、この機能層上に陰極を形成するさいに、陰極形成用の塗布液に機能層が再び溶解することを防ぐことができる。 The organic EL device of the present invention forms a functional layer by coating a coating solution containing a particulate electron transporting material. Therefore, when forming a cathode on the functional layer, the coating for forming a cathode is used. It is possible to prevent the functional layer from being dissolved again in the liquid.

Claims (8)

  1. 陽極を形成し、発光層を形成し、粒子状の電子輸送性材料を含む塗布液を塗布成膜することによって機能層を形成し、さらに塗布法によって陰極を形成する有機エレクトロルミネッセンス素子の製造方法。 A method for producing an organic electroluminescent device, comprising forming an anode, forming a light emitting layer, forming a functional layer by coating a coating liquid containing a particulate electron transporting material, and further forming a cathode by a coating method .
  2. 前記粒子状の電子輸送性材料が、粒子状の酸化亜鉛である請求項1に記載の有機エレクトロルミネッセンス素子の製造方法。 The method for producing an organic electroluminescent element according to claim 1, wherein the particulate electron transporting material is particulate zinc oxide.
  3. 前記粒子状の電子輸送性材料を含む塗布液が、アルカリ金属の錯体、アルカリ金属の塩、アルカリ土類金属の錯体、およびアルカリ土類金属の塩からなる群から選ばれた少なくとも1種を含有する請求項1または2に記載の有機エレクトロルミネッセンス素子の製造方法。 The coating liquid containing the particulate electron transport material contains at least one selected from the group consisting of an alkali metal complex, an alkali metal salt, an alkaline earth metal complex, and an alkaline earth metal salt. The manufacturing method of the organic electroluminescent element of Claim 1 or 2.
  4. 前記陰極が、ポリチオフェン及び/又はポリチオフェンの誘導体を含む、請求項1~3のいずれかに記載の有機エレクトロルミネッセンス素子の製造方法。 4. The method for producing an organic electroluminescent element according to claim 1, wherein the cathode includes polythiophene and / or a polythiophene derivative.
  5. 前記陰極が、ポリアニリン及び/又はポリアニリンの誘導体を含む、請求項1~4のいずれかに記載の有機エレクトロルミネッセンス素子の製造方法。 5. The method for producing an organic electroluminescence element according to claim 1, wherein the cathode contains polyaniline and / or a polyaniline derivative.
  6. 前記陰極が、導電性物質のナノ粒子、導電性物質のナノワイヤ、または導電性物質のナノチューブを含む、請求項1~4のいずれかに記載の有機エレクトロルミネッセンス素子の製造方法。 5. The method of manufacturing an organic electroluminescence element according to claim 1, wherein the cathode includes a conductive substance nanoparticle, a conductive substance nanowire, or a conductive substance nanotube.
  7. 支持基板上の陽極上に、発光層、機能層、および陰極がこの順に積層された構成の有機エレクトロルミネッセンス素子であって、機能層が粒子状の電子輸送性材料を含む塗布液を塗布成膜することによって形成されてなる、有機エレクトロルミネッセンス素子。 An organic electroluminescence device having a structure in which a light emitting layer, a functional layer, and a cathode are laminated in this order on an anode on a support substrate, and the functional layer is formed by applying a coating liquid containing a particulate electron transporting material. An organic electroluminescence element formed by performing the above process.
  8. 反射型表示体と、当該反射型表示体上に配置される透過型表示体とを備える表示装置であって、
     前記反射型表示体は、所定の位置に応じて、第1の色と第2の色とを選択的に表示することが可能な反射型表示体層を有し、
     前記透過型表示体は、請求項1~6のいずれかに記載の方法によって作製される有機エレクトロルミネッセンス素子または請求項7記載の有機エレクトロルミネッセンス素子を、画素光源として有し、
     前記有機エレクトロルミネッセンス素子は、陽極および陰極が、光透過性を示す電極によって実現される、表示装置。
    A display device comprising a reflective display and a transmissive display disposed on the reflective display,
    The reflective display has a reflective display layer capable of selectively displaying the first color and the second color according to a predetermined position;
    The transmissive display has an organic electroluminescent element produced by the method according to any one of claims 1 to 6 or the organic electroluminescent element according to claim 7 as a pixel light source,
    The organic electroluminescence element is a display device in which an anode and a cathode are realized by electrodes exhibiting optical transparency.
PCT/JP2012/061628 2011-04-26 2012-04-25 Organic electroluminescence element and method for producing same WO2012147990A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011097975 2011-04-26
JP2011-097975 2011-04-26
JP2011-116733 2011-05-25
JP2011116733 2011-05-25
JP2011143892A JP5834539B2 (en) 2011-04-26 2011-06-29 Organic electroluminescence device and method for producing the same
JP2011-143892 2011-06-29

Publications (1)

Publication Number Publication Date
WO2012147990A1 true WO2012147990A1 (en) 2012-11-01

Family

ID=47072499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061628 WO2012147990A1 (en) 2011-04-26 2012-04-25 Organic electroluminescence element and method for producing same

Country Status (3)

Country Link
JP (1) JP5834539B2 (en)
TW (1) TW201251173A (en)
WO (1) WO2012147990A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077417A (en) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp Organic electroluminescent element and manufacturing method of the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6592429B2 (en) * 2013-05-27 2019-10-16 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Improved electron transfer composition for use in the electron injection layer of organic electronic devices
US20160126505A1 (en) * 2014-10-30 2016-05-05 Nano And Advanced Materials Institute Limited Solution Process Electron Transporting Layer for Polymer Light Emitting Diode
CN106775039B (en) * 2015-11-20 2024-02-02 京东方科技集团股份有限公司 Embedded touch screen, manufacturing method thereof and display device
KR101960525B1 (en) * 2016-03-22 2019-03-20 울산과학기술원 Method for manufacturing optoelectronic device
WO2020208671A1 (en) * 2019-04-08 2020-10-15 シャープ株式会社 Display device
US20230276648A1 (en) * 2019-10-24 2023-08-31 Sharp Kabushiki Kaisha Display device
TWI818191B (en) * 2020-08-18 2023-10-11 國立臺灣大學 Modified cellulose nanofiber-nanosilver wire conductive film and its manufacturing method and photovoltaic device containing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004302321A (en) * 2003-03-31 2004-10-28 Seiko Epson Corp Display apparatus, electronic equipment and display method
JP2007026978A (en) * 2005-07-20 2007-02-01 Konica Minolta Holdings Inc Organic electroluminescence element, display device, and lighting device
JP2009212238A (en) * 2008-03-03 2009-09-17 Kyushu Electric Power Co Inc Organic electric field light-emitting element and method of manufacturing the same
WO2010021374A1 (en) * 2008-08-22 2010-02-25 コニカミノルタホールディングス株式会社 Organic photoelectric conversion element, solar cell and optical sensor array
JP2010073678A (en) * 2008-08-22 2010-04-02 Sumitomo Chemical Co Ltd Organic electroluminescent element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5249075B2 (en) * 2009-02-13 2013-07-31 住友化学株式会社 Organic electroluminescence device
JP5410774B2 (en) * 2009-02-16 2014-02-05 住友化学株式会社 Organic electroluminescence device
JP5458728B2 (en) * 2009-07-29 2014-04-02 住友化学株式会社 Light emitting device
US20140008747A1 (en) * 2011-03-29 2014-01-09 Sumitomo Chemical Company, Limited Method of producing organic photoelectric conversion device
JP5682877B2 (en) * 2011-05-20 2015-03-11 国立大学法人山形大学 Organic electronic device and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004302321A (en) * 2003-03-31 2004-10-28 Seiko Epson Corp Display apparatus, electronic equipment and display method
JP2007026978A (en) * 2005-07-20 2007-02-01 Konica Minolta Holdings Inc Organic electroluminescence element, display device, and lighting device
JP2009212238A (en) * 2008-03-03 2009-09-17 Kyushu Electric Power Co Inc Organic electric field light-emitting element and method of manufacturing the same
WO2010021374A1 (en) * 2008-08-22 2010-02-25 コニカミノルタホールディングス株式会社 Organic photoelectric conversion element, solar cell and optical sensor array
JP2010073678A (en) * 2008-08-22 2010-04-02 Sumitomo Chemical Co Ltd Organic electroluminescent element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077417A (en) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp Organic electroluminescent element and manufacturing method of the same

Also Published As

Publication number Publication date
JP2013008935A (en) 2013-01-10
JP5834539B2 (en) 2015-12-24
TW201251173A (en) 2012-12-16

Similar Documents

Publication Publication Date Title
JP5834539B2 (en) Organic electroluminescence device and method for producing the same
JP5552433B2 (en) Highly efficient electroluminescent device and method for producing the same
JP2012023020A (en) Organic electroluminescent element, method for manufacturing the same, and light-emitting device
TWI536628B (en) Organic el element
JP6052825B2 (en) ORGANIC LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
JP4210093B2 (en) Organic electroluminescent image display device
JPWO2017056797A1 (en) Transparent organic electroluminescence device
US10444559B2 (en) Display unit and electronic apparatus
JP2010040512A (en) Organic electroluminescent device and its manufacturing method
WO2017056682A1 (en) Organic electroluminescence panel
WO2017056684A1 (en) Organic electroluminescence panel and production method therefor
CN105702872A (en) Uniform brightness display screen body
JP2005044799A (en) Organic electroluminescent device
TW200948185A (en) Organic electroluminescence element, manufacturing method of the same, planar light source, lumination device and display device
JP2010055864A (en) Organic electroluminescent device and its manufacturing method
JP2021007074A (en) Electronic device and manufacturing method thereof
JP4610792B2 (en) Organic EL device
JP2010073678A (en) Organic electroluminescent element
US10651410B2 (en) Organic light emitting device
WO2015151855A1 (en) Organic electroluminescent module and information appartus
JP6781606B2 (en) Manufacturing method of organic EL element
WO2017202082A1 (en) Organic light-emitting diode device and preparation method therefor, and array substrate and display apparatus
CN111446382B (en) Electroluminescent device, preparation method thereof and display device
JP2014191980A (en) Organic electroluminescent element
WO2012014740A1 (en) Organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12777667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12777667

Country of ref document: EP

Kind code of ref document: A1