WO2012147947A1 - Image decoding apparatus and image encoding apparatus - Google Patents

Image decoding apparatus and image encoding apparatus Download PDF

Info

Publication number
WO2012147947A1
WO2012147947A1 PCT/JP2012/061450 JP2012061450W WO2012147947A1 WO 2012147947 A1 WO2012147947 A1 WO 2012147947A1 JP 2012061450 W JP2012061450 W JP 2012061450W WO 2012147947 A1 WO2012147947 A1 WO 2012147947A1
Authority
WO
WIPO (PCT)
Prior art keywords
prediction
unit
parameter
image
prediction mode
Prior art date
Application number
PCT/JP2012/061450
Other languages
French (fr)
Japanese (ja)
Inventor
山本 智幸
知宏 猪飼
将伸 八杉
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012147947A1 publication Critical patent/WO2012147947A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/196Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Definitions

  • the present invention relates to an image decoding device that decodes encoded data, and an image encoding device that generates encoded data.
  • a moving image encoding device that generates encoded data by encoding the moving image, and decoding the encoded data
  • a video decoding device image decoding device that generates a decoded image
  • a specific moving picture encoding method for example, H.264 is used. H.264 / MPEG-4.
  • Non-patent Document 1 A method adopted in KTA software which is a codec for joint development in AVC (Non-patent Document 1) and VCEG (Video Coding Expert Group), a method adopted in TMuC (Test Model Under Consulation) software, and its successor codec And the method employed in WorkingWorkDraft 1 of High-Efficiency Video Coding (Non-Patent Document 2, hereinafter also referred to as HEVC WD1).
  • an image (picture) constituting a moving image includes a slice obtained by dividing the image, a coding unit obtained by dividing the slice (a macroblock or a coding unit (CU: Coding)). It is also managed by a hierarchical structure composed of blocks and partitions obtained by dividing an encoding unit, and is normally encoded block by block.
  • a predicted image is usually generated based on a locally decoded image obtained by encoding / decoding an input image, and the predicted image is subtracted from the input image (original image).
  • the prediction residual (which may be referred to as “difference image” or “residual image”) is encoded.
  • examples of the method for generating a predicted image include inter-screen prediction (inter prediction) and intra-screen prediction (intra prediction).
  • a predicted image in a frame being decoded is generated for each prediction unit by applying motion compensation using a motion vector with the decoded frame as a reference frame.
  • intra prediction a predicted image in a frame being decoded is generated for each prediction unit based on a decoded area of the frame being decoded.
  • H. H.264 / MPEG-4 As an example of intra prediction used in AVC, for each prediction unit (for example, partition), (1) one of the prediction modes is selected from a predetermined prediction mode group, and (2) the decoded area is selected.
  • Non-Patent Document 3 regarding the size of the prediction unit for generating the predicted image by intra prediction, in addition to the previous size (32 ⁇ 32, 16 ⁇ 16, 8 ⁇ 8, 4 ⁇ 4 pixels), SDIP It is described that a prediction unit having a size of 32 ⁇ 8, 16 ⁇ 4, 8 ⁇ 2, 16 ⁇ 1, 8 ⁇ 32, 4 ⁇ 16, 2 ⁇ 8, and 1 ⁇ 16 pixels called (Short Distance Intra Prediction) is used. Has been.
  • the prediction mode used for generating the predicted image needs to be recorded for generating a predicted image later.
  • the prediction mode of the target prediction unit may be estimated from the prediction mode of the prediction unit that touches the upper side of the target prediction unit, at least the prediction mode of the prediction unit that touches the upper side of the target prediction unit Should be recorded. That is, the prediction mode of the prediction unit for which the prediction image has been generated needs to be recorded until the prediction image of the prediction unit in contact with the lower side of the prediction unit is generated. In other words, it is necessary to record the prediction mode of the prediction unit for one line of at least one frame.
  • the present invention has been made in view of the above problems, and an object of the present invention is to realize an image decoding apparatus or the like that suppresses an increase in necessary data amount while improving prediction accuracy.
  • the video decoding device uses a region obtained by dividing a coding unit as a prediction unit, generates a prediction image for each prediction unit with reference to a prediction parameter,
  • a prediction parameter decoding unit that decodes a prediction parameter for each prediction unit from the encoded data, For at least a part of the prediction units, the prediction parameter related to the prediction unit is decoded when the upper adjacent prediction unit adjacent to the upper side of the prediction unit belongs to the tree block to which the prediction unit belongs.
  • the prediction unit Is characterized by a prediction parameter decoding means for estimating a prediction parameter of the decoded and a recording unit which is adjacent to the upper side of the unit.
  • an image decoding apparatus uses a region obtained by dividing a coding unit as a prediction unit, generates a prediction image for each prediction unit with reference to a prediction parameter
  • prediction parameter decoding means for decoding a prediction parameter for each prediction unit from the encoded data, comprising: A prediction parameter decoding unit that estimates a prediction parameter related to the prediction unit from a decoded prediction parameter related to a prediction unit included in an adjacent coding unit adjacent to the coding unit to which the prediction unit belongs, For at least some coding units, the prediction parameter of each prediction unit included in the coding unit That is, the number of reference prediction parameters that can be referred to by the prediction parameter decoding means in order to estimate a prediction parameter for each prediction unit included in an adjacent coding unit adjacent to the coding unit is included in the coding unit.
  • the prediction unit is set to be smaller than the number of prediction units adjacent
  • the number of reference prediction parameters referred to when the prediction parameter decoding unit estimates the prediction parameter of the prediction unit is included in the adjacent coding unit adjacent to the coding unit to which the prediction unit belongs. , Less than the number of prediction units adjacent to the coding unit. Therefore, the number of necessary reference parameters can be reduced as compared with the case where the prediction parameters are estimated by referring to the same number of reference parameters as the number of prediction units adjacent to the coding unit.
  • the amount of data necessary for the prediction parameter decoding means to estimate the prediction parameter of the prediction unit can be reduced, and the efficiency of the process of estimating the prediction parameter can be improved.
  • the number of necessary reference prediction parameters is smaller than when estimating prediction parameters by referring to the same number of reference parameters as the number of prediction units adjacent to the encoding unit, It is possible to reduce the memory capacity required for recording the prediction parameter.
  • the reference prediction parameter does not increase by the same amount as the number of prediction units.
  • the amount of data necessary for estimating the prediction parameter can be reduced.
  • an image encoding apparatus generates a prediction image for each prediction unit by referring to a prediction parameter, using a region obtained by dividing the encoding unit as a prediction unit, the prediction unit belongs to a prediction parameter related to each prediction unit in at least some of the coding units.
  • Prediction prediction that can be referred to by the prediction parameter encoding means to estimate a prediction parameter related to each prediction unit included in an adjacent coding unit adjacent to the coding unit among prediction parameters related to each prediction unit included in the prediction unit
  • the number of parameters is set to be smaller than the number of prediction units adjacent to the adjacent coding unit among the prediction units included in the coding unit.
  • the number of reference prediction parameters referred to by the prediction parameter encoding means is included in the adjacent encoding unit adjacent to the encoding unit to which the prediction unit whose prediction parameter is estimated by the estimated prediction parameter belongs. Less than the number of prediction units adjacent to the coding unit. Therefore, the number of necessary reference parameters can be reduced as compared to the case where the same number of reference parameters as the number of prediction units adjacent to the coding unit are referred to.
  • the reference prediction parameters are recorded. Can reduce the amount of memory required.
  • the reference prediction parameter does not increase by the same amount as the number of prediction units.
  • the amount of data required to derive the estimated prediction parameter can be reduced.
  • the image decoding apparatus is a prediction parameter decoding unit that decodes a prediction parameter related to each prediction unit from encoded data, and the prediction parameter related to the prediction unit is set for at least some of the prediction units.
  • a prediction parameter decoding unit that estimates from a decoded prediction parameter related to a prediction unit included in an adjacent coding unit adjacent to the coding unit to which the prediction unit belongs, and at least a part of the coding unit includes the coding unit
  • Prediction parameters that can be referred to by the prediction parameter decoding means in order to estimate a prediction parameter for each prediction unit included in an adjacent coding unit adjacent to the coding unit among the prediction parameters for each prediction unit included in the prediction unit Of the prediction unit included in the coding unit is the adjacent coding unit. Is a configuration that is set smaller than the number of prediction units adjacent to.
  • the number of necessary reference prediction parameters is smaller than when estimating prediction parameters by referring to the same number of reference parameters as the number of prediction units adjacent to the encoding unit, There is an effect that the memory capacity required for recording the prediction parameter can be reduced.
  • the reference prediction parameter does not increase by the same amount as the number of prediction units. There is an effect that the amount of data necessary to estimate the prediction parameter can be reduced.
  • the image coding apparatus estimates a prediction parameter related to each prediction unit from a decoded prediction parameter related to a prediction unit included in an adjacent coding unit adjacent to the coding unit to which the prediction unit belongs.
  • Comprising prediction parameter encoding means for encoding the prediction parameter relating to the prediction unit only when the prediction parameter does not match the estimated prediction parameter obtained by the estimation, and for at least some of the encoding units Among the prediction parameters related to each prediction unit included in the coding unit, the prediction parameter encoding means may be referred to in order to estimate the prediction parameter related to each prediction unit included in the adjacent coding unit adjacent to the coding unit.
  • the number of reference prediction parameters is the above Is a configuration that is set smaller than the number of prediction units adjacent to the contact coding units.
  • the reference prediction parameters are recorded. It is possible to reduce the memory capacity required for the operation.
  • the reference prediction parameter does not increase by the same amount as the number of prediction units. There is an effect that the amount of data necessary for deriving the estimated prediction parameter can be reduced.
  • FIG. 1 It is a block diagram which shows the principal part structure of the prediction information decoding part of the moving image decoding apparatus which concerns on embodiment of this invention.
  • (A) is a figure which shows the data structure of the encoding data produced
  • (E)-(g) is a figure which shows the structure of the intra prediction information about CU.
  • (a) is a figure which shows the state by which a slice and TB are divided
  • (C) is a figure which shows the state by which CU is divided
  • (a) is a figure which shows the structure of the image produced
  • (a) is a figure which shows the state by which an intra prediction unit is divided
  • (C) is a figure which shows the state by which the conversion unit is divided
  • FIG. 1 It is a figure for demonstrating the relationship between the prediction unit PU and memory in intra prediction, (a) is a figure which shows the case where prediction unit PU is a 4x4 pixel, (b) is a prediction unit PU 2x. It is a figure which shows the case of 8 pixels, (c) is a figure which shows the relationship between an encoding unit and a line memory. It is a figure for demonstrating the case where the size of the prediction unit PU and the recording unit RU which records the prediction mode of this prediction unit PU differs, (a) is a figure which shows the size of the recording unit RU, (b).
  • (A) is a figure which shows the size of prediction unit PU
  • (c) is a figure which shows the relationship between prediction unit PU and recording unit RU.
  • FIG. It is a flowchart which shows the flow of a process of a prediction information decoding part. It is a figure for demonstrating that a moving image decoding apparatus and a moving image coding apparatus can be utilized for transmission / reception of a moving image, (a) is the block diagram which showed the structure of the transmission device carrying a moving image coding apparatus (B) is a block diagram showing a configuration of a receiving apparatus equipped with a moving picture decoding apparatus.
  • FIG. 8B is a block diagram illustrating a configuration of a playback device equipped with a video decoding device.
  • Embodiments of an image decoding apparatus and an image encoding apparatus according to the present invention will be described below with reference to the drawings.
  • the image decoding apparatus according to the present embodiment decodes a moving image from encoded data. Therefore, hereinafter, this is referred to as “moving image decoding apparatus”.
  • the image encoding device according to the present embodiment generates encoded data by encoding a moving image. Therefore, in the following, this is referred to as a “video encoding device”.
  • the reduction of the memory capacity for recording the prediction mode in the intra prediction is described, but the present invention is not limited to this.
  • Any parameter can be applied as long as it is a parameter used for predictive image generation that can be recorded not only in the prediction mode of intra prediction but also in units of less than the coding unit CU.
  • the present invention can be applied to estimated intra prediction mode selection information, residual information of intra prediction modes, motion vectors, motion vector residuals, estimated motion vector selection information, reference image selection information, reference image list selection information, and the like.
  • Embodiment 1 Embodiment 1 according to the present invention will be described with reference to FIGS.
  • the video decoding device 1 is generated by the video encoding device (image coding device) 2 according to the present embodiment.
  • the configuration of the encoded data # 1 decoded by the above will be described.
  • the configuration of encoded data # 1 will be described with reference to FIGS.
  • the encoded data # 1 includes a sequence and a plurality of pictures constituting the sequence.
  • FIG. 2 shows the hierarchical structure below the picture layer in the encoded data # 1.
  • FIG. 2A is a diagram illustrating a structure of a picture layer that defines a picture PICT.
  • FIG. 2B is a diagram showing the structure of the slice layer that defines the slice S.
  • FIG. 2C is a diagram illustrating a structure of a tree block layer that defines a tree block TB.
  • FIG. 2D is a diagram illustrating the structure of a CU layer that defines a coding unit (CU: Coding Unit) included in the tree block TB.
  • CU Coding Unit
  • FIG. 2 Also, (e) to (g) in FIG. 2 are information about a prediction tree (PT: prediction tree), and an example of the structure of intra prediction information PTI_Intra, which is prediction information PTI about an intra prediction (intra-screen prediction) partition.
  • PT prediction tree
  • PTI_Intra prediction information PTI about an intra prediction (intra-screen prediction) partition.
  • 3 and 4 are diagrams showing a state in which the slice S, the tree block TB, the prediction unit PU, and the transform unit TU are divided from the picture PICT.
  • Picture layer In the picture layer, a set of data referred to by the video decoding device 1 for decoding a picture PICT to be processed (hereinafter also referred to as a target picture) is defined. As shown in FIG. 2A, the picture PICT includes a picture header PH and slices S 1 to S NS (NS is the total number of slices included in the picture PICT).
  • the picture header PH includes a coding parameter group referred to by the video decoding device 1 in order to determine a decoding method of the target picture.
  • the encoding mode information (entropy_coding_mode_flag) indicating the variable length encoding mode used in encoding by the moving image encoding device 2 is an example of an encoding parameter included in the picture header PH.
  • the picture PICT is encoded by CAVLC (Context-based Adaptive Variable Variable Length Coding).
  • CAVLC Context-based Adaptive Variable Variable Length Coding
  • CABAC Context-based Adaptive Binary Arithmetic Coding
  • picture header PH is also referred to as a picture parameter set (PPS).
  • PPS picture parameter set
  • slice layer In the slice layer, a set of data referred to by the video decoding device 1 for decoding the slice S to be processed (also referred to as a target slice) is defined. As shown in FIG. 2B, the slice S includes a slice header SH and a sequence of tree blocks TB 1 to TB NC (NC is the total number of tree blocks included in the slice S).
  • the slice header SH includes a coding parameter group that the moving image decoding apparatus 1 refers to in order to determine a decoding method of the target slice.
  • Slice type designation information (slice_type) for designating a slice type is an example of an encoding parameter included in the slice header SH.
  • slice header SH may include a filter parameter referred to by a loop filter (not shown) included in the video decoding device 1.
  • the slice S is formed by dividing the picture PICT.
  • the picture PICT301 is divided to form a slice S302.
  • Tree block layer In the tree block layer, a set of data referred to by the video decoding device 1 for decoding a processing target tree block TB (hereinafter also referred to as a target tree block) is defined.
  • the tree block TB includes a tree block header TBH and coding unit information CU 1 to CU NL (NL is the total number of coding unit information included in the tree block TB).
  • NL is the total number of coding unit information included in the tree block TB.
  • the tree block TB is divided into units for specifying a block size for each process of intra prediction or inter prediction and conversion.
  • the above unit of the tree block TB is divided by recursive quadtree division.
  • the tree structure obtained by this recursive quadtree partitioning is hereinafter referred to as a coding tree.
  • a unit corresponding to a leaf that is a node at the end of the coding tree is referred to as a coding node.
  • the encoding node is a basic unit of the encoding process, hereinafter, the encoding node is also referred to as an encoding unit (CU).
  • CU encoding unit
  • coding unit information (hereinafter referred to as CU information)
  • CU 1 to CU NL is information corresponding to each coding node (coding unit) obtained by recursively dividing the tree block TB into quadtrees. is there.
  • the root of the coding tree is associated with the tree block TB.
  • the tree block TB is associated with the highest node of the tree structure of the quadtree partition that recursively includes a plurality of encoding nodes.
  • the tree block TB may be referred to as LCU (largest coding unit).
  • the tree block TB may be called a coding tree block (CTB).
  • each coding node is half the size of the coding node to which the coding node directly belongs (that is, the unit of the node one layer higher than the coding node).
  • the size that each coding node can take depends on the size designation information of the coding node and the maximum hierarchy depth (maximum hierarchical depth) included in the sequence parameter set SPS of the coded data # 1. For example, when the size of the tree block TB is 64 ⁇ 64 pixels and the maximum hierarchy depth is 3, the encoding nodes in the hierarchy below the tree block TB have four sizes, that is, 64 ⁇ 64. Any of pixel, 32 ⁇ 32 pixel, 16 ⁇ 16 pixel, and 8 ⁇ 8 pixel can be taken.
  • the slice S is divided to form a tree block TB303.
  • the tree block TB303 is divided to form a CU 311.
  • FIG. 3C shows a state where the tree block TB303 is divided into quadtrees when the maximum hierarchical depth is “2”.
  • the maximum layer depth is “2”
  • the value of the CU split flag split_coding_unit_flag
  • layer 1 is also “1”
  • CU 311b Becomes an encoding node.
  • the CU 311a is an encoding node.
  • the tree block header TBH includes a coding parameter referred to by the video decoding device 1 to determine a decoding method of the target tree block. Specifically, as shown in FIG. 2C, tree block division information SP_TB for designating a division pattern of the target tree block into each CU, and a quantization parameter difference for designating the size of the quantization step ⁇ qp (qp_delta) is included.
  • the tree block division information SP_TB is information representing a coding tree for dividing the tree block. Specifically, the shape and size of each CU included in the target tree block, and the position in the target tree block Is information to specify.
  • the tree block division information SP_TB may not explicitly include the shape or size of the CU.
  • the tree block division information SP_TB may be a set of flags (split_coding_unit_flag) indicating whether or not the entire target tree block or a partial area of the tree block is divided into four.
  • the shape and size of each CU can be specified by using the shape and size of the tree block together.
  • the quantization parameter difference ⁇ qp is a difference qp ⁇ qp ′ between the quantization parameter qp in the target tree block and the quantization parameter qp ′ in the tree block encoded immediately before the target tree block.
  • CU layer In the CU layer, a set of data referred to by the video decoding device 1 for decoding a CU to be processed (hereinafter also referred to as a target CU) is defined.
  • the encoding node is the root of the prediction tree PT and the transformation tree TT.
  • the prediction tree and the conversion tree are described as follows.
  • the encoding node is divided into one or a plurality of prediction blocks, and the position and size of each prediction block are defined.
  • the prediction block is one or a plurality of non-overlapping areas constituting the encoding node.
  • the prediction tree includes one or a plurality of prediction blocks obtained by the above division.
  • Prediction processing is performed for each prediction block.
  • a prediction block that is a unit of prediction is also referred to as a prediction unit (PU).
  • the encoding node is divided into one or a plurality of transform blocks, and the position and size of each transform block are defined.
  • the transform block is one or a plurality of non-overlapping areas constituting the encoding node.
  • the conversion tree includes one or a plurality of conversion blocks obtained by the above division.
  • a transform block that is a unit of transform is also referred to as a transform unit (TU).
  • TU transform unit
  • the CU information CU includes a skip flag SKIP, PU partition information SP_PU that specifies a partition pattern for each prediction unit of the target CU, prediction type information PType, PT information PTI, and TT. Contains information TTI.
  • the skip flag SKIP is a flag indicating whether or not the skip mode is applied to the target CU.
  • the value of the skip flag SKIP is 1, that is, when the skip mode is applied to the target CU, skip is performed.
  • Various types of information to be subjected to are omitted, and a default value or an estimated value is used when decoding.
  • the skip flag SKIP is omitted for the I slice.
  • the PU partition information SP_PU is information for determining the shape and size of each PU included in the target CU and the position in the target CU.
  • the PU partition information SP_PU is realized from at least one of an intra partition flag (intra_split_flag) that specifies intra partition from the target CU and an inter partition flag (inter_partitining_idc) that specifies inter partition from the target CU. Can do.
  • the intra division flag is information that specifies the shape, size, and position in the target CU of each intra PU included in the target CU (PU in which intra prediction is used).
  • the inter division flag is information for designating the shape and size of each inter PU included in the target CU (PU in which inter prediction is used), and the position in the target CU.
  • Prediction type information PType is information that specifies whether intra prediction or inter prediction is used as a prediction image generation method for the target PU.
  • PT information PTI is information related to the PT included in the target CU.
  • the PT information PTI is a set of information related to each of one or more PUs included in the PT, and is referred to when the moving image decoding apparatus 1 generates a predicted image.
  • the PT information PTI includes inter prediction information (PTI_Inter) or intra prediction information (PTI_Intra) depending on which prediction method is specified by the prediction type information PType.
  • a PU to which intra prediction is applied is also referred to as an intra PU
  • a PU to which inter prediction is applied is also referred to as an inter PU.
  • TT information TTI is information related to TT included in the target CU.
  • the TT information TTI is a set of information regarding each of one or a plurality of TUs included in the TT, and is referred to when the moving image decoding apparatus 1 decodes residual data.
  • the intra prediction information PTI_Intra includes a coding parameter that is referred to when the video decoding device 1 generates an intra predicted image by intra prediction.
  • (E) to (g) in FIG. 2 show coding parameters included in the intra prediction information PTI_Intra.
  • FIG. 2 (e) shows an example of encoding parameters (P P1 to P PNP ) when the prediction unit and the recording unit (described later) are different, and NP is the total number of intra PUs included in the target CU. It is.
  • (f) of FIG. 2 shows coding parameters (P r1 , ⁇ P P1 , and the like when the prediction unit and the recording unit are different and the accuracy of the prediction mode in the prediction unit is different from the accuracy of the prediction mode in the recording unit.
  • P rQ the total number of recording units included in the target CU
  • PX the total number of intra PUs included in the target CU.
  • FIG. 2G shows an example of encoding parameters (P r1 to P rQ ) when the accuracy of the prediction mode in the prediction unit is different from the accuracy of the prediction mode in the recording unit.
  • One of the intra-PU division methods is generated by dividing the target CU into four PUs of the same size if the intra-partition flag is 1, and if the intra-partition flag is 0, the target CU is divided. Without this, the target CU itself is handled as a PU.
  • the intra PU is not necessarily divided into squares. This will be described with reference to FIG.
  • the example shown in FIG. 4B shows a state in which a 32 ⁇ 32 pixel CU 311 is divided into a plurality of intra PUs.
  • the CU 311 includes an 1 ⁇ 4 pixel intra PU 412a, an 8 ⁇ 8 pixel intra PU 412b, a 2 ⁇ 8 pixel intra PU 412c, a 1 ⁇ 16 pixel intra PU 412d, and a 4 ⁇ 16 pixel intra PU 412e.
  • the inter prediction information PTI_Inter includes a coding parameter that is referred to when the video decoding device 1 generates an inter prediction image by inter prediction.
  • the inter prediction information PTI_Inter includes inter prediction parameters PP_Inter1 to PP_InterNe (Ne is the total number of inter PUs included in the target CU) for each PU.
  • the inter PU divides the target CU by four symmetrical divisions of 2N ⁇ 2N pixels (the same size as the target CU), 2N ⁇ N pixels, N ⁇ 2N pixels, and N ⁇ N pixels. Created.
  • the inter prediction parameters include an inter prediction type, a reference image index, an estimated motion vector index, and a motion vector residual.
  • the TT information TTI includes a transform size, a transform type, a transform coefficient, the presence / absence of a transform coefficient in the spatial domain, the presence / absence of a transform coefficient in the frequency domain, and the quantization prediction residual for the total number of TUs included in the target CU. Contains.
  • the TU is formed by hierarchically dividing the target CU into a quadtree, and the size is determined by information (split_transform_flag) indicating whether or not the target CU or a partial region of the target CU is to be divided.
  • split_transform_flag is basically encoded for each node of the quadtree, but is omitted and estimated according to the constraints on the transform size (maximum transform size, minimum transform size, maximum hierarchy depth of the quadtree). There is also a case.
  • FIG. 4 (c) shows a state where CU 311 is divided into quadtrees to form TUs.
  • the PU 413b is a TU.
  • the PU 413a is a TU.
  • the TU included in the target CU has a size of 32 ⁇ 32 pixels, 16 ⁇ 16 pixels, or 8 ⁇ 8 pixels. It can take.
  • the quantized prediction residual QD is encoded data generated by the moving image encoding apparatus 2 performing the following processes 1 to 3 on a target block that is a processing target block.
  • Process 1 DCT transform (Discrete Cosine Transform) of the prediction residual obtained by subtracting the prediction image from the encoding target image;
  • Process 2 Quantize the transform coefficient obtained in Process 1;
  • Process 3 Variable length coding is performed on the transform coefficient quantized in Process 2;
  • FIG. 5 is a diagram for explaining a relationship between a prediction unit PU and a memory in intra prediction, where (a) is a diagram illustrating a case where the prediction unit PU is 4 ⁇ 4 pixels, and (b) is a prediction unit. It is a figure which shows the case where PU is 2x8 pixel, (c) is a figure which shows the relationship between an encoding unit and a line memory.
  • the prediction parameters for the prediction unit PU are estimated from the decoded prediction parameters for the decoded prediction unit PU ′, rather than decoding only from the encoded data.
  • the estimated value obtained in this way may be used in combination.
  • the prediction mode of the PU 513 is estimated from the prediction mode of the PU 511 in contact with the upper side of the PU 513. Therefore, in order to decode the entire CU 501 to which the PU 513 belongs, it is necessary to record the prediction modes of the PUs 511 and 512 that are in contact with the upper side of the CU 501. In other words, it is necessary to record the prediction modes of the PUs 511 and 512 until the decoding of the CU 501 is completed.
  • the prediction mode of the PU 521 is changed from the prediction mode of the PU 531 in contact with the upper side of the PU 521.
  • the prediction modes of the PUs 531 to 534 in contact with the upper side of the CU 502.
  • the prediction mode of the prediction unit that is in contact with the upper side of the coding unit CU. Therefore, after the prediction image is generated, it is necessary to record the prediction mode until the decoding of the coding unit CU in contact with the lower side of the prediction unit PU is completed. That is, it is necessary to record the prediction mode for one line of at least one frame.
  • the coding unit CU501 and the coding unit CU502 are included in their own units even though they have the same size (8 ⁇ 8 pixels). Since the sizes of prediction unit PUs to be different are different, the number of prediction modes required for decoding is different.
  • the prediction mode of the prediction unit PU included in the coding unit CU501 can be determined from the two prediction modes of the prediction units PU511 and 512, and decoding of the coding unit CU501 is possible.
  • the prediction mode of the prediction unit PU included in the coding unit CU502 cannot be determined unless the four prediction modes of the prediction units PU531 to 535 are used. The coding unit CU502 cannot be decoded.
  • the prediction mode in units of four pixels may be recorded in the line memory, whereas in the case of the coding unit CU502, It is necessary to record the prediction mode in units of two pixels in the line memory. Therefore, the required line memory capacity is twice different.
  • the prediction mode is recorded in units compared to the prediction unit PU that is a unit for deriving the prediction mode. It is conceivable to make a certain recording unit a large size.
  • FIG. 6A and 6B are diagrams for explaining a case where the recording unit RU has a larger size than the prediction unit PU.
  • FIG. 6A is a diagram illustrating the size of the recording unit RU.
  • FIG. 6B is a diagram illustrating the prediction unit PU. It is a figure which shows size, (c) is a figure which shows the relationship between prediction unit PU and recording unit RU.
  • the 8 ⁇ 8 pixel CU 602 includes 2 ⁇ 8 pixel prediction units PU 610a to PU 610d, and the prediction modes of the prediction units PU 610a to PU 610d are set to P Pa and P Pb , respectively. , P Pc and P Pd .
  • the recording unit RU is set to 4 ⁇ 8 pixel RUs 620a and b, and the recording prediction modes are set to P ra and P rb .
  • the encoding unit CU 602 includes two prediction units, but there are two prediction modes necessary for decoding. The capacity of the line memory can be reduced.
  • prediction modes for each prediction unit such as prediction modes P Pa , P Pb , P Pc , and P Pd are also referred to as prediction prediction modes.
  • the prediction modes recorded as the prediction modes P ra and P rb are also referred to as reference prediction modes. A method for deriving the reference prediction mode from the prediction prediction mode and a method for deriving the prediction prediction mode from the reference prediction mode will be described later.
  • a reference prediction mode is derived based on the decoded prediction prediction mode
  • a prediction prediction mode is derived by decoding additional information in addition to the decoded reference prediction mode. It is possible.
  • FIG. 7 is a block diagram showing a main configuration of the moving picture decoding apparatus 1.
  • the moving image decoding apparatus 1 includes a CU decoding unit 10, a prediction mode recording unit 11, and a frame memory 12.
  • the CU decoding unit 10 includes a prediction information decoding unit 15, a prediction residual, and the like.
  • the configuration includes a decoding unit 16, a predicted image generation unit 17, and a decoded image generation unit 18.
  • the moving picture decoding apparatus 1 is an apparatus that generates and outputs a decoded image # 2 by decoding the encoded data # 1.
  • the moving image decoding apparatus 1 includes, as part thereof, H.264. H.264 / MPEG-4 AVC standard technology, VCEG (Video Coding Expert Group) technology used in KTA software, which is a joint development codec, TMuC (Test Model Underside) software This is a video decoding apparatus using the technology and the method adopted in WorkingWorkDraft 1 of High-Efficiency Video Coding (HEVC WD1).
  • the video decoding device 1 generates a prediction image for each prediction unit, generates a decoded image # 2 by adding the generated prediction image and a prediction residual decoded from the encoded data # 1, Output.
  • the encoded data # 1 input to the video decoding device 1 is input to the CU decoding unit 10.
  • the CU decoding unit 10 decodes the encoded data # 1, and finally generates and outputs a decoded image # 2.
  • the prediction mode recording unit 11 records the prediction mode decoded by the prediction information decoding unit 15 and the position of the recording unit RU in association with each other.
  • the decoded image # 2 is recorded in the frame memory 12.
  • decoded images corresponding to all CUs decoded before the target CU for example, all CUs preceding in the raster scan order
  • the time of decoding the target CU are recorded. .
  • the prediction information decoding unit 15 decodes prediction information from the encoded data # 1. Details of the prediction information decoding unit 15 will be described later with reference to another drawing.
  • the prediction residual decoding unit 16 decodes the prediction residual from the encoded data # 1, and transmits the decoded prediction residual data # 16 to the decoded image generation unit 18.
  • the predicted image generation unit 17 generates a predicted image from the prediction mode information # 15 acquired from the prediction information decoding unit 15 and the decoded image P ′ acquired from the frame memory 12, and predicted image data # 17 indicating the generated predicted image Is transmitted to the decoded image generation unit 18.
  • the decoded image generation unit 18 generates and outputs a decoded image # 2 from the prediction residual data # 16 acquired from the prediction residual decoding unit 16 and the prediction image data # 17 acquired from the prediction image generation unit 17. is there.
  • FIG. 1 is a block diagram illustrating a main configuration of the prediction image decoding unit 15.
  • the prediction information decoding unit 15 includes a PU structure decoding unit 21, a prediction prediction mode decoding unit (prediction parameter decoding unit) 22, and a reference prediction mode deriving unit 23.
  • the prediction information decoding unit 15 decodes prediction information from the encoded data # 1, and includes the PU structure decoding unit 21, the prediction prediction mode decoding unit 22, and the reference prediction mode deriving unit 23. Is included.
  • the PU structure decoding unit 21 decodes the PU structure of the target CU from the encoded data # 1, and notifies the prediction prediction mode decoding unit 22 of the decoded PU structure information # 21.
  • the prediction mode decoding unit for prediction 22 uses the PU structure information # 21 indicating the PU structure of the target CU acquired from the PU structure decoding unit 21 and the encoded data # 1, and the prediction mode recording unit RU (hereinafter, recording unit) of the target CU. RU) is set, and the prediction mode (prediction parameter) of the prediction unit PU included in each recording unit RU is decoded. Then, prediction mode information # 15 indicating the decoded prediction mode is notified to the prediction image generation unit 17 and the reference prediction mode deriving unit 23.
  • the prediction mode decoding unit 22 for prediction sets the recording unit RU according to a table as shown in FIG. That is, each prediction unit PU constituting the coding unit CU is 4 ⁇ 4 pixels, 8 ⁇ 8 pixels, 16 ⁇ 16 pixels, 32 ⁇ 32 pixels, 64 ⁇ 64 pixels, 32 ⁇ 8 pixels, 8 ⁇ 32 pixels, In the case of 16 ⁇ 4 pixels and 4 ⁇ 16 pixels, the prediction mode decoder for prediction 22 sets the recording unit RU to the same size as the prediction unit PU.
  • the prediction mode decoding unit 22 for prediction sets the recording unit RU to 16 ⁇ 4 pixels, and sets each coding unit CU.
  • the prediction mode decoding unit 22 for prediction sets the recording unit RU to 4 ⁇ 16 pixels.
  • the prediction mode decoding unit 22 for prediction sets the recording unit RU to 8 ⁇ 4 pixels, and sets each coding unit CU.
  • the prediction mode decoder for prediction 22 sets the recording unit RU to 4 ⁇ 8 pixels.
  • the size of the recording unit RU is fixed for each size of the prediction unit PU.
  • the size of the recording unit RU may be varied according to the necessity of reducing the memory size. For example, in SPS or PPS, information designating at least how many pixels the prediction mode is recorded may be sent, and the relationship between the size of each prediction unit PU and the size of the recording unit RU may be determined based on the information. .
  • the prediction mode is recorded in units of N pixels, for a prediction unit PU having a height or width less than N pixels, a recording unit having a size in which the height or width less than N is replaced with N What is necessary is just to associate RU.
  • the prediction mode decoding unit for prediction 22 decodes the prediction parameter by the following method, for example.
  • the prediction mode of the prediction unit is a specific prediction mode (for example, the prediction mode of the upper adjacent recording unit adjacent to the upper side of the prediction unit to be decoded, and the decoding target A flag indicating whether or not it matches an estimated prediction mode estimated from a prediction mode having a small prediction mode ID among prediction modes of a left adjacent recording unit adjacent to the left side of the prediction unit; and (2) prediction When the prediction unit whose mode does not match the estimated prediction mode includes a code obtained by encoding the prediction mode related to the prediction unit, the prediction mode decoding unit 22 for prediction uses the encoding parameters as follows: Decode the prediction mode.
  • the prediction prediction mode decoding unit 22 (1) decodes the flag from the encoded data, and (2) indicates that the flag matches the estimated prediction mode.
  • a prediction mode related to the prediction unit is read from the prediction mode recording unit 11, and (2-2) an estimated prediction mode estimated from the read prediction mode is determined as a prediction mode related to the prediction unit, and (3) the flag is When it shows that it does not correspond with an estimated prediction mode, the prediction mode regarding the prediction unit made into object is determined by decoding the said code
  • the prediction mode for the prediction unit includes a plurality of prediction modes (for example, the prediction mode of the upper adjacent recording unit adjacent to the upper side of the prediction unit to be decoded, and the decoding target A flag indicating whether or not the estimated prediction mode estimated from any one of the prediction modes of the left adjacent recording unit adjacent to the left side of the prediction unit) and (2) the prediction mode matches the estimated prediction mode
  • the prediction mode decoding unit for prediction 22 decodes the prediction mode from the encoding parameter as follows.
  • the prediction mode decoder for prediction 22 (1) decodes the flag from the encoded data, and (2) indicates that the flag matches the estimated prediction mode (2-1) Decoding the information from the data, (2-2) reading the prediction mode for the prediction unit indicated by the information from the prediction mode recording unit 11, and (2-3) the estimated prediction mode estimated from the read prediction mode (3) If the flag indicates that the prediction mode does not match the estimated prediction mode, the prediction mode for the target prediction unit is determined by decoding the code.
  • the estimated prediction mode is used as a prediction value of the intra prediction mode of the target prediction unit. That is, if the flag indicates that the prediction value is correct, the estimated prediction mode is directly set to the intra prediction mode of the target prediction unit. If the flag does not indicate that the prediction value is correct, information for selecting any of the intra prediction modes excluding the prediction value (estimated prediction mode) is decoded, and the intra prediction mode of the target prediction unit is determined. Identified.
  • the adjacent recording unit adjacent to the upper side or the left side of the prediction unit to be decoded can be defined by the following method.
  • the adjacent recording unit adjacent to the upper side or the left side of a certain target prediction unit can be said to be a recording unit adjacent to the upper left pixel or the left of the recording unit including the target prediction unit.
  • the upper left pixel position of the target prediction unit is (x, y)
  • the upper left pixel (x ′, y ′) of the recording unit including the target prediction unit can be derived by the following equation.
  • W max (w, N)
  • H max (h, N)
  • w and h are the width and height of the prediction unit including (x, y), respectively.
  • N is the minimum recording unit of the prediction mode.
  • the adjacent recording unit adjacent to the upper side of the target prediction unit is the pixel (x ′, y′ ⁇ ). This is a recording unit including 1), and can be used when the pixel (x ′, y′ ⁇ 1) is included in the decoded area.
  • the adjacent recording unit adjacent to the left side of the target prediction unit is a recording unit including (x′ ⁇ 1, y ′), and the pixel (x′ ⁇ 1, y ′) is included in the decoded area. It is available when
  • the reference prediction mode deriving unit 23 derives a reference prediction mode (reference prediction parameter) for each recording unit RU from the prediction mode information # 15 acquired from the prediction prediction mode decoding unit 22, and the position of the recording unit RU. Are recorded in the prediction mode recording unit 11 in association with each other.
  • the reference prediction mode deriving unit 23 derives the reference prediction mode by the following method, for example.
  • Method 1A (simple decimation (decoding order A))
  • the prediction mode for prediction in the prediction unit decoded first among the prediction units included in the target recording unit is set as the reference prediction mode.
  • Method 1B (simple decimation (decoding order B))
  • the prediction prediction mode in the prediction unit decoded last among the prediction units included in the target recording unit is set as a reference prediction mode.
  • Method 2A (simple decimation (position A))
  • the prediction prediction mode in the prediction unit including the upper left pixel of the target recording unit is set as the reference prediction mode.
  • Method 2B (simple decimation (position B))
  • the prediction prediction mode in the prediction unit including the lower right pixel of the target recording unit is set as the reference prediction mode.
  • Method 3 (in order of priority) Among the prediction prediction modes of each prediction unit included in the target recording unit, the prediction mode with the highest priority (the prediction mode ID is the smallest) is set as the reference prediction mode.
  • Method 4 average or median direction
  • each prediction mode is mapped to an angle, and a prediction mode corresponding to an average value or a median value of each angle is set as a reference prediction mode.
  • DC prediction is set as a reference prediction mode.
  • the number of prediction directions in the prediction mode is 33 for both the prediction prediction mode and the reference prediction mode regardless of the size of the prediction unit PU.
  • FIG. 9 is a diagram showing an example of a prediction mode in the present embodiment, (a) is a diagram showing a relationship between the prediction mode ID and direction, and (b) is a prediction unit PU in a certain CU. It is a figure which shows the relationship with the recording unit RU, (c) is a figure which shows the bit stream in (b).
  • IDs of 0, 1, 3 to 33 are assigned in any direction, 2 is assigned to DC prediction, and 34 is assigned to Planar prediction. It has been.
  • the coding unit CU901 includes 1 ⁇ 16 pixel prediction units PU 910a to 910d and 911a to 913d, and a 4 ⁇ 16 pixel recording unit RU 920a corresponding to the prediction unit.
  • the prediction mode of the prediction unit PU 910a is P P0
  • the prediction mode of the prediction unit PU 910b is P P1
  • the prediction mode of the prediction unit PU 910c is P P2
  • the prediction mode of the prediction unit PU 913d is P P15.
  • bitstream as shown in (c) of FIG. 9, consisting of the head and P P0, P P1, P P2 , P P3, ... P P15 took form.
  • the prediction modes of the recording units RU 920a to RUd are P r0 , P r1 , P r2 , and P r3 , respectively.
  • the values of P rk and P pl are prediction mode IDs.
  • FIG. 10 is a flowchart showing a process flow of the prediction information decoding unit 15.
  • the PU structure decoding unit 21 decodes the prediction unit PU structure of the target CU from the encoded data # 1 (S2). And the prediction mode decoding part 22 for prediction sets the recording unit RU of the prediction mode for reference in object CU from the prediction unit PU structure decoded by the PU structure decoding part 21 (S3).
  • the prediction mode decoding unit 22 for prediction decodes the prediction mode for prediction of the prediction unit PU included in the recording unit RU (S5 to S7) for each recording unit RU (S4).
  • the reference prediction mode deriving unit 23 derives a reference prediction mode (S8), and records it in the prediction mode recording unit 11 together with the position of the recording unit (S9).
  • steps S5 to S9 are performed for all the recording units (S10), and the prediction unit PU structure included in the target CU and the prediction mode for prediction of each prediction unit PU are output as prediction information (prediction mode information # 15) ( S11).
  • the moving image encoding device 2 is a device that generates and outputs encoded data # 1 by encoding the input image # 100.
  • the moving image encoding apparatus 2 includes, as part thereof, H.264. 264 / MPEG-4 AVC standard technology, VCEG (Video Coding Expert Group) technology used in joint development codec KTA software, TMuC (Test Model under Consideration) software This is a moving picture encoding apparatus using a technique and a method adopted in HEVC WD1 as a successor codec.
  • FIG. 11 is a block diagram showing a main part configuration of the moving picture encoding apparatus 2.
  • the moving image encoding device 2 includes a prediction information determination unit 31, a reference prediction mode derivation unit 32, a prediction mode recording unit 33, a prediction residual encoding unit 34, a prediction information encoding unit 35,
  • This configuration includes a predicted image generation unit 36, a prediction residual decoding unit 37, a decoded image generation unit 38, a frame memory 39, and an encoded data generation unit (prediction parameter encoding means) 40.
  • the prediction information determination unit 31 sets a coding unit CU from the acquired input image # 100, sets a prediction unit PU in each coding unit CU, and determines a prediction type in the prediction unit PU. And a prediction parameter is determined according to the determined prediction type. For example, for a prediction unit PU whose prediction type is determined to be intra prediction, the prediction mode in the prediction unit PU is determined. For the prediction unit PU whose prediction type is determined to be inter prediction, the inter prediction type, reference image index, estimated motion vector index, and motion vector residual in the prediction unit PU are determined.
  • the prediction mode information # 31 indicating the determined prediction unit PU and the prediction parameter is notified to the reference prediction mode deriving unit 32, the prediction information encoding unit 35, and the predicted image generating unit 36.
  • the reference prediction mode deriving unit 32 determines the recording unit RU corresponding to the prediction unit PU from the prediction mode information # 31 acquired from the prediction information determining unit 31. Then, the reference prediction mode of the recording unit RU is derived and recorded in the prediction mode recording unit 33 together with the position of the recording unit RU in the coding unit CU. Note that details of the processing in the reference prediction mode deriving unit 32 are the same as those in the reference prediction mode deriving unit 23 of the video decoding device 1, and thus description thereof is omitted.
  • the recorded prediction mode is used for variable-length coding of the prediction mode with high coding efficiency when the prediction mode of the generated prediction image is transmitted to the moving picture decoding apparatus 1. For example, by using the estimated prediction mode derived based on the recorded prediction mode, the prediction mode can be encoded with a smaller amount of code than when the prediction mode to be encoded is directly encoded. Therefore, it is necessary to record the prediction mode of the prediction unit that is in contact with the upper side or the left side of the prediction unit that is the generation target of the predicted image.
  • the prediction information encoding unit 35 encodes the prediction mode information # 31 acquired from the prediction information determination unit 31, and notifies the encoded prediction mode encoded data # 35 to the encoded data generation unit 40.
  • the prediction information encoding part 35 encodes prediction mode information # 31 as follows, for example.
  • the prediction mode of the target prediction unit is a specific prediction mode (for example, the prediction mode of the upper adjacent recording unit adjacent to the upper side of the target prediction unit and the left adjacent to the left side of the prediction unit of the decoding target) This is estimated from a prediction mode having a small prediction mode ID among prediction modes of adjacent recording units. At this time, the specific prediction mode is read from the prediction mode recording unit 33.
  • the estimated prediction mode (estimated prediction mode) is compared with the prediction mode related to the target prediction unit acquired from the prediction information determination unit 31. (3) If the prediction mode related to the target prediction unit matches the estimated prediction mode, a flag indicating that is encoded. (4) On the other hand, if the prediction mode related to the target prediction unit does not match the estimated prediction mode, a flag indicating that fact and a prediction mode related to the target prediction unit are encoded.
  • the prediction mode of the target prediction unit is a plurality of prediction modes (for example, the prediction mode of the upper adjacent recording unit adjacent to the upper side of the target prediction unit and the left adjacent to the left side of the prediction unit of the decoding target) Estimate from each adjacent recording unit prediction mode). At this time, the plurality of prediction modes are read from the prediction mode recording unit 33.
  • Each estimated prediction mode (estimated prediction mode) is compared with the prediction mode related to the target prediction unit acquired from the prediction information determination unit 31.
  • a flag indicating that fact and the prediction prediction mode estimated from the prediction mode related to which prediction unit the matched estimated prediction mode indicates Information is encoded.
  • a flag indicating that fact and the prediction mode regarding the target prediction unit are encoded.
  • the prediction image generation unit 36 generates a prediction image from the prediction mode information # 31 acquired from the prediction information determination unit 31 and the decoded image stored in the frame memory 39, and prediction image data # 36 indicating the generated prediction image Is notified to the prediction residual encoding unit 34 and the decoded image generation unit 38.
  • the prediction residual encoding unit 34 derives a prediction residual from the input image # 100 and the prediction image acquired from the prediction image generation unit 36, and encodes the derived prediction residual encoded prediction residual data # 34 to the encoded data generation unit 40 and the prediction residual decoding unit 37.
  • the prediction residual decoding unit 37 decodes the prediction residual encoded data # 34 acquired from the prediction residual encoding unit 34, and notifies the decoded image generation unit 38 of the decoded prediction residual data # 37. .
  • the decoded image generation unit 38 generates a decoded image from the prediction image acquired from the prediction image generation unit 36 and the prediction residual data # 37 acquired from the prediction residual decoding unit 37, and decoded image data indicating the generated decoded image # 38 is recorded in the frame memory 39.
  • the encoded data generation unit 40 encodes encoded data # 1 from the prediction mode encoded data # 35 acquired from the prediction information encoding unit 35 and the prediction residual encoded data # 34 acquired from the prediction residual encoding unit 34. Is generated and output.
  • the recording unit RU may be set to a different value in the horizontal direction and the vertical direction.
  • the horizontal recording unit may be set to a larger value than the vertical recording unit.
  • a recording unit RU of 4 ⁇ 16 pixels is associated with a prediction unit PU of 1 ⁇ 16 pixels
  • a recording unit RU of 16 ⁇ 1 pixels is associated with a prediction unit PU of 16 ⁇ 1 pixels.
  • the prediction mode When referring to the prediction mode, it is conceivable to refer to the prediction mode of the prediction unit in contact with the upper side and the left side of the target prediction unit PU. It is necessary to record the prediction mode (for the screen width). On the other hand, in order to refer to the prediction mode of the prediction unit in contact with the left side, the prediction mode for 1 LCU (TB) may be recorded.
  • the accuracy of the estimated prediction mode can be reduced while reducing the capacity of the memory (line buffer) for recording the prediction mode. Can be increased.
  • a prediction mode having a smaller prediction mode ID may be set between the prediction mode of the upper adjacent recording unit RU and the prediction mode of the left adjacent recording unit RU in the target prediction unit PU.
  • the memory capacity required increases as the number of prediction units PU increases in a direction parallel to the scan direction. Therefore, if the recording unit RU is set so that the number of prediction units PU in the direction parallel to the scanning direction is reduced, the memory capacity can be reduced.
  • the prediction mode (reference prediction mode) corresponding to the recording unit RU does not necessarily have to be recorded in association with the upper left pixel position of the recording unit RU.
  • the encoding unit CU is divided by a predetermined unit (for example, 4 ⁇ 4 pixels), and the reference to the reference prediction mode is set so that the same value is referenced in the recording unit RU in each region. Also good.
  • the prediction mode of the recording unit RU adjacent to the target prediction unit PU is the reference prediction mode referred to by the unit adjacent to the target prediction unit PU.
  • the reference to the reference prediction mode at the position (x, y) can be defined by the following equation.
  • the present embodiment differs from the first embodiment in the accuracy of the prediction mode (prediction prediction mode) used for generating a prediction image in the prediction unit PU, and the prediction mode for recording the prediction mode.
  • the accuracy of (reference prediction mode) is different.
  • FIGS. 12 and 13 are diagrams illustrating the relationship between the prediction prediction mode and the reference prediction mode.
  • the prediction accuracy improves, but the capacity of the memory for recording also increases. For example, when there are 32 types of prediction modes, a memory of 5 bits per prediction unit is required, and when the prediction modes are 256 types, a memory of 8 bits per prediction unit is required.
  • the prediction direction accuracy differs between the prediction prediction mode and the reference prediction mode, that is, if the prediction direction accuracy of the reference prediction mode is lower than the prediction direction accuracy of the prediction prediction mode, it is high.
  • the memory capacity can be reduced while maintaining the prediction accuracy.
  • the number of prediction prediction modes is 130 (0 to 129)
  • the number of reference prediction modes is 34 (0 to 33)
  • the prediction prediction mode s1 and the reference prediction mode s2 The relationship is as shown in the following equation.
  • the above conversion process is a mapping between two prediction parameters expressing directional predictions with different accuracy. (1) Exclusion of prediction modes that are non-directional predictions (the term “ ⁇ 1” in the above equation is (2) Adjustment of direction prediction accuracy (the terms “>> 2” and “ ⁇ 2” in the above equation correspond)), (3) Addition of prediction mode that is non-directional prediction (above Generalized by three steps (corresponding to the term “+1” in the equation).
  • the prediction prediction mode P Pe (FIG. 13B) decoded by the prediction unit PU 1301 and the reference prediction mode P rf (FIG. 13A) have different accuracy.
  • the prediction mode P Pe for prediction is derived from the prediction mode P rf for reference.
  • FIG. 14 is a block diagram showing a configuration of the prediction information decoding unit 15 '.
  • the prediction information decoding unit 15 ′ includes a PU structure decoding unit 21, a reference prediction mode decoding unit 24, a prediction mode update information decoding unit 25, and a prediction prediction mode deriving unit 26. .
  • the PU structure decoding unit 21 is the same as the PU structure decoding unit 21 of the prediction information decoding unit 15, the description thereof is omitted.
  • FIG. 15 is a diagram showing the recording unit RU and the number of prediction modes for each size of the prediction unit PU, (a) is a diagram showing the relationship between the prediction unit PU and the recording unit RU, and (b) is the prediction unit. It is a figure which shows the relationship between the precision of PU, the prediction mode for prediction, and the precision of the prediction mode for reference.
  • the recording unit RU can be set.
  • the prediction unit PU is 4 ⁇ 4 pixels, 8 ⁇ 8 pixels, 16 ⁇ 16 pixels, 32 ⁇ 32 pixels, 64 ⁇ 64 pixels, 32 ⁇ 8 pixels, 8 ⁇ 32 pixels, 16 ⁇ 4.
  • the recording unit RU has the same size.
  • the recording unit RU is 16 ⁇ 4 pixels
  • the recording unit RU is 4 ⁇ 16 pixels
  • the recording unit RU is 8 ⁇ 4 pixels
  • the recording unit RU is 4 ⁇ 8 pixels
  • the number of prediction prediction modes and the number of reference prediction modes can be set by the table 1502 shown in FIG.
  • the prediction unit PU is 4 ⁇ 4 pixels, 8 ⁇ 8 pixels, 16 ⁇ 16 pixels, 32 ⁇ 32 pixels, 64 ⁇ 64 pixels, 32 ⁇ 8 pixels, 8 ⁇ 32 pixels, and 16 ⁇ 4 pixels.
  • the number of prediction prediction modes and the number of reference prediction modes are 33 directions.
  • the prediction unit PU is 16 ⁇ 1 pixel, 1 ⁇ 16 pixel, 8 ⁇ 2 pixel, 2 ⁇ 8 pixel, the number of prediction prediction modes is 129 directions, and the number of reference prediction modes is 33 directions.
  • the reference prediction mode decoding unit 24 sets the prediction mode recording unit RU of the target CU based on the PU structure information # 21 acquired from the PU structure decoding unit 21. Then, for each recording unit RU included in the target CU, the reference prediction mode is decoded from the encoded data # 1, and is recorded in the prediction mode recording unit 11 together with the position of the recording unit RU in the target CU. Further, the prediction prediction mode data # 24 indicating the decoded reference prediction mode is notified to the prediction prediction mode deriving unit 26.
  • the reference prediction mode decoding unit 24 decodes the prediction parameters by the following method, for example.
  • the prediction mode of the recording unit is a prediction mode related to a specific recording unit (for example, the prediction mode of the upper adjacent recording unit adjacent to the upper side of the target recording unit) And a flag indicating whether or not it matches the estimated prediction mode estimated from the prediction mode of the left adjacent recording unit adjacent to the left side of the target recording unit (prediction mode with a small prediction mode ID)
  • the reference prediction mode decoding unit 24 encodes the code as follows: The prediction mode is decoded from the optimization parameters.
  • the reference prediction mode decoding unit 24 (1) decodes the flag from the encoded data, and (2) indicates that the flag matches the estimated prediction mode.
  • the prediction mode related to the recording unit is read from the prediction mode recording unit 11, (2-2) the prediction mode related to the target recording unit is estimated from the read prediction mode, and (3) the flag does not match the estimated prediction mode ,
  • the prediction mode for the target recording unit is determined by decoding the code.
  • Method 2 (use multiple candidates) (1)
  • a prediction mode for example, an upper adjacent recording unit adjacent to the upper side of the target recording unit
  • a prediction mode which is related to any one of a plurality of recording units.
  • the prediction mode decoding unit 2 Decodes the prediction mode from the encoding parameters as follows.
  • the reference prediction mode decoding unit 24 (1) decodes the flag from the encoded data, and (2) indicates that the flag matches the estimated prediction mode. Decoding the information from the data, (2-2) reading the prediction mode related to the recording unit indicated by the information from the prediction mode recording unit 11, and (2-3) the prediction mode related to the target recording unit from the read prediction mode. (3) When the flag indicates that it does not match the estimated prediction mode, the prediction mode for the target recording unit is determined by decoding the code.
  • FIG. 16A and 16B are diagrams for explaining the configuration of the bitstream.
  • FIG. 16A is a diagram illustrating the relationship among the target CU, the prediction unit PU, and the recording unit RU, and FIG. It is a figure which shows the example of a bit stream in the case of 16 pixels, (c) is a figure which shows the example of a bit stream in case prediction unit PU is 4x16 pixels.
  • the 16 ⁇ 16 pixel target CU includes 1 ⁇ 16 pixel prediction units PU1610a, 1610b, 1610c,..., 1613d, and includes four prediction units PU. As described above, 4 ⁇ 16 pixel recording units RUs 1620a, 1620b,..., 1620d are included.
  • the prediction mode of the prediction unit PU 1610a is P P0
  • the prediction mode of the prediction unit PU 1610b is P P1
  • the prediction mode of the prediction unit PU 1610c is P P2
  • the prediction mode of the prediction unit PU 1610d is P P3
  • mode is the P P15
  • the prediction mode of the recording unit RU1620a is P r0
  • the prediction mode of the recording unit RU1620b is P r1
  • the prediction mode of the recording unit RU1620c is P r2
  • the prediction mode of the recording unit RU1620d is assumed to be P r3 .
  • the values of P rk and P pl are prediction mode IDs.
  • the bit stream of the prediction mode of the target CU is P r0 , ⁇ P P0 , ⁇ P P1 , ⁇ P P2 , ⁇ P P3 , P r1 , ⁇ P P4 ,. P15 and so on.
  • ⁇ P P0 is prediction mode update information, and indicates a difference between the prediction mode of the recording unit RU to which the prediction unit PU belongs and the prediction mode of the prediction unit PU.
  • ⁇ P P0 the difference between P r0 and P P0 is shown.
  • the prediction mode update information is decoded only when the corresponding reference prediction mode is direction prediction. Therefore, it is omitted in the case of DC prediction or Planar prediction.
  • P r0 , P r1 Indicates a prediction mode in intra prediction
  • ⁇ P P0 , ⁇ P P1 , ⁇ P P2 ,... Indicate information for selecting either DC prediction or Planar prediction.
  • P r0 , P r1 Indicate directional prediction in intra prediction
  • ⁇ P P0 , ⁇ P P1 , ⁇ P P2 ,... Are decoded, but P r0 , P r1 ,.
  • P r1 When indicating Planar prediction, ⁇ P P0 , ⁇ P P1 , ⁇ P P2 ,... Are not decoded.
  • prediction unit PU is the same 4 ⁇ 16 pixels as the recording unit RU, as shown in (c) of FIG. 16, a bit stream of P r0 , P r1 , P r2 , P r3 is formed from the top.
  • the prediction mode update information is encoded and decoded.
  • the prediction mode update information decoding unit 25 decodes the prediction mode update information from the encoded data # 1 and notifies the prediction mode update information data # 25 indicating the decoded prediction mode update information to the prediction mode deriving unit 26 for prediction. It is.
  • the prediction mode deriving unit 26 for prediction uses prediction reference mode data # 24 acquired from the reference prediction mode decoding unit 24 and prediction mode update information data # 25 acquired from the prediction mode update information decoding unit 25.
  • the mode is derived and notified to the predicted image generation unit 17.
  • FIG. 17 is a diagram for explaining the process of deriving the prediction prediction mode
  • (a) is a diagram showing the correspondence between the prediction prediction mode and the reference prediction mode
  • (b) is the prediction mode. It is a figure which shows the content of update information.
  • the prediction prediction mode deriving unit 26 decodes the reference prediction mode P rk of the recording unit RU including the target prediction unit PU. Then, using the decoded P rk and ⁇ P Pl , the parameter s3 of the prediction mode for prediction is derived by the following equation.
  • S (P rk ) is a function that maps the prediction mode P rk to the prediction mode that indicates the same direction in a one-to-one correspondence.
  • U is determined by the prediction mode update information ⁇ P pl .
  • FIG. 17B shows a table 1701 indicating the relationship between the prediction mode update information ⁇ P pl and the corresponding code bit.
  • the sign bit when the prediction mode update information ⁇ P pl is “0” is “1”
  • the sign bit when the prediction mode update information ⁇ P pl is “ ⁇ 1” is “01x”
  • the prediction mode The sign bit when the update information ⁇ P pl is “ ⁇ 2” corresponds to “00x”.
  • the absolute value of the update information is truncated and unary encoded, and if the update information is non-zero, a sign code is added.
  • encoding may be performed using different variable-length encoding schemes, a variable-length encoding scheme that assigns a short code to update information having a small absolute value is preferable.
  • FIG. 18 is a flowchart showing a process flow of the prediction information decoding unit 15 ′.
  • the prediction information decoding unit 157 acquires the encoded data # 1 (S21)
  • the PU structure decoding unit 21 decodes the prediction unit PU structure of the target CU from the encoded data # 1 (S22).
  • the reference prediction mode decoding unit 24 sets the recording unit RU of the reference prediction mode in the target CU from the prediction unit PU structure decoded by the PU structure decoding unit 21 (S23).
  • the reference prediction mode decoding unit 24 decodes the reference prediction mode for each recording unit RU (S4) (S25).
  • the prediction mode update information decoding part 25 decodes prediction mode update information about each prediction unit (S26) (S27).
  • the prediction prediction mode deriving unit 26 derives a prediction prediction mode from the reference prediction mode decoded in step S25 and the prediction mode update information decoded in step S26 (S28).
  • the reference prediction mode decoding unit 24 records the decoded reference prediction mode in the prediction mode recording unit 11 (S30). Then, Steps S25 to S30 are performed for all the recording units (S31), and the prediction unit PU structure included in the target CU and the prediction mode for prediction of each prediction unit PU are output as prediction information (prediction mode information # 15) ( S32).
  • the above is the flow of processing in the prediction information decoding unit 15 '.
  • An edge-based prediction mode (DCIM mode) that determines a prediction direction based on an edge direction derived based on a pixel value of a decoded region adjacent to the target prediction unit is added to the prediction mode of the second embodiment described above. It may be a configuration.
  • a flag for selecting either edge-based prediction or the prediction mode (UIP mode) described in the second embodiment is included in the encoded data for each recording unit RU. Then, the reference prediction mode decoding unit 24 decodes the flag to determine whether it is the UIP mode or the DCIM mode. In the case of the UIP mode, the prediction information is decoded by the method of the second embodiment. On the other hand, in the DCIM mode, the prediction information is decoded by the following method.
  • the edge direction is derived based on the pixel value of the decoded area adjacent to the recording unit RU.
  • Prediction mode (s h ) that expresses the prediction direction closest to the edge direction derived in (1) above with high accuracy (for example, accuracy of prediction mode for prediction in Embodiment 2 (129 types)). Choose from. Let e1 be the value of the selected prediction mode.
  • the prediction mode update information P pl is added to the prediction mode e1 to derive the prediction mode for prediction of the target PU.
  • Prediction prediction mode s e1 + u (4)
  • the prediction mode ID (Pr) corresponding to the prediction direction s h ′ approximating the prediction mode e1 is derived by the following equation and recorded in the prediction mode recording unit.
  • S-1 (s h ′ ) is a function that maps the prediction direction sh ′ to the prediction mode ID in the same direction on a one-to-one basis.
  • the prediction mode decoded from the recording unit RU is the DC prediction mode or the Planar prediction mode
  • information indicating which prediction mode is applied to each prediction unit PU may be used as the prediction mode update information.
  • Both the DC prediction mode and the Planar prediction mode are predictions suitable for a flat region. Therefore, in the recording unit RU corresponding to the flat area, the coding efficiency can be improved by selectively switching to the preferred prediction mode of both predictions.
  • the direction mode when the direction mode is decoded as the prediction mode of the recording unit RU, information indicating which of the prediction mode and the DC mode to be applied to each prediction unit PU may be used as the prediction mode update information.
  • the prediction mode update information For example, in the case of a prediction unit PU of 16 ⁇ 1 pixels, there are many cases where an edge exists only in a partial region in a recording unit RU of 16 ⁇ 4 pixels. In such a case, encoding efficiency can be improved by selectively switching between the direction mode and the DC mode.
  • the prediction unit PU has a vertically long shape (such as 1 ⁇ 16 or 2 ⁇ 8), the prediction mode corresponding to the prediction direction in the vertical direction is selected, and the prediction unit PU has a horizontally long shape (16 ⁇ 1 or In the case of 8 ⁇ 2, etc., the prediction mode corresponding to the horizontal prediction direction may be included in the selection candidates based on the update information as a prediction mode with a high possibility of being selected.
  • a vertically long shape such as 1 ⁇ 16 or 2 ⁇ 8
  • the prediction mode corresponding to the horizontal prediction direction may be included in the selection candidates based on the update information as a prediction mode with a high possibility of being selected.
  • the present invention is not limited to the intra prediction mode, and is used for generating a predicted image that can be recorded in units smaller than the coding unit CU.
  • a method of making the size of the prediction unit PU and the recording unit RU different can also be applied to the parameter.
  • the present invention can be applied to estimated intra prediction mode selection information, residual information of intra prediction modes, motion vectors, motion vector residuals, estimated motion vector selection information, reference image selection information, reference image list selection information, and the like.
  • the accuracy of the reference prediction mode is higher than the accuracy of the prediction prediction mode in the configuration of “making the size of the recording unit larger than the size of the prediction unit” described in the first embodiment.
  • the configuration of “lower” is combined, the latter configuration does not necessarily need to be combined with the former configuration, and the single configuration is effective.
  • the reference prediction mode is used when the estimated value of the intra prediction mode is derived.
  • the intra prediction mode may be estimated using the prediction prediction mode instead of the reference prediction mode.
  • the estimated value may be derived based on the prediction prediction mode of the prediction unit PU adjacent on the left side and the reference prediction mode of the recording unit RU adjacent on the upper side.
  • the recording unit RU adjacent to the left side is decoded relatively recently compared to the recording unit RU adjacent to the upper side. Therefore, the capacity of the memory for recording the prediction prediction mode of the prediction unit PU adjacent on the left side is compared with the capacity of the memory for recording the prediction prediction mode of the prediction unit PU adjacent on the upper side. And few.
  • the accuracy of the estimated value of the prediction mode can be increased without greatly increasing the memory capacity.
  • the prediction unit PU adjacent to the left side or the upper side is in the same coding unit CU or LCU (TB) as the target prediction unit PU, the prediction prediction mode is used, otherwise
  • the intra prediction mode estimation value may be derived using the reference prediction mode of the recording unit RU adjacent on the left side or the upper side. Since the prediction units PU included in the same coding unit CU and LCU (TB) are decoded at relatively close timings, it is possible to improve the accuracy of the prediction mode estimation value without greatly increasing the memory capacity.
  • the size of the recording unit RU is 8 ⁇ 8 pixels.
  • the minimum width of the prediction unit is 4 pixels.
  • the position (xP, yP) of the upper left pixel of the target prediction unit is acquired.
  • the prediction unit including (xP, yP-1) is set as the upper adjacent prediction unit of the target prediction unit.
  • the upper adjacent recording unit is a recording unit including (xP, yP-1).
  • the motion vector is referred to in the recording unit. That is, it is only necessary to store the motion vector in the memory in units of recording in the LCU on one line of the target LCU.
  • the motion vector of the upper adjacent prediction unit is always referred to, it is necessary to hold the motion vector in the prediction unit in the LCU on one line of the target LCU. Therefore, when the width of the recording unit is larger than the minimum width of the prediction unit, the amount of line memory for holding the motion vector in the LCU on one line of the target LCU is reduced by estimating the motion vector by the above procedure. it can.
  • the above memory reduction effect can be obtained by referring to only the coordinates in the recording unit when referring to the motion vector.
  • the recording unit is 8 ⁇ 8
  • only one motion vector needs to be referred to per 8 ⁇ 8 area.
  • the recording position (xB ′, yB ′) of the motion vector belonging to the upper adjacent recording unit may be determined as follows.
  • the motion vector of the LCU on one line is recorded at a position of (N ⁇ 8, yP ⁇ 1) in a recording unit.
  • N is an integer of 0 or more.
  • one motion vector is recorded for every 8 pixels in the x-axis direction.
  • the recording position of the motion vector in the upper adjacent recording unit is the recording position of the motion vector at a position closest to the pixel one pixel above the upper left pixel of the target PU.
  • the recording position (xB ′, yB ′) of the motion vector belonging to the upper recording unit may be determined as follows.
  • the motion vector of the LCU on one line is recorded at the position of (N ⁇ 8, yP ⁇ 1) in the recording unit.
  • N is an integer of 0 or more.
  • one motion vector is recorded for every 8 pixels in the x-axis direction.
  • the recording position of the motion vector of the upper adjacent recording unit is the position of the quotient obtained by dividing the x coordinate of the pixel by the width of the recording unit with reference to the pixel one pixel above the upper left pixel of the target PU. , And the x coordinate position.
  • the recording position (xB ′, yB ′) of the motion vector belonging to the upper recording unit may be determined as follows.
  • yB ' yP-1
  • the motion vector of the LCU on one line is recorded at positions (N ⁇ 16, yP ⁇ 1) and (N ⁇ 16 ⁇ 1, yP ⁇ 1) in the recording unit.
  • N is an integer of 0 or more. In this case, one motion vector is recorded for every eight pixels in the x-axis direction.
  • the recording position of the motion vector of the upper adjacent recording unit is (N ⁇ 0) if the value of D is 0 or more and less than E with reference to the pixel one pixel above the upper left pixel of the target prediction unit. Referring to the motion vector recorded at the position 16, yP-1), if the value of D is greater than or equal to E and less than 2E, it is recorded at the position (N ⁇ 16-1, yP-1) Refers to the motion vector.
  • the estimated motion vector derived in the above example may be one of a plurality of estimated motion vector candidates. Further, the estimated motion vector may be directly used for motion compensation, or a motion vector obtained by adding a difference motion vector to the estimated motion vector may be used for motion compensation.
  • Embodiment 1 and Embodiment 2 described above the case where the reference prediction mode is used for derivation of the estimated value of the intra prediction mode has been described, but the present embodiment also applies when the reference prediction mode is used for other purposes. It is valid.
  • the present embodiment can be applied to any process that refers to an intra prediction mode that has been previously decoded in decoding order. For example, it can be applied to a case where a deblocking filter having an appropriate strength is applied after determining the continuity of the boundary between prediction units PU by referring to the intra prediction mode. In such a case, the memory capacity for recording the intra prediction mode can be reduced by using the reference prediction mode.
  • the moving picture decoding apparatus 1 and the moving picture encoding apparatus 2 described above can be used by being mounted on various apparatuses that perform moving picture transmission, reception, recording, and reproduction.
  • the moving image may be a natural moving image captured by a camera or the like, or may be an artificial moving image (including CG and GUI) generated by a computer or the like.
  • the moving picture decoding apparatus 1 and the moving picture encoding apparatus 2 described above can be used for transmission and reception of moving pictures.
  • FIG. 19A is a block diagram showing a configuration of a transmission apparatus A equipped with the moving picture encoding apparatus 2.
  • the transmitting apparatus A encodes a moving image, obtains encoded data, and modulates a carrier wave with the encoded data obtained by the encoding unit A1.
  • a modulation unit A2 that obtains a modulation signal by the transmission unit A2 and a transmission unit A3 that transmits the modulation signal obtained by the modulation unit A2.
  • the moving image encoding device 2 described above is used as the encoding unit A1.
  • the transmission apparatus A has a camera A4 that captures a moving image, a recording medium A5 that records the moving image, an input terminal A6 for inputting the moving image from the outside, as a supply source of the moving image that is input to the encoding unit A1. You may further provide image processing part A7 which produces
  • FIG. 19A illustrates a configuration in which the transmission apparatus A includes all of these, but a part of the configuration may be omitted.
  • the recording medium A5 may be a recording of a non-encoded moving image, or a recording of a moving image encoded using a recording encoding scheme different from the transmission encoding scheme. It may be a thing. In the latter case, a decoding unit (not shown) for decoding the encoded data read from the recording medium A5 according to the recording encoding method may be interposed between the recording medium A5 and the encoding unit A1.
  • FIG. 19B is a block diagram illustrating a configuration of the receiving device B on which the moving image decoding device 1 is mounted.
  • the receiving device B includes a receiving unit B1 that receives a modulated signal, a demodulating unit B2 that obtains encoded data by demodulating the modulated signal received by the receiving unit B1, and a demodulating unit.
  • a decoding unit B3 that obtains a moving image by decoding the encoded data obtained by B2.
  • the moving picture decoding apparatus 1 described above is used as the decoding unit B3.
  • the receiving apparatus B has a display B4 for displaying a moving image, a recording medium B5 for recording the moving image, and an output terminal for outputting the moving image as a supply destination of the moving image output from the decoding unit B3.
  • B6 may be further provided.
  • FIG. 19B illustrates a configuration in which the receiving apparatus B includes all of these, but some of them may be omitted.
  • the recording medium B5 may be for recording an unencoded moving image, or is encoded by a recording encoding method different from the transmission encoding method. May be.
  • an encoding unit (not shown) that encodes the moving image acquired from the decoding unit B3 in accordance with the recording encoding method may be interposed between the decoding unit B3 and the recording medium B5.
  • the transmission medium for transmitting the modulation signal may be wireless or wired.
  • the transmission mode for transmitting the modulated signal may be broadcasting (here, a transmission mode in which the transmission destination is not specified in advance) or communication (here, transmission in which the transmission destination is specified in advance). Refers to the embodiment). That is, the transmission of the modulation signal may be realized by any of wireless broadcasting, wired broadcasting, wireless communication, and wired communication.
  • a terrestrial digital broadcast broadcasting station (such as broadcasting equipment) / receiving station (such as a television receiver) is an example of a transmitting apparatus A / receiving apparatus B that transmits and receives modulated signals by wireless broadcasting.
  • a broadcasting station (such as broadcasting equipment) / receiving station (such as a television receiver) for cable television broadcasting is an example of a transmitting device A / receiving device B that transmits and receives a modulated signal by cable broadcasting.
  • a server workstation etc.
  • Client television receiver, personal computer, smart phone etc.
  • VOD Video On Demand
  • video sharing service using the Internet is a transmitting device for transmitting and receiving modulated signals by communication.
  • a / reception device B usually, either wireless or wired is used as a transmission medium in a LAN, and wired is used as a transmission medium in a WAN.
  • the personal computer includes a desktop PC, a laptop PC, and a tablet PC.
  • the smartphone also includes a multi-function mobile phone terminal.
  • the video sharing service client has a function of encoding a moving image captured by the camera and uploading it to the server. That is, the client of the video sharing service functions as both the transmission device A and the reception device B.
  • FIG. 20A is a block diagram showing a configuration of a recording apparatus C equipped with the moving picture decoding apparatus 1 described above.
  • the recording device C encodes a moving image to obtain encoded data, and writes the encoded data obtained by the encoding unit C1 to the recording medium M.
  • the moving image encoding device 2 described above is used as the encoding unit C1.
  • the recording medium M may be of a type built in the recording device C, such as (1) HDD (Hard Disk Drive) or SSD (Solid State Drive), or (2) SD memory. It may be of the type connected to the recording device C, such as a card or USB (Universal Serial Bus) flash memory, or (3) DVD (Digital Versatile Disc) or BD (Blu-ray Disc: registration) (Trademark) or the like may be mounted on a drive device (not shown) built in the recording apparatus C.
  • the recording apparatus C also serves as a moving image supply source to be input to the encoding unit C1, a camera C3 that captures moving images, an input terminal C4 for inputting moving images from the outside, and reception for receiving moving images.
  • a unit C5 and an image processing unit C6 that generates or processes an image may be further provided.
  • FIG. 20A illustrates a configuration in which the recording apparatus C includes all of these, but some of them may be omitted.
  • the receiving unit C5 may receive an unencoded moving image, or receives encoded data encoded by a transmission encoding method different from the recording encoding method. You may do. In the latter case, a transmission decoding unit (not shown) that decodes encoded data encoded by the transmission encoding method may be interposed between the reception unit C5 and the encoding unit C1.
  • Examples of such a recording device C include a DVD recorder, a BD recorder, and an HD (Hard Disk) recorder (in this case, the input terminal C4 or the receiving unit C5 is a main source of moving images).
  • a camcorder in this case, the camera C3 is a main source of moving images
  • a personal computer in this case, the receiving unit C5 or the image processing unit C6 is a main source of moving images
  • a smartphone this In this case, the camera C3 or the receiving unit C5 is a main source of moving images).
  • FIG. 20B is a block showing the configuration of the playback device D on which the above-described video decoding device 1 is mounted.
  • the playback device D obtains a moving image by decoding the read data D1 that reads the encoded data written on the recording medium M and the read data read by the read unit D1.
  • the moving picture decoding apparatus 1 described above is used as the decoding unit D2.
  • the recording medium M may be of a type built in the playback device D such as (1) HDD or SSD, or (2) such as an SD memory card or USB flash memory. It may be of a type connected to the playback device D, or (3) may be loaded into a drive device (not shown) built in the playback device D, such as DVD or BD. Good.
  • the playback device D has a display D3 for displaying a moving image, an output terminal D4 for outputting the moving image to the outside, and a transmitting unit for transmitting the moving image as a supply destination of the moving image output by the decoding unit D2.
  • D5 may be further provided.
  • FIG. 20B illustrates a configuration in which the playback apparatus D includes all of these, but some of the configurations may be omitted.
  • the transmission unit D5 may transmit a non-encoded moving image, or transmits encoded data encoded by a transmission encoding method different from the recording encoding method. You may do. In the latter case, an encoding unit (not shown) that encodes a moving image with a transmission encoding method may be interposed between the decoding unit D2 and the transmission unit D5.
  • Examples of such a playback device D include a DVD player, a BD player, and an HDD player (in this case, an output terminal D4 to which a television receiver or the like is connected is a main moving image supply destination).
  • a television receiver in this case, the display D3 is a main destination of moving images
  • a desktop PC in this case, the output terminal D4 or the transmission unit D5 is a main destination of moving images
  • Laptop type or tablet type PC in this case, display D3 or transmission unit D5 is the main video image supply destination
  • smartphone in this case, display D3 or transmission unit D5 is the main video image supply destination
  • Digital signage also referred to as an electronic signboard or an electronic bulletin board, and the display D3 or the transmission unit D5 is the main supply destination of moving images
  • Digital signage also referred to as an electronic signboard or an electronic bulletin board, and the display D3 or the transmission unit D5 is the main supply destination of moving images
  • each block of the moving image decoding apparatuses 1 and 1 ′ and the moving image encoding apparatus 2 particularly the CU decoding unit 10 (prediction information decoding unit 15 (PU structure decoding unit 21, prediction prediction mode decoding unit 22, reference) Prediction mode deriving unit 23), prediction residual decoding unit 16, prediction image generation unit 17, decoded image generation unit 18), prediction information decoding unit 15 ′ (reference prediction mode decoding unit 24, prediction mode update information decoding unit 25, Prediction prediction mode derivation unit 26), prediction information determination unit 31, reference prediction mode derivation unit 32, prediction residual encoding unit 34, prediction information encoding unit 35, prediction image generation unit 36, prediction residual decoding unit 37
  • the decoded image generation unit 38 and the encoded data generation unit 40 may be realized by hardware by a logic circuit formed on an integrated circuit (IC chip), or use a CPU (central processing unit). Sof It may be realized as a software.
  • the moving picture decoding apparatuses 1 and 1 ′ and the moving picture coding apparatus 2 include a CPU that executes instructions of a control program that realizes each function, a ROM (read only memory) that stores the program, and the program.
  • a RAM random access memory
  • a storage device such as a memory for storing the program and various data, and the like are provided.
  • An object of the present invention is to provide program codes (execution format program, intermediate code program, source program) of control programs for the video decoding devices 1, 1 ′ and the video encoding device 2 that are software for realizing the functions described above. Is recorded on the recording medium by the computer (or CPU or MPU (microprocessor unit)) supplied to the above-described moving picture decoding apparatus 1, 1 ′ and moving picture encoding apparatus 2. This can also be achieved by reading and executing the program code.
  • the recording medium examples include tapes such as a magnetic tape and a cassette tape, a magnetic disk such as a floppy (registered trademark) disk / hard disk, a CD-ROM (compact disk-read-only memory) / MO (magneto-optical) / Discs including optical discs such as MD (Mini Disc) / DVD (digital versatile disc) / CD-R (CD Recordable), IC cards (including memory cards) / optical cards, mask ROM / EPROM (erasable) Programmable read-only memory) / EEPROM (electrically erasable and programmable programmable read-only memory) / semiconductor memory such as flash ROM, or logic circuits such as PLD (Programmable logic device) and FPGA (Field Programmable Gate Array) be able to.
  • a magnetic disk such as a floppy (registered trademark) disk / hard disk
  • the moving picture decoding apparatuses 1, 1 'and the moving picture encoding apparatus 2 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network.
  • the communication network is not particularly limited as long as it can transmit the program code.
  • Internet intranet, extranet, LAN (local area network), ISDN (integrated area services digital area), VAN (value-added area network), CATV (community area antenna television) communication network, virtual area private network (virtual area private network), A telephone line network, a mobile communication network, a satellite communication network, etc. can be used.
  • the transmission medium constituting the communication network may be any medium that can transmit the program code, and is not limited to a specific configuration or type.
  • IEEE institute of electrical and electronic engineers 1394, USB, power line carrier, cable TV line, telephone line, ADSL (asynchronous digital subscriber loop) line, etc. wired such as IrDA (infrared data association) or remote control , Bluetooth (registered trademark), IEEE802.11 wireless, HDR (high data rate), NFC (Near field communication), DLNA (Digital Living Network Alliance), mobile phone network, satellite line, terrestrial digital network, etc.
  • IrDA infrared data association
  • Bluetooth registered trademark
  • IEEE802.11 wireless wireless
  • HDR high data rate
  • NFC Near field communication
  • DLNA Digital Living Network Alliance
  • mobile phone network satellite line, terrestrial digital network, etc.
  • the present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.
  • An image decoding apparatus uses a region obtained by dividing an encoding unit as a prediction unit, generates a prediction image for each prediction unit with reference to a prediction parameter, and decodes a prediction residual decoded from encoded data
  • the prediction parameter decoding means for at least a part of the prediction units
  • a prediction parameter decoding unit configured to estimate a prediction parameter related to a unit from a decoded prediction parameter related to a prediction unit included in an adjacent coding unit adjacent to the coding unit to which the prediction unit belongs, and at least a part of the coding unit Out of the prediction parameters for each prediction unit included in the coding unit, which are adjacent to the coding unit.
  • the number of reference prediction parameters that can be referred to by the prediction parameter decoding means to estimate the prediction parameters for each prediction unit included in the adjacent coding unit is the adjacent code among the prediction units included in the coding unit. It is characterized in that it is set smaller than the number of prediction units adjacent to the conversion unit.
  • the number of reference prediction parameters referred to when the prediction parameter decoding unit estimates the prediction parameter of the prediction unit is included in the adjacent coding unit adjacent to the coding unit to which the prediction unit belongs. , Less than the number of prediction units adjacent to the coding unit. Therefore, the number of necessary reference parameters can be reduced as compared with the case where the prediction parameters are estimated by referring to the same number of reference parameters as the number of prediction units adjacent to the coding unit.
  • the amount of data necessary for the prediction parameter decoding means to estimate the prediction parameter of the prediction unit can be reduced, and the efficiency of the process of estimating the prediction parameter can be improved.
  • the number of necessary reference prediction parameters is smaller than when estimating prediction parameters by referring to the same number of reference parameters as the number of prediction units adjacent to the encoding unit, It is possible to reduce the memory capacity required for recording the prediction parameter.
  • the reference prediction parameter does not increase by the same amount as the number of prediction units.
  • the amount of data necessary for estimating the prediction parameter can be reduced.
  • the prediction parameter decoding unit records, for the partial coding unit, only the reference prediction parameter among the prediction parameters for each prediction unit included in the coding unit in the memory. You may do.
  • the reference prediction parameter since only the reference prediction parameter is recorded in the memory, it is adjacent to the encoding unit included in the adjacent encoding unit adjacent to the encoding unit to which the prediction unit for estimating the prediction parameter belongs. Compared with the case where all the prediction parameters of a prediction unit are recorded, the required memory capacity can be reduced.
  • the encoded data includes a prediction parameter code obtained by encoding a reference prediction parameter for each of the partial encoding units, and each prediction included in the encoding unit.
  • a difference code obtained by encoding a difference between a prediction parameter related to a unit and the reference prediction parameter is included, and the prediction parameter decoding unit is configured to decode the prediction parameter code.
  • a prediction parameter related to each prediction unit included in the partial coding unit may be derived by adding a difference obtained by decoding the difference code to the prediction parameter.
  • the prediction parameter decoding means derives the prediction parameter related to the prediction unit by adding the reference prediction parameter and the difference between the reference prediction parameter and the prediction parameter related to the prediction unit.
  • the prediction image is generated by intra prediction
  • the prediction parameter indicates a prediction mode in intra prediction
  • the prediction parameter decoding means is for the reference
  • the difference code may be decoded.
  • the difference is decoded when the reference prediction parameter indicates the direction prediction in the intra prediction.
  • the difference code may be included in the encoded data only when necessary, and the encoding efficiency can be improved.
  • the predicted image is generated by intra prediction
  • the prediction parameter indicates a prediction mode in intra prediction
  • the parameter decoding means includes the reference prediction
  • the difference code may be decoded.
  • the difference when the reference prediction mode indicates edge-based prediction, the difference is decoded.
  • the difference code since the difference is decoded in the case of edge-based prediction in which the accuracy of prediction is increased by the difference, the difference code may be included in the encoded data only when necessary, and the encoding efficiency can be improved.
  • the predicted image is generated by intra prediction
  • the prediction parameter indicates a prediction mode in intra prediction
  • the encoded data includes the part of the encoded data.
  • the prediction mode code obtained by encoding the reference prediction mode that is the reference prediction parameter and the prediction mode that is the prediction parameter for each prediction unit included in the encoding unit are the surroundings of the prediction image.
  • a selection code obtained by encoding selection information which is information for selecting either DC prediction or Planar prediction for generating a prediction image from the average of the pixel values of the pixels
  • the prediction parameter decoding means Includes at least some of the encoding units from the reference prediction parameters obtained by decoding the encoded data.
  • the selection code for selecting one of the prediction methods suitable for the flat region is decoded.
  • the prediction parameter decoding means includes, for the part of the coding units, a reference prediction parameter to be referred to in order to estimate a prediction parameter related to the prediction unit, the part of the coding units. May be derived from the prediction parameters for each prediction unit included in the adjacent coding unit adjacent to.
  • the prediction parameter for each prediction unit belonging to the adjacent coding unit adjacent to the coding unit to which the prediction unit for estimating the prediction parameter by referring to the reference prediction parameter belongs Derived from Thereby, the prediction parameter for reference can be derived appropriately.
  • the predicted image is generated by intra prediction
  • the prediction parameter indicates a prediction mode in intra prediction
  • the prediction parameter decoding means For a coding unit, among the decoded prediction modes for each prediction unit included in the adjacent coding unit adjacent to the coding unit, a prediction mode with the smallest prediction mode ID may be used as a reference prediction parameter. Good.
  • the prediction mode for each prediction unit belonging to the adjacent coding unit adjacent to the coding unit to which the prediction unit for estimating the prediction mode by referring to the reference prediction mode belongs The prediction mode with the smallest prediction mode ID is selected. Since the prediction mode with the smallest prediction mode ID is the prediction mode most likely to be selected, this makes it possible to set a more appropriate prediction mode as the reference prediction mode.
  • the accuracy of the reference prediction parameter recorded in the memory may be set lower than the accuracy of the prediction parameter decoded by the parameter decoding means.
  • the reference prediction parameter with lower accuracy than the prediction parameter decoded by the prediction parameter decoding means is recorded.
  • a prediction parameter with low accuracy has a smaller amount of data than a prediction parameter with high accuracy. Therefore, the capacity of the recording memory can be reduced while taking into account the generation of a highly accurate predicted image.
  • the predicted image is generated by intra prediction, and the prediction parameter indicates a prediction mode in intra prediction,
  • the accuracy of the prediction mode recorded in the memory may be set lower than the accuracy of the prediction mode decoded by the prediction parameter decoding unit.
  • the image encoding apparatus uses a region obtained by dividing an encoding unit as a prediction unit, generates a prediction image for each prediction unit with reference to a prediction parameter, and subtracts the generated prediction image from an original image
  • a prediction parameter for each prediction unit is set to an adjacent code adjacent to the encoding unit to which the prediction unit belongs.
  • the number of reference prediction parameters that can be referred to by the prediction parameter encoding means to estimate a prediction parameter for each prediction unit included in an adjacent coding unit adjacent to the coding unit is Of the prediction units included in the coding unit, the prediction unit is set to be smaller than the number of prediction units adjacent to the adjacent coding unit.
  • the number of reference prediction parameters referred to by the prediction parameter encoding means is included in the adjacent encoding unit adjacent to the encoding unit to which the prediction unit whose prediction parameter is estimated by the estimated prediction parameter belongs. Less than the number of prediction units adjacent to the coding unit. Therefore, the number of necessary reference parameters can be reduced as compared to the case where the same number of reference parameters as the number of prediction units adjacent to the coding unit are referred to.
  • the reference prediction parameters are recorded. Can reduce the amount of memory required.
  • the reference prediction parameter does not increase by the same amount as the number of prediction units.
  • the amount of data required to derive the estimated prediction parameter can be reduced.
  • the present invention can be suitably applied to a decoding device that decodes encoded data and an encoding device that generates encoded data. Further, the present invention can be suitably applied to the data structure of encoded data generated by the encoding device and referenced by the decoding device.
  • Video decoding device (image decoding device) 2
  • Video encoding device (image encoding device) 21
  • PU structure decoding unit 22
  • Prediction mode decoding unit for prediction (prediction parameter decoding means) 23
  • reference prediction mode deriving unit 24
  • reference prediction mode decoding unit 25
  • prediction mode update information decoding unit 26
  • prediction prediction mode deriving unit 32
  • reference prediction mode deriving unit 40 encoded data generation unit (prediction parameter encoding means)

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

A motion video decoding device (1) decodes, from encoded data (#1), prediction parameters related to each of the prediction units. In order to predict, among prediction parameters related to each of the prediction units included in an encoding unit, prediction parameters related to each of the prediction units included in an encoding unit adjacent to the aforementioned encoding unit, the number of reference prediction parameters that can be referred to by a prediction mode decoding unit (22) is set to be less than the number of prediction units adjacent to the above-mentioned adjacent encoding unit, among the prediction units included in the encoding unit.

Description

画像復号装置、および画像符号化装置Image decoding apparatus and image encoding apparatus
 本発明は、符号化データを復号する画像復号装置、および、符号化データを生成する画像符号化装置に関する。 The present invention relates to an image decoding device that decodes encoded data, and an image encoding device that generates encoded data.
 動画像を効率的に伝送または記録するために、動画像を符号化することによって符号化データを生成する動画像符号化装置(画像符号化装置)、および、当該符号化データを復号することによって復号画像を生成する動画像復号装置(画像復号装置)が用いられている。具体的な動画像符号化方式としては、例えば、H.264/MPEG-4.AVC(非特許文献1)、VCEG(Video Coding Expert Group)における共同開発用コーデックであるKTAソフトウェアに採用されている方式、TMuC(Test Model under Consideration)ソフトウェアに採用されている方式、およびその後継コーデックであるWorking Draft 1 of High-Efficiency Video Coding(非特許文献2、以下、HEVC WD1とも呼ぶ)に採用されている方式などが挙げられる。 In order to efficiently transmit or record a moving image, a moving image encoding device (image encoding device) that generates encoded data by encoding the moving image, and decoding the encoded data A video decoding device (image decoding device) that generates a decoded image is used. As a specific moving picture encoding method, for example, H.264 is used. H.264 / MPEG-4. A method adopted in KTA software which is a codec for joint development in AVC (Non-patent Document 1) and VCEG (Video Coding Expert Group), a method adopted in TMuC (Test Model Under Consulation) software, and its successor codec And the method employed in WorkingWorkDraft 1 of High-Efficiency Video Coding (Non-Patent Document 2, hereinafter also referred to as HEVC WD1).
 このような符号化方式において、動画像を構成する画像(ピクチャ)は、画像を分割することにより得られるスライス、スライスを分割することにより得られる符号化単位(マクロブロックまたはコーディングユニット(CU:Coding Unit)と呼ばれることもある)、および、符号化単位を分割することより得られるブロックおよびパーティションからなる階層構造により管理され、普通、ブロックごとに符号化される。 In such a coding system, an image (picture) constituting a moving image includes a slice obtained by dividing the image, a coding unit obtained by dividing the slice (a macroblock or a coding unit (CU: Coding)). It is also managed by a hierarchical structure composed of blocks and partitions obtained by dividing an encoding unit, and is normally encoded block by block.
 また、このような符号化方式においては、通常、入力画像を符号化/復号することによって得られる局所復号画像に基づいて予測画像が生成され、当該予測画像を入力画像(原画像)から減算して得られる予測残差(「差分画像」または「残差画像」と呼ぶこともある)が符号化される。また、予測画像の生成方法としては、画面間予測(インター予測)、および、画面内予測(イントラ予測)が挙げられる。 In such an encoding method, a predicted image is usually generated based on a locally decoded image obtained by encoding / decoding an input image, and the predicted image is subtracted from the input image (original image). The prediction residual (which may be referred to as “difference image” or “residual image”) is encoded. In addition, examples of the method for generating a predicted image include inter-screen prediction (inter prediction) and intra-screen prediction (intra prediction).
 インター予測においては、復号済みのフレームを参照フレームとして、動きベクトルを用いた動き補償を適用することによって、復号中のフレーム内の予測画像が予測単位毎に生成される。 In inter prediction, a predicted image in a frame being decoded is generated for each prediction unit by applying motion compensation using a motion vector with the decoded frame as a reference frame.
 一方、イントラ予測においては、復号中のフレームの復号済領域に基づいて、復号中のフレーム内の予測画像が予測単位毎に生成される。H.264/MPEG-4.AVCに用いられているイントラ予測の一例としては、予測単位(例えば、パーティション)毎に、(1)予め定められた予測モード群から何れかの予測モードを選択し、(2)復号済領域の画素値を選択した予測モードに対応する外挿方向(予測方向)に外挿することによって、該予測単位上の画素値を生成する方法(「基本予測」とも呼ぶことがある)が挙げられる。 On the other hand, in intra prediction, a predicted image in a frame being decoded is generated for each prediction unit based on a decoded area of the frame being decoded. H. H.264 / MPEG-4. As an example of intra prediction used in AVC, for each prediction unit (for example, partition), (1) one of the prediction modes is selected from a predetermined prediction mode group, and (2) the decoded area is selected. There is a method of generating a pixel value on the prediction unit by extrapolating the pixel value in an extrapolation direction (prediction direction) corresponding to the selected prediction mode (sometimes referred to as “basic prediction”).
 そして、非特許文献3では、イントラ予測にて上記予測画像を生成する予測単位のサイズについて、それまでのサイズ(32×32、16×16、8×8、4×4画素)に加え、SDIP(Short Distance Intra Prediction)と呼ばれる32×8、16×4、8×2、16×1、8×32、4×16、2×8、1×16画素のサイズの予測単位を用いることが記載されている。 In Non-Patent Document 3, regarding the size of the prediction unit for generating the predicted image by intra prediction, in addition to the previous size (32 × 32, 16 × 16, 8 × 8, 4 × 4 pixels), SDIP It is described that a prediction unit having a size of 32 × 8, 16 × 4, 8 × 2, 16 × 1, 8 × 32, 4 × 16, 2 × 8, and 1 × 16 pixels called (Short Distance Intra Prediction) is used. Has been.
 予測画像の生成においては、先に処理した予測画像の予測モードから対象となる予測単位の予測モードを推定して予測画像を生成する場合がある。したがって、予測画像の生成に用いた予測モードは、後の予測画像の生成のために記録しておく必要がある。特に、対象となる予測単位の予測モードを、対象となる予測単位の上辺に接する予測単位の予測モードから推定する場合があるので、少なくとも対象となる予測単位の上辺に接する予測単位の予測モードについては、記録しておく必要がある。すなわち、予測画像を生成済みの予測単位の予測モードは、該予測単位の下側に接する予測単位の予測画像が生成されるまでは記録しておく必要がある。換言すれば、少なくとも1フレームの1ライン分の予測単位の予測モードは記録しておく必要がある。 In the generation of a prediction image, there is a case where a prediction image is generated by estimating the prediction mode of the target prediction unit from the prediction mode of the prediction image processed earlier. Therefore, the prediction mode used for generating the predicted image needs to be recorded for generating a predicted image later. In particular, since the prediction mode of the target prediction unit may be estimated from the prediction mode of the prediction unit that touches the upper side of the target prediction unit, at least the prediction mode of the prediction unit that touches the upper side of the target prediction unit Should be recorded. That is, the prediction mode of the prediction unit for which the prediction image has been generated needs to be recorded until the prediction image of the prediction unit in contact with the lower side of the prediction unit is generated. In other words, it is necessary to record the prediction mode of the prediction unit for one line of at least one frame.
 しかしながら、予測単位のサイズが小さくなると、1ライン分の予測単位の数が増え、記録する予測モードの数が増えてしまう。よって、予測モードを記録するために必要なメモリの容量が増加してしまう。 However, when the size of the prediction unit is reduced, the number of prediction units for one line increases and the number of prediction modes to be recorded increases. Therefore, the memory capacity necessary for recording the prediction mode increases.
 また、予測精度を向上させるためには、イントラ予測の予測モードで表現可能な予測方向の数を増やすということが考えられる。しかしながら、予測モードで表現可能な予測方向の数を増やした場合、予測モードを表現するためのデータ量が増大するので、予測モードを記録するために必要なメモリの容量が増加してしまう。 Also, in order to improve the prediction accuracy, it is conceivable to increase the number of prediction directions that can be expressed in the prediction mode of intra prediction. However, when the number of prediction directions that can be expressed in the prediction mode is increased, the amount of data for expressing the prediction mode increases, so that the memory capacity required to record the prediction mode increases.
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、予測精度を向上させつつ、必要なデータ量の増加を抑制する画像復号装置等を実現することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to realize an image decoding apparatus or the like that suppresses an increase in necessary data amount while improving prediction accuracy.
 上記課題を解決するために、本発明に係る動画像復号装置は、符号化単位を分割して得られる領域を予測単位とし、予測パラメータを参照して予測単位ごとに予測画像を生成するとともに、符号化データから復号した予測残差に上記予測画像を加算して復号画像を生成する動画像復号装置において、上記符号化データから各予測単位に関する予測パラメータを復号する予測パラメータ復号手段であって、少なくとも一部の予測単位について、上記予測単位に関する予測パラメータを、上記予測単位の上側に隣接する上隣接予測単位が、該予測単位が属するツリーブロックに属する場合、上記上隣接予測単位に関する復号済みの予測パラメータから推定し、上記上隣接予測単位が、上記予測単位が属するツリーブロックに属さない場合、該予測単位の上側に隣接する記録単位に関する復号済みの予測パラメータから推定する予測パラメータ復号手段を備えていることを特徴としている。 In order to solve the above problems, the video decoding device according to the present invention uses a region obtained by dividing a coding unit as a prediction unit, generates a prediction image for each prediction unit with reference to a prediction parameter, In a video decoding device that generates a decoded image by adding the prediction image to a prediction residual decoded from encoded data, a prediction parameter decoding unit that decodes a prediction parameter for each prediction unit from the encoded data, For at least a part of the prediction units, the prediction parameter related to the prediction unit is decoded when the upper adjacent prediction unit adjacent to the upper side of the prediction unit belongs to the tree block to which the prediction unit belongs. If the upper neighboring prediction unit is estimated from a prediction parameter and does not belong to the tree block to which the prediction unit belongs, the prediction unit Is characterized by a prediction parameter decoding means for estimating a prediction parameter of the decoded and a recording unit which is adjacent to the upper side of the unit.
 上記の構成によれば、上隣接予測単位が、予測の対象となっている予測単位が属するツリーブロックに属さない場合、該予測単位の上側に隣接する記録単位に関する復号済みの予測パラメータから推定するので、記録単位で予測パラメータを保持しておけばよく、予測パラメータを保持するためのメモリ量を削減することができる。 According to the above configuration, when the upper adjacent prediction unit does not belong to the tree block to which the prediction unit to be predicted belongs, estimation is performed from the decoded prediction parameters related to the recording unit adjacent to the upper side of the prediction unit. Therefore, it is only necessary to hold the prediction parameter in the recording unit, and the amount of memory for holding the prediction parameter can be reduced.
 上記課題を解決するために、本発明に係る画像復号装置は、符号化単位を分割して得られる領域を予測単位とし、予測パラメータを参照して予測単位ごとに予測画像を生成するとともに、符号化データから復号した予測残差に上記予測画像を加算して復号画像を生成する画像復号装置において、上記符号化データから各予測単位に関する予測パラメータを復号する予測パラメータ復号手段であって、少なくとも一部の予測単位について、該予測単位に関する予測パラメータを、該予測単位が属する符号化単位に隣接する隣接符号化単位に含まれる予測単位に関する復号済みの予測パラメータから推定する予測パラメータ復号手段を備え、少なくとも一部の符号化単位について、該符号化単位に含まれる各予測単位に関する予測パラメータのうち、該符号化単位に隣接する隣接符号化単位に含まれる各予測単位に関する予測パラメータを推定するために上記予測パラメータ復号手段により参照され得る参照用予測パラメータの数が、該符号化単位に含まれる予測単位のうち、上記隣接符号化単位に隣接する予測単位の数よりも小さく設定されている、ことを特徴としている。 In order to solve the above problems, an image decoding apparatus according to the present invention uses a region obtained by dividing a coding unit as a prediction unit, generates a prediction image for each prediction unit with reference to a prediction parameter, In the image decoding device for generating a decoded image by adding the prediction image to the prediction residual decoded from the encoded data, prediction parameter decoding means for decoding a prediction parameter for each prediction unit from the encoded data, comprising: A prediction parameter decoding unit that estimates a prediction parameter related to the prediction unit from a decoded prediction parameter related to a prediction unit included in an adjacent coding unit adjacent to the coding unit to which the prediction unit belongs, For at least some coding units, the prediction parameter of each prediction unit included in the coding unit That is, the number of reference prediction parameters that can be referred to by the prediction parameter decoding means in order to estimate a prediction parameter for each prediction unit included in an adjacent coding unit adjacent to the coding unit is included in the coding unit. The prediction unit is set to be smaller than the number of prediction units adjacent to the adjacent coding unit.
 上記の構成によれば、予測パラメータ復号手段が予測単位の予測パラメータを推定する場合に参照する参照用予測パラメータの数は、該予測単位が属する符号化単位に隣接する隣接符号化単位に含まれる、該符号化単位と隣接している予測単位の数よりも少なくなる。したがって、符号化単位と隣接している予測単位の数と同じ数の参照用パラメータを参照して予測パラメータを推定する場合と比較して、必要とする参照用パラメータの数を減らすことができる。 According to the above configuration, the number of reference prediction parameters referred to when the prediction parameter decoding unit estimates the prediction parameter of the prediction unit is included in the adjacent coding unit adjacent to the coding unit to which the prediction unit belongs. , Less than the number of prediction units adjacent to the coding unit. Therefore, the number of necessary reference parameters can be reduced as compared with the case where the prediction parameters are estimated by referring to the same number of reference parameters as the number of prediction units adjacent to the coding unit.
 これにより、予測パラメータ復号手段が予測単位の予測パラメータを推定するために必要なデータ量を減らすことができ、予測パラメータを推定する処理の効率を向上させることができる。 Thereby, the amount of data necessary for the prediction parameter decoding means to estimate the prediction parameter of the prediction unit can be reduced, and the efficiency of the process of estimating the prediction parameter can be improved.
 また、符号化単位と隣接している予測単位の数と同じ数の参照用パラメータを参照して予測パラメータを推定する場合と比較して、必要な参照用予測パラメータの数が少ないので、参照用予測パラメータを記録する場合に必要なメモリの容量を減らすことができる。 In addition, since the number of necessary reference prediction parameters is smaller than when estimating prediction parameters by referring to the same number of reference parameters as the number of prediction units adjacent to the encoding unit, It is possible to reduce the memory capacity required for recording the prediction parameter.
 また、予測精度を向上させるために予測単位を小さくして、その数が増えたとしても、予測単位の数と同じ分、参照用予測パラメータが増えることはないので、予測精度を向上させつつ、予測パラメータを推定するために必要なデータ量を減らすことができる。 In addition, even if the number of prediction units is reduced and the number of prediction units is increased in order to improve the prediction accuracy, the reference prediction parameter does not increase by the same amount as the number of prediction units. The amount of data necessary for estimating the prediction parameter can be reduced.
 上記課題を解決するために、本発明に係る画像符号化装置は、符号化単位を分割して得られる領域を予測単位とし、予測パラメータを参照して予測単位ごとに予測画像を生成し、生成した予測画像を原画像から減算した予測残差を符号化して符号化データを出力する画像符号化装置において、少なくとも一部の符号化単位において、各予測単位に関する予測パラメータを、該予測単位が属する符号化単位に隣接する隣接符号化単位に含まれる予測単位に関する復号済みの予測パラメータから推定するとともに、該予測単位に関する予測パラメータを、該予測パラメータが上記推定により得られた推定予測パラメータと一致しない場合に限って符号化する予測パラメータ符号化手段を備え、少なくとも一部の符号化単位について、該符号化単位に含まれる各予測単位に関する予測パラメータのうち、該符号化単位に隣接する隣接符号化単位に含まれる各予測単位に関する予測パラメータを推定するために上記予測パラメータ符号化手段により参照され得る参照用予測パラメータの数が、該符号化単位に含まれる予測単位のうち、上記隣接符号化単位に隣接する予測単位の数よりも小さく設定されている、ことを特徴としている。 In order to solve the above problems, an image encoding apparatus according to the present invention generates a prediction image for each prediction unit by referring to a prediction parameter, using a region obtained by dividing the encoding unit as a prediction unit, In an image coding apparatus that encodes a prediction residual obtained by subtracting a predicted image that has been subtracted from an original image and outputs encoded data, the prediction unit belongs to a prediction parameter related to each prediction unit in at least some of the coding units. Estimating from the prediction parameters already decoded for the prediction unit included in the adjacent coding unit adjacent to the coding unit, and the prediction parameter for the prediction unit does not match the estimated prediction parameter obtained by the above estimation Prediction parameter encoding means for encoding only in some cases, and for at least some of the encoding units, Prediction prediction that can be referred to by the prediction parameter encoding means to estimate a prediction parameter related to each prediction unit included in an adjacent coding unit adjacent to the coding unit among prediction parameters related to each prediction unit included in the prediction unit The number of parameters is set to be smaller than the number of prediction units adjacent to the adjacent coding unit among the prediction units included in the coding unit.
 上記の構成によれば、予測パラメータ符号化手段により参照される参照用予測パラメータの数は、推定予測パラメータにより予測パラメータが推定される予測単位が属する符号化単位に隣接する隣接符号化単位に含まれる、該符号化単位と隣接している予測単位の数よりも少なくなる。したがって、符号化単位と隣接している予測単位の数と同じ数の参照用パラメータを参照する場合と比較して、必要とする参照用パラメータの数を減らすことができる。 According to the above configuration, the number of reference prediction parameters referred to by the prediction parameter encoding means is included in the adjacent encoding unit adjacent to the encoding unit to which the prediction unit whose prediction parameter is estimated by the estimated prediction parameter belongs. Less than the number of prediction units adjacent to the coding unit. Therefore, the number of necessary reference parameters can be reduced as compared to the case where the same number of reference parameters as the number of prediction units adjacent to the coding unit are referred to.
 これにより、必要となる参照用予測パラメータのデータ量を減らすことができ、処理の効率を向上させることができる。 This makes it possible to reduce the amount of required reference prediction parameter data and improve the processing efficiency.
 また、符号化単位と隣接している予測単位の数と同じ数の参照用パラメータを参照する場合と比較して、必要な参照用予測パラメータの数が少ないので、参照用予測パラメータを記録する場合に必要なメモリの容量を減らすことができる。 In addition, since the number of reference prediction parameters required is smaller than when referring to the same number of reference parameters as the number of prediction units adjacent to the encoding unit, the reference prediction parameters are recorded. Can reduce the amount of memory required.
 また、予測精度を向上させるために予測単位を小さくして、その数が増えたとしても、予測単位の数と同じ分、参照用予測パラメータが増えることはないので、予測精度を向上させつつ、推定予測パラメータを導出するために必要なデータ量を減らすことができる。 In addition, even if the number of prediction units is reduced and the number of prediction units is increased in order to improve the prediction accuracy, the reference prediction parameter does not increase by the same amount as the number of prediction units. The amount of data required to derive the estimated prediction parameter can be reduced.
 以上のように、本発明に係る画像復号装置は、符号化データから各予測単位に関する予測パラメータを復号する予測パラメータ復号手段であって、少なくとも一部の予測単位について、該予測単位に関する予測パラメータを、該予測単位が属する符号化単位に隣接する隣接符号化単位に含まれる予測単位に関する復号済みの予測パラメータから推定する予測パラメータ復号手段を備え、少なくとも一部の符号化単位について、該符号化単位に含まれる各予測単位に関する予測パラメータのうち、該符号化単位に隣接する隣接符号化単位に含まれる各予測単位に関する予測パラメータを推定するために上記予測パラメータ復号手段により参照され得る参照用予測パラメータの数が、該符号化単位に含まれる予測単位のうち、上記隣接符号化単位に隣接する予測単位の数よりも小さく設定されている構成である。 As described above, the image decoding apparatus according to the present invention is a prediction parameter decoding unit that decodes a prediction parameter related to each prediction unit from encoded data, and the prediction parameter related to the prediction unit is set for at least some of the prediction units. A prediction parameter decoding unit that estimates from a decoded prediction parameter related to a prediction unit included in an adjacent coding unit adjacent to the coding unit to which the prediction unit belongs, and at least a part of the coding unit includes the coding unit Prediction parameters that can be referred to by the prediction parameter decoding means in order to estimate a prediction parameter for each prediction unit included in an adjacent coding unit adjacent to the coding unit among the prediction parameters for each prediction unit included in the prediction unit Of the prediction unit included in the coding unit is the adjacent coding unit. Is a configuration that is set smaller than the number of prediction units adjacent to.
 これにより、予測パラメータ復号手段が予測単位の予測パラメータを推定するために必要なデータ量を減らすことができ、予測パラメータを推定する処理の効率を向上させることができるという効果を奏する。 Thereby, it is possible to reduce the amount of data necessary for the prediction parameter decoding means to estimate the prediction parameter of the prediction unit, and to improve the efficiency of the process of estimating the prediction parameter.
 また、符号化単位と隣接している予測単位の数と同じ数の参照用パラメータを参照して予測パラメータを推定する場合と比較して、必要な参照用予測パラメータの数が少ないので、参照用予測パラメータを記録する場合に必要なメモリの容量を減らすことができるという効果を奏する。 In addition, since the number of necessary reference prediction parameters is smaller than when estimating prediction parameters by referring to the same number of reference parameters as the number of prediction units adjacent to the encoding unit, There is an effect that the memory capacity required for recording the prediction parameter can be reduced.
 また、予測精度を向上させるために予測単位を小さくして、その数が増えたとしても、予測単位の数と同じ分、参照用予測パラメータが増えることはないので、予測精度を向上させつつ、予測パラメータを推定するために必要なデータ量を減らすことができるという効果を奏する。 In addition, even if the number of prediction units is reduced and the number of prediction units is increased in order to improve the prediction accuracy, the reference prediction parameter does not increase by the same amount as the number of prediction units. There is an effect that the amount of data necessary to estimate the prediction parameter can be reduced.
 また、本発明に係る画像符号化装置は、各予測単位に関する予測パラメータを、該予測単位が属する符号化単位に隣接する隣接符号化単位に含まれる予測単位に関する復号済みの予測パラメータから推定するとともに、該予測単位に関する予測パラメータを、該予測パラメータが上記推定により得られた推定予測パラメータと一致しない場合に限って符号化する予測パラメータ符号化手段を備え、少なくとも一部の符号化単位について、該符号化単位に含まれる各予測単位に関する予測パラメータのうち、該符号化単位に隣接する隣接符号化単位に含まれる各予測単位に関する予測パラメータを推定するために上記予測パラメータ符号化手段により参照され得る参照用予測パラメータの数が、該符号化単位に含まれる予測単位のうち、上記隣接符号化単位に隣接する予測単位の数よりも小さく設定されている構成である。 In addition, the image coding apparatus according to the present invention estimates a prediction parameter related to each prediction unit from a decoded prediction parameter related to a prediction unit included in an adjacent coding unit adjacent to the coding unit to which the prediction unit belongs. , Comprising prediction parameter encoding means for encoding the prediction parameter relating to the prediction unit only when the prediction parameter does not match the estimated prediction parameter obtained by the estimation, and for at least some of the encoding units, Among the prediction parameters related to each prediction unit included in the coding unit, the prediction parameter encoding means may be referred to in order to estimate the prediction parameter related to each prediction unit included in the adjacent coding unit adjacent to the coding unit. Of the prediction units included in the coding unit, the number of reference prediction parameters is the above Is a configuration that is set smaller than the number of prediction units adjacent to the contact coding units.
 これにより、必要となる参照用予測パラメータのデータ量を減らすことができ、処理の効率を向上させることができるという効果を奏する。 Thereby, it is possible to reduce the data amount of the required reference prediction parameter and to improve the processing efficiency.
 また、符号化単位と隣接している予測単位の数と同じ数の参照用パラメータを参照する場合と比較して、必要な参照用予測パラメータの数が少ないので、参照用予測パラメータを記録する場合に必要なメモリの容量を減らすことができるという効果を奏する。 In addition, since the number of reference prediction parameters required is smaller than when referring to the same number of reference parameters as the number of prediction units adjacent to the encoding unit, the reference prediction parameters are recorded. It is possible to reduce the memory capacity required for the operation.
 また、予測精度を向上させるために予測単位を小さくして、その数が増えたとしても、予測単位の数と同じ分、参照用予測パラメータが増えることはないので、予測精度を向上させつつ、推定予測パラメータを導出するために必要なデータ量を減らすことができるという効果を奏する。 In addition, even if the number of prediction units is reduced and the number of prediction units is increased in order to improve the prediction accuracy, the reference prediction parameter does not increase by the same amount as the number of prediction units. There is an effect that the amount of data necessary for deriving the estimated prediction parameter can be reduced.
本発明の実施の形態に係る動画像復号装置の予測情報復号部の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the prediction information decoding part of the moving image decoding apparatus which concerns on embodiment of this invention. 動画像符号化装置によって生成され、上記動画像復号装置によって参照される符号化データのデータ構造を示すものであって、(a)は符号化データのピクチャレイヤの構成を示す図であり、(b)はピクチャレイヤに含まれるスライスレイヤの構成を示す図であり、(c)はスライスレイヤに含まれるTBレイヤの構成を示す図であり、(d)はTBレイヤに含まれるCUの構成を示す図であり、(e)~(g)はCUについてのイントラ予測情報の構成を示す図である。(A) is a figure which shows the data structure of the encoding data produced | generated by the moving image encoder, and is referred by the said moving image decoder, Comprising: (a) is a figure which shows the structure of the picture layer of encoded data, (b) is a diagram showing the configuration of the slice layer included in the picture layer, (c) is a diagram showing the configuration of the TB layer included in the slice layer, and (d) is a diagram showing the configuration of the CU included in the TB layer. (E)-(g) is a figure which shows the structure of the intra prediction information about CU. 動画像符号化装置によって生成され、上記動画像復号装置によって参照される画像の構成を示す図であり、(a)はピクチャからスライスおよびTBが分割される状態を示す図であり、(b)、(c)はTBからCUが分割される状態を示す図である。It is a figure which shows the structure of the image produced | generated by the moving image encoder, and is referred by the said moving image decoder, (a) is a figure which shows the state by which a slice and TB are divided | segmented from a picture, (b) (C) is a figure which shows the state by which CU is divided | segmented from TB. 動画像符号化装置によって生成され、上記動画像復号装置によって参照される画像の構成を示す図であり、(a)、(b)はCUからイントラ予測単位が分割される状態を示す図であり、(c)はCUから変換単位が分割される状態を示す図である。It is a figure which shows the structure of the image produced | generated by the moving image encoder, and is referred by the said moving image decoder, (a), (b) is a figure which shows the state by which an intra prediction unit is divided | segmented from CU. (C) is a figure which shows the state by which the conversion unit is divided | segmented from CU. イントラ予測における予測単位PUとメモリとの関係を説明するための図であり、(a)は予測単位PUが4×4画素の場合を示す図であり、(b)は予測単位PUが2×8画素の場合を示す図であり、(c)は符号化単位とラインメモリとの関係を示す図である。It is a figure for demonstrating the relationship between the prediction unit PU and memory in intra prediction, (a) is a figure which shows the case where prediction unit PU is a 4x4 pixel, (b) is a prediction unit PU 2x. It is a figure which shows the case of 8 pixels, (c) is a figure which shows the relationship between an encoding unit and a line memory. 予測単位PUと該予測単位PUの予測モードを記録する記録単位RUとのサイズが異なる場合を説明するための図であり、(a)は記録単位RUのサイズを示す図であり、(b)は予測単位PUのサイズを示す図であり、(c)は予測単位PUと記録単位RUとの関係を示す図である。It is a figure for demonstrating the case where the size of the prediction unit PU and the recording unit RU which records the prediction mode of this prediction unit PU differs, (a) is a figure which shows the size of the recording unit RU, (b). (A) is a figure which shows the size of prediction unit PU, (c) is a figure which shows the relationship between prediction unit PU and recording unit RU. 上記動画像復号装置の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the said moving image decoding apparatus. 予測単位PUと記録単位RUとの関係を示す図である。It is a figure which shows the relationship between prediction unit PU and recording unit RU. 上記動画像復号装置で用いられる予測モードの例を示す図であり、(a)は予測モードのIDと方向との関係を示す図であり、(b)は或るCUにおける予測単位PUと記録単位RUとの関係を示す図であり、(c)は(b)の場合のビットストリームを示す図である。It is a figure which shows the example of the prediction mode used with the said moving image decoding apparatus, (a) is a figure which shows the relationship between ID and direction of prediction mode, (b) is the prediction unit PU and recording in a certain CU. It is a figure which shows the relationship with unit RU, (c) is a figure which shows the bit stream in the case of (b). 上記予測情報復号部の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the said prediction information decoding part. 本実施の形態に係る動画像符号化装置の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the moving image encoder which concerns on this Embodiment. 生成用予測モードと記録用予測モードとの関係を示す図である。It is a figure which shows the relationship between the production | generation prediction mode and the recording prediction mode. 生成用予測モードと記録用予測モードとの関係を示す図である。It is a figure which shows the relationship between the production | generation prediction mode and the recording prediction mode. 本発明の別の実施の形態に係る予測情報復号部の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the prediction information decoding part which concerns on another embodiment of this invention. 予測単位PUのサイズごとの記録単位RU、予測モード数を示す図であり、(a)は予測単位PUと記録単位RUとの関係を示す図であり、(b)は予測単位PUと予測用予測モードの精度と参照用予測モードの精度との関係を示す図である。It is a figure which shows the recording unit RU and prediction mode number for every size of prediction unit PU, (a) is a figure which shows the relationship between prediction unit PU and recording unit RU, (b) is a prediction unit PU and for prediction It is a figure which shows the relationship between the precision of prediction mode, and the precision of the reference prediction mode. ビットストリームの構成を説明するための図であり、(a)は対象CUと予測単位PUと記録単位RUとの関係を示す図であり、(b)は予測単位PUが1×16画素の場合のビットストリーム例を示す図であり、(c)は予測単位PUが4×16画素の場合のビットストリーム例を示す図である。It is a figure for demonstrating the structure of a bit stream, (a) is a figure which shows the relationship between object CU, prediction unit PU, and recording unit RU, (b) is a case where prediction unit PU is 1 * 16 pixel (C) is a figure which shows the example of a bit stream in case prediction unit PU is 4x16 pixel. 予測用予測モードを導出する処理を説明するための図であり、(a)は予測用予測モードと参照用予測モードとの対応関係を示す図であり、(b)は予測モード更新情報の内容を示す図である。It is a figure for demonstrating the process which derives | leads-out the prediction mode for prediction, (a) is a figure which shows the correspondence of the prediction mode for prediction, and the prediction mode for reference, (b) is the content of prediction mode update information FIG. 予測情報復号部の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of a prediction information decoding part. 動画像復号装置および動画像符号化装置が、動画像の送受信に利用できることを説明するための図であり、(a)は、動画像符号化装置を搭載した送信装置の構成を示したブロック図であり、(b)は、動画像復号装置を搭載した受信装置の構成を示したブロック図である。It is a figure for demonstrating that a moving image decoding apparatus and a moving image coding apparatus can be utilized for transmission / reception of a moving image, (a) is the block diagram which showed the structure of the transmission device carrying a moving image coding apparatus (B) is a block diagram showing a configuration of a receiving apparatus equipped with a moving picture decoding apparatus. 動画像復号装置および動画像符号化装置が、動画像の記録および再生に利用できることを説明するための図であり、(a)は、動画像符号化装置2を搭載した記録装置の構成を示したブロック図であり、(b)は、動画像復号装置を搭載した再生装置の構成を示したブロックである。It is a figure for demonstrating that a moving image decoding apparatus and a moving image encoding apparatus can be utilized for recording and reproduction | regeneration of a moving image, (a) shows the structure of the recording device carrying the moving image encoding apparatus 2. FIG. 8B is a block diagram illustrating a configuration of a playback device equipped with a video decoding device.
 本発明に係る画像復号装置および画像符号化装置の実施形態について図面に基づいて説明すれば以下のとおりである。なお、本実施形態に係る画像復号装置は、符号化データから動画像を復号するものである。したがって、以下では、これを「動画像復号装置」と呼称する。また、本実施形態に係る画像符号化装置は、動画像を符号化することによって符号化データを生成するものである。したがって、以下では、これを「動画像符号化装置」と呼ぶ。 Embodiments of an image decoding apparatus and an image encoding apparatus according to the present invention will be described below with reference to the drawings. Note that the image decoding apparatus according to the present embodiment decodes a moving image from encoded data. Therefore, hereinafter, this is referred to as “moving image decoding apparatus”. In addition, the image encoding device according to the present embodiment generates encoded data by encoding a moving image. Therefore, in the following, this is referred to as a “video encoding device”.
 なお、本実施の形態では、イントラ予測における予測モードを記録するためのメモリの容量の削減について記載するが、本発明はこれに限られない。イントラ予測の予測モードだけではなく、符号化単位CU未満の単位で記録され得る予測画像生成に用いられるパラメータであれば適用できる。例えば、推定イントラ予測モード選択情報、イントラ予測モードの残差情報、動きベクトル、動きベクトル残差、推定動きベクトル選択情報、参照画像選択情報、参照画像リスト選択情報等に適用可能である。 In this embodiment, the reduction of the memory capacity for recording the prediction mode in the intra prediction is described, but the present invention is not limited to this. Any parameter can be applied as long as it is a parameter used for predictive image generation that can be recorded not only in the prediction mode of intra prediction but also in units of less than the coding unit CU. For example, the present invention can be applied to estimated intra prediction mode selection information, residual information of intra prediction modes, motion vectors, motion vector residuals, estimated motion vector selection information, reference image selection information, reference image list selection information, and the like.
 〔実施の形態1〕
 本発明に係る実施の形態1について、図1~11を参照して説明する。まず、本実施の形態に係る動画像復号装置(画像復号装置)1の説明に先立ち、本実施の形態に係る動画像符号化装置(画像符号化装置)2によって生成され、動画像復号装置1によって復号される符号化データ#1の構成について説明する。
[Embodiment 1]
Embodiment 1 according to the present invention will be described with reference to FIGS. First, prior to description of the video decoding device (image decoding device) 1 according to the present embodiment, the video decoding device 1 is generated by the video encoding device (image coding device) 2 according to the present embodiment. The configuration of the encoded data # 1 decoded by the above will be described.
 (符号化データ#1の構成)
 符号化データ#1の構成について図2~4を用いて説明する。符号化データ#1は、シーケンス、およびシーケンスを構成する複数のピクチャを含むものである。
(Configuration of encoded data # 1)
The configuration of encoded data # 1 will be described with reference to FIGS. The encoded data # 1 includes a sequence and a plurality of pictures constituting the sequence.
 符号化データ#1におけるピクチャレイヤ以下の階層の構造を図2に示す。図2の(a)は、ピクチャPICTを規定するピクチャレイヤの構造を示す図である。図2の(b)は、スライスSを規定するスライスレイヤの構造を示す図である。図2の(c)は、ツリーブロック(Tree block)TBを規定するツリーブロックレイヤの構造を示す図である。図2の(d)は、ツリーブロックTBに含まれる符号化単位(CU:Coding Unit)を規定するCUレイヤの構造を示す図である。 FIG. 2 shows the hierarchical structure below the picture layer in the encoded data # 1. FIG. 2A is a diagram illustrating a structure of a picture layer that defines a picture PICT. FIG. 2B is a diagram showing the structure of the slice layer that defines the slice S. FIG. 2C is a diagram illustrating a structure of a tree block layer that defines a tree block TB. FIG. 2D is a diagram illustrating the structure of a CU layer that defines a coding unit (CU: Coding Unit) included in the tree block TB.
 また、図2の(e)~(g)は、予測ツリー(PT:prediction tree)についての情報であり、イントラ予測(画面内予測)パーティションについての予測情報PTIであるイントラ予測情報PTI_Intraの構造例を示す図である。 Also, (e) to (g) in FIG. 2 are information about a prediction tree (PT: prediction tree), and an example of the structure of intra prediction information PTI_Intra, which is prediction information PTI about an intra prediction (intra-screen prediction) partition. FIG.
 また、図3、4は、ピクチャPICTからスライスS、ツリーブロックTB、予測単位PU、変換単位TUが分割される状態を示す図である。 3 and 4 are diagrams showing a state in which the slice S, the tree block TB, the prediction unit PU, and the transform unit TU are divided from the picture PICT.
  (ピクチャレイヤ)
 ピクチャレイヤでは、処理対象のピクチャPICT(以下、対象ピクチャとも称する)を復号するために動画像復号装置1が参照するデータの集合が規定されている。ピクチャPICTは、図2の(a)に示すように、ピクチャヘッダPH、および、スライスS1~SNSを含んでいる(NSはピクチャPICTに含まれるスライスの総数)。
(Picture layer)
In the picture layer, a set of data referred to by the video decoding device 1 for decoding a picture PICT to be processed (hereinafter also referred to as a target picture) is defined. As shown in FIG. 2A, the picture PICT includes a picture header PH and slices S 1 to S NS (NS is the total number of slices included in the picture PICT).
 なお、以下、スライスS1~SNSのそれぞれを区別する必要が無い場合、符号の添え字を省略して記述することがある。また、以下に説明する符号化データ#1に含まれるデータであって、添え字を付している他のデータについても同様である。 In the following description, when it is not necessary to distinguish each of the slices S 1 to S NS , the reference numerals may be omitted. The same applies to other data with subscripts included in encoded data # 1 described below.
 ピクチャヘッダPHには、対象ピクチャの復号方法を決定するために動画像復号装置1が参照する符号化パラメータ群が含まれている。例えば、動画像符号化装置2が符号化の際に用いた可変長符号化のモードを示す符号化モード情報(entropy_coding_mode_flag)は、ピクチャヘッダPHに含まれる符号化パラメータの一例である。 The picture header PH includes a coding parameter group referred to by the video decoding device 1 in order to determine a decoding method of the target picture. For example, the encoding mode information (entropy_coding_mode_flag) indicating the variable length encoding mode used in encoding by the moving image encoding device 2 is an example of an encoding parameter included in the picture header PH.
 entropy_coding_mode_flagが0の場合、当該ピクチャPICTは、CAVLC(Context-based Adaptive Variable Length Coding)によって符号化されている。また、entropy_coding_mode_flagが1である場合、当該ピクチャPICTは、CABAC(Context-based Adaptive Binary Arithmetic Coding)によって符号化されている。 When entropy_coding_mode_flag is 0, the picture PICT is encoded by CAVLC (Context-based Adaptive Variable Variable Length Coding). When entropy_coding_mode_flag is 1, the picture PICT is encoded by CABAC (Context-based Adaptive Binary Arithmetic Coding).
 なお、ピクチャヘッダPHは、ピクチャー・パラメーター・セット(PPS:Picture Parameter Set)とも称される。 Note that the picture header PH is also referred to as a picture parameter set (PPS).
  (スライスレイヤ)
 スライスレイヤでは、処理対象のスライスS(対象スライスとも称する)を復号するために動画像復号装置1が参照するデータの集合が規定されている。スライスSは、図2の(b)に示すように、スライスヘッダSH、および、ツリーブロックTB1~TBNC(NCはスライスSに含まれるツリーブロックの総数)のシーケンスを含んでいる。
(Slice layer)
In the slice layer, a set of data referred to by the video decoding device 1 for decoding the slice S to be processed (also referred to as a target slice) is defined. As shown in FIG. 2B, the slice S includes a slice header SH and a sequence of tree blocks TB 1 to TB NC (NC is the total number of tree blocks included in the slice S).
 スライスヘッダSHには、対象スライスの復号方法を決定するために動画像復号装置1が参照する符号化パラメータ群が含まれる。スライスタイプを指定するスライスタイプ指定情報(slice_type)は、スライスヘッダSHに含まれる符号化パラメータの一例である。 The slice header SH includes a coding parameter group that the moving image decoding apparatus 1 refers to in order to determine a decoding method of the target slice. Slice type designation information (slice_type) for designating a slice type is an example of an encoding parameter included in the slice header SH.
 スライスタイプ指定情報により指定可能なスライスタイプとしては、(1)符号化の際にイントラ予測のみを用いるIスライス、(2)符号化の際に単方向予測、または、イントラ予測を用いるPスライス、(3)符号化の際に単方向予測、双方向予測、または、イントラ予測を用いるBスライスなどが挙げられる。なお、スライスヘッダSHには、動画像復号装置1の備えるループフィルタ(不図示)によって参照されるフィルタパラメータが含まれていてもよい。 As slice types that can be specified by the slice type specification information, (1) I slice using only intra prediction at the time of encoding, (2) P slice using unidirectional prediction or intra prediction at the time of encoding, (3) B-slice using unidirectional prediction, bidirectional prediction, or intra prediction at the time of encoding may be used. Note that the slice header SH may include a filter parameter referred to by a loop filter (not shown) included in the video decoding device 1.
 また、図3の(a)に示すように、スライスSは、ピクチャPICTが分割されることによって形成されている。図3の(a)では、ピクチャPICT301が分割されて、スライスS302が形成されている。 Further, as shown in FIG. 3A, the slice S is formed by dividing the picture PICT. In FIG. 3A, the picture PICT301 is divided to form a slice S302.
  (ツリーブロックレイヤ)
 ツリーブロックレイヤでは、処理対象のツリーブロックTB(以下、対象ツリーブロックとも称する)を復号するために動画像復号装置1が参照するデータの集合が規定されている。
(Tree block layer)
In the tree block layer, a set of data referred to by the video decoding device 1 for decoding a processing target tree block TB (hereinafter also referred to as a target tree block) is defined.
 ツリーブロックTBは、ツリーブロックヘッダTBHと、符号化単位情報CU~CUNL(NLはツリーブロックTBに含まれる符号化単位情報の総数)とを含む。まず、ツリーブロックTBと、符号化単位情報CUとの関係について説明すると次のとおりである。 The tree block TB includes a tree block header TBH and coding unit information CU 1 to CU NL (NL is the total number of coding unit information included in the tree block TB). First, the relationship between the tree block TB and the coding unit information CU will be described as follows.
 ツリーブロックTBは、イントラ予測またはインター予測、および、変換の各処理のためのブロックサイズを特定するためのユニットに分割される。 The tree block TB is divided into units for specifying a block size for each process of intra prediction or inter prediction and conversion.
 ツリーブロックTBの上記ユニットは、再帰的な4分木分割により分割されている。この再帰的な4分木分割により得られる木構造のことを以下、符号化ツリー(coding tree)と称する。 The above unit of the tree block TB is divided by recursive quadtree division. The tree structure obtained by this recursive quadtree partitioning is hereinafter referred to as a coding tree.
 以下、符号化ツリーの末端のノードであるリーフ(leaf)に対応するユニットを、符号化ノード(coding node)として参照する。また、符号化ノードは、符号化処理の基本的な単位となるため、以下、符号化ノードのことを、符号化単位(CU)とも称する。 Hereinafter, a unit corresponding to a leaf that is a node at the end of the coding tree is referred to as a coding node. In addition, since the encoding node is a basic unit of the encoding process, hereinafter, the encoding node is also referred to as an encoding unit (CU).
 つまり、符号化単位情報(以下、CU情報と称する)CU~CUNLは、ツリーブロックTBを再帰的に4分木分割して得られる各符号化ノード(符号化単位)に対応する情報である。 That is, coding unit information (hereinafter referred to as CU information) CU 1 to CU NL is information corresponding to each coding node (coding unit) obtained by recursively dividing the tree block TB into quadtrees. is there.
 また、符号化ツリーのルート(root)は、ツリーブロックTBに対応付けられる。換言すれば、ツリーブロックTBは、複数の符号化ノードを再帰的に含む4分木分割の木構造の最上位ノードに対応付けられる。この定義により、ツリーブロックTBはLCU(largest coding unit)と呼称されることもある。また、ツリーブロックTBのことを符号化ツリーブロック(CTB:Coding Tree block)と呼ぶこともある。 Also, the root of the coding tree is associated with the tree block TB. In other words, the tree block TB is associated with the highest node of the tree structure of the quadtree partition that recursively includes a plurality of encoding nodes. With this definition, the tree block TB may be referred to as LCU (largest coding unit). In addition, the tree block TB may be called a coding tree block (CTB).
 なお、各符号化ノードのサイズは、当該符号化ノードが直接に属する符号化ノード(すなわち、当該符号化ノードの1階層上位のノードのユニット)のサイズの縦横とも半分である。 Note that the size of each coding node is half the size of the coding node to which the coding node directly belongs (that is, the unit of the node one layer higher than the coding node).
 また、各符号化ノードのとり得るサイズは、符号化データ#1のシーケンスパラメータセットSPSに含まれる、符号化ノードのサイズ指定情報および最大階層深度(maximum hierarchical depth)に依存する。例えば、ツリーブロックTBのサイズが64×64画素であって、最大階層深度が3である場合には、当該ツリーブロックTB以下の階層における符号化ノードは、4種類のサイズ、すなわち、64×64画素、32×32画素、16×16画素、および8×8画素の何れかをとり得る。 Also, the size that each coding node can take depends on the size designation information of the coding node and the maximum hierarchy depth (maximum hierarchical depth) included in the sequence parameter set SPS of the coded data # 1. For example, when the size of the tree block TB is 64 × 64 pixels and the maximum hierarchy depth is 3, the encoding nodes in the hierarchy below the tree block TB have four sizes, that is, 64 × 64. Any of pixel, 32 × 32 pixel, 16 × 16 pixel, and 8 × 8 pixel can be taken.
 また、ブロック構造としては、図3の(a)に示すように、スライスSが分割されて、ツリーブロックTB303が形成されている。そして、図3の(b)に示すように、ツリーブロックTB303が分割されてCU311が形成されている。 As a block structure, as shown in FIG. 3A, the slice S is divided to form a tree block TB303. As shown in FIG. 3B, the tree block TB303 is divided to form a CU 311.
 また、図3の(c)に、最大階層深度が「2」の場合に、ツリーブロックTB303が四分木分割される様子を示す。図3の(c)に示すように、最大階層深度が「2」で、CU分割フラグ(split_coding_unit_flag)の値が階層0で「1」であり、かつ階層1でも「1」の場合は、CU311bが符号化ノードとなる。なお、最大階層深度が「1」で、CU分割フラグの値が階層0で「1」の場合、CU311aが符号化ノードとなる。 FIG. 3C shows a state where the tree block TB303 is divided into quadtrees when the maximum hierarchical depth is “2”. As shown in FIG. 3C, when the maximum layer depth is “2”, the value of the CU split flag (split_coding_unit_flag) is “1” in layer 0, and layer 1 is also “1”, CU 311b Becomes an encoding node. When the maximum layer depth is “1” and the value of the CU partition flag is “1” in layer 0, the CU 311a is an encoding node.
  (ツリーブロックヘッダ)
 ツリーブロックヘッダTBHには、対象ツリーブロックの復号方法を決定するために動画像復号装置1が参照する符号化パラメータが含まれる。具体的には、図2の(c)に示すように、対象ツリーブロックの各CUへの分割パターンを指定するツリーブロック分割情報SP_TB、および、量子化ステップの大きさを指定する量子化パラメータ差分Δqp(qp_delta)が含まれる。
(Tree block header)
The tree block header TBH includes a coding parameter referred to by the video decoding device 1 to determine a decoding method of the target tree block. Specifically, as shown in FIG. 2C, tree block division information SP_TB for designating a division pattern of the target tree block into each CU, and a quantization parameter difference for designating the size of the quantization step Δqp (qp_delta) is included.
 ツリーブロック分割情報SP_TBは、ツリーブロックを分割するための符号化ツリーを表す情報であり、具体的には、対象ツリーブロックに含まれる各CUの形状、サイズ、および、対象ツリーブロック内での位置を指定する情報である。 The tree block division information SP_TB is information representing a coding tree for dividing the tree block. Specifically, the shape and size of each CU included in the target tree block, and the position in the target tree block Is information to specify.
 なお、ツリーブロック分割情報SP_TBは、CUの形状やサイズを明示的に含んでいなくてもよい。例えばツリーブロック分割情報SP_TBは、対象ツリーブロック全体またはツリーブロックの部分領域を四分割するか否かを示すフラグ(split_coding_unit_flag)の集合であってもよい。この場合、ツリーブロックの形状やサイズを併用することで各CUの形状やサイズを特定できる。 Note that the tree block division information SP_TB may not explicitly include the shape or size of the CU. For example, the tree block division information SP_TB may be a set of flags (split_coding_unit_flag) indicating whether or not the entire target tree block or a partial area of the tree block is divided into four. In this case, the shape and size of each CU can be specified by using the shape and size of the tree block together.
 また、量子化パラメータ差分Δqpは、対象ツリーブロックにおける量子化パラメータqpと、当該対象ツリーブロックの直前に符号化されたツリーブロックにおける量子化パラメータqp’との差分qp-qp’である。 Further, the quantization parameter difference Δqp is a difference qp−qp ′ between the quantization parameter qp in the target tree block and the quantization parameter qp ′ in the tree block encoded immediately before the target tree block.
  (CUレイヤ)
 CUレイヤでは、処理対象のCU(以下、対象CUとも称する)を復号するために動画像復号装置1が参照するデータの集合が規定されている。
(CU layer)
In the CU layer, a set of data referred to by the video decoding device 1 for decoding a CU to be processed (hereinafter also referred to as a target CU) is defined.
 ここで、CU情報CUに含まれるデータの具体的な内容の説明をする前に、CUに含まれるデータの木構造について説明する。符号化ノードは、予測ツリーPTおよび変換ツリーTTのルートとなる。予測ツリーおよび変換ツリーについて説明すると次のとおりである。 Here, before explaining the specific contents of the data included in the CU information CU, the tree structure of the data included in the CU will be described. The encoding node is the root of the prediction tree PT and the transformation tree TT. The prediction tree and the conversion tree are described as follows.
 予測ツリーにおいては、符号化ノードが1または複数の予測ブロックに分割され、各予測ブロックの位置とサイズとが規定される。別の表現でいえば、予測ブロックは、符号化ノードを構成する1または複数の重複しない領域である。また、予測ツリーは、上述の分割により得られた1または複数の予測ブロックを含む。 In the prediction tree, the encoding node is divided into one or a plurality of prediction blocks, and the position and size of each prediction block are defined. In other words, the prediction block is one or a plurality of non-overlapping areas constituting the encoding node. The prediction tree includes one or a plurality of prediction blocks obtained by the above division.
 予測処理は、この予測ブロックごとに行われる。以下、予測の単位である予測ブロックのことを、予測単位(PU:prediction unit)とも称する。 Prediction processing is performed for each prediction block. Hereinafter, a prediction block that is a unit of prediction is also referred to as a prediction unit (PU).
 また、変換ツリーにおいては、符号化ノードが1または複数の変換ブロックに分割され、各変換ブロックの位置とサイズとが規定される。別の表現でいえば、変換ブロックは、符号化ノードを構成する1または複数の重複しない領域のことである。また、変換ツリーは、上述の分割より得られた1または複数の変換ブロックを含む。 Also, in the transform tree, the encoding node is divided into one or a plurality of transform blocks, and the position and size of each transform block are defined. In other words, the transform block is one or a plurality of non-overlapping areas constituting the encoding node. The conversion tree includes one or a plurality of conversion blocks obtained by the above division.
 変換処理は、この変換ブロックごとに行われる。以下、変換の単位である変換ブロックのことを、変換単位(TU:transform unit)とも称する。 Conversion processing is performed for each conversion block. Hereinafter, a transform block that is a unit of transform is also referred to as a transform unit (TU).
  (CU情報CUのデータ構造)
 続いて、図2の(d)を参照しながらCU情報CUに含まれるデータの具体的な内容について説明する。図2の(d)に示すように、CU情報CUは、スキップフラグSKIP、対象CUの各予測単位への分割パターンを指定するPU分割情報SP_PU、予測タイプ情報PType、PT情報PTI、および、TT情報TTIを含んでいる。
(Data structure of CU information CU)
Next, specific contents of data included in the CU information CU will be described with reference to FIG. As shown in FIG. 2 (d), the CU information CU includes a skip flag SKIP, PU partition information SP_PU that specifies a partition pattern for each prediction unit of the target CU, prediction type information PType, PT information PTI, and TT. Contains information TTI.
 スキップフラグSKIPは、対象のCUについて、スキップモードが適用されているか否かを示すフラグであり、スキップフラグSKIPの値が1の場合、すなわち、対象CUにスキップモードが適用されている場合、スキップの対象となる各種情報は省略され、復号される際には、既定値または推定値が用いられる。また、スキップフラグSKIPは、Iスライスでは省略される。 The skip flag SKIP is a flag indicating whether or not the skip mode is applied to the target CU. When the value of the skip flag SKIP is 1, that is, when the skip mode is applied to the target CU, skip is performed. Various types of information to be subjected to are omitted, and a default value or an estimated value is used when decoding. The skip flag SKIP is omitted for the I slice.
 PU分割情報SP_PUは、対象CUに含まれる各PUの形状、サイズ、および、対象CU内での位置を決定するための情報である。例えば、PU分割情報SP_PUは、対象CUから、イントラ分割を指定するイントラ分割フラグ(intra_split_flag)、および、対象CUから、インター分割を指定するインター分割フラグ(inter_partitining_idc)の少なくとも何れか一方から実現することができる。 The PU partition information SP_PU is information for determining the shape and size of each PU included in the target CU and the position in the target CU. For example, the PU partition information SP_PU is realized from at least one of an intra partition flag (intra_split_flag) that specifies intra partition from the target CU and an inter partition flag (inter_partitining_idc) that specifies inter partition from the target CU. Can do.
 イントラ分割フラグは、対象CUに含まれる各イントラPU(イントラ予測が用いられるPU)の形状、サイズ、および、対象CU内での位置を指定する情報である。 The intra division flag is information that specifies the shape, size, and position in the target CU of each intra PU included in the target CU (PU in which intra prediction is used).
 インター分割フラグは、対象CUに含まれる各インターPU(インター予測が用いられるPU)の形状、サイズ、および、対象CU内での位置を指定する情報である。 The inter division flag is information for designating the shape and size of each inter PU included in the target CU (PU in which inter prediction is used), and the position in the target CU.
 予測タイプ情報PTypeは、対象PUについての予測画像生成方法として、イントラ予測を用いるのか、または、インター予測を用いるのかを指定する情報である。 Prediction type information PType is information that specifies whether intra prediction or inter prediction is used as a prediction image generation method for the target PU.
 PT情報PTIは、対象CUに含まれるPTに関する情報である。言い換えれば、PT情報PTIは、PTに含まれる1または複数のPUそれぞれに関する情報の集合であり、動画像復号装置1により予測画像を生成する際に参照される。PT情報PTIは、予測タイプ情報PTypeが何れの予測方法を指定するのかに応じて、インター予測情報(PTI_Inter)、または、イントラ予測情報(PTI_Intra)より構成される。以下では、イントラ予測が適用されるPUをイントラPUとも呼称し、インター予測が適用されるPUをインターPUとも呼称する。 PT information PTI is information related to the PT included in the target CU. In other words, the PT information PTI is a set of information related to each of one or more PUs included in the PT, and is referred to when the moving image decoding apparatus 1 generates a predicted image. The PT information PTI includes inter prediction information (PTI_Inter) or intra prediction information (PTI_Intra) depending on which prediction method is specified by the prediction type information PType. Hereinafter, a PU to which intra prediction is applied is also referred to as an intra PU, and a PU to which inter prediction is applied is also referred to as an inter PU.
 TT情報TTIは、対象CUに含まれるTTに関する情報である。言い換えれば、TT情報TTIは、TTに含まれる1または複数のTUそれぞれに関する情報の集合であり、動画像復号装置1により残差データを復号する際に参照される。 TT information TTI is information related to TT included in the target CU. In other words, the TT information TTI is a set of information regarding each of one or a plurality of TUs included in the TT, and is referred to when the moving image decoding apparatus 1 decodes residual data.
  (イントラ予測情報PTI_Intra)
 イントラ予測情報PTI_Intraは、動画像復号装置1が、イントラ予測によってイントラ予測画像を生成する際に参照される符号化パラメータが含まれる。図2の(e)~(g)は、イントラ予測情報PTI_Intraに含まれている符号化パラメータを示している。図2の(e)は、予測単位と記録単位(後述する)とが異なる場合の符号化パラメータ(PP1~PPNP)の一例を示しており、NPは対象CUに含まれるイントラPUの総数である。
(Intra prediction information PTI_Intra)
The intra prediction information PTI_Intra includes a coding parameter that is referred to when the video decoding device 1 generates an intra predicted image by intra prediction. (E) to (g) in FIG. 2 show coding parameters included in the intra prediction information PTI_Intra. FIG. 2 (e) shows an example of encoding parameters (P P1 to P PNP ) when the prediction unit and the recording unit (described later) are different, and NP is the total number of intra PUs included in the target CU. It is.
 また、図2の(f)は、予測単位と記録単位とが異なるとともに、予測単位における予測モードの精度と記録単位における予測モードの精度とが異なる場合の符号化パラメータ(Pr1、ΔPP1、…PrQ、…、ΔPPX)の一例を示しており、Qは対象CUに含まれる記録単位の総数であり、PXは対象CUに含まれるイントラPUの総数である。 Further, (f) of FIG. 2 shows coding parameters (P r1 , ΔP P1 , and the like when the prediction unit and the recording unit are different and the accuracy of the prediction mode in the prediction unit is different from the accuracy of the prediction mode in the recording unit. ..., P rQ ,..., ΔP PX ), where Q is the total number of recording units included in the target CU, and PX is the total number of intra PUs included in the target CU.
 また、図2の(g)は、予測単位における予測モードの精度と記録単位における予測モードの精度とが異なる場合の符号化パラメータ(Pr1~PrQ)の一例を示している。 FIG. 2G shows an example of encoding parameters (P r1 to P rQ ) when the accuracy of the prediction mode in the prediction unit is different from the accuracy of the prediction mode in the recording unit.
 イントラPUの分割方法の1つは、イントラ分割フラグが1であれば、対象CUを4つの同サイズのPUへと分割することにより生成され、イントラ分割フラグが0であれば、対象CUを分割することなく、対象CU自身がPUとして取り扱われるというものである。この場合、対象CUのサイズを2N×2N画素とすると、イントラPUは、2N×2N画素(分割なし)、および、N×N画素(4分割)の何れかのサイズを取り得る(ここで、N=2n、nは1以上の任意の整数)。例えば、対象CUが、128×128画素であれば、128×128画素、および、64×64画素のイントラPUへ分割することが可能である。 One of the intra-PU division methods is generated by dividing the target CU into four PUs of the same size if the intra-partition flag is 1, and if the intra-partition flag is 0, the target CU is divided. Without this, the target CU itself is handled as a PU. In this case, assuming that the size of the target CU is 2N × 2N pixels, the intra PU can take any size of 2N × 2N pixels (no division) and N × N pixels (four divisions) (here, N = 2 n , n is an arbitrary integer of 1 or more). For example, if the target CU is 128 × 128 pixels, it can be divided into 128 × 128 pixel and 64 × 64 pixel intra PUs.
 具体的に、図4の(a)を用いて説明する。図4の(a)に示すように、CU311から、2N×2N画素に分割されるとPU411aとなり、N×N画素に分割されるとPU412b~PU412eとなる。 Specifically, this will be described with reference to FIG. As shown in FIG. 4A, when the CU 311 is divided into 2N × 2N pixels, it becomes PU 411a, and when it is divided into N × N pixels, it becomes PU 412b to PU 412e.
 また、イントラPUは、必ずしも正方形に分割されるものではない。図4の(b)を参照して説明する。図4の(b)に示す例では、32×32画素のCU311が複数のイントラPUに分割されている様子を示すものである。図4の(b)では、CU311は、1×4画素のイントラPU412a、8×8画素のイントラPU412b、2×8画素のイントラPU412c、1×16画素のイントラPU412d、4×16画素のイントラPU412e、16×16画素のイントラPU412fを含むイントラPUに分割されている。 Also, the intra PU is not necessarily divided into squares. This will be described with reference to FIG. The example shown in FIG. 4B shows a state in which a 32 × 32 pixel CU 311 is divided into a plurality of intra PUs. In FIG. 4B, the CU 311 includes an 1 × 4 pixel intra PU 412a, an 8 × 8 pixel intra PU 412b, a 2 × 8 pixel intra PU 412c, a 1 × 16 pixel intra PU 412d, and a 4 × 16 pixel intra PU 412e. Are divided into intra PUs including an intra PU 412f of 16 × 16 pixels.
  (インター予測情報PTI_Inter)
 インター予測情報PTI_Interは、動画像復号装置1が、インター予測によってインター予測画像を生成する際に参照される符号化パラメータが含まれる。インター予測情報PTI_Interには、各PUについてのインター予測パラメータPP_Inter1~PP_InterNe(Neは、対象CUに含まれるインターPUの総数)が含まれている。
(Inter prediction information PTI_Inter)
The inter prediction information PTI_Inter includes a coding parameter that is referred to when the video decoding device 1 generates an inter prediction image by inter prediction. The inter prediction information PTI_Inter includes inter prediction parameters PP_Inter1 to PP_InterNe (Ne is the total number of inter PUs included in the target CU) for each PU.
 インターPUは、対象CUを、2N×2N画素(対象CUと同一サイズ)、2N×N画素、N×2N画素、およびN×N画素の4つの対称的分割(symmetric splittings)により分割することで作成される。 The inter PU divides the target CU by four symmetrical divisions of 2N × 2N pixels (the same size as the target CU), 2N × N pixels, N × 2N pixels, and N × N pixels. Created.
 また、インター予測パラメータには、インター予測タイプ、参照画像インデックス、推定動きベクトルインデックス、動きベクトル残差が含まれている。 Also, the inter prediction parameters include an inter prediction type, a reference image index, an estimated motion vector index, and a motion vector residual.
  (TT情報TTI)
 TT情報TTIは、変換サイズ、変換タイプ、変換係数、空間領域の変換係数の存在の有無、周波数領域の変換係数の存在の有無、量子化予測残差を、対象CUに含まれるTUの総数分含んでいる。
(TT information TTI)
The TT information TTI includes a transform size, a transform type, a transform coefficient, the presence / absence of a transform coefficient in the spatial domain, the presence / absence of a transform coefficient in the frequency domain, and the quantization prediction residual for the total number of TUs included in the target CU. Contains.
 TUは、対象CUを階層的に四分木分割することにより形成されており、対象CUまたは対象CUの部分領域の分割を行うのか否かを示す情報(split_transform_flag)により、サイズが決定する。split_transform_flagは基本的には四分木の各ノードに対して符号化されるが、変換サイズに関する制約(最大変換サイズ、最小変換サイズ、四分木の最大階層深度)に応じて省略されて推定される場合もある。 The TU is formed by hierarchically dividing the target CU into a quadtree, and the size is determined by information (split_transform_flag) indicating whether or not the target CU or a partial region of the target CU is to be divided. split_transform_flag is basically encoded for each node of the quadtree, but is omitted and estimated according to the constraints on the transform size (maximum transform size, minimum transform size, maximum hierarchy depth of the quadtree). There is also a case.
 図4の(c)に、CU311が四分木分割されて、TUが形成される様子を示す。図4の(c)に示すように、階層0および階層1において、ノードの分割を行うことが示されている場合、PU413bがTUとなる。また、階層0でノードの分割を行い、階層1でノードの分割を行わないことが示されている場合、PU413aがTUとなる。 FIG. 4 (c) shows a state where CU 311 is divided into quadtrees to form TUs. As shown in FIG. 4C, when it is indicated that node division is performed in the hierarchy 0 and the hierarchy 1, the PU 413b is a TU. In addition, when it is indicated that the node is divided at the hierarchy 0 and the node is not divided at the hierarchy 1, the PU 413a is a TU.
 例えば、最大階層深度が「2」であり、対象CUのサイズが、32×32の場合、対象CUに含まれるTUは、32×32画素、16×16画素、または8×8画素のサイズをとり得る。 For example, when the maximum hierarchical depth is “2” and the size of the target CU is 32 × 32, the TU included in the target CU has a size of 32 × 32 pixels, 16 × 16 pixels, or 8 × 8 pixels. It can take.
 量子化予測残差QDは、動画像符号化装置2が以下の処理1~3を、処理対象のブロックである対象ブロックに施すことによって生成した符号化データである。 The quantized prediction residual QD is encoded data generated by the moving image encoding apparatus 2 performing the following processes 1 to 3 on a target block that is a processing target block.
 処理1:符号化対象画像から予測画像を減算した予測残差をDCT変換(Discrete Cosine Transform)する;
 処理2:処理1にて得られた変換係数を量子化する;
 処理3:処理2にて量子化された変換係数を可変長符号化する;
 なお、上述した量子化パラメータqpは、動画像符号化装置2が変換係数を量子化する際に用いた量子化ステップQPの大きさを表す(QP=2qp/6)。
Process 1: DCT transform (Discrete Cosine Transform) of the prediction residual obtained by subtracting the prediction image from the encoding target image;
Process 2: Quantize the transform coefficient obtained in Process 1;
Process 3: Variable length coding is performed on the transform coefficient quantized in Process 2;
The quantization parameter qp described above represents the magnitude of the quantization step QP used when the moving image coding apparatus 2 quantizes the transform coefficient (QP = 2 qp / 6 ).
 (本実施の形態の概要)
 まず、本実施の形態によってメモリ容量が削減できる理由について、図5、6を参照して説明する。
(Outline of this embodiment)
First, the reason why the memory capacity can be reduced by this embodiment will be described with reference to FIGS.
 図5は、イントラ予測における予測単位PUとメモリとの関係を説明するための図であり、(a)は予測単位PUが4×4画素の場合を示す図であり、(b)は予測単位PUが2×8画素の場合を示す図であり、(c)は符号化単位とラインメモリとの関係を示す図である。 FIG. 5 is a diagram for explaining a relationship between a prediction unit PU and a memory in intra prediction, where (a) is a diagram illustrating a case where the prediction unit PU is 4 × 4 pixels, and (b) is a prediction unit. It is a figure which shows the case where PU is 2x8 pixel, (c) is a figure which shows the relationship between an encoding unit and a line memory.
 予測パラメータの復号においては、一部の予測単位PUについて、その予測単位PUに関する予測パラメータを、符号化データのみから復号するのではなく、復号済みの予測単位PU’に関する復号済みの予測パラメータから推定して得られる推定値を併用することがある。 In decoding of prediction parameters, for some prediction units PU, the prediction parameters for the prediction unit PU are estimated from the decoded prediction parameters for the decoded prediction unit PU ′, rather than decoding only from the encoded data. The estimated value obtained in this way may be used in combination.
 例えば、図5の(a)に示すように、4×4画素のPU513に関する予測モードの推定を行う場合、PU513の上辺に接するPU511の予測モードからPU513の予測モードを推定する。したがって、PU513が属するCU501全体を復号するためには、CU501の上辺に接するPU511、512の予測モードを記録しておく必要がある。換言すれば、CU501の復号が完了するまで、PU511、512の予測モードを記録しておく必要がある。 For example, as shown in FIG. 5A, when estimating the prediction mode related to the PU 513 of 4 × 4 pixels, the prediction mode of the PU 513 is estimated from the prediction mode of the PU 511 in contact with the upper side of the PU 513. Therefore, in order to decode the entire CU 501 to which the PU 513 belongs, it is necessary to record the prediction modes of the PUs 511 and 512 that are in contact with the upper side of the CU 501. In other words, it is necessary to record the prediction modes of the PUs 511 and 512 until the decoding of the CU 501 is completed.
 また、図5の(b)に示すように、2×8画素のPU521に関する予測モードの推定を行う場合、PU513の場合と同様に、PU521の上辺に接するPU531の予測モードからPU521の予測モードを推定する。したがって、PU521が属するCU502全体を復号するためには、CU502の上辺に接するPU531~534の予測モードを記録しておく必要がある。換言すれば、CU502の復号が完了するまで、CU502の上辺に接するPU531~534の予測モードを記録しておく必要がある。 Further, as shown in FIG. 5B, when estimating the prediction mode related to the PU 521 of 2 × 8 pixels, as in the case of the PU 513, the prediction mode of the PU 521 is changed from the prediction mode of the PU 531 in contact with the upper side of the PU 521. presume. Therefore, in order to decode the entire CU 502 to which the PU 521 belongs, it is necessary to record the prediction modes of the PUs 531 to 534 in contact with the upper side of the CU 502. In other words, it is necessary to record the prediction modes of the PUs 531 to 534 that are in contact with the upper side of the CU 502 until the decoding of the CU 502 is completed.
 以上のように、符号化単位CUを復号するためには、該符号化単位CUの上辺に接する予測単位の予測モードへの参照が必要となる場合がある。よって、予測画像生成後も、当該予測単位PUの下側に接する符号化単位CUの復号が完了するまでは、予測モードを記録しておく必要がある。すなわち、少なくとも1フレームの1ライン分の予測モードは記録しておく必要がある。 As described above, in order to decode the coding unit CU, it may be necessary to refer to the prediction mode of the prediction unit that is in contact with the upper side of the coding unit CU. Therefore, after the prediction image is generated, it is necessary to record the prediction mode until the decoding of the coding unit CU in contact with the lower side of the prediction unit PU is completed. That is, it is necessary to record the prediction mode for one line of at least one frame.
 この点について、図5の(c)を参照して説明する。図5の(c)に示すように、符号化単位CU505を復号するためには、符号化単位CU505の上側に接する符号化単位CU506の符号化単位CU505に接する側に存在する予測単位PUの予測モードが必要となる。 This point will be described with reference to FIG. As shown in FIG. 5C, in order to decode the coding unit CU505, the prediction of the prediction unit PU existing on the side of the coding unit CU506 that is in contact with the upper side of the coding unit CU505, that is in contact with the coding unit CU505. A mode is required.
 よって、符号化単位CU506の符号化単位CU505に接する側に存在する予測単位PUの予測モードを含む1ライン分(領域507)の予測モードを記録しておく必要がある。 Therefore, it is necessary to record the prediction mode for one line (area 507) including the prediction mode of the prediction unit PU existing on the side of the coding unit CU 506 in contact with the coding unit CU 505.
 しかしながら、図5の(a)と(b)とに示すように、符号化単位CU501と符号化単位CU502とでは、サイズが同じ(8×8画素)であるにもかかわらず、自単位に含まれる予測単位PUのサイズが異なるために、復号に必要となる予測モードの数が異なる。 However, as shown in FIGS. 5A and 5B, the coding unit CU501 and the coding unit CU502 are included in their own units even though they have the same size (8 × 8 pixels). Since the sizes of prediction unit PUs to be different are different, the number of prediction modes required for decoding is different.
 具体的には、符号化単位CU501の場合は、予測単位PU511、512の2つの予測モードから符号化単位CU501に含まれる予測単位PUの予測モードを決定することができ、符号化単位CU501の復号ができるのに対し、符号化単位CU502の場合は、予測単位PU531~535の4つの予測モードを用いなければ、符号化単位CU502に含まれる予測単位PUの予測モードを決定することができず、符号化単位CU502の復号を行うことができない。 Specifically, in the case of the coding unit CU501, the prediction mode of the prediction unit PU included in the coding unit CU501 can be determined from the two prediction modes of the prediction units PU511 and 512, and decoding of the coding unit CU501 is possible. On the other hand, in the case of the coding unit CU502, the prediction mode of the prediction unit PU included in the coding unit CU502 cannot be determined unless the four prediction modes of the prediction units PU531 to 535 are used. The coding unit CU502 cannot be decoded.
 すなわち、符号化単位CU501に含まれる予測単位PUの予測モードを決定するためには、4画素単位の予測モードをラインメモリに記録しておけばよいのに対し、符号化単位CU502の場合は、2画素単位の予測モードをラインメモリに記録しておく必要が生じる。よって、必要となるラインメモリの容量が2倍異なることになる。 That is, in order to determine the prediction mode of the prediction unit PU included in the coding unit CU501, the prediction mode in units of four pixels may be recorded in the line memory, whereas in the case of the coding unit CU502, It is necessary to record the prediction mode in units of two pixels in the line memory. Therefore, the required line memory capacity is twice different.
 例えば、HD(High-definition television:1920×1080画素)の場合、符号化単位CU501を復号するためには、1920÷4=480個の予測モードをラインメモリに記録しておく必要があるのに対し、符号化単位CU502を復号するためには、1920÷2=960個の予測モードラインメモリに記録しておく必要がある。 For example, in the case of HD (High-definition television: 1920 × 1080 pixels), in order to decode the coding unit CU501, it is necessary to record 1920 ÷ 4 = 480 prediction modes in the line memory. On the other hand, in order to decode the coding unit CU502, it is necessary to record in 1920 ÷ 2 = 960 prediction mode line memories.
 そこで、上述した符号化単位CU502のような場合であっても、メモリの容量を増やさないためには、予測モードを導出する単位である予測単位PUと比較して、予測モードを記録する単位である記録単位を大きいサイズとすることが考えられる。 Therefore, even in the case of the coding unit CU502 described above, in order not to increase the memory capacity, the prediction mode is recorded in units compared to the prediction unit PU that is a unit for deriving the prediction mode. It is conceivable to make a certain recording unit a large size.
 図6を参照して説明する。図6は、予測単位PUに対し大きいサイズの記録単位RUとなる場合を説明するための図であり、(a)は記録単位RUのサイズを示す図であり、(b)は予測単位PUのサイズを示す図であり、(c)は予測単位PUと記録単位RUとの関係を示す図である。 This will be described with reference to FIG. 6A and 6B are diagrams for explaining a case where the recording unit RU has a larger size than the prediction unit PU. FIG. 6A is a diagram illustrating the size of the recording unit RU. FIG. 6B is a diagram illustrating the prediction unit PU. It is a figure which shows size, (c) is a figure which shows the relationship between prediction unit PU and recording unit RU.
 図6の(b)に示すように、8×8画素のCU602に、2×8画素の予測単位PU610a~dが含まれており、予測単位PU610a~dそれぞれの予測モードをPPa、PPb、PPc、PPdとする。また、記録単位RUを図6の(a)に示すように、4×8画素のRU620a、bとし、記録する予測モードをPra、Prbとする。 As shown in FIG. 6B, the 8 × 8 pixel CU 602 includes 2 × 8 pixel prediction units PU 610a to PU 610d, and the prediction modes of the prediction units PU 610a to PU 610d are set to P Pa and P Pb , respectively. , P Pc and P Pd . Further, as shown in FIG. 6A, the recording unit RU is set to 4 × 8 pixel RUs 620a and b, and the recording prediction modes are set to P ra and P rb .
 そして、図6の(c)に示すように、予測モードPPa、PPbの2つを導出するために必要な予測モードをPra、予測モードPPc、PPdの2つ導出するために必要な予測モードをPrbとすれば、符号化単位CU602には、予測単位が4つ含まれているにもかかわらず、復号するために必要な予測モードは2つということになり、必要となるラインメモリの容量を減らすことができる。なお、今後、予測モードPPa、PPb、PPc、PPdのように予測単位ごとの予測モードを予測用予測モードとも呼ぶ。また、予測モードPra、Prbのように記録される予測モードを、参照用予測モードとも呼ぶ。予測用予測モードから参照用予測モードを導く方法、および、参照用予測モードから予測用予測モードを導く方法については後述する。 Then, as shown in FIG. 6C, in order to derive two prediction modes P ra and prediction modes P Pc and P Pd necessary to derive two prediction modes P Pa and P Pb. If the required prediction mode is P rb , the encoding unit CU 602 includes two prediction units, but there are two prediction modes necessary for decoding. The capacity of the line memory can be reduced. In the future, prediction modes for each prediction unit such as prediction modes P Pa , P Pb , P Pc , and P Pd are also referred to as prediction prediction modes. In addition, the prediction modes recorded as the prediction modes P ra and P rb are also referred to as reference prediction modes. A method for deriving the reference prediction mode from the prediction prediction mode and a method for deriving the prediction prediction mode from the reference prediction mode will be described later.
 2×8画素の予測単位の導入(予測単位の細分化)は予測の精度を高めることができるが、上述したように、予測モードを記録するメモリの容量の増加を招いてしまう。これに対し、予測用予測モードの単位よりも参照用予測モードの単位を大きくすれば、高い予測精度を維持しつつ、メモリの容量を増加させないことができる。この効果を実現するためには、参照用予測モードの縦および横の単位の両方を、予測用予測モードの縦および横の単位よりも大きくする必要はない。例えば、ラインメモリの圧縮を目的とする場合、少なくとも参照用予測モードの横の単位を予測用予測モードの横の単位よりも大きくすればよい。これにより、高い予測精度を維持しつつ、ラインメモリのメモリの容量を増加させないことができる。 Although introduction of a prediction unit of 2 × 8 pixels (segmentation of prediction unit) can improve the accuracy of prediction, as described above, it increases the capacity of the memory for recording the prediction mode. On the other hand, if the unit of the reference prediction mode is larger than the unit of the prediction prediction mode, the memory capacity can be prevented from increasing while maintaining high prediction accuracy. In order to realize this effect, it is not necessary to make both the vertical and horizontal units of the reference prediction mode larger than the vertical and horizontal units of the prediction prediction mode. For example, when the purpose is to compress the line memory, at least the horizontal unit of the reference prediction mode may be larger than the horizontal unit of the prediction prediction mode. As a result, the memory capacity of the line memory can be prevented from increasing while maintaining high prediction accuracy.
 なお、参照用予測モードと予測用予測モードとの復号方法、および導出方法には様々なバリエーションがある。例えば、(1)復号した予測用予測モードに基づいて参照用予測モードを導出する、(2)復号した参照用予測モードに加え、追加情報を復号することで予測用予測モードを導出する、ということが考えられる。 Note that there are various variations in the decoding method and the derivation method between the reference prediction mode and the prediction prediction mode. For example, (1) a reference prediction mode is derived based on the decoded prediction prediction mode, and (2) a prediction prediction mode is derived by decoding additional information in addition to the decoded reference prediction mode. It is possible.
 (動画像復号装置1)
 動画像復号装置1の構成について、図7を参照して説明する。
(Moving picture decoding apparatus 1)
The configuration of the video decoding device 1 will be described with reference to FIG.
 図7は、動画像復号装置1の要部構成を示すブロック図である。図7に示すように、動画像復号装置1は、CU復号部10、予測モード記録部11、およびフレームメモリ12を含む構成であり、CU復号部10は、予測情報復号部15、予測残差復号部16、予測画像生成部17、復号画像生成部18を含む構成である。 FIG. 7 is a block diagram showing a main configuration of the moving picture decoding apparatus 1. As illustrated in FIG. 7, the moving image decoding apparatus 1 includes a CU decoding unit 10, a prediction mode recording unit 11, and a frame memory 12. The CU decoding unit 10 includes a prediction information decoding unit 15, a prediction residual, and the like. The configuration includes a decoding unit 16, a predicted image generation unit 17, and a decoded image generation unit 18.
 動画像復号装置1は、概略的に言えば、符号化データ#1を復号することによって復号画像#2を生成し、出力する装置である。また、動画像復号装置1は、その一部に、H.264/MPEG-4 AVC規格に採用されている技術、VCEG(Video Coding Expert Group)における共同開発用コーデックであるKTAソフトウェアに採用されている技術、TMuC(Test Model under Consideration)ソフトウェアに採用されている技術、およびその後継コーデックであるWorking Draft 1 of High-Efficiency Video Coding(HEVC WD1)に採用されている方式を用いている動画像復号装置である。 Schematically speaking, the moving picture decoding apparatus 1 is an apparatus that generates and outputs a decoded image # 2 by decoding the encoded data # 1. In addition, the moving image decoding apparatus 1 includes, as part thereof, H.264. H.264 / MPEG-4 AVC standard technology, VCEG (Video Coding Expert Group) technology used in KTA software, which is a joint development codec, TMuC (Test Model Underside) software This is a video decoding apparatus using the technology and the method adopted in WorkingWorkDraft 1 of High-Efficiency Video Coding (HEVC WD1).
 動画像復号装置1は、予測単位毎に予測画像を生成し、生成された予測画像と、符号化データ#1から復号された予測残差とを加算することによって復号画像#2を生成し、出力するものである。 The video decoding device 1 generates a prediction image for each prediction unit, generates a decoded image # 2 by adding the generated prediction image and a prediction residual decoded from the encoded data # 1, Output.
 動画像復号装置1に入力された符号化データ#1は、CU復号部10へ入力される。 The encoded data # 1 input to the video decoding device 1 is input to the CU decoding unit 10.
 CU復号部10は、符号化データ#1を復号して、最終的に復号画像#2を生成、出力するものである。 The CU decoding unit 10 decodes the encoded data # 1, and finally generates and outputs a decoded image # 2.
 予測モード記録部11には、予測情報復号部15が復号した予測モードと記録単位RUの位置とが対応付けられて記録されている。 The prediction mode recording unit 11 records the prediction mode decoded by the prediction information decoding unit 15 and the position of the recording unit RU in association with each other.
 フレームメモリ12には、復号画像#2が記録される。フレームメモリ12には、対象CUを復号する時点において、当該対象CUよりも先に復号された全てのCU(例えば、ラスタスキャン順で先行する全てのCU)に対応する復号画像が記録されている。 The decoded image # 2 is recorded in the frame memory 12. In the frame memory 12, decoded images corresponding to all CUs decoded before the target CU (for example, all CUs preceding in the raster scan order) at the time of decoding the target CU are recorded. .
 予測情報復号部15は、符号化データ#1から予測情報を復号するものである。予測情報復号部15の詳細については、参照する図面を代えて後述する。 The prediction information decoding unit 15 decodes prediction information from the encoded data # 1. Details of the prediction information decoding unit 15 will be described later with reference to another drawing.
 予測残差復号部16は、符号化データ#1から予測残差を復号して、復号した予測残差データ#16を復号画像生成部18に送信するものである。 The prediction residual decoding unit 16 decodes the prediction residual from the encoded data # 1, and transmits the decoded prediction residual data # 16 to the decoded image generation unit 18.
 予測画像生成部17は、予測情報復号部15から取得した予測モード情報#15とフレームメモリ12から取得した復号画像P’とから予測画像を生成し、生成した予測画像を示す予測画像データ#17を復号画像生成部18に送信するものである。 The predicted image generation unit 17 generates a predicted image from the prediction mode information # 15 acquired from the prediction information decoding unit 15 and the decoded image P ′ acquired from the frame memory 12, and predicted image data # 17 indicating the generated predicted image Is transmitted to the decoded image generation unit 18.
 復号画像生成部18は、予測残差復号部16から取得した予測残差データ#16と予測画像生成部17から取得した予測画像データ#17とから復号画像#2を生成し、出力するものである。 The decoded image generation unit 18 generates and outputs a decoded image # 2 from the prediction residual data # 16 acquired from the prediction residual decoding unit 16 and the prediction image data # 17 acquired from the prediction image generation unit 17. is there.
 (予測情報復号部15の詳細)
 次に、動画像復号装置1が備える予測情報復号部15の詳細について、図1、8~9を参照して説明する。
(Details of the prediction information decoding unit 15)
Next, details of the prediction information decoding unit 15 included in the video decoding device 1 will be described with reference to FIGS.
 図1は、予測画像復号部15の要部構成を示すブロック図である。図1に示すように、予測情報復号部15は、PU構造復号部21、予測用予測モード復号部(予測パラメータ復号手段)22、および参照用予測モード導出部23を含む構成である。 FIG. 1 is a block diagram illustrating a main configuration of the prediction image decoding unit 15. As shown in FIG. 1, the prediction information decoding unit 15 includes a PU structure decoding unit 21, a prediction prediction mode decoding unit (prediction parameter decoding unit) 22, and a reference prediction mode deriving unit 23.
 上述したように、予測情報復号部15は、符号化データ#1から予測情報を復号するものであり、PU構造復号部21、予測用予測モード復号部22、および参照用予測モード導出部23を含むものである。 As described above, the prediction information decoding unit 15 decodes prediction information from the encoded data # 1, and includes the PU structure decoding unit 21, the prediction prediction mode decoding unit 22, and the reference prediction mode deriving unit 23. Is included.
 PU構造復号部21は、符号化データ#1から対象CUのPU構造を復号し、復号したPU構造情報#21を予測用予測モード復号部22に通知するものである。 The PU structure decoding unit 21 decodes the PU structure of the target CU from the encoded data # 1, and notifies the prediction prediction mode decoding unit 22 of the decoded PU structure information # 21.
 予測用予測モード復号部22は、PU構造復号部21から取得した対象CUのPU構造を示すPU構造情報#21と符号化データ#1とから対象CUの予測モード記録単位RU(以降、記録単位RUとも呼ぶ)を設定し、各記録単位RUに含まれる予測単位PUの予測モード(予測パラメータ)を復号するものである。そして、復号した予測モードを示す予測モード情報#15を、予測画像生成部17、および参照用予測モード導出部23に通知する。 The prediction mode decoding unit for prediction 22 uses the PU structure information # 21 indicating the PU structure of the target CU acquired from the PU structure decoding unit 21 and the encoded data # 1, and the prediction mode recording unit RU (hereinafter, recording unit) of the target CU. RU) is set, and the prediction mode (prediction parameter) of the prediction unit PU included in each recording unit RU is decoded. Then, prediction mode information # 15 indicating the decoded prediction mode is notified to the prediction image generation unit 17 and the reference prediction mode deriving unit 23.
 予測用予測モード復号部22は、例えば、図8に示すようなテーブルに従い記録単位RUを設定する。すなわち、符号化単位CUを構成する各予測単位PUが、4×4画素、8×8画素、16×16画素、32×32画素、64×64画素、32×8画素、8×32画素、16×4画素、4×16画素の場合、予測用予測モード復号部22は、記録単位RUを予測単位PUと同じサイズに設定する。 The prediction mode decoding unit 22 for prediction sets the recording unit RU according to a table as shown in FIG. That is, each prediction unit PU constituting the coding unit CU is 4 × 4 pixels, 8 × 8 pixels, 16 × 16 pixels, 32 × 32 pixels, 64 × 64 pixels, 32 × 8 pixels, 8 × 32 pixels, In the case of 16 × 4 pixels and 4 × 16 pixels, the prediction mode decoder for prediction 22 sets the recording unit RU to the same size as the prediction unit PU.
 一方、符号化単位CUを構成する各予測単位PUが16×1画素の場合、予測用予測モード復号部22は、記録単位RUを16×4画素に設定し、符号化単位CUを構成する各予測単位PUが1×16画素の場合、予測用予測モード復号部22は、記録単位RUを4×16画素に設定する。また、符号化単位CUを構成する各予測単位PUが8×2画素の場合、予測用予測モード復号部22は、記録単位RUを8×4画素に設定し、符号化単位CUを構成する各予測単位PUが2×8画素の場合、予測用予測モード復号部22は、記録単位RUを4×8画素に設定する。 On the other hand, when each prediction unit PU constituting the coding unit CU is 16 × 1 pixel, the prediction mode decoding unit 22 for prediction sets the recording unit RU to 16 × 4 pixels, and sets each coding unit CU. When the prediction unit PU is 1 × 16 pixels, the prediction mode decoding unit 22 for prediction sets the recording unit RU to 4 × 16 pixels. In addition, when each prediction unit PU constituting the coding unit CU is 8 × 2 pixels, the prediction mode decoding unit 22 for prediction sets the recording unit RU to 8 × 4 pixels, and sets each coding unit CU. When the prediction unit PU is 2 × 8 pixels, the prediction mode decoder for prediction 22 sets the recording unit RU to 4 × 8 pixels.
 なお、上記の例では、予測単位PUのサイズ毎に記録単位RUのサイズが固定されているが、メモリサイズを低減する必要性に応じて可変にしてもよい。例えば、SPSやPPSにおいて予測モードを最低何画素単位で記録するかを指定する情報を送り、その情報に基づいて各予測単位PUのサイズと記録単位RUのサイズとの関係を決定してもよい。N画素単位で予測モードを記録することが示されていた場合、高さまたは幅がN画素未満の予測単位PUに対しては、N未満の高さまたは幅をNに置き換えたサイズの記録単位RUを関連付ければよい。 In the above example, the size of the recording unit RU is fixed for each size of the prediction unit PU. However, the size of the recording unit RU may be varied according to the necessity of reducing the memory size. For example, in SPS or PPS, information designating at least how many pixels the prediction mode is recorded may be sent, and the relationship between the size of each prediction unit PU and the size of the recording unit RU may be determined based on the information. . When it has been shown that the prediction mode is recorded in units of N pixels, for a prediction unit PU having a height or width less than N pixels, a recording unit having a size in which the height or width less than N is replaced with N What is necessary is just to associate RU.
 また、予測用予測モード復号部22は、例えば、以下の方法で予測パラメータを復号する。 Further, the prediction mode decoding unit for prediction 22 decodes the prediction parameter by the following method, for example.
  方法1(MPM利用)
 符号化データに(1)各予測単位について、その予測単位の予測モードが特定の予測モード(例えば、復号対象の予測単位の上辺に隣接している上隣接記録単位の予測モードと、復号対象の予測単位の左辺に隣接している左隣接記録単位の予測モードとのうち、予測モードIDの小さい予測モード)から推定される推定予測モードと一致するか否かを示すフラグと、(2)予測モードが推定予測モードと一致しない予測単位について、その予測単位に関する予測モードを符号化して得られる符号とが含まれている場合、予測用予測モード復号部22は、以下のように符号化パラメータから予測モードを復号する。
Method 1 (using MPM)
In the encoded data, (1) for each prediction unit, the prediction mode of the prediction unit is a specific prediction mode (for example, the prediction mode of the upper adjacent recording unit adjacent to the upper side of the prediction unit to be decoded, and the decoding target A flag indicating whether or not it matches an estimated prediction mode estimated from a prediction mode having a small prediction mode ID among prediction modes of a left adjacent recording unit adjacent to the left side of the prediction unit; and (2) prediction When the prediction unit whose mode does not match the estimated prediction mode includes a code obtained by encoding the prediction mode related to the prediction unit, the prediction mode decoding unit 22 for prediction uses the encoding parameters as follows: Decode the prediction mode.
 すなわち、予測用予測モード復号部22は、(1)符号化データから上記フラグを復号し、(2)上記フラグが推定予測モードと一致することを示している場合、(2-1)上記特定の予測単位に関する予測モードを予測モード記録部11から読み出し、(2-2)読み出した予測モードから推定される推定予測モードを対象とする予測単位に関する予測モードに決定し、(3)上記フラグが推定予測モードと一致しないことを示している場合、上記符号を復号することによって対象とする予測単位に関する予測モードを決定する。 That is, the prediction prediction mode decoding unit 22 (1) decodes the flag from the encoded data, and (2) indicates that the flag matches the estimated prediction mode. A prediction mode related to the prediction unit is read from the prediction mode recording unit 11, and (2-2) an estimated prediction mode estimated from the read prediction mode is determined as a prediction mode related to the prediction unit, and (3) the flag is When it shows that it does not correspond with an estimated prediction mode, the prediction mode regarding the prediction unit made into object is determined by decoding the said code | symbol.
  方法2(複数候補を利用)
 符号化データに(1)各予測単位について、その予測単位に関する予測モードが複数の予測モード(例えば、復号対象の予測単位の上辺に隣接している上隣接記録単位の予測モードと、復号対象の予測単位の左辺に隣接している左隣接記録単位の予測モード)の何れかから推定される推定予測モードと一致するか否かを示すフラグと、(2)予測モードが推定予測モードと一致する予測単位について、その予測単位に関する予測モードがどの推定予測モードと一致するのかを示す情報と、(3)予測モードが推定予測モードと一致しない予測単位について、その予測単位に関する予測モードを符号化して得られる符号とが含まれている場合、予測用予測モード復号部22は、以下のように符号化パラメータから予測モードを復号する。
Method 2 (use multiple candidates)
(1) For each prediction unit, the prediction mode for the prediction unit includes a plurality of prediction modes (for example, the prediction mode of the upper adjacent recording unit adjacent to the upper side of the prediction unit to be decoded, and the decoding target A flag indicating whether or not the estimated prediction mode estimated from any one of the prediction modes of the left adjacent recording unit adjacent to the left side of the prediction unit) and (2) the prediction mode matches the estimated prediction mode For the prediction unit, information indicating which prediction mode the prediction mode related to the prediction unit matches, and (3) for the prediction unit whose prediction mode does not match the prediction mode, the prediction mode related to the prediction unit is encoded. When the obtained code is included, the prediction mode decoding unit for prediction 22 decodes the prediction mode from the encoding parameter as follows.
 すなわち、予測用予測モード復号部22は、(1)符号化データから上記フラグを復号し、(2)上記フラグが推定予測モードと一致することを示している場合、(2-1)符号化データから上記情報を復号し、(2-2)上記情報により示される予測単位に関する予測モードを予測モード記録部11から読み出し、(2-3)読み出した予測モードから推定される推定予測モードを対象とする予測単位に関する予測モードに決定し、(3)上記フラグが推定予測モードと一致しないことを示している場合、上記符号を復号することによって対象とする予測単位に関する予測モードを決定する。 That is, the prediction mode decoder for prediction 22 (1) decodes the flag from the encoded data, and (2) indicates that the flag matches the estimated prediction mode (2-1) Decoding the information from the data, (2-2) reading the prediction mode for the prediction unit indicated by the information from the prediction mode recording unit 11, and (2-3) the estimated prediction mode estimated from the read prediction mode (3) If the flag indicates that the prediction mode does not match the estimated prediction mode, the prediction mode for the target prediction unit is determined by decoding the code.
 上記の方法1と方法2の処理において、推定予測モードは対象予測単位のイントラ予測モードの予測値として用いられる。すなわち、予測値が正しいことがフラグによって示されている場合には推定予測モードが、直接、対象予測単位のイントラ予測モードに設定される。予測値が正しいことがフラグによって示されているのではない場合は、予測値(推定予測モード)を除くイントラ予測モードの何れかを選択する情報が復号されて、対象予測単位のイントラ予測モードが特定される。 In the processing of the above method 1 and method 2, the estimated prediction mode is used as a prediction value of the intra prediction mode of the target prediction unit. That is, if the flag indicates that the prediction value is correct, the estimated prediction mode is directly set to the intra prediction mode of the target prediction unit. If the flag does not indicate that the prediction value is correct, information for selecting any of the intra prediction modes excluding the prediction value (estimated prediction mode) is decoded, and the intra prediction mode of the target prediction unit is determined. Identified.
 なお、復号対象の予測単位の上辺または左辺に隣接する隣接記録単位は、次の方法により定義することができる。或る対象予測単位の上辺または左辺に隣接する隣接記録単位は、対象予測単位を含む記録単位の左上画素の上または左に隣接する記録単位ということができる。 Note that the adjacent recording unit adjacent to the upper side or the left side of the prediction unit to be decoded can be defined by the following method. The adjacent recording unit adjacent to the upper side or the left side of a certain target prediction unit can be said to be a recording unit adjacent to the upper left pixel or the left of the recording unit including the target prediction unit.
 したがって、対象予測単位の左上画素位置を(x,y)とすると、対象予測単位を含む記録単位の左上画素(x’,y’)は次式により導出できる。 Therefore, when the upper left pixel position of the target prediction unit is (x, y), the upper left pixel (x ′, y ′) of the recording unit including the target prediction unit can be derived by the following equation.
 x’=(x>>logW)<<log
 y’=(y>>logH)<<log
但し、W=max(w, N),H=max(h, N),
   w、hはそれぞれ(x,y)を含む予測単位の幅と高さ
   Nは予測モードの最小記録単位
 対象予測単位の上辺に隣接している隣接記録単位は、画素(x’,y’-1)を含む記録単位であり、画素(x’,y’-1)が復号済領域内に含まれる場合に利用可能である。
x ′ = (x >> log 2 W) << log 2 W
y ′ = (y >> log 2 H) << log 2 H
However, W = max (w, N), H = max (h, N),
w and h are the width and height of the prediction unit including (x, y), respectively. N is the minimum recording unit of the prediction mode. The adjacent recording unit adjacent to the upper side of the target prediction unit is the pixel (x ′, y′−). This is a recording unit including 1), and can be used when the pixel (x ′, y′−1) is included in the decoded area.
 また、対象予測単位の左辺に隣接している隣接記録単位は、(x’-1,y’)を含む記録単位であり、画素(x’-1,y’)が復号済領域内に含まれる場合に利用可能である。 The adjacent recording unit adjacent to the left side of the target prediction unit is a recording unit including (x′−1, y ′), and the pixel (x′−1, y ′) is included in the decoded area. It is available when
 以上が、予測用予測モード復号部22における処理の説明である、次に参照用予測モード導出部23について説明する。 The above is description of the process in the prediction mode decoding part 22 for prediction, Next, the prediction mode derivation | leading-out part 23 for reference is demonstrated.
 参照用予測モード導出部23は、予測用予測モード復号部22から取得した予測モード情報#15から、記録単位RUごとに参照用予測モード(参照用予測パラメータ)を導出し、記録単位RUの位置と対応付けて予測モード記録部11に記録する。 The reference prediction mode deriving unit 23 derives a reference prediction mode (reference prediction parameter) for each recording unit RU from the prediction mode information # 15 acquired from the prediction prediction mode decoding unit 22, and the position of the recording unit RU. Are recorded in the prediction mode recording unit 11 in association with each other.
 参照用予測モード導出部23は、例えば、以下の方法で参照用予測モードを導出する。 The reference prediction mode deriving unit 23 derives the reference prediction mode by the following method, for example.
  方法1A(単純間引き(復号順A))
 対象記録単位に含まれる予測単位のうち、最初に復号された予測単位における予測用予測モードを参照用予測モードとする。
Method 1A (simple decimation (decoding order A))
The prediction mode for prediction in the prediction unit decoded first among the prediction units included in the target recording unit is set as the reference prediction mode.
  方法1B(単純間引き(復号順B))
 対象記録単位に含まれる予測単位のうち、最後に復号された予測単位における予測用予測モードを参照用予測モードとする。
Method 1B (simple decimation (decoding order B))
The prediction prediction mode in the prediction unit decoded last among the prediction units included in the target recording unit is set as a reference prediction mode.
  方法2A(単純間引き(位置A))
 対象記録単位の左上画素を含む予測単位における予測用予測モードを参照用予測モードとする。
Method 2A (simple decimation (position A))
The prediction prediction mode in the prediction unit including the upper left pixel of the target recording unit is set as the reference prediction mode.
  方法2B(単純間引き(位置B))
 対象記録単位の右下画素を含む予測単位における予測用予測モードを参照用予測モードとする。
Method 2B (simple decimation (position B))
The prediction prediction mode in the prediction unit including the lower right pixel of the target recording unit is set as the reference prediction mode.
  方法3(優先度順)
 対象記録単位に含まれる各予測単位の予測用予測モードのうち、優先度が最も高い(予測モードIDが最小の)予測モードを参照用予測モードとする。
Method 3 (in order of priority)
Among the prediction prediction modes of each prediction unit included in the target recording unit, the prediction mode with the highest priority (the prediction mode ID is the smallest) is set as the reference prediction mode.
  方法4(方向の平均値または中央値)
 対象記録単位に含まれる各予測単位が方向予測のみを含む場合、各予測モードを角度にマッピングし、それぞれの角度の平均値または中央値に対応する予測モードを参照用予測モードとする。それ以外の場合は(DC予測またはPlanar予測を含む場合)、DC予測を参照用予測モードとする。
Method 4 (average or median direction)
When each prediction unit included in the target recording unit includes only direction prediction, each prediction mode is mapped to an angle, and a prediction mode corresponding to an average value or a median value of each angle is set as a reference prediction mode. In other cases (when DC prediction or Planar prediction is included), DC prediction is set as a reference prediction mode.
 なお、本実施の形態では、予測単位PUのサイズによらず、予測モードの予測方向数は、予測用予測モード、参照用予測モードともに33である。図9を用いて説明する。図9は、本実施の形態における予測モードの例を示す図であり、(a)は予測モードのIDと方向との関係を示す図であり、(b)は或るCUにおける予測単位PUと記録単位RUとの関係を示す図であり、(c)は(b)におけるビットストリームを示す図である。 In the present embodiment, the number of prediction directions in the prediction mode is 33 for both the prediction prediction mode and the reference prediction mode regardless of the size of the prediction unit PU. This will be described with reference to FIG. FIG. 9 is a diagram showing an example of a prediction mode in the present embodiment, (a) is a diagram showing a relationship between the prediction mode ID and direction, and (b) is a prediction unit PU in a certain CU. It is a figure which shows the relationship with the recording unit RU, (c) is a figure which shows the bit stream in (b).
 図9の(a)に示すように、本実施の形態では、0、1、3~33のIDが何れかの方向に割り当てられているとともに、2がDC予測に、34がPlanar予測に割り当てられている。 As shown in FIG. 9A, in this embodiment, IDs of 0, 1, 3 to 33 are assigned in any direction, 2 is assigned to DC prediction, and 34 is assigned to Planar prediction. It has been.
 また、図9の(b)は、符号化単位CU901に1×16画素の予測単位PU910a~d、911a~913dが含まれており、予測単位に対応して、4×16画素の記録単位RU920a~dが設定されている状態を示している。より具体的には、予測単位PU910a~dが、記録単位RU920aに対応し、予測単位911a~911dが記録単位RU920bに対応し、予測単位PU913a~913dが記録単位RU920dに対応している。 9B, the coding unit CU901 includes 1 × 16 pixel prediction units PU 910a to 910d and 911a to 913d, and a 4 × 16 pixel recording unit RU 920a corresponding to the prediction unit. This indicates a state in which .about.d is set. More specifically, the prediction units PU 910a to d 910d correspond to the recording unit RU 920a, the prediction units 911a to 911d correspond to the recording unit RU 920b, and the prediction units PU 913a to 913d correspond to the recording unit RU 920d.
 また、予測単位PU910aの予測モードがPP0、予測単位PU910bの予測モードがPP1、予測単位PU910cの予測モードがPP2、…、予測単位PU913dの予測モードがPP15とすると、符号化単位CU901のビットストリームは、図9の(c)に示すように、先頭からPP0、PP1、PP2、PP3、…PP15が並んだ形式となる。 Further, when the prediction mode of the prediction unit PU 910a is P P0 , the prediction mode of the prediction unit PU 910b is P P1 , the prediction mode of the prediction unit PU 910c is P P2 ,..., And the prediction mode of the prediction unit PU 913d is P P15. bitstream, as shown in (c) of FIG. 9, consisting of the head and P P0, P P1, P P2 , P P3, ... P P15 took form.
 また、記録単位RU920a~dの予測モードは、それぞれPr0、Pr1、Pr2、Pr3である。 Further, the prediction modes of the recording units RU 920a to RUd are P r0 , P r1 , P r2 , and P r3 , respectively.
 なお、Prk(k=0,…,k-1)は、参照用予測モードであり、Ppl(l=0,…,l-1)は、予測用予測モードである。また、PrkおよびPplの値は予測モードIDである。 P rk (k = 0,..., K−1) is a reference prediction mode, and P pl (l = 0,..., L−1) is a prediction prediction mode. The values of P rk and P pl are prediction mode IDs.
  (予測情報復号部15における処理の流れ)
 次に、動画像復号装置1の予測情報復号部15における処理の流れについて図10を参照して説明する。図10は、予測情報復号部15の処理の流れを示すフローチャートである。
(Processing flow in the prediction information decoding unit 15)
Next, the flow of processing in the prediction information decoding unit 15 of the video decoding device 1 will be described with reference to FIG. FIG. 10 is a flowchart showing a process flow of the prediction information decoding unit 15.
 予測情報復号部15は、符号化データ#1を取得すると(S1)、PU構造復号部21が、符号化データ#1から対象CUの予測単位PU構造を復号する(S2)。そして、予測用予測モード復号部22は、PU構造復号部21が復号した予測単位PU構造から、対象CUにおける参照用予測モードの記録単位RUを設定する(S3)。 When the prediction information decoding unit 15 acquires the encoded data # 1 (S1), the PU structure decoding unit 21 decodes the prediction unit PU structure of the target CU from the encoded data # 1 (S2). And the prediction mode decoding part 22 for prediction sets the recording unit RU of the prediction mode for reference in object CU from the prediction unit PU structure decoded by the PU structure decoding part 21 (S3).
 その後、予測用予測モード復号部22は、各記録単位RUについて(S4)、記録単位RUに含まれる予測単位PUの予測用予測モードを復号する(S5~S7)。次に、参照用予測モード導出部23は、参照用予測モードを導出し(S8)、記録単位の位置とともに予測モード記録部11に記録する(S9)。そして、ステップS5~S9を全ての記録単位について行い(S10)、対象CUに含まれる予測単位PU構造と各予測単位PUの予測用予測モードを予測情報(予測モード情報#15)として出力する(S11)。 Thereafter, the prediction mode decoding unit 22 for prediction decodes the prediction mode for prediction of the prediction unit PU included in the recording unit RU (S5 to S7) for each recording unit RU (S4). Next, the reference prediction mode deriving unit 23 derives a reference prediction mode (S8), and records it in the prediction mode recording unit 11 together with the position of the recording unit (S9). Then, steps S5 to S9 are performed for all the recording units (S10), and the prediction unit PU structure included in the target CU and the prediction mode for prediction of each prediction unit PU are output as prediction information (prediction mode information # 15) ( S11).
 以上が、予測情報復号部15における処理の流れである。 The above is the flow of processing in the prediction information decoding unit 15.
 (動画像符号化装置2)
 次に、図11を参照して、動画像符号化装置(画像復号装置)2について説明する。動画像符号化装置2は、概略的に言えば、入力画像#100を符号化することによって符号化データ#1を生成し、出力する装置である。また、動画像符号化装置2は、その一部に、H.264/MPEG-4 AVC規格に採用されている技術、VCEG(Video Coding Expert Group)における共同開発用コーデックであるKTAソフトウェアに採用されている技術、TMuC(Test Model under Consideration)ソフトウェアに採用されている技術、および、その後継コーデックであるHEVC WD1に採用されている方式を用いている動画像符号化装置である。
(Moving picture encoding device 2)
Next, the moving image encoding device (image decoding device) 2 will be described with reference to FIG. Generally speaking, the moving image encoding device 2 is a device that generates and outputs encoded data # 1 by encoding the input image # 100. In addition, the moving image encoding apparatus 2 includes, as part thereof, H.264. 264 / MPEG-4 AVC standard technology, VCEG (Video Coding Expert Group) technology used in joint development codec KTA software, TMuC (Test Model under Consideration) software This is a moving picture encoding apparatus using a technique and a method adopted in HEVC WD1 as a successor codec.
 図11は、動画像符号化装置2の要部構成を示すブロック図である。図11に示すように、動画像符号化装置2は、予測情報決定部31、参照用予測モード導出部32、予測モード記録部33、予測残差符号化部34、予測情報符号化部35、予測画像生成部36、予測残差復号部37、復号画像生成部38、フレームメモリ39、および符号化データ生成部(予測パラメータ符号化手段)40を含む構成である。 FIG. 11 is a block diagram showing a main part configuration of the moving picture encoding apparatus 2. As illustrated in FIG. 11, the moving image encoding device 2 includes a prediction information determination unit 31, a reference prediction mode derivation unit 32, a prediction mode recording unit 33, a prediction residual encoding unit 34, a prediction information encoding unit 35, This configuration includes a predicted image generation unit 36, a prediction residual decoding unit 37, a decoded image generation unit 38, a frame memory 39, and an encoded data generation unit (prediction parameter encoding means) 40.
 予測情報決定部31は、取得した入力画像#100から、符号化単位CUを設定するともに、各符号化単位CUにおける予測単位PUを設定し、予測単位PUにおける予測タイプを決定する。そして、決定した予測タイプに応じて予測パラメータを決定する。例えば、予測タイプをイントラ予測に決定した予測単位PUについては、当該予測単位PUにおける予測モードを決定する。また、予測タイプをインター予測に決定した予測単位PUについては、当該予測単位PUにおけるインター予測タイプ、参照画像インデックス、推定動きベクトルインデックス、動きベクトル残差を決定する。 The prediction information determination unit 31 sets a coding unit CU from the acquired input image # 100, sets a prediction unit PU in each coding unit CU, and determines a prediction type in the prediction unit PU. And a prediction parameter is determined according to the determined prediction type. For example, for a prediction unit PU whose prediction type is determined to be intra prediction, the prediction mode in the prediction unit PU is determined. For the prediction unit PU whose prediction type is determined to be inter prediction, the inter prediction type, reference image index, estimated motion vector index, and motion vector residual in the prediction unit PU are determined.
 そして、決定した予測単位PUおよび予測パラメータを示す予測モード情報#31を、参照用予測モード導出部32、予測情報符号化部35、予測画像生成部36へ通知する。 Then, the prediction mode information # 31 indicating the determined prediction unit PU and the prediction parameter is notified to the reference prediction mode deriving unit 32, the prediction information encoding unit 35, and the predicted image generating unit 36.
 参照用予測モード導出部32は、予測情報決定部31から取得した予測モード情報#31から予測単位PUと対応する記録単位RUを決定する。そして、当該記録単位RUの参照用予測モードを導出して、記録単位RUの符号化単位CUにおける位置とともに予測モード記録部33に記録するものである。なお、参照用予測モード導出部32における処理の詳細は、動画像復号装置1の参照用予測モード導出部23と同様であるので、その説明は省略する。 The reference prediction mode deriving unit 32 determines the recording unit RU corresponding to the prediction unit PU from the prediction mode information # 31 acquired from the prediction information determining unit 31. Then, the reference prediction mode of the recording unit RU is derived and recorded in the prediction mode recording unit 33 together with the position of the recording unit RU in the coding unit CU. Note that details of the processing in the reference prediction mode deriving unit 32 are the same as those in the reference prediction mode deriving unit 23 of the video decoding device 1, and thus description thereof is omitted.
 記録されている予測モードは、生成した予測画像の予測モードを動画像復号装置1へ送信する場合に、当該予測モードを高い符号化効率で可変長符号化するために用いられる。例えば、記録されている予測モードに基づき導出される推定予測モードを用いることで、符号化対象の予測モードを、直接、符号化する場合に較べてより少ない符号量で予測モードを符号化できる。よって、予測画像の生成対象の予測単位の上側または左側に接する予測単位の予測モードを記録しておく必要がある。 The recorded prediction mode is used for variable-length coding of the prediction mode with high coding efficiency when the prediction mode of the generated prediction image is transmitted to the moving picture decoding apparatus 1. For example, by using the estimated prediction mode derived based on the recorded prediction mode, the prediction mode can be encoded with a smaller amount of code than when the prediction mode to be encoded is directly encoded. Therefore, it is necessary to record the prediction mode of the prediction unit that is in contact with the upper side or the left side of the prediction unit that is the generation target of the predicted image.
 予測情報符号化部35は、予測情報決定部31から取得した予測モード情報#31を符号化し、符号化した予測モード符号化データ#35を符号化データ生成部40へ通知するものである。 The prediction information encoding unit 35 encodes the prediction mode information # 31 acquired from the prediction information determination unit 31, and notifies the encoded prediction mode encoded data # 35 to the encoded data generation unit 40.
 予測情報符号化部35は、例えば、以下のように予測モード情報#31を符号化する。 The prediction information encoding part 35 encodes prediction mode information # 31 as follows, for example.
 (方法1)
 (1)対象予測単位の予測モードを特定の予測モード(例えば、対象の予測単位の上辺に隣接している上隣接記録単位の予測モードと、復号対象の予測単位の左辺に隣接している左隣接記録単位の予測モードとのうち、予測モードIDの小さい予測モード)から推定する。この際、上記特定の予測モードを予測モード記録部33から読み出す。(2)推定した予測モード(推定予測モード)を予測情報決定部31から取得した対象予測単位に関する予測モードと比較する。(3)対象予測単位に関する予測モードが推定予測モードと一致した場合、その旨を示すフラグを符号化する。(4)一方、対象予測単位に関する予測モードが推定予測モードと一致しない場合、その旨を示すフラグと対象予測単位に関する予測モードとを符号化する。
(Method 1)
(1) The prediction mode of the target prediction unit is a specific prediction mode (for example, the prediction mode of the upper adjacent recording unit adjacent to the upper side of the target prediction unit and the left adjacent to the left side of the prediction unit of the decoding target) This is estimated from a prediction mode having a small prediction mode ID among prediction modes of adjacent recording units. At this time, the specific prediction mode is read from the prediction mode recording unit 33. (2) The estimated prediction mode (estimated prediction mode) is compared with the prediction mode related to the target prediction unit acquired from the prediction information determination unit 31. (3) If the prediction mode related to the target prediction unit matches the estimated prediction mode, a flag indicating that is encoded. (4) On the other hand, if the prediction mode related to the target prediction unit does not match the estimated prediction mode, a flag indicating that fact and a prediction mode related to the target prediction unit are encoded.
 (方法2)
 (1)対象予測単位の予測モードを複数の予測モード(例えば、対象の予測単位の上辺に隣接している上隣接記録単位の予測モードと、復号対象の予測単位の左辺に隣接している左隣接記録単位の予測モード)からそれぞれ推定する。この際、上記複数の予測モードを予測モード記録部33から読み出す。(2)推定した予測モード(推定予測モード)の各々を予測情報決定部31から取得した対象予測単位に関する予測モードと比較する。(3)対象予測単位に関する予測モードが推定予測モードの何れかと一致した場合、その旨を示すフラグと、一致した推定予測モードがどの予測単位に関する予測モードから推定した推定予測モードであるかを示す情報とを符号化する。(4)一方、対象予測単位に関する予測モードが推定予測モードの何れにも一致しなかった場合、その旨を示すフラグと対象予測単位に関する予測モードとを符号化する。
(Method 2)
(1) The prediction mode of the target prediction unit is a plurality of prediction modes (for example, the prediction mode of the upper adjacent recording unit adjacent to the upper side of the target prediction unit and the left adjacent to the left side of the prediction unit of the decoding target) Estimate from each adjacent recording unit prediction mode). At this time, the plurality of prediction modes are read from the prediction mode recording unit 33. (2) Each estimated prediction mode (estimated prediction mode) is compared with the prediction mode related to the target prediction unit acquired from the prediction information determination unit 31. (3) When the prediction mode related to the target prediction unit matches any of the estimated prediction modes, a flag indicating that fact and the prediction prediction mode estimated from the prediction mode related to which prediction unit the matched estimated prediction mode indicates Information is encoded. (4) On the other hand, when the prediction mode regarding the target prediction unit does not match any of the estimated prediction modes, a flag indicating that fact and the prediction mode regarding the target prediction unit are encoded.
 予測画像生成部36は、予測情報決定部31から取得した予測モード情報#31とフレームメモリ39に記憶されている復号画像とから予測画像を生成し、生成した予測画像を示す予測画像データ#36を予測残差符号化部34および復号画像生成部38に通知するものである。 The prediction image generation unit 36 generates a prediction image from the prediction mode information # 31 acquired from the prediction information determination unit 31 and the decoded image stored in the frame memory 39, and prediction image data # 36 indicating the generated prediction image Is notified to the prediction residual encoding unit 34 and the decoded image generation unit 38.
 予測残差符号化部34は、入力画像#100と、予測画像生成部36から取得した予測画像とから予測残差を導出し、導出した予測残差を符号化した予測残差符号化データ#34を符号化データ生成部40、予測残差復号部37に通知するものである。 The prediction residual encoding unit 34 derives a prediction residual from the input image # 100 and the prediction image acquired from the prediction image generation unit 36, and encodes the derived prediction residual encoded prediction residual data # 34 to the encoded data generation unit 40 and the prediction residual decoding unit 37.
 予測残差復号部37は、予測残差符号化部34から取得した予測残差符号化データ#34を復号し、復号した予測残差データ#37を復号画像生成部38に通知するものである。 The prediction residual decoding unit 37 decodes the prediction residual encoded data # 34 acquired from the prediction residual encoding unit 34, and notifies the decoded image generation unit 38 of the decoded prediction residual data # 37. .
 復号画像生成部38は、予測画像生成部36から取得した予測画像と予測残差復号部37から取得した予測残差データ#37とから復号画像を生成し、生成した復号画像を示す復号画像データ#38をフレームメモリ39に記録するものである。 The decoded image generation unit 38 generates a decoded image from the prediction image acquired from the prediction image generation unit 36 and the prediction residual data # 37 acquired from the prediction residual decoding unit 37, and decoded image data indicating the generated decoded image # 38 is recorded in the frame memory 39.
 符号化データ生成部40は、予測情報符号化部35から取得した予測モード符号化データ#35と予測残差符号化部34から取得した予測残差符号化データ#34とから符号化データ#1を生成し、出力するものである。 The encoded data generation unit 40 encodes encoded data # 1 from the prediction mode encoded data # 35 acquired from the prediction information encoding unit 35 and the prediction residual encoded data # 34 acquired from the prediction residual encoding unit 34. Is generated and output.
 (付記事項1)
 記録単位RUは、横方向と縦方向とで異なる値に設定してもよい。特に、横方向の記録単位を縦方向の記録単位に較べて大きい値に設定してもよい。例えば、1×16画素の予測単位PUに4×16画素の記録単位RUを対応付け、16×1画素の予測単位PUに16×1画素の記録単位RUを対応付ける。
(Appendix 1)
The recording unit RU may be set to a different value in the horizontal direction and the vertical direction. In particular, the horizontal recording unit may be set to a larger value than the vertical recording unit. For example, a recording unit RU of 4 × 16 pixels is associated with a prediction unit PU of 1 × 16 pixels, and a recording unit RU of 16 × 1 pixels is associated with a prediction unit PU of 16 × 1 pixels.
 予測モードを参照する場合、対象予測単位PUの上側および左側に接する予測単位の予測モードから参照することが考えられるが、上側に接する予測単位の予測モードを参照するためには、1ライン分(画面幅分)の予測モードを記録しておく必要がある。一方、左側に接する予測単位の予測モードを参照するためには1LCU(TB)分の予測モードを記録しておけばよい。 When referring to the prediction mode, it is conceivable to refer to the prediction mode of the prediction unit in contact with the upper side and the left side of the target prediction unit PU. It is necessary to record the prediction mode (for the screen width). On the other hand, in order to refer to the prediction mode of the prediction unit in contact with the left side, the prediction mode for 1 LCU (TB) may be recorded.
 したがって、記録単位RUの横方向の単位を縦方向の単位に較べて大きい値に設定することにより、予測モードを記録するメモリ(ラインバッファ)の容量を削減しつつ、推定予測モードの正確さを高めることができる。 Therefore, by setting the horizontal unit of the recording unit RU to a larger value than the vertical unit, the accuracy of the estimated prediction mode can be reduced while reducing the capacity of the memory (line buffer) for recording the prediction mode. Can be increased.
 推定予測モードは対象予測単位PUにおける上隣接記録単位RUの予測モードと左隣接記録単位RUの予測モードとのうち、予測モードIDの小さい予測モードを設定してもよい。 As the estimated prediction mode, a prediction mode having a smaller prediction mode ID may be set between the prediction mode of the upper adjacent recording unit RU and the prediction mode of the left adjacent recording unit RU in the target prediction unit PU.
 なお、スキャン方向に対して平行な方向に予測単位PUの数が増えると必要とされるメモリの容量が増加する。よって、スキャン方向に対して平行な方向の予測単位PUの数が減るように記録単位RUを設定すれば、メモリの容量を減らすことができる。 Note that the memory capacity required increases as the number of prediction units PU increases in a direction parallel to the scan direction. Therefore, if the recording unit RU is set so that the number of prediction units PU in the direction parallel to the scanning direction is reduced, the memory capacity can be reduced.
 (付記事項2)
 記録単位RUに対応する予測モード(参照用予測モード)は、必ずしも記録単位RUの左上画素位置と関連付けて記録する必要はない。例えば、符号化単位CUを既定の単位(例えば4×4画素)で分割し、各領域において、記録単位RU内で同一の値が参照されるように参照用予測モードへの参照を設定してもよい。この場合、対象予測単位PUに隣接する記録単位RUの予測モードは、対象予測単位PUに隣接する上記単位が参照する参照用予測モードとなる。
(Appendix 2)
The prediction mode (reference prediction mode) corresponding to the recording unit RU does not necessarily have to be recorded in association with the upper left pixel position of the recording unit RU. For example, the encoding unit CU is divided by a predetermined unit (for example, 4 × 4 pixels), and the reference to the reference prediction mode is set so that the same value is referenced in the recording unit RU in each region. Also good. In this case, the prediction mode of the recording unit RU adjacent to the target prediction unit PU is the reference prediction mode referred to by the unit adjacent to the target prediction unit PU.
 なお、上記の既定の単位としてN×M画素を用いる場合、(x,y)の位置における参照用予測モードへの参照は次式により定義できる。
x’=(x>>logN)<<log
y’=(y>>logM)<<log
 〔実施の形態2〕
 本発明の他の実施の形態について図12~18に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、上記の実施の形態1において示した部材と同一の機能を有する部材には、同一の符号を付し、その説明を省略する。
When N × M pixels are used as the predetermined unit, the reference to the reference prediction mode at the position (x, y) can be defined by the following equation.
x ′ = (x >> log 2 N) << log 2 N
y ′ = (y >> log 2 M) << log 2 M
[Embodiment 2]
The following will describe another embodiment of the present invention with reference to FIGS. For convenience of explanation, members having the same functions as those shown in the first embodiment are given the same reference numerals, and explanation thereof is omitted.
 本実施の形態において、上記実施の形態1と異なるのは、予測単位PUにおいて予測画像を生成するために用いる予測モード(予測用予測モード)の精度と、当該予測モードを記録するときの予測モード(参照用予測モード)の精度とが異なるという点である。 The present embodiment differs from the first embodiment in the accuracy of the prediction mode (prediction prediction mode) used for generating a prediction image in the prediction unit PU, and the prediction mode for recording the prediction mode. The accuracy of (reference prediction mode) is different.
 本実施の形態に係る動画像復号装置1’の構成を説明する前に、予測単位PUにおいて予測画像を生成するために用いる予測用予測モードの精度と、当該予測用予測モードを記録するときの参照用予測モードの精度とを異ならせることにより、メモリの容量を減らせることができる理由について、図12、13を参照して説明する。図12、13は、予測用予測モードと参照用予測モードとの関係を示す図である。 Before describing the configuration of the moving picture decoding apparatus 1 ′ according to the present embodiment, the accuracy of the prediction mode for prediction used to generate a prediction image in the prediction unit PU and the prediction mode for prediction are recorded. The reason why the memory capacity can be reduced by changing the accuracy of the reference prediction mode will be described with reference to FIGS. 12 and 13 are diagrams illustrating the relationship between the prediction prediction mode and the reference prediction mode.
 予測モードの数が増加(例えば予測方向の数が増加)すると予測精度は向上するが、記録するためのメモリの容量も増加してしまう。例えば、予測モードが32種類の場合には1予測単位あたり5bitのメモリが必要となり、予測モードが256種類の場合には1予測単位あたり8bitのメモリが必要となる。 When the number of prediction modes increases (for example, the number of prediction directions increases), the prediction accuracy improves, but the capacity of the memory for recording also increases. For example, when there are 32 types of prediction modes, a memory of 5 bits per prediction unit is required, and when the prediction modes are 256 types, a memory of 8 bits per prediction unit is required.
 HD(1920×1080画素)において、4画素単位で予測モードを記録するとき、予測モードが32種類の場合は、1920÷4×5÷8=300(byte)の予測モードを記録する必要があり、予測モードが256種類の場合は、1920÷4×8÷8=480(byte)の予測モードを記録する必要が生じる。 In HD (1920 × 1080 pixels), when recording a prediction mode in units of four pixels, if there are 32 types of prediction modes, it is necessary to record a prediction mode of 1920 ÷ 4 × 5 ÷ 8 = 300 (bytes). When there are 256 types of prediction modes, it is necessary to record a prediction mode of 1920 ÷ 4 × 8 ÷ 8 = 480 (bytes).
 そこで、予測用予測モードと参照用予測モードとで予測方向の精度を異ならせれば、すなわち、予測用予測モードの予測方向の精度よりも参照用予測モードの予測方向の精度を低くすれば、高い予測精度を維持しつつ、メモリ容量を削減することができる。 Therefore, if the prediction direction accuracy differs between the prediction prediction mode and the reference prediction mode, that is, if the prediction direction accuracy of the reference prediction mode is lower than the prediction direction accuracy of the prediction prediction mode, it is high. The memory capacity can be reduced while maintaining the prediction accuracy.
 図12に示す例では、予測用予測モードの数は130(0~129)、参照用予測モードの数は34(0~33)となっており、予測用予測モードs1と参照用予測モードs2との関係は次式に示すようになっている。 In the example shown in FIG. 12, the number of prediction prediction modes is 130 (0 to 129), the number of reference prediction modes is 34 (0 to 33), and the prediction prediction mode s1 and the reference prediction mode s2 The relationship is as shown in the following equation.
  s1=(s2-1)<<2+1
  s2=(s1-1)>>2+1
 ただし、s1=0とs2=0とは方向予測ではない予測モード(例えば、DCモードやPlanarモード)に対応するため上記の関係は成立しない。代わりにs1=s2の関係が成り立つ。なお、上記の変換処理は、精度の異なる方向予測を表現する2つの予測パラメータ間のマッピングであり、(1)非方向予測である予測モードの除外(上記の式における「-1」の項が対応する)、(2)方向予測精度の調整(上記の式における「>>2」、「<<2」の項が対応する)、(3)非方向予測である予測モードの追加(上記の式における「+1」の項が対応する)の3ステップにより一般化される。
s1 = (s2-1) << 2 + 1
s2 = (s1-1) >> 2 + 1
However, since s1 = 0 and s2 = 0 correspond to a prediction mode that is not a direction prediction (for example, DC mode or Planar mode), the above relationship does not hold. Instead, the relationship of s1 = s2 holds. The above conversion process is a mapping between two prediction parameters expressing directional predictions with different accuracy. (1) Exclusion of prediction modes that are non-directional predictions (the term “−1” in the above equation is (2) Adjustment of direction prediction accuracy (the terms “>> 2” and “<< 2” in the above equation correspond)), (3) Addition of prediction mode that is non-directional prediction (above Generalized by three steps (corresponding to the term “+1” in the equation).
 そして、図13に示すように、予測単位PU1301の復号した予測用予測モードPPe(図13(b))と、参照用予測モードPrf(図13(a))とを異なる精度とする。そして、図13(c)に示すように、PU1301の予測用予測モードを導出する場合に、参照用予測モードPrfから予測用予測モードPPeを導出する。 Then, as shown in FIG. 13, the prediction prediction mode P Pe (FIG. 13B) decoded by the prediction unit PU 1301 and the reference prediction mode P rf (FIG. 13A) have different accuracy. Then, as illustrated in FIG. 13C, when the prediction mode for prediction of the PU 1301 is derived, the prediction mode P Pe for prediction is derived from the prediction mode P rf for reference.
 (動画像復号装置1’の構成)
 次に、図14を参照して、本実施の形態に係る動画像復号装置1’の構成について説明する。動画像復号装置1’は、上記動画像復号装置1と比較して予測情報復号部15の構成が異なるのみであるので、動画像復号装置1’の予測情報復号部15’について説明する。
(Configuration of moving picture decoding apparatus 1 ')
Next, with reference to FIG. 14, the structure of moving image decoding apparatus 1 ′ according to the present embodiment will be described. Since the moving picture decoding apparatus 1 ′ differs from the moving picture decoding apparatus 1 only in the configuration of the prediction information decoding unit 15, the prediction information decoding unit 15 ′ of the moving picture decoding apparatus 1 ′ will be described.
 図14は、予測情報復号部15’の構成を示すブロック図である。図14に示すように、予測情報復号部15’は、PU構造復号部21、参照用予測モード復号部24、予測モード更新情報復号部25、および予測用予測モード導出部26を含む構成である。 FIG. 14 is a block diagram showing a configuration of the prediction information decoding unit 15 '. As shown in FIG. 14, the prediction information decoding unit 15 ′ includes a PU structure decoding unit 21, a reference prediction mode decoding unit 24, a prediction mode update information decoding unit 25, and a prediction prediction mode deriving unit 26. .
 PU構造復号部21は、予測情報復号部15のPU構造復号部21と同様であるので、その説明は省略する。 Since the PU structure decoding unit 21 is the same as the PU structure decoding unit 21 of the prediction information decoding unit 15, the description thereof is omitted.
 動画像復号装置1’では、予測単位PUと記録単位RUとのサイズが異なるとともに、予測用予測モードと参照用予測モードとの精度が異なっている。この点について、図15を参照して説明する。図15は、予測単位PUのサイズごとの記録単位RU、予測モード数を示す図であり、(a)は予測単位PUと記録単位RUとの関係を示す図であり、(b)は予測単位PUと予測用予測モードの精度と参照用予測モードの精度との関係を示す図である。 In the video decoding device 1 ′, the sizes of the prediction unit PU and the recording unit RU are different, and the accuracy of the prediction mode for prediction and the prediction mode for reference is different. This point will be described with reference to FIG. FIG. 15 is a diagram showing the recording unit RU and the number of prediction modes for each size of the prediction unit PU, (a) is a diagram showing the relationship between the prediction unit PU and the recording unit RU, and (b) is the prediction unit. It is a figure which shows the relationship between the precision of PU, the prediction mode for prediction, and the precision of the prediction mode for reference.
 図15(a)に示すようなテーブル1501を用いることにより、記録単位RUの設定を行うことができる。テーブル1501に示す例では、予測単位PUが、4×4画素、8×8画素、16×16画素、32×32画素、64×64画素、32×8画素、8×32画素、16×4画素、4×16画素の場合は、記録単位RUも同じサイズとなる。 By using a table 1501 as shown in FIG. 15A, the recording unit RU can be set. In the example shown in the table 1501, the prediction unit PU is 4 × 4 pixels, 8 × 8 pixels, 16 × 16 pixels, 32 × 32 pixels, 64 × 64 pixels, 32 × 8 pixels, 8 × 32 pixels, 16 × 4. In the case of pixels, 4 × 16 pixels, the recording unit RU has the same size.
 また、予測単位PUが16×1画素の場合は、記録単位RUは16×4画素となり、予測単位PUが1×16画素の場合は、記録単位RUは4×16画素となる。 Also, when the prediction unit PU is 16 × 1 pixels, the recording unit RU is 16 × 4 pixels, and when the prediction unit PU is 1 × 16 pixels, the recording unit RU is 4 × 16 pixels.
 また、予測単位PUが8×2画素の場合は、記録単位RUは8×4画素となり、予測単位PUが2×8画素の場合は、記録単位RUは4×8画素となる。 Further, when the prediction unit PU is 8 × 2 pixels, the recording unit RU is 8 × 4 pixels, and when the prediction unit PU is 2 × 8 pixels, the recording unit RU is 4 × 8 pixels.
 また、図15(b)に示すテーブル1502により、予測用予測モードの数と参照用予測モードの数とを設定することができる。テーブル1502に示す例では、予測単位PUが4×4画素、8×8画素、16×16画素、32×32画素、64×64画素、32×8画素、8×32画素、16×4画素、4×16画素の場合は、予測用予測モード数および参照用予測モード数ともに33方向となる。 Further, the number of prediction prediction modes and the number of reference prediction modes can be set by the table 1502 shown in FIG. In the example shown in the table 1502, the prediction unit PU is 4 × 4 pixels, 8 × 8 pixels, 16 × 16 pixels, 32 × 32 pixels, 64 × 64 pixels, 32 × 8 pixels, 8 × 32 pixels, and 16 × 4 pixels. In the case of 4 × 16 pixels, the number of prediction prediction modes and the number of reference prediction modes are 33 directions.
 また、予測単位PUが16×1画素、1×16画素、8×2画素、2×8画素の場合は、予測用予測モード数は129方向、参照用予測モード数は33方向となる。 Further, when the prediction unit PU is 16 × 1 pixel, 1 × 16 pixel, 8 × 2 pixel, 2 × 8 pixel, the number of prediction prediction modes is 129 directions, and the number of reference prediction modes is 33 directions.
 参照用予測モード復号部24は、PU構造復号部21から取得したPU構造情報#21に基づいて、対象CUの予測モード記録単位RUを設定する。そして、対象CUに含まれる各記録単位RUについて、符号化データ#1から参照用予測モードを復号し、対象CUにおける記録単位RUの位置とともに予測モード記録部11に記録するものである。また、復号した参照用予測モードを示す参照用予測モードデータ#24を予測用予測モード導出部26に通知するものである。 The reference prediction mode decoding unit 24 sets the prediction mode recording unit RU of the target CU based on the PU structure information # 21 acquired from the PU structure decoding unit 21. Then, for each recording unit RU included in the target CU, the reference prediction mode is decoded from the encoded data # 1, and is recorded in the prediction mode recording unit 11 together with the position of the recording unit RU in the target CU. Further, the prediction prediction mode data # 24 indicating the decoded reference prediction mode is notified to the prediction prediction mode deriving unit 26.
 また、参照用予測モード復号部24は、例えば、以下の方法で予測パラメータを復号する。 Further, the reference prediction mode decoding unit 24 decodes the prediction parameters by the following method, for example.
  方法1(MPM利用)
 符号化データに(1)各予測単位が属する記録単位について、その記録単位の予測モードが特定の記録単位に関する予測モード(例えば、対象記録単位の上辺に隣接している上隣接記録単位の予測モードと、対象記録単位の左辺に隣接している左隣接記録単位の予測モードとのうち、予測モードIDの小さい予測モード)から推定される推定予測モードと一致するか否かを示すフラグと、(2)予測モードが推定予測モードと一致しない記録単位について、その記録単位に関する予測モードを符号化して得られる符号とが含まれている場合、参照用予測モード復号部24は、以下のように符号化パラメータから予測モードを復号する。
Method 1 (using MPM)
(1) For the recording unit to which each prediction unit belongs to the encoded data, the prediction mode of the recording unit is a prediction mode related to a specific recording unit (for example, the prediction mode of the upper adjacent recording unit adjacent to the upper side of the target recording unit) And a flag indicating whether or not it matches the estimated prediction mode estimated from the prediction mode of the left adjacent recording unit adjacent to the left side of the target recording unit (prediction mode with a small prediction mode ID) ( 2) For a recording unit whose prediction mode does not match the estimated prediction mode, when a code obtained by encoding the prediction mode related to the recording unit is included, the reference prediction mode decoding unit 24 encodes the code as follows: The prediction mode is decoded from the optimization parameters.
 すなわち、参照用予測モード復号部24は、(1)符号化データから上記フラグを復号し、(2)上記フラグが推定予測モードと一致することを示している場合、(2-1)上記特定の記録単位に関する予測モードを予測モード記録部11から読み出し、(2-2)読み出した予測モードから対象とする記録単位に関する予測モードを推定し、(3)上記フラグが推定予測モードと一致しないことを示している場合、上記符号を復号することによって対象とする記録単位に関する予測モードを決定する。 That is, the reference prediction mode decoding unit 24 (1) decodes the flag from the encoded data, and (2) indicates that the flag matches the estimated prediction mode. The prediction mode related to the recording unit is read from the prediction mode recording unit 11, (2-2) the prediction mode related to the target recording unit is estimated from the read prediction mode, and (3) the flag does not match the estimated prediction mode , The prediction mode for the target recording unit is determined by decoding the code.
  方法2(複数候補を利用)
 符号化データに(1)各予測単位が属する記録単位について、その記録単位に関する予測モードが複数の記録単位の何れかに関する予測モード(例えば、対象記録単位の上辺に隣接している上隣接記録単位の予測モードと、対象記録単位の左辺に隣接している左隣接記録単位の予測モード)から推定される推定予測モードと一致するか否かを示すフラグと、(2)予測モードが推定予測モードと一致する記録単位について、その記録単位に関する予測モードがどの記録単位(上記複数の記録単位のうち何れか)に関する予測モードと一致するのかを示す情報と、(3)予測モードが推定予測モードと一致しない記録単位について、その記録単位に関する予測モードを符号化して得られる符号とが含まれている場合、参照用予測モード復号部24は、以下のように符号化パラメータから予測モードを復号する。
Method 2 (use multiple candidates)
(1) With respect to a recording unit to which each prediction unit belongs to encoded data, a prediction mode (for example, an upper adjacent recording unit adjacent to the upper side of the target recording unit) which is related to any one of a plurality of recording units. And a flag indicating whether or not the prediction mode is estimated to match the prediction mode estimated from the prediction mode of the left recording unit adjacent to the left side of the target recording unit), and (2) the prediction mode is the estimated prediction mode Information indicating which recording unit (any of the plurality of recording units) the prediction mode for the recording unit matches, and (3) the prediction mode is the estimated prediction mode When a recording unit that does not match includes a code obtained by encoding a prediction mode related to the recording unit, the reference prediction mode decoding unit 2 Decodes the prediction mode from the encoding parameters as follows.
 すなわち、参照用予測モード復号部24は、(1)符号化データから上記フラグを復号し、(2)上記フラグが推定予測モードと一致することを示している場合、(2-1)符号化データから上記情報を復号し、(2-2)上記情報により示される記録単位に関する予測モードを予測モード記録部11から読み出し、(2-3)読み出した予測モードから対象とする記録単位に関する予測モードを推定し、(3)上記フラグが推定予測モードと一致しないことを示している場合、上記符号を復号することによって対象とする記録単位に関する予測モードを決定する。 That is, the reference prediction mode decoding unit 24 (1) decodes the flag from the encoded data, and (2) indicates that the flag matches the estimated prediction mode. Decoding the information from the data, (2-2) reading the prediction mode related to the recording unit indicated by the information from the prediction mode recording unit 11, and (2-3) the prediction mode related to the target recording unit from the read prediction mode. (3) When the flag indicates that it does not match the estimated prediction mode, the prediction mode for the target recording unit is determined by decoding the code.
 予測用予測モードの精度と参照用予測モードの精度とが異なる場合における、予測モードのビットストリーム構成について図16を参照して説明する。図16は、ビットストリームの構成を説明するための図であり、(a)は対象CUと予測単位PUと記録単位RUとの関係を示す図であり、(b)は予測単位PUが1×16画素の場合のビットストリーム例を示す図であり、(c)は予測単位PUが4×16画素の場合のビットストリーム例を示す図である。 The bit stream configuration of the prediction mode when the accuracy of the prediction prediction mode and the accuracy of the reference prediction mode are different will be described with reference to FIG. 16A and 16B are diagrams for explaining the configuration of the bitstream. FIG. 16A is a diagram illustrating the relationship among the target CU, the prediction unit PU, and the recording unit RU, and FIG. It is a figure which shows the example of a bit stream in the case of 16 pixels, (c) is a figure which shows the example of a bit stream in case prediction unit PU is 4x16 pixels.
 図16の(a)に示す例では、16×16画素の対象CUに、1×16画素の予測単位PU1610a、1610b、1610c、…、1613dが含まれており、予測単位PUが4つ含まれるように、4×16画素の記録単位RU1620a、1620b、…、1620dが含まれている。 In the example shown in FIG. 16A, the 16 × 16 pixel target CU includes 1 × 16 pixel prediction units PU1610a, 1610b, 1610c,..., 1613d, and includes four prediction units PU. As described above, 4 × 16 pixel recording units RUs 1620a, 1620b,..., 1620d are included.
 ここで、予測単位PU1610aの予測モードがPP0、予測単位PU1610bの予測モードがPP1、予測単位PU1610cの予測モードがPP2、予測単位PU1610dの予測モードがPP3、…、予測単位PU1613dの予測モードがPP15であり、記録単位RU1620aの予測モードがPr0、記録単位RU1620bの予測モードがPr1、記録単位RU1620cの予測モードがPr2、記録単位RU1620dの予測モードがPr3であるとする。なお、Prk(k=0,…,K-1)は参照用予測モードであり、Ppl(l=0,…,L-1)は、予測用予測モードである。また、Prk、Pplの値は予測モードIDである。 Here, the prediction mode of the prediction unit PU 1610a is P P0 , the prediction mode of the prediction unit PU 1610b is P P1 , the prediction mode of the prediction unit PU 1610c is P P2 , the prediction mode of the prediction unit PU 1610d is P P3 ,. mode is the P P15, the prediction mode of the recording unit RU1620a is P r0, the prediction mode of the recording unit RU1620b is P r1, the prediction mode of the recording unit RU1620c is P r2, the prediction mode of the recording unit RU1620d is assumed to be P r3 . P rk (k = 0,..., K−1) is a reference prediction mode, and P pl (1 = 0,..., L−1) is a prediction prediction mode. The values of P rk and P pl are prediction mode IDs.
 この場合、対象CUの予測モードのビットストリームは、図16の(b)に示すように、先頭からPr0、ΔPP0、ΔPP1、ΔPP2、ΔPP3、Pr1、ΔPP4、…、ΔPP15というようになる。ここで、ΔPP0とは予測モード更新情報であり、当該予測単位PUが属する記録単位RUの予測モードと当該予測単位PUの予測モードとの差分を示している。ΔPP0の場合、Pr0とPP0との差分を示している。なお、予測モード更新情報は、対応する参照用予測モードが方向予測である場合にのみ復号される。よって、DC予測またはPlanar予測の場合は省略される。 In this case, as shown in FIG. 16B, the bit stream of the prediction mode of the target CU is P r0 , ΔP P0 , ΔP P1 , ΔP P2 , ΔP P3 , P r1 , ΔP P4 ,. P15 and so on. Here, ΔP P0 is prediction mode update information, and indicates a difference between the prediction mode of the recording unit RU to which the prediction unit PU belongs and the prediction mode of the prediction unit PU. In the case of ΔP P0 , the difference between P r0 and P P0 is shown. The prediction mode update information is decoded only when the corresponding reference prediction mode is direction prediction. Therefore, it is omitted in the case of DC prediction or Planar prediction.
 すなわち、Pr0、Pr1、…がイントラ予測における予測モードを示すものであり、ΔPP0、ΔPP1、ΔPP2、…が、DC予測またはPlanar予測の何れかを選択する情報を示すものである場合、Pr0、Pr1、…がイントラ予測における方向予測を示すときは、ΔPP0、ΔPP1、ΔPP2、…は復号されるが、Pr0、Pr1、…がイントラ予測におけるDC予測またはPlanar予測を示すときは、ΔPP0、ΔPP1、ΔPP2、…は復号されない。 That is, P r0 , P r1 ,... Indicates a prediction mode in intra prediction, and ΔP P0 , ΔP P1 , ΔP P2 ,... Indicate information for selecting either DC prediction or Planar prediction. When P r0 , P r1 ,... Indicate directional prediction in intra prediction, ΔP P0 , ΔP P1 , ΔP P2 ,... Are decoded, but P r0 , P r1 ,. When indicating Planar prediction, ΔP P0 , ΔP P1 , ΔP P2 ,... Are not decoded.
 また、予測単位PUが、記録単位RUと同じ4×16画素であれば、図16の(c)に示すように、先頭からPr0、Pr1、Pr2、Pr3というビットストリームとなる。 If the prediction unit PU is the same 4 × 16 pixels as the recording unit RU, as shown in (c) of FIG. 16, a bit stream of P r0 , P r1 , P r2 , P r3 is formed from the top.
 以上のように、記録単位RUと予測単位PUとで単位または精度が異なる場合に予測モード更新情報が符号化され、復号する。 As described above, when the unit or accuracy differs between the recording unit RU and the prediction unit PU, the prediction mode update information is encoded and decoded.
 予測モード更新情報復号部25は、符号化データ#1から予測モード更新情報を復号し、復号した予測モード更新情報を示す予測モード更新情報データ#25を予測用予測モード導出部26へ通知するものである。 The prediction mode update information decoding unit 25 decodes the prediction mode update information from the encoded data # 1 and notifies the prediction mode update information data # 25 indicating the decoded prediction mode update information to the prediction mode deriving unit 26 for prediction. It is.
 予測用予測モード導出部26は、参照用予測モード復号部24から取得した参照用予測モードデータ#24と、予測モード更新情報復号部25から取得した予測モード更新情報データ#25とから予測用予測モードを導出して、予測画像生成部17に通知するものである。 The prediction mode deriving unit 26 for prediction uses prediction reference mode data # 24 acquired from the reference prediction mode decoding unit 24 and prediction mode update information data # 25 acquired from the prediction mode update information decoding unit 25. The mode is derived and notified to the predicted image generation unit 17.
 より詳細に、図17を参照して説明する。図17は、予測用予測モードを導出する処理を説明するための図であり、(a)は予測用予測モードと参照用予測モードとの対応関係を示す図であり、(b)は予測モード更新情報の内容を示す図である。 This will be described in more detail with reference to FIG. FIG. 17 is a diagram for explaining the process of deriving the prediction prediction mode, (a) is a diagram showing the correspondence between the prediction prediction mode and the reference prediction mode, and (b) is the prediction mode. It is a figure which shows the content of update information.
 予測モード更新情報復号部25により、予測モード更新情報ΔPplが復号されると、予測用予測モード導出部26は、対象予測単位PUを含む記録単位RUの参照用予測モードPrkを復号する。そして、復号したPrkとΔPPlとを用いて次式により予測用予測モードのパラメータs3を導出する。 When prediction mode update information ΔP pl is decoded by the prediction mode update information decoding unit 25, the prediction prediction mode deriving unit 26 decodes the reference prediction mode P rk of the recording unit RU including the target prediction unit PU. Then, using the decoded P rk and ΔP Pl , the parameter s3 of the prediction mode for prediction is derived by the following equation.
  s4=S(Prk
  s3=(s4<<2)+u
 ただし、S(Prk)は予測モードPrkを1対1対応した、同方向を示す予測モードにマッピングする関数である。また、uは、予測モード更新情報ΔPplにより決定される。また、図17の(b)に、予測モード更新情報ΔPplと対応する符号ビットとの関係を示すテーブル1701を示す。テーブル1701に示す例では、予測モード更新情報ΔPplが「0」のときの符号ビットが「1」、予測モード更新情報ΔPplが「±1」のときの符号ビットが「01x」、予測モード更新情報ΔPplが「±2」のときの符号ビットが「00x」に対応している。
s4 = S (P rk )
s3 = (s4 << 2) + u
However, S (P rk ) is a function that maps the prediction mode P rk to the prediction mode that indicates the same direction in a one-to-one correspondence. U is determined by the prediction mode update information ΔP pl . FIG. 17B shows a table 1701 indicating the relationship between the prediction mode update information ΔP pl and the corresponding code bit. In the example shown in the table 1701, the sign bit when the prediction mode update information ΔP pl is “0” is “1”, the sign bit when the prediction mode update information ΔP pl is “± 1” is “01x”, and the prediction mode The sign bit when the update information ΔP pl is “± 2” corresponds to “00x”.
 なお、テーブル1701では、更新情報の絶対値をtruncated unary符号化するとともに、更新情報が非ゼロである場合にはsign符号を付加している。異なる可変長符号化方式により符号化してもよいが、絶対値が小さい更新情報により短い符号を割り当てる可変長符号化方式が好ましい。 In the table 1701, the absolute value of the update information is truncated and unary encoded, and if the update information is non-zero, a sign code is added. Although encoding may be performed using different variable-length encoding schemes, a variable-length encoding scheme that assigns a short code to update information having a small absolute value is preferable.
 次に、図18を参照して、予測情報復号部15’における処理の流れについて説明する。図18は、予測情報復号部15’の処理の流れを示すフローチャートである。 Next, the flow of processing in the prediction information decoding unit 15 'will be described with reference to FIG. FIG. 18 is a flowchart showing a process flow of the prediction information decoding unit 15 ′.
 予測情報復号部157は、符号化データ#1を取得すると(S21)、PU構造復号部21が、符号化データ#1から対象CUの予測単位PU構造を復号する(S22)。そして、参照用予測モード復号部24は、PU構造復号部21が復号した予測単位PU構造から、対象CUにおける参照用予測モードの記録単位RUを設定する(S23)。 When the prediction information decoding unit 157 acquires the encoded data # 1 (S21), the PU structure decoding unit 21 decodes the prediction unit PU structure of the target CU from the encoded data # 1 (S22). Then, the reference prediction mode decoding unit 24 sets the recording unit RU of the reference prediction mode in the target CU from the prediction unit PU structure decoded by the PU structure decoding unit 21 (S23).
 その後、参照用予測モード復号部24は、各記録単位RUについて(S4)、参照用予測モードを復号する(S25)。次に、予測モード更新情報復号部25は、各予測単位について(S26)、予測モード更新情報を復号する(S27)。そして、予測用予測モード導出部26は、ステップS25で復号された参照用予測モードと、ステップS26で復号された予測モード更新情報とから予測用予測モードを導出する(S28)。 Thereafter, the reference prediction mode decoding unit 24 decodes the reference prediction mode for each recording unit RU (S4) (S25). Next, the prediction mode update information decoding part 25 decodes prediction mode update information about each prediction unit (S26) (S27). Then, the prediction prediction mode deriving unit 26 derives a prediction prediction mode from the reference prediction mode decoded in step S25 and the prediction mode update information decoded in step S26 (S28).
 各予測単位PUについて、ステップS27、S28の処理が終了すると(S29)、参照用予測モード復号部24は復号した参照用予測モードを予測モード記録部11に記録する(S30)。そして、ステップS25~S30を全ての記録単位について行い(S31)、対象CUに含まれる予測単位PU構造と各予測単位PUの予測用予測モードを予測情報(予測モード情報#15)として出力する(S32)。 When the processing of steps S27 and S28 is completed for each prediction unit PU (S29), the reference prediction mode decoding unit 24 records the decoded reference prediction mode in the prediction mode recording unit 11 (S30). Then, Steps S25 to S30 are performed for all the recording units (S31), and the prediction unit PU structure included in the target CU and the prediction mode for prediction of each prediction unit PU are output as prediction information (prediction mode information # 15) ( S32).
 以上が、予測情報復号部15’における処理の流れである。 The above is the flow of processing in the prediction information decoding unit 15 '.
 (変形例)
 対象予測単位に隣接している復号済領域の画素値に基づき導出したエッジ方向を基準として予測方向を決定するエッジベース予測モード(DCIMモード)を、上述した実施の形態2の予測モードに加えた構成であってもよい。
(Modification)
An edge-based prediction mode (DCIM mode) that determines a prediction direction based on an edge direction derived based on a pixel value of a decoded region adjacent to the target prediction unit is added to the prediction mode of the second embodiment described above. It may be a configuration.
 具体的には、符号化データ内に記録単位RU毎にエッジベース予測と上記実施の形態2に記載した予測モード(UIPモード)の何れか選択するフラグを含める。そして、参照用予測モード復号部24は、当該フラグを復号して、UIPモードかDCIMモードかを決定する。そして、UIPモードの場合は、上記実施の形態2の方法で予測情報を復号する。一方、DCIMモードの場合には、以下の方法で予測情報を復号する。 Specifically, a flag for selecting either edge-based prediction or the prediction mode (UIP mode) described in the second embodiment is included in the encoded data for each recording unit RU. Then, the reference prediction mode decoding unit 24 decodes the flag to determine whether it is the UIP mode or the DCIM mode. In the case of the UIP mode, the prediction information is decoded by the method of the second embodiment. On the other hand, in the DCIM mode, the prediction information is decoded by the following method.
  (1)記録単位RUに隣接している復号済領域の画素値に基づいてエッジ方向を導出する。 (1) The edge direction is derived based on the pixel value of the decoded area adjacent to the recording unit RU.
  (2)上記(1)で導出したエッジ方向に最も近い予測方向を、高精度(例えば、実施の形態2における予測用予測モードの精度(129種類))で表現された予測モード(s)の中から選択する。選択された予測モードの値をe1とする。 (2) Prediction mode (s h ) that expresses the prediction direction closest to the edge direction derived in (1) above with high accuracy (for example, accuracy of prediction mode for prediction in Embodiment 2 (129 types)). Choose from. Let e1 be the value of the selected prediction mode.
  (3)記録単位RUに含まれる各予測単位PUに対して以下の処理を適用する。 (3) The following processing is applied to each prediction unit PU included in the recording unit RU.
  (3.1)予測モード更新情報Pplを復号する。 (3.1) The prediction mode update information P pl is decoded.
  (3.2)次式に示すように、予測モードe1に予測モード更新情報Pplを加算して対象PUの予測用予測モードを導出する。 (3.2) As shown in the following equation, the prediction mode update information P pl is added to the prediction mode e1 to derive the prediction mode for prediction of the target PU.
  予測用予測モードs=e1+u
  (4)次式により、予測モードe1を近似する予測方向sh’に対応する予測モードID(Pr)を導出して予測モード記録部に記録する。
Prediction prediction mode s = e1 + u
(4) The prediction mode ID (Pr) corresponding to the prediction direction s h ′ approximating the prediction mode e1 is derived by the following equation and recorded in the prediction mode recording unit.
  sh’=e1>>2
  Pr=S-1(sh’
 なお、S-1(sh’)は、予測方向sh’を同一方向の予測モードIDに1対1にマッピングする関数である。
s h ′ = e1 >> 2
Pr = S −1 (s h ′ )
Note that S-1 (s h ′ ) is a function that maps the prediction direction sh to the prediction mode ID in the same direction on a one-to-one basis.
 (付記事項3)
 上記実施の形態2では、予測単位PU内で予測モード更新情報により予測方向を更新する方法について説明したが、予測方向以外の更新を行ってもよい。
(Appendix 3)
In the said Embodiment 2, although the method to update a prediction direction by prediction mode update information within prediction unit PU was demonstrated, you may update except a prediction direction.
 例えば、記録単位RUから復号される予測モードがDC予測モードまたはPlanar予測モードの場合、各予測単位PUにいずれの予測モードを適用するかを示す情報を予測モード更新情報としてもよい。DC予測モードまたはPlanar予測モードはともに平坦な領域に適した予測である。したがって、平坦な領域に対応する記録単位RUでは、両予測のうち、好ましい予測モードに選択的に切り替えることで、符号化効率を向上させることができる。 For example, when the prediction mode decoded from the recording unit RU is the DC prediction mode or the Planar prediction mode, information indicating which prediction mode is applied to each prediction unit PU may be used as the prediction mode update information. Both the DC prediction mode and the Planar prediction mode are predictions suitable for a flat region. Therefore, in the recording unit RU corresponding to the flat area, the coding efficiency can be improved by selectively switching to the preferred prediction mode of both predictions.
 また、記録単位RUの予測モードとして方向モードが復号された場合、各予測単位PUに復号された予測モードとDCモードのいずれを適用するかを示す情報を予測モード更新情報としてもよい。例えば、16×1画素の予測単位PUの場合、16×4画素の記録単位RU内の一部の領域にのみエッジが存在するケースが多い。このような場合に、方向モードとDCモードとを選択的に切り替えることにより、符号化効率を向上させることができる。 Further, when the direction mode is decoded as the prediction mode of the recording unit RU, information indicating which of the prediction mode and the DC mode to be applied to each prediction unit PU may be used as the prediction mode update information. For example, in the case of a prediction unit PU of 16 × 1 pixels, there are many cases where an edge exists only in a partial region in a recording unit RU of 16 × 4 pixels. In such a case, encoding efficiency can be improved by selectively switching between the direction mode and the DC mode.
 (付記事項4)
 上記実施の形態2では、予測単位PU内で予測モード更新情報により参照予測モードの予測方向に対する差分を送ることで予測用予測モードの予測方向を更新する方法を記載したが、必ずしも差分を送る必要はない。例えば、当該PUで選択される可能性の高い予測モードと参照予測モードの何れかを選択する情報を更新情報として送ってもよい。選択される可能性の高い予測モードとしては、例えばDCモードが挙げられる。また、別の例としては、予測単位PUの形状に応じて決まる予測モードが挙げられる。具体的には、予測単位PUが縦長の形状(1×16や2×8など)の場合には垂直方向の予測方向に対応する予測モードを、予測単位PUが横長の形状(16×1や8×2など)の場合には水平方向の予測方向に対応する予測モードを、選択される可能性の高い予測モードとして、更新情報による選択候補に含めてもよい。
(Appendix 4)
In the second embodiment, the method for updating the prediction direction of the prediction mode for prediction by sending the difference with respect to the prediction direction of the reference prediction mode by the prediction mode update information in the prediction unit PU has been described. There is no. For example, information for selecting either a prediction mode or a reference prediction mode that is highly likely to be selected by the PU may be sent as update information. As a prediction mode with high possibility of being selected, DC mode is mentioned, for example. Another example is a prediction mode that is determined according to the shape of the prediction unit PU. Specifically, when the prediction unit PU has a vertically long shape (such as 1 × 16 or 2 × 8), the prediction mode corresponding to the prediction direction in the vertical direction is selected, and the prediction unit PU has a horizontally long shape (16 × 1 or In the case of 8 × 2, etc., the prediction mode corresponding to the horizontal prediction direction may be included in the selection candidates based on the update information as a prediction mode with a high possibility of being selected.
 (付記事項5)
 上記実施の形態2では、イントラ予測モードを記録するためのメモリの容量を削減できることについて記載したが、イントラ予測モードに限られず、符号化単位CU未満の単位で記録され得る予測画像生成に用いられるパラメータにも、予測単位PUと記録単位RUとのサイズを異ならせる方式が適用できる。
(Appendix 5)
In the second embodiment, it has been described that the capacity of the memory for recording the intra prediction mode can be reduced. However, the present invention is not limited to the intra prediction mode, and is used for generating a predicted image that can be recorded in units smaller than the coding unit CU. A method of making the size of the prediction unit PU and the recording unit RU different can also be applied to the parameter.
 例えば、推定イントラ予測モード選択情報、イントラ予測モードの残差情報、動きベクトル、動きベクトル残差、推定動きベクトル選択情報、参照画像選択情報、参照画像リスト選択情報等に適用することができる。 For example, the present invention can be applied to estimated intra prediction mode selection information, residual information of intra prediction modes, motion vectors, motion vector residuals, estimated motion vector selection information, reference image selection information, reference image list selection information, and the like.
 (付記事項6)
 上記実施の形態2は、上記実施の形態1に記載した「記録単位のサイズを予測単位のサイズよりも大きくする」という構成に、「参照用予測モードの精度を予測用予測モードの精度よりも低くする」という構成を組み合わせたものであるが、後者の構成は必ずしも前者の構成と組み合わせる必要はなく単独でも効果を奏する。
(Appendix 6)
In the second embodiment, the accuracy of the reference prediction mode is higher than the accuracy of the prediction prediction mode in the configuration of “making the size of the recording unit larger than the size of the prediction unit” described in the first embodiment. Although the configuration of “lower” is combined, the latter configuration does not necessarily need to be combined with the former configuration, and the single configuration is effective.
 (付記事項7)
 上記実施の形態1および形態2では、参照用予測モードをイントラ予測モードの推定値導出時に用いることを記載したが、必ずしも全ての場合に参照用予測モードのみを用いる必要はない。例えば、比較的直近に復号された予測モードを参照する場合には、参照予測モードではなく予測用予測モードを用いてイントラ予測モードを推定してもよい。具体的には、左側に隣接する予測単位PUの予測用予測モードと、上側に隣接する記録単位RUの参照用予測モードとに基づいて推定値を導出してもよい。
(Appendix 7)
In the first embodiment and the second embodiment, it is described that the reference prediction mode is used when the estimated value of the intra prediction mode is derived. However, it is not always necessary to use only the reference prediction mode in all cases. For example, when referring to a prediction mode decoded relatively recently, the intra prediction mode may be estimated using the prediction prediction mode instead of the reference prediction mode. Specifically, the estimated value may be derived based on the prediction prediction mode of the prediction unit PU adjacent on the left side and the reference prediction mode of the recording unit RU adjacent on the upper side.
 ラスタスキャン順でLCU(TB)の復号を行う場合、左側に隣接する記録単位RUは、上側に隣接する記録単位RUに較べて比較的直近に復号される。そのため、左側に隣接する予測単位PUの予測用予測モードを記録しておくためのメモリの容量は、上側に隣接する予測単位PUの予測用予測モードを記録しておくためのメモリの容量に較べて少ない。 When decoding LCU (TB) in the raster scan order, the recording unit RU adjacent to the left side is decoded relatively recently compared to the recording unit RU adjacent to the upper side. Therefore, the capacity of the memory for recording the prediction prediction mode of the prediction unit PU adjacent on the left side is compared with the capacity of the memory for recording the prediction prediction mode of the prediction unit PU adjacent on the upper side. And few.
 したがって、メモリ容量を大きく増加させることなく、予測モードの推定値の精度を高めることができる。別の例として、左側または上側に隣接する予測単位PUが対象予測単位PUと同一の符号化単位CUまたはLCU(TB)にある場合には予測用予測モードを利用し、それ以外の場合には、左側または上側に隣接する記録単位RUの参照用予測モードを利用してイントラ予測モード推定値を導出してもよい。同一の符号化単位CU、LCU(TB)に含まれる予測単位PUは比較的近いタイミングで復号されるため、メモリ容量を大きく増加させることなく予測モードの推定値の精度を高めることができる。 Therefore, the accuracy of the estimated value of the prediction mode can be increased without greatly increasing the memory capacity. As another example, when the prediction unit PU adjacent to the left side or the upper side is in the same coding unit CU or LCU (TB) as the target prediction unit PU, the prediction prediction mode is used, otherwise The intra prediction mode estimation value may be derived using the reference prediction mode of the recording unit RU adjacent on the left side or the upper side. Since the prediction units PU included in the same coding unit CU and LCU (TB) are decoded at relatively close timings, it is possible to improve the accuracy of the prediction mode estimation value without greatly increasing the memory capacity.
 上記の例を、対象予測単位の上側の隣接領域の動きベクトルに基づき推定動きベクトルを導出する処理に適用する場合について具体例を説明する。なお、以下では記録単位RUの大きさを8x8画素と仮定する。また、予測単位の最小の幅は4画素とする。
(1)対象予測単位の左上画素の位置(xP,yP)を取得する。
(2)(xP,yP-1)を含む予測単位を対象予測単位の上側隣接予測単位とする。
(3)対象予測単位と上側隣接予測単位が同一LCUに属するか否かを判定する。
(3-1)同一LCUに属する場合、上側隣接予測単位の動きベクトルを推定動きベクトルとする。
(3-2)同一LCUに属さない場合、上側隣接記録単位の動きベクトルを推定動きベクトルとする。ここで、上側隣接記録単位は、(xP,yP-1)を含む記録単位である。
A specific example will be described in the case where the above example is applied to the process of deriving the estimated motion vector based on the motion vector of the adjacent region above the target prediction unit. In the following, it is assumed that the size of the recording unit RU is 8 × 8 pixels. The minimum width of the prediction unit is 4 pixels.
(1) The position (xP, yP) of the upper left pixel of the target prediction unit is acquired.
(2) The prediction unit including (xP, yP-1) is set as the upper adjacent prediction unit of the target prediction unit.
(3) It is determined whether the target prediction unit and the upper adjacent prediction unit belong to the same LCU.
(3-1) When belonging to the same LCU, the motion vector of the upper adjacent prediction unit is set as the estimated motion vector.
(3-2) When not belonging to the same LCU, the motion vector of the upper adjacent recording unit is set as the estimated motion vector. Here, the upper adjacent recording unit is a recording unit including (xP, yP-1).
 上記の手順により推定動きベクトルを導出する場合、上側隣接予測単位が対象予測単位と異なるLCUに属するとき、記録単位で動きベクトルを参照する。すなわち、対象LCUの1ライン上のLCUにおいて、記録単位で動きベクトルをメモリに保持していればよい。常に上側隣接予測単位の動きベクトルを参照する場合、対象LCUの1ライン上のLCUにおいて、予測単位で動きベクトルを保持している必要がある。したがって、記録単位の幅が予測単位の最小の幅より大きい場合、上記の手順により動きベクトルを推定することで、対象LCUの1ライン上のLCUにおける動きベクトルを保持するためのラインメモリ量を削減できる。 When the estimated motion vector is derived by the above procedure, when the upper adjacent prediction unit belongs to an LCU different from the target prediction unit, the motion vector is referred to in the recording unit. That is, it is only necessary to store the motion vector in the memory in units of recording in the LCU on one line of the target LCU. When the motion vector of the upper adjacent prediction unit is always referred to, it is necessary to hold the motion vector in the prediction unit in the LCU on one line of the target LCU. Therefore, when the width of the recording unit is larger than the minimum width of the prediction unit, the amount of line memory for holding the motion vector in the LCU on one line of the target LCU is reduced by estimating the motion vector by the above procedure. it can.
 なお、動きベクトルの参照時に、記録単位内の唯一の座標のみが参照されるようにすることで、上記メモリ削減効果が得られる。例えば、記録単位が8x8の場合、8x8の領域につき1個の動きベクトルのみを参照するようにすればよい。以下、例を挙げて説明する。 Note that the above memory reduction effect can be obtained by referring to only the coordinates in the recording unit when referring to the motion vector. For example, when the recording unit is 8 × 8, only one motion vector needs to be referred to per 8 × 8 area. Hereinafter, an example will be described.
 例えば、次のように上側隣接記録単位に属する動きベクトルの記録位置(xB',yB')を決定してもよい。
xB' = ((xP + 7) >> 3) << 3
yB' = yP - 1
 ここで、1ライン上のLCUの動きベクトルは、記録単位で(N×8,yP-1)の位置に記録されていることになる。ここで、Nは0以上の整数である。この場合、動きベクトルはx軸の方向に、8画素につき1個記録されている。上記の式によると、上側隣接記録単位の動きベクトルの記録位置は、対象PUの左上画素の1画素上の画素から最も近い位置に動きベクトルの記録位置となる。
For example, the recording position (xB ′, yB ′) of the motion vector belonging to the upper adjacent recording unit may be determined as follows.
xB '= ((xP + 7) >> 3) << 3
yB '= yP-1
Here, the motion vector of the LCU on one line is recorded at a position of (N × 8, yP−1) in a recording unit. Here, N is an integer of 0 or more. In this case, one motion vector is recorded for every 8 pixels in the x-axis direction. According to the above equation, the recording position of the motion vector in the upper adjacent recording unit is the recording position of the motion vector at a position closest to the pixel one pixel above the upper left pixel of the target PU.
 また、次のように上側記録単位に属する動きベクトルの記録位置(xB',yB')を決定してもよい。
xB' = ( xP >> 3) << 3
yB' = yP - 1
 この場合も、1ライン上のLCUの動きベクトルは、記録単位で(N×8,yP-1)の位置に記録されていることになる。ここで、Nは0以上の整数である。この場合、動きベクトルはx軸の方向に、8画素につき1個記録されている。上記の式によると、上側隣接記録単位の動きベクトルの記録位置は、対象PUの左上画素の1画素上の画素を基準として、当該画素のx座標を記録単位の幅で除算した商の位置を、x座標とする位置となる。
Further, the recording position (xB ′, yB ′) of the motion vector belonging to the upper recording unit may be determined as follows.
xB '= (xP >> 3) << 3
yB '= yP-1
Also in this case, the motion vector of the LCU on one line is recorded at the position of (N × 8, yP−1) in the recording unit. Here, N is an integer of 0 or more. In this case, one motion vector is recorded for every 8 pixels in the x-axis direction. According to the above formula, the recording position of the motion vector of the upper adjacent recording unit is the position of the quotient obtained by dividing the x coordinate of the pixel by the width of the recording unit with reference to the pixel one pixel above the upper left pixel of the target PU. , And the x coordinate position.
 また、次のように上側記録単位に属する動きベクトルの記録位置(xB',yB')を決定してもよい。
xB' = (xP >> 3) << 3       [ 0 <= (xB % 16) < 8 ]
xB' = (((xP >> 3) + 1) << 3) - 1 [ 8 <= (xB % 16) < 16 ]
yB' = yP - 1
 ここで、1ライン上のLCUの動きベクトルは、記録単位で(N×16,yP-1)、(N×16-1,yP-1)の位置に記録されていることになる。ここで、Nは0以上の整数である。この場合、動きベクトルは、x軸の方向に8画素につき1個記録されている。ここで、当該画素のx座標を記録単位の幅の2倍の数で除算した余りをD、記録単位の幅をEとする。上記の式によると、上側隣接記録単位の動きベクトルの記録位置は、対象予想単位の左上画素の1画素上の画素を基準として、Dの値が0以上、E未満であれば、(N×16,yP-1)の位置に記録されている動きベクトルを参照し、Dの値がE以上、2E未満であれば、(N×16-1,yP-1)の位置に記録されている動きベクトルを参照する。
Further, the recording position (xB ′, yB ′) of the motion vector belonging to the upper recording unit may be determined as follows.
xB '= (xP >> 3) << 3 [0 <= (xB% 16) <8]
xB '= (((xP >> 3) + 1) << 3)-1 [8 <= (xB% 16) <16]
yB '= yP-1
Here, the motion vector of the LCU on one line is recorded at positions (N × 16, yP−1) and (N × 16−1, yP−1) in the recording unit. Here, N is an integer of 0 or more. In this case, one motion vector is recorded for every eight pixels in the x-axis direction. Here, D is a remainder obtained by dividing the x coordinate of the pixel by a number twice the width of the recording unit, and E is the width of the recording unit. According to the above formula, the recording position of the motion vector of the upper adjacent recording unit is (N × 0) if the value of D is 0 or more and less than E with reference to the pixel one pixel above the upper left pixel of the target prediction unit. Referring to the motion vector recorded at the position 16, yP-1), if the value of D is greater than or equal to E and less than 2E, it is recorded at the position (N × 16-1, yP-1) Refers to the motion vector.
 なお、上記の例で導出した推定動きベクトルは、複数の推定動きベクトル候補の中の一つであってもよい。また、推定動きベクトルを直接動き補償に用いてもよいし、推定動きベクトルに差分動きベクトルを加算して得られる動きベクトルを動き補償に用いてもよい。 Note that the estimated motion vector derived in the above example may be one of a plurality of estimated motion vector candidates. Further, the estimated motion vector may be directly used for motion compensation, or a motion vector obtained by adding a difference motion vector to the estimated motion vector may be used for motion compensation.
 (付記事項8)
 上記実施の形態1および形態2では、参照用予測モードをイントラ予測モードの推定値導出に用いる場合について記載したが、それ以外の用途に参照用予測モードを利用する場合にも本実施の形態は有効である。本実施の形態は、復号順で先に復号されたイントラ予測モードを参照するあらゆる処理に適用できる。例えば、イントラ予測モードを参照することで予測単位PU間の境界の連続性を判定した上で、適切な強度のデブロッキングフィルタをかける場合に適用できる。このような場合に、参照用予測モードを利用することで、イントラ予測モードを記録するためのメモリの容量を削減することができる。
(Appendix 8)
In Embodiment 1 and Embodiment 2 described above, the case where the reference prediction mode is used for derivation of the estimated value of the intra prediction mode has been described, but the present embodiment also applies when the reference prediction mode is used for other purposes. It is valid. The present embodiment can be applied to any process that refers to an intra prediction mode that has been previously decoded in decoding order. For example, it can be applied to a case where a deblocking filter having an appropriate strength is applied after determining the continuity of the boundary between prediction units PU by referring to the intra prediction mode. In such a case, the memory capacity for recording the intra prediction mode can be reduced by using the reference prediction mode.
 (応用例)
 上述した動画像復号装置1および動画像符号化装置2は、動画像の送信、受信、記録、再生を行う各種装置に搭載して利用することができる。なお、動画像は、カメラ等により撮像された自然動画像であってもよいし、コンピュータ等により生成された人工動画像(CGおよびGUIを含む)であってもよい。
(Application examples)
The moving picture decoding apparatus 1 and the moving picture encoding apparatus 2 described above can be used by being mounted on various apparatuses that perform moving picture transmission, reception, recording, and reproduction. The moving image may be a natural moving image captured by a camera or the like, or may be an artificial moving image (including CG and GUI) generated by a computer or the like.
 まず、上述した動画像復号装置1および動画像符号化装置2を、動画像の送信及び受信に利用できることを、図19を参照して説明する。 First, it will be described with reference to FIG. 19 that the moving picture decoding apparatus 1 and the moving picture encoding apparatus 2 described above can be used for transmission and reception of moving pictures.
 図19(a)は、動画像符号化装置2を搭載した送信装置Aの構成を示したブロック図である。図19(a)に示すように、送信装置Aは、動画像を符号化することによって符号化データを得る符号化部A1と、符号化部A1が得た符号化データで搬送波を変調することによって変調信号を得る変調部A2と、変調部A2が得た変調信号を送信する送信部A3と、を備えている。上述した動画像符号化装置2は、この符号化部A1として利用される。 FIG. 19A is a block diagram showing a configuration of a transmission apparatus A equipped with the moving picture encoding apparatus 2. As shown in FIG. 19 (a), the transmitting apparatus A encodes a moving image, obtains encoded data, and modulates a carrier wave with the encoded data obtained by the encoding unit A1. A modulation unit A2 that obtains a modulation signal by the transmission unit A2 and a transmission unit A3 that transmits the modulation signal obtained by the modulation unit A2. The moving image encoding device 2 described above is used as the encoding unit A1.
 送信装置Aは、符号化部A1に入力する動画像の供給源として、動画像を撮像するカメラA4、動画像を記録した記録媒体A5、動画像を外部から入力するための入力端子A6、および画像を生成または加工する画像処理部A7を更に備えていてもよい。図19(a)においては、これら全てを送信装置Aが備えた構成を例示しているが、一部を省略しても構わない。 The transmission apparatus A has a camera A4 that captures a moving image, a recording medium A5 that records the moving image, an input terminal A6 for inputting the moving image from the outside, as a supply source of the moving image that is input to the encoding unit A1. You may further provide image processing part A7 which produces | generates or processes an image. FIG. 19A illustrates a configuration in which the transmission apparatus A includes all of these, but a part of the configuration may be omitted.
 なお、記録媒体A5は、符号化されていない動画像を記録したものであってもよいし、伝送用の符号化方式とは異なる記録用の符号化方式で符号化された動画像を記録したものであってもよい。後者の場合、記録媒体A5と符号化部A1との間に、記録媒体A5から読み出した符号化データを記録用の符号化方式に従って復号する復号部(不図示)を介在させるとよい。 The recording medium A5 may be a recording of a non-encoded moving image, or a recording of a moving image encoded using a recording encoding scheme different from the transmission encoding scheme. It may be a thing. In the latter case, a decoding unit (not shown) for decoding the encoded data read from the recording medium A5 according to the recording encoding method may be interposed between the recording medium A5 and the encoding unit A1.
 図19(b)は、動画像復号装置1を搭載した受信装置Bの構成を示したブロック図である。図19(b)に示すように、受信装置Bは、変調信号を受信する受信部B1と、受信部B1が受信した変調信号を復調することによって符号化データを得る復調部B2と、復調部B2が得た符号化データを復号することによって動画像を得る復号部B3と、を備えている。上述した動画像復号装置1は、この復号部B3として利用される。 FIG. 19B is a block diagram illustrating a configuration of the receiving device B on which the moving image decoding device 1 is mounted. As shown in FIG. 19B, the receiving device B includes a receiving unit B1 that receives a modulated signal, a demodulating unit B2 that obtains encoded data by demodulating the modulated signal received by the receiving unit B1, and a demodulating unit. A decoding unit B3 that obtains a moving image by decoding the encoded data obtained by B2. The moving picture decoding apparatus 1 described above is used as the decoding unit B3.
 受信装置Bは、復号部B3が出力する動画像の供給先として、動画像を表示するディスプレイB4、動画像を記録するための記録媒体B5、及び、動画像を外部に出力するための出力端子B6を更に備えていてもよい。図19(b)においては、これら全てを受信装置Bが備えた構成を例示しているが、一部を省略しても構わない。 The receiving apparatus B has a display B4 for displaying a moving image, a recording medium B5 for recording the moving image, and an output terminal for outputting the moving image as a supply destination of the moving image output from the decoding unit B3. B6 may be further provided. FIG. 19B illustrates a configuration in which the receiving apparatus B includes all of these, but some of them may be omitted.
 なお、記録媒体B5は、符号化されていない動画像を記録するためのものであってもよいし、伝送用の符号化方式とは異なる記録用の符号化方式で符号化されたものであってもよい。後者の場合、復号部B3と記録媒体B5との間に、復号部B3から取得した動画像を記録用の符号化方式に従って符号化する符号化部(不図示)を介在させるとよい。 Note that the recording medium B5 may be for recording an unencoded moving image, or is encoded by a recording encoding method different from the transmission encoding method. May be. In the latter case, an encoding unit (not shown) that encodes the moving image acquired from the decoding unit B3 in accordance with the recording encoding method may be interposed between the decoding unit B3 and the recording medium B5.
 なお、変調信号を伝送する伝送媒体は、無線であってもよいし、有線であってもよい。また、変調信号を伝送する伝送態様は、放送(ここでは、送信先が予め特定されていない送信態様を指す)であってもよいし、通信(ここでは、送信先が予め特定されている送信態様を指す)であってもよい。すなわち、変調信号の伝送は、無線放送、有線放送、無線通信、及び有線通信の何れによって実現してもよい。 Note that the transmission medium for transmitting the modulation signal may be wireless or wired. Further, the transmission mode for transmitting the modulated signal may be broadcasting (here, a transmission mode in which the transmission destination is not specified in advance) or communication (here, transmission in which the transmission destination is specified in advance). Refers to the embodiment). That is, the transmission of the modulation signal may be realized by any of wireless broadcasting, wired broadcasting, wireless communication, and wired communication.
 例えば、地上デジタル放送の放送局(放送設備など)/受信局(テレビジョン受像機など)は、変調信号を無線放送で送受信する送信装置A/受信装置Bの一例である。また、ケーブルテレビ放送の放送局(放送設備など)/受信局(テレビジョン受像機など)は、変調信号を有線放送で送受信する送信装置A/受信装置Bの一例である。 For example, a terrestrial digital broadcast broadcasting station (such as broadcasting equipment) / receiving station (such as a television receiver) is an example of a transmitting apparatus A / receiving apparatus B that transmits and receives modulated signals by wireless broadcasting. A broadcasting station (such as broadcasting equipment) / receiving station (such as a television receiver) for cable television broadcasting is an example of a transmitting device A / receiving device B that transmits and receives a modulated signal by cable broadcasting.
 また、インターネットを用いたVOD(Video On Demand)サービスや動画共有サービスなどのサーバ(ワークステーションなど)/クライアント(テレビジョン受像機、パーソナルコンピュータ、スマートフォンなど)は、変調信号を通信で送受信する送信装置A/受信装置Bの一例である(通常、LANにおいては伝送媒体として無線又は有線の何れかが用いられ、WANにおいては伝送媒体として有線が用いられる)。ここで、パーソナルコンピュータには、デスクトップ型PC、ラップトップ型PC、及びタブレット型PCが含まれる。また、スマートフォンには、多機能携帯電話端末も含まれる。 Also, a server (workstation etc.) / Client (television receiver, personal computer, smart phone etc.) such as VOD (Video On Demand) service and video sharing service using the Internet is a transmitting device for transmitting and receiving modulated signals by communication. This is an example of A / reception device B (usually, either wireless or wired is used as a transmission medium in a LAN, and wired is used as a transmission medium in a WAN). Here, the personal computer includes a desktop PC, a laptop PC, and a tablet PC. The smartphone also includes a multi-function mobile phone terminal.
 なお、動画共有サービスのクライアントは、サーバからダウンロードした符号化データを復号してディスプレイに表示する機能に加え、カメラで撮像した動画像を符号化してサーバにアップロードする機能を有している。すなわち、動画共有サービスのクライアントは、送信装置A及び受信装置Bの双方として機能する。 In addition to the function of decoding the encoded data downloaded from the server and displaying it on the display, the video sharing service client has a function of encoding a moving image captured by the camera and uploading it to the server. That is, the client of the video sharing service functions as both the transmission device A and the reception device B.
 次に、上述した動画像復号装置1および動画像符号化装置2を、動画像の記録及び再生に利用できることを、図20を参照して説明する。 Next, the fact that the above-described moving picture decoding apparatus 1 and moving picture encoding apparatus 2 can be used for recording and reproduction of moving pictures will be described with reference to FIG.
 図20(a)は、上述した動画像復号装置1を搭載した記録装置Cの構成を示したブロック図である。図20(a)に示すように、記録装置Cは、動画像を符号化することによって符号化データを得る符号化部C1と、符号化部C1が得た符号化データを記録媒体Mに書き込む書込部C2と、を備えている。上述した動画像符号化装置2は、この符号化部C1として利用される。 FIG. 20A is a block diagram showing a configuration of a recording apparatus C equipped with the moving picture decoding apparatus 1 described above. As shown in FIG. 20 (a), the recording device C encodes a moving image to obtain encoded data, and writes the encoded data obtained by the encoding unit C1 to the recording medium M. And a writing unit C2. The moving image encoding device 2 described above is used as the encoding unit C1.
 なお、記録媒体Mは、(1)HDD(Hard Disk Drive)やSSD(Solid State Drive)などのように、記録装置Cに内蔵されるタイプのものであってもよいし、(2)SDメモリカードやUSB(Universal Serial Bus)フラッシュメモリなどのように、記録装置Cに接続されるタイプのものであってもよいし、(3)DVD(Digital Versatile Disc)やBD(Blu-ray Disc:登録商標)などのように、記録装置Cに内蔵されたドライブ装置(不図示)に装填されるものであってもよい。 The recording medium M may be of a type built in the recording device C, such as (1) HDD (Hard Disk Drive) or SSD (Solid State Drive), or (2) SD memory. It may be of the type connected to the recording device C, such as a card or USB (Universal Serial Bus) flash memory, or (3) DVD (Digital Versatile Disc) or BD (Blu-ray Disc: registration) (Trademark) or the like may be mounted on a drive device (not shown) built in the recording apparatus C.
 また、記録装置Cは、符号化部C1に入力する動画像の供給源として、動画像を撮像するカメラC3、動画像を外部から入力するための入力端子C4、動画像を受信するための受信部C5、および、画像を生成または加工する画像処理部C6を更に備えていてもよい。図20(a)においては、これら全てを記録装置Cが備えた構成を例示しているが、一部を省略しても構わない。 The recording apparatus C also serves as a moving image supply source to be input to the encoding unit C1, a camera C3 that captures moving images, an input terminal C4 for inputting moving images from the outside, and reception for receiving moving images. A unit C5 and an image processing unit C6 that generates or processes an image may be further provided. FIG. 20A illustrates a configuration in which the recording apparatus C includes all of these, but some of them may be omitted.
 なお、受信部C5は、符号化されていない動画像を受信するものであってもよいし、記録用の符号化方式とは異なる伝送用の符号化方式で符号化された符号化データを受信するものであってもよい。後者の場合、受信部C5と符号化部C1との間に、伝送用の符号化方式で符号化された符号化データを復号する伝送用復号部(不図示)を介在させるとよい。 The receiving unit C5 may receive an unencoded moving image, or receives encoded data encoded by a transmission encoding method different from the recording encoding method. You may do. In the latter case, a transmission decoding unit (not shown) that decodes encoded data encoded by the transmission encoding method may be interposed between the reception unit C5 and the encoding unit C1.
 このような記録装置Cとしては、例えば、DVDレコーダ、BDレコーダ、HD(Hard Disk)レコーダなどが挙げられる(この場合、入力端子C4又は受信部C5が動画像の主な供給源となる)。また、カムコーダ(この場合、カメラC3が動画像の主な供給源となる)、パーソナルコンピュータ(この場合、受信部C5または画像処理部C6が動画像の主な供給源となる)、スマートフォン(この場合、カメラC3又は受信部C5が動画像の主な供給源となる)なども、このような記録装置Cの一例である。 Examples of such a recording device C include a DVD recorder, a BD recorder, and an HD (Hard Disk) recorder (in this case, the input terminal C4 or the receiving unit C5 is a main source of moving images). In addition, a camcorder (in this case, the camera C3 is a main source of moving images), a personal computer (in this case, the receiving unit C5 or the image processing unit C6 is a main source of moving images), a smartphone (this In this case, the camera C3 or the receiving unit C5 is a main source of moving images).
 図20(b)は、上述した動画像復号装置1を搭載した再生装置Dの構成を示したブロックである。図20(b)に示すように、再生装置Dは、記録媒体Mに書き込まれた符号化データを読み出す読出部D1と、読出部D1が読み出した符号化データを復号することによって動画像を得る復号部D2と、を備えている。上述した動画像復号装置1は、この復号部D2として利用される。 FIG. 20B is a block showing the configuration of the playback device D on which the above-described video decoding device 1 is mounted. As shown in FIG. 20 (b), the playback device D obtains a moving image by decoding the read data D1 that reads the encoded data written on the recording medium M and the read data read by the read unit D1. A decoding unit D2. The moving picture decoding apparatus 1 described above is used as the decoding unit D2.
 なお、記録媒体Mは、(1)HDDやSSDなどのように、再生装置Dに内蔵されるタイプのものであってもよいし、(2)SDメモリカードやUSBフラッシュメモリなどのように、再生装置Dに接続されるタイプのものであってもよいし、(3)DVDやBDなどのように、再生装置Dに内蔵されたドライブ装置(不図示)に装填されるものであってもよい。 The recording medium M may be of a type built in the playback device D such as (1) HDD or SSD, or (2) such as an SD memory card or USB flash memory. It may be of a type connected to the playback device D, or (3) may be loaded into a drive device (not shown) built in the playback device D, such as DVD or BD. Good.
 また、再生装置Dは、復号部D2が出力する動画像の供給先として、動画像を表示するディスプレイD3、動画像を外部に出力するための出力端子D4、及び、動画像を送信する送信部D5を更に備えていてもよい。図20(b)においては、これら全てを再生装置Dが備えた構成を例示しているが、一部を省略しても構わない。 Further, the playback device D has a display D3 for displaying a moving image, an output terminal D4 for outputting the moving image to the outside, and a transmitting unit for transmitting the moving image as a supply destination of the moving image output by the decoding unit D2. D5 may be further provided. FIG. 20B illustrates a configuration in which the playback apparatus D includes all of these, but some of the configurations may be omitted.
 なお、送信部D5は、符号化されていない動画像を送信するものであってもよいし、記録用の符号化方式とは異なる伝送用の符号化方式で符号化された符号化データを送信するものであってもよい。後者の場合、復号部D2と送信部D5との間に、動画像を伝送用の符号化方式で符号化する符号化部(不図示)を介在させるとよい。 The transmission unit D5 may transmit a non-encoded moving image, or transmits encoded data encoded by a transmission encoding method different from the recording encoding method. You may do. In the latter case, an encoding unit (not shown) that encodes a moving image with a transmission encoding method may be interposed between the decoding unit D2 and the transmission unit D5.
 このような再生装置Dとしては、例えば、DVDプレイヤ、BDプレイヤ、HDDプレイヤなどが挙げられる(この場合、テレビジョン受像機等が接続される出力端子D4が動画像の主な供給先となる)。また、テレビジョン受像機(この場合、ディスプレイD3が動画像の主な供給先となる)、デスクトップ型PC(この場合、出力端子D4又は送信部D5が動画像の主な供給先となる)、ラップトップ型又はタブレット型PC(この場合、ディスプレイD3又は送信部D5が動画像の主な供給先となる)、スマートフォン(この場合、ディスプレイD3又は送信部D5が動画像の主な供給先となる)、デジタルサイネージ(電子看板や電子掲示板等とも称され、ディスプレイD3又は送信部D5が動画像の主な供給先となる)なども、このような再生装置Dの一例である。 Examples of such a playback device D include a DVD player, a BD player, and an HDD player (in this case, an output terminal D4 to which a television receiver or the like is connected is a main moving image supply destination). . In addition, a television receiver (in this case, the display D3 is a main destination of moving images), a desktop PC (in this case, the output terminal D4 or the transmission unit D5 is a main destination of moving images), Laptop type or tablet type PC (in this case, display D3 or transmission unit D5 is the main video image supply destination), smartphone (in this case, display D3 or transmission unit D5 is the main video image supply destination) ), Digital signage (also referred to as an electronic signboard or an electronic bulletin board, and the display D3 or the transmission unit D5 is the main supply destination of moving images) is an example of such a playback device D.
 (ソフトウェアによる構成)
 最後に、動画像復号装置1、1’および動画像符号化装置2の各ブロック、特にCU復号部10(予測情報復号部15(PU構造復号部21、予測用予測モード復号部22、参照用予測モード導出部23)、予測残差復号部16、予測画像生成部17、復号画像生成部18)、予測情報復号部15’(参照用予測モード復号部24、予測モード更新情報復号部25、予測用予測モード導出部26)、予測情報決定部31、参照用予測モード導出部32、予測残差符号化部34、予測情報符号化部35、予測画像生成部36、予測残差復号部37、復号画像生成部38、および符号化データ生成部40は、集積回路(ICチップ)上に形成された論理回路によってハードウェア的に実現していてもよいし、CPU(central processing unit)を用いてソフトウェア的に実現してもよい。
(Configuration by software)
Finally, each block of the moving image decoding apparatuses 1 and 1 ′ and the moving image encoding apparatus 2, particularly the CU decoding unit 10 (prediction information decoding unit 15 (PU structure decoding unit 21, prediction prediction mode decoding unit 22, reference) Prediction mode deriving unit 23), prediction residual decoding unit 16, prediction image generation unit 17, decoded image generation unit 18), prediction information decoding unit 15 ′ (reference prediction mode decoding unit 24, prediction mode update information decoding unit 25, Prediction prediction mode derivation unit 26), prediction information determination unit 31, reference prediction mode derivation unit 32, prediction residual encoding unit 34, prediction information encoding unit 35, prediction image generation unit 36, prediction residual decoding unit 37 The decoded image generation unit 38 and the encoded data generation unit 40 may be realized by hardware by a logic circuit formed on an integrated circuit (IC chip), or use a CPU (central processing unit). Sof It may be realized as a software.
 後者の場合、動画像復号装置1、1’および動画像符号化装置2は、各機能を実現する制御プログラムの命令を実行するCPU、上記プログラムを格納したROM(read only memory)、上記プログラムを展開するRAM(random access memory)、上記プログラムおよび各種データを格納するメモリ等の記憶装置(記録媒体)などを備えている。そして、本発明の目的は、上述した機能を実現するソフトウェアである動画像復号装置1、1’および動画像符号化装置2の制御プログラムのプログラムコード(実行形式プログラム、中間コードプログラム、ソースプログラム)をコンピュータで読み取り可能に記録した記録媒体を、上記の動画像復号装置1、1’および動画像符号化装置2に供給し、そのコンピュータ(またはCPUやMPU(microprocessor unit))が記録媒体に記録されているプログラムコードを読み出し実行することによっても、達成可能である。 In the latter case, the moving picture decoding apparatuses 1 and 1 ′ and the moving picture coding apparatus 2 include a CPU that executes instructions of a control program that realizes each function, a ROM (read only memory) that stores the program, and the program. A RAM (random access memory) to be developed, a storage device (recording medium) such as a memory for storing the program and various data, and the like are provided. An object of the present invention is to provide program codes (execution format program, intermediate code program, source program) of control programs for the video decoding devices 1, 1 ′ and the video encoding device 2 that are software for realizing the functions described above. Is recorded on the recording medium by the computer (or CPU or MPU (microprocessor unit)) supplied to the above-described moving picture decoding apparatus 1, 1 ′ and moving picture encoding apparatus 2. This can also be achieved by reading and executing the program code.
 上記記録媒体としては、例えば、磁気テープやカセットテープ等のテープ類、フロッピー(登録商標)ディスク/ハードディスク等の磁気ディスクやCD-ROM(compact disc read-only memory)/MO(magneto-optical)/MD(Mini Disc)/DVD(digital versatile disk)/CD-R(CD Recordable)等の光ディスクを含むディスク類、ICカード(メモリカードを含む)/光カード等のカード類、マスクROM/EPROM(erasable programmable read-only memory)/EEPROM(electrically erasable and programmable read-only memory)/フラッシュROM等の半導体メモリ類、あるいはPLD(Programmable logic device)やFPGA(Field Programmable Gate Array)等の論理回路類などを用いることができる。 Examples of the recording medium include tapes such as a magnetic tape and a cassette tape, a magnetic disk such as a floppy (registered trademark) disk / hard disk, a CD-ROM (compact disk-read-only memory) / MO (magneto-optical) / Discs including optical discs such as MD (Mini Disc) / DVD (digital versatile disc) / CD-R (CD Recordable), IC cards (including memory cards) / optical cards, mask ROM / EPROM (erasable) Programmable read-only memory) / EEPROM (electrically erasable and programmable programmable read-only memory) / semiconductor memory such as flash ROM, or logic circuits such as PLD (Programmable logic device) and FPGA (Field Programmable Gate Array) be able to.
 また、動画像復号装置1、1’および動画像符号化装置2を通信ネットワークと接続可能に構成し、上記プログラムコードを通信ネットワークを介して供給してもよい。この通信ネットワークは、プログラムコードを伝送可能であればよく、特に限定されない。例えば、インターネット、イントラネット、エキストラネット、LAN(local area network)、ISDN(integrated services digital network)、VAN(value-added network)、CATV(community antenna television)通信網、仮想専用網(virtual private network)、電話回線網、移動体通信網、衛星通信網等が利用可能である。また、この通信ネットワークを構成する伝送媒体も、プログラムコードを伝送可能な媒体であればよく、特定の構成または種類のものに限定されない。例えば、IEEE(institute of electrical and electronic engineers)1394、USB、電力線搬送、ケーブルTV回線、電話線、ADSL(asynchronous digital subscriber loop)回線等の有線でも、IrDA(infrared data association)やリモコンのような赤外線、Bluetooth(登録商標)、IEEE802.11無線、HDR(high data rate)、NFC(Near Field Communication)、DLNA(Digital Living Network Alliance)、携帯電話網、衛星回線、地上波デジタル網等の無線でも利用可能である。なお、本発明は、上記プログラムコードが電子的な伝送で具現化された、搬送波に埋め込まれたコンピュータデータ信号の形態でも実現され得る。 Further, the moving picture decoding apparatuses 1, 1 'and the moving picture encoding apparatus 2 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network. The communication network is not particularly limited as long as it can transmit the program code. For example, Internet, intranet, extranet, LAN (local area network), ISDN (integrated area services digital area), VAN (value-added area network), CATV (community area antenna television) communication network, virtual area private network (virtual area private network), A telephone line network, a mobile communication network, a satellite communication network, etc. can be used. The transmission medium constituting the communication network may be any medium that can transmit the program code, and is not limited to a specific configuration or type. For example, IEEE (institute of electrical and electronic engineers) 1394, USB, power line carrier, cable TV line, telephone line, ADSL (asynchronous digital subscriber loop) line, etc. wired such as IrDA (infrared data association) or remote control , Bluetooth (registered trademark), IEEE802.11 wireless, HDR (high data rate), NFC (Near field communication), DLNA (Digital Living Network Alliance), mobile phone network, satellite line, terrestrial digital network, etc. Is possible. The present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.
 (その他)
 なお、上述した実施の形態は、以下のように表現することもできる。
(Other)
The above-described embodiment can also be expressed as follows.
 本発明に係る画像復号装置は、符号化単位を分割して得られる領域を予測単位とし、予測パラメータを参照して予測単位ごとに予測画像を生成するとともに、符号化データから復号した予測残差に上記予測画像を加算して復号画像を生成する画像復号装置において、上記符号化データから各予測単位に関する予測パラメータを復号する予測パラメータ復号手段であって、少なくとも一部の予測単位について、該予測単位に関する予測パラメータを、該予測単位が属する符号化単位に隣接する隣接符号化単位に含まれる予測単位に関する復号済みの予測パラメータから推定する予測パラメータ復号手段を備え、少なくとも一部の符号化単位について、該符号化単位に含まれる各予測単位に関する予測パラメータのうち、該符号化単位に隣接する隣接符号化単位に含まれる各予測単位に関する予測パラメータを推定するために上記予測パラメータ復号手段により参照され得る参照用予測パラメータの数が、該符号化単位に含まれる予測単位のうち、上記隣接符号化単位に隣接する予測単位の数よりも小さく設定されている、ことを特徴としている。 An image decoding apparatus according to the present invention uses a region obtained by dividing an encoding unit as a prediction unit, generates a prediction image for each prediction unit with reference to a prediction parameter, and decodes a prediction residual decoded from encoded data In the image decoding device for generating a decoded image by adding the predicted image to the prediction parameter decoding means for decoding a prediction parameter for each prediction unit from the encoded data, the prediction parameter decoding means for at least a part of the prediction units A prediction parameter decoding unit configured to estimate a prediction parameter related to a unit from a decoded prediction parameter related to a prediction unit included in an adjacent coding unit adjacent to the coding unit to which the prediction unit belongs, and at least a part of the coding unit Out of the prediction parameters for each prediction unit included in the coding unit, which are adjacent to the coding unit. The number of reference prediction parameters that can be referred to by the prediction parameter decoding means to estimate the prediction parameters for each prediction unit included in the adjacent coding unit is the adjacent code among the prediction units included in the coding unit. It is characterized in that it is set smaller than the number of prediction units adjacent to the conversion unit.
 上記の構成によれば、予測パラメータ復号手段が予測単位の予測パラメータを推定する場合に参照する参照用予測パラメータの数は、該予測単位が属する符号化単位に隣接する隣接符号化単位に含まれる、該符号化単位と隣接している予測単位の数よりも少なくなる。したがって、符号化単位と隣接している予測単位の数と同じ数の参照用パラメータを参照して予測パラメータを推定する場合と比較して、必要とする参照用パラメータの数を減らすことができる。 According to the above configuration, the number of reference prediction parameters referred to when the prediction parameter decoding unit estimates the prediction parameter of the prediction unit is included in the adjacent coding unit adjacent to the coding unit to which the prediction unit belongs. , Less than the number of prediction units adjacent to the coding unit. Therefore, the number of necessary reference parameters can be reduced as compared with the case where the prediction parameters are estimated by referring to the same number of reference parameters as the number of prediction units adjacent to the coding unit.
 これにより、予測パラメータ復号手段が予測単位の予測パラメータを推定するために必要なデータ量を減らすことができ、予測パラメータを推定する処理の効率を向上させることができる。 Thereby, the amount of data necessary for the prediction parameter decoding means to estimate the prediction parameter of the prediction unit can be reduced, and the efficiency of the process of estimating the prediction parameter can be improved.
 また、符号化単位と隣接している予測単位の数と同じ数の参照用パラメータを参照して予測パラメータを推定する場合と比較して、必要な参照用予測パラメータの数が少ないので、参照用予測パラメータを記録する場合に必要なメモリの容量を減らすことができる。 In addition, since the number of necessary reference prediction parameters is smaller than when estimating prediction parameters by referring to the same number of reference parameters as the number of prediction units adjacent to the encoding unit, It is possible to reduce the memory capacity required for recording the prediction parameter.
 また、予測精度を向上させるために予測単位を小さくして、その数が増えたとしても、予測単位の数と同じ分、参照用予測パラメータが増えることはないので、予測精度を向上させつつ、予測パラメータを推定するために必要なデータ量を減らすことができる。 In addition, even if the number of prediction units is reduced and the number of prediction units is increased in order to improve the prediction accuracy, the reference prediction parameter does not increase by the same amount as the number of prediction units. The amount of data necessary for estimating the prediction parameter can be reduced.
 本発明に係る画像復号装置では、上記予測パラメータ復号手段は、上記一部の符号化単位について、該符号化単位に含まれる各予測単位に関する予測パラメータのうち、参照用予測パラメータのみをメモリに記録するものであってもよい。 In the image decoding apparatus according to the present invention, the prediction parameter decoding unit records, for the partial coding unit, only the reference prediction parameter among the prediction parameters for each prediction unit included in the coding unit in the memory. You may do.
 上記の構成よれば、参照用予測パラメータのみをメモリに記録するので、予測パラメータを推定する予測単位が属する符号化単位と隣接している隣接符号化単位に含まれる、該符号化単位と隣接している予測単位の予測パラメータを全ての記録する場合と比較して、必要となるメモリの容量を減らすことができる。 According to the above configuration, since only the reference prediction parameter is recorded in the memory, it is adjacent to the encoding unit included in the adjacent encoding unit adjacent to the encoding unit to which the prediction unit for estimating the prediction parameter belongs. Compared with the case where all the prediction parameters of a prediction unit are recorded, the required memory capacity can be reduced.
 本発明に係る画像復号装置では、上記符号化データには、上記一部の符号化単位について、参照用予測パラメータを符号化して得られた予測パラメータ符号と、該符号化単位に含まれる各予測単位に関する予測パラメータと上記参照用予測パラメータとの差分を符号化して得られた差分符号とが含まれており、上記予測パラメータ復号手段は、上記予測パラメータ符号を復号して得られた上記参照用予測パラメータに上記差分符号を復号して得られた差分を加算することによって、上記一部の符号化単位に含まれる各予測単位に関する予測パラメータを導出するものであってもよい。 In the image decoding device according to the present invention, the encoded data includes a prediction parameter code obtained by encoding a reference prediction parameter for each of the partial encoding units, and each prediction included in the encoding unit. A difference code obtained by encoding a difference between a prediction parameter related to a unit and the reference prediction parameter is included, and the prediction parameter decoding unit is configured to decode the prediction parameter code. A prediction parameter related to each prediction unit included in the partial coding unit may be derived by adding a difference obtained by decoding the difference code to the prediction parameter.
 上記の構成によれば、予測パラメータ復号手段は、予測単位に関する予測パラメータを、参照用予測パラメータおよび該参照用予測パラメータと上記予測単位に関する予測パラメータとの差分と加算して導出する。これにより、参照用予測パラメータよりも高精度な予測パラメータを導出して予測画像を生成することができるので、予測画像の精度を向上させることができる。 According to the above configuration, the prediction parameter decoding means derives the prediction parameter related to the prediction unit by adding the reference prediction parameter and the difference between the reference prediction parameter and the prediction parameter related to the prediction unit. Thereby, since the prediction parameter can be derived by deriving a prediction parameter with higher accuracy than the reference prediction parameter, the accuracy of the prediction image can be improved.
 本発明に係る画像復号装置では、上記予測画像はイントラ予測により生成されるものであるとともに、上記予測パラメータはイントラ予測における予測モードを示すものであって、上記予測パラメータ復号手段は、上記参照用予測パラメータがイントラ予測における方向予測を示すものである場合に、上記差分符号を復号するものであってもよい。 In the image decoding apparatus according to the present invention, the prediction image is generated by intra prediction, the prediction parameter indicates a prediction mode in intra prediction, and the prediction parameter decoding means is for the reference When the prediction parameter indicates direction prediction in intra prediction, the difference code may be decoded.
 上記の構成によれば、参照用予測パラメータがイントラ予測における方向予測を示すものである場合に、差分を復号する。これにより、差分により予測の精度が高まる方向予測の場合に差分を復号するので、必要な場合にのみ差分符号を符号化データに含めればよく、符号化効率を向上させることができる。 According to the above configuration, the difference is decoded when the reference prediction parameter indicates the direction prediction in the intra prediction. Thereby, since the difference is decoded in the case of direction prediction in which the accuracy of prediction is increased by the difference, the difference code may be included in the encoded data only when necessary, and the encoding efficiency can be improved.
 本発明に係る画像復号装置では、上記予測画像はイントラ予測により生成されるものであるとともに、上記予測パラメータはイントラ予測における予測モードを示すものであって、上記パラメータ復号手段は、上記参照用予測パラメータがイントラ予測におけるエッジベース予測を示すものである場合に、上記差分符号を復号するものであってもよい。 In the image decoding apparatus according to the present invention, the predicted image is generated by intra prediction, the prediction parameter indicates a prediction mode in intra prediction, and the parameter decoding means includes the reference prediction When the parameter indicates edge-based prediction in intra prediction, the difference code may be decoded.
 上記の構成によれば、参照用予測モードがエッジベース予測を示すものである場合に、差分を復号する。これにより、差分により予測の精度が高まるエッジベース予測の場合に差分を復号するので、必要な場合にのみ差分符号を符号化データに含まればよく、符号化効率を向上させることができる。 According to the above configuration, when the reference prediction mode indicates edge-based prediction, the difference is decoded. Thereby, since the difference is decoded in the case of edge-based prediction in which the accuracy of prediction is increased by the difference, the difference code may be included in the encoded data only when necessary, and the encoding efficiency can be improved.
 本発明に係る画像復号装置では、上記予測画像はイントラ予測により生成されるものであるとともに、上記予測パラメータはイントラ予測における予測モードを示すものであって、上記符号化データには、上記一部の符号化単位について、参照用予測パラメータである参照用予測モードを符号化して得られた予測モード符号と、該符号化単位に含まれる各予測単位に関する予測パラメータである予測モードが予測画像の周辺の画素の画素値の平均から予測画像を生成するDC予測またはPlanar予測の何れかを選択する情報である選択情報を符号化して得られた選択符号とが含まれており、上記予測パラメータ復号手段は、少なくとも、上記符号化データを復号して得られた上記参照用予測パラメータから、上記一部の符号化単位に含まれる各予測単位に関する予測モードを導出するものであって、上記参照用予測モードがDC予測およびPlanar予測のいずれかを示すものである場合に、さらに、上記選択符号を復号して、上記一部の符号化単位に含まれる各予測単位に関する予測モードを導出するものであってもよい。 In the image decoding apparatus according to the present invention, the predicted image is generated by intra prediction, the prediction parameter indicates a prediction mode in intra prediction, and the encoded data includes the part of the encoded data. The prediction mode code obtained by encoding the reference prediction mode that is the reference prediction parameter and the prediction mode that is the prediction parameter for each prediction unit included in the encoding unit are the surroundings of the prediction image. And a selection code obtained by encoding selection information, which is information for selecting either DC prediction or Planar prediction for generating a prediction image from the average of the pixel values of the pixels, and the prediction parameter decoding means Includes at least some of the encoding units from the reference prediction parameters obtained by decoding the encoded data. When the prediction mode for each prediction unit is derived and the reference prediction mode indicates either DC prediction or Planar prediction, the selection code is further decoded to The prediction mode for each prediction unit included in the coding unit may be derived.
 上記の構成によれば、参照用予測モードがDC予測またはPlanar予測を示すものである場合にのみ、平坦領域に適した予測方式のいずれかを選択する選択符号を復号する。これにより、必要な場合にのみ平坦領域に適した予測方式を選択するための選択符号を符号化データに含めればよいので、符号化効率を向上させることができる。 According to the above configuration, only when the reference prediction mode indicates DC prediction or Planar prediction, the selection code for selecting one of the prediction methods suitable for the flat region is decoded. As a result, it is only necessary to include a selection code for selecting a prediction method suitable for a flat region in the encoded data, so that the encoding efficiency can be improved.
 本発明に係る画像復号装置では、上記予測パラメータ復号手段は、上記一部の符号化単位について、予測単位に関する予測パラメータを推定するために参照する参照用予測パラメータを、上記一部の符号化単位に隣接する隣接符号化単位に含まれる各予測単位に関する予測パラメータから導出するものであってもよい。 In the image decoding apparatus according to the present invention, the prediction parameter decoding means includes, for the part of the coding units, a reference prediction parameter to be referred to in order to estimate a prediction parameter related to the prediction unit, the part of the coding units. May be derived from the prediction parameters for each prediction unit included in the adjacent coding unit adjacent to.
 上記の構成によれば、参照用予測パラメータを、該参照用予測パラメータを参照することによって予測パラメータを推定する予測単位が属する符号化単位に隣接する隣接符号化単位に属する各予測単位に関する予測パラメータから導出する。これにより、参照用予測パラメータを適切に導出することができる。 According to the above configuration, the prediction parameter for each prediction unit belonging to the adjacent coding unit adjacent to the coding unit to which the prediction unit for estimating the prediction parameter by referring to the reference prediction parameter belongs. Derived from Thereby, the prediction parameter for reference can be derived appropriately.
 本発明に係る画像復号装置では、上記予測画像はイントラ予測により生成されるものであり、上記予測パラメータはイントラ予測における予測モードを示すものであって、上記予測パラメータ復号手段は、上記一部の符号化単位について、当該符号化単位に隣接する隣接符号化単位に含まれる各予測単位に関する復号済み予測モードのうち、予測モードIDが最小の予測モードを参照用予測パラメータとするものであってもよい。 In the image decoding apparatus according to the present invention, the predicted image is generated by intra prediction, the prediction parameter indicates a prediction mode in intra prediction, and the prediction parameter decoding means For a coding unit, among the decoded prediction modes for each prediction unit included in the adjacent coding unit adjacent to the coding unit, a prediction mode with the smallest prediction mode ID may be used as a reference prediction parameter. Good.
 上記の構成によれば、参照用予測モードを、該参照用予測モードを参照することによって予測モードを推定する予測単位が属する符号化単位に隣接する隣接符号化単位に属する各予測単位に関する予測モードのうち、予測モードIDが最小の予測モードする。予測モードIDが最小の予測モードは、選択される可能性が最も高い予測モードなので、これにより、より適切な予測モードを参照用予測モードとすることができる。 According to the above configuration, the prediction mode for each prediction unit belonging to the adjacent coding unit adjacent to the coding unit to which the prediction unit for estimating the prediction mode by referring to the reference prediction mode belongs. The prediction mode with the smallest prediction mode ID is selected. Since the prediction mode with the smallest prediction mode ID is the prediction mode most likely to be selected, this makes it possible to set a more appropriate prediction mode as the reference prediction mode.
 本発明に係る画像復号装置では、上記メモリに記録される参照用予測パラメータの精度が、上記パラメータ復号手段により復号される予測パラメータの精度よりも低く設定されているものであってもよい。 In the image decoding apparatus according to the present invention, the accuracy of the reference prediction parameter recorded in the memory may be set lower than the accuracy of the prediction parameter decoded by the parameter decoding means.
 上記の構成によれば、予測パラメータ復号手段が復号した予測パラメータよりも精度の低い参照用予測パラメータを記録する。そして、精度の低い予測パラメータは、精度の高い予測パラメータよりもデータ量が少ない。よって、精度の高い予測画像の生成を加納にしつつ、記録するメモリに容量を削減することができる。 According to the above configuration, the reference prediction parameter with lower accuracy than the prediction parameter decoded by the prediction parameter decoding means is recorded. A prediction parameter with low accuracy has a smaller amount of data than a prediction parameter with high accuracy. Therefore, the capacity of the recording memory can be reduced while taking into account the generation of a highly accurate predicted image.
 本発明に係る画像復号装置では、上記予測画像はイントラ予測により生成されるものであり、上記予測パラメータはイントラ予測における予測モードを示すものであって、
上記メモリに記録される予測モードの精度が、上記予測パラメータ復号手段により復号される予測モードの精度よりも低く設定されているものであってもよい。
In the image decoding apparatus according to the present invention, the predicted image is generated by intra prediction, and the prediction parameter indicates a prediction mode in intra prediction,
The accuracy of the prediction mode recorded in the memory may be set lower than the accuracy of the prediction mode decoded by the prediction parameter decoding unit.
 上記の構成によれば、より精度の高い予測画像を生成するとともに、予測モードの記録に用いるメモリの容量を減らすことができる。なお、精度を高めるためには、所定の値よりも小さい角度を単位として方向を指定することにより予測モードを導出することが考えられる。 According to the above configuration, it is possible to generate a prediction image with higher accuracy and reduce the capacity of the memory used for recording the prediction mode. In order to improve accuracy, it is conceivable to derive a prediction mode by designating a direction in units of an angle smaller than a predetermined value.
 本発明に係る画像符号化装置は、符号化単位を分割して得られる領域を予測単位とし、予測パラメータを参照して予測単位ごとに予測画像を生成し、生成した予測画像を原画像から減算した予測残差を符号化して符号化データを出力する画像符号化装置において、少なくとも一部の符号化単位において、各予測単位に関する予測パラメータを、該予測単位が属する符号化単位に隣接する隣接符号化単位に含まれる予測単位に関する復号済みの予測パラメータから推定するとともに、該予測単位に関する予測パラメータを、該予測パラメータが上記推定により得られた推定予測パラメータと一致しない場合に限って符号化する予測パラメータ符号化手段を備え、少なくとも一部の符号化単位について、該符号化単位に含まれる各予測単位に関する予測パラメータのうち、該符号化単位に隣接する隣接符号化単位に含まれる各予測単位に関する予測パラメータを推定するために上記予測パラメータ符号化手段により参照され得る参照用予測パラメータの数が、該符号化単位に含まれる予測単位のうち、上記隣接符号化単位に隣接する予測単位の数よりも小さく設定されている、ことを特徴としている。 The image encoding apparatus according to the present invention uses a region obtained by dividing an encoding unit as a prediction unit, generates a prediction image for each prediction unit with reference to a prediction parameter, and subtracts the generated prediction image from an original image In an image encoding device that encodes the predicted residual and outputs encoded data, at least in some encoding units, a prediction parameter for each prediction unit is set to an adjacent code adjacent to the encoding unit to which the prediction unit belongs. A prediction that estimates from a decoded prediction parameter related to a prediction unit included in a coding unit and encodes the prediction parameter related to the prediction unit only when the prediction parameter does not match the estimated prediction parameter obtained by the above estimation Parameter encoding means, and at least a part of the encoding units is related to each prediction unit included in the encoding unit. Among the prediction parameters, the number of reference prediction parameters that can be referred to by the prediction parameter encoding means to estimate a prediction parameter for each prediction unit included in an adjacent coding unit adjacent to the coding unit is Of the prediction units included in the coding unit, the prediction unit is set to be smaller than the number of prediction units adjacent to the adjacent coding unit.
 上記の構成によれば、予測パラメータ符号化手段により参照される参照用予測パラメータの数は、推定予測パラメータにより予測パラメータが推定される予測単位が属する符号化単位に隣接する隣接符号化単位に含まれる、該符号化単位と隣接している予測単位の数よりも少なくなる。したがって、符号化単位と隣接している予測単位の数と同じ数の参照用パラメータを参照する場合と比較して、必要とする参照用パラメータの数を減らすことができる。 According to the above configuration, the number of reference prediction parameters referred to by the prediction parameter encoding means is included in the adjacent encoding unit adjacent to the encoding unit to which the prediction unit whose prediction parameter is estimated by the estimated prediction parameter belongs. Less than the number of prediction units adjacent to the coding unit. Therefore, the number of necessary reference parameters can be reduced as compared to the case where the same number of reference parameters as the number of prediction units adjacent to the coding unit are referred to.
 これにより、必要となる参照用予測パラメータのデータ量を減らすことができ、処理の効率を向上させることができる。 This makes it possible to reduce the amount of required reference prediction parameter data and improve the processing efficiency.
 また、符号化単位と隣接している予測単位の数と同じ数の参照用パラメータを参照する場合と比較して、必要な参照用予測パラメータの数が少ないので、参照用予測パラメータを記録する場合に必要なメモリの容量を減らすことができる。 In addition, since the number of reference prediction parameters required is smaller than when referring to the same number of reference parameters as the number of prediction units adjacent to the encoding unit, the reference prediction parameters are recorded. Can reduce the amount of memory required.
 また、予測精度を向上させるために予測単位を小さくして、その数が増えたとしても、予測単位の数と同じ分、参照用予測パラメータが増えることはないので、予測精度を向上させつつ、推定予測パラメータを導出するために必要なデータ量を減らすことができる。 In addition, even if the number of prediction units is reduced and the number of prediction units is increased in order to improve the prediction accuracy, the reference prediction parameter does not increase by the same amount as the number of prediction units. The amount of data required to derive the estimated prediction parameter can be reduced.
 本発明は上述した各実施の形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments can be obtained by appropriately combining technical means disclosed in different embodiments. The form is also included in the technical scope of the present invention.
 本発明は、符号化データを復号する復号装置、および、符号化データを生成する符号化装置に好適に適用することができる。また、符号化装置によって生成され、復号装置によって参照される符号化データのデータ構造に好適に適用することができる。 The present invention can be suitably applied to a decoding device that decodes encoded data and an encoding device that generates encoded data. Further, the present invention can be suitably applied to the data structure of encoded data generated by the encoding device and referenced by the decoding device.
  1  動画像復号装置(画像復号装置)
  2  動画像符号化装置(画像符号化装置)
 21  PU構造復号部
 22  予測用予測モード復号部(予測パラメータ復号手段)
 23  参照用予測モード導出部
 24  参照用予測モード復号部
 25  予測モード更新情報復号部
 26  予測用予測モード導出部
 32  参照用予測モード導出部
 40  符号化データ生成部(予測パラメータ符号化手段)
1 video decoding device (image decoding device)
2 Video encoding device (image encoding device)
21 PU structure decoding unit 22 Prediction mode decoding unit for prediction (prediction parameter decoding means)
23 reference prediction mode deriving unit 24 reference prediction mode decoding unit 25 prediction mode update information decoding unit 26 prediction prediction mode deriving unit 32 reference prediction mode deriving unit 40 encoded data generation unit (prediction parameter encoding means)

Claims (13)

  1.  符号化単位を分割して得られる領域を予測単位とし、予測パラメータを参照して予測単位ごとに予測画像を生成するとともに、符号化データから復号した予測残差に上記予測画像を加算して復号画像を生成する動画像復号装置において、
     上記符号化データから各予測単位に関する予測パラメータを復号する予測パラメータ復号手段であって、少なくとも一部の予測単位について、
     上記予測単位に関する予測パラメータを、
      上記予測単位の上側に隣接する上隣接予測単位が、該予測単位が属するツリーブロックに属する場合、上記上隣接予測単位に関する復号済みの予測パラメータから推定し、
      上記上隣接予測単位が、上記予測単位が属するツリーブロックに属さない場合、該予測単位の上側に隣接する記録単位に関する復号済みの予測パラメータから推定する予測パラメータ復号手段を備えていることを特徴とする動画像復号装置。
    An area obtained by dividing the coding unit is used as a prediction unit, a prediction image is generated for each prediction unit with reference to the prediction parameter, and the prediction image is added to the prediction residual decoded from the encoded data and decoded. In a video decoding device that generates an image,
    Prediction parameter decoding means for decoding a prediction parameter for each prediction unit from the encoded data, and for at least some of the prediction units,
    Prediction parameters for the prediction unit
    When the upper adjacent prediction unit adjacent to the upper side of the prediction unit belongs to the tree block to which the prediction unit belongs, an estimation is performed from the decoded prediction parameters related to the upper adjacent prediction unit,
    When the upper adjacent prediction unit does not belong to the tree block to which the prediction unit belongs, the prediction unit includes a prediction parameter decoding unit that estimates from a decoded prediction parameter related to a recording unit adjacent to the upper side of the prediction unit. A moving picture decoding apparatus.
  2.  上記予測画像はインター予測により生成される予測画像であり、
     上記予測パラメータは動きベクトルであることを特徴とする請求項1に記載の動画像復号装置。
    The predicted image is a predicted image generated by inter prediction,
    The moving picture decoding apparatus according to claim 1, wherein the prediction parameter is a motion vector.
  3.  符号化単位を分割して得られる領域を予測単位とし、予測パラメータを参照して予測単位ごとに予測画像を生成するとともに、符号化データから復号した予測残差に上記予測画像を加算して復号画像を生成する画像復号装置において、
     上記符号化データから各予測単位に関する予測パラメータを復号する予測パラメータ復号手段であって、少なくとも一部の予測単位について、該予測単位に関する予測パラメータを、該予測単位が属する符号化単位に隣接する隣接符号化単位に含まれる予測単位に関する復号済みの予測パラメータから推定する予測パラメータ復号手段を備え、
     少なくとも一部の符号化単位について、該符号化単位に含まれる各予測単位に関する予測パラメータのうち、該符号化単位に隣接する隣接符号化単位に含まれる各予測単位に関する予測パラメータを推定するために上記予測パラメータ復号手段により参照され得る参照用予測パラメータの数が、該符号化単位に含まれる予測単位のうち、上記隣接符号化単位に隣接する予測単位の数よりも小さく設定されている、ことを特徴とする画像復号装置。
    An area obtained by dividing the coding unit is used as a prediction unit, a prediction image is generated for each prediction unit with reference to the prediction parameter, and the prediction image is added to the prediction residual decoded from the encoded data and decoded. In an image decoding device that generates an image,
    Prediction parameter decoding means for decoding a prediction parameter for each prediction unit from the encoded data, and for at least a part of the prediction units, the prediction parameter for the prediction unit is adjacent to the coding unit to which the prediction unit belongs. A prediction parameter decoding unit that estimates from a prediction parameter that has been decoded with respect to a prediction unit included in a coding unit;
    In order to estimate a prediction parameter for each prediction unit included in an adjacent coding unit adjacent to the coding unit among prediction parameters for each prediction unit included in the coding unit for at least a part of the coding units. The number of reference prediction parameters that can be referred to by the prediction parameter decoding means is set to be smaller than the number of prediction units adjacent to the adjacent coding unit among the prediction units included in the coding unit. An image decoding apparatus characterized by the above.
  4.  上記予測パラメータ復号手段は、上記一部の符号化単位について、該符号化単位に含まれる各予測単位に関する予測パラメータのうち、参照用予測パラメータのみをメモリに記録する、ことを特徴とする請求項3に記載の画像復号装置。 The said prediction parameter decoding means records only the prediction parameter for a reference among the prediction parameters regarding each prediction unit contained in this encoding unit about the said one part encoding unit, It is characterized by the above-mentioned. 4. The image decoding device according to 3.
  5.  上記符号化データには、上記一部の符号化単位について、参照用予測パラメータを符号化して得られた予測パラメータ符号と、該符号化単位に含まれる各予測単位に関する予測パラメータと上記参照用予測パラメータとの差分を符号化して得られた差分符号とが含まれており、
     上記予測パラメータ復号手段は、上記予測パラメータ符号を復号して得られた上記参照用予測パラメータに上記差分符号を復号して得られた差分を加算することによって、上記一部の符号化単位に含まれる各予測単位に関する予測パラメータを導出する、ことを特徴とする請求項3または4に記載の画像復号装置。
    The encoded data includes a prediction parameter code obtained by encoding a reference prediction parameter, a prediction parameter for each prediction unit included in the encoding unit, and the reference prediction for the partial encoding unit. And the difference code obtained by encoding the difference with the parameter,
    The prediction parameter decoding means includes the difference obtained by decoding the difference code to the reference prediction parameter obtained by decoding the prediction parameter code, thereby including in the partial coding unit. The image decoding apparatus according to claim 3, wherein a prediction parameter for each prediction unit is derived.
  6.  上記予測画像はイントラ予測により生成されるものであるとともに、上記予測パラメータはイントラ予測における予測モードを示すものであって、
     上記予測パラメータ復号手段は、上記参照用予測パラメータがイントラ予測における方向予測を示すものである場合に、上記差分符号を復号することを特徴とする請求項5に記載の画像復号装置。
    The prediction image is generated by intra prediction, and the prediction parameter indicates a prediction mode in intra prediction,
    6. The image decoding apparatus according to claim 5, wherein the prediction parameter decoding means decodes the difference code when the reference prediction parameter indicates direction prediction in intra prediction.
  7.  上記予測画像はイントラ予測により生成されるものであるとともに、上記予測パラメータはイントラ予測における予測モードを示すものであって、
     上記パラメータ復号手段は、上記参照用予測パラメータがイントラ予測におけるエッジベース予測を示すものである場合に、上記差分符号を復号することを特徴とする請求項5に記載の画像復号装置。
    The prediction image is generated by intra prediction, and the prediction parameter indicates a prediction mode in intra prediction,
    6. The image decoding apparatus according to claim 5, wherein the parameter decoding unit decodes the difference code when the reference prediction parameter indicates edge-based prediction in intra prediction.
  8.  上記予測画像はイントラ予測により生成されるものであるとともに、上記予測パラメータはイントラ予測における予測モードを示すものであって、
     上記符号化データには、上記一部の符号化単位について、参照用予測パラメータである参照用予測モードを符号化して得られた予測モード符号と、該符号化単位に含まれる各予測単位に関する予測パラメータである予測モードが予測画像の周辺の画素の画素値の平均から予測画像を生成するDC予測またはPlanar予測の何れかを選択する情報である選択情報を符号化して得られた選択符号とが含まれており、
     上記予測パラメータ復号手段は、少なくとも、上記符号化データを復号して得られた上記参照用予測パラメータから、上記一部の符号化単位に含まれる各予測単位に関する予測モードを導出するものであって、
     上記参照用予測モードがDC予測およびPlanar予測のいずれかを示すものである場合に、さらに、上記選択符号を復号して、上記一部の符号化単位に含まれる各予測単位に関する予測モードを導出するものであることを特徴とする請求項3または4に記載の画像復号装置。
    The prediction image is generated by intra prediction, and the prediction parameter indicates a prediction mode in intra prediction,
    The encoded data includes a prediction mode code obtained by encoding a reference prediction mode, which is a reference prediction parameter, for each of the some encoding units, and a prediction regarding each prediction unit included in the encoding unit. A selection code obtained by encoding selection information, which is information for selecting either DC prediction or Planar prediction, in which a prediction mode as a parameter generates a prediction image from an average of pixel values of pixels around the prediction image. Included,
    The prediction parameter decoding means derives a prediction mode for each prediction unit included in the partial coding unit from at least the reference prediction parameter obtained by decoding the encoded data. ,
    When the reference prediction mode indicates either DC prediction or Planar prediction, the selection code is further decoded to derive a prediction mode for each prediction unit included in the partial coding unit. The image decoding device according to claim 3 or 4, wherein
  9.  上記予測パラメータ復号手段は、上記一部の符号化単位について、予測単位に関する予測パラメータを推定するために参照する参照用予測パラメータを、上記一部の符号化単位に隣接する隣接符号化単位に含まれる各予測単位に関する予測パラメータから導出することを特徴とする請求項3に記載の画像復号装置。 The prediction parameter decoding means includes, for the part of the coding units, a reference prediction parameter that is referred to in order to estimate a prediction parameter related to the prediction unit in an adjacent coding unit adjacent to the part of the coding units. The image decoding device according to claim 3, wherein the image decoding device is derived from a prediction parameter related to each prediction unit.
  10.  上記予測画像はイントラ予測により生成されるものであり、上記予測パラメータはイントラ予測における予測モードを示すものであって、
     上記予測パラメータ復号手段は、上記一部の符号化単位について、当該符号化単位に隣接する隣接符号化単位に含まれる各予測単位に関する復号済み予測モードのうち、予測モードIDが最小の予測モードを参照用予測パラメータとすることを特徴とする請求項9に記載の画像復号装置。
    The prediction image is generated by intra prediction, and the prediction parameter indicates a prediction mode in intra prediction,
    The prediction parameter decoding means selects a prediction mode having a minimum prediction mode ID from among the decoded prediction modes for each prediction unit included in an adjacent coding unit adjacent to the coding unit for the some coding units. The image decoding device according to claim 9, wherein the image decoding device is a reference prediction parameter.
  11.  上記メモリに記録される参照用予測パラメータの精度が、上記予測パラメータ復号手段により復号される予測パラメータの精度よりも低く設定されていることを特徴とする請求項4に記載の画像復号装置。 The image decoding apparatus according to claim 4, wherein the accuracy of the reference prediction parameter recorded in the memory is set lower than the accuracy of the prediction parameter decoded by the prediction parameter decoding means.
  12.  上記予測画像はイントラ予測により生成されるものであり、上記予測パラメータはイントラ予測における予測モードを示すものであって、
     上記メモリに記録される予測モードの精度が、上記予測パラメータ復号手段により復号される予測モードの精度よりも低く設定されている、ことを特徴とする請求項11に記載の画像復号装置。
    The prediction image is generated by intra prediction, and the prediction parameter indicates a prediction mode in intra prediction,
    12. The image decoding apparatus according to claim 11, wherein the accuracy of the prediction mode recorded in the memory is set lower than the accuracy of the prediction mode decoded by the prediction parameter decoding means.
  13.  符号化単位を分割して得られる領域を予測単位とし、予測パラメータを参照して予測単位ごとに予測画像を生成し、生成した予測画像を原画像から減算した予測残差を符号化して符号化データを出力する画像符号化装置において、
     各予測単位に関する予測パラメータを、該予測単位が属する符号化単位に隣接する隣接符号化単位に含まれる予測単位に関する復号済みの予測パラメータから推定するとともに、該予測単位に関する予測パラメータを、該予測パラメータが上記推定により得られた推定予測パラメータと一致しない場合に限って符号化する予測パラメータ符号化手段を備え、
     少なくとも一部の符号化単位について、該符号化単位に含まれる各予測単位に関する予測パラメータのうち、該符号化単位に隣接する隣接符号化単位に含まれる各予測単位に関する予測パラメータを推定するために上記予測パラメータ符号化手段により参照され得る参照用予測パラメータの数が、該符号化単位に含まれる予測単位のうち、上記隣接符号化単位に隣接する予測単位の数よりも小さく設定されている、ことを特徴とする画像符号化装置。
    Using the region obtained by dividing the coding unit as the prediction unit, refer to the prediction parameter, generate a prediction image for each prediction unit, and encode and encode the prediction residual obtained by subtracting the generated prediction image from the original image In an image encoding device that outputs data,
    The prediction parameter for each prediction unit is estimated from the decoded prediction parameters for the prediction unit included in the adjacent coding unit adjacent to the coding unit to which the prediction unit belongs, and the prediction parameter for the prediction unit is determined as the prediction parameter. Includes a prediction parameter encoding means for encoding only when the estimated prediction parameter obtained by the above estimation does not match,
    In order to estimate a prediction parameter for each prediction unit included in an adjacent coding unit adjacent to the coding unit among prediction parameters for each prediction unit included in the coding unit for at least a part of the coding units. The number of reference prediction parameters that can be referred to by the prediction parameter encoding means is set to be smaller than the number of prediction units adjacent to the adjacent encoding unit among the prediction units included in the encoding unit. An image encoding apparatus characterized by that.
PCT/JP2012/061450 2011-04-28 2012-04-27 Image decoding apparatus and image encoding apparatus WO2012147947A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011102377 2011-04-28
JP2011-102377 2011-04-28

Publications (1)

Publication Number Publication Date
WO2012147947A1 true WO2012147947A1 (en) 2012-11-01

Family

ID=47072458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061450 WO2012147947A1 (en) 2011-04-28 2012-04-27 Image decoding apparatus and image encoding apparatus

Country Status (1)

Country Link
WO (1) WO2012147947A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096679A (en) * 2012-11-08 2014-05-22 Nippon Hoso Kyokai <Nhk> Image encoder and image encoding program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246972A (en) * 2008-03-28 2009-10-22 Samsung Electronics Co Ltd Method and apparatus for encoding/decoding motion vector information

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246972A (en) * 2008-03-28 2009-10-22 Samsung Electronics Co Ltd Method and apparatus for encoding/decoding motion vector information

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096679A (en) * 2012-11-08 2014-05-22 Nippon Hoso Kyokai <Nhk> Image encoder and image encoding program

Similar Documents

Publication Publication Date Title
US11627337B2 (en) Image decoding device
US10547861B2 (en) Image decoding device
US20160286235A1 (en) Image Decoding Apparatus, Image Coding Apparatus, and Coded Data Transformation Apparatus
WO2016203981A1 (en) Image decoding device and image encoding device
WO2013047805A1 (en) Image decoding apparatus, image decoding method and image encoding apparatus
US10136161B2 (en) DMM prediction section, image decoding device, and image coding device
US20190297320A1 (en) Image decoding device and image encoding device
US11303928B2 (en) Image decoding apparatus and image coding apparatus
TW202133613A (en) (無)
WO2012077719A1 (en) Image decoding device and image coding device
JP2013192118A (en) Arithmetic decoder, image decoder, arithmetic encoder, and image encoder
JP2013141094A (en) Image decoding device, image encoding device, image filter device, and data structure of encoded data
JP2013118424A (en) Image decoding device, image encoding device, and data structure of encoded data
JP2020141285A (en) Image decoder
JP2015073213A (en) Image decoder, image encoder, encoded data converter, and interest area display system
WO2012147947A1 (en) Image decoding apparatus and image encoding apparatus
WO2013161689A1 (en) Motion video decoding device and motion video coding device
AU2015264943B2 (en) Image decoding device, image encoding device, and data structure of encoded data
JP2013251827A (en) Image filter device, image decoding device, image encoding device, and data structure
JP2023046435A (en) Moving image decoder and moving image encoder
JP2020155869A (en) Image scaling conversion, reverse conversion device, and method
WO2012043676A1 (en) Decoding device, encoding device, and data structure
JP2021048485A (en) Video decoding apparatus and video encoding apparatus
JP2021048557A (en) Video decoding apparatus and video encoding apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12776695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP