WO2012147681A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2012147681A1
WO2012147681A1 PCT/JP2012/060836 JP2012060836W WO2012147681A1 WO 2012147681 A1 WO2012147681 A1 WO 2012147681A1 JP 2012060836 W JP2012060836 W JP 2012060836W WO 2012147681 A1 WO2012147681 A1 WO 2012147681A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
layer
light
display device
Prior art date
Application number
PCT/JP2012/060836
Other languages
French (fr)
Japanese (ja)
Inventor
康 浅岡
大輔 槻尾
和広 出口
藤原 小百合
佐藤 英次
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012147681A1 publication Critical patent/WO2012147681A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13731Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a field-induced phase transition
    • G02F1/13737Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a field-induced phase transition in liquid crystals doped with a pleochroic dye
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13762Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering containing luminescent or electroluminescent additives

Definitions

  • the present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device having a dichroic fluorescent dye.
  • Liquid crystal display devices are widely used as liquid crystal televisions, monitors, mobile phones and the like as flat panel displays having features such as thinness and light weight.
  • the most widely used liquid crystal display device at present is a system using two or one polarizing plate, and there is a problem that the light use efficiency is low.
  • Patent Document 1 As a display method that does not use a polarizing plate, a guest-host method or a polymer dispersed liquid crystal (PDLC) method has been proposed (for example, Patent Document 1).
  • PDLC polymer dispersed liquid crystal
  • Patent Document 1 discloses a liquid crystal display device in which a hologram element is disposed between a PDLC liquid crystal display panel and a reflector.
  • a liquid crystal layer (PDLC layer) of a PDLC liquid crystal display panel has a plurality of liquid crystal regions (also referred to as “liquid crystal droplets”) dispersed in a polymer. Each liquid crystal region is formed in a space (hereinafter referred to as “small room”) defined by a wall made of a polymer.
  • small room defined by a wall made of a polymer.
  • a black element is displayed by arranging a hologram element on the back side of the PDLC layer and diffracting light transmitted through the PDLC layer by the hologram element in a direction of a critical angle or more.
  • Patent Application 1 PCT / JP2011 / 073830
  • Patent Application 2 International Publication No. 2011/1. 136072
  • the liquid crystal display device disclosed in Patent Application 1 has a dichroic fluorescent dye in a plurality of liquid crystal regions dispersed in a polymer.
  • the liquid crystal region is formed in contact with the alignment film to control the alignment of the liquid crystal molecules in the liquid crystal region, thereby controlling the alignment of the dichroic fluorescent dye.
  • the luminous efficiency of the dichroic fluorescent dye is increased and the contrast ratio is improved.
  • the PDLC liquid crystal display device having such a dichroic fluorescent dye has room for improving the luminance in the front view.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a liquid crystal display device having a dichroic fluorescent dye with enhanced brightness in a front view.
  • a liquid crystal display device includes a liquid crystal display panel, a light beam direction conversion element disposed on an observer side of the liquid crystal display panel, and an air layer provided between the liquid crystal display panel and the light beam direction conversion element.
  • the liquid crystal display panel includes a liquid crystal layer that can be switched between a transmission state that transmits light and a scattering state that scatters light, a first substrate that holds the liquid crystal layer therebetween, and a first substrate Two substrates and a pair of electrodes for applying a voltage to the liquid crystal layer, the liquid crystal layer having a continuous wall and a liquid crystal region in the pixel, the liquid crystal region comprising a nematic liquid crystal material and 2
  • the light direction changing element directs the traveling direction of the fluorescence emitted from the dichroic fluorescent dye in a predetermined direction.
  • a pair of electrodes for applying a voltage to the liquid crystal layer is disposed with the liquid crystal layer interposed therebetween, and the liquid crystal region includes a first liquid crystal region separated by the wall.
  • the liquid crystal display device is in contact with the liquid crystal layer between at least one of the liquid crystal layer and the first substrate and between the liquid crystal layer and the second substrate.
  • a horizontal alignment film formed is further provided.
  • the liquid crystal display device includes first and second alignment layers formed between the liquid crystal layer and the first substrate and between the liquid crystal layer and the second substrate and subjected to alignment treatment.
  • the liquid crystal region includes a second liquid crystal region separated by the wall and the first alignment film, and a third liquid crystal region separated by the wall and the second alignment film,
  • the dichroic fluorescent dye in the second liquid crystal region is aligned along a first orientation defined by the first alignment film
  • the dichroic fluorescent dye in the third liquid crystal region is the second Aligned along the second orientation defined by the alignment film.
  • the first orientation and the second orientation are orthogonal.
  • the surface free energy of the first and second alignment films is 44 mJ / m 2 or more 50 mJ / m 2 or less.
  • a pair of electrodes for applying a voltage to the liquid crystal layer is formed on one of the first substrate and the second substrate, between the liquid crystal layer and the first substrate, and A first liquid crystal region including first and second vertical alignment films formed between the liquid crystal layer and the second substrate, wherein the liquid crystal region is separated by the wall and the first vertical alignment film; And a second liquid crystal region separated by the wall and the second vertical alignment film, wherein the dichroic fluorescent dyes in the first and second liquid crystal regions are the first and second vertical alignments, respectively. It is oriented along the orientation defined by the film.
  • a liquid crystal display device includes a liquid crystal display panel, a light beam direction conversion element disposed on the viewer side of the liquid crystal display panel, and the liquid crystal display panel and the light beam direction conversion element.
  • the liquid crystal display panel includes a fluorescent light-emitting layer having a plurality of dichroic fluorescent dye molecules, the intensity of light emission being different depending on a light emission direction, a light transmitting state and light.
  • a liquid crystal layer that can be switched between a scattering state and a scattering state.
  • the liquid crystal layer includes a continuous wall and a liquid crystal region including a nematic liquid crystal material in a pixel, and the plurality of 2
  • Each of the chromatic fluorescent dye molecules is oriented in the fluorescent light-emitting layer so that the direction of the transition dipole moment is the same in each molecule, and the light beam direction changing element includes the plurality of dichroic elements.
  • Each of the fluorescent molecules The traveling direction of the emitted fluorescence from oriented in a predetermined direction.
  • each of the plurality of dichroic fluorescent dye molecules is oriented in the fluorescent light emitting layer such that the direction of the transition dipole moment coincides with the thickness direction of the fluorescent light emitting layer.
  • an ultraviolet absorbing layer that absorbs ultraviolet rays is provided between the fluorescent light emitting layer and the liquid crystal layer.
  • the fluorescent light-emitting layer includes a light-emitting layer formed in a sheet shape (in a self-supporting manner) and an adhesive layer that adheres the light-emitting layer to an adherend, the light-emitting layer and the adhesive At least one of the layers includes an ultraviolet absorber.
  • the liquid crystal display panel has a pair of electrodes for applying a voltage to the liquid crystal layer, and the pair of electrodes is a pair of comb-teeth electrodes.
  • the above-described liquid crystal display device includes a light guide plate that guides light from a light source to the fluorescent light emitting layer between the fluorescent light emitting layer and the light beam direction conversion element.
  • the liquid crystal display device includes a photovoltaic power generation unit that receives light emitted from the dichroic fluorescent dye molecules in the fluorescent light emitting layer and generates power outside the surface of the fluorescent light emitting layer. I have.
  • the photovoltaic unit is provided such that a light receiving surface thereof faces a surface direction end of the fluorescent light emitting layer.
  • the above-described liquid crystal display device further includes an antireflection layer disposed on the light beam direction conversion element side of the liquid crystal display panel.
  • the liquid crystal display device further includes an antireflection layer disposed on the liquid crystal display panel side of the light beam direction conversion element.
  • the liquid crystal display device further includes an antireflection layer disposed on the light beam direction conversion element side of the liquid crystal display panel and on the liquid crystal display panel side of the light beam direction conversion element.
  • the difference between the extraordinary refractive index ne and the ordinary refractive index no of the nematic liquid crystal material included in the liquid crystal region is 0.1 or more and 0.3 or less.
  • the liquid crystal region does not contain a chiral agent.
  • the dielectric anisotropy of the nematic liquid crystal material is positive.
  • the diffraction angle of the light beam redirecting element is 40 ° or more and 70 ° or less.
  • a liquid crystal display device having a dichroic fluorescent dye with increased brightness in front view.
  • (A) is typical sectional drawing of liquid crystal display device 100A in embodiment by this invention
  • (b) is a figure explaining the light beam direction conversion element 20
  • (c) is liquid crystal display device 100A. It is a graph which shows the relationship between the fluorescence brightness
  • (A) And (b) is a schematic diagram for demonstrating a dichroic fluorescent dye
  • (c) is a wavelength ((lambda)), an absorption coefficient, and a fluorescence emission coefficient about a dichroic fluorescent dye. It is a graph explaining the relationship.
  • FIG. 3 is a diagram illustrating a hologram element 21.
  • FIG. (A) is typical sectional drawing of liquid crystal display device 100B in other embodiment by this invention,
  • (b) And (c) is a figure explaining the orientation of the dichroic fluorescent dye 17.
  • FIG. (A) And (b) is typical sectional drawing of 100 C of liquid crystal display devices in further another embodiment by this invention.
  • (A) And (b) is a figure explaining the reflection preventing layer 80.
  • FIG. It is the graph which showed the relationship between fluorescence luminance and a viewing angle.
  • liquid crystal display device 100D It is a figure explaining liquid crystal display device 100D. It is a figure explaining the modification of liquid crystal display device 100D. It is a figure explaining the further modification of liquid crystal display device 100D. It is typical sectional drawing of the liquid crystal display device 100E in other embodiment by this invention. It is typical sectional drawing of the liquid crystal display device 100F in further another embodiment by this invention. It is a figure explaining the modification of liquid crystal display device 100F. It is typical sectional drawing of the liquid crystal display device 100G in other embodiment by this invention. (A) is a typical top view of the liquid crystal display device 100H in further another embodiment by this invention, (b) is sectional drawing along the II-II 'line
  • a liquid crystal display device 100A according to an embodiment of the present invention will be described with reference to FIG.
  • FIG. 1A is a cross-sectional view schematically showing the liquid crystal display device 100A.
  • FIG. 1B is a diagram for explaining the light beam direction conversion element 20 and shows portions corresponding to two pixels.
  • FIG. 1C is a graph showing the relationship between the fluorescence brightness and the viewing angle of the liquid crystal display device 100A.
  • the liquid crystal display device 100A includes a liquid crystal display panel 50A and a light beam direction conversion element (for example, a hologram element) 20.
  • the liquid crystal display panel 50A includes a liquid crystal layer 1 that can be switched between a transmission state that transmits light and a scattering state that scatters light, and a first substrate (for example, a glass substrate) that holds the liquid crystal layer 1 therebetween. 2 and a second substrate (for example, a glass substrate) 3 and a pair of electrodes 4 and 8 for applying a voltage to the liquid crystal layer 1.
  • the liquid crystal layer 1 has a continuous wall 10 and a liquid crystal region 11 in a pixel.
  • the liquid crystal region 11 includes a nematic liquid crystal material (not shown) and a dichroic fluorescent dye (not shown in FIG. 1A).
  • the light beam direction conversion element 20 that directs the traveling direction of the fluorescence emitted from the dichroic fluorescent dye in a predetermined direction (for example, the normal direction of the display surface of the liquid crystal display device 100A) is placed on the viewer side of the liquid crystal display panel 50A. Has been placed.
  • black display is not obtained using a hologram element, unlike the liquid crystal display device disclosed in Patent Document 1.
  • the fluorescence F1 emitted from the dichroic fluorescent dye is refracted by, for example, the normal direction of the display surface of the liquid crystal display device 100A by the light direction conversion element 20, and viewed from the front (for example, The luminance of fluorescence in the direction of the normal direction of the display surface of the liquid crystal display device 100A increases.
  • the luminance of the fluorescence in the front view direction is higher than the luminance of the fluorescence in the direction shifted from the front view direction.
  • alignment films 12 and 13 are formed on the first substrate 2 and the second substrate 3 so as to be in contact with the liquid crystal layer 1, respectively.
  • the alignment films 12 and 13 are, for example, horizontal alignment films. Note that only one of the alignment films 12 and 13 may be formed, or neither of them may be formed.
  • a thin film transistor (TFT) 5 and a pixel electrode 4 are formed for each pixel.
  • the pixel electrode 4 is a reflective electrode formed from, for example, Al (aluminum).
  • a transparent electrode 8 made of, for example, ITO (Indium ⁇ Tin Oxide) is formed on the liquid crystal layer 1 side of the second substrate 3.
  • the liquid crystal layer 1 of the liquid crystal display device 100A has a small room 14 divided by a wall 10. There are a plurality of small rooms 14.
  • the continuous wall 10 is made of, for example, a polymer.
  • a liquid crystal region 11 is formed in the small chamber 14.
  • Each liquid crystal region 11 has a nematic liquid crystal material and a dichroic fluorescent dye.
  • the nematic liquid crystal material and the dichroic fluorescent dye in the liquid crystal region 11 include those not in contact with the alignment films 12 and 13.
  • the material for forming the liquid crystal layer 1 is not particularly limited, but the nematic liquid crystal material for forming the liquid crystal layer 1 preferably has a positive dielectric anisotropy.
  • the dielectric anisotropy of a nematic liquid crystal material is negative and the alignment film that regulates the alignment of liquid crystal molecules in the nematic liquid crystal material is a vertical alignment film, the liquid crystal molecules are parallel to the substrate when a voltage is applied. I must fall down.
  • the direction in which the liquid crystal molecules are tilted cannot be regulated, and the liquid crystal molecules in the liquid crystal region are likely to be disturbed from uniform alignment, and disclination occurs in the liquid crystal region, thereby preventing the movement of the liquid crystal molecules. There is a fear.
  • the liquid crystal layer preferably does not contain a chiral agent.
  • the birefringence ⁇ n (difference between the extraordinary refractive index ne and the ordinary refractive index no) of the nematic liquid crystal material of the liquid crystal layer 1 is preferably 0.1 or more and 0.3 or less.
  • the birefringence ⁇ n is 0.1 or more, the contrast ratio of display can be increased.
  • the birefringence index ⁇ n is 0.3 or less, there are many choices of materials, and it may be possible to reduce voltage and speed.
  • the liquid crystal layer 1 is prepared by, for example, mixing a nematic liquid crystal material (that is, a low-molecular liquid crystal composition) and a photocurable resin (monomer and / or oligomer) and disposing the photocurable resin between transparent substrates. Obtained by polymerization.
  • a photocurable resin that is, a low-molecular liquid crystal composition
  • a photocurable resin monomer and / or oligomer
  • the photocurable resin is not specifically limited, Preferably an ultraviolet curable resin is used. When an ultraviolet curable resin is used, there is no need to heat the mixture when polymerization is performed, so that adverse effects due to heat on other members can be prevented.
  • Monomers and oligomers may be monofunctional or polyfunctional.
  • the liquid crystal layer 1 is formed by photocuring a mixture (liquid crystal mixture) of an ultraviolet curable resin and a liquid crystal composition by irradiation with an actinic ray such as ultraviolet rays.
  • a liquid crystal mixture for example, a liquid crystal mixture showing a nematic liquid crystal phase at room temperature obtained by mixing an ultraviolet curable material and liquid crystal at a weight ratio of 20:80 and adding a small amount of a photoinitiator is used. Can do.
  • the liquid crystal mixture is held between the pair of substrates 2 and 3 by, for example, a vacuum injection method or a drop injection (ODF) method and then irradiated with ultraviolet rays.
  • the ultraviolet curable resin is polymerized to form a polymer, which is phase-separated from the liquid crystal, thereby forming a liquid crystal layer 1 having a polymer wall 10 and a plurality of liquid crystal regions 11 separated from each other by the wall 10.
  • a liquid crystal layer 1 having a polymer wall 10 and a plurality of liquid crystal regions 11 separated from each other by the wall 10.
  • one liquid crystal region 11 is surrounded by the wall 10.
  • FIG. 2A and FIG. 2B are diagrams illustrating a dichroic fluorescent dye.
  • FIG. 2C is a graph illustrating a dichroic fluorescent dye.
  • the dichroic fluorescent dye includes a p-type and an n-type dichroic fluorescent dye. In the present embodiment, a p-type dichroic fluorescent dye is used.
  • the molecular axis and the absorption transition moment (absorption axis) 31a face the same direction.
  • the absorption coefficient (A //) of light oscillating in a direction parallel to the molecular axis is larger than the absorption coefficient (A ⁇ ) of light oscillating in a direction perpendicular to the molecular axis.
  • a ⁇ absorption coefficient of light oscillating in a direction perpendicular to the molecular axis.
  • n-type dichroic fluorescent dyes Therefore, when the p-type dichroic fluorescent dye is aligned so that the absorption axis 31a is parallel to the substrate, the absorption efficiency of light incident from the outside entering the liquid crystal layer 1 is increased.
  • the absorption axis 31a is orthogonal in the thickness direction of the liquid crystal layer 1, it becomes possible to efficiently absorb all polarization components of light from the outside.
  • the p-type dichroic fluorescent dye has the molecular axis and the transition moment (emission axis) 31b of the fluorescence emission oriented in substantially the same direction.
  • the fluorescence emission coefficient (F //) of the light emitted in the direction perpendicular to the molecular axis is larger than the fluorescence emission coefficient (F ⁇ ) of the light emitted in the direction parallel to the molecular axis.
  • F // fluorescence emission coefficient of the light emitted in the direction perpendicular to the molecular axis
  • F ⁇ fluorescence emission coefficient
  • the fluorescence emission intensity is large when viewed from the normal direction of the display surface of the liquid crystal display panel 50A. Become.
  • FIG. 3 is a diagram illustrating the liquid crystal panel 50A when no voltage is applied
  • FIG. 5 is a diagram illustrating the liquid crystal display panel 50A when a voltage is applied.
  • FIG. 4 is a graph showing the luminance with respect to the viewing angle of the liquid crystal display panel 50A.
  • FIG. 6 is a graph showing SCE (regular reflection light removal) reflectance measurement results in the respective states when the liquid crystal display panel 50A is in the transparent state and the scattering state.
  • SCE regular reflection light removal
  • the nematic liquid crystal material (not shown) in the liquid crystal region 11 is randomly oriented.
  • the dichroic fluorescent dye 17 is randomly oriented depending on the orientation direction of the nematic liquid crystal material. That is, the liquid crystal layer 1 is in a scattering state when no voltage is applied.
  • the light incident on the liquid crystal layer 1 from the outside is scattered, and the light in the excitation wavelength region (350 nm to 500 nm) of the dichroic fluorescent dye 17 is absorbed by the dichroic fluorescent dye 17.
  • the dichroic fluorescent dye 17 emits fluorescence.
  • a part of the fluorescently emitted light F1 is emitted from the surface of the liquid crystal display panel 50A to the outside without being scattered by the liquid crystal layer 1.
  • the majority (approximately 74%) of the fluorescently emitted light F1 is totally reflected at the interface between the liquid crystal display panel 50A and the air layer, and is guided inside the liquid crystal display panel 50A.
  • the fluorescence F1 guided through the liquid crystal display panel 50A is reflected and scattered, and the traveling direction becomes smaller than the total reflection angle, and is emitted to the liquid crystal display panel 50A.
  • the liquid crystal layer 1 in the scattering state emits 60% or more of the fluorescent light F1 to the outside of the liquid crystal display panel 50A. As a result, bright color display is possible by the fluorescent light F1 and the scattered external light.
  • the fluorescence luminance distribution is as shown in FIG. 4, and the fluorescence luminance is low near the front (angle 0 ° in FIG. 4), and is near 50 ° from the normal direction of the display surface of the liquid crystal display panel 50A.
  • the fluorescence brightness is maximized.
  • the nematic liquid crystal material (not shown) in the liquid crystal region 11 of the liquid crystal layer 1 is aligned perpendicular to the first substrate 2 when a voltage is applied.
  • the dichroic fluorescent dye 17 is also aligned perpendicular to the first substrate 2. As a result, the liquid crystal layer 1 becomes transparent.
  • the liquid crystal layer 1 When the liquid crystal layer 1 is in a transparent state, light incident from the outside is transmitted without being scattered, is regularly reflected by a reflecting plate (for example, the reflective electrode 4), and is emitted to the outside of the liquid crystal display panel 50A.
  • the light in the excitation wavelength region of the dichroic fluorescent dye 17 is hardly absorbed by the dichroic fluorescent dye 17 because the dichroic fluorescent dye 17 is oriented perpendicular to the first substrate 2.
  • the fluorescent light F1 is small and most of the light F1 is emitted in a direction parallel to the first substrate 2. Accordingly, most of the fluorescent light F1 is guided through the liquid crystal display panel 50A. Further, the display is black except for the regular reflection direction with respect to the light source (external light).
  • FIG. 7 is a diagram illustrating the light beam direction conversion element 20.
  • the light beam direction conversion element 20 is a hologram element 21, for example.
  • the hologram element 21 is preferably a volume phase hologram element.
  • the light beam direction conversion element 20 is disposed on the viewer side of the liquid crystal display panel 50A.
  • the light beam direction conversion element 20, for example applies fluorescence emitted toward the direction of 40 ° to 60 ° from the normal direction of the display surface of the liquid crystal display panel 50 A (liquid crystal display device 100 A) to the display surface of the liquid crystal display panel 50 A. Refract in the line direction.
  • the light direction conversion element 20 increases the luminance of the liquid crystal display device 100A in a front view.
  • the light beam direction conversion element 20 and the liquid crystal display panel 50A are arranged so as to sandwich the air layer therebetween.
  • the luminance in the front view direction is further increased, and the luminance in the direction deviated from the normal direction of the display surface of the liquid crystal display device 100A is further decreased.
  • the hologram element 21 it is preferable to use the maximum emission wavelength (for example, wavelength 540 nm) of the dichroic fluorescent dye 17 for the object light O1 and the reference light R1 (see FIG. 7). Further, it is preferable to irradiate the object light O1 from the normal direction of the main surface of the hologram element 21.
  • the reference light R1 is preferably applied to the hologram element 21 with an incident angle ⁇ from the side opposite to the side on which the object light O1 is incident on the hologram element 21.
  • the incident angle ⁇ is preferably, for example, 40 ° or more and 70 ° or less, and more preferably 50 °.
  • the reference light R1 is not limited to being irradiated from one direction, and is more preferably irradiated from all directions. Therefore, the diffraction angle of the hologram element 21 is preferably 40 ° or more and 70 ° or less, and more preferably 50 °. The reason will be explained.
  • the observer observes from the normal direction (front direction) of the liquid crystal display device 100A, the observer sees light emitted in the 0 ° to 40 ° direction from the front direction. For this reason, even if the light emitted in the 0 ° to 40 ° direction from the front direction is refracted in the front direction, the effect that the observer feels bright is small.
  • the light emitted at an angle of 70 ° or more from the front direction is reflected at the liquid crystal display panel 50A / air interface and the air / hologram element 21 interface, so that there is little light incident on the hologram element 21 and the front direction. Less light is refracted into For this reason, even if the light emitted in the direction of 70 ° or more from the front direction is refracted to the front direction side, the effect that the observer feels bright is small.
  • FIG. 8A is a schematic cross-sectional view of the liquid crystal display device 100B.
  • the liquid crystal display device 100B includes a liquid crystal display panel 50B and a light beam direction conversion element 20.
  • the liquid crystal display panel 50B includes a first substrate (for example, a glass substrate) 2, a second substrate (for example, a glass substrate) 3 disposed so as to face the first substrate 2, and the first substrate 2 and the second substrate.
  • the liquid crystal layer 1 is provided between the liquid crystal layer 1 and the liquid crystal layer 1.
  • alignment films 12 and 13 are formed on the first substrate 2 and the second substrate 3 so as to be in contact with the liquid crystal layer 1, respectively.
  • the alignment films 12 and 13 are subjected to, for example, a rubbing process, and define the alignment orientation of nematic liquid crystal molecules of the liquid crystal layer 1 in contact therewith.
  • the orientation orientation by the orientation film 12 and the orientation orientation by the orientation film 13 are orthogonal.
  • the orientation orientation can be defined by a photo-alignment treatment or the like.
  • the light direction conversion element 20 is arranged on the viewer side of the liquid crystal display panel 50B.
  • the liquid crystal layer 1 has a small room 14 a divided by the wall 10 and the alignment film 12 and a small room 14 b divided by the wall 10 and the alignment film 13.
  • the continuous wall 10 is made of, for example, a polymer.
  • a liquid crystal region 11a is formed in the small chamber 14a, and a liquid crystal region 11b is formed in the small chamber 14b.
  • Each of the liquid crystal regions 11 a and 11 b has a nematic liquid crystal material (not shown) and a dichroic fluorescent dye 17.
  • the nematic liquid crystal material and the dichroic fluorescent dye 17 in the liquid crystal region 11 a are in contact with the alignment film 12.
  • the nematic liquid crystal material and the dichroic fluorescent dye 17 in the liquid crystal region 11 b are in contact with the alignment film 13.
  • the nematic liquid crystal material and the dichroic fluorescent dye 17 in the liquid crystal region 11 a are aligned along the rubbing direction of the alignment film 12, and the nematic liquid crystal material and the dichroic fluorescent dye 17 in the liquid crystal region 11 b are aligned with the alignment film 13. Oriented along the rubbing direction.
  • the dichroic fluorescent dye 17 is aligned so as to be parallel to the alignment direction of the nematic liquid crystal material.
  • the small chambers 14a and 14b In order for the small chambers 14a and 14b to be formed by being divided by the alignment films 12 and 13 and the wall 10, respectively, it is preferable to optimize the surface free energy of the alignment films 12 and 13. This is a knowledge obtained as a result of various studies by the present inventors.
  • a preferred range of the surface free energy will vary depending on the material forming the liquid crystal layer 1, for example, it is 44 mJ / m 2 or more 50 mJ / m 2 or less.
  • the alignment of the nematic liquid crystal material and the dichroic fluorescent dye 17 is controlled. can do.
  • the orientation of the dichroic fluorescent dye 17 is controlled so that the orientation orientation of the dichroic fluorescent dye 17 in the liquid crystal region 11a and the orientation orientation of the dichroic fluorescent dye 17 in the liquid crystal region 11b are orthogonal to each other, Since light (for example, light having a wavelength of 430 nm) can be efficiently absorbed by the fluorescent dye 17, low-voltage driving is possible and color developability can be improved.
  • the liquid crystal display device 100B includes a TFT 5 formed on the liquid crystal layer 1 side of the first substrate 2 and formed for each pixel. Further, the liquid crystal display device 100 ⁇ / b> B includes a pixel electrode 4 formed for each pixel and an alignment film 12 in contact with the liquid crystal layer 1, which is formed on the liquid crystal layer 1 side of the first substrate 2.
  • the alignment film 12 is a horizontal alignment film and has been rubbed.
  • the liquid crystal display device 100 ⁇ / b> B includes a transparent electrode 8 formed on the liquid crystal layer 1 side of the second substrate 3 and an alignment film 13 formed so as to be in contact with the liquid crystal layer 1. Similar to the alignment film 12, the alignment film 13 is a horizontal alignment film, and is subjected to a rubbing process. As described above, the alignment films 12 and 13 are formed so that the rubbing direction of the alignment film 12 and the rubbing direction of the alignment film 13 are orthogonal to each other.
  • FIG. 8B and FIG. 8C are diagrams for explaining the orientation direction of the dichroic fluorescent dye 17 when no voltage is applied.
  • FIG. 8B is a view taken along line Ia-Ia ′ of FIG.
  • FIG. 8C is a view taken along the line Ib-Ib ′ of FIG.
  • the major axis direction (director) 30 of the dichroic fluorescent dye 17 existing in the liquid crystal region 11a in the vicinity of the alignment film 12 indicates the liquid crystal display device 100B on the display surface.
  • the liquid crystal layer 1 is parallel to the column direction.
  • the major axis direction (director) 30 of the dichroic fluorescent dye 17 existing in the liquid crystal region 11b in the vicinity of the alignment film 13 causes the liquid crystal display device 100B to be displayed on the display surface.
  • the liquid crystal layer 1 is parallel to the row direction. That is, the director 30 in the liquid crystal region 11a and the director 30 in the liquid crystal region 11b are orthogonal to each other.
  • the liquid crystal layer 1 of the liquid crystal display device 100B When a voltage is applied to the liquid crystal layer 1 of the liquid crystal display device 100B, as described in the liquid crystal display device 100A, the liquid crystal layer 1 becomes transparent (see FIG. 5).
  • the light absorption efficiency of the dichroic fluorescent dye can be increased by orienting the dichroic fluorescent dye 17 in parallel with the plane of the first substrate 2 when no voltage is applied. .
  • FIG. 9A is a schematic cross-sectional view of the liquid crystal display device 100C when no voltage is applied
  • FIG. 9B is a schematic cross-sectional view of the liquid crystal display device 100C when a voltage is applied. .
  • the liquid crystal display device 100 ⁇ / b> C includes a liquid crystal display panel 50 ⁇ / b> C and a light beam direction conversion element 20.
  • the liquid crystal display panel 50C includes a liquid crystal layer 1 that can be switched between a transmission state that transmits light and a scattering state that scatters light, and a first substrate (for example, a glass substrate) that holds the liquid crystal layer 1 therebetween. 2 and a second substrate (for example, a glass substrate) 3 and a pair of electrodes 54 and 58 for applying a voltage to the liquid crystal layer 1.
  • the pair of electrodes 54 and 58 is a so-called pair of comb electrodes.
  • a vertical alignment film (not shown) is formed on the first substrate 2 and the second substrate 3 so as to be in contact with the liquid crystal layer 1.
  • the liquid crystal layer 1 has a continuous wall 10 and a liquid crystal region 11 in a pixel.
  • the liquid crystal region 11 includes a nematic liquid crystal material (not shown) and a dichroic fluorescent dye 17.
  • the liquid crystal region 11 includes a liquid crystal region 11 a separated from each other by a vertical alignment film (not shown) formed on the first substrate 2 and the wall 10, and a vertical alignment film (not shown) formed on the second substrate 3. And a liquid crystal region 11 b separated from each other by the wall 10. That is, the liquid crystal regions 11a and 11b are respectively surrounded by the wall 10 and the vertical alignment film.
  • the light beam direction conversion element 20 that directs the traveling direction of the fluorescence emitted from the dichroic fluorescent dye 17 in a predetermined direction (for example, the normal direction of the display surface of the liquid crystal display device 100C) is the viewer side of the liquid crystal display panel 50C. Is arranged.
  • the nematic liquid crystal material (not shown) in the liquid crystal region 11 is aligned perpendicular to the first substrate 2.
  • the dichroic fluorescent dye 17 is oriented perpendicular to the first substrate 2 depending on the orientation of the nematic liquid crystal material. Therefore, when no voltage is applied, the liquid crystal layer 1 is in a transparent state.
  • the nematic liquid crystal material (not shown) in the liquid crystal region 11 is aligned parallel to the lines of electric force.
  • the dichroic fluorescent dye 17 is aligned parallel to the nematic liquid crystal material.
  • the birefringence ⁇ n of the nematic liquid crystal material changes periodically, so that the liquid crystal layer 1 is in a scattering state.
  • the dichroic fluorescent dye 17 is also oriented parallel to the plane of the first substrate 2, the amount of fluorescent light emission is increased and the luminance is increased.
  • the electrode 54 and the electrode 58 are preferably formed of a transparent electrode such as ITO.
  • a pair of electrodes 54 and 58 are formed on one substrate (for example, the first substrate 2) as in the liquid crystal display device 100C, light is emitted from the dichroic fluorescent dye 17 and guided inside the liquid crystal display panel 50C.
  • the light to be emitted can be efficiently guided to the liquid crystal layer 1. That is, the influence of light absorption and reflection at the electrode interface can be reduced. Therefore, in the liquid crystal display device 100C, the influence of light absorption and reflection at the electrode interface can be reduced, and a display with high luminance can be obtained.
  • an antireflection layer 80 is preferably disposed between the light beam redirecting element 20 and the liquid crystal display panel 50 (50A to 50C).
  • the antireflection layer 80 is, for example, an antireflection film having a moth-eye structure disclosed in International Publication No. 2006/059686.
  • the antireflection layer 80 is disposed on the light beam direction conversion element 20 side of the liquid crystal display panel 50.
  • the transmittance of light emitted in an angle direction of 50 ° or more from the normal direction of the display surfaces of the liquid crystal display devices 100A to 100C is drastically reduced due to interface reflection (see FIG. 4).
  • the antireflection layer 80 is arranged as described above (see FIG.
  • FIG. 11 shows the measurement results of the luminance distribution of the liquid crystal display panel 160 in which the antireflection layer 80 is disposed and the liquid crystal display panel 150 in which the antireflection layer 80 is not disposed.
  • the vertical axis of the graph of FIG. 11 is the fluorescence luminance
  • the horizontal axis is the viewing angle when the normal direction of the display surface of each liquid crystal display panel is 0 °.
  • the liquid crystal display panel 160 has higher fluorescence luminance at all viewing angles than the liquid crystal display panel 150.
  • an antireflection layer 80 may be disposed on the liquid crystal display panel 50 side of the light beam direction conversion element 20.
  • the antireflection layer 80 is arranged in this way, the amount of fluorescent light incident on the light beam direction conversion element 20 can be increased, and the luminance of the liquid crystal display devices 100A to 100C can be increased.
  • the liquid crystal display devices 100A to 100C in which the liquid crystal region 11 of the liquid crystal layer 1 includes the dichroic fluorescent dye 17 and the nematic liquid crystal material have been described.
  • the liquid crystal display device according to the present invention is not limited to this.
  • a liquid crystal display panel in which a dichroic fluorescent dye layer having the dichroic fluorescent dye 17 and a liquid crystal layer having a nematic liquid crystal material are separated is used. You can also.
  • a liquid crystal display device having such a configuration will be described with reference to FIGS. The description of the light beam direction conversion element 20 is omitted.
  • FIG. 12 is a schematic cross-sectional view of the liquid crystal display device 100D.
  • FIG. 13 is a diagram illustrating the liquid crystal display device 100D when a voltage is applied, and
  • FIG. 14 is a diagram illustrating the liquid crystal display device 100D when no voltage is applied.
  • FIG. 15 is a diagram illustrating a modification example of the liquid crystal display device 100D.
  • FIG. 16 is a diagram for explaining a further modification of the liquid crystal display device 100D.
  • the liquid crystal display device 100D includes a liquid crystal display panel 50D and a light beam direction conversion element 20 disposed on the viewer side of the liquid crystal display panel 50D.
  • An air layer 35 is provided between the liquid crystal display panel 50 ⁇ / b> D and the light beam direction conversion element 20.
  • the liquid crystal display panel 50D includes a fluorescent light emitting layer 31 having a plurality of dichroic fluorescent dye molecules 17a having different light emission strengths depending on the light emitting direction, and a transmission state that transmits light and a scattering state that scatters light.
  • a liquid crystal layer 33 whose state can be switched.
  • the liquid crystal layer 33 includes a continuous wall 10 made of a polymer and a liquid crystal region 11 having a nematic liquid crystal material in a pixel.
  • the liquid crystal region 11 does not have a plurality of dichroic fluorescent dye molecules 17a.
  • the details of the wall 10 and the nematic liquid crystal material are as described above.
  • Each of the plurality of dichroic fluorescent dye molecules 17a is oriented in the fluorescent light emitting layer 31 so that the direction of the transition dipole moment is the same in each molecule.
  • the liquid crystal layer 33 and the fluorescent light emitting layer 31 are separated. Accordingly, since it is not necessary to dissolve the fluorescent dye in the liquid crystal layer 33, it is not necessary to increase the thickness of the liquid crystal layer 33 so that a large amount of the fluorescent dye can be added to the liquid crystal layer 33. Further, in order to obtain sufficient fluorescent light emission, the fluorescent light emitting layer 31 may be thickened, so that the light emission amount can be changed without changing the voltage applied to the liquid crystal layer 33.
  • the intensity of light emission of the dichroic fluorescent dye molecule 17a in the fluorescent light emitting layer 31 varies depending on the direction of light emission, the refraction state of the strong light emitted from the dichroic fluorescent dye molecule 17a in the display device. It is possible to change the intensity of the fluorescence emission by changing. That is, by controlling the nematic liquid crystal material in the liquid crystal layer 33, brighter light emitted from the dichroic fluorescent dye molecules 17a is scattered by the nematic liquid crystal material and taken out or totally reflected in the liquid crystal display device 100D. Thus, it can be confined in the liquid crystal display device 100D. Therefore, the state of the fluorescence emission of the liquid crystal display device 100D can be changed by controlling the nematic liquid crystal material in the liquid crystal layer 33.
  • the liquid crystal display panel 50D includes, for example, a first substrate 2 on which the pixel electrode 4 and the TFT 5 are formed, a second substrate 3 facing the first substrate 2, and the first substrate 2 and the second substrate 3. And a liquid crystal layer 33 disposed between the two.
  • a transparent electrode (sometimes referred to as “counter electrode”) 8 and a fluorescent light emitting layer 31 having a plurality of dichroic fluorescent dye molecules 17a are formed on the second substrate 3.
  • the fluorescent light emitting layer 31 is formed on the liquid crystal layer 33 side of the second substrate 3, and the counter electrode 8 is formed on the liquid crystal layer 33 side of the fluorescent light emitting layer 31.
  • the liquid crystal layer 33 is a PDLC layer.
  • the liquid crystal layer 33 includes a nematic liquid crystal material and does not include the dichroic fluorescent dye 17. When no voltage is applied, the liquid crystal layer 33 is in a scattering state, and when a voltage is applied to the liquid crystal layer 33, the liquid crystal layer 33 is in a transparent state.
  • a PDLC layer is well known and will not be described in detail.
  • the fluorescent light emitting layer 31 has a dichroic fluorescent dye molecule 17a and a liquid crystalline polymer 23b that holds the dichroic fluorescent dye molecule 17a.
  • the dichroic fluorescent dye molecule 17a is made of a material having an absorption band in an ultraviolet wavelength region (for example, 10 nm to 400 nm) and a visible light wavelength region (for example, 380 nm to 750 nm) and having a dichroic ratio of 5 or more. Have.
  • the dichroic fluorescent dye molecule 17a is, for example, a benzothiadiazole-based or coumarin-based, cyanine-based, pyridine-based, rhodamine-based, styryl-based, or anthraquinone-based fluorescent dye molecule.
  • the dichroic fluorescent dye molecule 17a has the property of absorbing fluorescent light such as ultraviolet rays and visible light.
  • the dichroic fluorescent dye molecule 17a oscillates in a direction parallel to the molecular long axis, compared to the absorption coefficient of light that oscillates in the direction intersecting the molecular long axis (light that travels parallel to the molecular long axis). It has an absorption characteristic that the absorption coefficient of light (light traveling in a direction crossing the molecular long axis) is larger (see FIG. 2).
  • the dichroic fluorescent dye molecule 17a has a light emission characteristic that the fluorescence emission coefficient in the direction parallel to the molecular long axis is larger than the fluorescence emission coefficient in the direction intersecting with the molecular long axis.
  • the molecular long axis coincides with the direction of the transition moment of light emission. Accordingly, the dichroic fluorescent dye molecule 17a emits stronger light in the direction crossing the molecular axis.
  • the dichroic fluorescent dye molecule 17a is described as a vertically long ellipse, but its longitudinal direction corresponds to the molecular long axis.
  • the liquid crystalline polymer 23b can orient the dichroic fluorescent dye molecules 17a so that the molecular major axis coincides with the stacking direction of each layer (the thickness direction of the fluorescent light emitting layer 31). It has a resin material. Specifically, the liquid crystalline polymer 23b has a compound having a photoreactive group at a molecular terminal or a diacrylate compound having a liquid crystalline skeleton. An ultraviolet absorbing material that absorbs ultraviolet rays may be mixed in the liquid crystalline polymer 23b. Thereby, the ultraviolet-ray which permeate
  • the dichroic fluorescent dye molecules 17a are held in the fluorescent light-emitting layer 31 by the liquid crystal polymer 23b, thereby crossing the molecular long axis of the dichroic fluorescent dye molecules 17a, that is, the liquid crystal display panel 50D.
  • stronger light is emitted from the dichroic fluorescent dye molecule 17a.
  • only weak light is emitted from the dichroic fluorescent dye molecule 17a in the direction parallel to the molecular long axis of the dichroic fluorescent dye molecule 17a, that is, in the thickness direction of the fluorescent light emitting layer 31. Therefore, as indicated by a thin solid line in FIGS. 13 and 14, almost no light is emitted directly from the dichroic fluorescent dye molecule 17a to the outside of the liquid crystal display panel 50D.
  • each layer of the liquid crystal display panel 50D is made of a transparent material, light emitted from the dichroic fluorescent dye molecules 17a in the in-plane direction of the display panel 1 is separated from the liquid crystal display panel 50D and the air. Reflects at the interface. That is, as shown in FIG. 13, when a voltage is applied to the liquid crystal layer 33 and the liquid crystal layer 33 is in a transparent state, the light emitted from the dichroic fluorescent dye molecules 17a is at the interface with air. Since the reflection is totally reflected, the reflection is repeated in the liquid crystal display panel 50D (see the thick arrow in FIG. 13). The light emitted from the dichroic fluorescent dye molecule 17a to the interface with air at an incident angle smaller than the total reflection angle is emitted to the outside as it is.
  • the dichroic fluorescent dye molecule 17a absorbs ultraviolet rays. Therefore, the amount of ultraviolet rays reaching the liquid crystal layer 33 can be reduced by providing the fluorescent light emitting layer 31 on the viewer side (the side opposite to the liquid crystal layer 33 side) of the liquid crystal display panel 50D of the liquid crystal layer 33.
  • the liquid crystal region 11 in the liquid crystal layer 33 is not shown in order to clearly and simply show the difference between the states of the liquid crystal layers 33.
  • the fluorescent light emitting layer 31 is formed on the second substrate 3.
  • the fluorescent light emitting layer 31 is formed by, for example, a spin coat method. That is, the dichroic fluorescent dye molecule 17a is added to the liquid crystalline polymer 23b and mixed until the dichroic fluorescent dye molecule 17a is dissolved to prepare a mixed solution.
  • an alignment film (not shown in FIGS. 12 to 14) is formed on the substrate 3 in order to improve the wettability between the mixed solution and the substrate 3. Thereafter, the mixture is coated with a predetermined film thickness on the alignment film by a known method. After heating in this state to evaporate the solvent, ultraviolet rays are irradiated to cure the liquid crystalline polymer 23b. Thereby, the fluorescent light emitting layer 31 is formed on the substrate 3.
  • the counter electrode 8 is formed on the fluorescent light emitting layer 31 by, for example, sputtering.
  • a photo spacer is formed on the counter electrode 8 by a known method.
  • the photo spacer is formed from a photoresist.
  • substrate 2 which has TFT5 is manufactured by a well-known method.
  • an alignment film (not shown) is formed on the second substrate 3 and / or the first substrate 2.
  • a seal pattern is formed on the second substrate 3 with a photocurable resin.
  • a mixture obtained by mixing a nematic liquid crystal material, a polymerizable monomer, or the like is dropped on the second substrate 3, and the first substrate 2 and the second substrate 3 are superposed in a vacuum.
  • ultraviolet light with a wavelength of 340 nm or less cut is irradiated from the second substrate 3 side in a state where the above-mentioned mixture spreads in the seal pattern at atmospheric pressure. This cures the sealing resin and forms the PDLC. Thereafter, the seal is completely cured by firing in a state where the second substrate 3 and the first substrate 2 are combined. Thereby, the liquid crystal display panel 50D shown in FIG. 12 is obtained.
  • ultraviolet absorbing films 45 may be arranged on both surfaces of the liquid crystal display panel 50D. Specifically, the ultraviolet absorbing film 45 is attached by the adhesive 46 between the light beam redirecting element 20 and the second substrate 3 and on the opposite side of the first substrate 2 from the liquid crystal layer 33 side. These ultraviolet absorbing films 45 are configured to cut light having a wavelength of 420 nm or less.
  • the liquid crystal display panel 50D has been a transmissive liquid crystal display panel.
  • the liquid crystal display panel 50D may be modified to a reflective liquid crystal display panel 50D '.
  • the liquid crystal display panel 50 ⁇ / b> D ′ is a reflective liquid crystal display panel in which a reflective layer 47 is formed on the first substrate 2.
  • the liquid crystal display panel 50 ⁇ / b> D ′ includes a reflective layer 47 formed on the first substrate 2 and a pixel electrode 4 formed on the reflective layer 47.
  • the pixel electrode 4 can be made of, for example, Al (aluminum).
  • the above-described ultraviolet absorbing film 45 is provided on the second substrate 3 side that transmits light. Not only this structure but the structure which does not provide the ultraviolet absorption film 45 may be sufficient.
  • FIG. 17 is a schematic cross-sectional view of the liquid crystal display device 100E.
  • the liquid crystal display device 100E is different from the liquid crystal display device 100D in the structure of electrodes for applying a voltage to the liquid crystal layer 33.
  • the liquid crystal display device 100E has a liquid crystal display panel 50E and a light beam direction conversion element 20.
  • the light direction conversion element 20 is arranged on the viewer side of the liquid crystal display panel 50E.
  • An air layer 35 is provided between the liquid crystal display panel 50 ⁇ / b> E and the light beam direction conversion element 20.
  • a pair of comb electrodes 4a and 8a are formed on the first substrate 2 of the liquid crystal display panel 50E.
  • the counter electrode 8 is not formed on the second substrate 3.
  • the transparent counter electrode 8 included in the liquid crystal display device 100D described above has a high absorption rate for visible light. Therefore, when the transparent counter electrode 8 is provided between the fluorescent light emitting layer 31 and the liquid crystal layer 33 as in the liquid crystal display device 100D, the light emitted from the dichroic fluorescent dye molecules 17a of the fluorescent light emitting layer 31 is counter electrode. 8 is reflected or absorbed by the liquid crystal layer 33 and is difficult to reach the liquid crystal layer 33.
  • the liquid crystal display panel 50E can be modified to a reflective liquid crystal display panel. Similarly to the liquid crystal display device 100D, an ultraviolet absorbing film may be attached to both sides of the liquid crystal display panel 50E.
  • the liquid crystal display device 100F includes a liquid crystal display panel 50F and a light beam direction conversion element 20.
  • the light beam direction conversion element 20 is disposed on the viewer side of the liquid crystal display panel 50F.
  • An air layer 35 is provided between the liquid crystal display panel 50 ⁇ / b> F and the light beam direction conversion element 20.
  • the liquid crystal display panel 50 ⁇ / b> F includes a first substrate 2, a second substrate 3, and a liquid crystal layer 33 disposed between the first substrate 2 and the second substrate 3.
  • a TFT 5 and a pixel electrode 4 are formed on the first substrate 2.
  • a counter electrode 8 is formed on the liquid crystal layer 33 side of the second substrate 3.
  • an ultraviolet absorbing film 45 is attached with an adhesive 46.
  • a fluorescent dye film 61 is pasted on the ultraviolet absorbing film 45 with an adhesive 46.
  • the fluorescent dye film 61 is obtained by forming the fluorescent light emitting layer 31 of the liquid crystal display device 100D into a film shape.
  • the fluorescent dye film 61 is provided with a light emitting layer 61a having dichroic fluorescent dye molecules 17a oriented so that the molecular major axis coincides with the thickness direction of the film 61b.
  • an adhesive layer is formed by the adhesive 46, and the ultraviolet absorbing film 45 corresponds to the adherend. Further, an ultraviolet absorbing layer is formed by the ultraviolet absorbing film 45.
  • the fluorescent dye film 61 can efficiently absorb ultraviolet rays, so that the luminous efficiency of the dichroic fluorescent dye molecules 17a is improved.
  • the ultraviolet ray that has not been absorbed by the fluorescent dye film 61 can be absorbed by the ultraviolet ray absorbing film 45, the liquid crystal layer 33 is not easily irradiated with the ultraviolet ray.
  • the electrode which applies a voltage to the liquid crystal layer 33 of the liquid crystal display panel 50F can be modified to the above-described pair of comb electrodes 4a and 8a. In this case, the counter electrode 8 may not be formed.
  • the fluorescent light emitting layer can be easily formed on the second substrate 3 by using the fluorescent light emitting layer as the fluorescent dye film 61. Further, by using the fluorescent dye film 61 as described above, it is possible to form a fluorescent light emitting layer after the liquid crystal layer 33 is formed. As a result, when the liquid crystal layer 33 is formed, as described in the liquid crystal display device 100D, the ultraviolet rays having a wavelength of 340 nm or less are cut from the second substrate 3 side. By doing so, a member that absorbs ultraviolet rays does not exist in the second substrate 3. Therefore, when the liquid crystal layer 33 is formed, the liquid crystal layer 33 can be efficiently irradiated with ultraviolet rays.
  • FIG. 19 is a diagram illustrating a modified example of the liquid crystal display device 100F.
  • the fluorescent dye film 71 is opposite to the film 71b that hardly absorbs ultraviolet rays, the fluorescent light emitting layer 71a having a plurality of dichroic fluorescent dye molecules 17a, and the film 71b side of the fluorescent light emitting layer 71a. And an adhesive layer 71c provided on the side.
  • the pressure-sensitive adhesive forming the adhesive layer 71c is mixed with an ultraviolet absorber that can absorb light (mainly ultraviolet rays) having a wavelength of 420 nm or less.
  • an ultraviolet absorber such as benzotriazole or benzophenone is used. Therefore, an ultraviolet absorption layer is formed by this adhesive.
  • corresponds to a to-be-adhered part.
  • the fluorescent light emitting layer 71a and the film 71b may be interchanged.
  • the adhesive layer 71c is provided on the opposite side of the film 71b from the fluorescent light emitting layer 71a.
  • an ultraviolet absorber may be put in one of the film 71b and the adhesive layer 71c.
  • FIG. 20 is a schematic cross-sectional view of the liquid crystal display device 100G.
  • the liquid crystal display device 100G is different from the liquid crystal display device 100F in that a light guide plate 82 is provided on the fluorescent light emitting layer 31.
  • the liquid crystal display device 100G includes a liquid crystal display panel 50G and a light beam direction conversion element 20.
  • the light beam direction conversion element 20 is disposed on the viewer side of the liquid crystal display panel 50G.
  • An air layer 35 is provided between the liquid crystal display panel 50 ⁇ / b> G and the light beam direction conversion element 20.
  • the liquid crystal display panel 50G includes a first substrate 2 on which the TFT 5 and the pixel electrode 4 are formed, a second substrate 3 on which the counter electrode 8 is formed, a liquid crystal layer 33 disposed therebetween, a light guide plate 82, Have The light guide plate 82 is disposed between the second substrate 3 and the air layer 35.
  • the liquid crystal display panel 50G has a fluorescent light emitting layer 31 having dichroic fluorescent dye molecules 17a between the second substrate 3 and the light guide plate 82.
  • the fluorescent light emitting layer 31 is bonded to the second substrate 3 with an adhesive 46.
  • the adhesive 46 between the fluorescent light emitting layer 31 and the second substrate 3 contains an ultraviolet absorber.
  • light having a wavelength of 420 nm or less mainly ultraviolet rays
  • the liquid crystal layer 33 can be prevented from being irradiated with ultraviolet rays. Therefore, an ultraviolet absorbing layer is formed by the adhesive 46.
  • the light guide plate 82 is a transparent member that does not absorb ultraviolet rays, such as acrylic or polycarbonate, and is configured to guide light from a light source 83 such as an LED (Light Emitting Diode) to the fluorescent light emitting layer 31. That is, the light from the light source 83 is guided to the fluorescent light emitting layer 31 while being reflected in the light guide plate 82.
  • a light source 83 such as an LED (Light Emitting Diode)
  • LED Light Emitting Diode
  • the light source 83 is a light source including the photoexcitation wavelength of the dichroic fluorescent dye molecule 17a.
  • the light source 83 is preferably an LED that emits ultraviolet light, for example. By using such a light source 83, the dichroic fluorescent dye molecule 17a can be made to emit fluorescent light more brightly.
  • a reflection plate 81 is provided at the end of the light guide plate 82 opposite to the light source 83. The light that has traveled to the end of the light guide plate 82 can be reflected and returned into the light guide plate 82 by the reflection plate 81.
  • the light guide plate 82, the fluorescent light emitting layer 31, and the second substrate 3 are bonded to each other so that light propagation is not hindered.
  • FIG. 21A is a plan view for explaining the liquid crystal display device 100H
  • FIG. 21B is a cross-sectional view of the liquid crystal display device 100H along the line II-II ′ of FIG.
  • the liquid crystal display device 100H is a liquid crystal display device that combines the liquid crystal display panel 50G, the solar cell, and the light beam direction conversion element 20 described above.
  • the liquid crystal display device 100H includes the liquid crystal display panel 50G and the light beam direction conversion element 20 described above.
  • the light beam direction conversion element 20 is disposed on the viewer side of the liquid crystal display panel 50G.
  • An air layer 35 is provided between the liquid crystal display panel 50 ⁇ / b> G and the light beam direction conversion element 20.
  • the liquid crystal display device 100H is disposed in an opening 120a of a housing 120 of a portable device or the like, and a solar cell 131 (photovoltaic power generation unit) disposed on the side of the liquid crystal display device 100H. ) Is arranged.
  • the light guide plate 82 of the liquid crystal display device 100H is disposed in the housing 120 so as to be exposed at the opening 120a of the housing 120.
  • the liquid crystal display device 100H is disposed in the housing 120 so that the first substrate 2 and the second substrate 3 are positioned corresponding to the opening 120a of the housing 120 in a front view.
  • the light guide plate 82 of the liquid crystal display device 100H is formed in a substantially rectangular shape when viewed from the front.
  • Two light sources 96 are provided at one end in the longitudinal direction, and a reflector 97 is provided at the other end. It has been.
  • Solar cells 131 are arranged on both sides of the light guide plate 82 of the liquid crystal display device 100H in the short direction.
  • the solar cell 131 is arranged such that a power generation surface 131a (light receiving surface) that generates power by receiving light is opposed to a surface direction end of the liquid crystal display device 100H.
  • a power generation surface 131a light receiving surface
  • the light emitted from the dichroic fluorescent dye molecules 17 a of the fluorescent light emitting layer 31 in the direction intersecting the molecular long axis can be received by the power generation surface 131 a of the solar cell 131. Since this dichroic fluorescent dye molecule 17a emits fluorescence strongly in the direction intersecting the molecular long axis (the direction of the white arrow in the figure), the dichroic fluorescent dye molecule 17a is twisted by the power generation surface 131a of the solar cell 131. It can receive strong light. Therefore, the solar cell 131 can generate power efficiently.
  • the solar cell 131 is disposed away from the light guide plate 82.
  • the solar cell 131 is brought into close contact with the light guide plate 82, light that is originally transmitted to the light guide plate 82 is absorbed by the solar cell 131.
  • the solar cell 131 by separating the solar cell 131 from the light guide plate 82, it is possible to prevent the solar cell 131 from inhibiting the propagation of light in the light guide plate 82.
  • the light emitted by the dichroic fluorescent dye molecules 17a in the fluorescent light emitting layer 31 of the liquid crystal display device 100H can be received by the solar cell 131 and can be generated by the solar cell 131.
  • the solar cell 131 is disposed so that the power generation surface 131a faces the end in the surface direction of the liquid crystal display device 100H, the light of the dichroic fluorescent dye molecule 17a can be efficiently received by the power generation surface. it can.
  • the dichroic fluorescent dye molecule 17a is arranged so that the molecular long axis coincides with the stacking direction of the liquid crystal display device 100H, the light emitted more strongly in the direction intersecting the molecular long axis is emitted. Light can be received by the solar cell 131.
  • the solar cell 131 by arranging the solar cell 131 as described above, since sunlight is not directly incident on the power generation surface 131a of the solar cell 131, the temperature rise of the solar cell 131 can be reduced. Therefore, it is possible to prevent a decrease in power generation efficiency due to the temperature increase of the solar cell 131.
  • the above-described antireflection layer 80 can be disposed between the liquid crystal display panels 50D to 50G and the light beam direction conversion element 20.
  • liquid crystal display device having a dichroic fluorescent dye with enhanced brightness in a front view is provided. Further, the liquid crystal display devices according to the embodiments of the present invention described above can be used in appropriate combination.
  • the present invention is applied to a liquid crystal display device and various electric devices using the liquid crystal display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

A liquid crystal display device (100A) of the present invention is provided with: a liquid crystal display panel (50A); and a light beam direction converting element (20) that is arranged on the viewer side of the liquid crystal display panel (50A). The liquid crystal display panel (50A) is provided with: a liquid crystal layer (1) that can be switched between a transmitting state that transmits light and a scattering state that scatters light; a first substrate (2) and a second substrate (3) that hold the liquid crystal layer (1) therebetween; and a pair of electrodes (4, 8) that apply a voltage to the liquid crystal layer (1). The liquid crystal layer (1) has a continuous wall (10) and a liquid crystal region (11) within a pixel. The liquid crystal region (11) contains a nematic liquid crystal material and a dichroic fluorescent dye (17). The light beam direction converting element (20) turns the traveling direction of fluorescence emitted from the dichroic fluorescent dye (17) to a predetermined direction.

Description

液晶表示装置Liquid crystal display
 本発明は、液晶表示装置に関し、特に、2色性蛍光色素を有する液晶表示装置に関する。 The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device having a dichroic fluorescent dye.
 液晶表示装置は、薄型、軽量等の特徴を有するフラットパネルディスプレイとして、液晶テレビ、モニター、携帯電話などに広く利用されている。しかしながら、現在最も広く利用されている液晶表示装置は、偏光板を2枚もしくは1枚用いた方式であり、光の利用効率が低いという問題がある。 Liquid crystal display devices are widely used as liquid crystal televisions, monitors, mobile phones and the like as flat panel displays having features such as thinness and light weight. However, the most widely used liquid crystal display device at present is a system using two or one polarizing plate, and there is a problem that the light use efficiency is low.
 これまでも、偏光板を使用しない表示方式として、ゲストホスト方式や高分子分散液晶(Polymer Dispersed Liquid Crystal:PDLC)方式が提案されている(例えば、特許文献1)。 So far, as a display method that does not use a polarizing plate, a guest-host method or a polymer dispersed liquid crystal (PDLC) method has been proposed (for example, Patent Document 1).
 特許文献1には、PDLC方式の液晶表示パネルと反射板との間にホログラム素子が配置された液晶表示装置が開示されている。PDLC方式の液晶表示パネルの液晶層(PDLC層)は、高分子中に分散させた複数の液晶領域(「液晶滴」ともいう。)を有している。各液晶領域は、高分子で形成された壁によって規定される空間(以下、「小部屋」という。)内に形成されている。このようなPDLC層では、電圧を印加しないとき(電圧無印加時)、垂直入射の光に対して、液晶領域内の液晶材料と高分子との間に屈折率の差が生じ、これらの界面で光が散乱され、白表示が得られる。PDLC層に電圧を印加すると(電圧印加時)、液晶の配向が変化して液晶と高分子との屈折率が略等しくなるので、光は散乱されることなくPDLC層を透過する。このとき、PDLC層の背面側にホログラム素子を配置し、このホログラム素子によってPDLC層を透過した光を臨界角以上の方向に回折させることにより、黒表示を行っている。 Patent Document 1 discloses a liquid crystal display device in which a hologram element is disposed between a PDLC liquid crystal display panel and a reflector. A liquid crystal layer (PDLC layer) of a PDLC liquid crystal display panel has a plurality of liquid crystal regions (also referred to as “liquid crystal droplets”) dispersed in a polymer. Each liquid crystal region is formed in a space (hereinafter referred to as “small room”) defined by a wall made of a polymer. In such a PDLC layer, when no voltage is applied (when no voltage is applied), a difference in refractive index is generated between the liquid crystal material in the liquid crystal region and the polymer for vertically incident light. The light is scattered and white display is obtained. When a voltage is applied to the PDLC layer (when a voltage is applied), the alignment of the liquid crystal changes and the refractive indexes of the liquid crystal and the polymer become substantially equal, so that light passes through the PDLC layer without being scattered. At this time, a black element is displayed by arranging a hologram element on the back side of the PDLC layer and diffracting light transmitted through the PDLC layer by the hologram element in a direction of a critical angle or more.
特開平11-337923号公報JP 11-337923 A
 一方、本出願人は、これまで2色性蛍光色素を有するPDLC方式の液晶表示装置を開発している(例えば、PCT/JP2011/073830号(以下、特許出願1という)および国際公開第2011/136072号(以下、特許出願2という)。参考までに、特許出願1および2の開示内容のすべてを本願明細書に援用する。 On the other hand, the present applicant has developed a PDLC-type liquid crystal display device having a dichroic fluorescent dye (for example, PCT / JP2011 / 073830 (hereinafter referred to as Patent Application 1) and International Publication No. 2011/1. 136072 (hereinafter referred to as Patent Application 2) For the purpose of reference, the entire disclosure of Patent Applications 1 and 2 is incorporated herein by reference.
 特許出願1に開示されている液晶表示装置は、高分子中に分散させた複数の液晶領域内に2色性蛍光色素を有している。また、液晶領域を配向膜と接するように形成して液晶領域内の液晶分子の配向を制御し、2色性蛍光色素の配向を制御している。その結果、2色性蛍光色素の発光効率が高くなり、コントラスト比が向上する。 The liquid crystal display device disclosed in Patent Application 1 has a dichroic fluorescent dye in a plurality of liquid crystal regions dispersed in a polymer. In addition, the liquid crystal region is formed in contact with the alignment film to control the alignment of the liquid crystal molecules in the liquid crystal region, thereby controlling the alignment of the dichroic fluorescent dye. As a result, the luminous efficiency of the dichroic fluorescent dye is increased and the contrast ratio is improved.
 しかしながら、このような2色性蛍光色素を有するPDLC方式の液晶表示装置は、正面視における輝度を改善する余地がある。 However, the PDLC liquid crystal display device having such a dichroic fluorescent dye has room for improving the luminance in the front view.
 本発明は、上記問題に鑑みてなされたものであり、その目的は、正面視における輝度を高めた2色性蛍光色素を有する液晶表示装置を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a liquid crystal display device having a dichroic fluorescent dye with enhanced brightness in a front view.
 本発明による液晶表示装置は、液晶表示パネルと、前記液晶表示パネルの観察者側に配置された光線方向変換素子と、前記液晶表示パネルと前記光線方向変換素子との間に設けられた空気層とを有し、前記液晶表示パネルは、光を透過する透過状態と光を散乱する散乱状態との間で状態が切り替えられ得る液晶層と、前記液晶層を間に保持する第1基板および第2基板と、前記液晶層に電圧を印加する一対の電極とを備え、前記液晶層は、画素内に、連続した壁と、液晶領域とを有し、前記液晶領域は、ネマチック液晶材料と2色性蛍光色素とを有し、前記光線方向変換素子は、前記2色性蛍光色素から発光された蛍光の進行方向を所定の方向に向ける。 A liquid crystal display device according to the present invention includes a liquid crystal display panel, a light beam direction conversion element disposed on an observer side of the liquid crystal display panel, and an air layer provided between the liquid crystal display panel and the light beam direction conversion element. The liquid crystal display panel includes a liquid crystal layer that can be switched between a transmission state that transmits light and a scattering state that scatters light, a first substrate that holds the liquid crystal layer therebetween, and a first substrate Two substrates and a pair of electrodes for applying a voltage to the liquid crystal layer, the liquid crystal layer having a continuous wall and a liquid crystal region in the pixel, the liquid crystal region comprising a nematic liquid crystal material and 2 The light direction changing element directs the traveling direction of the fluorescence emitted from the dichroic fluorescent dye in a predetermined direction.
 ある実施形態において、前記液晶層に電圧を印加する一対の電極は、前記液晶層を挟んで配置され、前記液晶領域は、前記壁によって分離された第1液晶領域を含む。 In one embodiment, a pair of electrodes for applying a voltage to the liquid crystal layer is disposed with the liquid crystal layer interposed therebetween, and the liquid crystal region includes a first liquid crystal region separated by the wall.
 ある実施形態において、前記液晶表示装置は、前記液晶層と前記第1基板との間、および、前記液晶層と前記第2基板との間の少なくともいずれか一方に、前記液晶層と接するように形成された水平配向膜をさらに備える。 In one embodiment, the liquid crystal display device is in contact with the liquid crystal layer between at least one of the liquid crystal layer and the first substrate and between the liquid crystal layer and the second substrate. A horizontal alignment film formed is further provided.
 ある実施形態において、前記液晶表示装置は、前記液晶層と前記第1基板との間、および、前記液晶層と前記第2基板との間に形成され、配向処理された第1および第2配向膜を備え、前記液晶領域は、前記壁と前記第1配向膜とによって分離された第2液晶領域と、前記壁と前記第2配向膜とによって分離された第3液晶領域とを含み、前記第2液晶領域の前記2色性蛍光色素は、前記第1配向膜によって規定される第1方位に沿って配向しており、前記第3液晶領域の前記2色性蛍光色素は、前記第2配向膜によって規定される第2方位に沿って配向している。 In one embodiment, the liquid crystal display device includes first and second alignment layers formed between the liquid crystal layer and the first substrate and between the liquid crystal layer and the second substrate and subjected to alignment treatment. The liquid crystal region includes a second liquid crystal region separated by the wall and the first alignment film, and a third liquid crystal region separated by the wall and the second alignment film, The dichroic fluorescent dye in the second liquid crystal region is aligned along a first orientation defined by the first alignment film, and the dichroic fluorescent dye in the third liquid crystal region is the second Aligned along the second orientation defined by the alignment film.
 ある実施形態において、前記第1方位と前記第2方位とは直交している。 In one embodiment, the first orientation and the second orientation are orthogonal.
 ある実施形態において、前記第1および第2配向膜の表面自由エネルギーは44mJ/m2以上50mJ/m2以下である。 In certain embodiments, the surface free energy of the first and second alignment films is 44 mJ / m 2 or more 50 mJ / m 2 or less.
 ある実施形態において、前記液晶層に電圧を印加する一対の電極は、前記第1基板または前記第2基板上のいずれか一方に形成され、前記液晶層と前記第1基板との間、および、前記液晶層と前記第2基板との間に形成された第1および第2垂直配向膜とを備え、前記液晶領域は、前記壁と前記第1垂直配向膜とによって分離された第1液晶領域と、前記壁と前記第2垂直配向膜とによって分離された第2液晶領域とを含み、前記第1および第2液晶領域の前記2色性蛍光色素は、それぞれ前記第1および第2垂直配向膜によって規定される方位に沿って配向している。 In one embodiment, a pair of electrodes for applying a voltage to the liquid crystal layer is formed on one of the first substrate and the second substrate, between the liquid crystal layer and the first substrate, and A first liquid crystal region including first and second vertical alignment films formed between the liquid crystal layer and the second substrate, wherein the liquid crystal region is separated by the wall and the first vertical alignment film; And a second liquid crystal region separated by the wall and the second vertical alignment film, wherein the dichroic fluorescent dyes in the first and second liquid crystal regions are the first and second vertical alignments, respectively. It is oriented along the orientation defined by the film.
 本発明による他の実施形態における液晶表示装置は、液晶表示パネルと、前記液晶表示パネルの観察者側に配置された光線方向変換素子と、前記液晶表示パネルと前記光線方向変換素子との間に設けられた空気層とを有し、前記液晶表示パネルは、発光方向によって発光の強さが異なる、複数の2色性蛍光色素分子を有する蛍光発光層と、光を透過する透過状態と光を散乱する散乱状態との間で状態が切り替えられ得る液晶層とを有し、前記液晶層は、画素内に、連続した壁と、ネマチック液晶材料を有する液晶領域とを有し、前記複数の2色性蛍光色素分子のそれぞれは、前記蛍光発光層内に、遷移双極子モーメントの向きが各分子で同じ方向になるように配向されており、前記光線方向変換素子は、前記複数の2色性蛍光分子のそれぞれから発光された蛍光の進行方向を所定の方向に向ける。 A liquid crystal display device according to another embodiment of the present invention includes a liquid crystal display panel, a light beam direction conversion element disposed on the viewer side of the liquid crystal display panel, and the liquid crystal display panel and the light beam direction conversion element. The liquid crystal display panel includes a fluorescent light-emitting layer having a plurality of dichroic fluorescent dye molecules, the intensity of light emission being different depending on a light emission direction, a light transmitting state and light. A liquid crystal layer that can be switched between a scattering state and a scattering state. The liquid crystal layer includes a continuous wall and a liquid crystal region including a nematic liquid crystal material in a pixel, and the plurality of 2 Each of the chromatic fluorescent dye molecules is oriented in the fluorescent light-emitting layer so that the direction of the transition dipole moment is the same in each molecule, and the light beam direction changing element includes the plurality of dichroic elements. Each of the fluorescent molecules The traveling direction of the emitted fluorescence from oriented in a predetermined direction.
 ある実施形態において、前記複数の2色性蛍光色素分子のそれぞれは、前記蛍光発光層内に、遷移双極子モーメントの向きが前記蛍光発光層の厚さ方向と一致するように配向されている。 In one embodiment, each of the plurality of dichroic fluorescent dye molecules is oriented in the fluorescent light emitting layer such that the direction of the transition dipole moment coincides with the thickness direction of the fluorescent light emitting layer.
 ある実施形態において、前記蛍光発光層と前記液晶層との間には、紫外線を吸収する紫外線吸収層が設けられている。 In one embodiment, an ultraviolet absorbing layer that absorbs ultraviolet rays is provided between the fluorescent light emitting layer and the liquid crystal layer.
 ある実施形態において、前記蛍光発光層は、シート状に(自己支持可能に)形成された発光層と、前記発光層を被接着部に接着する接着層とを有し、前記発光層および前記接着層の少なくとも一方は、紫外線吸収剤を含む。 In one embodiment, the fluorescent light-emitting layer includes a light-emitting layer formed in a sheet shape (in a self-supporting manner) and an adhesive layer that adheres the light-emitting layer to an adherend, the light-emitting layer and the adhesive At least one of the layers includes an ultraviolet absorber.
 ある実施形態において、前記液晶表示パネルは、前記液晶層に電圧を印加する一対の電極を有し、前記一対の電極は、一対の櫛歯電極である。 In one embodiment, the liquid crystal display panel has a pair of electrodes for applying a voltage to the liquid crystal layer, and the pair of electrodes is a pair of comb-teeth electrodes.
 ある実施形態において、上述の液晶表示装置は、前記蛍光発光層と前記光線方向変換素子との間に、光源からの光を前記蛍光発光層に導く導光板が配置されている。 In one embodiment, the above-described liquid crystal display device includes a light guide plate that guides light from a light source to the fluorescent light emitting layer between the fluorescent light emitting layer and the light beam direction conversion element.
 ある実施形態において、上述の液晶表示装置は、前記蛍光発光層の面方向外方に、前記蛍光発光層内の2色性蛍光色素分子から出射される光を受光して発電する光発電部を備えている。 In one embodiment, the liquid crystal display device includes a photovoltaic power generation unit that receives light emitted from the dichroic fluorescent dye molecules in the fluorescent light emitting layer and generates power outside the surface of the fluorescent light emitting layer. I have.
 ある実施形態において、前記光発電部は、その受光面が蛍光発光層の面方向端部に対向するように設けられている。 In one embodiment, the photovoltaic unit is provided such that a light receiving surface thereof faces a surface direction end of the fluorescent light emitting layer.
 ある実施形態において、上述の液晶表示装置は、前記液晶表示パネルの前記光線方向変換素子側に配置された反射防止層をさらに有する。 In one embodiment, the above-described liquid crystal display device further includes an antireflection layer disposed on the light beam direction conversion element side of the liquid crystal display panel.
 ある実施形態において、上述の液晶表示装置は、前記光線方向変換素子の前記液晶表示パネル側に配置された反射防止層をさらに有する。 In one embodiment, the liquid crystal display device further includes an antireflection layer disposed on the liquid crystal display panel side of the light beam direction conversion element.
 ある実施形態において、前記液晶表示装置は、前記液晶表示パネルの前記光線方向変換素子側、および、前記光線方向変換素子の前記液晶表示パネル側に配置された反射防止層をさらに有する。 In one embodiment, the liquid crystal display device further includes an antireflection layer disposed on the light beam direction conversion element side of the liquid crystal display panel and on the liquid crystal display panel side of the light beam direction conversion element.
 ある実施形態において、前記液晶領域に含まれる前記ネマチック液晶材料の異常光屈折率neと常光屈折率noとの差は0.1以上0.3以下である。 In one embodiment, the difference between the extraordinary refractive index ne and the ordinary refractive index no of the nematic liquid crystal material included in the liquid crystal region is 0.1 or more and 0.3 or less.
 ある実施形態において、前記液晶領域はカイラル剤を含んでいない。 In one embodiment, the liquid crystal region does not contain a chiral agent.
 ある実施形態において、前記ネマチック液晶材料の誘電異方性は正である。 In one embodiment, the dielectric anisotropy of the nematic liquid crystal material is positive.
 ある実施形態において、前記光線方向変換素子の回折角度は、40°以上70°以下である。 In one embodiment, the diffraction angle of the light beam redirecting element is 40 ° or more and 70 ° or less.
 本発明によると、正面視における輝度を高めた2色性蛍光色素を有する液晶表示装置が提供される。 According to the present invention, there is provided a liquid crystal display device having a dichroic fluorescent dye with increased brightness in front view.
(a)は、本発明による実施形態における液晶表示装置100Aの模式的な断面図であり、(b)は、光線方向変換素子20を説明する図であり、(c)は、液晶表示装置100Aの蛍光輝度と視角との関係を示すグラフである。(A) is typical sectional drawing of liquid crystal display device 100A in embodiment by this invention, (b) is a figure explaining the light beam direction conversion element 20, (c) is liquid crystal display device 100A. It is a graph which shows the relationship between the fluorescence brightness | luminance and viewing angle. (a)および(b)は、2色性蛍光色素を説明するための模式的な図であり、(c)は、2色性蛍光色素についての波長(λ)と吸光係数および蛍光発光係数との関係を説明するグラフである。(A) And (b) is a schematic diagram for demonstrating a dichroic fluorescent dye, (c) is a wavelength ((lambda)), an absorption coefficient, and a fluorescence emission coefficient about a dichroic fluorescent dye. It is a graph explaining the relationship. 液晶表示パネル50Aの模式的な断面図である。It is typical sectional drawing of 50 A of liquid crystal display panels. 蛍光輝度と視角との関係を示すグラフである。It is a graph which shows the relationship between fluorescence luminance and a viewing angle. 液晶表示パネル50Aの模式的な断面図である。It is typical sectional drawing of 50 A of liquid crystal display panels. 反射特性の測定結果を示すグラフである。It is a graph which shows the measurement result of reflection characteristics. ホログラム素子21を説明する図である。3 is a diagram illustrating a hologram element 21. FIG. (a)は、本発明による他の実施形態における液晶表示装置100Bの模式的な断面図であり、(b)および(c)は、2色性蛍光色素17の配向を説明する図である。(A) is typical sectional drawing of liquid crystal display device 100B in other embodiment by this invention, (b) And (c) is a figure explaining the orientation of the dichroic fluorescent dye 17. FIG. (a)および(b)は、本発明によるさらに他の実施形態における液晶表示装置100Cの模式的な断面図である。(A) And (b) is typical sectional drawing of 100 C of liquid crystal display devices in further another embodiment by this invention. (a)および(b)は、反射防止層80を説明する図である。(A) And (b) is a figure explaining the reflection preventing layer 80. FIG. 蛍光輝度と視角との関係を示したグラフである。It is the graph which showed the relationship between fluorescence luminance and a viewing angle. 本発明によるさらに他の実施形態における液晶表示装置100Dの模式的な断面図である。It is typical sectional drawing of liquid crystal display device 100D in further another embodiment by this invention. 液晶表示装置100Dを説明する図である。It is a figure explaining liquid crystal display device 100D. 液晶表示装置100Dを説明する図である。It is a figure explaining liquid crystal display device 100D. 液晶表示装置100Dの改変例を説明する図である。It is a figure explaining the modification of liquid crystal display device 100D. 液晶表示装置100Dのさらなる改変例を説明する図である。It is a figure explaining the further modification of liquid crystal display device 100D. 本発明によるさらに他の実施形態における液晶表示装置100Eの模式的な断面図である。It is typical sectional drawing of the liquid crystal display device 100E in other embodiment by this invention. 本発明によるさらに他の実施形態における液晶表示装置100Fの模式的な断面図である。It is typical sectional drawing of the liquid crystal display device 100F in further another embodiment by this invention. 液晶表示装置100Fの改変例を説明する図である。It is a figure explaining the modification of liquid crystal display device 100F. 本発明によるさらに他の実施形態における液晶表示装置100Gの模式的な断面図である。It is typical sectional drawing of the liquid crystal display device 100G in other embodiment by this invention. (a)は、本発明によるさらに他の実施形態における液晶表示装置100Hの模式的な平面図であり、(b)は、(a)のII-II’線に沿った断面図である。(A) is a typical top view of the liquid crystal display device 100H in further another embodiment by this invention, (b) is sectional drawing along the II-II 'line | wire of (a).
 以下、図面を参照して、本発明による実施形態における液晶表示装置を説明する。なお、本発明は例示する実施形態に限定されない。 Hereinafter, a liquid crystal display device according to an embodiment of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the illustrated embodiment.
 図1を参照しながら、本発明による実施形態における液晶表示装置100Aを説明する。 A liquid crystal display device 100A according to an embodiment of the present invention will be described with reference to FIG.
 図1(a)は、液晶表示装置100Aを模式的に示す断面図である。図1(b)は、光線方向変換素子20を説明する図であり、2つの画素に対応する部分を示している。図1(c)は、液晶表示装置100Aの蛍光輝度と視角との関係を示すグラフである。 FIG. 1A is a cross-sectional view schematically showing the liquid crystal display device 100A. FIG. 1B is a diagram for explaining the light beam direction conversion element 20 and shows portions corresponding to two pixels. FIG. 1C is a graph showing the relationship between the fluorescence brightness and the viewing angle of the liquid crystal display device 100A.
 図1(a)に示すように、液晶表示装置100Aは、液晶表示パネル50Aと光線方向変換素子(例えば、ホログラム素子)20とを有する。液晶表示パネル50Aは、光を透過する透過状態と光を散乱する散乱状態との間で状態が切り替えられ得る液晶層1と、液晶層1を間に保持する第1基板(例えば、ガラス基板)2および第2基板(例えば、ガラス基板)3と、液晶層1に電圧を印加する一対の電極4および8とを備える。液晶層1は、画素内に、連続した壁10と、液晶領域11とを有する。液晶領域11は、ネマチック液晶材料(不図示)と2色性蛍光色素(図1(a)には不図示)とを有する。2色性蛍光色素から発光された蛍光の進行方向を所定の方向(例えば、液晶表示装置100Aの表示面の法線方向)に向ける光線方向変換素子20は、液晶表示パネル50Aの観察者側に配置されている。なお、本発明の実施形態における液晶表示装置においては、特許文献1に開示されている液晶表示装置のように、ホログラム素子を用いて黒表示を得ることはしていない。 As shown in FIG. 1A, the liquid crystal display device 100A includes a liquid crystal display panel 50A and a light beam direction conversion element (for example, a hologram element) 20. The liquid crystal display panel 50A includes a liquid crystal layer 1 that can be switched between a transmission state that transmits light and a scattering state that scatters light, and a first substrate (for example, a glass substrate) that holds the liquid crystal layer 1 therebetween. 2 and a second substrate (for example, a glass substrate) 3 and a pair of electrodes 4 and 8 for applying a voltage to the liquid crystal layer 1. The liquid crystal layer 1 has a continuous wall 10 and a liquid crystal region 11 in a pixel. The liquid crystal region 11 includes a nematic liquid crystal material (not shown) and a dichroic fluorescent dye (not shown in FIG. 1A). The light beam direction conversion element 20 that directs the traveling direction of the fluorescence emitted from the dichroic fluorescent dye in a predetermined direction (for example, the normal direction of the display surface of the liquid crystal display device 100A) is placed on the viewer side of the liquid crystal display panel 50A. Has been placed. In the liquid crystal display device according to the embodiment of the present invention, black display is not obtained using a hologram element, unlike the liquid crystal display device disclosed in Patent Document 1.
 図1(b)に示すように、2色性蛍光色素から発光した蛍光F1が光線方向変換素子20により、例えば、液晶表示装置100Aの表示面の法線方向へ屈折し、正面視(例えば、液晶表示装置100Aの表示面の法線方向)方向の蛍光の輝度が高くなる。図1(c)に示すように、正面視方向の蛍光の輝度は、正面視方向からずれた方向の蛍光の輝度よりも高い。 As shown in FIG. 1B, the fluorescence F1 emitted from the dichroic fluorescent dye is refracted by, for example, the normal direction of the display surface of the liquid crystal display device 100A by the light direction conversion element 20, and viewed from the front (for example, The luminance of fluorescence in the direction of the normal direction of the display surface of the liquid crystal display device 100A increases. As shown in FIG. 1C, the luminance of the fluorescence in the front view direction is higher than the luminance of the fluorescence in the direction shifted from the front view direction.
 さらに、図1(a)に示す液晶表示装置100Aにおいて、第1基板2および第2基板3上に、それぞれ液晶層1と接するように配向膜12および13は形成されている。配向膜12および13は、例えば、水平配向膜である。なお、配向膜12および13は、いずれか一方のみ形成してもよく、いずれも形成しなくてもよい。第1基板2の液晶層1側には、例えば、画素ごとに、薄膜トランジスタ(TFT)5および画素電極4が形成されている。画素電極4は、例えば、Al(アルミニウム)から形成された反射電極である。第2基板3の液晶層1側には、例えばITO(Indium Tin Oxide)から形成された透明電極8が形成されている。 Further, in the liquid crystal display device 100A shown in FIG. 1A, alignment films 12 and 13 are formed on the first substrate 2 and the second substrate 3 so as to be in contact with the liquid crystal layer 1, respectively. The alignment films 12 and 13 are, for example, horizontal alignment films. Note that only one of the alignment films 12 and 13 may be formed, or neither of them may be formed. On the liquid crystal layer 1 side of the first substrate 2, for example, a thin film transistor (TFT) 5 and a pixel electrode 4 are formed for each pixel. The pixel electrode 4 is a reflective electrode formed from, for example, Al (aluminum). A transparent electrode 8 made of, for example, ITO (Indium 透明 Tin Oxide) is formed on the liquid crystal layer 1 side of the second substrate 3.
 液晶表示装置100Aの液晶層1は、壁10によって分割された小部屋14を有する。小部屋14は、複数ある。連続する壁10は、例えば高分子から形成されている。小部屋14の中には液晶領域11が形成されている。それぞれの液晶領域11は、ネマチック液晶材料と2色性蛍光色素とを有する。液晶領域11内のネマチック液晶材料および2色性蛍光色素は、配向膜12および13と接触していないものも含む。 The liquid crystal layer 1 of the liquid crystal display device 100A has a small room 14 divided by a wall 10. There are a plurality of small rooms 14. The continuous wall 10 is made of, for example, a polymer. A liquid crystal region 11 is formed in the small chamber 14. Each liquid crystal region 11 has a nematic liquid crystal material and a dichroic fluorescent dye. The nematic liquid crystal material and the dichroic fluorescent dye in the liquid crystal region 11 include those not in contact with the alignment films 12 and 13.
 液晶層1を形成する材料は特に限定されないが、液晶層1を形成するネマチック液晶材料の誘電率異方性は正であることが好ましい。ネマチック液晶材料の誘電率異方性が負であり、そのネマチック液晶材料の液晶分子の配向を規制する配向膜が垂直配向膜の場合、液晶分子は電圧を印加したとき、基板と平行になるように倒れなければならない。しかしながら、この場合、液晶分子が倒れる方向を規制することができず、液晶領域内の液晶分子は一様な配向から乱れやすく、液晶領域内にディスクリネーションが発生し、液晶分子の動きを妨げるおそれがある。また、後で説明する表示原理を利用するためには、液晶層はカイラル剤を含んでいないことが好ましい。さらに、液晶層1のネマチック液晶材料の複屈折率Δn(異常光屈折率neと常光屈折率noとの差)は0.1以上0.3以下であることが好ましい。複屈折率Δnが0.1以上であれば、表示のコントラスト比を高めることができる。一方、複屈折率Δnが0.3以下であれば材料の選択肢が多く、低電圧化、高速化が可能となり得る。 The material for forming the liquid crystal layer 1 is not particularly limited, but the nematic liquid crystal material for forming the liquid crystal layer 1 preferably has a positive dielectric anisotropy. When the dielectric anisotropy of a nematic liquid crystal material is negative and the alignment film that regulates the alignment of liquid crystal molecules in the nematic liquid crystal material is a vertical alignment film, the liquid crystal molecules are parallel to the substrate when a voltage is applied. I must fall down. However, in this case, the direction in which the liquid crystal molecules are tilted cannot be regulated, and the liquid crystal molecules in the liquid crystal region are likely to be disturbed from uniform alignment, and disclination occurs in the liquid crystal region, thereby preventing the movement of the liquid crystal molecules. There is a fear. In order to use the display principle described later, the liquid crystal layer preferably does not contain a chiral agent. Further, the birefringence Δn (difference between the extraordinary refractive index ne and the ordinary refractive index no) of the nematic liquid crystal material of the liquid crystal layer 1 is preferably 0.1 or more and 0.3 or less. When the birefringence Δn is 0.1 or more, the contrast ratio of display can be increased. On the other hand, if the birefringence index Δn is 0.3 or less, there are many choices of materials, and it may be possible to reduce voltage and speed.
 液晶層1は、例えば、ネマチック液晶材料(すなわち低分子液晶組成物)および光硬化性樹脂(モノマーおよび/またはオリゴマー)の混合物を相溶させて透明基板間に配置した後、光硬化性樹脂を重合することによって得られる。光硬化性樹脂の種類は特に限定されないが、好ましくは紫外線硬化性樹脂を用いる。紫外線硬化性樹脂を用いると、重合を行う際に上記混合物を加熱する必要がないので、他の部材への熱による悪影響を防止できる。モノマー、オリゴマーは単官能でも多官能でもよい。 The liquid crystal layer 1 is prepared by, for example, mixing a nematic liquid crystal material (that is, a low-molecular liquid crystal composition) and a photocurable resin (monomer and / or oligomer) and disposing the photocurable resin between transparent substrates. Obtained by polymerization. Although the kind of photocurable resin is not specifically limited, Preferably an ultraviolet curable resin is used. When an ultraviolet curable resin is used, there is no need to heat the mixture when polymerization is performed, so that adverse effects due to heat on other members can be prevented. Monomers and oligomers may be monofunctional or polyfunctional.
 本実施形態では、紫外線硬化性樹脂と液晶組成物との混合物(液晶混合物)を、紫外線等の活性光線の照射により光硬化させることによって液晶層1を形成する。液晶混合物としては、例えば、紫外線硬化材料と液晶とを20:80の重量比で混合し、少量の光開始剤を添加することによって得られた、常温でネマチック液晶相を示す液晶混合物を用いることができる。 In the present embodiment, the liquid crystal layer 1 is formed by photocuring a mixture (liquid crystal mixture) of an ultraviolet curable resin and a liquid crystal composition by irradiation with an actinic ray such as ultraviolet rays. As the liquid crystal mixture, for example, a liquid crystal mixture showing a nematic liquid crystal phase at room temperature obtained by mixing an ultraviolet curable material and liquid crystal at a weight ratio of 20:80 and adding a small amount of a photoinitiator is used. Can do.
 上記の液晶混合物は、例えば、真空注入法または滴下注入(ODF:One Drop Filling)法によって一対の基板2、3の間に保持された後、紫外線で照射される。これによって、紫外線硬化性樹脂が重合して高分子となり液晶と相分離し、高分子からなる壁10と、その壁10によって互いに分離された複数の液晶領域11とを有する液晶層1が形成される。つまり、1つの液晶領域11は壁10に包囲されている。 The liquid crystal mixture is held between the pair of substrates 2 and 3 by, for example, a vacuum injection method or a drop injection (ODF) method and then irradiated with ultraviolet rays. As a result, the ultraviolet curable resin is polymerized to form a polymer, which is phase-separated from the liquid crystal, thereby forming a liquid crystal layer 1 having a polymer wall 10 and a plurality of liquid crystal regions 11 separated from each other by the wall 10. The That is, one liquid crystal region 11 is surrounded by the wall 10.
 次に、図2を参照しながら、2色性蛍光色素について説明する。図2(a)および図2(b)は、2色性蛍光色素を説明する図である。図2(c)は、2色性蛍光色素を説明するグラフである。2色性蛍光色素は、p型とn型の2色性蛍光色素がある。本実施形態においては、p型の2色性蛍光色素を用いている。 Next, the dichroic fluorescent dye will be described with reference to FIG. FIG. 2A and FIG. 2B are diagrams illustrating a dichroic fluorescent dye. FIG. 2C is a graph illustrating a dichroic fluorescent dye. The dichroic fluorescent dye includes a p-type and an n-type dichroic fluorescent dye. In the present embodiment, a p-type dichroic fluorescent dye is used.
 図2(a)および図2(c)に示すように、p型の2色性蛍光色素は、分子軸と吸収の遷移モーメント(吸収軸)31aとが同じ向きを向いている。これにより、分子軸と平行な方向に振動する光の吸収係数(A//)の方が、分子軸と垂直な方向に振動する光の吸収係数(A⊥)よりも大きい。n型の2色性蛍光色素は、その逆である。従って、p型の2色性蛍光色素は、吸収軸31aが基板と平行となるように配向させると、液晶層1に入射する外部からの光の吸収効率は高くなる。また、吸収軸31aが液晶層1の厚さ方向で直交している2領域があると、外部からの光の全偏光成分を効率よく吸収することが可能となる。 2A and 2C, in the p-type dichroic fluorescent dye, the molecular axis and the absorption transition moment (absorption axis) 31a face the same direction. Thereby, the absorption coefficient (A //) of light oscillating in a direction parallel to the molecular axis is larger than the absorption coefficient (A⊥) of light oscillating in a direction perpendicular to the molecular axis. The opposite is true for n-type dichroic fluorescent dyes. Therefore, when the p-type dichroic fluorescent dye is aligned so that the absorption axis 31a is parallel to the substrate, the absorption efficiency of light incident from the outside entering the liquid crystal layer 1 is increased. In addition, if there are two regions in which the absorption axis 31a is orthogonal in the thickness direction of the liquid crystal layer 1, it becomes possible to efficiently absorb all polarization components of light from the outside.
 さらに、図2(b)および図2(c)に示すように、p型の2色性蛍光色素は、分子軸と蛍光発光の遷移モーメント(発光軸)31bがほぼ同じ向きを向いている。これにより、分子軸と垂直な方向に発光する光の蛍光発光係数(F//)の方が、分子軸と平行な方向に発する光の蛍光発光係数(F⊥)よりも大きい。n型の2色性蛍光色素は、その逆である。従って、p型の2色性蛍光色素は、例えば、発光軸31bが基板と平行となるように配向させると、液晶表示パネル50Aの表示面の法線方向から見たとき、蛍光発光強度が大きくなる。 Furthermore, as shown in FIGS. 2 (b) and 2 (c), the p-type dichroic fluorescent dye has the molecular axis and the transition moment (emission axis) 31b of the fluorescence emission oriented in substantially the same direction. Thereby, the fluorescence emission coefficient (F //) of the light emitted in the direction perpendicular to the molecular axis is larger than the fluorescence emission coefficient (F⊥) of the light emitted in the direction parallel to the molecular axis. The opposite is true for n-type dichroic fluorescent dyes. Therefore, for example, when the p-type dichroic fluorescent dye is oriented so that the emission axis 31b is parallel to the substrate, the fluorescence emission intensity is large when viewed from the normal direction of the display surface of the liquid crystal display panel 50A. Become.
 次に、図3~図6を参照して、液晶表示パネル50Aについて説明する。図3は、電圧無印加時における液晶パネル50Aを説明する図であり、図5は、電圧印加時における液晶表示パネル50Aを説明する図である。図4は、液晶表示パネル50Aの視角に対する、輝度を示すグラフである。図6は、液晶表示パネル50Aが透明状態、および散乱状態にあるときのそれぞれの状態におけるSCE(正反射光除去)反射率測定結果を示すグラフである。 Next, the liquid crystal display panel 50A will be described with reference to FIGS. FIG. 3 is a diagram illustrating the liquid crystal panel 50A when no voltage is applied, and FIG. 5 is a diagram illustrating the liquid crystal display panel 50A when a voltage is applied. FIG. 4 is a graph showing the luminance with respect to the viewing angle of the liquid crystal display panel 50A. FIG. 6 is a graph showing SCE (regular reflection light removal) reflectance measurement results in the respective states when the liquid crystal display panel 50A is in the transparent state and the scattering state.
 図3に示すように、電圧無印加時において、液晶領域11のネマチック液晶材料(不図示)は、ランダムに配向している。2色性蛍光色素17は、ネマチック液晶材料の配向方位に依存してランダムに配向している。つまり、電圧無印加時において、液晶層1は散乱状態である。 As shown in FIG. 3, when no voltage is applied, the nematic liquid crystal material (not shown) in the liquid crystal region 11 is randomly oriented. The dichroic fluorescent dye 17 is randomly oriented depending on the orientation direction of the nematic liquid crystal material. That is, the liquid crystal layer 1 is in a scattering state when no voltage is applied.
 外部から液晶層1に入射した光は、散乱され、2色性蛍光色素17の励起波長域(350nm~500nm)の光は、2色性蛍光色素17に吸収される。この結果、2色性蛍光色素17が蛍光を発光する。蛍光発光した光F1のうちの一部は、液晶層1で散乱されることなく液晶表示パネル50Aの表面から外部に出射される。蛍光発光した光F1のうちの大半(およそ74%)は、液晶表示パネル50Aと空気層との界面で全反射され、液晶表示パネル50Aの内部を導光する。液晶表示パネル50A内を導光する蛍光F1は、反射と散乱を繰り返すうちに、進行方向が全反射角度よりも小さい角度になり、液晶表示パネル50Aへ出射される。散乱状態にある液晶層1により、蛍光発光した光F1のうちの60%以上が液晶表示パネル50Aの外部へ出射される。この結果、蛍光発光した光F1と散乱された外光とにより、明るいカラー表示が可能となる。 The light incident on the liquid crystal layer 1 from the outside is scattered, and the light in the excitation wavelength region (350 nm to 500 nm) of the dichroic fluorescent dye 17 is absorbed by the dichroic fluorescent dye 17. As a result, the dichroic fluorescent dye 17 emits fluorescence. A part of the fluorescently emitted light F1 is emitted from the surface of the liquid crystal display panel 50A to the outside without being scattered by the liquid crystal layer 1. The majority (approximately 74%) of the fluorescently emitted light F1 is totally reflected at the interface between the liquid crystal display panel 50A and the air layer, and is guided inside the liquid crystal display panel 50A. The fluorescence F1 guided through the liquid crystal display panel 50A is reflected and scattered, and the traveling direction becomes smaller than the total reflection angle, and is emitted to the liquid crystal display panel 50A. The liquid crystal layer 1 in the scattering state emits 60% or more of the fluorescent light F1 to the outside of the liquid crystal display panel 50A. As a result, bright color display is possible by the fluorescent light F1 and the scattered external light.
 しかしながら、反射と散乱を繰り返して液晶表示パネル50Aの外部へ出射される光の大半は、散乱状態にある液晶層1内における散乱角度が小さく、ほぼ前方散乱となるので、液晶表示パネル50Aの表示面の法線方向からずれた方向に出射される。ただし、出射角度が60°を超えると、界面反射率が高くなるので、蛍光輝度が低下する。この結果、蛍光輝度分布は図4のようになり、正面(図4中角度0°)付近での蛍光輝度が低く、液晶表示パネル50Aの表示面の法線方向から50°ずれた付近での蛍光輝度が最大となる。 However, most of the light that is repeatedly reflected and scattered and is emitted to the outside of the liquid crystal display panel 50A has a small scattering angle in the liquid crystal layer 1 in a scattering state and is substantially forward scattered. The light is emitted in a direction shifted from the normal direction of the surface. However, when the emission angle exceeds 60 °, the interface reflectance increases, and the fluorescence luminance decreases. As a result, the fluorescence luminance distribution is as shown in FIG. 4, and the fluorescence luminance is low near the front (angle 0 ° in FIG. 4), and is near 50 ° from the normal direction of the display surface of the liquid crystal display panel 50A. The fluorescence brightness is maximized.
 図5に示すように、電圧印加時において、液晶層1の液晶領域11内のネマチック液晶材料(不図示)は、第1基板2に対して垂直に配向する。ネマチック液晶材料の配向方向に依存して2色性蛍光色素17も第1基板2に対して垂直に配向する。その結果、液晶層1は透明状態となる。 As shown in FIG. 5, the nematic liquid crystal material (not shown) in the liquid crystal region 11 of the liquid crystal layer 1 is aligned perpendicular to the first substrate 2 when a voltage is applied. Depending on the alignment direction of the nematic liquid crystal material, the dichroic fluorescent dye 17 is also aligned perpendicular to the first substrate 2. As a result, the liquid crystal layer 1 becomes transparent.
 液晶層1が透明状態にあるとき、外部から入射した光は散乱されずに透過し、反射板(例えば、反射電極4)で正反射し、液晶表示パネル50Aの外部へ出射される。2色性蛍光色素17の励起波長域の光は、2色性蛍光色素17が第1基板2に対して垂直に配向しているので、2色性蛍光色素17にほとんど吸収されない。この結果、蛍光発光した光F1は少なく、そのほとんどが第1基板2に平行な方向に発光する。従って、蛍光発光した光F1の多くは液晶表示パネル50A内部を導光する。また、光源(外光)に対して正反射方向以外では黒表示となる。 When the liquid crystal layer 1 is in a transparent state, light incident from the outside is transmitted without being scattered, is regularly reflected by a reflecting plate (for example, the reflective electrode 4), and is emitted to the outside of the liquid crystal display panel 50A. The light in the excitation wavelength region of the dichroic fluorescent dye 17 is hardly absorbed by the dichroic fluorescent dye 17 because the dichroic fluorescent dye 17 is oriented perpendicular to the first substrate 2. As a result, the fluorescent light F1 is small and most of the light F1 is emitted in a direction parallel to the first substrate 2. Accordingly, most of the fluorescent light F1 is guided through the liquid crystal display panel 50A. Further, the display is black except for the regular reflection direction with respect to the light source (external light).
 次に、波長420nm付近に吸収波長があり、波長540nm付近で蛍光発光する2色性蛍光色素17を有する液晶表示パネル50Aが透明状態T1、または散乱状態D1であるとき、それぞれの状態をコニカミノルタのCM2002(拡散光源/8°受光)を用いて、SCE(正反射光除去)反射率測定を行った。その結果、図6に示すような結果となり、コントラスト比10:1の表示が得られることがわかった。 Next, when the liquid crystal display panel 50A having the absorption wavelength in the vicinity of the wavelength of 420 nm and having the dichroic fluorescent dye 17 that emits fluorescence in the vicinity of the wavelength of 540 nm is in the transparent state T1 or the scattering state D1, the respective states are changed to Konica Minolta. CM2002 (diffuse light source / 8 ° light reception) was used to measure SCE (regular reflection light removal) reflectivity. As a result, the result shown in FIG. 6 was obtained, and it was found that display with a contrast ratio of 10: 1 was obtained.
 次に、図7を参照して光線方向変換素子20を説明する。図7は、光線方向変換素子20を説明する図である。 Next, the light beam direction conversion element 20 will be described with reference to FIG. FIG. 7 is a diagram illustrating the light beam direction conversion element 20.
 本実施形態において、光線方向変換素子20は、例えばホログラム素子21である。ホログラム素子21は、体積位相型ホログラム素子であることが好ましい。液晶表示装置100Aにおいて、光線方向変換素子20は、液晶表示パネル50Aの観察者側に配置されている。光線方向変換素子20は、例えば、液晶表示パネル50A(液晶表示装置100A)の表示面の法線方向から40°~60°方向に向かって照射された蛍光を液晶表示パネル50Aの表示面の法線方向に屈折させる。光線方向変換素子20により、例えば、正面視における液晶表示装置100Aの輝度が高くなる。また、空気層を間に挟むように光線方向変換素子20と液晶表示パネル50Aとを配置することが好ましい。このように光線方向変換素子20と液晶表示パネル50Aとを配置すると正面視方向の輝度はより高まり、液晶表示装置100Aの表示面の法線方向からずれた方向の輝度はより低くなる。 In this embodiment, the light beam direction conversion element 20 is a hologram element 21, for example. The hologram element 21 is preferably a volume phase hologram element. In the liquid crystal display device 100A, the light beam direction conversion element 20 is disposed on the viewer side of the liquid crystal display panel 50A. The light beam direction conversion element 20, for example, applies fluorescence emitted toward the direction of 40 ° to 60 ° from the normal direction of the display surface of the liquid crystal display panel 50 A (liquid crystal display device 100 A) to the display surface of the liquid crystal display panel 50 A. Refract in the line direction. For example, the light direction conversion element 20 increases the luminance of the liquid crystal display device 100A in a front view. Moreover, it is preferable to arrange the light beam direction conversion element 20 and the liquid crystal display panel 50A so as to sandwich the air layer therebetween. When the light beam direction conversion element 20 and the liquid crystal display panel 50A are thus arranged, the luminance in the front view direction is further increased, and the luminance in the direction deviated from the normal direction of the display surface of the liquid crystal display device 100A is further decreased.
 ホログラム素子21を製造するにあたり、物体光O1および参照光R1(図7参照)は、2色性蛍光色素17の最大発光波長(例えば、波長540nm)を用いることが好ましい。また、物体光O1をホログラム素子21の主面の法線方向から照射することが好ましい。参照光R1は、ホログラム素子21に物体光O1が入射される側とは反対側から、入射角度θを有してホログラム素子21に照射されることが好ましい。ここで、入射角度θは、例えば、40°以上70°以下が好ましく、50°がより好ましい。また、参照光R1は、一方向から照射されることに限られず、全方向から照射されることがより好ましい。従って、ホログラム素子21の回折角度は40°以上70°以下が好ましく、50°がより好ましい。その理由を説明する。観察者が液晶表示装置100Aの法線方向(正面方向)から観察するとき、観察者は、正面方向から0°~40°方向に出射された光を見ることになる。このため、正面方向から0°~40°方向に出射された光を正面方向側に屈折させても、観察者が明るいと感じる効果は小さい。一方、正面方向から70°以上の角度に出射される光は、液晶表示パネル50A/空気界面、および、空気/ホログラム素子21界面で反射されるのでホログラム素子21へ入射する光が少なく、正面方向へ屈折される光が少ない。このため、正面方向から70°以上方向に出射された光を正面方向側に屈折させても、観察者が明るいと感じる効果は小さい。 In manufacturing the hologram element 21, it is preferable to use the maximum emission wavelength (for example, wavelength 540 nm) of the dichroic fluorescent dye 17 for the object light O1 and the reference light R1 (see FIG. 7). Further, it is preferable to irradiate the object light O1 from the normal direction of the main surface of the hologram element 21. The reference light R1 is preferably applied to the hologram element 21 with an incident angle θ from the side opposite to the side on which the object light O1 is incident on the hologram element 21. Here, the incident angle θ is preferably, for example, 40 ° or more and 70 ° or less, and more preferably 50 °. Further, the reference light R1 is not limited to being irradiated from one direction, and is more preferably irradiated from all directions. Therefore, the diffraction angle of the hologram element 21 is preferably 40 ° or more and 70 ° or less, and more preferably 50 °. The reason will be explained. When the observer observes from the normal direction (front direction) of the liquid crystal display device 100A, the observer sees light emitted in the 0 ° to 40 ° direction from the front direction. For this reason, even if the light emitted in the 0 ° to 40 ° direction from the front direction is refracted in the front direction, the effect that the observer feels bright is small. On the other hand, the light emitted at an angle of 70 ° or more from the front direction is reflected at the liquid crystal display panel 50A / air interface and the air / hologram element 21 interface, so that there is little light incident on the hologram element 21 and the front direction. Less light is refracted into For this reason, even if the light emitted in the direction of 70 ° or more from the front direction is refracted to the front direction side, the effect that the observer feels bright is small.
 次に、本発明による他の実施形態における液晶表示装置100Bを図8を参照しながら説明する。なお、液晶表示装置100Aと共通する構成要素には同じ参照符号を付す。図8(a)は、液晶表示装置100Bの模式的な断面図である。 Next, a liquid crystal display device 100B according to another embodiment of the present invention will be described with reference to FIG. Note that the same reference numerals are assigned to components common to the liquid crystal display device 100A. FIG. 8A is a schematic cross-sectional view of the liquid crystal display device 100B.
 図8(a)に示すように、液晶表示装置100Bは、液晶表示パネル50Bと光線方向変換素子20とを有する。液晶表示パネル50Bは、第1基板(例えばガラス基板)2と、第1基板2に対向するように配置された第2基板(例えばガラス基板)3と、これらの第1基板2と第2基板3との間に設けられた液晶層1とを有する。さらに、第1基板2および第2基板3には、それぞれ液晶層1と接するように配向膜12および13が形成されている。配向膜12および13には、例えばラビング処理が施されており、それぞれに接する液晶層1のネマチック液晶分子の配向方位を規定している。例えば、配向膜12による配向方位と配向膜13による配向方位とは直交している。また、ラビング処理の他、光配向処理などによっても配向方位を規定することができる。光線方向変換素子20は、液晶表示パネル50Bの観察者側に配置されている。 As shown in FIG. 8A, the liquid crystal display device 100B includes a liquid crystal display panel 50B and a light beam direction conversion element 20. The liquid crystal display panel 50B includes a first substrate (for example, a glass substrate) 2, a second substrate (for example, a glass substrate) 3 disposed so as to face the first substrate 2, and the first substrate 2 and the second substrate. The liquid crystal layer 1 is provided between the liquid crystal layer 1 and the liquid crystal layer 1. Further, alignment films 12 and 13 are formed on the first substrate 2 and the second substrate 3 so as to be in contact with the liquid crystal layer 1, respectively. The alignment films 12 and 13 are subjected to, for example, a rubbing process, and define the alignment orientation of nematic liquid crystal molecules of the liquid crystal layer 1 in contact therewith. For example, the orientation orientation by the orientation film 12 and the orientation orientation by the orientation film 13 are orthogonal. In addition to the rubbing treatment, the orientation orientation can be defined by a photo-alignment treatment or the like. The light direction conversion element 20 is arranged on the viewer side of the liquid crystal display panel 50B.
 液晶層1は、壁10と配向膜12によって分割された小部屋14aと、壁10と配向膜13とによって分割された小部屋14bとを有する。連続する壁10は、例えば高分子から形成されている。小部屋14aの中には液晶領域11aが形成され、小部屋14bの中には液晶領域11bが形成されている。それぞれの液晶領域11aおよび11bは、ネマチック液晶材料(不図示)と2色性蛍光色素17とを有する。液晶領域11a内のネマチック液晶材料および2色性蛍光色素17は、配向膜12と接触している。液晶領域11b内のネマチック液晶材料および2色性蛍光色素17は、配向膜13と接触している。液晶領域11aのネマチック液晶材料および2色性蛍光色素17は、配向膜12のラビング方向に沿って配向しており、液晶領域11bのネマチック液晶材料および2色性蛍光色素17は、配向膜13のラビング方向に沿って配向している。2色性蛍光色素17は、ネマチック液晶材料の配向方位と平行になるように配向している。 The liquid crystal layer 1 has a small room 14 a divided by the wall 10 and the alignment film 12 and a small room 14 b divided by the wall 10 and the alignment film 13. The continuous wall 10 is made of, for example, a polymer. A liquid crystal region 11a is formed in the small chamber 14a, and a liquid crystal region 11b is formed in the small chamber 14b. Each of the liquid crystal regions 11 a and 11 b has a nematic liquid crystal material (not shown) and a dichroic fluorescent dye 17. The nematic liquid crystal material and the dichroic fluorescent dye 17 in the liquid crystal region 11 a are in contact with the alignment film 12. The nematic liquid crystal material and the dichroic fluorescent dye 17 in the liquid crystal region 11 b are in contact with the alignment film 13. The nematic liquid crystal material and the dichroic fluorescent dye 17 in the liquid crystal region 11 a are aligned along the rubbing direction of the alignment film 12, and the nematic liquid crystal material and the dichroic fluorescent dye 17 in the liquid crystal region 11 b are aligned with the alignment film 13. Oriented along the rubbing direction. The dichroic fluorescent dye 17 is aligned so as to be parallel to the alignment direction of the nematic liquid crystal material.
 小部屋14a、14bが、それぞれ、配向膜12、13と壁10とで分割されて形成されるには、配向膜12および13の表面自由エネルギーを最適化することが好ましい。これは、本願発明者が種々の検討を重ねた結果、得られた知見である。表面自由エネルギーの好適な範囲は、液晶層1を形成する材料によって変わるが、例えば、44mJ/m2以上50mJ/m2以下である。 In order for the small chambers 14a and 14b to be formed by being divided by the alignment films 12 and 13 and the wall 10, respectively, it is preferable to optimize the surface free energy of the alignment films 12 and 13. This is a knowledge obtained as a result of various studies by the present inventors. A preferred range of the surface free energy will vary depending on the material forming the liquid crystal layer 1, for example, it is 44 mJ / m 2 or more 50 mJ / m 2 or less.
 このように、ネマチック液晶材料と2色性蛍光色素17とがそれぞれ、配向膜12、13と接するように小部屋14a、14bを形成すると、ネマチック液晶材料と2色性蛍光色素17の配向を制御することができる。例えば、液晶領域11aの2色性蛍光色素17の配向方位と液晶領域11bの2色性蛍光色素17の配向方位とが直交するように2色性蛍光色素17の配向を制御すると、2色性蛍光色素17による光(例えば、波長430nmの光)の吸収を効率よく行えるので、低電圧駆動が可能となり、かつ、発色性をよくすることができる。 As described above, when the small chambers 14a and 14b are formed so that the nematic liquid crystal material and the dichroic fluorescent dye 17 are in contact with the alignment films 12 and 13, respectively, the alignment of the nematic liquid crystal material and the dichroic fluorescent dye 17 is controlled. can do. For example, when the orientation of the dichroic fluorescent dye 17 is controlled so that the orientation orientation of the dichroic fluorescent dye 17 in the liquid crystal region 11a and the orientation orientation of the dichroic fluorescent dye 17 in the liquid crystal region 11b are orthogonal to each other, Since light (for example, light having a wavelength of 430 nm) can be efficiently absorbed by the fluorescent dye 17, low-voltage driving is possible and color developability can be improved.
 液晶表示装置100Bは、第1基板2の液晶層1側に形成され、画素ごとに形成されたTFT5を有する。さらに、液晶表示装置100Bは、第1基板2の液晶層1側に形成され、画素ごとに形成された画素電極4と、液晶層1と接する配向膜12とを有する。配向膜12は水平配向膜であり、ラビング処理が施されている。さらに、液晶表示装置100Bは、第2基板3の液晶層1側に形成された透明電極8と、液晶層1に接するように形成された配向膜13とを有する。配向膜13も、配向膜12と同様に水平配向膜であり、ラビング処理が施されている。上述したように、配向膜12のラビング方向と配向膜13のラビング方向とが直交するように、配向膜12、13は形成されている。 The liquid crystal display device 100B includes a TFT 5 formed on the liquid crystal layer 1 side of the first substrate 2 and formed for each pixel. Further, the liquid crystal display device 100 </ b> B includes a pixel electrode 4 formed for each pixel and an alignment film 12 in contact with the liquid crystal layer 1, which is formed on the liquid crystal layer 1 side of the first substrate 2. The alignment film 12 is a horizontal alignment film and has been rubbed. Furthermore, the liquid crystal display device 100 </ b> B includes a transparent electrode 8 formed on the liquid crystal layer 1 side of the second substrate 3 and an alignment film 13 formed so as to be in contact with the liquid crystal layer 1. Similar to the alignment film 12, the alignment film 13 is a horizontal alignment film, and is subjected to a rubbing process. As described above, the alignment films 12 and 13 are formed so that the rubbing direction of the alignment film 12 and the rubbing direction of the alignment film 13 are orthogonal to each other.
 図8(b)および図8(c)は、電圧無印加時における2色性蛍光色素17の配向方向について説明する図である。図8(b)は、図8(a)のIa-Ia’線に沿った図である。図8(c)は、図8(a)のIb-Ib’線に沿った図である。 FIG. 8B and FIG. 8C are diagrams for explaining the orientation direction of the dichroic fluorescent dye 17 when no voltage is applied. FIG. 8B is a view taken along line Ia-Ia ′ of FIG. FIG. 8C is a view taken along the line Ib-Ib ′ of FIG.
 図8(b)に示すように、電圧無印加時において、配向膜12近傍の液晶領域11aに存在する2色性蛍光色素17の長軸方向(ディレクタ)30は、液晶表示装置100Bを表示面の法線方向から見たとき、液晶層1の列方向と平行である。図8(c)に示すように、電圧無印加時において、配向膜13近傍の液晶領域11bに存在する2色性蛍光色素17の長軸方向(ディレクタ)30は、液晶表示装置100Bを表示面の法線方向から見たとき、液晶層1の行方向と平行である。つまり、液晶領域11aのディレクタ30と液晶領域11bのディレクタ30とは直交している。 As shown in FIG. 8B, when no voltage is applied, the major axis direction (director) 30 of the dichroic fluorescent dye 17 existing in the liquid crystal region 11a in the vicinity of the alignment film 12 indicates the liquid crystal display device 100B on the display surface. When viewed from the normal direction, the liquid crystal layer 1 is parallel to the column direction. As shown in FIG. 8C, when no voltage is applied, the major axis direction (director) 30 of the dichroic fluorescent dye 17 existing in the liquid crystal region 11b in the vicinity of the alignment film 13 causes the liquid crystal display device 100B to be displayed on the display surface. When viewed from the normal direction, the liquid crystal layer 1 is parallel to the row direction. That is, the director 30 in the liquid crystal region 11a and the director 30 in the liquid crystal region 11b are orthogonal to each other.
 液晶表示装置100Bの液晶層1に電圧を印加すると、液晶表示装置100Aで説明したように、液晶層1は透明状態となる(図5参照)。 When a voltage is applied to the liquid crystal layer 1 of the liquid crystal display device 100B, as described in the liquid crystal display device 100A, the liquid crystal layer 1 becomes transparent (see FIG. 5).
 液晶表示装置100Bのように、電圧無印加時において、2色性蛍光色素17を第1基板2の平面と平行に配向させることにより、2色性蛍光色素の光吸収効率を大きくすることができる。 Like the liquid crystal display device 100B, the light absorption efficiency of the dichroic fluorescent dye can be increased by orienting the dichroic fluorescent dye 17 in parallel with the plane of the first substrate 2 when no voltage is applied. .
 次に、図9を参照しながら本発明によるさらに他の実施形態による液晶表示装置100Cを説明する。図9(a)は、電圧無印加時における、液晶表示装置100Cの模式的な断面図であり、図9(b)は、電圧印加時における、液晶表示装置100Cの模式的な断面図である。 Next, a liquid crystal display device 100C according to still another embodiment of the present invention will be described with reference to FIG. FIG. 9A is a schematic cross-sectional view of the liquid crystal display device 100C when no voltage is applied, and FIG. 9B is a schematic cross-sectional view of the liquid crystal display device 100C when a voltage is applied. .
 図9に示すように、液晶表示装置100Cは、液晶表示パネル50Cと光線方向変換素子20とを有する。液晶表示パネル50Cは、光を透過する透過状態と光を散乱する散乱状態との間で状態が切り替えられ得る液晶層1と、液晶層1を間に保持する第1基板(例えば、ガラス基板)2および第2基板(例えば、ガラス基板)3と、液晶層1に電圧を印加する一対の電極54および58とを備える。一対の電極54および58は、いわゆる一対の櫛歯電極である。また、第1基板2および第2基板3上には、それぞれ液晶層1と接するように垂直配向膜(不図示)が形成されている。液晶層1は、画素内に、連続した壁10と、液晶領域11とを有する。液晶領域11は、ネマチック液晶材料(不図示)と2色性蛍光色素17とを有する。液晶領域11は、第1基板2に形成された垂直配向膜(不図示)と壁10とによって互いに分離された液晶領域11aと、第2基板3に形成された垂直配向膜(不図示)と壁10とによって互いに分離された液晶領域11bとを含む。つまり、液晶領域11aおよび11bは、それぞれ壁10と垂直配向膜とによって包囲されている。2色性蛍光色素17から発光された蛍光の進行方向を所定の方向(例えば、液晶表示装置100Cの表示面の法線方向)に向ける光線方向変換素子20は、液晶表示パネル50Cの観察者側に配置されている。 As shown in FIG. 9, the liquid crystal display device 100 </ b> C includes a liquid crystal display panel 50 </ b> C and a light beam direction conversion element 20. The liquid crystal display panel 50C includes a liquid crystal layer 1 that can be switched between a transmission state that transmits light and a scattering state that scatters light, and a first substrate (for example, a glass substrate) that holds the liquid crystal layer 1 therebetween. 2 and a second substrate (for example, a glass substrate) 3 and a pair of electrodes 54 and 58 for applying a voltage to the liquid crystal layer 1. The pair of electrodes 54 and 58 is a so-called pair of comb electrodes. A vertical alignment film (not shown) is formed on the first substrate 2 and the second substrate 3 so as to be in contact with the liquid crystal layer 1. The liquid crystal layer 1 has a continuous wall 10 and a liquid crystal region 11 in a pixel. The liquid crystal region 11 includes a nematic liquid crystal material (not shown) and a dichroic fluorescent dye 17. The liquid crystal region 11 includes a liquid crystal region 11 a separated from each other by a vertical alignment film (not shown) formed on the first substrate 2 and the wall 10, and a vertical alignment film (not shown) formed on the second substrate 3. And a liquid crystal region 11 b separated from each other by the wall 10. That is, the liquid crystal regions 11a and 11b are respectively surrounded by the wall 10 and the vertical alignment film. The light beam direction conversion element 20 that directs the traveling direction of the fluorescence emitted from the dichroic fluorescent dye 17 in a predetermined direction (for example, the normal direction of the display surface of the liquid crystal display device 100C) is the viewer side of the liquid crystal display panel 50C. Is arranged.
 図9(a)に示すように、電圧無印加時のとき、液晶領域11のネマチック液晶材料(不図示)は、第1基板2に対して垂直に配向している。2色性蛍光色素17は、ネマチック液晶材料の配向に依存して、第1基板2に対して垂直に配向している。従って、電圧無印加時のとき、液晶層1は透明状態である。 As shown in FIG. 9A, when no voltage is applied, the nematic liquid crystal material (not shown) in the liquid crystal region 11 is aligned perpendicular to the first substrate 2. The dichroic fluorescent dye 17 is oriented perpendicular to the first substrate 2 depending on the orientation of the nematic liquid crystal material. Therefore, when no voltage is applied, the liquid crystal layer 1 is in a transparent state.
 図9(b)に示すように、液晶層1に電圧を印加すると、液晶領域11のネマチック液晶材料(不図示)は、電気力線に対して、平行に配向する。ネマチック液晶材料に依存して、2色性蛍光色素17はネマチック液晶材料と平行に配向する。その結果、ネマチック液晶材料の複屈折率Δnが周期的に変化するので、液晶層1は散乱状態となる。また、2色性蛍光色素17も第1基板2の平面に平行に配向するので、蛍光発光量が大きくなり、輝度が大きくなる。 As shown in FIG. 9B, when a voltage is applied to the liquid crystal layer 1, the nematic liquid crystal material (not shown) in the liquid crystal region 11 is aligned parallel to the lines of electric force. Depending on the nematic liquid crystal material, the dichroic fluorescent dye 17 is aligned parallel to the nematic liquid crystal material. As a result, the birefringence Δn of the nematic liquid crystal material changes periodically, so that the liquid crystal layer 1 is in a scattering state. Further, since the dichroic fluorescent dye 17 is also oriented parallel to the plane of the first substrate 2, the amount of fluorescent light emission is increased and the luminance is increased.
 電極54および電極58は、例えばITOなどの透明電極から形成されることが好ましい。液晶表示装置100Cのように、一方の基板(例えば、第1基板2)に一対の電極54および58が形成されていると、2色性蛍光色素17から発光し、液晶表示パネル50C内を導光する光を効率的に液晶層1へ導くことができる。つまり、電極界面での光の吸収、および反射の影響を小さくすることができる。従って、液晶表示装置100Cでは、電極界面での光の吸収、および反射の影響を小さくすることができ、輝度の高い表示が得られる。 The electrode 54 and the electrode 58 are preferably formed of a transparent electrode such as ITO. When a pair of electrodes 54 and 58 are formed on one substrate (for example, the first substrate 2) as in the liquid crystal display device 100C, light is emitted from the dichroic fluorescent dye 17 and guided inside the liquid crystal display panel 50C. The light to be emitted can be efficiently guided to the liquid crystal layer 1. That is, the influence of light absorption and reflection at the electrode interface can be reduced. Therefore, in the liquid crystal display device 100C, the influence of light absorption and reflection at the electrode interface can be reduced, and a display with high luminance can be obtained.
 図10に示すように、光線方向変換素子20と液晶表示パネル50(50A~50C)との間に、例えば、反射防止層80を配置することが好ましい。反射防止層80は、例えば、国際公開第2006/059686号に開示されているモスアイ構造を有する反射防止膜である。図10(a)に示すように、反射防止層80は、液晶表示パネル50の光線方向変換素子20側に、配置される。液晶表示装置100A~100Cの表示面の法線方向から50°以上の角度方向に出射する光の透過率は、界面反射により急激に小さくなる(図4参照)。しかしながら、反射防止層80を上述したように配置すると(図10(a)参照)、光の界面反射が抑制され、蛍光発光した光が効率よく液晶表示装置100A~100Cから出射され、輝度が高くなる。反射防止層80が配置されている液晶表示パネル160と、反射防止層80が配置されていない液晶表示パネル150との輝度分布の測定結果を図11に示す。図11のグラフの縦軸は、蛍光輝度であり、横軸は各液晶表示パネルの表示面の法線方向を0°としたときの視角である。図11からわかるように、液晶表示パネル150と比べて液晶表示パネル160の方が、あらゆる視角において、蛍光輝度が高いことがわかる。 As shown in FIG. 10, for example, an antireflection layer 80 is preferably disposed between the light beam redirecting element 20 and the liquid crystal display panel 50 (50A to 50C). The antireflection layer 80 is, for example, an antireflection film having a moth-eye structure disclosed in International Publication No. 2006/059686. As shown in FIG. 10A, the antireflection layer 80 is disposed on the light beam direction conversion element 20 side of the liquid crystal display panel 50. The transmittance of light emitted in an angle direction of 50 ° or more from the normal direction of the display surfaces of the liquid crystal display devices 100A to 100C is drastically reduced due to interface reflection (see FIG. 4). However, when the antireflection layer 80 is arranged as described above (see FIG. 10A), the interface reflection of light is suppressed, and the fluorescent light is efficiently emitted from the liquid crystal display devices 100A to 100C, resulting in high luminance. Become. FIG. 11 shows the measurement results of the luminance distribution of the liquid crystal display panel 160 in which the antireflection layer 80 is disposed and the liquid crystal display panel 150 in which the antireflection layer 80 is not disposed. The vertical axis of the graph of FIG. 11 is the fluorescence luminance, and the horizontal axis is the viewing angle when the normal direction of the display surface of each liquid crystal display panel is 0 °. As can be seen from FIG. 11, the liquid crystal display panel 160 has higher fluorescence luminance at all viewing angles than the liquid crystal display panel 150.
 また、図10(b)に示すように、光線方向変換素子20の液晶表示パネル50側に反射防止層80を配置してもよい。このように反射防止層80を配置すると、光線方向変換素子20に入射する蛍光発光した光の光量を大きくすることができ、液晶表示装置100A~100Cの輝度を大きくすることができる。 Further, as shown in FIG. 10B, an antireflection layer 80 may be disposed on the liquid crystal display panel 50 side of the light beam direction conversion element 20. When the antireflection layer 80 is arranged in this way, the amount of fluorescent light incident on the light beam direction conversion element 20 can be increased, and the luminance of the liquid crystal display devices 100A to 100C can be increased.
 これまで、液晶層1の液晶領域11に2色性蛍光色素17とネマチック液晶材料とが含まれている液晶表示装置100A~100Cを説明してきた。しかしながら、本発明による液晶表示装置は、これに限られず、例えば2色性蛍光色素17を有する2色性蛍光色素層と、ネマチック液晶材料を有する液晶層とが分離している液晶表示パネルを用いることもできる。以下、このような構成を有する液晶表示装置を図12~図21を参照しながら説明する。なお、光線方向変換素子20については、説明を省略する。 So far, the liquid crystal display devices 100A to 100C in which the liquid crystal region 11 of the liquid crystal layer 1 includes the dichroic fluorescent dye 17 and the nematic liquid crystal material have been described. However, the liquid crystal display device according to the present invention is not limited to this. For example, a liquid crystal display panel in which a dichroic fluorescent dye layer having the dichroic fluorescent dye 17 and a liquid crystal layer having a nematic liquid crystal material are separated is used. You can also. Hereinafter, a liquid crystal display device having such a configuration will be described with reference to FIGS. The description of the light beam direction conversion element 20 is omitted.
 本発明によるさらに他の実施形態における液晶表示装置100Dを図12~図16を参照しながら説明する。図12は、液晶表示装置100Dの模式的な断面図である。図13は、電圧印加時における液晶表示装置100Dを説明する図であり、図14は、電圧無印加時における液晶表示装置100Dを説明する図である。図15は、液晶表示装置100Dの改変例を説明する図である。図16は、液晶表示装置100Dのさらなる改変例を説明する図である。 A liquid crystal display device 100D according to still another embodiment of the present invention will be described with reference to FIGS. FIG. 12 is a schematic cross-sectional view of the liquid crystal display device 100D. FIG. 13 is a diagram illustrating the liquid crystal display device 100D when a voltage is applied, and FIG. 14 is a diagram illustrating the liquid crystal display device 100D when no voltage is applied. FIG. 15 is a diagram illustrating a modification example of the liquid crystal display device 100D. FIG. 16 is a diagram for explaining a further modification of the liquid crystal display device 100D.
 図12に示すように、液晶表示装置100Dは、液晶表示パネル50Dと、液晶表示パネル50Dの観察者側に配置された光線方向変換素子20とを有する。液晶表示パネル50Dと光線方向変換素子20との間に設けられた空気層35を有する。液晶表示パネル50Dは、発光方向によって発光の強さが異なる、複数の2色性蛍光色素分子17aを有する蛍光発光層31と、光を透過する透過状態と光を散乱する散乱状態との間で状態が切り替えられ得る液晶層33とを有する。液晶層33は、画素内に、高分子から形成された連続した壁10と、ネマチック液晶材料を有する液晶領域11とを有する。液晶領域11には複数の2色性蛍光色素分子17aを有しない。壁10とネマチック液晶材料の詳細については、上述したとおりである。複数の2色性蛍光色素分子17aのそれぞれは、蛍光発光層31内に、遷移双極子モーメントの向きが各分子で同じ方向になるように配向されている。 As shown in FIG. 12, the liquid crystal display device 100D includes a liquid crystal display panel 50D and a light beam direction conversion element 20 disposed on the viewer side of the liquid crystal display panel 50D. An air layer 35 is provided between the liquid crystal display panel 50 </ b> D and the light beam direction conversion element 20. The liquid crystal display panel 50D includes a fluorescent light emitting layer 31 having a plurality of dichroic fluorescent dye molecules 17a having different light emission strengths depending on the light emitting direction, and a transmission state that transmits light and a scattering state that scatters light. And a liquid crystal layer 33 whose state can be switched. The liquid crystal layer 33 includes a continuous wall 10 made of a polymer and a liquid crystal region 11 having a nematic liquid crystal material in a pixel. The liquid crystal region 11 does not have a plurality of dichroic fluorescent dye molecules 17a. The details of the wall 10 and the nematic liquid crystal material are as described above. Each of the plurality of dichroic fluorescent dye molecules 17a is oriented in the fluorescent light emitting layer 31 so that the direction of the transition dipole moment is the same in each molecule.
 液晶表示パネル50Dは、液晶層33と蛍光発光層31とが分離している。従って、蛍光色素を液晶層33内に溶解させる必要がないので、多くの蛍光色素を液晶層33内に添加可能なように液晶層33を厚くする必要がなくなる。また、十分な蛍光発光を得るためには、蛍光発光層31を厚くすればよいので、液晶層33に印加する電圧を変えることなく、発光量を変えることが可能になる。 In the liquid crystal display panel 50D, the liquid crystal layer 33 and the fluorescent light emitting layer 31 are separated. Accordingly, since it is not necessary to dissolve the fluorescent dye in the liquid crystal layer 33, it is not necessary to increase the thickness of the liquid crystal layer 33 so that a large amount of the fluorescent dye can be added to the liquid crystal layer 33. Further, in order to obtain sufficient fluorescent light emission, the fluorescent light emitting layer 31 may be thickened, so that the light emission amount can be changed without changing the voltage applied to the liquid crystal layer 33.
 さらに、蛍光発光層31内の2色性蛍光色素分子17aは、発光する方向によって発光の強さが異なるので、2色性蛍光色素分子17aから出射される強い光の表示装置内での屈折状態を変えることによって、蛍光発光の強度を変化させることが可能となる。すなわち、液晶層33内のネマチック液晶材料を制御することによって、2色性蛍光色素分子17aから出射されるより明るい光を、ネマチック液晶材料で散乱させて取り出したり液晶表示装置100D内で全反射させて液晶表示装置100D内に閉じ込めたりすることが可能となる。従って、液晶層33内のネマチック液晶材料の制御によって、液晶表示装置100Dの蛍光発光の状態を変えることが可能となる。 Furthermore, since the intensity of light emission of the dichroic fluorescent dye molecule 17a in the fluorescent light emitting layer 31 varies depending on the direction of light emission, the refraction state of the strong light emitted from the dichroic fluorescent dye molecule 17a in the display device. It is possible to change the intensity of the fluorescence emission by changing. That is, by controlling the nematic liquid crystal material in the liquid crystal layer 33, brighter light emitted from the dichroic fluorescent dye molecules 17a is scattered by the nematic liquid crystal material and taken out or totally reflected in the liquid crystal display device 100D. Thus, it can be confined in the liquid crystal display device 100D. Therefore, the state of the fluorescence emission of the liquid crystal display device 100D can be changed by controlling the nematic liquid crystal material in the liquid crystal layer 33.
 具体的には、液晶表示パネル50Dは、例えば、画素電極4およびTFT5が形成された第1基板2と、第1基板2に対向する第2基板3と、第1基板2および第2基板3の間に配置された液晶層33とを有する。 Specifically, the liquid crystal display panel 50D includes, for example, a first substrate 2 on which the pixel electrode 4 and the TFT 5 are formed, a second substrate 3 facing the first substrate 2, and the first substrate 2 and the second substrate 3. And a liquid crystal layer 33 disposed between the two.
 第2基板3には、透明電極(「対向電極」という場合もある)8と、複数の2色性蛍光色素分子17aを有する蛍光発光層31とが形成されている。第2基板3の液晶層33側に蛍光発光層31が形成され、蛍光発光層31の液晶層33側に対向電極8が形成されている。 On the second substrate 3, a transparent electrode (sometimes referred to as “counter electrode”) 8 and a fluorescent light emitting layer 31 having a plurality of dichroic fluorescent dye molecules 17a are formed. The fluorescent light emitting layer 31 is formed on the liquid crystal layer 33 side of the second substrate 3, and the counter electrode 8 is formed on the liquid crystal layer 33 side of the fluorescent light emitting layer 31.
 液晶層33は、PDLC層である。液晶層33は、ネマチック液晶材料を有し、2色性蛍光色素17を有しない。電圧無印加時において、液晶層33は散乱状態となり、液晶層33に電圧を印加すると、液晶層33は透明状態となる。このようなPDLC層は、よく知られているので詳細な説明を省略する。 The liquid crystal layer 33 is a PDLC layer. The liquid crystal layer 33 includes a nematic liquid crystal material and does not include the dichroic fluorescent dye 17. When no voltage is applied, the liquid crystal layer 33 is in a scattering state, and when a voltage is applied to the liquid crystal layer 33, the liquid crystal layer 33 is in a transparent state. Such a PDLC layer is well known and will not be described in detail.
 蛍光発光層31は、2色性蛍光色素分子17aと、2色性蛍光色素分子17aを保持する液晶性ポリマー23bとを有する。2色性蛍光色素分子17aは、紫外線の波長領域(例えば10nm~400nm)および可視光線の波長領域(例えば380nm~750nm)に吸収帯域を有し、かつ、2色性比が5以上の材料を有する。2色性蛍光色素分子17aは、例えば、ベンゾチアジアゾール系、または、クマリン系、シアニン系、ピリジン系、ローダミン系、スチリル系、アントラキノン系の蛍光色素分子である。 The fluorescent light emitting layer 31 has a dichroic fluorescent dye molecule 17a and a liquid crystalline polymer 23b that holds the dichroic fluorescent dye molecule 17a. The dichroic fluorescent dye molecule 17a is made of a material having an absorption band in an ultraviolet wavelength region (for example, 10 nm to 400 nm) and a visible light wavelength region (for example, 380 nm to 750 nm) and having a dichroic ratio of 5 or more. Have. The dichroic fluorescent dye molecule 17a is, for example, a benzothiadiazole-based or coumarin-based, cyanine-based, pyridine-based, rhodamine-based, styryl-based, or anthraquinone-based fluorescent dye molecule.
 上述したように2色性蛍光色素分子17aは、紫外線や可視光線などの光を吸収して蛍光発光する特性を有する。2色性蛍光色素分子17aは、分子長軸と交差する方向に振幅する光(分子長軸に対して平行に進行する光)の吸収係数に比べて、分子長軸と平行な方向に振幅する光(分子長軸に対して交差する方向に進行する光)の吸収係数の方が大きいという吸収特性を有する(図2参照)。 As described above, the dichroic fluorescent dye molecule 17a has the property of absorbing fluorescent light such as ultraviolet rays and visible light. The dichroic fluorescent dye molecule 17a oscillates in a direction parallel to the molecular long axis, compared to the absorption coefficient of light that oscillates in the direction intersecting the molecular long axis (light that travels parallel to the molecular long axis). It has an absorption characteristic that the absorption coefficient of light (light traveling in a direction crossing the molecular long axis) is larger (see FIG. 2).
 また、2色性蛍光色素分子17aは、分子長軸と交差する方向の蛍光発光係数に比べて、分子長軸と平行な方向の蛍光発光係数の方が大きいという発光特性を有する。2色性蛍光色素分子17aは、分子長軸と発光の遷移モーメントの向きとが一致している。従って、2色性蛍光色素分子17aは、分子軸と交差する方向により強い光を出射する。なお、以下の説明の図において、2色性蛍光色素分子17aは、縦長の楕円状に記載されているが、その長手方向が分子長軸に対応する。 Further, the dichroic fluorescent dye molecule 17a has a light emission characteristic that the fluorescence emission coefficient in the direction parallel to the molecular long axis is larger than the fluorescence emission coefficient in the direction intersecting with the molecular long axis. In the dichroic fluorescent dye molecule 17a, the molecular long axis coincides with the direction of the transition moment of light emission. Accordingly, the dichroic fluorescent dye molecule 17a emits stronger light in the direction crossing the molecular axis. In the following description, the dichroic fluorescent dye molecule 17a is described as a vertically long ellipse, but its longitudinal direction corresponds to the molecular long axis.
 図12に示すように、液晶性ポリマー23bは、2色性蛍光色素分子17aを分子長軸が各層の積層方向(蛍光発光層31の厚さ方向)と一致するように配向させることが可能な樹脂材料を有する。具体的には、液晶性ポリマー23bは、光反応性基を分子端末に有する化合物や、液晶性骨格を有するジアクリルレート化合物を有する。なお、液晶性ポリマー23b内に、紫外線を吸収する紫外線吸収材料を混ぜてもよい。これにより、蛍光発光層31を透過する紫外線をより確実に低減することができ、紫外線から液晶層33を保護することができる。 As shown in FIG. 12, the liquid crystalline polymer 23b can orient the dichroic fluorescent dye molecules 17a so that the molecular major axis coincides with the stacking direction of each layer (the thickness direction of the fluorescent light emitting layer 31). It has a resin material. Specifically, the liquid crystalline polymer 23b has a compound having a photoreactive group at a molecular terminal or a diacrylate compound having a liquid crystalline skeleton. An ultraviolet absorbing material that absorbs ultraviolet rays may be mixed in the liquid crystalline polymer 23b. Thereby, the ultraviolet-ray which permeate | transmits the fluorescence light emitting layer 31 can be reduced more reliably, and the liquid crystal layer 33 can be protected from an ultraviolet-ray.
 上述のように、2色性蛍光色素分子17aを液晶性ポリマー23bによって蛍光発光層31内に保持することで、2色性蛍光色素分子17aの分子長軸と交差する方向、すなわち液晶表示パネル50Dの面内方向に、2色性蛍光色素分子17aからより強い光が出射される。一方、2色性蛍光色素分子17aの分子長軸と平行な方向、すなわち蛍光発光層31の厚さ方向には、2色性蛍光色素分子17aから弱い光しか出射されない。従って、図13および図14に細実線で示すように、2色性蛍光色素分子17aから液晶表示パネル50Dの外へ直接、出射される光はほとんどない。 As described above, the dichroic fluorescent dye molecules 17a are held in the fluorescent light-emitting layer 31 by the liquid crystal polymer 23b, thereby crossing the molecular long axis of the dichroic fluorescent dye molecules 17a, that is, the liquid crystal display panel 50D. In the in-plane direction, stronger light is emitted from the dichroic fluorescent dye molecule 17a. On the other hand, only weak light is emitted from the dichroic fluorescent dye molecule 17a in the direction parallel to the molecular long axis of the dichroic fluorescent dye molecule 17a, that is, in the thickness direction of the fluorescent light emitting layer 31. Therefore, as indicated by a thin solid line in FIGS. 13 and 14, almost no light is emitted directly from the dichroic fluorescent dye molecule 17a to the outside of the liquid crystal display panel 50D.
 上述のとおり、液晶表示パネル50Dは、各層が透明な材料によって構成されているので、2色性蛍光色素分子17aから表示パネル1の面内方向に出射された光は、液晶表示パネル50Dと空気との界面で反射する。すなわち、図13に示すように、液晶層33に電圧が印加されていて、液晶層33が透明状態の場合には、2色性蛍光色素分子17aから発光された光は、空気との界面で全反射するため、液晶表示パネル50D内で反射を繰り返す(図13の太線矢印参照)。なお、2色性蛍光色素分子17aから全反射角度よりも小さい入射角度で空気との界面に出射された光は、そのまま外部へ出射される。 As described above, since each layer of the liquid crystal display panel 50D is made of a transparent material, light emitted from the dichroic fluorescent dye molecules 17a in the in-plane direction of the display panel 1 is separated from the liquid crystal display panel 50D and the air. Reflects at the interface. That is, as shown in FIG. 13, when a voltage is applied to the liquid crystal layer 33 and the liquid crystal layer 33 is in a transparent state, the light emitted from the dichroic fluorescent dye molecules 17a is at the interface with air. Since the reflection is totally reflected, the reflection is repeated in the liquid crystal display panel 50D (see the thick arrow in FIG. 13). The light emitted from the dichroic fluorescent dye molecule 17a to the interface with air at an incident angle smaller than the total reflection angle is emitted to the outside as it is.
 一方、図14に示すように、液晶層33に電圧が印加されておらず、液晶層33が散乱状態の場合には、2色性蛍光色素分子17aから発光された光は、液晶層33で散乱して、液晶表示パネル50Dの外部へ出射される(図14の太線矢印参照)。また、液晶層33で散乱した光の一部は、液晶表示パネル50D内で反射して2色性蛍光色素分子17aに戻るので、2色性蛍光色素分子17aの光の吸収量が図13の場合よりも増える。これにより、2色性蛍光色素分子17aは、図13の場合よりも、より明るく光る。 On the other hand, as shown in FIG. 14, when no voltage is applied to the liquid crystal layer 33 and the liquid crystal layer 33 is in a scattering state, light emitted from the dichroic fluorescent dye molecules 17 a is transmitted through the liquid crystal layer 33. The light is scattered and emitted to the outside of the liquid crystal display panel 50D (see the thick arrow in FIG. 14). Further, a part of the light scattered by the liquid crystal layer 33 is reflected in the liquid crystal display panel 50D and returns to the dichroic fluorescent dye molecule 17a. Therefore, the light absorption amount of the dichroic fluorescent dye molecule 17a is as shown in FIG. More than the case. Thereby, the dichroic fluorescent dye molecule 17a shines brighter than in the case of FIG.
 また、上述のように、2色性蛍光色素分子17aは紫外線を吸収する。そのため、液晶層33の液晶表示パネル50Dの観察者側(液晶層33側とは反対側)に蛍光発光層31を設けることで、液晶層33に到達する紫外線の量を低減することができる。 Also, as described above, the dichroic fluorescent dye molecule 17a absorbs ultraviolet rays. Therefore, the amount of ultraviolet rays reaching the liquid crystal layer 33 can be reduced by providing the fluorescent light emitting layer 31 on the viewer side (the side opposite to the liquid crystal layer 33 side) of the liquid crystal display panel 50D of the liquid crystal layer 33.
 なお、図13および図14では、両者の液晶層33の状態の違いを明確かつ簡略に示すために、液晶層33内の液晶領域11の記載を省略している。 In FIGS. 13 and 14, the liquid crystal region 11 in the liquid crystal layer 33 is not shown in order to clearly and simply show the difference between the states of the liquid crystal layers 33.
 次に、液晶表示パネル50Dの製造方法について説明する。 Next, a method for manufacturing the liquid crystal display panel 50D will be described.
 まず、第2基板3上に、蛍光発光層31を形成する。この蛍光発光層31は、例えばスピンコート法によって形成される。すなわち、液晶性ポリマー23b内に2色性蛍光色素分子17aを添加し、2色性蛍光色素分子17aが溶解するまで混ぜて混合液を作製する。次に、この混合液と基板3との濡れ性をよくするために、基板3上に配向膜(図12~図14には図示されていない)を形成する。その後、公知の方法で、配向膜上に混合液を所定の膜厚でコートする。その状態で加熱して溶媒を蒸発させた後、紫外線を照射して、液晶性ポリマー23bを硬化させる。これにより、基板3上に蛍光発光層31が形成される。 First, the fluorescent light emitting layer 31 is formed on the second substrate 3. The fluorescent light emitting layer 31 is formed by, for example, a spin coat method. That is, the dichroic fluorescent dye molecule 17a is added to the liquid crystalline polymer 23b and mixed until the dichroic fluorescent dye molecule 17a is dissolved to prepare a mixed solution. Next, an alignment film (not shown in FIGS. 12 to 14) is formed on the substrate 3 in order to improve the wettability between the mixed solution and the substrate 3. Thereafter, the mixture is coated with a predetermined film thickness on the alignment film by a known method. After heating in this state to evaporate the solvent, ultraviolet rays are irradiated to cure the liquid crystalline polymer 23b. Thereby, the fluorescent light emitting layer 31 is formed on the substrate 3.
 次に、蛍光発光層31上に例えばスパッタ法などによって対向電極8を形成する。対向電極8上に、公知の方法で、例えばフォトスペーサーを形成する。フォトスペーサーは、フォトレジストから形成される。また、公知の方法で、TFT5を有する第1基板2が製造される。 Next, the counter electrode 8 is formed on the fluorescent light emitting layer 31 by, for example, sputtering. For example, a photo spacer is formed on the counter electrode 8 by a known method. The photo spacer is formed from a photoresist. Moreover, the 1st board | substrate 2 which has TFT5 is manufactured by a well-known method.
 次に、第2基板3または/および第1基板2に配向膜(不図示)を形成する。第2基板3上に、光硬化性の樹脂によってシールのパターンを形成する。その後、第2基板3上に、ネマチック液晶材料や重合性モノマーなどを混合した混合物を滴下し、真空中で第1基板2と第2基板3とを重ね合わせる。 Next, an alignment film (not shown) is formed on the second substrate 3 and / or the first substrate 2. A seal pattern is formed on the second substrate 3 with a photocurable resin. Thereafter, a mixture obtained by mixing a nematic liquid crystal material, a polymerizable monomer, or the like is dropped on the second substrate 3, and the first substrate 2 and the second substrate 3 are superposed in a vacuum.
 次に、大気圧にして上述の混合物がシールパターン内に拡がった状態で、340nm以下の波長をカットした紫外線を、第2基板3側から照射する。これによりシールの樹脂を硬化させるとともに、PDLCを形成する。その後、第2基板3および第1基板2を組み合わせた状態で焼成して、シールを完全に硬化させる。これにより、図12に示した液晶表示パネル50Dが得られる。 Next, ultraviolet light with a wavelength of 340 nm or less cut is irradiated from the second substrate 3 side in a state where the above-mentioned mixture spreads in the seal pattern at atmospheric pressure. This cures the sealing resin and forms the PDLC. Thereafter, the seal is completely cured by firing in a state where the second substrate 3 and the first substrate 2 are combined. Thereby, the liquid crystal display panel 50D shown in FIG. 12 is obtained.
 また、図15に示すように、液晶表示パネル50Dの両面に紫外線吸収フィルム45を配置してもよい。具体的には、光線方向変換素子20と第2基板3との間、および、第1基板2の液晶層33側とは反対側に、粘着剤46によって紫外線吸収フィルム45をそれぞれ貼り付ける。これらの紫外線吸収フィルム45は、420nm以下の波長の光をカットするように構成されている。 Further, as shown in FIG. 15, ultraviolet absorbing films 45 may be arranged on both surfaces of the liquid crystal display panel 50D. Specifically, the ultraviolet absorbing film 45 is attached by the adhesive 46 between the light beam redirecting element 20 and the second substrate 3 and on the opposite side of the first substrate 2 from the liquid crystal layer 33 side. These ultraviolet absorbing films 45 are configured to cut light having a wavelength of 420 nm or less.
 これにより、紫外線が液晶層33に照射することを防止でき、液晶層33の保護を図れる。 Thereby, it is possible to prevent the liquid crystal layer 33 from being irradiated with ultraviolet rays, and the liquid crystal layer 33 can be protected.
 これまで、液晶表示パネル50Dは透過型の液晶表示パネルであった。しかしながら、液晶表示パネル50Dを反射型の液晶表示パネル50D’に改変してもよい。図16に示すように、液晶表示パネル50D’は、第1基板2上に反射層47を形成した反射型の液晶表示パネルである。 So far, the liquid crystal display panel 50D has been a transmissive liquid crystal display panel. However, the liquid crystal display panel 50D may be modified to a reflective liquid crystal display panel 50D '. As shown in FIG. 16, the liquid crystal display panel 50 </ b> D ′ is a reflective liquid crystal display panel in which a reflective layer 47 is formed on the first substrate 2.
 具体的には、液晶表示パネル50D’は、第1基板2上に形成された反射層47と、反射層47上に形成される画素電極4を有する。この場合、画素電極4は、例えばAl(アルミニウム)から形成され得る。なお、この改変例では、光を透過する第2基板3側に、上述の紫外線吸収フィルム45が設けられている。この構成に限らず、紫外線吸収フィルム45を設けない構成であってもよい。 Specifically, the liquid crystal display panel 50 </ b> D ′ includes a reflective layer 47 formed on the first substrate 2 and a pixel electrode 4 formed on the reflective layer 47. In this case, the pixel electrode 4 can be made of, for example, Al (aluminum). In this modified example, the above-described ultraviolet absorbing film 45 is provided on the second substrate 3 side that transmits light. Not only this structure but the structure which does not provide the ultraviolet absorption film 45 may be sufficient.
 次に、本発明によるさらに他の実施形態における液晶表示装置100Eを図17を参照しながら説明する。図17は、液晶表示装置100Eの模式的な断面図である。液晶表示装置100Eは、液晶層33に電圧を印加する電極の構造が液晶表示装置100Dとは異なる。 Next, a liquid crystal display device 100E according to still another embodiment of the present invention will be described with reference to FIG. FIG. 17 is a schematic cross-sectional view of the liquid crystal display device 100E. The liquid crystal display device 100E is different from the liquid crystal display device 100D in the structure of electrodes for applying a voltage to the liquid crystal layer 33.
 図17に示すように、液晶表示装置100Eは、液晶表示パネル50Eと光線方向変換素子20とを有する。光線方向変換素子20は、液晶表示パネル50Eの観察者側に配置されている。液晶表示パネル50Eと光線方向変換素子20との間には空気層35が設けられている。 As shown in FIG. 17, the liquid crystal display device 100E has a liquid crystal display panel 50E and a light beam direction conversion element 20. The light direction conversion element 20 is arranged on the viewer side of the liquid crystal display panel 50E. An air layer 35 is provided between the liquid crystal display panel 50 </ b> E and the light beam direction conversion element 20.
 液晶表示パネル50Eの第1基板2上には、一対の櫛歯電極4aおよび8aが形成されている。第2基板3に対向電極8は形成されていない。一対の櫛歯電極4aおよび8aにより、液晶層33に電圧を印加すると、一対の櫛歯電極4aおよび8aの間で生じる電界に応じて液晶層33内の液晶分子が制御される。 A pair of comb electrodes 4a and 8a are formed on the first substrate 2 of the liquid crystal display panel 50E. The counter electrode 8 is not formed on the second substrate 3. When a voltage is applied to the liquid crystal layer 33 by the pair of comb electrodes 4a and 8a, the liquid crystal molecules in the liquid crystal layer 33 are controlled according to the electric field generated between the pair of comb electrodes 4a and 8a.
 ここで、上述した液晶表示装置100Dが有する透明な対向電極8は、可視光に対する高い吸収率を有している。そのため、液晶表示装置100Dのように、透明な対向電極8を蛍光発光層31と液晶層33との間に設けると、蛍光発光層31の2色性蛍光色素分子17aから発光した光が対向電極8で反射または吸収され、液晶層33に届きにくくなる。 Here, the transparent counter electrode 8 included in the liquid crystal display device 100D described above has a high absorption rate for visible light. Therefore, when the transparent counter electrode 8 is provided between the fluorescent light emitting layer 31 and the liquid crystal layer 33 as in the liquid crystal display device 100D, the light emitted from the dichroic fluorescent dye molecules 17a of the fluorescent light emitting layer 31 is counter electrode. 8 is reflected or absorbed by the liquid crystal layer 33 and is difficult to reach the liquid crystal layer 33.
 一方、液晶表示装置100Eのように、第1基板2上に一対の櫛歯電極4aおよび8aを形成し、第2基板3には対向電極8を形成しない構造を有すると、対向電極8による光の反射や吸収がなくなり、蛍光発光層31の2色性蛍光色素分子17aから発光した光を、液晶層33に効率よく導くことができる。なお、液晶表示パネル50Eは、反射型の液晶表示パネルに改変し得る。液晶表示装置100Dと同様に、液晶表示パネル50Eの両側に紫外線吸収フィルムを貼り付けてもよい。 On the other hand, when the pair of comb electrodes 4a and 8a are formed on the first substrate 2 and the counter electrode 8 is not formed on the second substrate 3 as in the liquid crystal display device 100E, the light generated by the counter electrode 8 can be obtained. Therefore, the light emitted from the dichroic fluorescent dye molecules 17a of the fluorescent light emitting layer 31 can be efficiently guided to the liquid crystal layer 33. The liquid crystal display panel 50E can be modified to a reflective liquid crystal display panel. Similarly to the liquid crystal display device 100D, an ultraviolet absorbing film may be attached to both sides of the liquid crystal display panel 50E.
 次に、本発明によるさらに他の実施形態における液晶表示装置100Fを図18を参照しながら説明する。 Next, a liquid crystal display device 100F according to still another embodiment of the present invention will be described with reference to FIG.
 図18に示すように、液晶表示装置100Fは、液晶表示パネル50Fと光線方向変換素子20とを有する。光線方向変換素子20は、液晶表示パネル50Fの観察者側に配置されている。液晶表示パネル50Fと光線方向変換素子20との間には空気層35が設けられている。 As shown in FIG. 18, the liquid crystal display device 100F includes a liquid crystal display panel 50F and a light beam direction conversion element 20. The light beam direction conversion element 20 is disposed on the viewer side of the liquid crystal display panel 50F. An air layer 35 is provided between the liquid crystal display panel 50 </ b> F and the light beam direction conversion element 20.
 液晶表示パネル50Fは、第1基板2と、第2基板3と、第1基板2と第2基板3との間に配置された液晶層33とを有する。第1基板2上には、TFT5と画素電極4とが形成されている。第2基板3の液晶層33側には対向電極8が形成されている。第2基板3の対向電極8側とは反対側に、粘着剤46によって紫外線吸収フィルム45を貼り付ける。さらに、紫外線吸収フィルム45上に、粘着剤46によって蛍光色素フィルム61を貼り付ける。蛍光色素フィルム61は、液晶表示装置100Dの蛍光発光層31をフィルム状に形成したものである。すなわち、蛍光色素フィルム61は、分子長軸がフィルム61bの厚さ方向と一致するように配向された2色性蛍光色素分子17aを有する発光層61aが設けられている。ここで、粘着剤46によって接着層が形成され、紫外線吸収フィルム45が被接着部に対応する。また、紫外線吸収フィルム45によって紫外線吸収層が形成される。 The liquid crystal display panel 50 </ b> F includes a first substrate 2, a second substrate 3, and a liquid crystal layer 33 disposed between the first substrate 2 and the second substrate 3. A TFT 5 and a pixel electrode 4 are formed on the first substrate 2. A counter electrode 8 is formed on the liquid crystal layer 33 side of the second substrate 3. On the opposite side of the second substrate 3 from the counter electrode 8 side, an ultraviolet absorbing film 45 is attached with an adhesive 46. Further, a fluorescent dye film 61 is pasted on the ultraviolet absorbing film 45 with an adhesive 46. The fluorescent dye film 61 is obtained by forming the fluorescent light emitting layer 31 of the liquid crystal display device 100D into a film shape. That is, the fluorescent dye film 61 is provided with a light emitting layer 61a having dichroic fluorescent dye molecules 17a oriented so that the molecular major axis coincides with the thickness direction of the film 61b. Here, an adhesive layer is formed by the adhesive 46, and the ultraviolet absorbing film 45 corresponds to the adherend. Further, an ultraviolet absorbing layer is formed by the ultraviolet absorbing film 45.
 液晶表示装置100Fのような構成により、蛍光色素フィルム61で紫外線を効率よく吸収することができるので、2色性蛍光色素分子17aの発光効率がよくなる。しかも、蛍光色素フィルム61で吸収されなかった紫外線を、紫外線吸収フィルム45によって吸収することができるので、液晶層33に紫外線が照射されにくくなる。また、液晶表示パネル50Fの液晶層33に電圧を印加する電極を上述の一対の櫛歯電極4aおよび8aに改変し得る。この場合、対向電極8は形成しなくてもよい。 With the configuration like the liquid crystal display device 100F, the fluorescent dye film 61 can efficiently absorb ultraviolet rays, so that the luminous efficiency of the dichroic fluorescent dye molecules 17a is improved. In addition, since the ultraviolet ray that has not been absorbed by the fluorescent dye film 61 can be absorbed by the ultraviolet ray absorbing film 45, the liquid crystal layer 33 is not easily irradiated with the ultraviolet ray. Moreover, the electrode which applies a voltage to the liquid crystal layer 33 of the liquid crystal display panel 50F can be modified to the above-described pair of comb electrodes 4a and 8a. In this case, the counter electrode 8 may not be formed.
 また、上述のように、蛍光発光層を蛍光色素フィルム61とすることで、第2基板3に容易に蛍光発光層を形成することができる。また、上述のように蛍光色素フィルム61とすることで、液晶層33を形成した後、蛍光発光層を形成することが可能になる。これにより、液晶層33を形成する際には、液晶表示装置100Dで説明したように、340nm以下の波長をカットした紫外線を第2基板3側から照射するが、上述のような蛍光色素フィルム61にすることで、紫外線を吸収する部材が第2基板3に存在しなくなる。よって、液晶層33を形成する際に、紫外線を液晶層33に効率よく照射することができる。 Further, as described above, the fluorescent light emitting layer can be easily formed on the second substrate 3 by using the fluorescent light emitting layer as the fluorescent dye film 61. Further, by using the fluorescent dye film 61 as described above, it is possible to form a fluorescent light emitting layer after the liquid crystal layer 33 is formed. As a result, when the liquid crystal layer 33 is formed, as described in the liquid crystal display device 100D, the ultraviolet rays having a wavelength of 340 nm or less are cut from the second substrate 3 side. By doing so, a member that absorbs ultraviolet rays does not exist in the second substrate 3. Therefore, when the liquid crystal layer 33 is formed, the liquid crystal layer 33 can be efficiently irradiated with ultraviolet rays.
 また、液晶表示装置100Fが有する蛍光色素フィルム61を以下に説明する蛍光色素フィルム71に改変し得る。図19は、液晶表示装置100Fの改変例を説明する図である。 Further, the fluorescent dye film 61 included in the liquid crystal display device 100F can be modified to a fluorescent dye film 71 described below. FIG. 19 is a diagram illustrating a modified example of the liquid crystal display device 100F.
 図19に示すように、蛍光色素フィルム71は、紫外線をほとんど吸収しないフィルム71bと、複数の2色性蛍光色素分子17aを有する蛍光発光層71aと、蛍光発光層71aのフィルム71b側とは反対側に設けられた接着層71cとを有する。この接着層71cを形成する粘着剤には、420nm以下の波長の光(主に紫外線)を吸収可能な紫外線吸収剤が混合されている。紫外線吸収剤としては、ベンゾトリアゾール系やベンゾフェノン系などの紫外線吸収剤が用いられる。よって、この粘着剤によって紫外線吸収層が形成される。なお、第2基板3が被接着部に対応する。 As shown in FIG. 19, the fluorescent dye film 71 is opposite to the film 71b that hardly absorbs ultraviolet rays, the fluorescent light emitting layer 71a having a plurality of dichroic fluorescent dye molecules 17a, and the film 71b side of the fluorescent light emitting layer 71a. And an adhesive layer 71c provided on the side. The pressure-sensitive adhesive forming the adhesive layer 71c is mixed with an ultraviolet absorber that can absorb light (mainly ultraviolet rays) having a wavelength of 420 nm or less. As the ultraviolet absorber, an ultraviolet absorber such as benzotriazole or benzophenone is used. Therefore, an ultraviolet absorption layer is formed by this adhesive. In addition, the 2nd board | substrate 3 respond | corresponds to a to-be-adhered part.
 これにより、液晶表示装置100Fのように、紫外線吸収フィルム45を設ける必要がなくなるので、その分、製造工程の簡略化を図れる。なお、粘着剤ではなく、蛍光発光層51bに紫外線吸収剤を入れてもよい。こうすれば、蛍光発光層51bで紫外線をほとんど吸収することができる。 This eliminates the need for providing the ultraviolet absorbing film 45 as in the liquid crystal display device 100F, thereby simplifying the manufacturing process accordingly. In addition, you may put a ultraviolet absorber in the fluorescent light emitting layer 51b instead of an adhesive. By so doing, the fluorescent light emitting layer 51b can absorb almost all ultraviolet rays.
 さらに、図19に示す改変例の構成において、蛍光発光層71aとフィルム71bとを入れ替えてもよい。この場合には、フィルム71bの蛍光発光層71aとは反対側に接着層71cが設けられる。この構成において、フィルム71bおよび接着層71cのいずれか一方に紫外線吸収剤を入れればよい。 Furthermore, in the configuration of the modification shown in FIG. 19, the fluorescent light emitting layer 71a and the film 71b may be interchanged. In this case, the adhesive layer 71c is provided on the opposite side of the film 71b from the fluorescent light emitting layer 71a. In this configuration, an ultraviolet absorber may be put in one of the film 71b and the adhesive layer 71c.
 次に、図20を参照しながら本発明によるさらに他の実施形態における液晶表示装置100Gを説明する。図20は、液晶表示装置100Gの模式的な断面図である。 Next, a liquid crystal display device 100G according to still another embodiment of the present invention will be described with reference to FIG. FIG. 20 is a schematic cross-sectional view of the liquid crystal display device 100G.
 液晶表示装置100Gは、蛍光発光層31上に導光板82を設けた点で液晶表示装置100Fとは異なる。 The liquid crystal display device 100G is different from the liquid crystal display device 100F in that a light guide plate 82 is provided on the fluorescent light emitting layer 31.
 図20に示すように、液晶表示装置100Gは、液晶表示パネル50Gと光線方向変換素子20とを有する。光線方向変換素子20は、液晶表示パネル50Gの観察者側に配置されている。液晶表示パネル50Gと光線方向変換素子20との間には空気層35が設けられている。 As shown in FIG. 20, the liquid crystal display device 100G includes a liquid crystal display panel 50G and a light beam direction conversion element 20. The light beam direction conversion element 20 is disposed on the viewer side of the liquid crystal display panel 50G. An air layer 35 is provided between the liquid crystal display panel 50 </ b> G and the light beam direction conversion element 20.
 液晶表示パネル50Gは、TFT5および画素電極4が形成された第1基板2と、対向電極8が形成された第2基板3と、それらの間に配置された液晶層33と、導光板82とを有する。導光板82は、第2基板3と空気層35との間に配置されている。 The liquid crystal display panel 50G includes a first substrate 2 on which the TFT 5 and the pixel electrode 4 are formed, a second substrate 3 on which the counter electrode 8 is formed, a liquid crystal layer 33 disposed therebetween, a light guide plate 82, Have The light guide plate 82 is disposed between the second substrate 3 and the air layer 35.
 さらに、液晶表示パネル50Gは、第2基板3および導光板82との間に2色性蛍光色素分子17aを有する蛍光発光層31を有する。蛍光発光層31は、粘着剤46によって第2基板3に接着されている。 Furthermore, the liquid crystal display panel 50G has a fluorescent light emitting layer 31 having dichroic fluorescent dye molecules 17a between the second substrate 3 and the light guide plate 82. The fluorescent light emitting layer 31 is bonded to the second substrate 3 with an adhesive 46.
 なお、蛍光発光層31と第2基板3との間の粘着剤46は、紫外線吸収剤を含んでいる。これにより、420nm以下の波長の光(主に紫外線)を粘着剤46内の紫外線吸収剤によって吸収することができ、液晶層33に紫外線が照射されるのを防止できる。よって、粘着剤46によって紫外線吸収層が形成される。 Note that the adhesive 46 between the fluorescent light emitting layer 31 and the second substrate 3 contains an ultraviolet absorber. As a result, light having a wavelength of 420 nm or less (mainly ultraviolet rays) can be absorbed by the ultraviolet absorbent in the pressure-sensitive adhesive 46, and the liquid crystal layer 33 can be prevented from being irradiated with ultraviolet rays. Therefore, an ultraviolet absorbing layer is formed by the adhesive 46.
 導光板82は、例えばアクリルやポリカーボネイトなどの紫外線を吸収しない透明の部材であり、LED(Light Emitting Diode)等の光源83の光を蛍光発光層31に導くように構成されている。すなわち、光源83の光は、導光板82内で反射しつつ、蛍光発光層31まで導かれる。これにより、図20に示すように、蛍光発光層31の2色性蛍光色素分子17aに対して、分子長軸と交差する方向から光が入射される。よって、2色性蛍光色素分子17aの分子長軸と平行な方向から光を入射する場合に比べて、2色性蛍光色素分子17aをより強く蛍光発光させることができる。 The light guide plate 82 is a transparent member that does not absorb ultraviolet rays, such as acrylic or polycarbonate, and is configured to guide light from a light source 83 such as an LED (Light Emitting Diode) to the fluorescent light emitting layer 31. That is, the light from the light source 83 is guided to the fluorescent light emitting layer 31 while being reflected in the light guide plate 82. As a result, as shown in FIG. 20, light is incident on the dichroic fluorescent dye molecules 17a of the fluorescent light emitting layer 31 from the direction intersecting the molecular long axis. Therefore, the dichroic fluorescent dye molecule 17a can emit fluorescence more strongly than when light is incident from a direction parallel to the molecular long axis of the dichroic fluorescent dye molecule 17a.
 光源83は、2色性蛍光色素分子17aの光励起波長を含む光源である。光源83は、例えば紫外線を発光するLEDなどが好ましい。このような光源83を用いることで、2色性蛍光色素分子17aをより明るく蛍光発光させることができる。なお、導光板82の光源83とは反対側の端部には、反射板81が設けられている。この反射板81によって、導光板82の端部まで進んだ光を反射して導光板82内に戻すことができる。また、導光板82、蛍光発光層31および第2基板3は、光の伝搬が妨げられないように互いに接着されている。 The light source 83 is a light source including the photoexcitation wavelength of the dichroic fluorescent dye molecule 17a. The light source 83 is preferably an LED that emits ultraviolet light, for example. By using such a light source 83, the dichroic fluorescent dye molecule 17a can be made to emit fluorescent light more brightly. A reflection plate 81 is provided at the end of the light guide plate 82 opposite to the light source 83. The light that has traveled to the end of the light guide plate 82 can be reflected and returned into the light guide plate 82 by the reflection plate 81. In addition, the light guide plate 82, the fluorescent light emitting layer 31, and the second substrate 3 are bonded to each other so that light propagation is not hindered.
 次に、図21を参照しながら本発明によるさらに他の実施形態による液晶表示装置100Hを説明する。図21(a)に液晶表示装置100Hを説明する平面図を示し、図21(b)に、図21(a)のII-II’線に沿った液晶表示装置100Hの断面図を示す。 Next, a liquid crystal display device 100H according to another embodiment of the present invention will be described with reference to FIG. FIG. 21A is a plan view for explaining the liquid crystal display device 100H, and FIG. 21B is a cross-sectional view of the liquid crystal display device 100H along the line II-II ′ of FIG.
 液晶表示装置100Hは、上述した液晶表示パネル50G、太陽電池および光線方向変換素子20を組み合わせた液晶表示装置である。 The liquid crystal display device 100H is a liquid crystal display device that combines the liquid crystal display panel 50G, the solar cell, and the light beam direction conversion element 20 described above.
 図21(b)に示すように、液晶表示装置100Hは、上述した液晶表示パネル50Gと光線方向変換素子20とを有する。光線方向変換素子20は、液晶表示パネル50Gの観察者側に配置されている。液晶表示パネル50Gと光線方向変換素子20との間には空気層35が設けられている。液晶表示装置100Hは、図21(a)に示すように、携帯機器等の筐体120の開口部120a内に配置され、液晶表示装置100Hの側方に配置される太陽電池131(光発電部)が配置されている。液晶表示装置100Hの導光板82は、筐体120の開口部120aで露出するように、筐体120内に配置されている。また、液晶表示装置100Hは、正面視で第1基板2および第2基板3が筐体120の開口部120aに対応して位置付けられるように、筐体120内に配置されている。 As shown in FIG. 21B, the liquid crystal display device 100H includes the liquid crystal display panel 50G and the light beam direction conversion element 20 described above. The light beam direction conversion element 20 is disposed on the viewer side of the liquid crystal display panel 50G. An air layer 35 is provided between the liquid crystal display panel 50 </ b> G and the light beam direction conversion element 20. As shown in FIG. 21A, the liquid crystal display device 100H is disposed in an opening 120a of a housing 120 of a portable device or the like, and a solar cell 131 (photovoltaic power generation unit) disposed on the side of the liquid crystal display device 100H. ) Is arranged. The light guide plate 82 of the liquid crystal display device 100H is disposed in the housing 120 so as to be exposed at the opening 120a of the housing 120. In addition, the liquid crystal display device 100H is disposed in the housing 120 so that the first substrate 2 and the second substrate 3 are positioned corresponding to the opening 120a of the housing 120 in a front view.
 液晶表示装置100Hの導光板82は、正面視で略長方形状に形成されていて、長手方向の一方の端部には2つの光源96が、他方の端部には反射板97が、それぞれ設けられている。液晶表示装置100Hの導光板82の短手方向両側には、太陽電池131が配置されている。 The light guide plate 82 of the liquid crystal display device 100H is formed in a substantially rectangular shape when viewed from the front. Two light sources 96 are provided at one end in the longitudinal direction, and a reflector 97 is provided at the other end. It has been. Solar cells 131 are arranged on both sides of the light guide plate 82 of the liquid crystal display device 100H in the short direction.
 図21(b)に示すように、太陽電池131は、光を受けて発電を行う発電面131a(受光面)が液晶表示装置100Hの面方向端部に対向するように配置される。これにより、蛍光発光層31の2色性蛍光色素分子17aから分子長軸と交差する方向に発光した光を、太陽電池131の発電面131aで受光することができる。この2色性蛍光色素分子17aは、分子長軸と交差する方向(図の白抜き矢印方向)により強く蛍光発光することから、太陽電池131の発電面131aで2色性蛍光色素分子17aのより強い光を受光することができる。従って、太陽電池131で効率よく発電することができる。 As shown in FIG. 21 (b), the solar cell 131 is arranged such that a power generation surface 131a (light receiving surface) that generates power by receiving light is opposed to a surface direction end of the liquid crystal display device 100H. Thereby, the light emitted from the dichroic fluorescent dye molecules 17 a of the fluorescent light emitting layer 31 in the direction intersecting the molecular long axis can be received by the power generation surface 131 a of the solar cell 131. Since this dichroic fluorescent dye molecule 17a emits fluorescence strongly in the direction intersecting the molecular long axis (the direction of the white arrow in the figure), the dichroic fluorescent dye molecule 17a is twisted by the power generation surface 131a of the solar cell 131. It can receive strong light. Therefore, the solar cell 131 can generate power efficiently.
 また、太陽電池131は、導光板82から離間して配置される。太陽電池131を導光板82に密着させると、導光板82に、本来伝わる予定の光が太陽電池131に吸収されてしまう。これに対して、上述のように、太陽電池131を導光板82から離間させることにより、太陽電池131が導光板82内の光の伝搬を阻害するのを防止できる。これにより、液晶表示装置100Hの蛍光発光層31内の2色性蛍光色素分子17aが蛍光発光した光を、太陽電池131で受光して、太陽電池131で発電することができる。 Moreover, the solar cell 131 is disposed away from the light guide plate 82. When the solar cell 131 is brought into close contact with the light guide plate 82, light that is originally transmitted to the light guide plate 82 is absorbed by the solar cell 131. On the other hand, as described above, by separating the solar cell 131 from the light guide plate 82, it is possible to prevent the solar cell 131 from inhibiting the propagation of light in the light guide plate 82. Thereby, the light emitted by the dichroic fluorescent dye molecules 17a in the fluorescent light emitting layer 31 of the liquid crystal display device 100H can be received by the solar cell 131 and can be generated by the solar cell 131.
 しかも、太陽電池131は、その発電面131aが液晶表示装置100Hの面方向端部に対向するように配置されるので、2色性蛍光色素分子17aの光を発電面で効率よく受光することができる。また、この2色性蛍光色素分子17aは、分子長軸が液晶表示装置100Hの積層方向と一致するように配置されているため、分子長軸と交差する方向により強く蛍光発光された光を、太陽電池131で受光することができる。 Moreover, since the solar cell 131 is disposed so that the power generation surface 131a faces the end in the surface direction of the liquid crystal display device 100H, the light of the dichroic fluorescent dye molecule 17a can be efficiently received by the power generation surface. it can. In addition, since the dichroic fluorescent dye molecule 17a is arranged so that the molecular long axis coincides with the stacking direction of the liquid crystal display device 100H, the light emitted more strongly in the direction intersecting the molecular long axis is emitted. Light can be received by the solar cell 131.
 さらに、上述のように太陽電池131を配置することで、太陽電池131の発電面131aに、直接太陽光が入射されないため、太陽電池131の温度上昇を低減できる。よって、太陽電池131の温度上昇による発電効率の低下を防止できる。 Furthermore, by arranging the solar cell 131 as described above, since sunlight is not directly incident on the power generation surface 131a of the solar cell 131, the temperature rise of the solar cell 131 can be reduced. Therefore, it is possible to prevent a decrease in power generation efficiency due to the temperature increase of the solar cell 131.
 液晶表示装置100D~100Hにおいても、上述した反射防止層80を液晶表示パネル50D~50Gと光線方向変換素子20との間に、配置し得る。 Also in the liquid crystal display devices 100D to 100H, the above-described antireflection layer 80 can be disposed between the liquid crystal display panels 50D to 50G and the light beam direction conversion element 20.
 以上、本発明による実施形態により、正面視における輝度を高めた2色性蛍光色素を有する液晶表示装置が提供される。また、上述した本発明による実施形態の液晶表示装置を適宜組み合わせて用いることもできる。 As described above, according to the embodiment of the present invention, a liquid crystal display device having a dichroic fluorescent dye with enhanced brightness in a front view is provided. Further, the liquid crystal display devices according to the embodiments of the present invention described above can be used in appropriate combination.
 本発明は、液晶表示装置や液晶表示装置を用いた各種電気機器に適用される。 The present invention is applied to a liquid crystal display device and various electric devices using the liquid crystal display device.
 1     液晶層
 2、3   基板
 4、8   電極
 5     TFT
 10    壁
 11    液晶領域
 12、13 配向膜
 14    小部屋
 20    光線方向変換素子
 50A   液晶表示パネル
 100A  液晶表示装置
 F1    蛍光
1 Liquid crystal layer 2, 3 Substrate 4, 8 Electrode 5 TFT
DESCRIPTION OF SYMBOLS 10 Wall 11 Liquid crystal area 12, 13 Orientation film 14 Small room 20 Light beam direction change element 50A Liquid crystal display panel 100A Liquid crystal display device F1 Fluorescence

Claims (22)

  1.  液晶表示パネルと、
     前記液晶表示パネルの観察者側に配置された光線方向変換素子と、
     前記液晶表示パネルと前記光線方向変換素子との間に設けられた空気層とを有し、
     前記液晶表示パネルは、
     光を透過する透過状態と光を散乱する散乱状態との間で状態が切り替えられ得る液晶層と、
     前記液晶層を間に保持する第1基板および第2基板と、
     前記液晶層に電圧を印加する一対の電極とを備え、
     前記液晶層は、画素内に、連続した壁と、液晶領域とを有し、
     前記液晶領域は、ネマチック液晶材料と2色性蛍光色素とを有し、
     前記光線方向変換素子は、前記2色性蛍光色素から発光された蛍光の進行方向を所定の方向に向ける、液晶表示装置。
    A liquid crystal display panel;
    A light beam direction conversion element disposed on the viewer side of the liquid crystal display panel;
    An air layer provided between the liquid crystal display panel and the light beam direction conversion element;
    The liquid crystal display panel is
    A liquid crystal layer that can be switched between a transmission state that transmits light and a scattering state that scatters light; and
    A first substrate and a second substrate holding the liquid crystal layer therebetween;
    A pair of electrodes for applying a voltage to the liquid crystal layer,
    The liquid crystal layer has a continuous wall and a liquid crystal region in a pixel,
    The liquid crystal region has a nematic liquid crystal material and a dichroic fluorescent dye,
    The liquid crystal display device, wherein the light beam direction conversion element directs a traveling direction of fluorescence emitted from the dichroic fluorescent dye in a predetermined direction.
  2.  前記液晶層に電圧を印加する一対の電極は、前記液晶層を挟んで配置され、
     前記液晶領域は、前記壁によって分離された第1液晶領域を含む、請求項1に記載の液晶表示装置。
    A pair of electrodes for applying a voltage to the liquid crystal layer is disposed with the liquid crystal layer interposed therebetween,
    The liquid crystal display device according to claim 1, wherein the liquid crystal region includes a first liquid crystal region separated by the wall.
  3.  前記液晶層と前記第1基板との間、および、前記液晶層と前記第2基板との間の少なくともいずれか一方に、前記液晶層と接するように形成された水平配向膜をさらに備える、請求項2に記載の液晶表示装置。 A horizontal alignment film formed to be in contact with the liquid crystal layer is further provided between at least one of the liquid crystal layer and the first substrate and between the liquid crystal layer and the second substrate. Item 3. A liquid crystal display device according to Item 2.
  4.  前記液晶層と前記第1基板との間、および、前記液晶層と前記第2基板との間に形成され、配向処理された第1および第2配向膜を備え、
     前記液晶領域は、
      前記壁と前記第1配向膜とによって分離された第2液晶領域と、
      前記壁と前記第2配向膜とによって分離された第3液晶領域とを含み、
     前記第2液晶領域の前記2色性蛍光色素は、前記第1配向膜によって規定される第1方位に沿って配向しており、
     前記第3液晶領域の前記2色性蛍光色素は、前記第2配向膜によって規定される第2方位に沿って配向している、請求項1から3のいずれかに記載の液晶表示装置。
    Comprising first and second alignment films formed between the liquid crystal layer and the first substrate and between the liquid crystal layer and the second substrate and subjected to alignment treatment;
    The liquid crystal region is
    A second liquid crystal region separated by the wall and the first alignment layer;
    A third liquid crystal region separated by the wall and the second alignment layer;
    The dichroic fluorescent dye in the second liquid crystal region is aligned along a first orientation defined by the first alignment film;
    4. The liquid crystal display device according to claim 1, wherein the dichroic fluorescent dye in the third liquid crystal region is aligned along a second direction defined by the second alignment film. 5.
  5.  前記第1方位と前記第2方位とは直交している、請求項4に記載の液晶表示装置。 The liquid crystal display device according to claim 4, wherein the first orientation and the second orientation are orthogonal to each other.
  6.  前記第1および第2配向膜の表面自由エネルギーは44mJ/m2以上50mJ/m2以下である、請求項4または5に記載の液晶表示装置。 Surface free energy of the first and second alignment films is 44 mJ / m 2 or more 50 mJ / m 2 or less, the liquid crystal display device according to claim 4 or 5.
  7.  前記液晶層に電圧を印加する一対の電極は、前記第1基板または前記第2基板上のいずれか一方に形成され、
     前記液晶層と前記第1基板との間、および、前記液晶層と前記第2基板との間に形成された第1および第2垂直配向膜とを備え、
     前記液晶領域は、
      前記壁と前記第1垂直配向膜とによって分離された第1液晶領域と、
      前記壁と前記第2垂直配向膜とによって分離された第2液晶領域とを含み、
     前記第1および第2液晶領域の前記2色性蛍光色素は、それぞれ前記第1および第2垂直配向膜によって規定される方位に沿って配向している、請求項1から6のいずれかに記載の液晶表示装置。
    A pair of electrodes for applying a voltage to the liquid crystal layer is formed on either the first substrate or the second substrate,
    Comprising first and second vertical alignment films formed between the liquid crystal layer and the first substrate and between the liquid crystal layer and the second substrate;
    The liquid crystal region is
    A first liquid crystal region separated by the wall and the first vertical alignment layer;
    A second liquid crystal region separated by the wall and the second vertical alignment layer;
    7. The dichroic fluorescent dye in the first and second liquid crystal regions is aligned along an orientation defined by the first and second vertical alignment films, respectively. Liquid crystal display device.
  8.  液晶表示パネルと、
     前記液晶表示パネルの観察者側に配置された光線方向変換素子と、
     前記液晶表示パネルと前記光線方向変換素子との間に設けられた空気層とを有し、
     前記液晶表示パネルは、
     光を透過する透過状態と光を散乱する散乱状態との間で状態が切り替えられ得る液晶層と、
     発光方向によって発光の強さが異なる、複数の2色性蛍光色素分子を有する蛍光発光層とを有し、
     前記液晶層は、画素内に、連続した壁と、ネマチック液晶材料を有する液晶領域とを有し、
     前記複数の2色性蛍光色素分子のそれぞれは、前記蛍光発光層内に、遷移双極子モーメントの向きが各分子で同じ方向になるように配向されており、
     前記光線方向変換素子は、前記複数の2色性蛍光分子のそれぞれから発光された蛍光の進行方向を所定の方向に向ける、液晶表示装置。
    A liquid crystal display panel;
    A light beam direction conversion element disposed on the viewer side of the liquid crystal display panel;
    An air layer provided between the liquid crystal display panel and the light beam direction conversion element;
    The liquid crystal display panel is
    A liquid crystal layer that can be switched between a transmission state that transmits light and a scattering state that scatters light; and
    A fluorescent light-emitting layer having a plurality of dichroic fluorescent dye molecules having different light emission intensity depending on the light emission direction
    The liquid crystal layer has a continuous wall and a liquid crystal region having a nematic liquid crystal material in a pixel,
    Each of the plurality of dichroic fluorescent dye molecules is oriented in the fluorescent light-emitting layer so that the direction of the transition dipole moment is the same in each molecule,
    The light beam direction conversion element is a liquid crystal display device that directs the traveling direction of fluorescence emitted from each of the plurality of dichroic fluorescent molecules in a predetermined direction.
  9.  前記複数の2色性蛍光色素分子のそれぞれは、前記蛍光発光層内に、遷移双極子モーメントの向きが前記蛍光発光層の厚さ方向と一致するように配向されている、請求項8に記載の液晶表示装置。 9. Each of the plurality of dichroic fluorescent dye molecules is oriented in the fluorescent light emitting layer so that the direction of the transition dipole moment coincides with the thickness direction of the fluorescent light emitting layer. Liquid crystal display device.
  10.  前記蛍光発光層と前記液晶層との間には、紫外線を吸収する紫外線吸収層が設けられている、請求項8または9に記載の表示装置。 10. The display device according to claim 8, wherein an ultraviolet absorbing layer that absorbs ultraviolet rays is provided between the fluorescent light emitting layer and the liquid crystal layer.
  11.  前記蛍光発光層は、シート状に形成された発光層と、前記発光層を被接着部に接着する接着層とを有し、
     前記発光層および前記接着層の少なくとも一方は、紫外線吸収剤を含む、請求項8から10のいずれかに記載の液晶表示装置。
    The fluorescent light-emitting layer has a light-emitting layer formed in a sheet shape, and an adhesive layer that adheres the light-emitting layer to an adherend,
    The liquid crystal display device according to claim 8, wherein at least one of the light emitting layer and the adhesive layer contains an ultraviolet absorber.
  12.  前記液晶表示パネルは、前記液晶層に電圧を印加する一対の電極を有し、
     前記一対の電極は、一対の櫛歯電極である、請求項8から11のいずれかに記載の液晶表示装置。
    The liquid crystal display panel has a pair of electrodes for applying a voltage to the liquid crystal layer,
    The liquid crystal display device according to claim 8, wherein the pair of electrodes are a pair of comb electrodes.
  13.  前記蛍光発光層と前記光線方向変換素子との間に、光源からの光を前記蛍光発光層に導く導光板が配置されている、請求項8から12のいずれかに記載の液晶表示装置。 The liquid crystal display device according to any one of claims 8 to 12, wherein a light guide plate that guides light from a light source to the fluorescent light emitting layer is disposed between the fluorescent light emitting layer and the light beam direction changing element.
  14.  前記蛍光発光層の面方向外方に、前記蛍光発光層内の2色性蛍光色素分子から出射される光を受光して発電する光発電部を備えている、請求項8から13のいずれかに記載の液晶表示装置。 14. The photovoltaic device according to claim 8, further comprising a photovoltaic unit that generates light by receiving light emitted from the dichroic fluorescent dye molecules in the fluorescent light-emitting layer outside the fluorescent light-emitting layer in the plane direction. A liquid crystal display device according to 1.
  15.  前記光発電部は、その受光面が蛍光発光層の面方向端部に対向するように設けられている、請求項14に記載の液晶表示装置。 The liquid crystal display device according to claim 14, wherein the photovoltaic unit is provided such that a light receiving surface thereof faces an end in a surface direction of the fluorescent light emitting layer.
  16.  前記光線方向変換素子の回折角度は、40°以上70°以下である、請求項1から15のいずれかに記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein a diffraction angle of the light beam direction conversion element is 40 ° or more and 70 ° or less.
  17.  前記液晶表示パネルの前記光線方向変換素子側に配置された反射防止層をさらに有する、請求項1から16のいずれかに記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 16, further comprising an antireflection layer disposed on the light beam direction conversion element side of the liquid crystal display panel.
  18.  前記光線方向変換素子の前記液晶表示パネル側に配置された反射防止層をさらに有する、請求項1から16のいずれかに記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 16, further comprising an antireflection layer disposed on the liquid crystal display panel side of the light beam direction conversion element.
  19.  前記液晶表示装置は、前記液晶表示パネルの前記光線方向変換素子側、および、前記光線方向変換素子の前記液晶表示パネル側に配置された反射防止層をさらに有する、請求項1から16のいずれかに記載の液晶表示装置。 17. The liquid crystal display device according to claim 1, further comprising an antireflection layer disposed on the light beam direction conversion element side of the liquid crystal display panel and on the liquid crystal display panel side of the light beam direction conversion element. A liquid crystal display device according to 1.
  20.  前記液晶領域に含まれる前記ネマチック液晶材料の異常光屈折率neと常光屈折率noとの差は0.1以上0.3以下である、請求項1から19のいずれかに記載の液晶表示装置。 20. The liquid crystal display device according to claim 1, wherein a difference between an extraordinary refractive index ne and an ordinary refractive index no of the nematic liquid crystal material included in the liquid crystal region is 0.1 or more and 0.3 or less. .
  21.  前記液晶領域はカイラル剤を含んでいない、請求項1から20のいずれかに記載の液晶表示装置。 21. The liquid crystal display device according to claim 1, wherein the liquid crystal region does not contain a chiral agent.
  22.  前記ネマチック液晶材料の誘電異方性は正である、請求項1から21のいずれかに記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 21, wherein the dielectric anisotropy of the nematic liquid crystal material is positive.
PCT/JP2012/060836 2011-04-26 2012-04-23 Liquid crystal display device WO2012147681A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011098556 2011-04-26
JP2011-098556 2011-04-26

Publications (1)

Publication Number Publication Date
WO2012147681A1 true WO2012147681A1 (en) 2012-11-01

Family

ID=47072200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060836 WO2012147681A1 (en) 2011-04-26 2012-04-23 Liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2012147681A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04199024A (en) * 1990-11-29 1992-07-20 Hitachi Ltd Liquid crystal display element and display device using the same
JPH06242421A (en) * 1993-02-17 1994-09-02 Hitachi Cable Ltd Liquid crystal cell using polymer dispersion type liquid crystal film
JPH09325333A (en) * 1996-06-05 1997-12-16 Seiko Epson Corp Liquid crystal display device
JPH11242908A (en) * 1998-02-25 1999-09-07 Hitachi Ltd Lighting system and liquid crystal display using the same
JPH11295713A (en) * 1998-04-16 1999-10-29 Hitachi Ltd Liquid crystal display device
JP2001318370A (en) * 2000-05-12 2001-11-16 Seiko Epson Corp Liquid crystal device and electronic appliance
JP2007197487A (en) * 2006-01-23 2007-08-09 Fujifilm Corp Liquid crystal composition, liquid crystal element, liquid crystal display element, light control material, and display method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04199024A (en) * 1990-11-29 1992-07-20 Hitachi Ltd Liquid crystal display element and display device using the same
JPH06242421A (en) * 1993-02-17 1994-09-02 Hitachi Cable Ltd Liquid crystal cell using polymer dispersion type liquid crystal film
JPH09325333A (en) * 1996-06-05 1997-12-16 Seiko Epson Corp Liquid crystal display device
JPH11242908A (en) * 1998-02-25 1999-09-07 Hitachi Ltd Lighting system and liquid crystal display using the same
JPH11295713A (en) * 1998-04-16 1999-10-29 Hitachi Ltd Liquid crystal display device
JP2001318370A (en) * 2000-05-12 2001-11-16 Seiko Epson Corp Liquid crystal device and electronic appliance
JP2007197487A (en) * 2006-01-23 2007-08-09 Fujifilm Corp Liquid crystal composition, liquid crystal element, liquid crystal display element, light control material, and display method

Similar Documents

Publication Publication Date Title
CN102155674B (en) Illumination device and display device
US6469755B1 (en) Illuminating arrangement with reflector having inclined irregularities or corrugations
JP4909090B2 (en) LIGHTING DEVICE AND DISPLAY DEVICE HAVING THE SAME
JP5679308B2 (en) Illumination device and display device
CN104503129B (en) A kind of optics module and reflection display device
JP5954097B2 (en) Display device
JP5467388B2 (en) Illumination device and display device
JP5112230B2 (en) Liquid crystal display
US20100171903A1 (en) Illuminating device and display device
KR20150016220A (en) Illumination device, and display
WO2012053411A1 (en) Illumination device, and display device
JP6035866B2 (en) Illumination device and display device
KR20150013423A (en) Illumination device and display device
JP2010262813A (en) Lighting device, and liquid crystal display device
JP2009301041A (en) Diffuser, method of manufacturing the same and liquid crystal display device using the same
WO2009142226A1 (en) Illumination device and display device
KR20010062553A (en) Liquid-crystal display device
US8253888B2 (en) Liquid crystal display device
US10558083B2 (en) Liquid crystal display module and liquid crystal display device
WO2011158569A1 (en) Photochromatic element, display device, illumination device and method of manufacturing photochromatic element
WO2020062591A1 (en) Polarizing plate and display device
JPWO2011080948A1 (en) Light guiding unit, lighting device, and display device
WO2018120508A1 (en) Backlight module and display device
JP2007240903A (en) Optical control element and display device
WO2012147681A1 (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12777744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12777744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP