WO2020062591A1 - Polarizing plate and display device - Google Patents

Polarizing plate and display device Download PDF

Info

Publication number
WO2020062591A1
WO2020062591A1 PCT/CN2018/120015 CN2018120015W WO2020062591A1 WO 2020062591 A1 WO2020062591 A1 WO 2020062591A1 CN 2018120015 W CN2018120015 W CN 2018120015W WO 2020062591 A1 WO2020062591 A1 WO 2020062591A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
film
compensation film
light
polarizing plate
Prior art date
Application number
PCT/CN2018/120015
Other languages
French (fr)
Chinese (zh)
Inventor
康志聪
Original Assignee
惠科股份有限公司
重庆惠科金渝光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司, 重庆惠科金渝光电科技有限公司 filed Critical 惠科股份有限公司
Publication of WO2020062591A1 publication Critical patent/WO2020062591A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present application relates to the field of display technology, and in particular, to a polarizing plate and a display device.
  • the display device is generally composed of a backlight module and a display panel placed on the backlight module.
  • the backlight module provides incident light for the display panel.
  • the incident light is usually concentrated and incident on the display panel. Therefore, when viewing the display screen in the frontal direction, It can obtain better display image quality, but when viewing the display screen in the side view direction, the image quality is poor and the color cast is more serious, which makes the viewing angle of normal display smaller.
  • a sub-pixel in a filter is again divided into a plurality of sub-pixels to improve the image quality of a side viewing angle, thereby expanding the viewing angle.
  • this method requires more TFT (Thin Film Transistor) elements to drive the sub-pixels. This will inevitably increase the metal traces inside the panel, causing the light-transmissive area to become smaller, affecting the light transmittance of the panel and affecting Picture quality.
  • TFT Thin Film Transistor
  • a polarizing plate capable of improving a display angle of a display device with a small display angle and poor side-view image quality, without increasing cost, is provided.
  • a display device is provided.
  • a polarizing plate includes:
  • An optical compensation film is formed on the light emitting surface, the optical compensation film has a second refractive index, the first refractive index is greater than the second refractive index, and the optical compensation film is in contact with the support and protection film
  • a plurality of grooves having the same shape and size as the convex structure are formed on the surface;
  • a polarizing film is provided on the optical compensation film.
  • a polarizing plate includes:
  • a support protective film having a first refractive index, the support protective film having a light incident surface and a light emitting surface, and a plurality of convex structures having a preset shape are provided on the light emitting surface, and the convex At least part of the surface of the lifting structure is a circular arc surface, and an angle formed by the circular arc surface and the light incident surface is an acute angle;
  • An optical compensation film is formed on the light emitting surface, the optical compensation film has a second refractive index, the first refractive index is greater than the second refractive index, and the optical compensation film is in contact with the support and protection film
  • a plurality of grooves having the same shape and size as the convex structure are formed on the surface;
  • the optical compensation film is a positive single optical axis A-compensation film
  • the first refractive index is a normal refractive index of the positive single optical axis A-compensation film
  • the positive single optical axis A-compensation film Containing nematic liquid crystal molecules, the optical axis of the nematic liquid crystal molecules is parallel to the light incident surface
  • a polarizing film is provided on the optical compensation film.
  • a display device includes:
  • Backlight module for providing light source
  • the display panel includes a polarizing plate, and the polarizing plate includes:
  • An optical compensation film is formed on the light emitting surface, the optical compensation film has a second refractive index, the first refractive index is greater than the second refractive index, and the optical compensation film is in contact with the support and protection film
  • a plurality of grooves having the same shape and size as the convex structure are formed on the surface;
  • a polarizing film is provided on the optical compensation film.
  • the polarizing plate and the display device are provided with a supporting protective film and an optical compensation film, and the first refractive index is greater than the second refractive index, that is, light enters the supporting protective film from the light incident surface of the supporting protective film and penetrates the supporting protective film.
  • the film enters the optical compensation film it enters the optical dense from the light dense, so the phenomenon of refraction occurs at the contact interface between the two films, which deflects the light. Since most light rays are incident perpendicularly to the light incident surface in the liquid crystal display device, in the exemplary technology, the surface of each layer of the polarizing plate is flat and perpendicular to the normal incident light, so most of the incident light is incident perpendicularly to the polarized light.
  • a convex structure is formed on the light-emitting surface of the supporting protective film. At least part of the surface of the convex structure forms an acute angle with the light-entering surface. After incident light enters the supporting protective film, it forms on the surface of the convex structure. The angle of incidence is less than 90 °. Therefore, in order to cause refraction, the vertically incident light is deflected, so that the energy of the positive viewing angle is distributed to the side viewing angle, and the image quality of the side viewing angle is improved.
  • the support protective film and optical compensation film also have a phase compensation function, which can correct the phenomenon of phase retardation and color shift after light passes through the liquid crystal layer.
  • FIG. 1 is a schematic diagram of a partial structure of a polarizing plate in an embodiment
  • FIG. 2 is a schematic structural diagram of a supporting protective film in an embodiment
  • 3A is a perspective structural view of a supporting protective film in an embodiment
  • 3B is a schematic perspective view of a supporting protective film in another embodiment
  • 4A is a schematic structural diagram of a supporting protective film in another embodiment
  • FIG. 4B is a schematic perspective view of a supporting protective film in another embodiment
  • 5A is a partial cross-sectional view of a polarizing plate in an embodiment
  • 5B is a partial cross-sectional view of a polarizing plate in another embodiment
  • FIG. 6 is a schematic structural diagram of a polarizing plate in an embodiment
  • FIG. 7 is a schematic structural diagram of a display device according to an embodiment
  • FIG. 8 is a cross-sectional view of the display panel structure in FIG. 7.
  • the polarizing plate 10 may include a support protective film 100, an optical compensation film 200, and a polarizing film 300.
  • the support protective film 100 has a light-entering surface and a light-exiting surface.
  • the light-entering surface is a side that receives incident light. Light enters the support-protective film 100 from the incident surface and exits from the light-exiting surface.
  • the light-exiting surface is provided with a plurality of preset shapes.
  • the convex structure 101 has an angle formed by at least a part of the surface of the convex structure 101 with the light incident surface, ⁇ is an acute angle, and satisfies 0 ° ⁇ ⁇ 90 °.
  • the structure 101 generates a refraction phenomenon.
  • the optical compensation film 200 is formed on the support protective film 100.
  • the optical compensation film 200 is provided with a plurality of grooves 210 having the same shape and size as the convex structure 101 on the surface in contact with the support protective film 100, that is, the optical compensation film 200.
  • the support film 100 can be completely bonded to each other through the protruding structure 101 and the groove 210.
  • the support protective film 100 has a first refractive index n1
  • the optical compensation film 200 has a second refractive index n2
  • the first refractive index n1 is larger than the second refractive index n2.
  • the solution is provided by supporting and protecting the film 100 and the optical compensation film 200 with different refractive indexes and protecting the
  • the light emitting surface of the film 100 is provided with a convex structure 101.
  • the propagation path of light deflects the light, so that the light energy of the positive viewing angle is distributed to the large viewing angle, and the image quality of the side viewing angle is improved.
  • the polarizing plate 10 further includes a polarizing film 300.
  • the polarizing film 300 is used to polarize incident light and emit the polarized light.
  • the polarizing film 300 may be a PVA (Polyvinyl alcohol) material, which mainly absorbs and penetrates polarized light.
  • the polarizing film 300 is a product commonly used in the market.
  • the transmission axis is Products parallel to the 0/180 degree direction and absorption axis parallel to the 90/270 degree direction.
  • the polarizing film 300 can also select that the transmission axis is parallel to the 90/270 degree direction, and the absorption axis is parallel to the 0/180 degree direction.
  • the incident angle of the vertically incident light on the surface of the convex structure is ⁇ , 0 ⁇ ⁇ 90 °, so the light Refraction will occur, and the refraction angle is ⁇ . Since the light enters from the dense to the light, so ⁇ is greater than ⁇ , that is, the light propagation path changes, and the light R1 deviates from the original normal incidence direction and diverges to the side, so there will be more A lot of light enters the side, improving the image quality of the side viewing angle.
  • the value range of the first refractive index n1 is 1.0 ⁇ n1 ⁇ 2.5
  • the value range of the second refractive index n2 is 1.0 ⁇ n1 ⁇ 2.5.
  • the preferred value range of m is 0.01 ⁇ m ⁇ 1.5.
  • a plurality of protruding structures 101 are formed on the light-emitting surface of the supporting protective film 100.
  • the plurality of protruding structures 101 are strip-shaped structures and a part of the surface of the strip-shaped structures is an arc-shaped curved surface. Can be set side by side. It can be understood that a part of the surface referred to herein may be a side of the convex structure 101 opposite to the light emitting surface, that is, an upper surface of the convex structure 101.
  • the angle between the arc-shaped surface and the light incident surface of the supporting protective film 100 may be the angle between the tangent of any point on the surface of the arc-shaped curved surface and the light incident surface.
  • the included angle is an acute angle, that is, ⁇ in FIG. 1, and 0 ° ⁇ ⁇ 90 °.
  • a part of the surface of the convex structure 101 may also be a spherical curved surface. It can be understood that the part of the surface referred to herein may be a side of the convex structure 101 opposite to the light emitting surface, that is, the upper surface of the convex structure 101 .
  • the plurality of convex structures 101 may be distributed in a two-dimensional matrix array on the light emitting surface.
  • the angle between the spherical curved surface and the light incident surface of the support and protection film 100 is the angle between a tangent passing through any point on the surface of the spherical curved surface and the light incident surface.
  • the included angle is an acute angle, that is, ⁇ in FIG. 1, and 0 ° ⁇ ⁇ 90 °. Because in the display device, most of the light generated by the backlight module is incident on the display panel vertically, that is, most of the light incident on the phase compensation film is perpendicular to the light incident surface of the phase compensation film.
  • the curved convex structure 101 since the curved convex structure 101 is provided, it can refract the normal incident light, and the light deviates from the original normal incident direction and diverges to the side. Therefore, more light will enter the side, and the angle of the side view is improved. Picture quality.
  • the upper surface of the convex structure 101 is a circular arc surface and a plurality of convex structures 101 are arranged side by side, refraction occurs only in a one-dimensional direction, so that light is scattered to both sides of the curved surface;
  • the upper surface of the convex structure 101 is When it is a spherical curved surface and a plurality of convex structures 101 are in a two-dimensional matrix array, refraction occurs in a two-dimensional plane, so that light is scattered to various angles of the two-dimensional plane, so that each angle of view can present better image quality.
  • the support protective film 100 may have a light incident surface and a light emitting surface, and the light emitting surface and the light incident surface may be rectangles having the same shape and size, or may have other shapes.
  • the upper surface of the convex structure 101 is a circular arc surface or a spherical surface
  • the radius of the circular arc surface or the spherical surface in the first direction is less than or equal to twice the height of the convex structure 101 in the first direction.
  • the direction is the direction perpendicular to the light emitting surface, which can be understood here as the extending direction along the Y axis.
  • R is the radius of the curved surface in the first direction
  • D is the height of the convex structure 101 in the first direction
  • R ⁇ 2D the relationship between the radius R and the height D
  • the protruding structure 101 is a strip structure
  • its cross-section is a left-right symmetrical structure
  • the second direction is the direction of the extending direction of the vertical strip structure on the light emitting surface
  • the second direction can be understood here It is a direction extending along the X axis.
  • Lx is the length of the strip-like protruding structure in the second direction
  • Px is the center distance of the strip-like protruding structure in the second direction.
  • the convex structure 101 satisfies in the second direction: Px ⁇ Lx and Px ⁇ 10 ⁇ m, and 10 ⁇ m is a wavelength of visible light.
  • Px> Lx there is a gap between adjacent convex structures 101.
  • Px> Lx that is, the convex structures 101 can be arranged at periodic intervals. When light propagates from light dense to light dense, the interval is equivalent to a grating.
  • the convex structure 101 having a spherical curved surface The length in the second direction is Lx, Px is the center distance of the convex structure 101 with a spherical curved surface in the second direction, and Py is the center distance of the convex structure 101 with a spherical curved surface in the third direction.
  • the first direction, the second direction, and the third direction are perpendicular to each other.
  • the first direction can be understood as being along the Y axis.
  • Extension direction the second direction can be understood as the extension direction along the X axis
  • the third direction can be understood as the extension direction along the Z axis.
  • Px, Py, Lx, and Ly satisfy: Px ⁇ Lx and Px ⁇ 10 ⁇ m; Py ⁇ Ly and Py ⁇ 10 ⁇ m; 10 ⁇ m is the general opening size of a pixel.
  • Px> Lx, Py> Ly there are gaps between adjacent convex structures 101, that is, the convex structures 101 are distributed in a two-dimensional matrix array.
  • the distance and the surface can be used to make The vertically incident light diverges towards the side, further distributes the energy of the frontal light to the side viewing angle, and improves the image quality of the side viewing angle.
  • the optical compensation film 200 should be made of a transparent or translucent material that can transmit light and has a function of phase compensation.
  • the optical compensation film 200 is filled with liquid crystal.
  • the liquid crystal is a birefringent material.
  • the refractive index of the normal light is normal refractive index, which is abnormal.
  • the refractive index of light is an abnormal refractive index.
  • the direction of the abnormal refractive index is the direction in which the direction of the optical electric field is parallel to the optical axis of the liquid crystal.
  • the direction of the normal refractive index is the direction in which the optical field is perpendicular to the optical axis of the liquid crystal.
  • the optical compensation film 200 is a negative single optical axis C-compensating film, and the negative single optical axis C-compensating film can be filled with the dish-shaped liquid crystal 201, and the light of the dish-shaped liquid crystal 201 The axis is perpendicular to the light incident surface.
  • the direction of the abnormal refractive index nce (extraordinary refractive index) of the dish-shaped liquid crystal 201 is parallel to the optical axis of the dish-shaped liquid crystal, and the direction of normal refractive index nco (ordinary refractive index) of the dish-shaped liquid crystal is perpendicular to the abnormal refractive index.
  • the nce direction, that is, the normal refractive index nco direction of the dish-shaped liquid crystal is parallel to the light incident surface, and nco> nce.
  • the first refractive index of the support protective film 10 is a normal refractive index n, and n> nco.
  • the second refractive index is a negative single optical axis C-compensating film with a normal refractive index nco, and the direction of n and the direction of nco are both parallel to the light incident surface.
  • the optical compensation film 200 can also be a positive single optical axis A-compensation film.
  • the positive single optical axis A-compensation film can be filled with nematic liquid crystal 202, and the nematic liquid crystal 202 has a long rod shape.
  • the optical axis of the nematic liquid crystal 202 is parallel to the light incident surface
  • the abnormal refractive index nae direction of the nematic liquid crystal is parallel to the optical axis of the nematic liquid crystal, that is, the abnormal refractive index nae direction of the nematic liquid crystal is
  • the light planes are parallel
  • the normal refractive index nao direction of the nematic liquid crystal is perpendicular to the abnormal refractive index nae direction, and nae> nao
  • the second refractive index is the normal refraction of a positive single optical axis
  • the first refractive index of the supporting protective film 10 is the normal refractive index n, and n> nao, and the direction of n and the direction of nao are both parallel to the light incident surface.
  • the polarizing film 300 has an absorption axis and a transmission axis, and polarized light having a vibration direction parallel to the transmission axis can pass through the polarizing film 300.
  • the optical axis (optical axis of the liquid crystal) of the optical compensation film 200 can be parallel to the transmission axis of the polarizing film, and the polarization of the incident light after passing through the phase compensation film The direction is parallel to the transmission axis of the polarizing film 300, so it can completely pass through the polarizing film 300.
  • the optical compensation film 100 (positive single optical axis A-compensation film or negative single optical axis C-compensation film) also has the function of phase compensation
  • the optical compensation film 100 (positive single optical axis A -Compensation film or negative single optical axis C-compensation film) In addition to deflecting incident light at the interface to expand the viewing angle and enhance the quality of the side viewing angle, it can also play a role in phase compensation.
  • polyvinyl alcohol is usually used as a polarizing film, and polyvinyl alcohol is extremely hydrophilic.
  • a layer of triacetate cellulose is usually required on both sides of the polarizer.
  • Film, cellulose triacetate support film has high light transmittance, good water resistance and certain mechanical strength, and can protect polarizing film.
  • the support protective film 100 and the optical compensation film 200 are provided on one side of the polarizing film 300, the support protective film 100 and the optical compensation film 200 can perform phase compensation and deflect light, and can also serve as protection. Layer to protect the polarizing film 300. It should be noted that the supporting protective film 100 and the optical compensation film 200 need to have appropriate thicknesses to achieve the protective effect on the polarizing film 300.
  • FIG. 4A and FIG. 4B It is a schematic structural diagram and a three-dimensional structural diagram of the supporting protective film 100 in another embodiment.
  • a plurality of convex structures 101 are formed on the light-exiting surface of the supporting protective film 100.
  • the plurality of convex structures 101 are strip-shaped structures and part of the surface of the strip-shaped structures are arc-shaped curved surfaces.
  • the plurality of convex structures 101 may be arranged side by side.
  • the protruding structure 101 can be regarded as a fan-shaped strip-shaped protruding structure.
  • the cross-sectional shape parallel to the paper surface is a fan-shaped shape.
  • One side of the fan-shaped structure is R.
  • the distance in the second direction is Px
  • the height of the fan-shaped convex structure 101 in the first direction is D.
  • D and R satisfies the relationship described in the previous embodiment, and Px is less than or equal to 10 ⁇ m.
  • R can also be regarded as Is the length of the convex structure 101 along the second direction.
  • the convex structure 101 has both an inclined surface and a curved surface, so when the incident light R0 is refracted, a plurality of different refractions can be obtained. Angle, so that the outgoing light ray R1 is emitted in all directions, so that the light energy of the positive viewing angle is more evenly distributed to the side viewing angle.
  • the difference between this embodiment and the foregoing embodiment of the arc-shaped curved surface is only in the shape, and the specific viewing angle diffusion principle, refractive index, and size representation are the same as the description of the foregoing arc-shaped curved surface, and this embodiment is convex
  • the first refractive index of the structure 101 is greater than the second refractive index of the second compensation film, so that it is possible to ensure that the light that is incident vertically is from the light dense medium to the light sparse medium, and cooperates with the unique convex structure to make the light diffuse.
  • a part of the surface of the convex structure 101 may also be a spherical curved surface, and the convex structure 101 may be distributed in a dot-like array (two-dimensional matrix array) on the light emitting surface.
  • a compensation film 400 and an anti-glare film 500 may be sequentially stacked on the light-emitting side of the polarizing film 300, and a light-sensitive surface 500 of the compensation film 400 is covered with a laminated sensitive adhesive layer 500.
  • the polarizing plate 10 is adhered to a glass substrate through a pressure-sensitive adhesive layer 600.
  • a polarizing plate is also provided.
  • the polarizing plate includes a supporting protective film having a first refractive index.
  • the supporting protective film has a light incident surface and a light emitting surface.
  • the light emitting surface is provided with a plurality of convex structures having a predetermined shape. At least part of the surface of the structure is a curved surface, and the angle formed by the curved surface and the light incident surface is an acute angle.
  • An optical compensation film is formed on the light emitting surface.
  • the optical compensation film has a second refractive index, and the first refractive index is larger than the first refractive index.
  • the birefringence, optical compensation film is provided with a plurality of grooves having the same shape and size as the convex structure on the surface in contact with the support and protection film; a polarizing film is provided on the optical compensation film.
  • the incident light perpendicular to the supporting protective film can be refracted, thereby The light energy of the positive viewing angle is distributed to the side viewing angle, thereby solving the problem of color cast.
  • no additional metal wiring is used in the entire polarizing plate, there is no problem that affects the transmittance of light and further affects the image quality.
  • the present application also discloses a display device.
  • the display device includes a backlight module 5 and a display panel 1 disposed above the backlight module.
  • the backlight module 5 is used to provide incident light R0 (not labeled in FIG. 7).
  • the incident light R0 is incident on the display panel 1 in a concentrated manner.
  • the divergent direction of the incident light R0 is at a small angle with the direction perpendicular to the display panel 1. Less than 30 °, most of the light received by the display panel 1 is normal incident light. Since the support protective film 100 and the optical compensation film 200 exist in the display panel 1 and the light-emitting surface of the support protective film 100 is provided with a plurality of convex shapes having a predetermined shape.
  • the lifting structure 101 can deflect the normal incident light to produce outgoing light R1 by refraction on the surface of the protruding structure 101, thereby allocating the positive viewing angle energy to the side viewing angle and improving the image quality of the side viewing angle.
  • the backlight module 5 may include a side-type LED light source 51, a reflection sheet 52, and a light guide plate 53.
  • the upper and lower surfaces of the light guide plate 53 are provided with long V-shaped grooves.
  • the side walls of the V-shaped grooves on the lower surface of the light guide plate 53 are parallel to the side-type light source 51, and the V-shaped grooves on the upper surface of the light guide plate 53 and the V-shaped grooves on the lower surface. Set up perpendicular to each other.
  • the display panel 1 may be, for example, a TFT-LCD (Thin Film Transistor Liquid Crystal Displayer) display panel 1, an OLED (Organic Light-Emitting Diode) display panel 1, or a QLED (Quantum Dot Light Emitting Diodes). , Quantum dot light emitting diode) display panel 1, curved display panel 1 or other display panel 1.
  • TFT-LCD Thin Film Transistor Liquid Crystal Displayer
  • OLED Organic Light-Emitting Diode
  • QLED Quantum Dot Light Emitting Diodes
  • the display panel 1 includes an upper polarizing plate 1000, a lower polarizing plate 2000, an upper substrate 3000, a lower substrate 4000, and a sandwiching substrate.
  • the incident order of light in the display panel 1 is: first enter the lower polarizing plate 2000, then pass through the lower substrate 4000, then pass through the liquid crystal layer 6000, and enter after rotating through the liquid crystal layer 6000 Enter the upper substrate 3000, and finally enter the upper polarizing plate 1000.
  • the lower polarizing plate 2000 is the polarizing plate 10 described in the foregoing embodiment. It can be understood that the upper polarizing plate 2000 may also be the polarizing plate 10 described in the foregoing embodiment.
  • the lower polarizing plate 2000 may include a supporting protective film 100 for supporting protection.
  • the film 100 has a first refractive index
  • the support and protection film 100 has a light incident surface and a light emitting surface, and a plurality of convex structures 101 having a predetermined shape are provided on the light emitting surface.
  • the convex structure 101 has at least a part of the surface and the light incident surface.
  • the formed angle is an acute angle; the lower polarizing plate 2000 further includes an optical compensation film 200 formed on the light exit surface of the support and protection film 100.
  • the optical compensation film 200 has a second refractive index, and the first refractive index is greater than the second refractive index;
  • the plate 2000 further includes a polarizing film 300 provided on the optical compensation film 200.
  • the optical compensation film 200 can phase compensate the incident light. Because light enters from light dense to light dense, and the incident angle of incident light on at least part of the contact surface is not equal to 90 °, a refraction phenomenon occurs, which deflects normal incident light to a side viewing angle, and distributes positive viewing angle energy to the side viewing angle. To improve the quality of the side view.
  • the specific structure of the polarizing plate 10 has been described in detail above, and is not repeated here.

Abstract

A polarizing plate and a display device. The polarizing plate (10) comprises: a support protective film (100) having a large refractive index and provided with a plurality of projecting structures (101), part of the surface of the projecting structure (101) being curved; and an optical compensation film (200) having a small refractive index, the optical compensation film (200) being provided with grooves (210) matching the plurality of projecting structures (101).

Description

偏光板及显示装置Polarizing plate and display device
相关申请的交叉引用Cross-reference to related applications
本申请要求于2018年9月30日提交中国专利局、申请号为201811161580.7、申请名称为“偏光板、显示面板及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。This application claims the priority of a Chinese patent application filed on September 30, 2018 with the Chinese Patent Office, application number 201811161580.7, and application name "Polarizing Plate, Display Panel and Display Device", the entire contents of which are incorporated herein by reference. in.
技术领域Technical field
本申请涉及显示技术领域,特别是涉及一种偏光板及显示装置。The present application relates to the field of display technology, and in particular, to a polarizing plate and a display device.
背景技术Background technique
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有技术。The statements herein merely provide background information related to the present application and do not necessarily constitute prior art.
随着显示技术的发展,显示装置因具有高画质、省电、机身薄等优点而被广泛应用,其中,画质的好坏是影响消费者体验的最主要的因素。显示装置一般由背光模组和置于背光模组上的显示面板构成,背光模组为显示面板提供入射光,该入射光通常是集中垂直入射至显示面板,因此在正视方向观看显示屏时,能获取较好的显示画质,但是在侧视方向观看显示屏时,画质较差,色偏比较严重,使得正常显示的视角较小。目前,在VA(Vertical Alignment liquid crystal,垂直排列)液晶显示器中采用将滤光片中的子像素再次划分为多个次像素的手段来改善侧视角的画质,从而扩大视角。但是这种方法需要更多的TFT(Thin Film Transistor,薄膜晶体管)元件来驱动次像素,如此势必增加面板内部的金属走线,造成可透光的区域变小,影响面板的透光率,影响画质。而若为了保证光亮度,则需提高背光模组的性能,使其产生 更高亮度的入射光,如此又会增加背光成本。With the development of display technology, display devices have been widely used because of their advantages such as high picture quality, power saving, and thin body. Among them, the quality of the picture is the most important factor affecting consumer experience. The display device is generally composed of a backlight module and a display panel placed on the backlight module. The backlight module provides incident light for the display panel. The incident light is usually concentrated and incident on the display panel. Therefore, when viewing the display screen in the frontal direction, It can obtain better display image quality, but when viewing the display screen in the side view direction, the image quality is poor and the color cast is more serious, which makes the viewing angle of normal display smaller. At present, in a VA (Vertical Alignment Liquid Crystal) vertical liquid crystal display, a sub-pixel in a filter is again divided into a plurality of sub-pixels to improve the image quality of a side viewing angle, thereby expanding the viewing angle. However, this method requires more TFT (Thin Film Transistor) elements to drive the sub-pixels. This will inevitably increase the metal traces inside the panel, causing the light-transmissive area to become smaller, affecting the light transmittance of the panel and affecting Picture quality. In order to ensure the brightness, it is necessary to improve the performance of the backlight module so that it can generate incident light with higher brightness, which will increase the cost of the backlight.
申请内容Application content
根据本申请的各种实施例,提供一种可以改善显示装置的显示视角小、侧视画质较差,同时成本不会提高的偏光板。According to various embodiments of the present application, a polarizing plate capable of improving a display angle of a display device with a small display angle and poor side-view image quality, without increasing cost, is provided.
此外,还提供一种显示装置。In addition, a display device is provided.
一种偏光板,包括:A polarizing plate includes:
支撑保护膜,所述支撑保护膜具有第一折射率,所述支撑保护膜具有入光面和出光面,且所述出光面上设有多个具有预设形状的凸起结构,所述凸起结构的至少部分表面与所述入光面所形成的角度为锐角;A support protective film having a first refractive index, the support protective film having a light incident surface and a light emitting surface, and a plurality of convex structures having a preset shape are provided on the light emitting surface, and the convex An angle formed by at least a part of the surface of the lifting structure and the light incident surface is an acute angle;
光学补偿膜,形成于所述出光面上,所述光学补偿膜具有第二折射率,所述第一折射率大于所述第二折射率,所述光学补偿膜在与所述支撑保护膜接触的面上开设有多个与所述凸起结构形状和大小均相同的凹槽;及An optical compensation film is formed on the light emitting surface, the optical compensation film has a second refractive index, the first refractive index is greater than the second refractive index, and the optical compensation film is in contact with the support and protection film A plurality of grooves having the same shape and size as the convex structure are formed on the surface; and
偏光膜,设于所述光学补偿膜上。A polarizing film is provided on the optical compensation film.
一种偏光板,包括:A polarizing plate includes:
支撑保护膜,所述支撑保护膜具有第一折射率,所述支撑保护膜具有入光面和出光面,且所述出光面上设有多个具有预设形状的凸起结构,所述凸起结构的至少部分表面为圆弧曲面,所述圆弧曲面与所述入光面所形成的角度为锐角;A support protective film having a first refractive index, the support protective film having a light incident surface and a light emitting surface, and a plurality of convex structures having a preset shape are provided on the light emitting surface, and the convex At least part of the surface of the lifting structure is a circular arc surface, and an angle formed by the circular arc surface and the light incident surface is an acute angle;
光学补偿膜,形成于所述出光面上,所述光学补偿膜具有第二折射率,所述第一折射率大于所述第二折射率,所述光学补偿膜在与所述支撑保护膜接触的面上开设有多个与所述凸起结构形状和大小均相同的凹槽;An optical compensation film is formed on the light emitting surface, the optical compensation film has a second refractive index, the first refractive index is greater than the second refractive index, and the optical compensation film is in contact with the support and protection film A plurality of grooves having the same shape and size as the convex structure are formed on the surface;
所述光学补偿膜为正性单光轴A-补偿膜,所述第一折射率为所述正性单 光轴A-补偿膜的正常折射率,所述正性单光轴A-补偿膜包含向列相液晶分子,所述向列相液晶分子的光轴平行于所述入光面;及The optical compensation film is a positive single optical axis A-compensation film, the first refractive index is a normal refractive index of the positive single optical axis A-compensation film, and the positive single optical axis A-compensation film Containing nematic liquid crystal molecules, the optical axis of the nematic liquid crystal molecules is parallel to the light incident surface; and
偏光膜,设于所述光学补偿膜上。A polarizing film is provided on the optical compensation film.
一种显示装置,包括:A display device includes:
背光模组,用于提供光源;Backlight module for providing light source;
显示面板,置于所述背光模组一侧,用于显示画面;A display panel placed on one side of the backlight module for displaying a picture;
其中,所述显示面板包括偏光板,所述偏光板包括:The display panel includes a polarizing plate, and the polarizing plate includes:
支撑保护膜,所述支撑保护膜具有第一折射率,所述支撑保护膜具有入光面和出光面,且所述出光面上设有多个具有预设形状的凸起结构,所述凸起结构的至少部分表面与所述入光面所形成的角度为锐角;A support protective film having a first refractive index, the support protective film having a light incident surface and a light emitting surface, and a plurality of convex structures having a preset shape are provided on the light emitting surface, and the convex An angle formed by at least a part of the surface of the lifting structure and the light incident surface is an acute angle;
光学补偿膜,形成于所述出光面上,所述光学补偿膜具有第二折射率,所述第一折射率大于所述第二折射率,所述光学补偿膜在与所述支撑保护膜接触的面上开设有多个与所述凸起结构形状和大小均相同的凹槽;及An optical compensation film is formed on the light emitting surface, the optical compensation film has a second refractive index, the first refractive index is greater than the second refractive index, and the optical compensation film is in contact with the support and protection film A plurality of grooves having the same shape and size as the convex structure are formed on the surface; and
偏光膜,设于所述光学补偿膜上。A polarizing film is provided on the optical compensation film.
上述偏光板及显示装置,由于设有支撑保护膜和光学补偿膜,且第一折射率大于第二折射率,即光从支撑保护膜的入光面入射至支撑保护膜内并穿透支撑保护膜进入光学补偿膜时,是从光密质进入光疏质中,因此会在两层膜的接触界面发生折射现象,使光线发生偏转。由于在液晶显示装置中,大部分光线是垂直入射至入光面,在示例性技术中,偏光板中的各层膜表面平整且与垂直入射光相互垂直,因此大部分入射光垂直入射至偏光板时仍然垂直射出,导致正视角画质较好而侧视角画质较差。而本方案中,支撑保护膜的出光面形成有凸起结构,该凸起结构至少部分表面与入光面形成夹角为锐角,垂直入射光进入支撑保护膜后,在凸起结构的表面形成的入射角小于90°, 因此为发生折射,使垂直入射的光线发生偏转,从而使正视角能量分配到侧视角,提高侧视角的画质。同时,支撑保护膜和光学补偿膜还具有相位补偿的功能,能够修正光线经过液晶层后会出现相位延迟以及色偏的现象。Because the polarizing plate and the display device are provided with a supporting protective film and an optical compensation film, and the first refractive index is greater than the second refractive index, that is, light enters the supporting protective film from the light incident surface of the supporting protective film and penetrates the supporting protective film. When the film enters the optical compensation film, it enters the optical dense from the light dense, so the phenomenon of refraction occurs at the contact interface between the two films, which deflects the light. Since most light rays are incident perpendicularly to the light incident surface in the liquid crystal display device, in the exemplary technology, the surface of each layer of the polarizing plate is flat and perpendicular to the normal incident light, so most of the incident light is incident perpendicularly to the polarized light. It still shoots out vertically when it is on the board, resulting in better image quality in front viewing angle and poor image quality in side viewing angle. In this solution, a convex structure is formed on the light-emitting surface of the supporting protective film. At least part of the surface of the convex structure forms an acute angle with the light-entering surface. After incident light enters the supporting protective film, it forms on the surface of the convex structure. The angle of incidence is less than 90 °. Therefore, in order to cause refraction, the vertically incident light is deflected, so that the energy of the positive viewing angle is distributed to the side viewing angle, and the image quality of the side viewing angle is improved. At the same time, the support protective film and optical compensation film also have a phase compensation function, which can correct the phenomenon of phase retardation and color shift after light passes through the liquid crystal layer.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本申请实施例或示例性技术中的技术方案,下面将对实施例或示例性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。In order to more clearly illustrate the technical solutions in the embodiments or exemplary technologies of the present application, the drawings used in the embodiments or exemplary technical descriptions will be briefly introduced below. Obviously, the drawings in the following description are merely These are some embodiments of the present application. For those of ordinary skill in the art, without any creative effort, drawings of other embodiments can be obtained according to these drawings.
图1为一实施例中的偏光板局部结构示意图;FIG. 1 is a schematic diagram of a partial structure of a polarizing plate in an embodiment; FIG.
图2为一实施例中的支撑保护膜的结构示意图;2 is a schematic structural diagram of a supporting protective film in an embodiment;
图3A为一实施例中支撑保护膜的立体结构图;3A is a perspective structural view of a supporting protective film in an embodiment;
图3B为另一实施例中支撑保护膜的立体示意图;3B is a schematic perspective view of a supporting protective film in another embodiment;
图4A为另一实施例中的支撑保护膜的结构示意图;4A is a schematic structural diagram of a supporting protective film in another embodiment;
图4B为另一实施例中的支撑保护膜的立体示意图;4B is a schematic perspective view of a supporting protective film in another embodiment;
图5A为一实施例中的偏光板的局部剖视图;5A is a partial cross-sectional view of a polarizing plate in an embodiment;
图5B为另一实施例中的偏光板的局部剖视图;5B is a partial cross-sectional view of a polarizing plate in another embodiment;
图6为一实施例中的偏光板的结构示意图;6 is a schematic structural diagram of a polarizing plate in an embodiment;
图7为一实施例中的显示装置的结构示意图;7 is a schematic structural diagram of a display device according to an embodiment;
图8为图7中的显示面板结构的剖视图。FIG. 8 is a cross-sectional view of the display panel structure in FIG. 7.
具体实施方式detailed description
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的可选实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。In order to facilitate understanding of the present application, the present application will be described more fully with reference to the related drawings. The drawings show alternative embodiments of the present application. However, this application can be implemented in many different forms and is not limited to the embodiments described herein. Rather, these embodiments are provided to provide a thorough and comprehensive understanding of the disclosure of this application.
除非另有定义,本文所使用的所有的技术和科学术语与属于申请的技术领域的技术人员通常理解的含义相同。本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs. The terminology used in the specification of the application herein is only for the purpose of describing specific embodiments, and is not intended to limit the application. The term "and / or" as used herein includes any and all combinations of one or more of the associated listed items.
在本申请的描述中,需要理解的是,术语“上”、“下”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方法或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。In the description of this application, it should be understood that the orientations or positional relationships indicated by the terms "up", "down", "vertical", "horizontal", "inside", "outside" and the like are based on the drawings The method or position relationship is only for the convenience of describing the application and simplifying the description, and does not indicate or imply that the device or element referred to must have a specific orientation, structure and operation in a specific orientation, so it cannot be understood as a limitation on this application. .
如图1所示,偏光板10可以包括支撑保护膜100、光学补偿膜200和偏光膜300。其中,支撑保护膜100具有入光面和出光面,入光面为接收入射光的一面,光线从入射面进入支撑保护膜100并从出光面射出,出光面上设有多个具有预设形状的凸起结构101,凸起结构101存在至少部分表面与入光面所形成的角度为α,α为锐角,满足0°<α<90°。将凸起结构101的部分表面与入光面之间的夹角设置为锐角,可使得光线从入光面进入第一相位补偿膜100后从出光面射出时,会因为出光面上开设的凸起结构101产生折射现象。光学补偿膜200形成于支撑保护膜100上,光学补偿膜200在与支撑保护膜100接触的面上开设有多个与凸起结构101形状和大小均相同的凹槽210,即光学补偿膜200与支撑保护膜100可通过凸起结构101和凹槽 210实现完全贴合。支撑保护膜100具有第一折射率n1,光学补偿膜200具有第二折射率n2,第一折射率n1大于第二折射率n2。当光穿透支撑保护膜100进入光学补偿膜200时,是从光密质进入光疏质,因此在支撑保护膜100与光学补偿膜200的接触界面会发生折射。在显示装置中,由于绝大部分光线是垂直入射至偏光板中,即绝大部分光线垂直于入光面,本方案通过设置不同折射率的支撑保护膜100和光学补偿膜200并在支撑保护膜100的出光面设置凸起结构101,垂直入射光从支撑保护膜100入射至光学补偿膜200时,结合凸起结构101的表面特征,会在凸起结构101的表面发生折射,改变垂直入射光的传播路径,使光线发生偏转,从而使正视角光型能量分配到大视角,提高侧视角的画质。偏光板10还包括偏光膜300,偏光膜300用于对入射光进行偏振处理并射出偏振光。As shown in FIG. 1, the polarizing plate 10 may include a support protective film 100, an optical compensation film 200, and a polarizing film 300. The support protective film 100 has a light-entering surface and a light-exiting surface. The light-entering surface is a side that receives incident light. Light enters the support-protective film 100 from the incident surface and exits from the light-exiting surface. The light-exiting surface is provided with a plurality of preset shapes. The convex structure 101 has an angle formed by at least a part of the surface of the convex structure 101 with the light incident surface, α is an acute angle, and satisfies 0 ° <α <90 °. Setting an included angle between a part of the surface of the convex structure 101 and the light incident surface to be an acute angle, so that when light enters the first phase compensation film 100 from the light incident surface and exits from the light emitting surface, it will be caused by the convexity opened on the light emitting surface. The structure 101 generates a refraction phenomenon. The optical compensation film 200 is formed on the support protective film 100. The optical compensation film 200 is provided with a plurality of grooves 210 having the same shape and size as the convex structure 101 on the surface in contact with the support protective film 100, that is, the optical compensation film 200. The support film 100 can be completely bonded to each other through the protruding structure 101 and the groove 210. The support protective film 100 has a first refractive index n1, the optical compensation film 200 has a second refractive index n2, and the first refractive index n1 is larger than the second refractive index n2. When light penetrates the support protective film 100 and enters the optical compensation film 200, it enters the photophosphite from the light dense material, and therefore, refraction occurs at the contact interface between the support protective film 100 and the optical compensation film 200. In the display device, since most of the light is incident into the polarizing plate vertically, that is, most of the light is perpendicular to the light incident surface, the solution is provided by supporting and protecting the film 100 and the optical compensation film 200 with different refractive indexes and protecting the The light emitting surface of the film 100 is provided with a convex structure 101. When the vertically incident light enters the optical compensation film 200 from the support and protection film 100, combining the surface characteristics of the convex structure 101, the surface of the convex structure 101 will be refracted and the vertical incidence will be changed. The propagation path of light deflects the light, so that the light energy of the positive viewing angle is distributed to the large viewing angle, and the image quality of the side viewing angle is improved. The polarizing plate 10 further includes a polarizing film 300. The polarizing film 300 is used to polarize incident light and emit the polarized light.
在一实施例中,偏光膜300可以为PVA(Polyvinyl alcohol,聚乙烯醇)材料,主要对偏振光起吸收和穿透的作用,偏光膜300选取目前市面上常用的产品,其穿透轴是平行于0/180度方向,吸收轴平行于90/270度方向的产品。当然,偏光膜300还可以选取穿透轴是平行于90/270度方向,吸收轴平行于0/180度方向。In an embodiment, the polarizing film 300 may be a PVA (Polyvinyl alcohol) material, which mainly absorbs and penetrates polarized light. The polarizing film 300 is a product commonly used in the market. The transmission axis is Products parallel to the 0/180 degree direction and absorption axis parallel to the 90/270 degree direction. Of course, the polarizing film 300 can also select that the transmission axis is parallel to the 90/270 degree direction, and the absorption axis is parallel to the 0/180 degree direction.
请同时参阅图1和图2,当光线R0垂直穿透支撑保护膜100进入光学补偿膜200时,垂直入射光在凸起结构表面处的入射角为γ,0<γ<90°,因此光线会发生折射,折射角为β,由于光线是从光密质进入光疏质,所以β大于γ,即光线传播路径发生改变,光线R1偏离原来垂直入射方向,向侧边发散,因此会有更多的光线射入侧边,提高侧视角度的画质。可以理解的,第一折射率n1与第二折射率n2的差异越大,发生折射时的折射角度越大,越容易将正视光型能量分配到大视角。在一实施例中,第一折射率n1的取值范 围为1.0<n1<2.5,第二折射率n2的取值范围为1.0<n1<2.5。在一实施例中,若m=n1-n2,则m的优选取值范围为0.01<m<1.5。Please refer to FIG. 1 and FIG. 2 at the same time, when the light R0 vertically penetrates the support protective film 100 and enters the optical compensation film 200, the incident angle of the vertically incident light on the surface of the convex structure is γ, 0 <γ <90 °, so the light Refraction will occur, and the refraction angle is β. Since the light enters from the dense to the light, so β is greater than γ, that is, the light propagation path changes, and the light R1 deviates from the original normal incidence direction and diverges to the side, so there will be more A lot of light enters the side, improving the image quality of the side viewing angle. It can be understood that the larger the difference between the first refractive index n1 and the second refractive index n2, the larger the refraction angle when refraction occurs, and the easier it is to distribute the frontal light type energy to a large viewing angle. In one embodiment, the value range of the first refractive index n1 is 1.0 <n1 <2.5, and the value range of the second refractive index n2 is 1.0 <n1 <2.5. In one embodiment, if m = n1-n2, the preferred value range of m is 0.01 <m <1.5.
如图3A所示,支撑保护膜100的出光面形成有多个凸起结构101,多个凸起结构101为条状结构且条状结构的部分表面为圆弧曲面,多个凸起结构101可并排设置。可以理解,这里所说的部分表面可以为凸起结构101的相对出光面的一面,也就是凸起结构101的上表面。当凸起结构101的上表面为圆弧形曲面时,圆弧曲面与支撑保护膜100入光面的夹角可以为过弧形曲面的表面任一点的切线与入光面的夹角,该夹角为锐角,即为图1中的α,并且,0°<α<90°。如图3B所示,凸起结构101的部分表面也可以为球形曲面,可以理解,这里所说的部分表面可以为凸起结构101的相对出光面的一面,也就是凸起结构101的上表面。多个凸起结构101在出光面上可以是呈二维矩阵阵列分布,球形曲面与支撑保护膜100入光面的夹角为过球形曲面表面任一点的切线与入光面的夹角,该夹角为锐角,即为图1中的α,并且,0°<α<90°。由于在显示装置中,背光模组生成的光线大部分是集中垂直入射至显示面板,即入射至相位补偿膜的光线大部分垂直于相位补偿膜的入光面。本方案中,由于设有曲面凸起结构101,可以对垂直入射光线进行折射,光线偏离原来垂直入射方向,向侧边发散,因此会有更多的光线射入侧边,提高侧视角度的画质。当凸起结构101的上表面为圆弧曲面且多个凸起结构101并排排列时,仅在一维方向发生折射,使光线发散到弧形曲面的两侧;当凸起结构101的上表面为球形曲面且多个凸起结构101呈二维矩阵阵列时,会在二维平面内发生折射,使光线发散至二维平面的各个角度,从而使各个视角都能呈现较好的画质。As shown in FIG. 3A, a plurality of protruding structures 101 are formed on the light-emitting surface of the supporting protective film 100. The plurality of protruding structures 101 are strip-shaped structures and a part of the surface of the strip-shaped structures is an arc-shaped curved surface. Can be set side by side. It can be understood that a part of the surface referred to herein may be a side of the convex structure 101 opposite to the light emitting surface, that is, an upper surface of the convex structure 101. When the upper surface of the convex structure 101 is an arc-shaped curved surface, the angle between the arc-shaped surface and the light incident surface of the supporting protective film 100 may be the angle between the tangent of any point on the surface of the arc-shaped curved surface and the light incident surface. The included angle is an acute angle, that is, α in FIG. 1, and 0 ° <α <90 °. As shown in FIG. 3B, a part of the surface of the convex structure 101 may also be a spherical curved surface. It can be understood that the part of the surface referred to herein may be a side of the convex structure 101 opposite to the light emitting surface, that is, the upper surface of the convex structure 101 . The plurality of convex structures 101 may be distributed in a two-dimensional matrix array on the light emitting surface. The angle between the spherical curved surface and the light incident surface of the support and protection film 100 is the angle between a tangent passing through any point on the surface of the spherical curved surface and the light incident surface. The included angle is an acute angle, that is, α in FIG. 1, and 0 ° <α <90 °. Because in the display device, most of the light generated by the backlight module is incident on the display panel vertically, that is, most of the light incident on the phase compensation film is perpendicular to the light incident surface of the phase compensation film. In this solution, since the curved convex structure 101 is provided, it can refract the normal incident light, and the light deviates from the original normal incident direction and diverges to the side. Therefore, more light will enter the side, and the angle of the side view is improved. Picture quality. When the upper surface of the convex structure 101 is a circular arc surface and a plurality of convex structures 101 are arranged side by side, refraction occurs only in a one-dimensional direction, so that light is scattered to both sides of the curved surface; when the upper surface of the convex structure 101 is When it is a spherical curved surface and a plurality of convex structures 101 are in a two-dimensional matrix array, refraction occurs in a two-dimensional plane, so that light is scattered to various angles of the two-dimensional plane, so that each angle of view can present better image quality.
如图2所示,支撑保护膜100可以具有入光面和出光面,出光面和入光 面可以是形状和大小均相同的矩形,也可以是其他形状。在凸起结构101的上表面为圆弧曲面或球形曲面时,圆弧曲面或球形曲面在第一方向上的半径小于或等于凸起结构101在第一方向上的高度的两倍,第一方向也就是垂直于出光面的方向,这里可以理解为沿Y轴的延伸方向。图2中,R为曲面在第一方向上的半径,D为凸起结构101在第一方向上的高度,半径R和高度D之间的关系可以表示为R≤2D,使得在膜层较薄时减小曲面的曲率半径,曲率半径越小,折射效果越明显,可以分配到大视角的能量范围就越多。As shown in FIG. 2, the support protective film 100 may have a light incident surface and a light emitting surface, and the light emitting surface and the light incident surface may be rectangles having the same shape and size, or may have other shapes. When the upper surface of the convex structure 101 is a circular arc surface or a spherical surface, the radius of the circular arc surface or the spherical surface in the first direction is less than or equal to twice the height of the convex structure 101 in the first direction. The direction is the direction perpendicular to the light emitting surface, which can be understood here as the extending direction along the Y axis. In FIG. 2, R is the radius of the curved surface in the first direction, D is the height of the convex structure 101 in the first direction, and the relationship between the radius R and the height D can be expressed as R ≦ 2D, so that the When thin, reduce the curvature radius of the curved surface. The smaller the curvature radius, the more obvious the refraction effect, and the more energy range that can be allocated to a large viewing angle.
可选地,相邻两凸起结构之间存在间隔,也可以不存在间隔。请继续参阅图2,当凸起结构101为条状结构时,其截面为左右对称结构,其中,第二方向为出光面上垂直条状结构的延伸方向的方向,这里可以将第二方向理解为沿X轴延伸的方向。Lx为条状凸起结构在第二方向上的长度,Px为条状凸起结构在第二方向上的中心距。凸起结构101在第二方向上满足:Px≥Lx且Px≤10μm,10μm为可见光的波长。当Px>Lx时,相邻凸起结构101存在间隔,当Px>Lx时,即凸起结构101可以呈周期间隔排列,光从光密质传播到光疏质时,该间隔相当于光栅,其间隔越接近波长就越容易在相邻凸起结构101之间的间隔处产生衍射现象,而衍射也会改变光线的传播路径,使垂直入射光朝侧边发散,进一步将正视光能量分配到侧视角,提高侧视角的画质。Optionally, there may be a gap between two adjacent raised structures, and there may be no gap. Please continue to refer to FIG. 2, when the protruding structure 101 is a strip structure, its cross-section is a left-right symmetrical structure, wherein the second direction is the direction of the extending direction of the vertical strip structure on the light emitting surface, and the second direction can be understood here It is a direction extending along the X axis. Lx is the length of the strip-like protruding structure in the second direction, and Px is the center distance of the strip-like protruding structure in the second direction. The convex structure 101 satisfies in the second direction: Px ≧ Lx and Px ≦ 10 μm, and 10 μm is a wavelength of visible light. When Px> Lx, there is a gap between adjacent convex structures 101. When Px> Lx, that is, the convex structures 101 can be arranged at periodic intervals. When light propagates from light dense to light dense, the interval is equivalent to a grating. The closer the interval is to the wavelength, the easier it is to generate a diffraction phenomenon at the interval between adjacent convex structures 101, and the diffraction will also change the propagation path of the light, make the vertically incident light diverge to the side, and further distribute the energy of the frontal light to Side view, improve the picture quality of side view.
同理,当凸起结构101的部分表面为球形曲面的时候,其可以具有与条状结构相同的截面,所以,此处可以同时参照图2、图3B,具备球形曲面的凸起结构101在第二方向上的长度为Lx,Px为具备球形曲面的凸起结构101在第二方向上的中心距,Py为具备球形曲面的凸起结构101在第三方向上的中心距,相应的,Ly(图未标示)为具备球形曲面的凸起结构101在第三方 向上的长度,优选Lx=Ly,其中,由于出光面为矩形,故,以垂直于出光面的方向为第一方向,以矩形宽度的延伸方向为第二方向,以矩形长度的延伸方向为第三方向,第一方向、第二方向、第三方向三者之间互相垂直,这里,第一方向可以理解为沿Y轴的延伸方向,第二方向可以理解为沿X轴的延伸方向,第三方向可以理解为沿Z轴的延伸方向。Px、Py、Lx、Ly满足:Px≥Lx且Px≤10μm;Py≥Ly且Py≤10μm;10μm为像素的一般开口大小。当Px>Lx,Py>Ly时,相邻凸起结构101存在间隔,即凸起结构101呈二维矩阵阵列分布,光从光密质传播到光疏质时,就可以借助间隔和曲面使垂直入射光朝侧边发散,进一步将正视光能量分配到侧视角,提高侧视角的画质。Similarly, when a part of the surface of the convex structure 101 is a spherical curved surface, it can have the same cross-section as a strip structure. Therefore, referring to FIG. 2 and FIG. 3B at the same time, the convex structure 101 having a spherical curved surface The length in the second direction is Lx, Px is the center distance of the convex structure 101 with a spherical curved surface in the second direction, and Py is the center distance of the convex structure 101 with a spherical curved surface in the third direction. Accordingly, Ly (Not shown) is the length of the convex structure 101 with a spherical curved surface in the third direction, preferably Lx = Ly, where the light emitting surface is rectangular, so the direction perpendicular to the light emitting surface is the first direction, and the rectangle is The extension direction of the width is the second direction, and the extension direction of the rectangular length is the third direction. The first direction, the second direction, and the third direction are perpendicular to each other. Here, the first direction can be understood as being along the Y axis. Extension direction, the second direction can be understood as the extension direction along the X axis, and the third direction can be understood as the extension direction along the Z axis. Px, Py, Lx, and Ly satisfy: Px ≧ Lx and Px ≦ 10 μm; Py ≧ Ly and Py ≦ 10 μm; 10 μm is the general opening size of a pixel. When Px> Lx, Py> Ly, there are gaps between adjacent convex structures 101, that is, the convex structures 101 are distributed in a two-dimensional matrix array. When light propagates from light dense to light dense, the distance and the surface can be used to make The vertically incident light diverges towards the side, further distributes the energy of the frontal light to the side viewing angle, and improves the image quality of the side viewing angle.
可以理解的,光学补偿膜200应为可透光的透明或半透明材料制成且具有相位补偿的功能。在一实施例中,光学补偿膜200内填充有液晶,液晶为双折射材料,光线进入液晶时会折射成正常光和反常光两条光线,其中,正常光的折射率为正常折射率,反常光的折射率为反常折射率,反常折射率方向为光电场方向与液晶光轴平行的方向,正常折射率方向为光电场与液晶光轴垂直的方向,反常折射率方向与正常折射率方向垂直。在本实施例中,如图5A所示,光学补偿膜200为负性单光轴C-补偿膜,负性单光轴C-补偿膜内可填充碟状液晶201,碟状液晶201的光轴垂直于入光面,碟状液晶201的反常折射率nce(extraordinary refractive index)方向与碟状液晶的光轴平行,碟状液晶的正常折射率nco(ordinary refractive index)方向垂直于反常折射率nce方向,即碟状液晶的正常折射率nco方向平行于入光面,且nco>nce。支撑保护膜10的第一折射率为正常折射率n,并且n>nco。在本实施例中,第二折射率为负性单光轴C-补偿膜正常折射率nco,n的方向与nco的方向均平行于入光面。如图5B所示,光学补偿膜200还可以为正性单光轴A-补偿 膜,正性单光轴A-补偿膜内部可填充向列相液晶202,向列相液晶202为长条棒状型液晶,向列相液晶202的光轴与入光面平行,向列相液晶的反常折射率nae方向与向列相液晶的光轴平行,即向列相液晶的反常折射率nae方向与入光面平行,向列相液晶的正常折射率nao方向垂直于反常折射率nae方向,且nae>nao;在本实施例中,第二折射率为正性单光轴A-补偿膜的正常折射率nao,支撑保护膜10的第一折射率为正常折射率n,并且n>nao,n的方向与nao的方向均平行于入光面。It can be understood that the optical compensation film 200 should be made of a transparent or translucent material that can transmit light and has a function of phase compensation. In one embodiment, the optical compensation film 200 is filled with liquid crystal. The liquid crystal is a birefringent material. When the light enters the liquid crystal, it is refracted into two kinds of normal light and abnormal light. The refractive index of the normal light is normal refractive index, which is abnormal. The refractive index of light is an abnormal refractive index. The direction of the abnormal refractive index is the direction in which the direction of the optical electric field is parallel to the optical axis of the liquid crystal. The direction of the normal refractive index is the direction in which the optical field is perpendicular to the optical axis of the liquid crystal. The direction of the abnormal refractive index is perpendicular to the direction of the normal refractive index. . In this embodiment, as shown in FIG. 5A, the optical compensation film 200 is a negative single optical axis C-compensating film, and the negative single optical axis C-compensating film can be filled with the dish-shaped liquid crystal 201, and the light of the dish-shaped liquid crystal 201 The axis is perpendicular to the light incident surface. The direction of the abnormal refractive index nce (extraordinary refractive index) of the dish-shaped liquid crystal 201 is parallel to the optical axis of the dish-shaped liquid crystal, and the direction of normal refractive index nco (ordinary refractive index) of the dish-shaped liquid crystal is perpendicular to the abnormal refractive index. The nce direction, that is, the normal refractive index nco direction of the dish-shaped liquid crystal is parallel to the light incident surface, and nco> nce. The first refractive index of the support protective film 10 is a normal refractive index n, and n> nco. In this embodiment, the second refractive index is a negative single optical axis C-compensating film with a normal refractive index nco, and the direction of n and the direction of nco are both parallel to the light incident surface. As shown in FIG. 5B, the optical compensation film 200 can also be a positive single optical axis A-compensation film. The positive single optical axis A-compensation film can be filled with nematic liquid crystal 202, and the nematic liquid crystal 202 has a long rod shape. Type liquid crystal, the optical axis of the nematic liquid crystal 202 is parallel to the light incident surface, the abnormal refractive index nae direction of the nematic liquid crystal is parallel to the optical axis of the nematic liquid crystal, that is, the abnormal refractive index nae direction of the nematic liquid crystal is The light planes are parallel, the normal refractive index nao direction of the nematic liquid crystal is perpendicular to the abnormal refractive index nae direction, and nae> nao; in this embodiment, the second refractive index is the normal refraction of a positive single optical axis A-compensation film The first refractive index of the supporting protective film 10 is the normal refractive index n, and n> nao, and the direction of n and the direction of nao are both parallel to the light incident surface.
偏光膜300具有吸收轴和穿透轴,振动方向与穿透轴平行的偏振光能通过偏光膜300。在一实施例中,为了减小相位补偿膜对光线的偏振影响,可使光学补偿膜200的光轴(液晶光轴)与偏光膜的穿透轴平行,入射光经过相位补偿膜后的偏振方向与偏光膜300的穿透轴平行,因此能完全穿过偏光膜300。在本方案中,由于光学补偿膜100(正性单光轴A-补偿膜或负性单光轴C-补偿膜)也具有相位补偿的功能,利用光学补偿膜100(正性单光轴A-补偿膜或负性单光轴C-补偿膜)除了能使入射光在界面处发生偏转以扩大视角,增强侧视角画质外,还可以起到相位补偿的作用。The polarizing film 300 has an absorption axis and a transmission axis, and polarized light having a vibration direction parallel to the transmission axis can pass through the polarizing film 300. In an embodiment, in order to reduce the polarization effect of the phase compensation film on light, the optical axis (optical axis of the liquid crystal) of the optical compensation film 200 can be parallel to the transmission axis of the polarizing film, and the polarization of the incident light after passing through the phase compensation film The direction is parallel to the transmission axis of the polarizing film 300, so it can completely pass through the polarizing film 300. In this solution, since the optical compensation film 100 (positive single optical axis A-compensation film or negative single optical axis C-compensation film) also has the function of phase compensation, the optical compensation film 100 (positive single optical axis A -Compensation film or negative single optical axis C-compensation film) In addition to deflecting incident light at the interface to expand the viewing angle and enhance the quality of the side viewing angle, it can also play a role in phase compensation.
示例性技术中,通常使用聚乙烯醇作为偏光膜,而聚乙烯醇具有极强的亲水性,为保护偏光膜的物理特性,通常需在偏光片的两侧设置一层三醋酸纤维素支撑膜,三醋酸纤维素支撑膜具有高透光性、耐水性好且具有一定的机械强度,能对偏光膜进行保护。在本实施例中,由于在偏光膜300的一侧设有支撑保护膜100和光学补偿膜200,支撑保护膜100和光学补偿膜200既能进行相位补偿和对光线进行偏转,也可以充当保护层来保护偏光膜300。需要注意的是,支撑保护膜100和光学补偿膜200需具有合适的厚度以实现对偏光膜300的保护作用。In the exemplary technology, polyvinyl alcohol is usually used as a polarizing film, and polyvinyl alcohol is extremely hydrophilic. In order to protect the physical properties of the polarizing film, a layer of triacetate cellulose is usually required on both sides of the polarizer. Film, cellulose triacetate support film has high light transmittance, good water resistance and certain mechanical strength, and can protect polarizing film. In this embodiment, since the support protective film 100 and the optical compensation film 200 are provided on one side of the polarizing film 300, the support protective film 100 and the optical compensation film 200 can perform phase compensation and deflect light, and can also serve as protection. Layer to protect the polarizing film 300. It should be noted that the supporting protective film 100 and the optical compensation film 200 need to have appropriate thicknesses to achieve the protective effect on the polarizing film 300.
请继续参阅图4A,图4B。为另一实施例中的支撑保护膜100的结构示意图和立体结构图。支撑保护膜100的出光面上形成的多个凸起结构101,多个凸起结构101为条状结构且条状结构的部分表面为圆弧曲面,多个凸起结构101可以并排设置。如图4B所示,凸起结构101可以看作是一个扇形条状凸起结构,其与纸面平行的剖面形状为一个扇形,扇形的一条边的长度为R,相邻凸起结构101在第二方向上的间距为Px,扇形凸起结构101在第一方向的高度为D,D与R之间满足前述实施例所描述的关系,Px小于或等于10μm,这里的R也可以看做是凸起结构101沿第二方向上的长度,在本实施例中,凸起结构101既具备了斜面又具备了曲面,所以在对入射光R0发生折射的时候,可以获得多个不同的折射角度,使得出射光线R1沿各个方向出射,进而使得正视角的光能量分配到侧视角时更加均匀。可以理解,本实施例与前述圆弧形曲面的实施例的不同之处仅在于形状,具体的视角扩散原理、折射率、尺寸表示都与前述圆弧曲面的描述相同,并且本实施例凸起结构101的第一折射率大于第二补偿膜的第二折射率,这样就可以保证垂直入射的光线都是由光密介质到光疏介质,再配合独有的凸起结构,使得光线发生扩散。相应地,凸起结构101的部分表面还可以为球形曲面,凸起结构101可以在出光面上呈点状阵列分布(二维矩阵阵列)。Please continue to refer to FIG. 4A and FIG. 4B. It is a schematic structural diagram and a three-dimensional structural diagram of the supporting protective film 100 in another embodiment. A plurality of convex structures 101 are formed on the light-exiting surface of the supporting protective film 100. The plurality of convex structures 101 are strip-shaped structures and part of the surface of the strip-shaped structures are arc-shaped curved surfaces. The plurality of convex structures 101 may be arranged side by side. As shown in FIG. 4B, the protruding structure 101 can be regarded as a fan-shaped strip-shaped protruding structure. The cross-sectional shape parallel to the paper surface is a fan-shaped shape. One side of the fan-shaped structure is R. The distance in the second direction is Px, and the height of the fan-shaped convex structure 101 in the first direction is D. The relationship between D and R satisfies the relationship described in the previous embodiment, and Px is less than or equal to 10 μm. Here, R can also be regarded as Is the length of the convex structure 101 along the second direction. In this embodiment, the convex structure 101 has both an inclined surface and a curved surface, so when the incident light R0 is refracted, a plurality of different refractions can be obtained. Angle, so that the outgoing light ray R1 is emitted in all directions, so that the light energy of the positive viewing angle is more evenly distributed to the side viewing angle. It can be understood that the difference between this embodiment and the foregoing embodiment of the arc-shaped curved surface is only in the shape, and the specific viewing angle diffusion principle, refractive index, and size representation are the same as the description of the foregoing arc-shaped curved surface, and this embodiment is convex The first refractive index of the structure 101 is greater than the second refractive index of the second compensation film, so that it is possible to ensure that the light that is incident vertically is from the light dense medium to the light sparse medium, and cooperates with the unique convex structure to make the light diffuse. . Correspondingly, a part of the surface of the convex structure 101 may also be a spherical curved surface, and the convex structure 101 may be distributed in a dot-like array (two-dimensional matrix array) on the light emitting surface.
如图6所示,在偏光板10中,在偏光膜300的出光侧可依次叠设有补偿膜400和抗炫膜500,在补偿膜400的出光面上覆盖一层压敏胶层500,偏光板10通过压敏胶层600粘贴于玻璃基板上。As shown in FIG. 6, in the polarizing plate 10, a compensation film 400 and an anti-glare film 500 may be sequentially stacked on the light-emitting side of the polarizing film 300, and a light-sensitive surface 500 of the compensation film 400 is covered with a laminated sensitive adhesive layer 500. The polarizing plate 10 is adhered to a glass substrate through a pressure-sensitive adhesive layer 600.
还提供一种偏光板,包括支撑保护膜,支撑保护膜具有第一折射率,支撑保护膜具有入光面和出光面,且出光面上设有多个具有预设形状的凸起结构,凸起结构的至少部分表面为圆弧曲面,圆弧曲面与入光面所形成的角度 为锐角;光学补偿膜,形成于出光面上,光学补偿膜具有第二折射率,第一折射率大于第二折射率,光学补偿膜在与支撑保护膜接触的面上开设有多个与凸起结构形状和大小均相同的凹槽;偏光膜,设于光学补偿膜上。A polarizing plate is also provided. The polarizing plate includes a supporting protective film having a first refractive index. The supporting protective film has a light incident surface and a light emitting surface. The light emitting surface is provided with a plurality of convex structures having a predetermined shape. At least part of the surface of the structure is a curved surface, and the angle formed by the curved surface and the light incident surface is an acute angle. An optical compensation film is formed on the light emitting surface. The optical compensation film has a second refractive index, and the first refractive index is larger than the first refractive index. The birefringence, optical compensation film is provided with a plurality of grooves having the same shape and size as the convex structure on the surface in contact with the support and protection film; a polarizing film is provided on the optical compensation film.
上述实施例,通过在支撑保护膜中设置具有圆弧曲面的凸起结构,同时根据与光学补偿膜不同的折射率引起的折射效应,可使垂直入射至支撑保护膜的入射光发生折射,从而将正视角的光能量分配到侧视角,进而解决色偏的问题。此外,由于整个偏光板没有采用额外的金属走线,所以不存在影响光线的透射率,进而影响画质的问题。In the above embodiment, by providing a convex structure with a curved surface in the supporting protective film, and at the same time, according to the refractive effect caused by the refractive index different from the optical compensation film, the incident light perpendicular to the supporting protective film can be refracted, thereby The light energy of the positive viewing angle is distributed to the side viewing angle, thereby solving the problem of color cast. In addition, since no additional metal wiring is used in the entire polarizing plate, there is no problem that affects the transmittance of light and further affects the image quality.
本申请还公开一种显示装置,如图7所示,包括背光模组5以及置于背光模组上方的显示面板1。背光模组5用于提供入射光R0(图7未标示),该入射光R0集中入射至显示面板1,入射光R0的发散方向与垂直于显示面板1的方向呈小角度,该小角度可小于30°,显示面板1接收到的大部分光为垂直入射光,由于显示面板1内存在支撑保护膜100和光学补偿膜200且支撑保护膜100出光面设有多个具有预设形状的凸起结构101,在凸起结构101表面通过折射可以将垂直入射光进行偏转产生出射光R1,从而将正视角能量分配到侧视角,提高侧视角的画质。其中,背光模组5可以包括侧入式LED光源51,反射片52,导光板53。导光板53的上下表面均设有长条V型槽,导光板53下表面V型槽的侧壁与侧入式光源51平行,导光板53上表面的V型槽与下表面的V型槽以相互垂直的方式设置。The present application also discloses a display device. As shown in FIG. 7, the display device includes a backlight module 5 and a display panel 1 disposed above the backlight module. The backlight module 5 is used to provide incident light R0 (not labeled in FIG. 7). The incident light R0 is incident on the display panel 1 in a concentrated manner. The divergent direction of the incident light R0 is at a small angle with the direction perpendicular to the display panel 1. Less than 30 °, most of the light received by the display panel 1 is normal incident light. Since the support protective film 100 and the optical compensation film 200 exist in the display panel 1 and the light-emitting surface of the support protective film 100 is provided with a plurality of convex shapes having a predetermined shape. The lifting structure 101 can deflect the normal incident light to produce outgoing light R1 by refraction on the surface of the protruding structure 101, thereby allocating the positive viewing angle energy to the side viewing angle and improving the image quality of the side viewing angle. The backlight module 5 may include a side-type LED light source 51, a reflection sheet 52, and a light guide plate 53. The upper and lower surfaces of the light guide plate 53 are provided with long V-shaped grooves. The side walls of the V-shaped grooves on the lower surface of the light guide plate 53 are parallel to the side-type light source 51, and the V-shaped grooves on the upper surface of the light guide plate 53 and the V-shaped grooves on the lower surface. Set up perpendicular to each other.
请参阅图8,为图7中的显示面板的组成示意图。该显示面板1可例如为TFT-LCD(Thin Film Transistor Liquid Crystal Displayer,薄膜晶体管液晶显示器)显示面板1、OLED(Organic Light-Emitting Diode,有机发光二极管)显示面板1、QLED(Quantum Dot Light Emitting Diodes,量子点发光二极管) 显示面板1、曲面显示面板1或其他显示面板1。本申请以显示面板1为TFT-LCD显示面板1为例进行说明,如图8所示,该显示面板1包括上偏光板1000、下偏光板2000、上基板3000、下基板4000以及夹设于上基板3000和下基板4000之间的液晶层6000,光线在显示面板1中入射顺序为:先进入下偏光板2000,然后经过下基板4000,其次经过液晶层6000,经液晶层6000旋转之后入射进上基板3000,最后进入上偏光板1000。其中下偏光板2000为前述实施例介绍的偏光板10。可以理解,上偏光板2000也可以为前述实施例介绍的偏光板10,此处以下偏光板2000为前述实施例介绍的偏光板10为例,下偏光板2000可以包括支撑保护膜100,支撑保护膜100具有第一折射率,支撑保护膜100具有入光面和出光面,且出光面上设有多个具有预设形状的凸起结构101,凸起结构101存在至少部分表面与入光面所形成的角度为锐角;下偏光板2000还包括光学补偿膜200,形成于支撑保护膜100的出光面,光学补偿膜200具有第二折射率,第一折射率大于第二折射率;下偏光板2000还包括偏光膜300,设于光学补偿膜200上。光线从支撑保护膜100入射,并穿透支撑保护膜100进入光学补偿膜200,光学补偿膜200可以对入射光线进行相位补偿。由于光线从光密质进入光疏质,且入射光线在至少部分接触面的入射角不等于90°,因此会发生折射现象,使垂直入射光向侧视角偏转,将正视角能量分配到侧视角,提高侧视角的画质。其中,偏光板10的具体结构已在上文详细介绍,此处不再赘述。Please refer to FIG. 8, which is a schematic diagram of the composition of the display panel in FIG. 7. The display panel 1 may be, for example, a TFT-LCD (Thin Film Transistor Liquid Crystal Displayer) display panel 1, an OLED (Organic Light-Emitting Diode) display panel 1, or a QLED (Quantum Dot Light Emitting Diodes). , Quantum dot light emitting diode) display panel 1, curved display panel 1 or other display panel 1. This application uses the display panel 1 as a TFT-LCD display panel 1 as an example for description. As shown in FIG. 8, the display panel 1 includes an upper polarizing plate 1000, a lower polarizing plate 2000, an upper substrate 3000, a lower substrate 4000, and a sandwiching substrate. In the liquid crystal layer 6000 between the upper substrate 3000 and the lower substrate 4000, the incident order of light in the display panel 1 is: first enter the lower polarizing plate 2000, then pass through the lower substrate 4000, then pass through the liquid crystal layer 6000, and enter after rotating through the liquid crystal layer 6000 Enter the upper substrate 3000, and finally enter the upper polarizing plate 1000. The lower polarizing plate 2000 is the polarizing plate 10 described in the foregoing embodiment. It can be understood that the upper polarizing plate 2000 may also be the polarizing plate 10 described in the foregoing embodiment. Here, the following polarizing plate 2000 is the polarizing plate 10 described in the foregoing embodiment as an example. The lower polarizing plate 2000 may include a supporting protective film 100 for supporting protection. The film 100 has a first refractive index, and the support and protection film 100 has a light incident surface and a light emitting surface, and a plurality of convex structures 101 having a predetermined shape are provided on the light emitting surface. The convex structure 101 has at least a part of the surface and the light incident surface. The formed angle is an acute angle; the lower polarizing plate 2000 further includes an optical compensation film 200 formed on the light exit surface of the support and protection film 100. The optical compensation film 200 has a second refractive index, and the first refractive index is greater than the second refractive index; The plate 2000 further includes a polarizing film 300 provided on the optical compensation film 200. Light enters from the support protective film 100 and penetrates the support protective film 100 into the optical compensation film 200. The optical compensation film 200 can phase compensate the incident light. Because light enters from light dense to light dense, and the incident angle of incident light on at least part of the contact surface is not equal to 90 °, a refraction phenomenon occurs, which deflects normal incident light to a side viewing angle, and distributes positive viewing angle energy to the side viewing angle. To improve the quality of the side view. The specific structure of the polarizing plate 10 has been described in detail above, and is not repeated here.
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the embodiments described above can be arbitrarily combined. In order to simplify the description, all possible combinations of the technical features in the above embodiments have not been described. However, as long as there is no contradiction in the combination of these technical features, It should be considered as the scope described in this specification.
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation manners of the present application, and their descriptions are more specific and detailed, but they cannot be understood as a limitation on the scope of patent application. It should be noted that, for those of ordinary skill in the art, without departing from the concept of the present application, several modifications and improvements can be made, which all belong to the protection scope of the present application. Therefore, the protection scope of this application patent shall be subject to the appended claims.

Claims (20)

  1. 一种偏光板,包括:A polarizing plate includes:
    支撑保护膜,所述支撑保护膜具有第一折射率,所述支撑保护膜具有入光面和出光面,且所述出光面上设有多个具有预设形状的凸起结构,所述凸起结构的至少部分表面与所述入光面所形成的角度为锐角;A support protective film having a first refractive index, the support protective film having a light incident surface and a light emitting surface, and a plurality of convex structures having a preset shape are provided on the light emitting surface, and the convex An angle formed by at least a part of the surface of the lifting structure and the light incident surface is an acute angle;
    光学补偿膜,形成于所述出光面上,所述光学补偿膜具有第二折射率,所述第一折射率大于所述第二折射率,所述光学补偿膜在与所述支撑保护膜接触的面上开设有多个与所述凸起结构形状和大小均相同的凹槽;及An optical compensation film is formed on the light emitting surface, the optical compensation film has a second refractive index, the first refractive index is greater than the second refractive index, and the optical compensation film is in contact with the support and protection film A plurality of grooves having the same shape and size as the convex structure are formed on the surface; and
    偏光膜,设于所述光学补偿膜上。A polarizing film is provided on the optical compensation film.
  2. 如权利要求1所述的偏光板,其中,所述凸起结构为条状结构且所述条状结构的部分表面为圆弧曲面,多个所述条状结构并排设置。The polarizing plate according to claim 1, wherein the convex structure is a strip structure and a part of the surface of the strip structure is a circular arc surface, and a plurality of the strip structures are arranged side by side.
  3. 如权利要求1所述的偏光板,其中,所述凸起结构的部分表面为球形曲面,多个所述凸起结构于所述出光面上呈二维矩阵阵列分布。The polarizing plate according to claim 1, wherein a part of the surface of the convex structure is a spherical curved surface, and a plurality of the convex structures are distributed in a two-dimensional matrix array on the light emitting surface.
  4. 如权利要求2所述的偏光板,其中,所述圆弧曲面的半径小于或等于条状结构在所述第一方向上的高度的两倍;The polarizing plate of claim 2, wherein a radius of the circular curved surface is less than or equal to twice a height of the strip structure in the first direction;
    相邻的所述条状结构的中心距大于或等于所述条状结构在第二方向上的长度、且小于或等于10μm;The center-to-center distance between adjacent strip structures is greater than or equal to the length of the strip structures in the second direction, and is less than or equal to 10 μm;
    其中,以垂直于所述出光面的方向为第一方向,以所述出光面上垂直于所述条状结构的延伸方向的方向为第二方向。Wherein, a direction perpendicular to the light emitting surface is a first direction, and a direction perpendicular to the extending direction of the strip structure on the light emitting surface is a second direction.
  5. 如权利要求3所述的偏光板,其中,所述出光面为矩形,所述球形曲面的半径小于或等于所述凸起结构在第一方向上的高度的两倍;The polarizing plate according to claim 3, wherein the light emitting surface is rectangular, and the radius of the spherical curved surface is less than or equal to twice the height of the convex structure in the first direction;
    相邻的所述凸起结构的中心距大于或等于所述凸起结构在第二方向上的长度、且小于或等于10μm;The center-to-center distance between adjacent protruding structures is greater than or equal to the length of the protruding structures in the second direction, and is less than or equal to 10 μm;
    相邻的所述凸起结构的中心距大于或等于所述凸起结构在第三方向上的长度、且小于或等于10μm;The center-to-center distance of the adjacent protruding structures is greater than or equal to the length of the protruding structures in the third direction and is less than or equal to 10 μm;
    其中,以垂直于所述出光面的方向为第一方向,以所述矩形宽度的延伸方向为第二方向,以所述矩形长度的延伸方向为第三方向,第一方向、第二方向、第三方向三者之间互相垂直。The direction perpendicular to the light emitting surface is the first direction, the extending direction of the rectangular width is the second direction, and the extending direction of the rectangular length is the third direction. The first direction, the second direction, The third direction is perpendicular to each other.
  6. 如权利要求1所述的偏光板,其中,所述光学补偿膜为正性单光轴A-补偿膜,所述第一折射率为所述正性单光轴A-补偿膜的正常折射率,所述正性单光轴A-补偿膜包含向列相液晶分子,所述向列相液晶分子的光轴平行于所述入光面。The polarizing plate according to claim 1, wherein the optical compensation film is a positive single optical axis A-compensation film, and the first refractive index is a normal refractive index of the positive single optical axis A-compensation film. The positive single optical axis A-compensation film includes nematic liquid crystal molecules, and the optical axis of the nematic liquid crystal molecules is parallel to the light incident surface.
  7. 如权利要求1所述的偏光板,其中,所述光学补偿膜为负性单光轴C-补偿膜,所述第二折射率为所述负性单光轴C-补偿膜的正常折射率,所述负性单光轴C-补偿膜包含碟状液晶分子,所述碟状液晶分子的光轴垂直于所述入光面。The polarizing plate according to claim 1, wherein the optical compensation film is a negative single optical axis C-compensation film, and the second refractive index is a normal refractive index of the negative single optical axis C-compensation film. The negative single optical axis C-compensation film includes a dish-shaped liquid crystal molecule, and an optical axis of the dish-shaped liquid crystal molecule is perpendicular to the light incident surface.
  8. 如权利要求7所述的偏光板,其中,所述偏光膜具有穿透轴,偏振方向平行于所述穿透轴的光线可透过所述偏光膜,所述负性单轴C-补偿膜的光轴与所述穿透轴垂直。The polarizing plate according to claim 7, wherein the polarizing film has a transmission axis, light having a polarization direction parallel to the transmission axis can pass through the polarizing film, and the negative uniaxial C-compensation film The optical axis is perpendicular to the penetration axis.
  9. 如权利要求1所述的偏光板,其中,所述第一折射率的取值范围为1.0-2.5。The polarizing plate according to claim 1, wherein the value of the first refractive index ranges from 1.0 to 2.5.
  10. 如权利要求1所述的偏光板,其中,所述第二折射率的取值范围为1.0-2.5。The polarizing plate according to claim 1, wherein the value of the second refractive index ranges from 1.0 to 2.5.
  11. 如权利要求1所述的偏光板,其中,所述第一折射率与所述第二折射率之间的差值范围为0.01-1.5。The polarizing plate of claim 1, wherein a difference between the first refractive index and the second refractive index ranges from 0.01 to 1.5.
  12. 如权利要求1所述的偏光板,其中,所述偏光膜包括聚乙烯醇膜。The polarizing plate of claim 1, wherein the polarizing film comprises a polyvinyl alcohol film.
  13. 如权利要求1所述的偏光板,其中,所述偏光板还包括补偿膜,设于所述偏光膜上。The polarizing plate according to claim 1, wherein the polarizing plate further comprises a compensation film provided on the polarizing film.
  14. 如权利要求13所述的偏光板,其中,所述偏光板还包括压敏胶层,设于所述补偿膜上。The polarizing plate according to claim 13, wherein the polarizing plate further comprises a pressure-sensitive adhesive layer provided on the compensation film.
  15. 一种偏光板,包括:A polarizing plate includes:
    支撑保护膜,所述支撑保护膜具有第一折射率,所述支撑保护膜具有入光面和出光面,且所述出光面上设有多个具有预设形状的凸起结构,所述凸起结构的至少部分表面为圆弧曲面,所述圆弧曲面与所述入光面所形成的角度为锐角;A support protective film having a first refractive index, the support protective film having a light incident surface and a light emitting surface, and a plurality of convex structures having a preset shape are provided on the light emitting surface, and the convex At least part of the surface of the lifting structure is a circular arc surface, and an angle formed by the circular arc surface and the light incident surface is an acute angle;
    光学补偿膜,形成于所述出光面上,所述光学补偿膜具有第二折射率,所述第一折射率大于所述第二折射率,所述光学补偿膜在与所述支撑保护膜接触的面上开设有多个与所述凸起结构形状和大小均相同的凹槽;An optical compensation film is formed on the light emitting surface, the optical compensation film has a second refractive index, the first refractive index is greater than the second refractive index, and the optical compensation film is in contact with the support and protection film A plurality of grooves having the same shape and size as the convex structure are formed on the surface;
    所述光学补偿膜为正性单光轴A-补偿膜,所述第一折射率为所述正性单光轴A-补偿膜的正常折射率,所述正性单光轴A-补偿膜包含向列相液晶分子,所述向列相液晶分子的光轴平行于所述入光面;及The optical compensation film is a positive single optical axis A-compensation film, the first refractive index is a normal refractive index of the positive single optical axis A-compensation film, and the positive single optical axis A-compensation film Containing nematic liquid crystal molecules, the optical axis of the nematic liquid crystal molecules is parallel to the light incident surface; and
    偏光膜,设于所述光学补偿膜上。A polarizing film is provided on the optical compensation film.
  16. 一种显示装置,包括:A display device includes:
    背光模组,用于提供光源;及Backlight module for providing a light source; and
    显示面板,置于所述背光模组一侧,用于显示画面;A display panel placed on one side of the backlight module for displaying a picture;
    其中,所述显示面板包括偏光板,所述偏光板包括:The display panel includes a polarizing plate, and the polarizing plate includes:
    支撑保护膜,所述支撑保护膜具有第一折射率,所述支撑保护膜具有入光面和出光面,且所述出光面上设有多个具有预设形状的凸起结构,所述凸起结构的至少部分表面与所述入光面所形成的角度为锐角;A support protective film having a first refractive index, the support protective film having a light incident surface and a light emitting surface, and a plurality of convex structures having a preset shape are provided on the light emitting surface, and the convex An angle formed by at least a part of the surface of the lifting structure and the light incident surface is an acute angle;
    光学补偿膜,形成于所述出光面上,所述光学补偿膜具有第二折射率,所述第一折射率大于所述第二折射率,所述光学补偿膜在与所述支撑保护膜接触的面上开设有多个与所述凸起结构形状和大小均相同的凹槽;及An optical compensation film is formed on the light emitting surface, the optical compensation film has a second refractive index, the first refractive index is greater than the second refractive index, and the optical compensation film is in contact with the support and protection film A plurality of grooves having the same shape and size as the convex structure are formed on the surface; and
    偏光膜,设于所述光学补偿膜上。A polarizing film is provided on the optical compensation film.
  17. 根据权利要求16所述的显示装置,其中,所述背光模组包括:The display device according to claim 16, wherein the backlight module comprises:
    光源;light source;
    反射片;及Reflectors; and
    导光板;其中,所述导光板的上下表面均设有V型条状凹槽,所述导光板上表面的V型条状凹槽与所述导光板下表面的V型条状凹槽以相互垂直的方式设置。Light guide plate; wherein the upper and lower surfaces of the light guide plate are provided with V-shaped grooves, and the V-shaped grooves on the upper surface of the light guide plate and the V-shaped grooves on the lower surface of the light guide plate are Set in a mutually perpendicular manner.
  18. 根据权利要求17所述的显示装置,其中,所述光源为侧入式光源,所述导光板下表面的V型条状凹槽的侧壁与所述侧入式光源平行。The display device according to claim 17, wherein the light source is an edge-type light source, and a side wall of the V-shaped strip groove on the lower surface of the light guide plate is parallel to the edge-type light source.
  19. 根据权利要求16所述的显示装置,其中,所述显示面板为液晶显示面板。The display device according to claim 16, wherein the display panel is a liquid crystal display panel.
  20. 根据权利要求16所述的显示装置,其中,所述显示面板为有机电致发光显示面板。The display device according to claim 16, wherein the display panel is an organic electroluminescence display panel.
PCT/CN2018/120015 2018-09-30 2018-12-10 Polarizing plate and display device WO2020062591A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811161580.7A CN109143445A (en) 2018-09-30 2018-09-30 Polarizer, display panel and display device
CN201811161580.7 2018-09-30

Publications (1)

Publication Number Publication Date
WO2020062591A1 true WO2020062591A1 (en) 2020-04-02

Family

ID=64810584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120015 WO2020062591A1 (en) 2018-09-30 2018-12-10 Polarizing plate and display device

Country Status (2)

Country Link
CN (1) CN109143445A (en)
WO (1) WO2020062591A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817823B (en) * 2019-01-09 2022-03-18 云谷(固安)科技有限公司 Display panel and preparation method thereof
CN111724697B (en) * 2020-05-18 2023-01-24 明基材料有限公司 Electroluminescent display device
CN113871550A (en) * 2021-09-24 2021-12-31 惠州华星光电显示有限公司 Packaging structure and display panel
CN114002879B (en) * 2021-11-01 2023-06-30 深圳市华星光电半导体显示技术有限公司 Optical film and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101158778A (en) * 2007-11-14 2008-04-09 友达光电(苏州)有限公司 Wide vision cornea and LCD device using the same
CN201314990Y (en) * 2008-12-19 2009-09-23 上海纽发利商贸有限公司 Wide-angle lens and polarizing plate and LCD device using same
JP2013205752A (en) * 2012-03-29 2013-10-07 Dainippon Printing Co Ltd Light diffusion film, polarizing plate and liquid crystal display
CN104808278A (en) * 2015-05-18 2015-07-29 京东方科技集团股份有限公司 Polarizing plate and manufacturing method thereof as well as display device
CN105929476A (en) * 2015-02-27 2016-09-07 三星Sdi株式会社 Polarizing Plate And Liquid Crystal Display Comprising The Same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100948437B1 (en) * 2004-06-29 2010-03-17 샤프 가부시키가이샤 Phase difference film, polarization film, liquid crystal display unit, and method of designing phase difference film
US20070195251A1 (en) * 2006-02-22 2007-08-23 Toppoly Optoelectronics Corp. Systems for displaying images involving alignment liquid crystal displays
JP5038745B2 (en) * 2007-03-08 2012-10-03 富士フイルム株式会社 Transparent protective film, optical compensation film, polarizing plate, and liquid crystal display device
KR20080095575A (en) * 2007-04-25 2008-10-29 삼성전자주식회사 Adhesive, polarizer assembly and display device comprising the same
JP2010049063A (en) * 2008-08-22 2010-03-04 Sumitomo Chemical Co Ltd Polarizing plate
CN101738786B (en) * 2008-11-26 2011-12-28 北京京东方光电科技有限公司 Liquid crystal panel
JP5971498B2 (en) * 2011-08-19 2016-08-17 エルジー・ケム・リミテッド Polarizer
JP5909454B2 (en) * 2012-03-30 2016-04-26 富士フイルム株式会社 Anti-glare film, method for producing the same, polarizing plate, and image display device
CN204228992U (en) * 2014-09-12 2015-03-25 深圳市盛波光电科技有限公司 A kind of VA type liquid crystal display television polaroid
CN206115095U (en) * 2016-09-27 2017-04-19 河源思比电子有限公司 Anti -dazzle mesh large screen TFT of on -vehicle wide viewing angle LCD module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101158778A (en) * 2007-11-14 2008-04-09 友达光电(苏州)有限公司 Wide vision cornea and LCD device using the same
CN201314990Y (en) * 2008-12-19 2009-09-23 上海纽发利商贸有限公司 Wide-angle lens and polarizing plate and LCD device using same
JP2013205752A (en) * 2012-03-29 2013-10-07 Dainippon Printing Co Ltd Light diffusion film, polarizing plate and liquid crystal display
CN105929476A (en) * 2015-02-27 2016-09-07 三星Sdi株式会社 Polarizing Plate And Liquid Crystal Display Comprising The Same
CN104808278A (en) * 2015-05-18 2015-07-29 京东方科技集团股份有限公司 Polarizing plate and manufacturing method thereof as well as display device

Also Published As

Publication number Publication date
CN109143445A (en) 2019-01-04

Similar Documents

Publication Publication Date Title
WO2020062584A1 (en) Polarizing structure and display device
WO2020062591A1 (en) Polarizing plate and display device
WO2020087620A1 (en) Optical composite film, display panel, and display device
WO2020062458A1 (en) Polarizing structure and display device
WO2020062587A1 (en) Polarization plate and display device
WO2020062593A1 (en) Polarizing structure and display device
WO2020087638A1 (en) Optical composite film, display panel and display device
WO2020062563A1 (en) Polarizer structure and display device
WO2020087624A1 (en) Optical composite film, display panel and display device
WO2020087635A1 (en) Optical composite film, display panel, and display device
WO2020062585A1 (en) Polarizer and display device
WO2020087625A1 (en) Optical composite film, display panel and display device
WO2020062577A1 (en) Polarizer and display device
WO2020062603A1 (en) Polarizing structure and display device
WO2020062565A1 (en) Polarizing structure and display device
WO2020087634A1 (en) Optical composite film layer, display panel, and display device
WO2020062578A1 (en) Polarizer structure and display device
WO2020062558A1 (en) Polarizing structure and display device
WO2020062559A1 (en) Polarizer structure and display device
WO2020155279A1 (en) Optical film layer and display device
WO2020087632A1 (en) Optical composite film, display panel, and display device
WO2020062600A1 (en) Polarizing structure and display device
WO2020087630A1 (en) Optical composite film, display panel and display device
WO2020062592A1 (en) Polarizer and display device
WO2020062561A1 (en) Polarizing structure and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/07/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18935290

Country of ref document: EP

Kind code of ref document: A1