WO2012147678A1 - Heat storage container and temperature retention compartment - Google Patents

Heat storage container and temperature retention compartment Download PDF

Info

Publication number
WO2012147678A1
WO2012147678A1 PCT/JP2012/060831 JP2012060831W WO2012147678A1 WO 2012147678 A1 WO2012147678 A1 WO 2012147678A1 JP 2012060831 W JP2012060831 W JP 2012060831W WO 2012147678 A1 WO2012147678 A1 WO 2012147678A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
heat
storage material
latent heat
storage container
Prior art date
Application number
PCT/JP2012/060831
Other languages
French (fr)
Japanese (ja)
Inventor
梅中 靖之
井出 哲也
夕香 内海
山下 隆
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201280020738.3A priority Critical patent/CN103502753B/en
Publication of WO2012147678A1 publication Critical patent/WO2012147678A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/006Self-contained movable devices, e.g. domestic refrigerators with cold storage accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/063Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation with air guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/067Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by air ducts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a heat storage container and a heat storage using a latent heat storage material.
  • Patent Document 1 discloses a cold storage type cold storage that is “a two-layer structure including a heat insulating material and a latent heat regenerator having a latent heat regenerator material on the whole or a part of the inner wall surface of the box” as a heat storage container.
  • Patent Document 2 as a heat storage container, “a cold storage body having a composition that is installed on the bottom surface of a storage room and reaches thermal equilibrium at a predetermined temperature, a duct provided below the cold storage body, and an air temperature in the freezer room are detected.
  • Temperature detecting means provided on the bottom of the storage chamber, and temperature detecting means fixed thermally conductive to the bottom of the storage chamber, the cool storage body is a pore through which cool air passes, and a cold storage material that reaches thermal equilibrium at a predetermined temperature, A coating material made of a stretchable material that wraps the cold storage material, and an outer case that sandwiches the coating material that wraps the cold storage material up and down, and the pores are a hole provided in the outer case and the cold storage material
  • the regenerator body is cooled by the latent heat exchange and the part where the regenerator body melts is cooled by the cold air introduced from the pores generated by melting, so the heat exchange is high. , Save the room Can be maintained at a constant temperature, it is possible to save the food "is disclosed refrigerator.
  • JP 58-219379 A Japanese Patent Laid-Open No. 11-257824 JP-A-5-322412 JP-A-1-182283 Japanese Patent Laid-Open No. 1-102269 JP-A-6-174354 JP 2003-287365 A
  • An object of the present invention is to provide a heat storage container having a high temperature holding ability while suppressing power consumption.
  • the object is arranged in a closed space region having a predetermined volume, a heat transfer region that is disposed on an inner wall of the closed space region, and moves heat for controlling the temperature in the closed space region, and the heat transfer region. It is achieved by a heat storage container characterized by having a latent heat storage material and a heat transfer region exposed portion in which the latent heat storage material is not disposed and the heat transfer region is exposed.
  • the heat transfer region exposed portion has a plurality of through holes formed through the latent heat storage material.
  • the heat storage container according to the present invention wherein the through hole has a hollow cylindrical shape.
  • the heat storage container of the present invention is characterized in that the latent heat storage material and the heat transfer region exposed portion are alternately arranged.
  • the heat storage container according to the present invention is characterized in that the heat transfer region of the heat transfer region exposed portion protrudes.
  • air having a predetermined temperature is blown into the heat transfer region.
  • the heat storage container according to the present invention wherein the latent heat storage material for shielding the heat transfer area exposure part and the latent heat storage material for shielding are moved to the heat transfer area exposure part to expose the heat transfer area. And a shielding mechanism for shielding the part.
  • the object is to provide a closed space region having a predetermined volume, a heat transfer region that is disposed on an inner wall of the closed space region and moves heat for controlling the temperature in the closed space region, and for shielding the heat transfer region.
  • This latent heat storage material and a shielding mechanism for moving the shielding latent heat storage material to the heat transfer region to shield the heat transfer region are achieved.
  • the heat storage container of the present invention wherein the latent heat storage material contains a gelling agent.
  • the heat storage container according to the present invention wherein the latent heat storage material contains paraffin.
  • the heat storage container according to the present invention wherein the latent heat storage material is a liquid from a solid phase at a temperature between a temperature controllable in the closed space region and a temperature of an atmosphere around the closed space region in steady operation. It is characterized by a reversible phase transition to a phase.
  • the heat storage container according to the present invention is characterized in that a heat insulating material is disposed between an inner wall and an outer wall of the closed space region.
  • the heat storage container according to the present invention is characterized in that it further includes a door that opens the closed space region.
  • thermoelectric container wherein the heat exchanger is a cooler.
  • the heat storage container of the present invention described above further comprising a water receiving tray disposed below the cooler so as to receive water generated during defrosting of the cooler.
  • the above object is achieved by a refrigerator characterized by using the heat storage container of the present invention.
  • the temperature holding ability can be improved while suppressing power consumption.
  • FIG. 1 It is a block diagram of the heat exchange apparatus 37 with which the refrigerator 501 by Example 1 of the 2nd Embodiment of this invention was equipped. It is a figure which shows schematic structure of the refrigerator 550 by Example 2 of the 2nd Embodiment of this invention. It is a figure explaining the refrigerator 550 by Example 2-1 of the 2nd Embodiment of this invention. It is a figure explaining the refrigerator 550 by Example 2-2 of the 2nd Embodiment of this invention. It is a figure explaining the refrigerator 550 by Example 2-3 of the 2nd Embodiment of this invention. It is a figure explaining the refrigerator by Example 3-1 of the 2nd Embodiment of this invention. It is a figure explaining the refrigerator by Example 3-2 of the 2nd Embodiment of this invention. It is a figure explaining the refrigerator by Example 3-3 of the 2nd Embodiment of this invention. It is a figure explaining the refrigerator by Example 3-4 of the 2nd Embodiment of this invention.
  • FIG. 1 is a perspective view showing an appearance of a heat storage container 100 according to the present embodiment.
  • a direct cooling refrigerator will be described as an example of the heat storage container 100.
  • the heat storage container 100 includes a heat storage container body 101 having a rectangular parallelepiped shape that is vertically high in the installed state.
  • FIG. 1 the state which observed the front surface 101a of the thermal storage container main body 101 from diagonally upper left is shown.
  • the front surface 101a of the heat storage container main body 101 is provided with rectangular openings at the upper and lower stages.
  • a hollow box-shaped refrigeration chamber 104 is provided in the heat storage container body 101 with the lower rectangular opening as the opening end. Further, a hollow box-shaped freezer compartment 105 is provided in the heat storage container main body 101 with the upper rectangular opening as an opening end. The freezer compartment 105 has a volume smaller than that of the refrigerator compartment 104.
  • the freezer compartment door 103 is shown in a closed state.
  • the freezer compartment door 103 has a rectangular flat plate shape having a region that closes the rectangular opening of the freezer compartment 105 in a closed state.
  • a refrigerator door 102 is attached to the right side of the open end of the refrigerator compartment 104 and freezer compartment 105 on the front face 101a through a hinge mechanism (not shown) so as to be opened and closed.
  • a state where the refrigerator door 102 is opened is indicated by a solid line
  • a state where the refrigerator door 102 is closed is indicated by a two-dot chain line refrigerator door 102a.
  • the refrigerator door 102 has a rectangular flat plate shape having a region that closes the rectangular openings of both the refrigerator compartment 104 and the freezer compartment 105 in a closed state.
  • a door packing 12 for ensuring the sealing of the refrigerator compartment 104 and the freezer compartment 105 when the door is closed is provided on the opposite side of the refrigerator door 102 to the outer periphery including both the refrigerator compartment 104 and the freezer compartment 105. Has been placed.
  • FIG. 2A shows a state in which a cross section of the heat storage container 100 cut along the AA line of FIG. 1 in the illustrated vertical direction (the direction of the arrow of the AA line) is observed from the right side surface 101b side of the main body. Show. Moreover, in Fig.2 (a), the state which closed the refrigerator door 102 and the freezer compartment door 103 is shown.
  • a cooler 2 serving as a heat exchanger is disposed between a refrigerator compartment 104 and a freezer compartment 105 in the heat storage container main body 101.
  • the cooler 2 includes a flat plate-like surface member 2a and a back surface member 2b that are opposed to each other with an evaporation mechanism (not shown) for evaporating the refrigerant interposed therebetween.
  • the surface member 2 a of the cooler 2 is exposed in the refrigerator compartment 104.
  • the back member 2 b of the cooler 2 is exposed in the freezer compartment 105.
  • the closed space region 1 is generally composed of at least six inner walls forming a rectangular parallelepiped cavity.
  • a surface member 2 a of the cooler 2 is disposed on the inner wall on the upper surface side of the closed space region 1.
  • the surface of the surface member 2 a constitutes a part of the inner wall of the closed space region 1.
  • the surface of the surface member 2a is exposed to the closed space region 1 and serves as a heat transfer region 10 for transferring heat for controlling the temperature in the closed space region 1.
  • the latent heat storage material 3 is partially disposed in the heat transfer region 10.
  • Thermal storage refers to a technique for temporarily storing heat and extracting the heat as needed. Examples of the heat storage method include sensible heat storage, latent heat storage, chemical heat storage, and the like.
  • latent heat storage is used.
  • Latent heat storage uses the latent heat of a substance to store the thermal energy of the phase change of the substance. The heat storage density is high and the output temperature is constant.
  • ice (water), paraffin, inorganic salt or the like is used as the latent heat storage material 3.
  • the latent heat storage material may be formed by being surrounded by a resin film or a thin plate such as ABS or polycarbonate.
  • the latent heat storage material 3 of the present embodiment contains paraffin.
  • Paraffin is a generic name for saturated chain hydrocarbons represented by the general formula C n H 2n + 2 .
  • the phase change temperature at which the latent heat storage material 3 reversibly changes from a solid phase to a liquid phase is preferably about 4 ° C. to 6 ° C.
  • the latent heat storage material 3 includes a gelling agent that gels (solidifies) paraffin.
  • a gel refers to a gel that has a three-dimensional network structure formed by cross-linking molecules, and has absorbed and swelled a solvent therein.
  • a gelling agent produces a gelling effect only by being contained in paraffin by several weight%.
  • the latent heat storage material 3 is attached to the surface of the surface member 2a on the closed space region 1 side, for example, with an adhesive or the like.
  • a region where the latent heat storage material 3 is not disposed on the surface of the surface member 2a of the cooler 2 on the side of the closed space region 1 is a heat transfer region exposed portion 6 where the heat transfer region 10 is exposed.
  • FIG. 2B shows the shape of the latent heat storage material 3 arranged in the heat transfer region 10 as viewed from the closed space region 1 toward the surface of the surface member 2a.
  • the latent heat storage material 3 is affixed to the surface of the surface member 2 a with a predetermined thickness, and a hollow cylindrical through hole 6 a is formed in the heat transfer region exposed portion 6.
  • 16 through holes 6a are formed at a predetermined pitch, for example, in 4 rows and 4 columns.
  • the total exposed area of the heat transfer region 10 covered with the latent heat storage material 3 is 1, the total exposed area of the heat transfer region 10 exposed at the heat transfer region exposed portion 6 is preferably about 0.8 to 1.2. Further, about 1 is preferable.
  • the through-hole 6a does not have to be a hollow cylinder as long as the heat transfer region 10 is exposed.
  • the through-hole 6a may have a polygonal column shape such as a hollow triangular column or a quadrangular column, or a tapered shape in which the hollow region expands toward the closed space region 1. It may be.
  • the same latent heat storage as the latent heat storage material 3 is also applied to almost the entire inner wall of the refrigerator compartment 104 and the inner wall of the refrigerator door 102 that constitute the inner wall of the closed space region 1 other than the surface member 2 a of the cooler 2. Material 4 is affixed.
  • a heat insulating material is disposed between the inner wall and the outer wall of the closed space region 1.
  • the heat insulating material 7 is arranged in a region surrounding the refrigerator compartment 104 and the freezer compartment 105 inside the heat storage container main body 101.
  • a heat insulating material 8 is disposed inside the refrigerator door 102 (between the outer wall and the latent heat storage material 4). These heat insulating materials 7 and 8 are arranged to insulate the refrigerator compartment 104 and the freezer compartment 105 that are cooled to a predetermined temperature so that heat is not transmitted from the outside of the heat storage container 100.
  • the heat insulating materials 7 and 8 are formed using a forming material such as a fiber heat insulating material (glass wool or the like) or a foamed resin heat insulating material.
  • a pipe 20 for supplying a refrigerant to an evaporation mechanism (not shown) in the cooler 2 is disposed inside the heat storage container main body 101.
  • the pipe 20 is connected to a compressor 21 housed in a compressor housing portion 106 disposed on the bottom surface of the heat storage container main body 101.
  • a gas compression type cooling device is configured.
  • a gas absorption cooling device or an electronic cooling device using the Peltier effect may be used.
  • the refrigerant compressed by the compressor 21 is condensed in the pipe 20 and then expanded to reach the cooler 2.
  • the cooler 2 cools the refrigerator compartment 104 and the freezer compartment 105 by heat of vaporization when the expanded refrigerant evaporates.
  • the cooling capacity of the cooler 2 is higher on the freezer compartment 105 side than on the heat transfer region 10 on the refrigerator compartment 104 side.
  • the temperature in the freezer compartment 105 can be cooled to about ⁇ 10 ° C. and the temperature in the refrigerator compartment 104 can be about 3 ° C.
  • heat exchange is performed between the surface member 2 a of the cooler 2 exposed in the closed space region 1 and the air in the closed space region 1.
  • a temperature sensor (not shown) is installed at a predetermined position in the closed space region 1.
  • the driving of the cooling device is controlled by a temperature control device (not shown) provided in the heat storage container 100 based on the temperature in the closed space region 1 measured by the temperature sensor, and the temperature in the closed space region 1 is adjusted in the heat transfer region 10. Heat transfer is performed for control.
  • the latent heat storage material 3 is arranged at a predetermined rate. For this reason, the cooler 2 can directly cool the latent heat storage material 3 and can maintain the latent heat storage material 3 in a solid phase state having a phase transition temperature or lower in a relatively short time. In the region where the latent heat storage material 3 is disposed in the heat transfer region 10, heat exchange between the refrigerant in the cooler 2 and the air in the closed space region 1 is performed indirectly via the latent heat storage material 3.
  • the latent heat storage material 3 that maintains the solid state exhibits a function of flattening the temporal change distribution of the temperature in the closed space region 1.
  • the latent heat storage material 4 disposed on the inner wall of the closed space region 1 is also in contact with the air in the closed space region 1 and gradually maintained in a solid phase state below the phase transition temperature.
  • the latent heat storage material 4 that maintains the solid state also exhibits a function of flattening the temporal change distribution of the temperature in the closed space region 1.
  • the latent heat storage material 3 can be directly cooled by the cooler 2, and the latent heat storage material 3 is maintained in a solid phase state below the phase transition temperature in a relatively short time. can do. For this reason, useless power consumption can be suppressed in the heat storage container 100 according to the present embodiment.
  • the heat transfer area exposed portions 6 are arranged in the heat transfer area 10 at a predetermined rate. For this reason, the air in the closed space region 1 can be directly cooled by the surface member 2a of the cooler 2 exposed by the heat transfer region exposed portion 6, and the air in the closed space region 1 can be cooled to a desired temperature in a relatively short time. The temperature can be lowered and maintained. Moreover, since the plurality of through holes 6a of the heat transfer region exposed portion 6 are formed at equal intervals, the inside of the closed space region 1 can be uniformly cooled. For this reason, useless power consumption can be suppressed in the heat storage container 100 according to the present embodiment.
  • the latent heat storage materials 3 and 4 reversibly undergo a phase transition from a solid phase to a liquid phase at a temperature between a temperature controllable in the closed space region 1 and a temperature of the atmosphere around the closed space region 1 in steady operation.
  • normal (linear structure) tetradecane C 14 H 30
  • the melting point of normal tetradecane is about 5.9 ° C.
  • the volume of the latent heat storage material shrinks during the phase change to the solid phase. After the latent heat storage material 3 has completely changed to a solid phase, the cross-sectional area of the through-hole 6a becomes wide due to volume contraction of the latent heat storage material 3. For this reason, the heat transfer area
  • the heat transfer area 10 is disposed on the inner wall of the closed space area 1, the latent heat storage material 3 is disposed in the heat transfer area 10 at a predetermined rate. For this reason, it is possible to achieve a cold insulation effect also in the heat transfer region 10.
  • the heat storage container 100 of the present embodiment even if a power supply (not shown) of the heat storage container 100 is turned off due to a power failure or the like, the temperature in the closed space region 1 is kept at a predetermined low temperature for a certain period. Can be maintained.
  • the volume of the latent heat storage material expands when the phase changes to the liquid phase.
  • the cross-sectional area of the through hole 6a becomes narrow due to the volume expansion of the latent heat storage material 3. For this reason, the exposed area of the heat transfer region 10 can be reduced and the cooling state of the refrigerator compartment 104 can be maintained for a longer time.
  • FIG. 3 shows a heat storage container according to a comparative example.
  • FIG. 3A shows the heat storage container 200 according to the first comparative example.
  • FIG. 3B shows a heat storage container 210 according to Comparative Example 2.
  • 3 (a) and 3 (b) both show the same cross section as the cross section of the heat storage container 100 shown in FIG. 2 (a).
  • the same components as those of the heat storage container 100 according to the present embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the entire surface member 2a of the cooler 2 of the heat storage container 200 of Comparative Example 1 shown in FIG. 3A is covered with the latent heat storage material 4 having no through holes. Accordingly, there is no exposed portion at which the surface member 2a of the cooler 2 can directly contact the air in the refrigerator compartment 104.
  • the air in the refrigerating chamber 104 cannot be directly cooled by the surface member 2a of the cooler 2, so that the air in the refrigerating chamber 104 can be lowered to the desired temperature and maintained. Takes a long time. For this reason, in the heat storage container 200 by the comparative example 1, useless electric power consumption will arise.
  • the surface member 2a of the cooler 2 is arranged at the upper part of the refrigerating chamber 104, and no latent heat storage material is arranged on the surface member 2a of the cooler 2, the surface member 2a of the cooler 2 is kept cold. The effect cannot be achieved. For this reason, in the heat storage container 210 according to Comparative Example 2, when a power supply (not shown) of the heat storage container 210 is turned off due to a power failure or the like, the time during which the temperature in the refrigerator compartment 104 can be maintained at a low temperature is relatively short. Become.
  • the temperature holding ability can be improved while suppressing power consumption.
  • Example 2 Next, the heat storage container 110 according to Example 2 of the present embodiment will be described with reference to FIG. About the component which has the same function and effect
  • FIG. 4A shows the heat storage container 110 of the present embodiment in the same cross section as the cross section of the heat storage container 100 shown in FIG.
  • the surface member 2a of the cooler 2 of a present Example has uneven
  • the concavo-convex shape has a convex portion extending substantially parallel to the front surface 101a of the heat storage container main body 101 and a groove space serving as a concave portion adjacent in a direction orthogonal to the front surface 101a.
  • a plurality of sets are arranged side by side in a direction orthogonal to the front surface 101a, with adjacent convex portions and concave portions as a set.
  • the cross section shown in FIG. 4A of the uneven shape is a plurality of continuous rectangular waves.
  • the latent heat storage material 5 made of the same material as the latent heat storage material 3 of Example 1 is attached with an adhesive or the like to fill the groove space.
  • the surface inside the closed space region 1 of the convex portion of the surface member 2a and the surface inside the closed space region 1 of the latent heat storage material 5 are flat with no steps.
  • the uneven surface of the surface member 2 a becomes the heat transfer region 10.
  • the surface of the convex portion of the surface member 2 a becomes the heat transfer region exposed portion 6.
  • the latent heat storage material 5 and the heat transfer region exposed portion 6 are alternately arranged in the heat transfer region 10, and the heat transfer region 10 of the heat transfer region exposed portion 6 is It protrudes inward in the closed space region 1 from the heat transfer region 10 other than the heat transfer region exposed portion 6.
  • FIG. 4B shows a shape of the latent heat storage material 5 arranged in the heat transfer region 10 as viewed from the closed space region 1 in the surface direction of the surface member 2a.
  • the heat transfer region exposed portion 6 is composed of the surface of a plurality of convex portions of the surface member 2a formed in an elongated rectangular stripe shape.
  • the latent heat storage material 5 is attached to the surface member 2a concave surface between adjacent heat transfer region exposed portions 6 in an elongated rectangular stripe shape.
  • each latent heat storage material 5 and each heat transfer region exposed portion 6 are formed substantially the same. For this reason, the total covered area of the heat transfer area 10 covered with the latent heat storage material 5 and the total exposed area of the heat transfer area 10 exposed in the heat transfer area exposed portion 6 are approximately 1: 1. Yes.
  • the surface of the convex portion of the surface member 2a may be formed so as to fill the through hole 6a in the configuration shown in FIG.
  • the latent heat storage material 5 is in direct contact with the bottom surface and both side surfaces of the concave surface of the surface member 2a. For this reason, since the contact area of the surface member 2a and the latent heat storage material 5 can be enlarged compared with the case where it contacts only on the bottom surface like Example 1, the latent heat storage material 5 is cooled in a shorter time. be able to.
  • the heat transfer area 10 is arranged on the upper part of the inner wall of the closed space area 1, the latent heat storage material 5 is arranged in the heat transfer area 10 at a predetermined rate. For this reason, it is possible to achieve a cold insulation effect also in the heat transfer region 10.
  • the heat storage container 120 of the present embodiment even if a power supply (not shown) of the heat storage container 120 is turned off due to a power failure or the like, the temperature in the closed space region 1 is kept at a predetermined low temperature for a certain period. Can be maintained. Moreover, according to the heat storage container 120, the temperature holding ability can be improved while suppressing power consumption.
  • Example 3 Next, the heat storage container 120 according to Example 3 of the present embodiment will be described with reference to FIGS.
  • symbol is attached
  • FIGS. Fig.5 (a) has shown the thermal storage container 120 of a present Example by the cross section similar to the cross section of the thermal storage container 100 shown to Fig.2 (a).
  • the heat transfer region 10 on the surface of the surface member 2a of the cooler 2 of the present embodiment has the same planar shape as that of the first embodiment.
  • a plurality of stripe-like latent heat storage materials 5 similar to those in the second embodiment are arranged in the heat transfer region 10.
  • a stripe-shaped space region between adjacent latent heat storage materials 5 is a heat transfer region exposed portion 6.
  • each latent heat storage material 5 and each heat transfer region exposed portion 6 are formed substantially the same. For this reason, the total covered area of the heat transfer area 10 covered with the latent heat storage material 5 and the total exposed area of the heat transfer area 10 exposed in the heat transfer area exposed portion 6 are approximately 1: 1. Yes.
  • Each surface inside the closed space region 1 of the plurality of latent heat storage materials 5 is formed so as to be included in the same plane (hereinafter referred to as a first virtual plane).
  • the height of the inner surface of the closed space region 1 of the plurality of latent heat storage materials 5 is formed substantially the same, so the first virtual plane is orthogonal to the front surface 101a of the heat storage container body 101.
  • the heat storage container body 101 is almost horizontal in the installed state.
  • a linear guide groove 32r (not shown in FIG. 5A) is formed on the inner wall of the right side surface 101b of the main body of the closed space region 1.
  • a linear guide groove 32l (not shown in FIG. 5A) is formed on the inner wall of the left side surface of the main body of the closed space region 1.
  • the guide grooves 32r and 32l are formed in parallel to each other.
  • the guide grooves 32r and 32l are disposed on the second virtual plane parallel to the first virtual plane below the first virtual plane.
  • the latent heat storage material support member 30 is slidably supported in the second virtual plane supported by the two parallel guide grooves 32r and 32l.
  • the configuration of the latent heat storage material support member 30 will be described using FIG. 5B together with FIG. FIG. 5B shows the vicinity of the first and second virtual planes viewed from the closed space region 1 in the surface direction of the surface member 2a.
  • the latent heat storage material support member 30 has an elongated rod-shaped guided member 30r that fits into the guide groove 32r and can slide in the guide groove 32r.
  • the latent heat storage material support member 30 has an elongated rod-shaped guided member 30l that is fitted in the guide groove 32l and can slide in the guide groove 32l.
  • One end sides of the guided members 30 r and 30 l are fixed to the base material 30 a of the latent heat storage material support member 30.
  • a handle 30b is provided on the opposite side of the guided members 30r and 30l with the base material 30a interposed therebetween.
  • a heat insulating material 31 formed of the same forming material as the heat insulating material 7 is disposed inside the handle 30b.
  • a latent heat storage material fixing portion 30d extending in substantially parallel to the front surface 101a of the heat storage container main body 101 in the installed state is disposed.
  • a space 30e is formed adjacent to the latent heat storage material fixing portion 30d in a direction orthogonal to the front surface 101a.
  • a plurality of sets are arranged side by side in a direction orthogonal to the front surface 101a, with the adjacent latent heat storage material fixing portion 30d and the space portion 30e as a set.
  • a striped latent heat storage material 35 similar to the latent heat storage material 5 is fixed to the latent heat storage material fixing portion 30d.
  • the latent heat storage material 35 is used to shield the heat transfer area exposed portion 6 in addition to cooling the inside of the closed space area 1 in the event of a power failure.
  • the latent heat storage material support member 30 and the guide grooves 32r and 32l constitute a shielding mechanism 300 that moves the latent heat storage material 35 to the heat transfer region exposure part 6 and shields the heat transfer region exposure part 6.
  • each latent heat storage material 35 and each space 30e are formed to be substantially the same as the length and width of the stripes of each latent heat storage material 5 and each heat transfer region exposed portion 6.
  • the latent heat storage material 35 is positioned so as to overlap vertically below the latent heat storage material 5.
  • the space 30e is positioned so as to overlap vertically below the heat transfer region exposed portion 6. In this state, the heat transfer region exposed portion 6 is exposed to the closed space region 1 through the space 30e.
  • FIG. 6 shows a state where the heat transfer region exposed portion 6 is shielded by the shielding mechanism 300.
  • Fig.6 (a) has shown the thermal storage container 120 of a present Example by the cross section similar to the cross section shown to Fig.5 (a).
  • FIG. 6B shows the vicinity of the first and second virtual planes viewed from the closed space region 1 in the surface direction of the surface member 2a.
  • the latent heat storage material 35 is positioned so as to overlap vertically below the heat transfer region exposed portion 6. Further, the space 30 e is positioned so as to overlap vertically below the latent heat storage material 5. In this state, the heat transfer region exposed portion 6 is shielded from the closed space region 1 by the latent heat storage material 35.
  • FIG. 7 shows the heat storage container 120 as viewed from the back side.
  • the handle 30 b is exposed to the outside of the heat storage container 120. For this reason, the handle 30b can be moved in the horizontal direction by the operator.
  • the operation of the heat storage container 120 will be described.
  • the latent heat storage material support member 30 of the shielding mechanism 300 slides in the direction of the front surface 101a. Accordingly, the latent heat storage material 35 of the latent heat storage material support member 30 moves vertically below the latent heat storage material 5. Therefore, as shown in FIG. 5, the heat transfer region exposed portion 6 is exposed to the closed space region 1 through the space 30e.
  • the air in the closed space region 1 can be directly cooled by the surface member 2a of the cooler 2 exposed by the heat transfer region exposed portion 6, and the air in the closed space region 1 can be cooled to a desired temperature in a relatively short time.
  • the temperature can be lowered and maintained.
  • the plurality of heat transfer region exposed portions 6 are formed at equal intervals, the inside of the closed space region 1 can be uniformly cooled. For this reason, useless power consumption can be suppressed in the heat storage container 120 according to the present embodiment.
  • the latent heat storage material support member 30 of the shielding mechanism 300 slides in the opposite direction to the front surface 101a.
  • the latent heat storage material 35 of the latent heat storage material support member 30 moves vertically below the heat transfer region exposed portion 6. Therefore, as shown in FIG. 6, the heat transfer region exposed portion 6 is shielded from the closed space region 1 by the latent heat storage material 35.
  • the heat transfer region exposure unit 6 is moved by the latent heat storage material 35. Can be shielded. For this reason, a cold insulation effect can be produced on the entire surface of the heat transfer region 10.
  • the temperature in the closed space region 1 is kept at a predetermined low temperature for a certain period. Can be maintained.
  • the heat storage container 120 is provided with the shielding mechanism 300, so that the heat transfer region exposed portion 6 can be switched between the exposed state and the shielded state with respect to the closed space region 1. Moreover, according to the heat storage container 120 according to the present embodiment, the temperature holding ability can be improved while suppressing power consumption.
  • a handle 33, a metal plate 36, and a pulley 37 are used as members for sliding the latent heat storage material support member 30 of the shielding mechanism 300.
  • FIG. 8A shows a heat storage container 130 of this modification in a cross section similar to the cross section shown in FIG.
  • FIG. 8A shows a state where the heat transfer region exposed portion 6 is shielded from the closed space region 1 by the latent heat storage material 35.
  • FIG. 8B shows the vicinity of the pulley 37.
  • FIG.8 (c) has shown the state which looked at the thermal storage container 130 from the back surface side.
  • the handle 33, the metal plate 36, and the pulley 37 will be described with reference to FIGS. 8 (a), 8 (b), and 8 (c).
  • a metal plate 36 is attached to the base material 30a (not shown in FIG. 8A) of the latent heat storage material support member 30. As shown in FIGS.
  • the metal plate 36 is guided by a guide groove (not shown). One end of the metal plate 36 can move in the horizontal direction, and the other end can move in the vertical direction via a pulley 37.
  • a handle 33 is attached to the other end of the metal plate 36. As shown in FIGS. 8A and 8C, the handle 33 is disposed in the opening 34 formed on the back side of the heat storage container 130. One end of the handle 33 protrudes from the opening 34. For this reason, the handle 33 can be held by the operator and moved in the vertical direction.
  • the metal plate 36 is made of a metal having a small rigidity. For this reason, the region of the metal plate 36 in contact with the pulley 37 is deformed along the circumference of the pulley 36.
  • the latent heat storage material support member 30 of the shielding mechanism 300 slides in the direction of the front surface 101a via the metal plate 36.
  • the latent heat storage material 35 of the latent heat storage material support member 30 moves vertically below the latent heat storage material 5. Therefore, the heat transfer area exposed portion 6 is exposed to the closed space area 1 through the space 30e.
  • the latent heat storage material support member 30 of the shielding mechanism 300 slides in the opposite direction to the front surface 101a.
  • the latent heat storage material 35 of the latent heat storage material support member 30 moves vertically below the heat transfer region exposed portion 6. Therefore, as shown in FIG. 8A, the heat transfer region exposed portion 6 is shielded from the closed space region 1 by the latent heat storage material 35.
  • Example 4 Next, the heat storage container 140 according to Example 4 of the present embodiment will be described with reference to FIGS. 9 and 10.
  • symbol is attached
  • FIG. 9A shows a heat storage container 140 according to this embodiment in the same cross section as the cross section shown in FIG.
  • FIG. 9B shows the vicinity of the first and second virtual planes as viewed from the closed space region 1 in the surface direction of the surface member 2a.
  • 9A and 9B show a state where the heat transfer region exposed portion 6 is exposed to the closed space region 1 through the space portion 30e.
  • the surface member 2a of the cooler 2 of this embodiment has an uneven shape, as in the second embodiment shown in FIG.
  • the latent heat storage material 5 is affixed with the adhesive etc. in the uneven
  • FIG. 10A shows a heat storage container 140 according to the present embodiment in a cross section similar to the cross section shown in FIG.
  • FIG. 10B shows the vicinity of the first and second virtual planes viewed from the closed space region 1 in the surface direction of the surface member 2a.
  • FIGS. 10A and 10B both show a state where the heat transfer region exposed portion 6 is shielded from the closed space region 1 by the latent heat storage material 35.
  • the surface member 2a of the cooler 2 has an uneven shape, and the latent heat storage material 5 is disposed in the uneven portion of the surface member 2a. For this reason, there can exist an effect similar to the thermal storage container 110 by Example 2.
  • the heat storage container 140 includes a shielding mechanism 300 that shields the heat transfer region exposed portion 6. For this reason, the effect similar to the thermal storage container 120 and 130 by Example 3 can be show
  • Example 5 Next, the heat storage container 150 according to Example 5 of the present embodiment will be described with reference to FIGS. 11 and 12.
  • symbol is attached
  • FIG. 11A shows a heat storage container 150 according to this embodiment in a cross section similar to the cross section shown in FIG. FIG. 11B shows the vicinity of the first and second virtual planes as viewed in the surface direction of the surface member 2a.
  • an elongated rod-like base material 40 is disposed so as to face the base material 30 a of the latent heat storage material support member 30.
  • the base material 40 is fixed to the inner wall of the heat storage container main body 101.
  • An electric motor 41 is fixed substantially at the center of the substrate 40. Electric power is supplied to the electric motor 41 by a power source (not shown) of the heat storage container 150.
  • a rope winder (not shown) is attached to the rotating shaft of the electric motor 41.
  • One end of a rope 42 is fixed to the rope winder.
  • the other end of the rope 42 is fixed to the base material 30 a of the latent heat storage material support member 30.
  • the rope 42 has a required length.
  • One ends of compression coil springs 43 r and 43 l are attached to both sides of the base material 40 on the latent heat storage material support member 30 side with the rope 42 interposed therebetween.
  • the other ends of the compression coil springs 43r and 43l are attached to the base material 30a.
  • positioning members 44r and 44l are attached to the base material 40 on the outside of the compression coil springs 43r and 43l with the rope 42 interposed therebetween. At the tip of the positioning members 44r and 44l, a contact surface is provided that contacts the end of the base material 30a of the latent heat storage material support member 30 drawn by winding the rope 42 with the electric motor 41. In the state shown in FIG.
  • the contact surfaces of the positioning members 44 r and 44 l are in contact with the end of the base material 30 a of the latent heat storage material support member 30. Further, in the state shown in FIG. 11B, the compression coil springs 43r and 43l are compressed.
  • the electric motor 41 is driven and the rope 42 is wound up. Therefore, the latent heat storage material support member 30 is drawn toward the base material 40 side. Further, the end portion of the base material 30a of the latent heat storage material support member 30 is in contact with the contact surfaces of the positioning members 44r and 44l. In this state, the latent heat storage material 35 of the latent heat storage material support member 30 is positioned vertically below the latent heat storage material 5. Accordingly, as shown in FIGS. 11A and 11B, the heat transfer region exposed portion 6 is exposed to the closed space region 1 through the space 30e.
  • FIG. 12A shows a heat storage container 150 according to the present embodiment in a cross section similar to the cross section shown in FIG.
  • FIG. 12B shows the vicinity of the first and second virtual planes as viewed from the inside of the closed space region 1 in the surface direction of the surface member 2a.
  • FIGS. 12A and 12B show a case where the electric motor 41 is in a non-driven state.
  • the extension force of the compression coil springs 43r and 43l is won, and the rope take-up device of the electric motor 41 is reversely rotated and the rope 42 is extended.
  • the extension force of the compression coil springs 43 r and 43 l acts on the latent heat storage material support member 30, and the latent heat storage material support member 30 moves a predetermined distance in a direction away from the base material 40.
  • the spring lengths of the compression coil springs 43r and 43l are longer than those shown in FIG.
  • the latent heat storage material 35 of the latent heat storage material support member 30 is positioned vertically below the heat transfer region exposed portion 6. Accordingly, as shown in FIGS. 12A and 12B, the heat transfer region exposed portion 6 is shielded from the closed space region 1 by the latent heat storage material 35.
  • the temperature can be lowered and maintained. Moreover, since the plurality of heat transfer region exposed portions 6 are formed at equal intervals, the inside of the closed space region 1 can be uniformly cooled. For this reason, wasteful power consumption can be suppressed in the heat storage container 150 according to the present embodiment.
  • the latent heat storage material 35 can be moved vertically below the heat transfer region exposed portion 6 by the shielding mechanism 300.
  • the exposed part 6 can be shielded.
  • the cooling effect can be exerted also on the entire surface of the heat transfer region 10.
  • Example 6 the heat storage container 160 according to Example 6 of the present embodiment will be described with reference to FIGS. 13 and 14. Constituent elements having the same functions and operations as those of the heat storage containers according to the first to fifth embodiments are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 13A and FIG. 14A show a cross section of the heat storage container 160 according to this embodiment.
  • FIG. 13A and FIG. 14A show a cross section similar to the cross section of the heat storage container 100 shown in FIG. FIG. 13B and FIG. 14B show the vicinity of the first and second virtual planes as viewed from the inside of the closed space region 1 in the surface direction of the surface member 2a.
  • FIGS. 13A and 13B show a state in which the heat transfer region exposed portion 6 is exposed to the closed space region 1 through the space 30e.
  • 14A and 14B show a state in which the heat transfer region exposed portion 6 is shielded from the closed space region 1 by the latent heat storage material 35.
  • FIG. 13A and FIG. 14A show a cross section similar to the cross section of the heat storage container 100 shown in FIG. FIG. 13B and FIG. 14B show the vicinity of the first and second virtual planes as viewed from the inside of the closed space region 1 in the surface direction of the surface member 2a.
  • the heat storage container 160 has substantially the same configuration as the heat storage container 120 according to the third embodiment, but is different in that it includes a water tray 48.
  • the water tray 48 is mounted on a water tray mounting portion (not shown) disposed below the cooler 2.
  • the water tray 48 can be taken out from the closed space region 1 by opening the refrigerator door 102 of the heat storage container 160.
  • a plurality of striped latent heat storage materials 5 are attached to the lower part of the water receiving tray mounting portion.
  • a stripe-shaped space region between adjacent latent heat storage materials 5 is a heat transfer region exposed portion 6.
  • the latent heat storage material 5 may be attached to a predetermined position below the water receiving tray 48.
  • frost adheres to the surface member 2a of the cooler 2 when a predetermined period of time elapses during steady operation.
  • the water receiving tray 48 is arranged to receive water generated by frost melting when the surface member 2a is defrosted. Since water generated at the time of defrosting is accumulated in the water receiving tray 48, the water receiving tray 48 can be taken out of the heat storage container 160 and the accumulated water can be discarded.
  • FIG. 15 shows a schematic cross-sectional configuration of the heat storage container 170 according to this embodiment.
  • a fan refrigerator will be described as an example of the heat storage container 170.
  • the heat storage container 170 has a rectangular parallelepiped heat storage container main body 111.
  • the heat storage container main body 111 is provided with rectangular openings at the upper and lower stages.
  • a hollow box-shaped refrigerator compartment 114 is provided in the heat storage container main body 111 with the upper rectangular opening as an opening end.
  • a hollow box-like vegetable chamber 115 is provided in the heat storage container main body 111 with the lower rectangular opening as an opening end.
  • the vegetable compartment 115 has a volume smaller than that of the refrigerator compartment 114.
  • a refrigerator door 112 is attached to the open end of the refrigerating chamber 114 of the heat storage container body 111 through a hinge mechanism (not shown) so as to be opened and closed.
  • the refrigerator door 112 is in a closed state.
  • the refrigerator door 112 has a rectangular flat plate shape having a region that closes the rectangular opening of the refrigerator compartment 114 in a closed state.
  • a door packing 14 is provided on the opposite side of the refrigerator door 112 to the outer periphery of the refrigerator compartment 114 opening to ensure the sealing of the refrigerator compartment 114 when the door is closed.
  • the vegetable compartment door 113 is attached to the open end of the vegetable compartment 115 of the heat storage container main body 111 through a hinge mechanism (not shown) so that it can be opened and closed.
  • the vegetable compartment door 113 has shown the closed state.
  • the vegetable compartment door 113 has a rectangular flat plate shape with a region that closes the rectangular opening of the vegetable compartment 115 in a closed state.
  • the door packing 15 for ensuring the airtightness of the vegetable compartment 115 at the time of door closing is arrange
  • the vegetable compartment 115 may have a drawer-type configuration in which the vegetable compartment can be pulled out instead of opening and closing the door.
  • the closed space region 11 is composed of at least six inner walls that form a substantially rectangular parallelepiped cavity.
  • a heat transfer region 60 that moves heat for controlling the temperature in the closed space region 11 is disposed.
  • the heat transfer region 60 is an opening surface of the inner wall of the closed space region 11.
  • the same latent heat storage material 53 as the latent heat storage material 3 of the first embodiment is attached to almost the entire inner wall of the refrigerator compartment 114 other than the heat transfer region 60 and the inner wall of the refrigerator door 112.
  • a latent heat storage material 54 having a phase transition temperature higher than that of the latent heat storage material 3 is attached to almost the entire inner wall of the vegetable room 115 and the inner wall of the vegetable room door 113.
  • the phase transition temperature at which the latent heat storage material 54 reversibly changes from a solid phase to a liquid phase is preferably about 7 to 9 ° C.
  • a latent heat storage material 63 for shielding the heat transfer region 60 is disposed outside the closed space region 11 and inside the heat storage container main body 111.
  • the latent heat storage material 63 is formed of the same forming material as the latent heat storage material 53.
  • the latent heat storage material 63 has a thin plate shape larger than the heat transfer region 60.
  • the latent heat storage material 63 is attached to a latent heat storage material support member 68.
  • the latent heat storage material support member 68 is supported by a guide groove (not shown) so as to slide in a substantially horizontal direction when the heat storage container main body 101 is installed.
  • An opening 65 is disposed in the heat storage container main body 111 above the latent heat storage material 63, and a handle 66 is attached to the latent heat storage material support member 68 in the opening 65.
  • the head of the handle 66 protrudes from the opening 65. For this reason, the handle 66 can be moved in the horizontal direction by the operator holding it with the hand.
  • the latent heat storage material support member 68 and the guide groove (not shown), the opening 65, and the handle 66 constitute a shielding mechanism 310 that moves the shielding latent heat storage material 63 to the heat transfer area 60 and shields the heat transfer area 60. is doing.
  • a heat insulating material 57 is disposed between the inner wall and the outer wall of the closed space region 11. Specifically, a heat insulating material 57 is provided on the inner side of the heat storage container body 111 so as to surround the closed space region 11 and the vegetable compartment 115, on the outer side of the closed space region 11, and on the inner side of the refrigerator door 112 and the vegetable compartment door 113. Is arranged. A heat insulating material 57 is also arranged inside the handle 66. The heat insulating material 57 is disposed to insulate the closed space region 11 and the vegetable compartment 115 that are cooled to a predetermined temperature so that heat is not transmitted from the outside of the heat storage container 170.
  • a cooler 52 is arranged in a duct 83 outside the closed space region 11 and the vegetable compartment 115 and inside the heat storage container body 111.
  • a pipe 80 for supplying a refrigerant to an evaporation mechanism (not shown) in the cooler 52 is disposed inside the heat storage container main body 111.
  • the pipe 80 is connected to a compressor 81 housed in a compressor housing portion 116 disposed on the bottom surface of the heat storage container main body 111.
  • a gas compression type cooling device is configured.
  • a fan 82 is disposed above the cooler 52 to blow cool air having a predetermined temperature from the cooler 52 to the heat transfer region 60 and circulate it in the heat storage container 170.
  • FIG. 16 shows a schematic cross-sectional configuration of the heat storage container 170 according to this embodiment.
  • the heat transfer region 60 is shown shielded from the closed space region 11 by the latent heat storage material 63.
  • the operation of the heat storage container 170 will be described.
  • the power supply (not shown) of the heat storage container 170 is on, the refrigerant compressed by the compressor 81 is condensed in the pipe 20 and then expanded to reach the cooler 52.
  • the cooler 52 cools the heat storage container 111 with heat of vaporization when the expanded refrigerant evaporates.
  • the cool air that has exited the cooler 52 rises in the duct 83 of the heat storage container body 111 by the fan, and is blown from the heat transfer area 60 exposed to the closed space area 11 on one end side of the duct 83 to the closed space area 11.
  • a temperature sensor (not shown) is installed at a predetermined position in the closed space region 11.
  • the driving of the cooling device is controlled by a temperature control device (not shown) provided in the heat storage container 170 based on the temperature in the closed space region 11 measured by the temperature sensor, and heat for controlling the temperature in the closed space region 11. A move is made.
  • the latent heat storage material 53 in the closed space region 11 and the latent heat storage material 63 outside the closed space region are cooled by the cold air that has exited the cooler 52. Therefore, the latent heat storage materials 53 and 63 can be maintained in a solid phase state below the phase transition temperature.
  • the latent heat storage materials 53 and 63 that maintain the solid state exhibit a function of flattening the temporal change distribution of the temperature in the closed space region 11.
  • a vent pipe is disposed between the closed space region 11 and the vegetable compartment 115.
  • the cold air that has cooled the inside of the closed space region 11 reaches the vegetable compartment 115 through the vent pipe.
  • the inside of the vegetable compartment 115 and the latent heat storage material 54 are cooled by the cold air that has reached the vegetable compartment 115.
  • the cooled latent heat storage material 54 is maintained in a solid phase state below the phase transition temperature.
  • the latent heat storage material 54 that maintains the solid state also exhibits the function of flattening the temporal change distribution of the temperature in the vegetable compartment 115.
  • the cold air after cooling the closed space region 11 circulates in the vegetable compartment. For this reason, the temperature in the vegetable compartment 115 becomes higher than the temperature in the closed space region 11.
  • the set temperature of the vegetable compartment 115 is a temperature suitable for storing vegetables, and is, for example, about 6 ° C to 8 ° C. Further, the set temperature of the closed space region 11 is lower than the set temperature in the vegetable compartment 115 and is, for example, about 3 ° C.
  • the temperature distribution in the heat storage container 170 can be kept more uniform than in a direct cooling refrigerator.
  • a vent pipe is disposed between the vegetable room 115 and the other end of the duct 83 where the cooler 52 is disposed.
  • the air cooled in the vegetable compartment 115 is exhausted to the other end of the duct outside the vegetable compartment 115 through the vent pipe.
  • the exhausted air returns to the cooler 52 in the duct 83.
  • air is circulated in this way.
  • the latent heat storage material 63 is moved to the heat transfer region 60 to shield the heat transfer region from the closed space region 11. Then, the cold insulation by the latent heat storage materials 53 and 65 is started in the closed space region 11.
  • the air in the closed space region 11 is maintained in a predetermined temperature range for a certain period by the latent heat storage material 53 stretched around the inner wall of the closed space region 11 and the latent heat storage material 63 that shields the heat transfer region 60. More specifically, the temperature in the closed space region 11 is maintained at about 6 ° C. during the period until the latent heat storage materials 53 and 65 undergo a phase transition from the solid phase to the liquid phase.
  • a plurality of through holes may be formed in the latent heat storage material 63 for shielding the heat transfer region 60.
  • the heat transfer region 60 is divided into a region shielded by the latent heat storage material 63 and a region where the through hole of the latent heat storage material 63 is formed and the heat transfer region 60 is exposed. Therefore, when the heat storage container 170 is in a steady operation, the cool air is blown into the closed space region 11 through the through hole in which the heat transfer region 60 is exposed.
  • the heat storage container 170 has been described as an example of a fan-type refrigerator having a refrigerator compartment 114 and a vegetable compartment 115, it can also be applied to a refrigerator having a freezer.
  • a latent heat storage material is installed to shield the heat transfer area that controls the temperature in the freezer compartment.
  • the latent heat storage material for shielding the heat transfer region exposed portion 6 and the like is attached to the latent heat storage material support member and slidable, but the present embodiment is not limited to this.
  • the latent heat storage material is stored in a predetermined storage location such as a refrigerator.
  • the latent heat storage material is taken out from the predetermined storage location and attached to the heat transfer area in order to shield the heat transfer area exposed part etc. Good.
  • a refrigerator is used as a heat storage container, but this embodiment is not limited to this, and of course can be applied to a warm storage room using a latent heat storage material having a phase transition temperature of, for example, several tens of degrees Celsius. It is.
  • the second embodiment according to the present invention relates to a heat storage using a latent heat storage material.
  • Refrigerator refrigerators are known to be fan type or direct cooling type.
  • domestic refrigerator-freezers are mainly fan-type.
  • the refrigerator-freezer using the heat storage material and the cool storage agent is known (patent document 6, patent document 7).
  • Patent Document 6 discloses a heat storage refrigerator in which a heat storage material having a phase change temperature is provided in a temperature range of a freezing room in a room surrounded by a heat insulating material, and the heat storage material is solidified by circulating cold air in a freezer at night or the like. ing.
  • the said heat storage refrigerator can reduce the load of the compressor at the time of cold storage.
  • the heat storage refrigerator is provided with a heat storage material in a room covered with a heat insulating material independent of the refrigerator and the freezer, there is a problem that the internal volume is reduced.
  • the said thermal storage refrigerator installs a thermal storage material as a block, it has the problem that heat exchange requires time.
  • the fan-type refrigerator disclosed in Patent Documents 6 and 7 cools the inside of the refrigerator by circulating cold air.
  • the flow of the cold air is set so that the stored food is not dried by the direct cold air.
  • Even when a heat storage material is used in a conventional fan-type refrigerator there is a problem that the heat storage material is not efficiently cooled.
  • fan-type refrigerator-freezers have a lower cooling rate than direct-cooled refrigerator-freezers. For this reason, the fan type refrigerator-freezer has a problem that it takes time to store cold in the latent heat storage material when the latent heat storage material is installed.
  • An object of the present embodiment is to provide a heat storage that can efficiently cool the latent heat storage material.
  • the purpose is to generate a heat exchange device that generates air having a temperature different from the ambient temperature, to generate a wind by forcibly convection the air having a different temperature, and to blow the wind, and so that the wind directly hits, Or it is arrange
  • the heat insulation box according to the present embodiment further includes a storage room for storing a stored product, and the latent heat storage material is disposed in the storage room.
  • the heat insulation box according to the present embodiment further comprising a shelf provided in the storage chamber on which the stored item is placed, and the latent heat storage material is provided in the shelf.
  • the heat insulation box according to the present embodiment further including a wind outlet provided in the storage chamber and allowing the wind to flow into the storage chamber, and the latent heat storage material is configured such that the wind flowing out from the wind outlet is directly It is arrange
  • the shelf portion includes a wind guide portion that guides the wind to the lower side of the shelf portion.
  • the wind guide portion is characterized in that the wind inflow portion is formed wider than the wind outflow portion.
  • the heat insulation box according to the present embodiment which is provided in the storage chamber, and is provided at the wind outlet and flows in a predetermined direction in the storage chamber, and is provided in the wind outlet and in a direction different from the predetermined direction. It further has a wind direction switching unit that switches the wind direction of the wind, and the latent heat storage material is arranged in the different direction when viewed from the wind outlet.
  • the wind direction switching unit switches the wind direction to the different direction when the latent heat storage material is cooled.
  • the shelf portion has a wind guide reflection portion that guides the wind below the shelf portion and reflects the wind.
  • the heat insulation box according to the present embodiment wherein the latent heat storage material is detachable.
  • the latent heat storage material includes a heat conductive sheet that conducts the heat of the wind.
  • the heat insulation box of the present embodiment further comprising a conduction path for conducting the heat of the wind to the heat conduction sheet.
  • the latent heat storage material has fins that conduct the heat of the wind.
  • the heat insulation box according to the present embodiment wherein the heat conductive sheet can be detached.
  • the fin can be detached.
  • the latent heat storage material has a thermally conductive filler dispersion portion that conducts heat of the wind.
  • the latent heat storage material has irregularities on the surface to which the wind hits.
  • the latent heat storage material is normal paraffin.
  • the heat insulation box according to the present embodiment wherein the normal paraffin is a gel.
  • the heat exchange device includes a cooler that generates cool air having a temperature lower than the ambient temperature.
  • the latent heat storage material can be efficiently cooled.
  • it demonstrates more concretely using an Example.
  • Example 1 The heat storage by Example 1 of this embodiment is demonstrated using FIG.17 and FIG.18.
  • the heat storage according to the present embodiment is used for storing stored items at a temperature different from the ambient temperature (room temperature) during steady operation, and examples thereof include a refrigerator, a freezer, and a warm storage.
  • the heat insulating box is a fan-type refrigerator.
  • FIG. 17 is a diagram illustrating a main part of a schematic configuration of a fan-type refrigerator 501 according to the present embodiment.
  • FIG. 17A shows a front view of the refrigerator 501 seen through the door 517
  • FIG. 17B shows a right side view of the refrigerator 501 seen through the right wall 505.
  • FIG. 17A shows a front view of the refrigerator 501 seen through the door 517
  • FIG. 17B shows a right side view of the refrigerator 501 seen through the right wall 505.
  • FIG. 17A shows a front view of the refrigerator 501 seen through the door 517
  • FIG. 17B shows a right side view of the refrigerator
  • FIG. 17A shows a damper 533 that cannot be visually recognized in the refrigerator compartment 502 and a blower 506 that cannot be visually recognized in the freezer compartment 508.
  • the refrigerator 501 has a rectangular parallelepiped shape as a whole.
  • the refrigerator 501 is divided into three regions: a refrigerator compartment 502 provided in the upper stage, a freezer compartment 508 provided in the middle stage, and a vegetable room (not shown) provided in the lower stage.
  • the set temperatures of the refrigerator compartment 502, the freezer compartment 508, and the vegetable compartment are set in advance so as to decrease in the order of the vegetable compartment, the refrigerator compartment 502, and the freezer compartment 508. That is, in the refrigerator 501, the set temperature in each storage room is set in advance so that “freezer room 508 ⁇ refrigeration room 502 ⁇ vegetable room”.
  • the set temperature in the vegetable room is a temperature suitable for storing vegetables, for example, about 6 ° C to 8 ° C. Further, the set temperature in the refrigerator compartment 502 is lower than the set temperature in the vegetable compartment, for example, about 2 to 5 ° C. The set temperature in the freezer compartment 508 is lower than that of the refrigerator compartment 502 and is, for example, about ⁇ 18 ° C.
  • the refrigerator compartment 502 has a thin plate-shaped door 517 that is rotatably provided on the container main body 514 via a hinge (not shown).
  • the container main body 514 in the refrigerator compartment 502 has a rectangular opening 516, walls 505 and a partition 525 that are opened by the opening 516 and form a box shape, and a storage chamber 504 that stores stored items. ing.
  • the refrigerator compartment 502 and the freezer compartment 508 are partitioned by a partition portion 525.
  • the storage chamber 504 is connected to the outside through the opening 516 when the door 517 is opened.
  • the storage chamber 504 is a space provided inside the wall portion 505.
  • the storage chamber 504 becomes a sealed space surrounded by the door portion 517 and the wall portion 505 when the door portion 517 is closed. Thereby, the refrigerator compartment 502 can maintain the inside of the store room 504 at preset temperature.
  • a plurality of latent heat storage materials 503 that store or release thermal energy by phase change are arranged. Although details will be described later, the plurality of latent heat storage materials 503 are arranged at locations where the cold air flowing out from the cold air outlet (wind outlet) 509 provided in the storage chamber 504 directly hits. The plurality of latent heat storage materials 503 are attached to the inner wall side surface of the storage chamber 504.
  • the latent heat storage material 503 has a temperature at which the phase change between the solid phase and the liquid phase occurs reversibly within the operating temperature range of the refrigerator compartment 502.
  • the latent heat storage material 503 becomes a liquid phase at a temperature higher than the phase change temperature, and becomes a solid phase at a temperature lower than the phase change temperature.
  • the latent heat storage material 503 in the present embodiment includes paraffin.
  • paraffin As the latent heat storage material 503, a single substance or a mixture of normal (linear structure) paraffin (general formula is C n H 2n + 2 ) and a carbon number n of 10 or more is used.
  • the melting point of paraffin varies depending on the number of carbons n.
  • n-tetradecane molecular formula: C 14 H 30
  • the melting point (5.9 ° C.) of n-tetradecane is included in the operating temperature range of the refrigerator compartment 502.
  • the boiling point of n-tetradecane is about 250 ° C. Paraffin becomes a translucent or white soft insoluble solid (wax) at room temperature when the carbon number exceeds a predetermined number.
  • the latent heat storage material 503 contains a gelling agent that gels (solidifies) paraffin.
  • a gel (chemical gel) refers to a gel that is formed by forming a three-dimensional network structure by cross-linking molecules, and absorbing the solvent therein to swell. Gels are chemically stable as long as they do not break the structure.
  • a gelling agent produces a gelling effect only by containing it in paraffin by several weight%.
  • the gelling agent used in this example contains a polymer material.
  • polyethylene is used as the polymer material.
  • the latent heat storage material 503 in the present embodiment is polyethylene-containing paraffin gelled with polyethylene.
  • Polyethylene-containing paraffin maintains a solid state as a whole even when the paraffin changes between a solid phase and a liquid phase, and has no fluidity. Accordingly, the polyethylene-containing paraffin does not have fluidity at least within the use temperature range of the latent heat storage material 503.
  • the gel-like latent heat storage material 503 can maintain a solid state as a whole before and after the phase change. Thereby, the latent heat storage material 503 can be continuously disposed in the storage chamber 504 before and after the phase change.
  • a latent heat storage material stores thermal energy exchanged with the outside during phase transition of a substance as latent heat for phase change.
  • the heat of fusion at the melting point of the latent heat storage material is used.
  • heat exchange is continuously performed with the outside at a constant temperature, so that temperature change can be suppressed for a relatively long time.
  • the storage chamber 504 is provided with a plurality of shelves 523 (four in this example) on which stored items such as food are placed.
  • the plurality of shelves 523 have a thin plate shape and are arranged with a predetermined gap.
  • a chilled chamber 529 is provided below the storage chamber 504.
  • the chilled chamber 529 stores a chilled storage portion 529a that can be pulled out when the door portion 517 is opened.
  • the refrigerator 501 has an internal temperature sensor 511 provided on the back of the inner wall of the storage chamber 504.
  • the internal temperature sensor 511 is provided for measuring the temperature in the storage chamber 504.
  • the refrigerator 501 has a temperature adjustment unit 515 provided on the back of the inner wall of the storage chamber 504.
  • the temperature adjustment unit 515 is used by the user to adjust the temperature in the storage chamber 504 to an arbitrary temperature within the range of 2 to 5 ° C.
  • the refrigerator 501 has an interior lamp 513 provided on the back of the inner wall of the storage room. The interior lamp 513 is turned off when the door portion 517 is closed, and is turned on when the door portion 517 is opened.
  • the door portion 517 is semi-fixed by a door semi-fixing portion 519 provided on the container body 514.
  • the door half fixing part 519 has a thin plate shape.
  • the door half fixing portion 519 fixes the door portion 517 to the container main body 514 unless the user applies a pulling force to the door portion 517 in order to open the door portion 517.
  • the door portion 517 includes door storage portions 517a to 517d arranged in the storage chamber 504 when the door portion 517 is closed.
  • the door storage portions 517a to 517d can store, for example, eggs and drinking water.
  • the freezer compartment 512 has a thin plate-shaped door 520 that is rotatably provided on the container main body 514 via a hinge (not shown).
  • the container body 514 in the freezer compartment 512 has a rectangular opening 518, a wall 505, a partition 525, a freezer compartment 508, and a vegetable room (not shown) (not shown) that are opened by the opening 518 to form a box shape.
  • the storage chamber 510 is provided with a latent heat storage material (not shown).
  • the storage chamber 510 is connected to the outside through the opening 518 when the door 520 is opened.
  • the storage chamber 510 is a space provided inside the wall portion 505.
  • the storage chamber 510 becomes a sealed space surrounded by the door portion 520 and the wall portion 505 when the door portion 520 is closed.
  • the freezer compartment 508 can maintain the interior of the storage compartment 510 at a set temperature.
  • a heat insulating material is provided inside the partition portion that partitions the wall portion 505, the door portions 517 and 520, the partition portion 525, the freezer compartment 508, and the vegetable compartment.
  • the heat insulating material insulates the storage chambers 502 and 508 and the latent heat storage material 503 that are cooled during the steady operation of the refrigerator 501 so that heat from the outside is not transmitted through the wall portion 505, the door portions 517 and 520, and the like. It is provided for.
  • the heat insulating material can be formed using a material such as a fiber heat insulating material such as glass wool, a foamed resin heat insulating material such as polyurethane foam, or a natural fiber heat insulating material such as cellulose fiber.
  • the refrigerator 501 is disposed above the freezer compartment 512 as viewed from the door portion 520 side, and is generated at a heat exchange device 537 (not shown in FIGS. 17A and 17B) and has a temperature different from the ambient temperature. It has a blower 506 that forcibly convects the air and generates wind (for example, cold wind) and blows air. The blower 506 blows the cold air to the storage room 504 of the refrigerating room 502 through the cold air inlet 527.
  • the numerical range of the temperature of the cold air is determined by the outside air temperature of the refrigerator 501 and the temperature setting in the refrigerator.
  • FIG. 18 is a block diagram illustrating a schematic configuration of a heat exchange device 537 provided in the refrigerator 501.
  • the heat exchanging device 537 is disposed below the blower 506 and in the container main body 514. As shown in FIG. 18, the heat exchange device 537 is provided at the bottom of the container main body 514, and compresses the refrigerant 539, and is connected to the compressor 539 and compressed by the compressor 539.
  • a condenser 541 that condenses while liquefying
  • an expansion valve 543 that is connected to the condenser 541 and expands by reducing the pressure so that the liquefied refrigerant is easily vaporized, and is provided in the vicinity of the blower 506 connected to the expansion valve 543.
  • a cooler 545 that cools the surroundings by heat of vaporization when the liquefied refrigerant evaporates.
  • the cooler 545 generates cool air having a temperature lower than the ambient temperature. Note that the refrigerant evaporated by the cooler 545 is returned to the compressor 539 to be compressed again.
  • the compressor 539 and the condenser 541, the condenser 541 and the expansion valve 543, the expansion valve 543 and the cooler 545, and the cooler 545 and the compressor 539 are connected to each other through predetermined pipes.
  • the heat exchange device 537 may include a generally known configuration such as a dryer for removing moisture in the refrigerant.
  • the refrigerator 501 has a cold air passage portion 507 connected to the cold air inlet 527 via the damper 533.
  • the cold air path portion 507 is provided between the storage chamber 504 and the wall portion 505.
  • the cold air path portion 507 has a Y shape when viewed from the door portion 517 side.
  • the cold air path unit 507 is connected to the storage chamber 504 via a cold air outlet 509.
  • the refrigerator 501 controls the conduction and non-conduction between the cold air inlet 527 and the cold air passage portion 507 by controlling the damper 533, thereby adjusting the amount of cool air blown into the storage room 504, The temperature is maintained at the set temperature.
  • the refrigerator 501 controls the damper 533 so that a part of the cold air flowing into the cold air inlet 527 directly flows into the chilled chamber 529.
  • the cold air that has flowed into the chilled chamber 529 is blown to the cold air path portion 531 provided below the refrigerating chamber 502 and on the back side of the freezing chamber 508.
  • the cold air is blown to a vegetable room (not shown) via the cold air path portion 531 and used for cooling the vegetable room.
  • FIG. A predetermined control circuit in the electrical box 521 of the refrigerator 501 turns on the power.
  • the high-temperature and high-pressure gas refrigerant compressed by the compressor 539 reaches the condenser 541.
  • the condenser 541 liquefies while radiating the gas refrigerant.
  • the liquefied refrigerant is decompressed by the expansion valve 543 and reaches the cooler 545.
  • the cooler 545 generates cool air by heat of vaporization when the decompressed refrigerant is vaporized.
  • the blower 506 generates cold air by forcibly convection of the cold air generated by the heat exchange device 537, and the cold air is supplied to the cold air inlet 527. Blow.
  • the refrigerator 501 controls the drive of the damper 533 by the temperature control device in the electrical box 521 based on the temperature in the storage room 504 measured by the internal temperature sensor 511 provided in the storage room 504, and goes to the cold air path unit 507. The amount of cool air blown is controlled.
  • the damper 533 when the internal temperature sensor 511 detects a temperature substantially equal to the set temperature, the damper 533 is controlled so that the amount of cool air blown to the cool air path section 507 becomes a predetermined amount in order to maintain the current temperature. Is done. In addition, when the internal temperature sensor 511 detects a temperature higher than the set temperature, the damper 533 has an amount of cool air blown to the cool air path portion 507 from the predetermined amount in order to lower the temperature in the storage chamber 504. Controlled to increase. In addition, when the internal temperature sensor 511 detects a temperature lower than the set temperature, the damper 533 causes the amount of cool air blown to the cool air path portion 507 to be higher than the predetermined amount in order to increase the temperature in the storage chamber 504. Controlled to be less.
  • the cold air blown into the cold air passage portion 507 flows out from the cold air outlet 509 into the storage chamber 504.
  • the inside of the storage room 504 is cooled by direct cooling with cold air and circulation through the cooler of the internal air.
  • the temperature control device Based on the temperature in the storage chamber 504 measured by the internal temperature sensor 511, the temperature control device controls the driving of the heat exchange device 537, the blower 506, and the damper 533, thereby controlling the temperature in the storage chamber 504.
  • the cold air outlet 509 blows out cold air in a predetermined direction (in this example, the direction of the side of the inner wall of the storage chamber 504) as shown by an arrow in the figure so that the cold air does not directly hit the stored item such as food. It is configured.
  • a latent heat storage material 503 is disposed in the direction in which the cold air that has flowed into the refrigerator compartment 504 is directed.
  • the latent heat storage material 503 is directly exposed to cold air generated by forced convection of cold air.
  • the cold air hits the surface of the latent heat storage material 503 at a predetermined angle. Thereby, the latent heat storage material 503 is cooled in a shorter time (details will be described later).
  • the latent heat storage material 503 is cooled by direct contact with the cold air that has flowed into the storage chamber 504, and is gradually maintained in a solid state that is lower than or equal to the phase transition temperature.
  • the latent heat storage material 503 that maintains the solid state exhibits a function of flattening the temporal change distribution of the temperature in the storage chamber 504.
  • the cold air blown directly from the cold air inlet 527 and the cold air blown through the storage chamber 504 are sent to the chilled chamber 529 as indicated by arrows in the figure.
  • the chilled chamber 529 is maintained at a predetermined set temperature by the cold air.
  • the refrigerator 501 When a power supply (not shown) of the refrigerator 501 is turned off due to a power failure or the like, the power supply to the temperature control device and the heat exchange device 537 is stopped, and the cooling capacity of the heat exchange device 537 is lost.
  • the cooling capacity by the heat exchange device 537 when the cooling capacity by the heat exchange device 537 is lost due to a power failure or the like, the cold storage by the latent heat storage material 503 is started.
  • the air in the storage chamber 504 is maintained in a predetermined temperature range for a certain period by the latent heat storage material 503 provided on the inner wall of the storage chamber 504. More specifically, the temperature in the storage chamber 504 is maintained at about 5 ° C. until the latent heat storage material 503 undergoes a phase change from the solid phase to the liquid phase.
  • the heat transfer amount Q between the substance 1 (temperature T1) and the substance 2 (temperature T2) can be expressed by the following formula (1), where A is the contact area and ⁇ is the heat transfer coefficient.
  • Q A ⁇ ⁇ ⁇ (T1-T2) (1)
  • the heat transfer coefficient in natural convection is, for example, about 2 to 25 (W / (m 2 ⁇ K)), whereas the heat transfer coefficient in forced convection by a fan or the like is, for example, 25 to 250 (W / (m 2 ⁇ K)).
  • the heat transfer coefficient in forced convection is 10 times or more than the heat transfer coefficient in natural convection. Therefore, when the substances 1 and 2, the temperatures T1 and T2, and the contact area A are common, the heat transfer amount Q in forced convection is 10 times or more of the heat transfer amount Q in natural convection as shown in Equation (1).
  • the refrigerator 501 according to the present embodiment can directly apply cold air generated by forced convection of cold air using the blower 506 to the latent heat storage material 503.
  • the refrigerator 501 can improve the heat transfer coefficient between the latent heat storage material 503 and the air in the storage chamber 504 to about 10 times as compared with the case where it is cooled by cold air by natural convection. Thereby, the refrigerator 501 can shorten the cooling time of the latent heat storage material 503.
  • the amount of heat Qs moving in the thickness direction of the heat storage member is expressed by the following equation (2). Can be represented.
  • Qs A ⁇ (k / t) ⁇ (T1-T2) (2)
  • the heat transfer by the heat quantity Qs becomes the rate of heat transfer in the whole, and the effect of improving the heat transfer quantity by forced convection becomes small. Therefore, by adopting a configuration in which the heat quantity Qs is larger than the heat transfer quantity Q, the effect of improving the heat transfer quantity by forced convection can be increased.
  • the refrigerator 501 can increase the surface area of the latent heat storage material 503 by including the latent heat storage material 503 on the inner wall of the storage chamber 504. Thereby, the refrigerator 501 has a large surface area for heat exchange with the latent heat storage material 503 and the air in the storage chamber 504, and the cooling time of the latent heat storage material 503 can be shortened.
  • Example 2 Next, a fan-type refrigerator according to Example 2 of the present embodiment will be described with reference to FIGS.
  • the refrigerator 550 according to the present embodiment is characterized in that the direction of the cold air flowing out from the cold air outlet 509 is switched.
  • FIG. 19 is a diagram illustrating a main part of a schematic configuration of the refrigerator 550 according to the present embodiment.
  • 19A shows a front view of the refrigerator 550 seen through the door 517
  • FIG. 19B shows a right side view of the refrigerator 550 seen through the right wall 505.
  • FIG. 19A shows a damper 533 that cannot be viewed in the refrigerator compartment 502 and a blower 506 that cannot be viewed in the freezer compartment 508.
  • symbol is attached
  • the refrigerator 550 has a latent heat storage material 503 provided on the shelf 523.
  • the latent heat storage material 503 is provided on the three shelves 523 from the top of the four shelves 523.
  • the latent heat storage material 503 is provided in the shelf 523, for example.
  • the refrigerator 550 includes a plurality of latent heat storage materials 503 provided on the inner wall back surface of the storage chamber 504. In this example, a total of three sheets between the second and third cold air outlets 509 from the top, between the third and fourth cold air outlets 509, and below the fourth cold air outlet 509.
  • a latent heat storage material 503 is provided on the back of the inner wall.
  • the refrigerator 550 is stored in a predetermined direction (in this example, storage so that the cold air flowing out from the cold air outlet 509 does not directly hit the stored item during normal operation. It flows out in the direction of the inner wall side surface of the chamber 504.
  • a predetermined direction in this example, storage so that the cold air flowing out from the cold air outlet 509 does not directly hit the stored item during normal operation. It flows out in the direction of the inner wall side surface of the chamber 504.
  • the thick arrows in FIGS. 19A and 19B when the refrigerator 550 cools the latent heat storage material 503, the cold air flowing out into the storage chamber 504 is the latent heat storage material. In order to directly hit 503, the wind direction of the cold air is switched in a direction different from the predetermined direction.
  • the method for determining the temperature condition for changing the direction of the cold air in this embodiment is executed as follows, for example.
  • the refrigerator 550 has a temperature sensor installed in the latent heat storage material 503, for example, determines whether or not the temperature detected by the temperature sensor exceeds the phase change temperature range, and the detected temperature is in the phase change temperature range. Is exceeded, the direction of the cold air is switched in the direction in which the latent heat storage material 503 is disposed.
  • the refrigerator 550 has a storage unit that stores in advance the relationship between the temperature change of the latent heat storage material 503 and the temperature change of the internal temperature sensor 511 when the load capacity in the storage room 504 is changed, for example.
  • the temperature detected by the internal temperature sensor 511 and the relationship read from the storage unit may be compared to switch the direction of the cold air.
  • the refrigerator 550 detects the volume of the latent heat storage material 503 at the time of phase change, and if the detected volume has changed by, for example, 10 to 15% compared to the volume in the solid phase, the wind direction is changed. You may switch. Regardless of the determination method, the refrigerator 550 detects that the latent heat storage material 503 has changed to a liquid phase, and directly cools the latent heat storage material 503 by directly applying cold air to the latent heat storage material 503. To be in a solid phase state.
  • FIG. 20 is a diagram illustrating a main part of a schematic configuration of the refrigerator 550 according to the embodiment 2-1.
  • FIG. 20A shows a right side view of the refrigerator 550 viewed through the right wall 505.
  • FIGS. 20B and 20C are enlarged views of the vicinity of the cold air outlet 509 of the refrigerator 550 according to the present embodiment.
  • FIG. 20B shows a state where the wind direction of the cold wind is not switched
  • FIG. 20C shows a state where the wind direction of the cold wind is switched.
  • the refrigerator 501 switches the cool air direction upward to cool the latent heat storage material 503, and cools the cool air on the bottom surface of the shelf 523. It comes to directly hit. Thereby, the latent heat storage material 503 provided in the shelf 523 is rapidly cooled.
  • the cold air outlet 509 has a louver (wind direction switching unit) 547 that switches the wind direction of the cold air.
  • the louver 547 is controlled by a predetermined control unit provided in the electrical equipment unit 21 (see FIG. 20A).
  • the louver 547 is arranged so as to be substantially parallel to the bottom surface of the shelf 523 (see FIG. 20A) during normal operation.
  • the cold air that has flowed into the storage chamber 504 from the cold air passage portion 507 via the cold air outlet 509 is directed in a predetermined direction.
  • FIG. 20B the louver 547 that has flowed into the storage chamber 504 from the cold air passage portion 507 via the cold air outlet 509 is directed in a predetermined direction.
  • the louver 547 is disposed at a predetermined angle with respect to the bottom surface of the shelf 523 when the latent heat storage material 503 is cooled.
  • the cold air that has flowed out of the cold air passage portion 507 into the storage chamber 504 via the cold air outlet 509 is directed in a direction different from the predetermined direction. Since the latent heat storage material 503 is provided in the shelf 523, the latent heat storage material 503 is disposed in the different direction as viewed from the cold air outlet 509. Since the cold air toward the different direction directly hits the latent heat storage material 503, the refrigerator 550 according to the present embodiment can cool the latent heat storage material 503 rapidly.
  • the latent heat storage material 503 provided in the shelf 523 exhibits a function of being rapidly cooled and flattening the temporal change distribution of the temperature in the storage chamber 504. Thereby, although the cool air is not directly applied to the latent heat storage material 503 provided on the back of the inner wall of the storage chamber 504, the latent heat storage material 503 is cooled relatively quickly.
  • FIG. 21 is a diagram illustrating a main part of a schematic configuration of the refrigerator 550 according to the present embodiment.
  • FIG. 21A shows a right side view of the refrigerator 550 as seen through the right wall 505.
  • FIG. 21B shows a schematic configuration of a cold wind induction reflecting portion (wind induction reflecting portion) 549 provided in the refrigerator 550 according to the present embodiment.
  • FIG. 21A shows a right side view of the refrigerator 550 as seen through the right wall 505.
  • FIG. 21B shows a schematic configuration of a cold wind induction reflecting portion (wind induction reflecting portion) 549 provided in the refrigerator 550 according to the present embodiment.
  • wind induction reflecting portion cold wind induction reflecting portion
  • the cold wind induction reflection portion 549 viewed from the bottom surface side of the shelf 523 is shown, and below that, the cold wind induction reflection portion 549 viewed from the cold air outflow side is shown,
  • a cold wind induction reflecting portion 549 viewed in a direction parallel to the bottom surface of the shelf 523 and perpendicular to the direction in which the cold air flows is shown.
  • FIG. 21B for the sake of easy understanding, the direction of the cold air that has flowed out of the cold air outlet 509 (the thin arrow in the figure) and the direction of the cold air reflected by the cold air induction reflecting portion 549 (in the figure). Thick arrows).
  • the refrigerator 550 according to the present embodiment has a louver 547 (not shown in FIG. 21) at the cold air outlet 509, like the refrigerator 550 according to the embodiment 2-1. For this reason, as indicated by a thick arrow in the drawing of FIG. 21A, the refrigerator 550 according to the present embodiment switches the direction of the cold air upward when the latent heat storage material 503 is cooled. Cold air is directly applied to the bottom surface and the cold air induction reflecting portion 549.
  • the cold wind induction reflecting portion 549 includes a plurality of guide portions 549a that guides the cold air flowing out from the cold air outlet 509 to the bottom surface of the shelf portion 523, and a reflection portion 549b that reflects the cold air.
  • the guide portion 549a has a thin plate shape extending in the direction in which the cold air flows.
  • a plurality of guiding portions 549a are provided.
  • the cold air flows between the adjacent guiding portions 549a and is guided to the bottom surface of the shelf portion 523.
  • the reflection portion 549b is formed to be stretched between one end portions of a pair of adjacent guide portions 549a.
  • a path for cold air is formed between adjacent reflecting portions 549b.
  • the reflection part 549b is disposed substantially orthogonal to the direction in which the cold air flows.
  • the cold air is reflected by the reflecting portion 549b and directly hits the latent heat storage material 503 disposed on the back of the inner wall of the storage chamber 504, as shown in FIG.
  • the louver 547 is disposed so as to be substantially parallel to the bottom surface of the shelf 523 (see FIG. 21A) during normal operation.
  • the cold air that has flowed out of the cold air path portion 507 into the storage chamber 504 via the cold air outlet 509 is directed in a predetermined direction, and therefore hardly reaches the cold air induction reflecting portion 549.
  • the louver 547 is disposed to be inclined at a predetermined angle with respect to the bottom surface of the shelf 523 when the latent heat storage material 503 is cooled.
  • the cold wind induction reflecting portion 549 is disposed with a predetermined angle with respect to the bottom surface of the shelf portion 523.
  • the cold air that has flowed out of the cold air path portion 507 into the storage chamber 504 through the cold air outlet 509 is directed to the cold air induction reflecting portion 549 that is in a direction different from the predetermined direction.
  • a part of the cold air that has reached the cold air guiding reflection portion 549 passes between the guiding portions 549a and passes over the bottom surface of the shelf portion 523.
  • the latent heat storage material 503 provided in the shelf portion 523 is rapidly cooled.
  • the remaining cold wind that has reached the cold wind induction reflecting portion 549 is reflected by the reflecting portion 549b and directly hits the latent heat storage material 503 provided on the back of the inner wall of the storage chamber 504, thereby rapidly cooling the latent heat storage material 503.
  • the refrigerator 550 since the refrigerator 550 according to the present embodiment can directly apply cold air to all the latent heat storage materials 503 provided in the storage chamber 504, the latent heat storage material 503 can be rapidly cooled.
  • a heat conductive sheet may be attached to the bottom surface of the shelf 523. Thereby, the cooling efficiency of the latent heat storage material 503 can be improved.
  • FIG. 22 shows a shelf 523 provided in the refrigerator 550 according to the present embodiment.
  • 22A schematically shows the vicinity of the cold air inlet 9 and the shelf 523
  • FIG. 22B shows a schematic configuration of the cold air guiding portion (wind guiding portion) 551 provided in the shelf 523.
  • FIG. 22C shows a cut surface of the shelf 523 cut along the line AA ′ in the drawing of FIG.
  • FIG. 22A and FIG. 22B the direction of the cold air flowing out from the cold air outlet 509 (thin arrow in the figure) is shown for easy understanding.
  • the refrigerator 550 according to the present embodiment has the same configuration as that of the embodiment 2-1 except that the refrigerator 550 does not have the louver 547.
  • the shelf 523 has a cold air guiding portion 551 that guides the cold air flowing into the storage chamber 504 to the lower side of the shelf 523.
  • the cold air guiding portion 551 has a thin plate shape extending in the direction in which the cold air flows.
  • a plurality of cold air guiding portions 551 are provided, and the cold air flows between adjacent cold air guiding portions 551 and is guided to the bottom surface of the shelf portion 523.
  • the cold air inflow portion of the cold air guiding portion 551 into which the cold air flows is formed in a curved shape in order to reduce air resistance.
  • the cold air inflow portion of the cold air guiding portion 551 is formed so as to bend alternately on the opposite side. Thereby, as shown in FIG.22 (b), the cold wind induction
  • a part of the cold air that has flowed out from the cold air passage portion 9 into the storage chamber 504 through the cold air inlet 9 is guided by the cold air guiding portion 551 and in a predetermined direction. Passes on the bottom surface of the shelf 523 which is in a different direction. Thereby, since the cold air directly hits the latent heat storage material 503 provided in the shelf 523, the latent heat storage material 503 is rapidly cooled.
  • the latent heat storage material 503 provided on the shelf 523 of the refrigerator 550 according to the present embodiment exhibits a function of being rapidly cooled and flattening the temporal change distribution of the temperature in the storage chamber 504. Thereby, although the cool air is not directly applied to the latent heat storage material 503 (not shown in FIG. 22) provided on the back of the inner wall of the storage chamber 504, the latent heat storage material 503 is cooled relatively quickly.
  • a heat conductive sheet may be attached to the bottom surface of the shelf 523. Thereby, the cooling efficiency of the latent heat storage material 503 can be improved.
  • Example 3 a refrigerator according to Example 3 of the present embodiment will be described with reference to FIGS.
  • the refrigerator according to the present embodiment is characterized in that the latent heat storage material 503 has a configuration that increases the cooling efficiency. Since the schematic configuration of the refrigerator according to the present embodiment may be any of the refrigerators 501 and 550 according to the first embodiment or the second embodiment, the description thereof is omitted.
  • the refrigerator according to the present embodiment will be described using Embodiment 3-1 to Embodiment 3-4.
  • the refrigerator according to Example 3-1 is characterized in that a heat conductive sheet is attached to the back surface of the latent heat storage material 503.
  • the latent heat storage material 503 disposed in the vicinity of the cold air outlet 509 has a heat conductive sheet 553 that reaches the cold air outlet 509 from the back surface.
  • the cold heat of the cold air passing through the cold air outlet 509 is guided to the back surface of the latent heat storage material 503 by the heat conductive sheet 553. Since the latent heat storage material 503 is cooled by the surface, it is cooled more rapidly.
  • the refrigerator according to the present embodiment includes a heat conductive sheet 554 affixed to the side wall of the cool air path portion 507 in addition to the heat conductive sheet 553 shown in FIG. 23 (a), and a heat conductive sheet.
  • a conductive path 555 that conducts the cold heat of 554 to the heat conductive sheet 553 may be included.
  • the conduction path 555 is formed in the back surface of the inner wall of the storage chamber 504. In the refrigerator shown in FIG. 23B, since the cold air flowing through the cold air passage portion 507 can be guided to the back surface of the latent heat storage material 503, the latent heat storage material 503 can be further rapidly cooled.
  • the refrigerator is disposed on the back surface of the latent heat storage material 503 and is formed so as to surround the two cold air outlets 509.
  • the heat conductive sheet 556 By using the heat conductive sheet 556, the cooling efficiency of the latent heat storage material 503 can be improved.
  • FIG. 24 is a schematic diagram of the latent heat storage material 503 of the refrigerator according to the present embodiment.
  • FIG. 24A is a perspective view schematically showing the latent heat storage material 503
  • FIG. 24B is a view for explaining the arrangement state of the latent heat storage material 503 in the storage chamber 504.
  • the refrigerator according to the present embodiment has a latent heat storage material 503 having a plurality of pin-shaped fins 557 on the back surface.
  • the fins 557 are arranged facing the wall surface 504a side of the storage chamber 504.
  • the refrigerator according to the present embodiment has a configuration in which the fins 557 are directed to the wall surface 504a side of the storage chamber 504, and cool air flows between the fins 557 and the wall surface 504a.
  • the ratio of b (the distance from the tip of the fin 557 to the wall surface 504a) with respect to a (the height of the fin 557) shown in FIG. 24B is large, the cooling efficiency by the fins 557 decreases. For this reason, in the refrigerator according to the present embodiment, the height a of the fins 557 and the distance b are adjusted so that the ratio does not increase.
  • the cold air is directly applied to the heat receiving portion such as the fin, and the cold heat of the cold air is indirectly applied to the latent heat storage material via the heat receiving portion. It may be transmitted.
  • FIG. 25 shows a main part of the latent heat storage material 503 provided in the refrigerator according to the present embodiment.
  • the latent heat storage material 503 is formed in a package 559 in which one surface has an uneven shape and a surface opposite to the surface is formed in a flat shape, and in a plurality of convex portions of the package 559.
  • Thermal conductive filler dispersion portion 560 Since the refrigerator has a plurality of convex heat conductive filler dispersion portions 560, the latent heat storage material 503 can be rapidly cooled without providing additional fins unlike the refrigerator according to Example 3-2.
  • the heat conductive filler for example, graphite, silver, copper, gold, silicon, silicon carbide, aluminum nitride, boron nitride, silicon nitride, magnesia or alumina can be used.
  • FIG. 26 shows a schematic configuration of the latent heat storage material 503 provided in the refrigerator according to the present embodiment.
  • the latent heat storage material 503 has irregularities on the surface on which the cold air hits. Thereby, the contact area with the air of the latent heat storage material 503 becomes large. For this reason, as shown in Formula (1), since the heat transfer amount Q becomes large, the refrigerator according to the present embodiment can improve the heat exchange efficiency between the latent heat storage material 503 and the air in the storage chamber 504.
  • Example 4 Each member of the latent heat storage material 503, the heat conductive sheet, and the fins 557 shown in the above-described Example 1, Example 2, and Example 3 may be fixed in a detachable form.
  • the detachable form may be separately removable.
  • a unit composed of these members may be integrally removable. In the case where each can be detached and attached separately, it is possible to deal with replacement of only individual members. Moreover, when it can remove
  • the refrigerator is mainly exemplified.
  • the present invention is not limited to this, and can be applied to a freezer, a warm storage, a vending machine having a cold and warm function, and the like.
  • a latent heat storage material having a phase transition temperature of about ⁇ 20 ° C. to ⁇ 5 ° C. that reversibly changes from a solid phase to a liquid phase should be used.
  • a latent heat storage material having a phase transition temperature of about 0 ° C. to 10 ° C. can be used.
  • this invention is applicable also to the refrigerator provided with the refrigerator compartment, the freezer compartment, and the vegetable compartment.
  • the temperature of the refrigerator compartment is set to about 2 ° C to 5 ° C.
  • the temperature of the door storage portion provided in the door for opening and closing the refrigerator compartment is set to about 3 ° C to 7 ° C.
  • the temperature of the chilled chamber provided in the refrigerator compartment is set to about 0 ° C. to 2 ° C.
  • the freezing room has an ice storage room for storing ice, an upper freezing room, and a lower freezing room.
  • the temperature of the ice storage room and the lower freezing room is set to about ⁇ 18 ° C. to ⁇ 20 ° C.
  • the set temperature of the upper freezer compartment is set to about ⁇ 17 ° C. to ⁇ 19 ° C.
  • the temperature of the vegetable room is set to about 3 ° C to 8 ° C. These set temperatures are approximate when the temperature in the refrigerator is stable when the outside air temperature of the refrigerator is 30 ° C. and the door is closed and the refrigerator compartment is closed without food in the refrigerator. This is the approximate temperature.
  • a latent heat storage material is used in which the phase transition temperature at which the phase transition from the solid phase to the liquid phase reversibly falls within these set temperature ranges.
  • the present invention can be widely used in the field of a heat storage container or a heat storage that stores stored items at a temperature different from the outside air temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

The purpose of the present invention is to provide a heat storage container or a temperature retention compartment which has a high temperature retention capacity, and is capable of efficiently cooling a latent heat storage material. The heat storage container (100) comprises: an enclosed space region (1) of a prescribed volume; a heat transfer region (10) which is disposed on an inner wall of the enclosed space region, and transfers heat in order to control the temperature inside the enclosed space region (1); a latent heat storage material (3) disposed in the heat transfer region; and heat transfer region exposure sections (6), wherein the latent heat storage material (3) is not disposed, and wherein the heat transfer region (10) is exposed. A refrigerator (501) comprises: a heat exchanger (537) which generates cold air with a temperature lower than the ambient temperature; a blower (506) which generates cold blasts by subjecting the cold air to forced convection, and which blows the cold blasts; and a latent heat storage material (503) which is disposed in such a manner as to be directly exposed to the cold blasts, or in such a manner that the cold from the cold blasts, which directly strikes a heat receiving section, is indirectly transmitted via the heat receiving section, and which accumulates or releases thermal energy through phase transitions.

Description

蓄熱容器及び保温庫Thermal storage container and heat storage
 本発明は、潜熱蓄熱材を用いた蓄熱容器及び保温庫に関する。 The present invention relates to a heat storage container and a heat storage using a latent heat storage material.
 従来、潜熱蓄熱材を備えた蓄熱容器が知られている。特許文献1には蓄熱容器として、「箱内壁面の全体もしくは一部に潜熱蓄冷材を備え、断熱材と潜熱蓄冷材との二層構造」である蓄冷型保冷庫が開示されている。 Conventionally, a heat storage container provided with a latent heat storage material is known. Patent Document 1 discloses a cold storage type cold storage that is “a two-layer structure including a heat insulating material and a latent heat regenerator having a latent heat regenerator material on the whole or a part of the inner wall surface of the box” as a heat storage container.
 特許文献2には蓄熱容器として、「保存室の底面に設置され所定温度で熱平衡に達する組成を有する蓄冷体と、蓄冷体の下方に設けたダクトと、冷凍室の気中温度を検知するように設けた温度検知手段と、保存室の底面に熱伝導的に固定された温度検知手段とを備えていて、前記蓄冷体は冷気が通風する細孔と、所定温度で熱平衡に達する蓄冷物質と、前記蓄冷物質を包む伸縮製のある素材のコート材と、前記蓄冷物質を包んだコート材を上下ではさむ外ケースとで構成され、前記細孔は前記外ケースに設けた穴と前記蓄冷物質を包んだコート材の間隙で構成されており、蓄冷体はその潜熱交換による冷却と、蓄冷体が融解した部分については融解によって生じる細孔から導入される冷気によって冷却されるため熱交換が高く、保存室内を所定温度に維持でき、食品を保存することができる」冷蔵庫が開示されている。 In Patent Document 2, as a heat storage container, “a cold storage body having a composition that is installed on the bottom surface of a storage room and reaches thermal equilibrium at a predetermined temperature, a duct provided below the cold storage body, and an air temperature in the freezer room are detected. Temperature detecting means provided on the bottom of the storage chamber, and temperature detecting means fixed thermally conductive to the bottom of the storage chamber, the cool storage body is a pore through which cool air passes, and a cold storage material that reaches thermal equilibrium at a predetermined temperature, A coating material made of a stretchable material that wraps the cold storage material, and an outer case that sandwiches the coating material that wraps the cold storage material up and down, and the pores are a hole provided in the outer case and the cold storage material The regenerator body is cooled by the latent heat exchange and the part where the regenerator body melts is cooled by the cold air introduced from the pores generated by melting, so the heat exchange is high. , Save the room Can be maintained at a constant temperature, it is possible to save the food "is disclosed refrigerator.
特開昭58-219379号公報JP 58-219379 A 特開平11-257824号公報Japanese Patent Laid-Open No. 11-257824 特開平5-322412号公報JP-A-5-322412 特開平1-182283号公報JP-A-1-182283 特開平1-102269号公報Japanese Patent Laid-Open No. 1-102269 特開平6-174354号公報JP-A-6-174354 特開2003-287365号公報JP 2003-287365 A
 特許文献1に記載された蓄冷型保冷庫では、冷蔵室内壁全面が潜熱蓄冷材で覆われていると冷蔵室内を所定温度に低下させる冷却時間が長くなってしまい、無駄な電力消費を生じてしまうという問題が生じる。 In the cold storage type cold storage described in Patent Document 1, if the entire wall of the refrigerator compartment is covered with the latent heat regenerator, the cooling time for lowering the refrigerator compartment to a predetermined temperature becomes long, resulting in unnecessary power consumption. Problem arises.
 特許文献2に記載された冷蔵庫では、冷却機を出た冷気はまず冷蔵室及び冷凍室の冷却に供されるため蓄冷体に到達したときにはある程度昇温してしまっている。この冷気では蓄冷体を十分に冷却できない場合がある。また、冷蔵室に蓄冷体が配置されていないので、冷蔵庫の電源が遮断されると冷蔵室内の温度が短時間で上昇してしまう。このため、停電時に冷蔵室内を所定時間低温に保つことができないという問題がある。 In the refrigerator described in Patent Document 2, since the cold air discharged from the cooler is first used for cooling the refrigerator compartment and the freezer compartment, the temperature rises to some extent when it reaches the regenerator. This cool air may not cool the regenerator sufficiently. Moreover, since the cool storage body is not arrange | positioned in the refrigerator compartment, if the power supply of a refrigerator is interrupted | blocked, the temperature in a refrigerator compartment will rise in a short time. For this reason, there exists a problem that the refrigerator compartment cannot be kept low temperature for a predetermined time at the time of a power failure.
 本発明の目的は、消費電力を抑えつつ温度保持能力の高い蓄熱容器を提供することにある。 An object of the present invention is to provide a heat storage container having a high temperature holding ability while suppressing power consumption.
 上記目的は、所定容積の閉空間領域と、前記閉空間領域の内壁に配置され、前記閉空間領域内の温度を制御するための熱を移動させる熱移動領域と、前記熱移動領域に配置された潜熱蓄熱材と、前記潜熱蓄熱材が配置されておらず、前記熱移動領域が露出した熱移動領域露出部とを有することを特徴とする蓄熱容器によって達成される。 The object is arranged in a closed space region having a predetermined volume, a heat transfer region that is disposed on an inner wall of the closed space region, and moves heat for controlling the temperature in the closed space region, and the heat transfer region. It is achieved by a heat storage container characterized by having a latent heat storage material and a heat transfer region exposed portion in which the latent heat storage material is not disposed and the heat transfer region is exposed.
 上記本発明の蓄熱容器であって、前記熱移動領域露出部は、前記潜熱蓄熱材を貫通して形成した複数の貫通孔を有することを特徴とする。 In the heat storage container of the present invention, the heat transfer region exposed portion has a plurality of through holes formed through the latent heat storage material.
 上記本発明の蓄熱容器であって、前記貫通孔は中空円筒形であることを特徴とする。 The heat storage container according to the present invention, wherein the through hole has a hollow cylindrical shape.
 上記本発明の蓄熱容器であって、前記潜熱蓄熱材と前記熱移動領域露出部とは交互に並んで配置されていることを特徴とする。 The heat storage container of the present invention is characterized in that the latent heat storage material and the heat transfer region exposed portion are alternately arranged.
 上記本発明の蓄熱容器であって、前記熱移動領域は熱交換器を有していることを特徴とする。 The heat storage container of the present invention described above, wherein the heat transfer region has a heat exchanger.
 上記本発明の蓄熱容器であって、前記熱移動領域露出部の前記熱移動領域は突出していることを特徴とする。 The heat storage container according to the present invention is characterized in that the heat transfer region of the heat transfer region exposed portion protrudes.
 上記本発明の蓄熱容器であって、前記熱移動領域には所定温度の空気が送風されることを特徴とする。 In the heat storage container of the present invention, air having a predetermined temperature is blown into the heat transfer region.
 上記本発明の蓄熱容器であって、さらに、前記熱移動領域露出部遮蔽用の潜熱蓄熱材と、前記遮蔽用の潜熱蓄熱材を前記熱移動領域露出部に移動させて、前記熱移動領域露出部を遮蔽する遮蔽機構とを有することを特徴とする。 The heat storage container according to the present invention, wherein the latent heat storage material for shielding the heat transfer area exposure part and the latent heat storage material for shielding are moved to the heat transfer area exposure part to expose the heat transfer area. And a shielding mechanism for shielding the part.
 また上記目的は、所定容積の閉空間領域と、前記閉空間領域の内壁に配置され、前記閉空間領域内の温度を制御するための熱を移動させる熱移動領域と、前記熱移動領域遮蔽用の潜熱蓄熱材と、前記遮蔽用潜熱蓄熱材を前記熱移動領域に移動させて、前記熱移動領域を遮蔽する遮蔽機構とを有することを特徴とする蓄熱容器によって達成される。 Further, the object is to provide a closed space region having a predetermined volume, a heat transfer region that is disposed on an inner wall of the closed space region and moves heat for controlling the temperature in the closed space region, and for shielding the heat transfer region. This latent heat storage material and a shielding mechanism for moving the shielding latent heat storage material to the heat transfer region to shield the heat transfer region are achieved.
 上記本発明の蓄熱容器であって、前記潜熱蓄熱材はゲル化剤を含んでいることを特徴とする。 The heat storage container of the present invention, wherein the latent heat storage material contains a gelling agent.
 上記本発明の蓄熱容器であって、前記潜熱蓄熱材はパラフィンを含んでいることを特徴とする。 The heat storage container according to the present invention, wherein the latent heat storage material contains paraffin.
 上記本発明の蓄熱容器であって、前記潜熱蓄熱材は、定常運転において前記閉空間領域で制御可能な温度と、前記閉空間領域の周囲の雰囲気の温度との間の温度で固相から液相へ可逆的に相転移することを特徴とする。 The heat storage container according to the present invention, wherein the latent heat storage material is a liquid from a solid phase at a temperature between a temperature controllable in the closed space region and a temperature of an atmosphere around the closed space region in steady operation. It is characterized by a reversible phase transition to a phase.
 上記本発明の蓄熱容器であって、前記閉空間領域の内壁と外壁の間に断熱材が配置されていることを特徴とする。 The heat storage container according to the present invention is characterized in that a heat insulating material is disposed between an inner wall and an outer wall of the closed space region.
 上記本発明の蓄熱容器であって、さらに、前記閉空間領域を開放する扉を有していることを特徴とする。 The heat storage container according to the present invention is characterized in that it further includes a door that opens the closed space region.
 上記本発明の蓄熱容器であって、前記熱交換器は冷却器であることを特徴とする。 The heat storage container according to the present invention, wherein the heat exchanger is a cooler.
 上記本発明の蓄熱容器であって、さらに、前記冷却器の除霜時に生じた水を受けるように前記冷却器の下方に配置された水受け皿を有することを特徴とする。 The heat storage container of the present invention described above, further comprising a water receiving tray disposed below the cooler so as to receive water generated during defrosting of the cooler.
 また上記目的は、上記本発明の蓄熱容器を用いたことを特徴とする冷蔵庫によって達成される。 Also, the above object is achieved by a refrigerator characterized by using the heat storage container of the present invention.
 また上記目的は、上記本発明の蓄熱容器を用いたことを特徴とする温蔵庫によって達成される。 Further, the above object is achieved by a warm storage room using the heat storage container of the present invention.
 本発明によれば、消費電力を抑えつつ温度保持能力を向上させることができる。 According to the present invention, the temperature holding ability can be improved while suppressing power consumption.
本発明の第1の実施の形態の実施例1による蓄熱容器100の外観を示す斜視図である。It is a perspective view which shows the external appearance of the thermal storage container 100 by Example 1 of the 1st Embodiment of this invention. 本発明の第1の実施の形態の実施例1による蓄熱容器100の構成を示す図である。It is a figure which shows the structure of the thermal storage container 100 by Example 1 of the 1st Embodiment of this invention. 比較例に係る蓄熱容器200、210の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the thermal storage container 200,210 which concerns on a comparative example. 本発明の第1の実施の形態の実施例2による蓄熱容器110の構成を示す図である。It is a figure which shows the structure of the thermal storage container 110 by Example 2 of the 1st Embodiment of this invention. 本発明の第1の実施の形態の実施例3による蓄熱容器120の構成を示す図である。It is a figure which shows the structure of the thermal storage container 120 by Example 3 of the 1st Embodiment of this invention. 本発明の第1の実施の形態の実施例3による蓄熱容器120の構成を示す図である。It is a figure which shows the structure of the thermal storage container 120 by Example 3 of the 1st Embodiment of this invention. 本発明の第1の実施の形態の実施例3による蓄熱容器120の構成を示す図である。It is a figure which shows the structure of the thermal storage container 120 by Example 3 of the 1st Embodiment of this invention. 本発明の第1の実施の形態の実施例3の変形例による蓄熱容器130の構成を示す図である。It is a figure which shows the structure of the thermal storage container 130 by the modification of Example 3 of the 1st Embodiment of this invention. 本発明の第1の実施の形態の実施例4による蓄熱容器140の構成を示す図である。It is a figure which shows the structure of the thermal storage container 140 by Example 4 of the 1st Embodiment of this invention. 本発明の第1の実施の形態の実施例4による蓄熱容器140の構成を示す図である。It is a figure which shows the structure of the thermal storage container 140 by Example 4 of the 1st Embodiment of this invention. 本発明の第1の実施の形態の実施例5による蓄熱容器150の構成を示す図である。It is a figure which shows the structure of the thermal storage container 150 by Example 5 of the 1st Embodiment of this invention. 本発明の第1の実施の形態の実施例5による蓄熱容器150の構成を示す図である。It is a figure which shows the structure of the thermal storage container 150 by Example 5 of the 1st Embodiment of this invention. 本発明の第1の実施の形態の実施例6による蓄熱容器160の構成を示す図である。It is a figure which shows the structure of the thermal storage container 160 by Example 6 of the 1st Embodiment of this invention. 本発明の第1の実施の形態の実施例6による蓄熱容器160の構成を示す図である。It is a figure which shows the structure of the thermal storage container 160 by Example 6 of the 1st Embodiment of this invention. 本発明の第1の実施の形態の実施例7による蓄熱容器170の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the thermal storage container 170 by Example 7 of the 1st Embodiment of this invention. 本発明の第1の実施の形態の実施例7による蓄熱容器170の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the thermal storage container 170 by Example 7 of the 1st Embodiment of this invention. 本発明の第2の実施の形態の実施例1による冷蔵庫501の概略構成を示す図である。It is a figure which shows schematic structure of the refrigerator 501 by Example 1 of the 2nd Embodiment of this invention. 本発明の第2の実施の形態の実施例1による冷蔵庫501に備えられた熱交換装置37のブロック図である。It is a block diagram of the heat exchange apparatus 37 with which the refrigerator 501 by Example 1 of the 2nd Embodiment of this invention was equipped. 本発明の第2の実施の形態の実施例2による冷蔵庫550の概略構成を示す図である。It is a figure which shows schematic structure of the refrigerator 550 by Example 2 of the 2nd Embodiment of this invention. 本発明の第2の実施の形態の実施例2-1による冷蔵庫550を説明する図である。It is a figure explaining the refrigerator 550 by Example 2-1 of the 2nd Embodiment of this invention. 本発明の第2の実施の形態の実施例2-2による冷蔵庫550を説明する図である。It is a figure explaining the refrigerator 550 by Example 2-2 of the 2nd Embodiment of this invention. 本発明の第2の実施の形態の実施例2-3による冷蔵庫550を説明する図である。It is a figure explaining the refrigerator 550 by Example 2-3 of the 2nd Embodiment of this invention. 本発明の第2の実施の形態の実施例3-1による冷蔵庫を説明する図である。It is a figure explaining the refrigerator by Example 3-1 of the 2nd Embodiment of this invention. 本発明の第2の実施の形態の実施例3-2による冷蔵庫を説明する図である。It is a figure explaining the refrigerator by Example 3-2 of the 2nd Embodiment of this invention. 本発明の第2の実施の形態の実施例3-3による冷蔵庫を説明する図である。It is a figure explaining the refrigerator by Example 3-3 of the 2nd Embodiment of this invention. 本発明の第2の実施の形態の実施例3-4による冷蔵庫を説明する図である。It is a figure explaining the refrigerator by Example 3-4 of the 2nd Embodiment of this invention.
[第1の実施の形態]
(実施例1)
 本実施の形態の実施例1による蓄熱容器について図1及び図2を用いて説明する。なお、以下の全ての図面においては、理解を容易にするため、各構成要素の寸法や比率などは適宜異ならせて図示されている。図1は、本実施例による蓄熱容器100の外観を示す斜視図である。本実施例では蓄熱容器100として直冷式の冷蔵庫を例にとって説明する。蓄熱容器100は設置状態で鉛直方向に高い直方体形状の蓄熱容器本体101を有している。図1では蓄熱容器本体101の正面101aを斜め左上方から観察した状態を示している。蓄熱容器本体101の正面101aには上段と下段とにそれぞれ長方形の開口が設けられている。下段の長方形開口を開口端として、蓄熱容器本体101内に中空箱状の冷蔵室104が設けられている。また、上段の長方形開口を開口端として蓄熱容器本体101内に中空箱状の冷凍室105が設けられている。冷凍室105は冷蔵室104の容積より小さい容積を有している。
[First Embodiment]
Example 1
A heat storage container according to Example 1 of the present embodiment will be described with reference to FIGS. 1 and 2. In all of the following drawings, the dimensions and ratios of the constituent elements are appropriately varied for easy understanding. FIG. 1 is a perspective view showing an appearance of a heat storage container 100 according to the present embodiment. In the present embodiment, a direct cooling refrigerator will be described as an example of the heat storage container 100. The heat storage container 100 includes a heat storage container body 101 having a rectangular parallelepiped shape that is vertically high in the installed state. In FIG. 1, the state which observed the front surface 101a of the thermal storage container main body 101 from diagonally upper left is shown. The front surface 101a of the heat storage container main body 101 is provided with rectangular openings at the upper and lower stages. A hollow box-shaped refrigeration chamber 104 is provided in the heat storage container body 101 with the lower rectangular opening as the opening end. Further, a hollow box-shaped freezer compartment 105 is provided in the heat storage container main body 101 with the upper rectangular opening as an opening end. The freezer compartment 105 has a volume smaller than that of the refrigerator compartment 104.
 正面101aの冷凍室105の開口端右側には不図示のヒンジ機構を介して例えば樹脂製の冷凍室扉103が開閉可能に取り付けられている。図1では冷凍室扉103は閉じた状態を示している。冷凍室扉103は閉じた状態で冷凍室105の長方形開口を塞ぐ領域を備えた長方形平板形状を有している。 A freezer compartment door 103 made of resin, for example, is attached to the right side of the open end of the freezer compartment 105 on the front side 101a through a hinge mechanism (not shown) so as to be opened and closed. In FIG. 1, the freezer compartment door 103 is shown in a closed state. The freezer compartment door 103 has a rectangular flat plate shape having a region that closes the rectangular opening of the freezer compartment 105 in a closed state.
 正面101aの冷蔵室104及び冷凍室105の開口端右側には不図示のヒンジ機構を介して冷蔵庫扉102が開閉可能に取り付けられている。図1において冷蔵庫扉102を開いた状態を実線で示し、閉じた状態を2点鎖線の冷蔵庫扉102aとして示している。冷蔵庫扉102は閉じた状態で冷蔵室104及び冷凍室105の双方の長方形開口を塞ぐ領域を備えた長方形平板形状を有している。また、冷蔵庫扉102の冷蔵室104及び冷凍室105の双方の開口を含む外周囲との対面側には、扉閉鎖時に冷蔵室104及び冷凍室105の密閉性を確保するためのドアパッキン12が配置されている。 A refrigerator door 102 is attached to the right side of the open end of the refrigerator compartment 104 and freezer compartment 105 on the front face 101a through a hinge mechanism (not shown) so as to be opened and closed. In FIG. 1, a state where the refrigerator door 102 is opened is indicated by a solid line, and a state where the refrigerator door 102 is closed is indicated by a two-dot chain line refrigerator door 102a. The refrigerator door 102 has a rectangular flat plate shape having a region that closes the rectangular openings of both the refrigerator compartment 104 and the freezer compartment 105 in a closed state. A door packing 12 for ensuring the sealing of the refrigerator compartment 104 and the freezer compartment 105 when the door is closed is provided on the opposite side of the refrigerator door 102 to the outer periphery including both the refrigerator compartment 104 and the freezer compartment 105. Has been placed.
 次に、図2を用いて、本実施例による蓄熱容器100の構成について詳細に説明する。図2(a)は、図1のA-A線に沿って図示の鉛直方向(A-A線の矢印の方向)に蓄熱容器100を切断した断面を本体右側面101b側から観察した状態を示している。また図2(a)では、冷蔵庫扉102及び冷凍室扉103を閉じた状態を示している。 Next, the configuration of the heat storage container 100 according to the present embodiment will be described in detail with reference to FIG. FIG. 2A shows a state in which a cross section of the heat storage container 100 cut along the AA line of FIG. 1 in the illustrated vertical direction (the direction of the arrow of the AA line) is observed from the right side surface 101b side of the main body. Show. Moreover, in Fig.2 (a), the state which closed the refrigerator door 102 and the freezer compartment door 103 is shown.
 図2(a)に示すように、蓄熱容器本体101内の冷蔵室104と冷凍室105との間には熱交換器としての冷却器2が配置されている。冷却器2は冷媒を蒸発させる蒸発機構(不図示)を内部に挟んで対向配置された平板状の表面部材2aと裏面部材2bとを有している。冷却器2の表面部材2aは冷蔵室104内に露出している。冷却器2の裏面部材2bは冷凍室105内に露出している。 As shown in FIG. 2A, a cooler 2 serving as a heat exchanger is disposed between a refrigerator compartment 104 and a freezer compartment 105 in the heat storage container main body 101. The cooler 2 includes a flat plate-like surface member 2a and a back surface member 2b that are opposed to each other with an evaporation mechanism (not shown) for evaporating the refrigerant interposed therebetween. The surface member 2 a of the cooler 2 is exposed in the refrigerator compartment 104. The back member 2 b of the cooler 2 is exposed in the freezer compartment 105.
 冷蔵庫扉102を閉じると冷蔵室104には所定容積の閉空間領域1が形成される。閉空間領域1は概ね直方体の空洞を形成する少なくとも6つの内壁で構成される。閉空間領域1の上面側内壁には冷却器2の表面部材2aが配置されている。表面部材2a表面は閉空間領域1の内壁の一部を構成している。表面部材2a表面は閉空間領域1内に露出して閉空間領域1内の温度を制御するための熱を移動させる熱移動領域10となっている。 When the refrigerator door 102 is closed, a closed space region 1 having a predetermined volume is formed in the refrigerator compartment 104. The closed space region 1 is generally composed of at least six inner walls forming a rectangular parallelepiped cavity. A surface member 2 a of the cooler 2 is disposed on the inner wall on the upper surface side of the closed space region 1. The surface of the surface member 2 a constitutes a part of the inner wall of the closed space region 1. The surface of the surface member 2a is exposed to the closed space region 1 and serves as a heat transfer region 10 for transferring heat for controlling the temperature in the closed space region 1.
 熱移動領域10には潜熱蓄熱材3が部分的に配置されている。蓄熱とは、熱を一時的に蓄え、必要に応じてその熱を取り出す技術をいう。蓄熱方式としては、顕熱蓄熱、潜熱蓄熱、化学蓄熱等があるが、本実施例では、潜熱蓄熱を利用する。潜熱蓄熱は、物質の潜熱を利用して、物質の相変化の熱エネルギーを蓄える。蓄熱密度が高く、出力温度が一定である。潜熱蓄熱材3としては、氷(水)、パラフィン、無機塩などが用いられる。なお、潜熱蓄熱材は、ABSやポリカーボネート等、樹脂製のフィルムまたは薄い板で囲まれて形成されてもよい。 The latent heat storage material 3 is partially disposed in the heat transfer region 10. Thermal storage refers to a technique for temporarily storing heat and extracting the heat as needed. Examples of the heat storage method include sensible heat storage, latent heat storage, chemical heat storage, and the like. In this embodiment, latent heat storage is used. Latent heat storage uses the latent heat of a substance to store the thermal energy of the phase change of the substance. The heat storage density is high and the output temperature is constant. As the latent heat storage material 3, ice (water), paraffin, inorganic salt or the like is used. The latent heat storage material may be formed by being surrounded by a resin film or a thin plate such as ABS or polycarbonate.
 本実施例の潜熱蓄熱材3は、パラフィンを含んでいる。パラフィンとは、一般式C2n+2で表される飽和鎖式炭化水素の総称をいう。本実施例では潜熱蓄熱材3の固相から液相へ可逆的に相変化する相変化温度は、4℃から6℃程度が望ましい。 The latent heat storage material 3 of the present embodiment contains paraffin. Paraffin is a generic name for saturated chain hydrocarbons represented by the general formula C n H 2n + 2 . In this embodiment, the phase change temperature at which the latent heat storage material 3 reversibly changes from a solid phase to a liquid phase is preferably about 4 ° C. to 6 ° C.
 また、潜熱蓄熱材3は、パラフィンをゲル化(固化)するゲル化剤を含んでいる。ゲルとは、分子が架橋されることで三次元的な網目構造を形成し、その内部に溶媒を吸収し膨潤したものをいう。ゲル化剤はパラフィンに数重量%含有させるだけでゲル化の効果を生じる。 Further, the latent heat storage material 3 includes a gelling agent that gels (solidifies) paraffin. A gel refers to a gel that has a three-dimensional network structure formed by cross-linking molecules, and has absorbed and swelled a solvent therein. A gelling agent produces a gelling effect only by being contained in paraffin by several weight%.
 潜熱蓄熱材3は、例えば接着剤等で表面部材2aの閉空間領域1側の表面に貼り付けられている。冷却器2の表面部材2aの閉空間領域1側表面で潜熱蓄熱材3が配置されていない領域は熱移動領域10が露出した熱移動領域露出部6となっている。 The latent heat storage material 3 is attached to the surface of the surface member 2a on the closed space region 1 side, for example, with an adhesive or the like. A region where the latent heat storage material 3 is not disposed on the surface of the surface member 2a of the cooler 2 on the side of the closed space region 1 is a heat transfer region exposed portion 6 where the heat transfer region 10 is exposed.
 図2(b)は、熱移動領域10に配置された潜熱蓄熱材3を閉空間領域1内から表面部材2aの表面方向に見た形状を示している。図示の例では、潜熱蓄熱材3は表面部材2aの表面に所定厚さで貼り付けられていると共に、熱移動領域露出部6に中空円筒状の貫通孔6aが形成されている。貫通孔6aは所定ピッチで例えば4行4列の16個形成されている。潜熱蓄熱材3で覆われた熱移動領域10の総被覆面積を1とすると、熱移動領域露出部6に露出した熱移動領域10の総露出面積は、0.8~1.2程度が好ましく、さらには1程度が好適である。また、熱移動領域10の総被覆面積と総露出面積とが1対0.8~1.2程度になるような潜熱蓄熱材3を用いることで、潜熱蓄熱材3の構造体の強度が十分に得られる。なお、貫通孔6aは熱移動領域10が露出するのであれば中空円筒状でなくともよく、中空の三角柱や四角柱等の多角柱形状や、閉空間領域1に向かって中空領域が広がるテーパ状になっていてもよい。 FIG. 2B shows the shape of the latent heat storage material 3 arranged in the heat transfer region 10 as viewed from the closed space region 1 toward the surface of the surface member 2a. In the illustrated example, the latent heat storage material 3 is affixed to the surface of the surface member 2 a with a predetermined thickness, and a hollow cylindrical through hole 6 a is formed in the heat transfer region exposed portion 6. For example, 16 through holes 6a are formed at a predetermined pitch, for example, in 4 rows and 4 columns. When the total covered area of the heat transfer region 10 covered with the latent heat storage material 3 is 1, the total exposed area of the heat transfer region 10 exposed at the heat transfer region exposed portion 6 is preferably about 0.8 to 1.2. Further, about 1 is preferable. Further, by using the latent heat storage material 3 such that the total covered area and the total exposed area of the heat transfer region 10 are about 1: 0.8 to 1.2, the structure of the latent heat storage material 3 has sufficient strength. Is obtained. The through-hole 6a does not have to be a hollow cylinder as long as the heat transfer region 10 is exposed. The through-hole 6a may have a polygonal column shape such as a hollow triangular column or a quadrangular column, or a tapered shape in which the hollow region expands toward the closed space region 1. It may be.
 図2(a)に戻り、冷却器2の表面部材2a以外の閉空間領域1の内壁を構成する冷蔵室104内壁と冷蔵庫扉102の内壁のほぼ全面にも潜熱蓄熱材3と同一の潜熱蓄熱材4が貼り付けられている。 Returning to FIG. 2 (a), the same latent heat storage as the latent heat storage material 3 is also applied to almost the entire inner wall of the refrigerator compartment 104 and the inner wall of the refrigerator door 102 that constitute the inner wall of the closed space region 1 other than the surface member 2 a of the cooler 2. Material 4 is affixed.
 閉空間領域1の内壁と外壁との間には断熱材が配置されている。具体的には、蓄熱容器本体101の内側で冷蔵室104と冷凍室105とを囲む領域に断熱材7が配置されている。また、冷蔵庫扉102の内側(外壁と潜熱蓄熱材4との間)には断熱材8が配置されている。これらの断熱材7、8は、所定温度に冷却されている冷蔵室104や冷凍室105に蓄熱容器100の外部から熱が伝わらないように断熱するために配置されている。断熱材7、8は、繊維系断熱材(グラスウール等)や発泡樹脂系断熱材等の形成材料を用いて形成される。 A heat insulating material is disposed between the inner wall and the outer wall of the closed space region 1. Specifically, the heat insulating material 7 is arranged in a region surrounding the refrigerator compartment 104 and the freezer compartment 105 inside the heat storage container main body 101. Further, a heat insulating material 8 is disposed inside the refrigerator door 102 (between the outer wall and the latent heat storage material 4). These heat insulating materials 7 and 8 are arranged to insulate the refrigerator compartment 104 and the freezer compartment 105 that are cooled to a predetermined temperature so that heat is not transmitted from the outside of the heat storage container 100. The heat insulating materials 7 and 8 are formed using a forming material such as a fiber heat insulating material (glass wool or the like) or a foamed resin heat insulating material.
 蓄熱容器本体101の内側には冷却器2内の不図示の蒸発機構に冷媒を供給する配管20が配置されている。配管20は蓄熱容器本体101の底面に配置されたコンプレッサ収容部106内に収容されているコンプレッサ21に接続されている。これによりガス圧縮式の冷却装置が構成されている。なお、ガス圧縮式の冷却装置に代えて、ガス吸収式の冷却装置やペルチェ効果を用いた電子式の冷却装置を用いることも可能である。 A pipe 20 for supplying a refrigerant to an evaporation mechanism (not shown) in the cooler 2 is disposed inside the heat storage container main body 101. The pipe 20 is connected to a compressor 21 housed in a compressor housing portion 106 disposed on the bottom surface of the heat storage container main body 101. Thereby, a gas compression type cooling device is configured. Instead of the gas compression cooling device, a gas absorption cooling device or an electronic cooling device using the Peltier effect may be used.
 次に、本実施例による蓄熱容器100の動作について説明する。蓄熱容器100の不図示の電源がオン状態において、コンプレッサ21で圧縮された冷媒は、配管20内で凝縮され次いで膨張させられて冷却器2に達する。冷却器2は、膨張した冷媒が蒸発する際の気化熱により、冷蔵室104と冷凍室105とを冷却する。冷却器2の冷却能力は、冷凍室105側の方が冷蔵室104側の熱移動領域10よりも高くなるようになっている。例えば冷凍室105内の温度は約-10℃に、冷蔵室104の温度は約3℃になるように冷却することができる。 Next, the operation of the heat storage container 100 according to this embodiment will be described. When the power supply (not shown) of the heat storage container 100 is on, the refrigerant compressed by the compressor 21 is condensed in the pipe 20 and then expanded to reach the cooler 2. The cooler 2 cools the refrigerator compartment 104 and the freezer compartment 105 by heat of vaporization when the expanded refrigerant evaporates. The cooling capacity of the cooler 2 is higher on the freezer compartment 105 side than on the heat transfer region 10 on the refrigerator compartment 104 side. For example, the temperature in the freezer compartment 105 can be cooled to about −10 ° C. and the temperature in the refrigerator compartment 104 can be about 3 ° C.
 冷蔵室104の閉空間領域1の熱移動領域10では、閉空間領域1内に露出した冷却器2の表面部材2aと閉空間領域1内の空気との間で熱交換が行われる。閉空間領域1内の所定位置には不図示の温度センサが設置されている。温度センサで計測された閉空間領域1内の温度に基づき蓄熱容器100に設けられた不図示の温度制御装置により冷却装置の駆動が制御され、熱移動領域10で閉空間領域1内の温度を制御するための熱移動が行われる。 In the heat transfer region 10 in the closed space region 1 of the refrigerator compartment 104, heat exchange is performed between the surface member 2 a of the cooler 2 exposed in the closed space region 1 and the air in the closed space region 1. A temperature sensor (not shown) is installed at a predetermined position in the closed space region 1. The driving of the cooling device is controlled by a temperature control device (not shown) provided in the heat storage container 100 based on the temperature in the closed space region 1 measured by the temperature sensor, and the temperature in the closed space region 1 is adjusted in the heat transfer region 10. Heat transfer is performed for control.
 閉空間領域1内の空気に温度分布が生じると対流が生じて相対的に高温の空気は上昇し低温の空気は下降する。熱移動領域10は閉空間領域1の内壁上部に配置されているので、効率よく相対的に高温の空気の熱を冷却器2に移動させることができる。 When a temperature distribution occurs in the air in the closed space region 1, convection occurs, and the relatively hot air rises and the cool air falls. Since the heat transfer area 10 is disposed on the upper part of the inner wall of the closed space area 1, the heat of relatively high-temperature air can be efficiently transferred to the cooler 2.
 熱移動領域10には、所定割合で潜熱蓄熱材3が配置されている。このため、冷却器2は潜熱蓄熱材3を直接冷却することができ、潜熱蓄熱材3を比較的短時間で相転移温度以下の固相状態に維持させることができる。熱移動領域10の潜熱蓄熱材3の配置された領域では、冷却器2内の冷媒と閉空間領域1内の空気との熱交換は潜熱蓄熱材3を介して間接的に行われる。固相状態を維持した潜熱蓄熱材3は閉空間領域1内の温度の時間変化分布を平坦化させる機能を発揮する。同様に、閉空間領域1の内壁に配置された潜熱蓄熱材4も閉空間領域1内の空気と接して徐々に相転移温度以下の固相状態に維持される。固相状態を維持した潜熱蓄熱材4も閉空間領域1内の温度の時間変化分布を平坦化させる機能を発揮する。このように本実施例の蓄熱容器100によれば、冷却器2で潜熱蓄熱材3を直接冷却することができ、潜熱蓄熱材3を比較的短時間で相転移温度以下の固相状態に維持することができる。このため、本実施例による蓄熱容器100では無駄な電力消費を抑えることができる。 In the heat transfer region 10, the latent heat storage material 3 is arranged at a predetermined rate. For this reason, the cooler 2 can directly cool the latent heat storage material 3 and can maintain the latent heat storage material 3 in a solid phase state having a phase transition temperature or lower in a relatively short time. In the region where the latent heat storage material 3 is disposed in the heat transfer region 10, heat exchange between the refrigerant in the cooler 2 and the air in the closed space region 1 is performed indirectly via the latent heat storage material 3. The latent heat storage material 3 that maintains the solid state exhibits a function of flattening the temporal change distribution of the temperature in the closed space region 1. Similarly, the latent heat storage material 4 disposed on the inner wall of the closed space region 1 is also in contact with the air in the closed space region 1 and gradually maintained in a solid phase state below the phase transition temperature. The latent heat storage material 4 that maintains the solid state also exhibits a function of flattening the temporal change distribution of the temperature in the closed space region 1. Thus, according to the heat storage container 100 of the present embodiment, the latent heat storage material 3 can be directly cooled by the cooler 2, and the latent heat storage material 3 is maintained in a solid phase state below the phase transition temperature in a relatively short time. can do. For this reason, useless power consumption can be suppressed in the heat storage container 100 according to the present embodiment.
 また、熱移動領域10には、所定割合で熱移動領域露出部6が配置されている。このため、熱移動領域露出部6で露出した冷却器2の表面部材2aで閉空間領域1内の空気を直接冷却することができ、閉空間領域1内の空気を比較的短時間で所望温度に降温させ維持することができる。また、熱移動領域露出部6の貫通孔6aは均等な間隔で複数形成されているので、閉空間領域1内を均一に冷却することができる。このため、本実施例による蓄熱容器100では無駄な電力消費を抑えることができる。 Moreover, the heat transfer area exposed portions 6 are arranged in the heat transfer area 10 at a predetermined rate. For this reason, the air in the closed space region 1 can be directly cooled by the surface member 2a of the cooler 2 exposed by the heat transfer region exposed portion 6, and the air in the closed space region 1 can be cooled to a desired temperature in a relatively short time. The temperature can be lowered and maintained. Moreover, since the plurality of through holes 6a of the heat transfer region exposed portion 6 are formed at equal intervals, the inside of the closed space region 1 can be uniformly cooled. For this reason, useless power consumption can be suppressed in the heat storage container 100 according to the present embodiment.
 潜熱蓄熱材3、4は、定常運転において閉空間領域1で制御可能な温度と、閉空間領域1の周囲の雰囲気の温度との間の温度で固相から液相へ可逆的に相転移する必要がある。本実施例では潜熱蓄熱材3、4を構成するパラフィンとして、ノルマル(直鎖型構造)テトラデカン(C1430)を用いている。ノルマルテトラデカンの融点は、約5.9℃である。潜熱蓄熱材は固相への相変化時に体積が収縮する。潜熱蓄熱材3が完全に固相へと変化した後は、潜熱蓄熱材3の体積収縮により貫通孔6aの断面積は広くなる。このため、熱移動領域10がより広く露出されて冷蔵室104の冷却効果が増大する。 The latent heat storage materials 3 and 4 reversibly undergo a phase transition from a solid phase to a liquid phase at a temperature between a temperature controllable in the closed space region 1 and a temperature of the atmosphere around the closed space region 1 in steady operation. There is a need. In the present embodiment, normal (linear structure) tetradecane (C 14 H 30 ) is used as the paraffin constituting the latent heat storage materials 3 and 4. The melting point of normal tetradecane is about 5.9 ° C. The volume of the latent heat storage material shrinks during the phase change to the solid phase. After the latent heat storage material 3 has completely changed to a solid phase, the cross-sectional area of the through-hole 6a becomes wide due to volume contraction of the latent heat storage material 3. For this reason, the heat transfer area | region 10 is exposed more widely and the cooling effect of the refrigerator compartment 104 increases.
 停電等により蓄熱容器100の不図示の電源がオフ状態になると、不図示の温度制御装置や冷却装置への電力供給が停止して、冷却装置による冷却能力は失われる。本実施例による蓄熱容器100は、停電等により冷却装置による冷却能力が失われると、潜熱蓄熱材3、4による保冷が開始される。閉空間領域1内の空気は、閉空間領域1内壁に張り巡らされている潜熱蓄熱材3、4により一定期間、所定温度範囲に維持される。より具体的には、潜熱蓄熱材3、4が固相から液相へ相転移するまでの期間において、閉空間領域1内の温度が6℃程度に維持される。 When a power supply (not shown) of the heat storage container 100 is turned off due to a power failure or the like, power supply to a temperature control device or a cooling device (not shown) is stopped, and the cooling capacity of the cooling device is lost. When the cooling capacity of the heat storage container 100 according to this embodiment is lost due to a power failure or the like due to a power failure or the like, the cold storage by the latent heat storage materials 3 and 4 is started. The air in the closed space region 1 is maintained in a predetermined temperature range for a certain period by the latent heat storage materials 3 and 4 stretched around the inner wall of the closed space region 1. More specifically, the temperature in the closed space region 1 is maintained at about 6 ° C. until the latent heat storage materials 3 and 4 undergo a phase transition from the solid phase to the liquid phase.
 閉空間領域1内の空気に温度分布が生じると対流が生じて相対的に高温の空気は上昇し低温の空気は下降する。閉空間領域1の内壁上部に熱移動領域10が配置されているが、熱移動領域10には所定割合で潜熱蓄熱材3が配置されている。このため、熱移動領域10においても保冷効果を奏することができる。このように本実施例の蓄熱容器100によれば、停電等により蓄熱容器100の不図示の電源がオフ状態になってしまっても、閉空間領域1内の温度を所定の低温度に一定期間維持することができる。 When a temperature distribution occurs in the air in the closed space region 1, convection occurs, and the relatively hot air rises and the cool air falls. Although the heat transfer area 10 is disposed on the inner wall of the closed space area 1, the latent heat storage material 3 is disposed in the heat transfer area 10 at a predetermined rate. For this reason, it is possible to achieve a cold insulation effect also in the heat transfer region 10. Thus, according to the heat storage container 100 of the present embodiment, even if a power supply (not shown) of the heat storage container 100 is turned off due to a power failure or the like, the temperature in the closed space region 1 is kept at a predetermined low temperature for a certain period. Can be maintained.
 また、潜熱蓄熱材は液相への相変化時に体積が膨張する。潜熱蓄熱材3が固相から液相へ変化した後は、潜熱蓄熱材3の体積膨張により貫通孔6aの断面積は狭くなる。このため、熱移動領域10の露出面積を減少させて冷蔵室104の冷却状態をより長く維持することができる。このように本実施例によれば、消費電力を抑えつつ温度保持能力の高い蓄熱容器100を実現できる。 In addition, the volume of the latent heat storage material expands when the phase changes to the liquid phase. After the latent heat storage material 3 changes from the solid phase to the liquid phase, the cross-sectional area of the through hole 6a becomes narrow due to the volume expansion of the latent heat storage material 3. For this reason, the exposed area of the heat transfer region 10 can be reduced and the cooling state of the refrigerator compartment 104 can be maintained for a longer time. Thus, according to the present embodiment, it is possible to realize the heat storage container 100 having a high temperature holding ability while suppressing power consumption.
 図3は比較例に係る蓄熱容器を示している。図3(a)は、比較例1に係る蓄熱容器200を示している。図3(b)は、比較例2に係る蓄熱容器210を示している。図3(a)、(b)共に図2(a)に示す蓄熱容器100の断面と同様の断面を示している。図3(a)、(b)に示す比較例に係る蓄熱容器200、210において、本実施例に係る蓄熱容器100と同一の構成要素については同一の符号を付してその説明は省略する。 FIG. 3 shows a heat storage container according to a comparative example. FIG. 3A shows the heat storage container 200 according to the first comparative example. FIG. 3B shows a heat storage container 210 according to Comparative Example 2. 3 (a) and 3 (b) both show the same cross section as the cross section of the heat storage container 100 shown in FIG. 2 (a). In the heat storage containers 200 and 210 according to the comparative example shown in FIGS. 3A and 3B, the same components as those of the heat storage container 100 according to the present embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 図3(a)に示す比較例1の蓄熱容器200の冷却器2の表面部材2a全面は、貫通孔のない潜熱蓄熱材4で覆われている。従って、冷却器2の表面部材2aが冷蔵室104内の空気と直接接触できる露出部は全くない。このような構成の蓄熱容器200では、冷却器2の表面部材2aで冷蔵室104内の空気を直接冷却することができないので、冷蔵室104内の空気を所望温度に降温させ維持するには比較的長時間を要する。このため、比較例1による蓄熱容器200では無駄な電力消費が生じてしまう。 The entire surface member 2a of the cooler 2 of the heat storage container 200 of Comparative Example 1 shown in FIG. 3A is covered with the latent heat storage material 4 having no through holes. Accordingly, there is no exposed portion at which the surface member 2a of the cooler 2 can directly contact the air in the refrigerator compartment 104. In the heat storage container 200 having such a configuration, the air in the refrigerating chamber 104 cannot be directly cooled by the surface member 2a of the cooler 2, so that the air in the refrigerating chamber 104 can be lowered to the desired temperature and maintained. Takes a long time. For this reason, in the heat storage container 200 by the comparative example 1, useless electric power consumption will arise.
 一方、図3(b)に示す比較例2の蓄熱容器210の冷却器2の表面部材2aには潜熱蓄熱材が全く配置されていない。停電等により蓄熱容器210の不図示の電源がオフ状態になると、不図示の温度制御装置や冷却装置への電力供給が停止して、冷却装置による冷却能力は失われる。比較例2による蓄熱容器210では、停電等により冷却装置による冷却能力が失われると、潜熱蓄熱材4による保冷が開始される。しかしながら、冷蔵室104の上部に冷却器2の表面部材2aが配置されていて、冷却器2の表面部材2aには潜熱蓄熱材が全く配置されてないので、冷却器2の表面部材2aにおいて保冷効果を奏することができない。このため、比較例2に係る蓄熱容器210では、停電等により蓄熱容器210の不図示の電源がオフ状態になってしまうと、冷蔵室104内の温度を低温度に維持できる時間は比較的短くなる。 On the other hand, no latent heat storage material is disposed on the surface member 2a of the cooler 2 of the heat storage container 210 of Comparative Example 2 shown in FIG. When a power supply (not shown) of the heat storage container 210 is turned off due to a power failure or the like, power supply to a temperature control device or a cooling device (not shown) is stopped, and the cooling capacity of the cooling device is lost. In the heat storage container 210 according to the comparative example 2, when the cooling capacity of the cooling device is lost due to a power failure or the like, the cold storage by the latent heat storage material 4 is started. However, since the surface member 2a of the cooler 2 is arranged at the upper part of the refrigerating chamber 104, and no latent heat storage material is arranged on the surface member 2a of the cooler 2, the surface member 2a of the cooler 2 is kept cold. The effect cannot be achieved. For this reason, in the heat storage container 210 according to Comparative Example 2, when a power supply (not shown) of the heat storage container 210 is turned off due to a power failure or the like, the time during which the temperature in the refrigerator compartment 104 can be maintained at a low temperature is relatively short. Become.
 これに対し、図1及び図2に示す本実施例による蓄熱容器100によれば、消費電力を抑えつつ温度保持能力を向上させることができる。 On the other hand, according to the heat storage container 100 of the present embodiment shown in FIGS. 1 and 2, the temperature holding ability can be improved while suppressing power consumption.
(実施例2)
 次に、本実施の形態の実施例2による蓄熱容器110について図4を用いて説明する。実施例1による蓄熱容器100と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
(Example 2)
Next, the heat storage container 110 according to Example 2 of the present embodiment will be described with reference to FIG. About the component which has the same function and effect | action as the thermal storage container 100 by Example 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 図4(a)は本実施例の蓄熱容器110を図2(a)に示す蓄熱容器100の断面と同様の断面で示している。図4(a)に示すように、本実施例の冷却器2の表面部材2aは凹凸形状を有している。当該凹凸形状は、蓄熱容器本体101の正面101aにほぼ平行に延びる凸部と正面101aに直交する方向に隣接する凹部となる溝空間とを有している。隣り合う凸部と凹部とを一組として正面101aに直交する方向に複数組が並んで配置されている。当該凹凸形状の図4(a)に示す断面は連続する複数の矩形波状になっている。 FIG. 4A shows the heat storage container 110 of the present embodiment in the same cross section as the cross section of the heat storage container 100 shown in FIG. As shown to Fig.4 (a), the surface member 2a of the cooler 2 of a present Example has uneven | corrugated shape. The concavo-convex shape has a convex portion extending substantially parallel to the front surface 101a of the heat storage container main body 101 and a groove space serving as a concave portion adjacent in a direction orthogonal to the front surface 101a. A plurality of sets are arranged side by side in a direction orthogonal to the front surface 101a, with adjacent convex portions and concave portions as a set. The cross section shown in FIG. 4A of the uneven shape is a plurality of continuous rectangular waves.
 表面部材2aの凹凸形状の凹部では、実施例1の潜熱蓄熱材3と同一の形成材料で作製された潜熱蓄熱材5が接着剤等で貼り付けられて溝空間を埋め込んでいる。表面部材2aの凸部の閉空間領域1内方の表面と潜熱蓄熱材5の閉空間領域1内方の表面とは段差がなく平坦に形成されている。本実施例では表面部材2aの凹凸形状表面が熱移動領域10となる。また、表面部材2aの凸部表面が熱移動領域露出部6となる。つまり、本実施例の蓄熱容器110では潜熱蓄熱材5と熱移動領域露出部6とが熱移動領域10で交互に並んで配置されており、熱移動領域露出部6の熱移動領域10は、熱移動領域露出部6以外の熱移動領域10より閉空間領域1内方に突出している。 In the concave-convex concave portion of the surface member 2a, the latent heat storage material 5 made of the same material as the latent heat storage material 3 of Example 1 is attached with an adhesive or the like to fill the groove space. The surface inside the closed space region 1 of the convex portion of the surface member 2a and the surface inside the closed space region 1 of the latent heat storage material 5 are flat with no steps. In this embodiment, the uneven surface of the surface member 2 a becomes the heat transfer region 10. Further, the surface of the convex portion of the surface member 2 a becomes the heat transfer region exposed portion 6. That is, in the heat storage container 110 of the present embodiment, the latent heat storage material 5 and the heat transfer region exposed portion 6 are alternately arranged in the heat transfer region 10, and the heat transfer region 10 of the heat transfer region exposed portion 6 is It protrudes inward in the closed space region 1 from the heat transfer region 10 other than the heat transfer region exposed portion 6.
 図4(b)は、熱移動領域10に配置された潜熱蓄熱材5を閉空間領域1内から表面部材2aの表面方向に見た形状を示している。熱移動領域露出部6は、細長長方形のストライプ状に形成した表面部材2aの複数の凸部表面で構成されている。潜熱蓄熱材5は、隣り合う熱移動領域露出部6の間の表面部材2a凹部表面を埋め込んで細長長方形のストライプ状に貼り付けられている。 FIG. 4B shows a shape of the latent heat storage material 5 arranged in the heat transfer region 10 as viewed from the closed space region 1 in the surface direction of the surface member 2a. The heat transfer region exposed portion 6 is composed of the surface of a plurality of convex portions of the surface member 2a formed in an elongated rectangular stripe shape. The latent heat storage material 5 is attached to the surface member 2a concave surface between adjacent heat transfer region exposed portions 6 in an elongated rectangular stripe shape.
 各潜熱蓄熱材5と各熱移動領域露出部6のストライプの長さ及び幅はそれぞれほぼ同じに形成されている。このため、潜熱蓄熱材5で覆われた熱移動領域10の総被覆面積と、熱移動領域露出部6に露出した熱移動領域10の総露出面積とは、ほぼ1対1の割合になっている。なお、図4(b)に示すような構成に代えて、図2(b)に示す構成において貫通孔6aを埋めるように表面部材2aの凸部表面を形成してもよい。 The length and width of the stripes of each latent heat storage material 5 and each heat transfer region exposed portion 6 are formed substantially the same. For this reason, the total covered area of the heat transfer area 10 covered with the latent heat storage material 5 and the total exposed area of the heat transfer area 10 exposed in the heat transfer area exposed portion 6 are approximately 1: 1. Yes. Instead of the configuration shown in FIG. 4B, the surface of the convex portion of the surface member 2a may be formed so as to fill the through hole 6a in the configuration shown in FIG.
 蓄熱容器110の表面部材2aの構成によれば、潜熱蓄熱材5は表面部材2aの凹部表面の底面及び両側面の3か所で直接接触する。このため、実施例1のように底面だけで接触する場合に比して表面部材2aと潜熱蓄熱材5との接触面積を大きくすることができるので、潜熱蓄熱材5をより短時間で冷却することができる。 According to the configuration of the surface member 2a of the heat storage container 110, the latent heat storage material 5 is in direct contact with the bottom surface and both side surfaces of the concave surface of the surface member 2a. For this reason, since the contact area of the surface member 2a and the latent heat storage material 5 can be enlarged compared with the case where it contacts only on the bottom surface like Example 1, the latent heat storage material 5 is cooled in a shorter time. be able to.
 閉空間領域1内の空気に温度分布が生じると対流が生じて相対的に高温の空気は上昇し低温の空気は下降する。閉空間領域1の内壁上部に熱移動領域10が配置されているが、熱移動領域10には所定割合で潜熱蓄熱材5が配置されている。このため、熱移動領域10においても保冷効果を奏することができる。このように本実施例の蓄熱容器120によれば、停電等により蓄熱容器120の不図示の電源がオフ状態になってしまっても、閉空間領域1内の温度を所定の低温度に一定期間維持することができる。また、蓄熱容器120によれば、消費電力を抑えつつ温度保持能力を向上させることができる。 When a temperature distribution occurs in the air in the closed space region 1, convection occurs, and the relatively hot air rises and the cool air falls. Although the heat transfer area 10 is arranged on the upper part of the inner wall of the closed space area 1, the latent heat storage material 5 is arranged in the heat transfer area 10 at a predetermined rate. For this reason, it is possible to achieve a cold insulation effect also in the heat transfer region 10. As described above, according to the heat storage container 120 of the present embodiment, even if a power supply (not shown) of the heat storage container 120 is turned off due to a power failure or the like, the temperature in the closed space region 1 is kept at a predetermined low temperature for a certain period. Can be maintained. Moreover, according to the heat storage container 120, the temperature holding ability can be improved while suppressing power consumption.
(実施例3)
 次に、本実施の形態の実施例3による蓄熱容器120について図5から図7を用いて説明する。上記実施例1及び実施例2による蓄熱容器と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
(Example 3)
Next, the heat storage container 120 according to Example 3 of the present embodiment will be described with reference to FIGS. About the component which has the same function and effect | action as the thermal storage container by the said Example 1 and Example 2, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 まず、図5から図7を用いて蓄熱容器120の構成について説明する。図5(a)は本実施例の蓄熱容器120を図2(a)に示す蓄熱容器100の断面と同様の断面で示している。本実施例の冷却器2の表面部材2a表面の熱移動領域10は実施例1と同様の平面形状を有している。一方、熱移動領域10には実施例2と同様のストライプ状の潜熱蓄熱材5が複数配置されている。隣り合う潜熱蓄熱材5の間のストライプ状の空間領域は熱移動領域露出部6となっている。 First, the configuration of the heat storage container 120 will be described with reference to FIGS. Fig.5 (a) has shown the thermal storage container 120 of a present Example by the cross section similar to the cross section of the thermal storage container 100 shown to Fig.2 (a). The heat transfer region 10 on the surface of the surface member 2a of the cooler 2 of the present embodiment has the same planar shape as that of the first embodiment. On the other hand, a plurality of stripe-like latent heat storage materials 5 similar to those in the second embodiment are arranged in the heat transfer region 10. A stripe-shaped space region between adjacent latent heat storage materials 5 is a heat transfer region exposed portion 6.
 各潜熱蓄熱材5と各熱移動領域露出部6のストライプの長さ及び幅はそれぞれほぼ同じに形成されている。このため、潜熱蓄熱材5で覆われた熱移動領域10の総被覆面積と、熱移動領域露出部6に露出した熱移動領域10の総露出面積とは、ほぼ1対1の割合になっている。 The length and width of the stripes of each latent heat storage material 5 and each heat transfer region exposed portion 6 are formed substantially the same. For this reason, the total covered area of the heat transfer area 10 covered with the latent heat storage material 5 and the total exposed area of the heat transfer area 10 exposed in the heat transfer area exposed portion 6 are approximately 1: 1. Yes.
 複数の潜熱蓄熱材5の閉空間領域1内方の各表面は同一平面(以下、第1仮想平面という)内に含まれるように形成されている。本実施例では当該複数の潜熱蓄熱材5の閉空間領域1内方の表面の高さはほぼ同一に形成されているので、第1仮想平面は蓄熱容器本体101の正面101aに直交しており、蓄熱容器本体101の設置状態でほぼ水平になっている。 Each surface inside the closed space region 1 of the plurality of latent heat storage materials 5 is formed so as to be included in the same plane (hereinafter referred to as a first virtual plane). In the present embodiment, the height of the inner surface of the closed space region 1 of the plurality of latent heat storage materials 5 is formed substantially the same, so the first virtual plane is orthogonal to the front surface 101a of the heat storage container body 101. The heat storage container body 101 is almost horizontal in the installed state.
 閉空間領域1の本体右側面101bの内壁には直線状の案内溝32r(図5(a)では不図示)が形成されている。閉空間領域1の本体左側面の内壁には直線状の案内溝32l(図5(a)では不図示)が形成されている。案内溝32r、32lは互いに平行に形成されている。案内溝32r、32lは第1仮想平面の近傍下方で第1仮想平面に平行な第2仮想平面に配置されている。 A linear guide groove 32r (not shown in FIG. 5A) is formed on the inner wall of the right side surface 101b of the main body of the closed space region 1. A linear guide groove 32l (not shown in FIG. 5A) is formed on the inner wall of the left side surface of the main body of the closed space region 1. The guide grooves 32r and 32l are formed in parallel to each other. The guide grooves 32r and 32l are disposed on the second virtual plane parallel to the first virtual plane below the first virtual plane.
 この2つの平行な案内溝32r、32lに支えられて第2仮想平面内を摺動可能に潜熱蓄熱材支持部材30が配置されている。図5(a)と共に図5(b)を用いて潜熱蓄熱材支持部材30の構成について説明する。図5(b)は閉空間領域1内から表面部材2aの表面方向に見た第1及び第2仮想平面近傍を示している。図5(b)に示すように、潜熱蓄熱材支持部材30は、案内溝32rに嵌り込んで案内溝32r内を摺動可能な細長棒状の被案内部材30rを有している。また、潜熱蓄熱材支持部材30は、案内溝32lに嵌り込んで案内溝32l内を摺動可能な細長棒状の被案内部材30lを有している。被案内部材30r、30lの一端側は潜熱蓄熱材支持部材30の基材30aに固定されている。また、基材30aを挟んで被案内部材30r、30lの反対側には取っ手30bが設けられている。取っ手30bの内部には断熱材7と同じ形成材料で形成された断熱材31が配置されている。潜熱蓄熱材支持部材30を設置すると、蓄熱容器本体101の正面101aに対する背面側に設けた開口部から取っ手30bが蓄熱容器本体101外側に露出する。操作者が取っ手30bを掴んで水平方向に取っ手30bを移動させることにより、閉空間領域1内で潜熱蓄熱材支持部材30を第2仮想平面内で摺動させることができる。 The latent heat storage material support member 30 is slidably supported in the second virtual plane supported by the two parallel guide grooves 32r and 32l. The configuration of the latent heat storage material support member 30 will be described using FIG. 5B together with FIG. FIG. 5B shows the vicinity of the first and second virtual planes viewed from the closed space region 1 in the surface direction of the surface member 2a. As shown in FIG. 5B, the latent heat storage material support member 30 has an elongated rod-shaped guided member 30r that fits into the guide groove 32r and can slide in the guide groove 32r. In addition, the latent heat storage material support member 30 has an elongated rod-shaped guided member 30l that is fitted in the guide groove 32l and can slide in the guide groove 32l. One end sides of the guided members 30 r and 30 l are fixed to the base material 30 a of the latent heat storage material support member 30. A handle 30b is provided on the opposite side of the guided members 30r and 30l with the base material 30a interposed therebetween. A heat insulating material 31 formed of the same forming material as the heat insulating material 7 is disposed inside the handle 30b. When the latent heat storage material support member 30 is installed, the handle 30b is exposed to the outside of the heat storage container main body 101 from an opening provided on the back side of the heat storage container main body 101 with respect to the front surface 101a. When the operator holds the handle 30b and moves the handle 30b in the horizontal direction, the latent heat storage material support member 30 can be slid in the second virtual plane in the closed space region 1.
 対向配置された被案内部材30r、30l間の領域には、設置状態で蓄熱容器本体101の正面101aにほぼ平行に延びる潜熱蓄熱材固定部30dが配置されている。また、正面101aに直交する方向に潜熱蓄熱材固定部30dと隣接して空間部30eが形成されている。隣り合う潜熱蓄熱材固定部30dと空間部30eとを一組として正面101aに直交する方向に複数組が並んで配置されている。潜熱蓄熱材固定部30dには潜熱蓄熱材5と同様のストライプ状の潜熱蓄熱材35が固定されている。 In the region between the guided members 30r and 30l arranged opposite to each other, a latent heat storage material fixing portion 30d extending in substantially parallel to the front surface 101a of the heat storage container main body 101 in the installed state is disposed. A space 30e is formed adjacent to the latent heat storage material fixing portion 30d in a direction orthogonal to the front surface 101a. A plurality of sets are arranged side by side in a direction orthogonal to the front surface 101a, with the adjacent latent heat storage material fixing portion 30d and the space portion 30e as a set. A striped latent heat storage material 35 similar to the latent heat storage material 5 is fixed to the latent heat storage material fixing portion 30d.
 潜熱蓄熱材35は、停電時に閉空間領域1内を冷却する外に、熱移動領域露出部6を遮蔽するために用いられる。潜熱蓄熱材支持部材30と案内溝32r、32lとで潜熱蓄熱材35を熱移動領域露出部6に移動させて熱移動領域露出部6を遮蔽する遮蔽機構300が構成される。 The latent heat storage material 35 is used to shield the heat transfer area exposed portion 6 in addition to cooling the inside of the closed space area 1 in the event of a power failure. The latent heat storage material support member 30 and the guide grooves 32r and 32l constitute a shielding mechanism 300 that moves the latent heat storage material 35 to the heat transfer region exposure part 6 and shields the heat transfer region exposure part 6.
 各潜熱蓄熱材35と各空間部30eのストライプの長さ及び幅は各潜熱蓄熱材5と各熱移動領域露出部6のストライプの長さ及び幅とほぼ同じに形成されている。図5に示す例では、潜熱蓄熱材35は潜熱蓄熱材5の鉛直下方に重なって位置している。また、空間部30eは熱移動領域露出部6の鉛直下方に重なって位置している。この状態で熱移動領域露出部6は空間部30eを介して閉空間領域1に対し露出している。 The length and width of the stripes of each latent heat storage material 35 and each space 30e are formed to be substantially the same as the length and width of the stripes of each latent heat storage material 5 and each heat transfer region exposed portion 6. In the example shown in FIG. 5, the latent heat storage material 35 is positioned so as to overlap vertically below the latent heat storage material 5. Further, the space 30e is positioned so as to overlap vertically below the heat transfer region exposed portion 6. In this state, the heat transfer region exposed portion 6 is exposed to the closed space region 1 through the space 30e.
 図6は、遮蔽機構300により熱移動領域露出部6を遮蔽した状態を示している。図6(a)は本実施例の蓄熱容器120を図5(a)に示す断面と同様の断面で示している。図6(b)は閉空間領域1内から表面部材2aの表面方向に見た第1及び第2仮想平面近傍を示している。 FIG. 6 shows a state where the heat transfer region exposed portion 6 is shielded by the shielding mechanism 300. Fig.6 (a) has shown the thermal storage container 120 of a present Example by the cross section similar to the cross section shown to Fig.5 (a). FIG. 6B shows the vicinity of the first and second virtual planes viewed from the closed space region 1 in the surface direction of the surface member 2a.
 図6(a)、(b)に示す例では、潜熱蓄熱材35は熱移動領域露出部6の鉛直下方に重なって位置している。また、空間部30eは潜熱蓄熱材5の鉛直下方に重なって位置している。この状態で熱移動領域露出部6は潜熱蓄熱材35により閉空間領域1に対して遮蔽される。 6 (a) and 6 (b), the latent heat storage material 35 is positioned so as to overlap vertically below the heat transfer region exposed portion 6. Further, the space 30 e is positioned so as to overlap vertically below the latent heat storage material 5. In this state, the heat transfer region exposed portion 6 is shielded from the closed space region 1 by the latent heat storage material 35.
 図7は、蓄熱容器120を裏面側から見た状態を示している。前述のように、取っ手30bは蓄熱容器120の外側に露出している。このため、取っ手30bは操作者が手で掴んで水平方向に移動させることが可能となっている。 FIG. 7 shows the heat storage container 120 as viewed from the back side. As described above, the handle 30 b is exposed to the outside of the heat storage container 120. For this reason, the handle 30b can be moved in the horizontal direction by the operator.
 次に、本実施例による蓄熱容器120の動作について説明する。操作者が手で取っ手30bを掴んで、取っ手30bを蓄熱容器本体101の正面101a方向に移動させると遮蔽機構300の潜熱蓄熱材支持部材30は正面101a方向に摺動する。それに伴い、潜熱蓄熱材支持部材30の潜熱蓄熱材35は潜熱蓄熱材5の鉛直下方に移動する。従って、図5に示すように熱移動領域露出部6が空間部30eを介して閉空間領域1に対し露出する状態になる。このため、熱移動領域露出部6で露出した冷却器2の表面部材2aで閉空間領域1内の空気を直接冷却することができ、閉空間領域1内の空気を比較的短時間で所望温度に降温させ維持することができる。また、熱移動領域露出部6は均等な間隔で複数形成されているので、閉空間領域1内を均一に冷却することができる。このため、本実施例による蓄熱容器120では無駄な電力消費を抑えることができる。 Next, the operation of the heat storage container 120 according to this embodiment will be described. When the operator grasps the handle 30b with his hand and moves the handle 30b in the direction of the front surface 101a of the heat storage container body 101, the latent heat storage material support member 30 of the shielding mechanism 300 slides in the direction of the front surface 101a. Accordingly, the latent heat storage material 35 of the latent heat storage material support member 30 moves vertically below the latent heat storage material 5. Therefore, as shown in FIG. 5, the heat transfer region exposed portion 6 is exposed to the closed space region 1 through the space 30e. For this reason, the air in the closed space region 1 can be directly cooled by the surface member 2a of the cooler 2 exposed by the heat transfer region exposed portion 6, and the air in the closed space region 1 can be cooled to a desired temperature in a relatively short time. The temperature can be lowered and maintained. Moreover, since the plurality of heat transfer region exposed portions 6 are formed at equal intervals, the inside of the closed space region 1 can be uniformly cooled. For this reason, useless power consumption can be suppressed in the heat storage container 120 according to the present embodiment.
 次に、操作者が手で取っ手30bを掴んで、取っ手30bを蓄熱容器101の正面101aと反対方向に移動させると遮蔽機構300の潜熱蓄熱材支持部材30は正面101aと反対方向に摺動する。それに伴い、潜熱蓄熱材支持部材30の潜熱蓄熱材35は熱移動領域露出部6の鉛直下方に移動する。従って、図6に示すように熱移動領域露出部6が潜熱蓄熱材35により閉空間領域1に対して遮蔽される状態になる。停電等で蓄熱容器120の不図示の電源がオフ状態となったとき、潜熱蓄熱材35を熱移動領域露出部6の鉛直下方に移動させれば、潜熱蓄熱材35で熱移動領域露出部6を遮蔽することができる。このため、熱移動領域10の全面において保冷効果を奏することができる。このように本実施例の蓄熱容器120によれば、停電等により蓄熱容器120の不図示の電源がオフ状態になってしまっても、閉空間領域1内の温度を所定の低温度に一定期間維持することができる。 Next, when the operator grasps the handle 30b with his hand and moves the handle 30b in the opposite direction to the front surface 101a of the heat storage container 101, the latent heat storage material support member 30 of the shielding mechanism 300 slides in the opposite direction to the front surface 101a. . Along with this, the latent heat storage material 35 of the latent heat storage material support member 30 moves vertically below the heat transfer region exposed portion 6. Therefore, as shown in FIG. 6, the heat transfer region exposed portion 6 is shielded from the closed space region 1 by the latent heat storage material 35. When the power supply (not shown) of the heat storage container 120 is turned off due to a power failure or the like, if the latent heat storage material 35 is moved vertically below the heat transfer region exposure unit 6, the heat transfer region exposure unit 6 is moved by the latent heat storage material 35. Can be shielded. For this reason, a cold insulation effect can be produced on the entire surface of the heat transfer region 10. As described above, according to the heat storage container 120 of the present embodiment, even if a power supply (not shown) of the heat storage container 120 is turned off due to a power failure or the like, the temperature in the closed space region 1 is kept at a predetermined low temperature for a certain period. Can be maintained.
 以上のように、蓄熱容器120は遮蔽機構300を設けたことにより熱移動領域露出部6は閉空間領域1に対して露出した状態と遮蔽された状態とに切り替えることができる。また、本実施例による蓄熱容器120によれば、消費電力を抑えつつ温度保持能力を向上させることができる。 As described above, the heat storage container 120 is provided with the shielding mechanism 300, so that the heat transfer region exposed portion 6 can be switched between the exposed state and the shielded state with respect to the closed space region 1. Moreover, according to the heat storage container 120 according to the present embodiment, the temperature holding ability can be improved while suppressing power consumption.
 次に本実施例の変形例について図8を用いて説明する。本変形例による蓄熱容器130では、遮蔽機構300の潜熱蓄熱材支持部材30を摺動させるための部材として、取っ手33と金属板36と滑車37とが用いられる。 Next, a modification of the present embodiment will be described with reference to FIG. In the heat storage container 130 according to this modification, a handle 33, a metal plate 36, and a pulley 37 are used as members for sliding the latent heat storage material support member 30 of the shielding mechanism 300.
 図8(a)は本変形例の蓄熱容器130を図5(a)に示す断面と同様の断面で示している。また、図8(a)は、熱移動領域露出部6が潜熱蓄熱材35により閉空間領域1に対して遮蔽される状態を示している。図8(b)は、滑車37の近傍を示している。図8(c)は、蓄熱容器130を裏面側から見た状態を示している。図8(a)、(b)、(c)を用いて取っ手33と金属板36と滑車37とについて説明する。潜熱蓄熱材支持部材30の基材30a(図8(a)では不図示)には、金属板36が取り付けられている。図8(a)、(b)に示すように、金属板36は不図示の案内溝により案内される。金属板36の一端は水平方向に移動可能であり、滑車37を介して他端は鉛直方向に移動可能になっている。金属板36の他端には取っ手33が取り付けられている。図8(a)、(c)に示すように、取っ手33は、蓄熱容器130の裏面側に形成された開口部34内に配置されている。また、開口部34から取っ手33の一端部が突出している。このため、取っ手33は操作者が手で掴んで鉛直方向に移動させることが可能となっている。 FIG. 8A shows a heat storage container 130 of this modification in a cross section similar to the cross section shown in FIG. FIG. 8A shows a state where the heat transfer region exposed portion 6 is shielded from the closed space region 1 by the latent heat storage material 35. FIG. 8B shows the vicinity of the pulley 37. FIG.8 (c) has shown the state which looked at the thermal storage container 130 from the back surface side. The handle 33, the metal plate 36, and the pulley 37 will be described with reference to FIGS. 8 (a), 8 (b), and 8 (c). A metal plate 36 is attached to the base material 30a (not shown in FIG. 8A) of the latent heat storage material support member 30. As shown in FIGS. 8A and 8B, the metal plate 36 is guided by a guide groove (not shown). One end of the metal plate 36 can move in the horizontal direction, and the other end can move in the vertical direction via a pulley 37. A handle 33 is attached to the other end of the metal plate 36. As shown in FIGS. 8A and 8C, the handle 33 is disposed in the opening 34 formed on the back side of the heat storage container 130. One end of the handle 33 protrudes from the opening 34. For this reason, the handle 33 can be held by the operator and moved in the vertical direction.
 金属板36には相対的に熱伝導率の低いものが用いられる。また、金属板36には、剛性率の小さい金属が用いられる。このため、金属板36の滑車37と接する領域は、滑車36の円周に沿って変形される。 A metal plate having a relatively low thermal conductivity is used. The metal plate 36 is made of a metal having a small rigidity. For this reason, the region of the metal plate 36 in contact with the pulley 37 is deformed along the circumference of the pulley 36.
 操作者が手で取っ手33を掴んで、取っ手33を鉛直上方に移動させると、金属板36を介して遮蔽機構300の潜熱蓄熱材支持部材30は正面101a方向に摺動する。潜熱蓄熱材支持部材30の潜熱蓄熱材35は潜熱蓄熱材5の鉛直下方に移動する。従って、熱移動領域露出部6が空間部30eを介して閉空間領域1に対し露出する状態になる。 When the operator grasps the handle 33 with his hand and moves the handle 33 vertically upward, the latent heat storage material support member 30 of the shielding mechanism 300 slides in the direction of the front surface 101a via the metal plate 36. The latent heat storage material 35 of the latent heat storage material support member 30 moves vertically below the latent heat storage material 5. Therefore, the heat transfer area exposed portion 6 is exposed to the closed space area 1 through the space 30e.
 次に、操作者が手で取っ手33を掴んで、取っ手33を鉛直下方に移動させると遮蔽機構300の潜熱蓄熱材支持部材30は正面101aと反対方向に摺動する。潜熱蓄熱材支持部材30の潜熱蓄熱材35は熱移動領域露出部6の鉛直下方に移動する。従って、図8(a)に示すように熱移動領域露出部6が潜熱蓄熱材35により閉空間領域1に対して遮蔽される状態になる。 Next, when the operator grips the handle 33 with his hand and moves the handle 33 vertically downward, the latent heat storage material support member 30 of the shielding mechanism 300 slides in the opposite direction to the front surface 101a. The latent heat storage material 35 of the latent heat storage material support member 30 moves vertically below the heat transfer region exposed portion 6. Therefore, as shown in FIG. 8A, the heat transfer region exposed portion 6 is shielded from the closed space region 1 by the latent heat storage material 35.
 以上のように、本変形例の蓄熱容器130によれば、実施例3による蓄熱容器120と同様の効果を奏することができる。 As described above, according to the heat storage container 130 of the present modification, the same effects as those of the heat storage container 120 according to the third embodiment can be achieved.
(実施例4)
 次に、本実施形態の実施例4による蓄熱容器140について図9及び図10を用いて説明する。実施例1から実施例3による蓄熱容器と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
Example 4
Next, the heat storage container 140 according to Example 4 of the present embodiment will be described with reference to FIGS. 9 and 10. About the component which has the same function and effect | action as the thermal storage container by Example 1-Example 3, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 図9(a)は本実施例による蓄熱容器140を図2(a)に示す断面と同様の断面で示している。図9(b)は閉空間領域1内から表面部材2aの表面方向に見た第1及び第2仮想平面近傍を示している。図9(a)、(b)共に、熱移動領域露出部6が空間部30eを介して閉空間領域1に対し露出する状態を示している。図9(a)に示すように、図4に示す実施例2と同様、本実施例の冷却器2の表面部材2aは凹凸形状を有している。また、表面部材2aの凹凸形状の凹部には潜熱蓄熱材5が接着剤等で貼り付けられて溝空間を埋め込んでいる。 FIG. 9A shows a heat storage container 140 according to this embodiment in the same cross section as the cross section shown in FIG. FIG. 9B shows the vicinity of the first and second virtual planes as viewed from the closed space region 1 in the surface direction of the surface member 2a. 9A and 9B show a state where the heat transfer region exposed portion 6 is exposed to the closed space region 1 through the space portion 30e. As shown in FIG. 9A, the surface member 2a of the cooler 2 of this embodiment has an uneven shape, as in the second embodiment shown in FIG. Moreover, the latent heat storage material 5 is affixed with the adhesive etc. in the uneven | corrugated shaped recessed part of the surface member 2a, and the groove space is embedded.
 図10(a)は本実施例による蓄熱容器140を図9(a)に示す断面と同様の断面で示している。図10(b)は閉空間領域1内から表面部材2aの表面方向に見た第1及び第2仮想平面近傍を示している。図10(a)、(b)共に、熱移動領域露出部6が潜熱蓄熱材35により閉空間領域1に対して遮蔽される状態を示している。 FIG. 10A shows a heat storage container 140 according to the present embodiment in a cross section similar to the cross section shown in FIG. FIG. 10B shows the vicinity of the first and second virtual planes viewed from the closed space region 1 in the surface direction of the surface member 2a. FIGS. 10A and 10B both show a state where the heat transfer region exposed portion 6 is shielded from the closed space region 1 by the latent heat storage material 35.
 本実施例による蓄熱容器140によれば、冷却器2の表面部材2aは凹凸形状を有しており表面部材2aの凹凸形状の凹部には潜熱蓄熱材5が配置されている。このため、実施例2による蓄熱容器110と同様の効果を奏することができる。また、蓄熱容器140は熱移動領域露出部6を遮蔽する遮蔽機構300を有している。このため、実施例3による蓄熱容器120、130と同様の効果を奏することができる。 According to the heat storage container 140 according to the present embodiment, the surface member 2a of the cooler 2 has an uneven shape, and the latent heat storage material 5 is disposed in the uneven portion of the surface member 2a. For this reason, there can exist an effect similar to the thermal storage container 110 by Example 2. FIG. Further, the heat storage container 140 includes a shielding mechanism 300 that shields the heat transfer region exposed portion 6. For this reason, the effect similar to the thermal storage container 120 and 130 by Example 3 can be show | played.
(実施例5)
 次に、本実施形態の実施例5による蓄熱容器150について図11及び図12を用いて説明する。実施例1から実施例4による蓄熱容器と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
(Example 5)
Next, the heat storage container 150 according to Example 5 of the present embodiment will be described with reference to FIGS. 11 and 12. About the component which has the same function and effect | action as the thermal storage container by Example 1-Example 4, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 図11(a)は本実施例による蓄熱容器150を図2(a)に示す断面と同様の断面で示している。図11(b)は表面部材2aの表面方向に見た第1及び第2仮想平面近傍を示している。 FIG. 11A shows a heat storage container 150 according to this embodiment in a cross section similar to the cross section shown in FIG. FIG. 11B shows the vicinity of the first and second virtual planes as viewed in the surface direction of the surface member 2a.
 図11(a)と共に図11(b)を用いて潜熱蓄熱材支持部材30の周辺の構成について説明する。図11(b)に示すように、潜熱蓄熱材支持部材30の基材30aに対向するように細長棒状の基材40が配置されている。基材40は蓄熱容器本体101の内壁に固定されている。基材40のほぼ中央には電動機41が固定されている。電動機41には、蓄熱容器150の不図示の電源により電力が供給される。電動機41の回転軸には不図示の綱巻き取り器が取り付けられている。綱巻き取り器には綱42の一端が固定されている。綱42の他端は潜熱蓄熱材支持部材30の基材30aに固定されている。綱42は所要の長さを有している。基材40の潜熱蓄熱材支持部材30側には綱42を挟んで両側にそれぞれ圧縮コイルばね43r、43lの一端が取り付けられている。圧縮コイルばね43r、43lの他端は基材30aに取り付けられている。さらに、基材40には綱42を挟んで圧縮コイルばね43r、43lの外側に位置決め部材44r、44lが取り付けられている。位置決め部材44r、44lの先端には、電動機41で綱42を巻き取ることにより引き寄せられた潜熱蓄熱材支持部材30の基材30a端部に当接する当接面が設けられている。図11(b)に示す状態では、位置決め部材44r、44lのそれぞれの当接面は、潜熱蓄熱材支持部材30の基材30aの端部に接触している。また、図11(b)に示す状態では、圧縮コイルばね43r、43lは圧縮されている。 The configuration around the latent heat storage material support member 30 will be described with reference to FIG. As shown in FIG. 11 (b), an elongated rod-like base material 40 is disposed so as to face the base material 30 a of the latent heat storage material support member 30. The base material 40 is fixed to the inner wall of the heat storage container main body 101. An electric motor 41 is fixed substantially at the center of the substrate 40. Electric power is supplied to the electric motor 41 by a power source (not shown) of the heat storage container 150. A rope winder (not shown) is attached to the rotating shaft of the electric motor 41. One end of a rope 42 is fixed to the rope winder. The other end of the rope 42 is fixed to the base material 30 a of the latent heat storage material support member 30. The rope 42 has a required length. One ends of compression coil springs 43 r and 43 l are attached to both sides of the base material 40 on the latent heat storage material support member 30 side with the rope 42 interposed therebetween. The other ends of the compression coil springs 43r and 43l are attached to the base material 30a. Furthermore, positioning members 44r and 44l are attached to the base material 40 on the outside of the compression coil springs 43r and 43l with the rope 42 interposed therebetween. At the tip of the positioning members 44r and 44l, a contact surface is provided that contacts the end of the base material 30a of the latent heat storage material support member 30 drawn by winding the rope 42 with the electric motor 41. In the state shown in FIG. 11B, the contact surfaces of the positioning members 44 r and 44 l are in contact with the end of the base material 30 a of the latent heat storage material support member 30. Further, in the state shown in FIG. 11B, the compression coil springs 43r and 43l are compressed.
 図11(a)、(b)に示す状態では、電動機41が駆動中で綱42が巻き取られている。従って、潜熱蓄熱材支持部材30は基材40側に引き寄せられている。また、潜熱蓄熱材支持部材30の基材30a端部は位置決め部材44r、44lの当接面と接触している。この状態で潜熱蓄熱材支持部材30の潜熱蓄熱材35は潜熱蓄熱材5の鉛直下方に位置する。従って、図11(a)、(b)に示すように熱移動領域露出部6が空間部30eを介して閉空間領域1に対し露出する状態になる。 11 (a) and 11 (b), the electric motor 41 is driven and the rope 42 is wound up. Therefore, the latent heat storage material support member 30 is drawn toward the base material 40 side. Further, the end portion of the base material 30a of the latent heat storage material support member 30 is in contact with the contact surfaces of the positioning members 44r and 44l. In this state, the latent heat storage material 35 of the latent heat storage material support member 30 is positioned vertically below the latent heat storage material 5. Accordingly, as shown in FIGS. 11A and 11B, the heat transfer region exposed portion 6 is exposed to the closed space region 1 through the space 30e.
 図12(a)は本実施例による蓄熱容器150を図11(a)に示す断面と同様の断面で示している。図12(b)は閉空間領域1内から表面部材2aの表面方向に見た第1及び第2仮想平面近傍を示している。 FIG. 12A shows a heat storage container 150 according to the present embodiment in a cross section similar to the cross section shown in FIG. FIG. 12B shows the vicinity of the first and second virtual planes as viewed from the inside of the closed space region 1 in the surface direction of the surface member 2a.
 図12(a)、(b)は、電動機41が非駆動状態の場合を示している。この状態では、圧縮コイルばね43r、43lの伸張力が勝り、電動機41の綱巻き取り器が逆回転して綱42が延びた状態を示している。また圧縮コイルばね43r、43lの伸張力が潜熱蓄熱材支持部材30に作用して潜熱蓄熱材支持部材30は基材40から遠ざかる方向に所定距離移動する。これにより、圧縮コイルばね43r、43lのばね長は図11に示す状態より長くなり、位置決め部材44r、44lの当接面は潜熱蓄熱材支持部材30の基材30a端部と非接触となる。このような状態で潜熱蓄熱材支持部材30の潜熱蓄熱材35は熱移動領域露出部6の鉛直下方に位置する。従って、図12(a)、(b)に示すように熱移動領域露出部6が潜熱蓄熱材35により閉空間領域1に対して遮蔽される状態になる。 FIGS. 12A and 12B show a case where the electric motor 41 is in a non-driven state. In this state, the extension force of the compression coil springs 43r and 43l is won, and the rope take-up device of the electric motor 41 is reversely rotated and the rope 42 is extended. Further, the extension force of the compression coil springs 43 r and 43 l acts on the latent heat storage material support member 30, and the latent heat storage material support member 30 moves a predetermined distance in a direction away from the base material 40. As a result, the spring lengths of the compression coil springs 43r and 43l are longer than those shown in FIG. 11, and the contact surfaces of the positioning members 44r and 44l are not in contact with the end of the base material 30a of the latent heat storage material support member 30. In such a state, the latent heat storage material 35 of the latent heat storage material support member 30 is positioned vertically below the heat transfer region exposed portion 6. Accordingly, as shown in FIGS. 12A and 12B, the heat transfer region exposed portion 6 is shielded from the closed space region 1 by the latent heat storage material 35.
 次に、本実施例による蓄熱容器150の動作について説明する。蓄熱容器150の電源がオン状態で冷却装置が作動しているときは、電動機41に電力が供給されている。この場合は、不図示の綱巻き取り器のトルクが圧縮コイルばね43r、43lの伸張力に勝っているため、綱42を巻き取った状態を常に維持する。これにより、図11(a)、(b)に示すように、熱移動領域露出部6が空間部30eを介して閉空間領域1に対し露出する状態になる。このため、熱移動領域露出部6で露出した冷却器2の表面部材2aで閉空間領域1内の空気を直接冷却することができ、閉空間領域1内の空気を比較的短時間で所望温度に降温させ維持することができる。また、熱移動領域露出部6は均等な間隔で複数形成されているので、閉空間領域1内を均一に冷却することができる。このため、本実施例による蓄熱容器150では無駄な電力消費を抑えることができる。 Next, the operation of the heat storage container 150 according to this embodiment will be described. When the cooling device is operating with the power source of the heat storage container 150 turned on, electric power is supplied to the electric motor 41. In this case, since the torque of the rope winder (not shown) is superior to the extension force of the compression coil springs 43r and 43l, the state where the rope 42 is wound is always maintained. As a result, as shown in FIGS. 11A and 11B, the heat transfer region exposed portion 6 is exposed to the closed space region 1 through the space 30e. For this reason, the air in the closed space region 1 can be directly cooled by the surface member 2a of the cooler 2 exposed by the heat transfer region exposed portion 6, and the air in the closed space region 1 can be cooled to a desired temperature in a relatively short time. The temperature can be lowered and maintained. Moreover, since the plurality of heat transfer region exposed portions 6 are formed at equal intervals, the inside of the closed space region 1 can be uniformly cooled. For this reason, wasteful power consumption can be suppressed in the heat storage container 150 according to the present embodiment.
 次に、蓄熱容器150の電源がオフ状態になると、冷却装置や電動機41への電力の供給は停止される。この場合は、綱巻き取り器のトルクより圧縮コイルばね43r、43lの伸張力が勝るため、綱巻き取り器は逆回転して綱42は引き延ばされる。図12(b)に示すように、圧縮コイルばね43r、43lが伸張して、潜熱蓄熱材支持部材30が基材40から遠ざかる方向に所定距離移動する。これにより、熱移動領域露出部6が潜熱蓄熱材35により閉空間領域1に対して遮蔽された状態になる。停電等で蓄熱容器150の不図示の電源がオフ状態になると、遮蔽機構300により潜熱蓄熱材35を熱移動領域露出部6の鉛直下方に移動させることができ、潜熱蓄熱材35で熱移動領域露出部6を遮蔽することができる。このため、熱移動領域10の全面においても保冷効果を奏することができる。このように本実施例の蓄熱容器120によれば、停電等により蓄熱容器120の不図示の電源がオフ状態になってしまっても、閉空間領域1内の温度を所定の低温度に一定期間維持することができる。 Next, when the power of the heat storage container 150 is turned off, the supply of power to the cooling device and the electric motor 41 is stopped. In this case, since the extension force of the compression coil springs 43r, 43l is greater than the torque of the rope winder, the rope winder rotates reversely and the rope 42 is extended. As shown in FIG. 12 (b), the compression coil springs 43 r and 43 l expand, and the latent heat storage material support member 30 moves a predetermined distance in a direction away from the base material 40. As a result, the heat transfer region exposed portion 6 is shielded from the closed space region 1 by the latent heat storage material 35. When a power supply (not shown) of the heat storage container 150 is turned off due to a power failure or the like, the latent heat storage material 35 can be moved vertically below the heat transfer region exposed portion 6 by the shielding mechanism 300. The exposed part 6 can be shielded. For this reason, the cooling effect can be exerted also on the entire surface of the heat transfer region 10. As described above, according to the heat storage container 120 of the present embodiment, even if a power supply (not shown) of the heat storage container 120 is turned off due to a power failure or the like, the temperature in the closed space region 1 is kept at a predetermined low temperature for a certain period. Can be maintained.
(実施例6)
 次に、本実施形態の実施例6による蓄熱容器160について図13及び図14を用いて説明する。実施例1から実施例5による蓄熱容器と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
(Example 6)
Next, the heat storage container 160 according to Example 6 of the present embodiment will be described with reference to FIGS. 13 and 14. Constituent elements having the same functions and operations as those of the heat storage containers according to the first to fifth embodiments are denoted by the same reference numerals and description thereof is omitted.
 図13(a)及び図14(a)は本実施例による蓄熱容器160の断面を示している。図13(a)及び図14(a)は図2(a)に示す蓄熱容器100の断面と同様の断面を示している。図13(b)及び図14(b)は閉空間領域1内から表面部材2aの表面方向に見た第1及び第2仮想平面近傍を示している。また、図13(a)、(b)は熱移動領域露出部6が空間部30eを介して閉空間領域1に対し露出する状態を示している。また、図14(a)、(b)は熱移動領域露出部6が潜熱蓄熱材35により閉空間領域1に対して遮蔽される状態を示している。 FIG. 13A and FIG. 14A show a cross section of the heat storage container 160 according to this embodiment. FIG. 13A and FIG. 14A show a cross section similar to the cross section of the heat storage container 100 shown in FIG. FIG. 13B and FIG. 14B show the vicinity of the first and second virtual planes as viewed from the inside of the closed space region 1 in the surface direction of the surface member 2a. FIGS. 13A and 13B show a state in which the heat transfer region exposed portion 6 is exposed to the closed space region 1 through the space 30e. 14A and 14B show a state in which the heat transfer region exposed portion 6 is shielded from the closed space region 1 by the latent heat storage material 35. FIG.
 本実施例による蓄熱容器160は実施例3による蓄熱容器120とほぼ同様の構成を有しているが水受け皿48を有する点で異なっている。水受け皿48は冷却器2の下方に配置された不図示の水受け皿載置部上に載置されている。水受け皿48は蓄熱容器160の冷蔵庫扉102を開放して、閉空間領域1内から取り出すことができるようになっている。また、水受け皿載置部の下部にはストライプ状の潜熱蓄熱材5が複数貼り付けられている。隣り合う潜熱蓄熱材5の間のストライプ状の空間領域は熱移動領域露出部6となっている。なお、水受け皿載置部の下部に潜熱蓄熱材5を貼り付ける代わりに、水受け皿48下部の所定位置に潜熱蓄熱材5を貼り付けるようにしてもよい。 The heat storage container 160 according to the present embodiment has substantially the same configuration as the heat storage container 120 according to the third embodiment, but is different in that it includes a water tray 48. The water tray 48 is mounted on a water tray mounting portion (not shown) disposed below the cooler 2. The water tray 48 can be taken out from the closed space region 1 by opening the refrigerator door 102 of the heat storage container 160. A plurality of striped latent heat storage materials 5 are attached to the lower part of the water receiving tray mounting portion. A stripe-shaped space region between adjacent latent heat storage materials 5 is a heat transfer region exposed portion 6. Instead of attaching the latent heat storage material 5 to the lower part of the water receiving tray mounting part, the latent heat storage material 5 may be attached to a predetermined position below the water receiving tray 48.
 直冷式の冷蔵庫では定常運転している期間が所定期間経過すると、冷却器2の表面部材2aに霜が付着する。水受け皿48は表面部材2aの除霜時に霜がとけて生じた水を受けるために配置されている。除霜時に生じる水は水受け皿48に溜まるので、水受け皿48を蓄熱容器160の外方に取り出し、溜まった水を廃棄することができる。 In a direct cooling refrigerator, frost adheres to the surface member 2a of the cooler 2 when a predetermined period of time elapses during steady operation. The water receiving tray 48 is arranged to receive water generated by frost melting when the surface member 2a is defrosted. Since water generated at the time of defrosting is accumulated in the water receiving tray 48, the water receiving tray 48 can be taken out of the heat storage container 160 and the accumulated water can be discarded.
(実施例7)
 次に、本実施形態の実施例7による蓄熱容器170について図15及び図16を用いて説明する。実施例1から実施例6による蓄熱容器と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。図15は、本実施例による蓄熱容器170の概略の断面構成を示している。本実施例では蓄熱容器170としてファン式冷蔵庫を例に取って説明する。
(Example 7)
Next, the heat storage container 170 according to Example 7 of the present embodiment will be described with reference to FIGS. 15 and 16. About the component which has the same function and effect | action as the thermal storage container by Example 1-Example 6, the same code | symbol is attached | subjected and the description is abbreviate | omitted. FIG. 15 shows a schematic cross-sectional configuration of the heat storage container 170 according to this embodiment. In the present embodiment, a fan refrigerator will be described as an example of the heat storage container 170.
 図15に示すように、蓄熱容器170は直方体形状の蓄熱容器本体111を有している。蓄熱容器本体111には上段と下段とにそれぞれ長方形の開口が設けられている。上段の長方形開口を開口端として、蓄熱容器本体111内に中空箱状の冷蔵室114が設けられている。また、下段の長方形開口を開口端として蓄熱容器本体111内に中空箱状の野菜室115が設けられている。野菜室115は冷蔵室114の容積より小さい容積を有している。 15, the heat storage container 170 has a rectangular parallelepiped heat storage container main body 111. The heat storage container main body 111 is provided with rectangular openings at the upper and lower stages. A hollow box-shaped refrigerator compartment 114 is provided in the heat storage container main body 111 with the upper rectangular opening as an opening end. Further, a hollow box-like vegetable chamber 115 is provided in the heat storage container main body 111 with the lower rectangular opening as an opening end. The vegetable compartment 115 has a volume smaller than that of the refrigerator compartment 114.
 蓄熱容器本体111の冷蔵室114の開口端には不図示のヒンジ機構を介して冷蔵庫扉112が開閉可能に取り付けられている。図15に示す例では、冷蔵庫扉112は閉じた状態を示している。冷蔵庫扉112は閉じた状態で冷蔵室114の長方形開口を塞ぐ領域を備えた長方形平板形状を有している。また、冷蔵庫扉112の冷蔵室114開口外周囲との対面側には、扉閉鎖時に冷蔵室114の密閉性を確保するためのドアパッキン14が配置されている。 A refrigerator door 112 is attached to the open end of the refrigerating chamber 114 of the heat storage container body 111 through a hinge mechanism (not shown) so as to be opened and closed. In the example shown in FIG. 15, the refrigerator door 112 is in a closed state. The refrigerator door 112 has a rectangular flat plate shape having a region that closes the rectangular opening of the refrigerator compartment 114 in a closed state. In addition, a door packing 14 is provided on the opposite side of the refrigerator door 112 to the outer periphery of the refrigerator compartment 114 opening to ensure the sealing of the refrigerator compartment 114 when the door is closed.
 蓄熱容器本体111の野菜室115の開口端には不図示のヒンジ機構を介して野菜室扉113が開閉可能に取り付けられている。図15に示す例では、野菜室扉113は閉じた状態を示している。野菜室扉113は閉じた状態で野菜室115の長方形開口を塞ぐ領域を備えた長方形平板形状を有している。また、野菜室扉113の野菜室115開口外周囲との対面側には、扉閉鎖時に野菜室115の密閉性を確保するためのドアパッキン15が配置されている。なお、野菜室115は扉部を開閉する構成ではなく野菜室内を引き出し可能な引き出し式の構成を有していてもよい。 The vegetable compartment door 113 is attached to the open end of the vegetable compartment 115 of the heat storage container main body 111 through a hinge mechanism (not shown) so that it can be opened and closed. In the example shown in FIG. 15, the vegetable compartment door 113 has shown the closed state. The vegetable compartment door 113 has a rectangular flat plate shape with a region that closes the rectangular opening of the vegetable compartment 115 in a closed state. Moreover, the door packing 15 for ensuring the airtightness of the vegetable compartment 115 at the time of door closing is arrange | positioned on the opposite side of the vegetable compartment door 113 with the surrounding periphery of the vegetable compartment 115 opening. Note that the vegetable compartment 115 may have a drawer-type configuration in which the vegetable compartment can be pulled out instead of opening and closing the door.
 冷蔵庫扉112を閉じると冷蔵室114には所定容積の閉空間領域11が形成される。閉空間領域11は概ね直方体の空洞を形成する少なくとも6つの内壁で構成される。閉空間領域11の内壁には、閉空間領域内11の温度を制御するための熱を移動させる熱移動領域60が配置されている。本実施例では熱移動領域60は閉空間領域11の内壁の開口面である。 When the refrigerator door 112 is closed, a closed space region 11 having a predetermined volume is formed in the refrigerator compartment 114. The closed space region 11 is composed of at least six inner walls that form a substantially rectangular parallelepiped cavity. On the inner wall of the closed space region 11, a heat transfer region 60 that moves heat for controlling the temperature in the closed space region 11 is disposed. In this embodiment, the heat transfer region 60 is an opening surface of the inner wall of the closed space region 11.
 冷蔵室114の熱移動領域60以外の内壁と冷蔵庫扉112の内壁のほぼ全面に実施例1の潜熱蓄熱材3と同一の潜熱蓄熱材53が貼り付けられている。また、野菜室115の内壁と野菜室扉113の内壁のほぼ全面にも潜熱蓄熱材3より相転移温度の高い潜熱蓄熱材54が貼り付けられている。潜熱蓄熱材54の固相から液相へと可逆的に相変化する相転移温度は7℃から9℃程度が好ましい。 The same latent heat storage material 53 as the latent heat storage material 3 of the first embodiment is attached to almost the entire inner wall of the refrigerator compartment 114 other than the heat transfer region 60 and the inner wall of the refrigerator door 112. A latent heat storage material 54 having a phase transition temperature higher than that of the latent heat storage material 3 is attached to almost the entire inner wall of the vegetable room 115 and the inner wall of the vegetable room door 113. The phase transition temperature at which the latent heat storage material 54 reversibly changes from a solid phase to a liquid phase is preferably about 7 to 9 ° C.
 閉空間領域11の外側であって蓄熱容器本体111の内側には、熱移動領域60を遮蔽するための潜熱蓄熱材63が配置されている。潜熱蓄熱材63は潜熱蓄熱材53と同じ形成材料で形成される。潜熱蓄熱材63は熱移動領域60よりも大きな薄板形状を有している。潜熱蓄熱材63は潜熱蓄熱材支持部材68に取り付けられている。潜熱蓄熱材支持部材68は不図示の案内溝に支えられて蓄熱容器本体101の設置状態でほぼ水平方向に摺動するように取り付けられている。 A latent heat storage material 63 for shielding the heat transfer region 60 is disposed outside the closed space region 11 and inside the heat storage container main body 111. The latent heat storage material 63 is formed of the same forming material as the latent heat storage material 53. The latent heat storage material 63 has a thin plate shape larger than the heat transfer region 60. The latent heat storage material 63 is attached to a latent heat storage material support member 68. The latent heat storage material support member 68 is supported by a guide groove (not shown) so as to slide in a substantially horizontal direction when the heat storage container main body 101 is installed.
 潜熱蓄熱材63の上方の蓄熱容器本体111には開口部65が配置されている、開口部65内であって、潜熱蓄熱材支持部材68には取っ手66が取り付けられている。取っ手66の頭部は開口部65から突出している。このため、取っ手66は操作者が手で掴んで水平方向に移動させることが可能となっている。潜熱蓄熱材支持部材68及び不図示の案内溝、開口部65、及び取っ手66は、遮蔽用の潜熱蓄熱材63を熱移動領域60に移動させて熱移動領域60を遮蔽する遮蔽機構310を構成している。 An opening 65 is disposed in the heat storage container main body 111 above the latent heat storage material 63, and a handle 66 is attached to the latent heat storage material support member 68 in the opening 65. The head of the handle 66 protrudes from the opening 65. For this reason, the handle 66 can be moved in the horizontal direction by the operator holding it with the hand. The latent heat storage material support member 68 and the guide groove (not shown), the opening 65, and the handle 66 constitute a shielding mechanism 310 that moves the shielding latent heat storage material 63 to the heat transfer area 60 and shields the heat transfer area 60. is doing.
 閉空間領域11の内壁と外壁との間には断熱材57が配置されている。具体的には、蓄熱容器本体111の内側で閉空間領域11と野菜室115とを囲む領域、閉空間領域11の外側、また、冷蔵庫扉112の内側と野菜室扉113の内側に断熱材57が配置されている。取っ手66の内部にも断熱材57が配置されている。断熱材57は、所定温度に冷却されている閉空間領域11や野菜室115に蓄熱容器170の外部から熱が伝わらないように断熱するために配置されている。 A heat insulating material 57 is disposed between the inner wall and the outer wall of the closed space region 11. Specifically, a heat insulating material 57 is provided on the inner side of the heat storage container body 111 so as to surround the closed space region 11 and the vegetable compartment 115, on the outer side of the closed space region 11, and on the inner side of the refrigerator door 112 and the vegetable compartment door 113. Is arranged. A heat insulating material 57 is also arranged inside the handle 66. The heat insulating material 57 is disposed to insulate the closed space region 11 and the vegetable compartment 115 that are cooled to a predetermined temperature so that heat is not transmitted from the outside of the heat storage container 170.
 閉空間領域11と野菜室115との外側であって蓄熱容器本体111の内側のダクト83には冷却器52が配置されている。また、蓄熱容器本体111の内側には冷却器52内の不図示の蒸発機構に冷媒を供給する配管80が配置されている。配管80は蓄熱容器本体111の底面に配置されたコンプレッサ収容部116内に収容されているコンプレッサ81に接続されている。これによりガス圧縮式の冷却装置が構成されている。また、冷却器52の上方には、冷却器52を出た所定温度の冷気を熱移動領域60に送風して蓄熱容器170内で循環させるためのファン82が配置されている。 A cooler 52 is arranged in a duct 83 outside the closed space region 11 and the vegetable compartment 115 and inside the heat storage container body 111. A pipe 80 for supplying a refrigerant to an evaporation mechanism (not shown) in the cooler 52 is disposed inside the heat storage container main body 111. The pipe 80 is connected to a compressor 81 housed in a compressor housing portion 116 disposed on the bottom surface of the heat storage container main body 111. Thereby, a gas compression type cooling device is configured. In addition, a fan 82 is disposed above the cooler 52 to blow cool air having a predetermined temperature from the cooler 52 to the heat transfer region 60 and circulate it in the heat storage container 170.
 図16は、本実施例による蓄熱容器170の概略の断面構成を示している。図16では、熱移動領域60は潜熱蓄熱材63により閉空間領域11に対して遮蔽された状態を示している。 FIG. 16 shows a schematic cross-sectional configuration of the heat storage container 170 according to this embodiment. In FIG. 16, the heat transfer region 60 is shown shielded from the closed space region 11 by the latent heat storage material 63.
 次に、本実施例による蓄熱容器170の動作について説明する。蓄熱容器170の不図示の電源がオン状態において、コンプレッサ81で圧縮された冷媒は配管20内で凝縮され次いで膨張させられて冷却器52に達する。冷却器52は、膨張した冷媒が蒸発する際の気化熱により、蓄熱容器111内を冷却する。 Next, the operation of the heat storage container 170 according to this embodiment will be described. When the power supply (not shown) of the heat storage container 170 is on, the refrigerant compressed by the compressor 81 is condensed in the pipe 20 and then expanded to reach the cooler 52. The cooler 52 cools the heat storage container 111 with heat of vaporization when the expanded refrigerant evaporates.
 冷却器52を出た冷気はファンによって蓄熱容器本体111のダクト83内を上昇し、ダクト83の一端側の閉空間領域11に露出した熱移動領域60から閉空間領域11へ送風される。閉空間領域11の所定位置には不図示の温度センサが設置されている。温度センサで計測された閉空間領域11内の温度に基づき蓄熱容器170に設けられた不図示の温度制御装置により冷却装置の駆動が制御され、閉空間領域11内の温度を制御するための熱移動が行われる。 The cool air that has exited the cooler 52 rises in the duct 83 of the heat storage container body 111 by the fan, and is blown from the heat transfer area 60 exposed to the closed space area 11 on one end side of the duct 83 to the closed space area 11. A temperature sensor (not shown) is installed at a predetermined position in the closed space region 11. The driving of the cooling device is controlled by a temperature control device (not shown) provided in the heat storage container 170 based on the temperature in the closed space region 11 measured by the temperature sensor, and heat for controlling the temperature in the closed space region 11. A move is made.
 冷却器52を出た冷気により、閉空間領域11の潜熱蓄熱材53と閉空間領域外の潜熱蓄熱材63は冷却される。従って、潜熱蓄熱材53、63を相転移温度以下の固相状態に維持させることができる。固相状態を維持した潜熱蓄熱材53、63は閉空間領域11内の温度の時間変化分布を平坦化させる機能を発揮する。 The latent heat storage material 53 in the closed space region 11 and the latent heat storage material 63 outside the closed space region are cooled by the cold air that has exited the cooler 52. Therefore, the latent heat storage materials 53 and 63 can be maintained in a solid phase state below the phase transition temperature. The latent heat storage materials 53 and 63 that maintain the solid state exhibit a function of flattening the temporal change distribution of the temperature in the closed space region 11.
 閉空間領域11と野菜室115との間には通気管が配置されている。閉空間領域11内を冷却した冷気は通気管を通って野菜室115に達する。野菜室115に到達した冷気により、野菜室115内と潜熱蓄熱材54とが冷却される。冷却された潜熱蓄熱材54は相転移温度以下の固相状態に維持される。固相状態を維持した潜熱蓄熱材54も野菜室115内の温度の時間変化分布を平坦化させる機能を発揮する。 A vent pipe is disposed between the closed space region 11 and the vegetable compartment 115. The cold air that has cooled the inside of the closed space region 11 reaches the vegetable compartment 115 through the vent pipe. The inside of the vegetable compartment 115 and the latent heat storage material 54 are cooled by the cold air that has reached the vegetable compartment 115. The cooled latent heat storage material 54 is maintained in a solid phase state below the phase transition temperature. The latent heat storage material 54 that maintains the solid state also exhibits the function of flattening the temporal change distribution of the temperature in the vegetable compartment 115.
 ファン式の冷蔵庫である蓄熱容器170では、閉空間領域11内を冷却した後の冷気が野菜室に循環してくる。このため、野菜室115内の温度は閉空間領域11内の温度より高くなる。野菜室115の設定温度は、野菜の貯蔵に適した温度であって例えば6℃から8℃程度である。また、閉空間領域11の設定温度は、野菜室115内の設定温度よりも低い温度であって例えば約3℃である。なお、ファン式の冷蔵庫である蓄熱容器170では、直冷式の冷蔵庫よりも蓄熱容器170内の温度分布を均一に保つことができる。 In the heat storage container 170 that is a fan-type refrigerator, the cold air after cooling the closed space region 11 circulates in the vegetable compartment. For this reason, the temperature in the vegetable compartment 115 becomes higher than the temperature in the closed space region 11. The set temperature of the vegetable compartment 115 is a temperature suitable for storing vegetables, and is, for example, about 6 ° C to 8 ° C. Further, the set temperature of the closed space region 11 is lower than the set temperature in the vegetable compartment 115 and is, for example, about 3 ° C. In addition, in the heat storage container 170 which is a fan-type refrigerator, the temperature distribution in the heat storage container 170 can be kept more uniform than in a direct cooling refrigerator.
 野菜室115と冷却器52が配置されているダクト83の他端側との間には通気管が配置されている。野菜室115内を冷却した空気は通気管を通って野菜室115の外側のダクト他端側に排気される。排気された空気はダクト83内の冷却器52に戻ってくる。ファン式の冷蔵庫ではこのように空気の循環が行われる。 A vent pipe is disposed between the vegetable room 115 and the other end of the duct 83 where the cooler 52 is disposed. The air cooled in the vegetable compartment 115 is exhausted to the other end of the duct outside the vegetable compartment 115 through the vent pipe. The exhausted air returns to the cooler 52 in the duct 83. In a fan-type refrigerator, air is circulated in this way.
 停電等により蓄熱容器170の不図示の電源がオフ状態になると、不図示の温度制御装置や冷却装置への電力供給が停止して、冷却装置による冷却能力は失われる。蓄熱容器170の電源がオフ状態になったとき、潜熱蓄熱材63を熱移動領域60に移動させて、熱移動領域を閉空間領域11に対し遮蔽する。すると、閉空間領域11内では潜熱蓄熱材53、65による保冷が開始される。閉空間領域11内の空気は、閉空間領域11内壁に張り巡らされている潜熱蓄熱材53と熱移動領域60を遮蔽する潜熱蓄熱材63により一定期間、所定温度範囲に維持される。より具体的には、潜熱蓄熱材53、65が固相から液相へ相転移するまでの期間において、閉空間領域11内の温度が6℃程度に維持される。 When a power supply (not shown) of the heat storage container 170 is turned off due to a power failure or the like, power supply to a temperature control device or a cooling device (not shown) is stopped, and the cooling capacity of the cooling device is lost. When the power source of the heat storage container 170 is turned off, the latent heat storage material 63 is moved to the heat transfer region 60 to shield the heat transfer region from the closed space region 11. Then, the cold insulation by the latent heat storage materials 53 and 65 is started in the closed space region 11. The air in the closed space region 11 is maintained in a predetermined temperature range for a certain period by the latent heat storage material 53 stretched around the inner wall of the closed space region 11 and the latent heat storage material 63 that shields the heat transfer region 60. More specifically, the temperature in the closed space region 11 is maintained at about 6 ° C. during the period until the latent heat storage materials 53 and 65 undergo a phase transition from the solid phase to the liquid phase.
 また、停電等により蓄熱容器170の不図示の電源がオフ状態になると、不図示の温度制御装置や冷却装置への電力供給が停止して、冷却装置による冷却能力は失われる。冷却能力が失われると野菜室115内に冷気が循環しなくなる。野菜室115内に冷気が循環しなくなると潜熱蓄熱材54による保冷が開始される。野菜室151内の空気は、閉空間領域1内壁に張り巡らされている潜熱蓄熱材54により一定期間、所定温度範囲に維持される。より具体的には、潜熱蓄熱材54が固相から液相へ相転移するまでの期間において、野菜室115内の温度が9℃程度に維持される。 In addition, when a power supply (not shown) of the heat storage container 170 is turned off due to a power failure or the like, power supply to a temperature control device or a cooling device (not shown) is stopped, and the cooling capacity of the cooling device is lost. When the cooling capacity is lost, the cold air does not circulate in the vegetable compartment 115. When cold air no longer circulates in the vegetable compartment 115, cold insulation by the latent heat storage material 54 is started. The air in the vegetable compartment 151 is maintained in a predetermined temperature range for a certain period by the latent heat storage material 54 stretched around the inner wall of the closed space region 1. More specifically, the temperature in the vegetable compartment 115 is maintained at about 9 ° C. until the latent heat storage material 54 undergoes a phase transition from the solid phase to the liquid phase.
 本実施例による蓄熱容器170において、熱移動領域60を遮蔽するための潜熱蓄熱材63に複数の貫通孔を形成してもよい。この場合には、熱移動領域60は潜熱蓄熱材63で遮蔽された領域と、潜熱蓄熱材63の貫通孔が形成され熱移動領域60が露出された領域とに分割される。従って、蓄熱容器170が定常運転しているときは、熱移動領域60が露出されている貫通孔を通って、冷気が閉空間領域11内に送風される。 In the heat storage container 170 according to the present embodiment, a plurality of through holes may be formed in the latent heat storage material 63 for shielding the heat transfer region 60. In this case, the heat transfer region 60 is divided into a region shielded by the latent heat storage material 63 and a region where the through hole of the latent heat storage material 63 is formed and the heat transfer region 60 is exposed. Therefore, when the heat storage container 170 is in a steady operation, the cool air is blown into the closed space region 11 through the through hole in which the heat transfer region 60 is exposed.
 また、本実施例による蓄熱容器170は冷蔵室114と野菜室115とを有するファン式の冷蔵庫を例として説明したが、さらに冷凍庫を有する冷蔵庫にも適用可能である。この場合には、冷凍室内の温度を制御する熱移動領域を遮蔽するための潜熱蓄熱材を設置する。 Further, although the heat storage container 170 according to the present embodiment has been described as an example of a fan-type refrigerator having a refrigerator compartment 114 and a vegetable compartment 115, it can also be applied to a refrigerator having a freezer. In this case, a latent heat storage material is installed to shield the heat transfer area that controls the temperature in the freezer compartment.
 本実施の形態は、上記実施例に限らず種々の変形が可能である。
 例えば、熱移動領域露出部6等を遮蔽するための潜熱蓄熱材は、潜熱蓄熱材支持部材に取り付けられ摺動可能であったが、本実施の形態はこれに限られない。例えば、蓄熱容器が定常運転中は当該潜熱蓄熱材を冷蔵室内等の所定の格納場所に格納しておく。停電等で蓄熱容器の電源がオフ状態となった場合は、当該潜熱蓄熱材を所定の格納場所から取り出して、熱移動領域露出部等を遮蔽するために、熱移動領域に取り付けるようにしてもよい。
The present embodiment is not limited to the above embodiment, and various modifications can be made.
For example, the latent heat storage material for shielding the heat transfer region exposed portion 6 and the like is attached to the latent heat storage material support member and slidable, but the present embodiment is not limited to this. For example, during the steady operation of the heat storage container, the latent heat storage material is stored in a predetermined storage location such as a refrigerator. When the power of the heat storage container is turned off due to a power failure or the like, the latent heat storage material is taken out from the predetermined storage location and attached to the heat transfer area in order to shield the heat transfer area exposed part etc. Good.
 また例えば、上記実施例では蓄熱容器として冷蔵庫を用いて説明したが本実施の形態はこれに限らず、相転移温度が例えば数十℃の潜熱蓄熱材を用いた温蔵庫にももちろん適用可能である。 Also, for example, in the above embodiment, a refrigerator is used as a heat storage container, but this embodiment is not limited to this, and of course can be applied to a warm storage room using a latent heat storage material having a phase transition temperature of, for example, several tens of degrees Celsius. It is.
[第2の実施の形態]
 本発明による第2の実施の形態は、潜熱蓄熱材を用いた保温庫に関する。
[Second Embodiment]
The second embodiment according to the present invention relates to a heat storage using a latent heat storage material.
 冷凍冷蔵庫には、ファン式と直冷式とが知られている。現在、国内向け冷凍冷蔵庫はファン式が主流である。また、蓄熱材や蓄冷剤を用いた冷凍冷蔵庫が知られている(特許文献6、特許文献7)。 Refrigerator refrigerators are known to be fan type or direct cooling type. Currently, domestic refrigerator-freezers are mainly fan-type. Moreover, the refrigerator-freezer using the heat storage material and the cool storage agent is known (patent document 6, patent document 7).
 特許文献6には、断熱材で囲った部屋に、冷凍室の温度域に相変化温度を持つ蓄熱材を設け、夜間等に冷凍庫の冷気を循環させて蓄熱材を固化させる蓄熱冷蔵庫が開示されている。当該蓄熱冷蔵庫は、蓄冷時の圧縮機の負荷を低減することができる。しかしながら、当該蓄熱冷蔵庫は、冷蔵庫及び冷凍庫と独立した断熱材に覆われた部屋に蓄熱材を設けるため、庫内容積が小さくなるという問題を有している。また、当該蓄熱冷蔵庫は、蓄熱材をブロックとして設置するため、熱交換に時間を要するという問題を有している。 Patent Document 6 discloses a heat storage refrigerator in which a heat storage material having a phase change temperature is provided in a temperature range of a freezing room in a room surrounded by a heat insulating material, and the heat storage material is solidified by circulating cold air in a freezer at night or the like. ing. The said heat storage refrigerator can reduce the load of the compressor at the time of cold storage. However, since the heat storage refrigerator is provided with a heat storage material in a room covered with a heat insulating material independent of the refrigerator and the freezer, there is a problem that the internal volume is reduced. Moreover, since the said thermal storage refrigerator installs a thermal storage material as a block, it has the problem that heat exchange requires time.
 また、特許文献6及び7において開示されたファン式冷蔵庫は、冷風の循環により庫内の冷却を行う。従来のファン式冷蔵庫は、直接冷風が当たることにより保存食品が乾燥しないように冷風の流れが設定されている。従来のファン式冷蔵庫に蓄熱材を用いても、蓄熱材が効率よく冷却されないという問題を有している。また一般に、ファン式冷凍冷蔵庫は、直冷式冷凍冷蔵庫と比較して冷却速度が遅い。このため、ファン式冷凍冷蔵庫は、潜熱蓄熱材を設置した場合に潜熱蓄熱材に冷熱を蓄えるために時間がかかるという問題を有している。 Moreover, the fan-type refrigerator disclosed in Patent Documents 6 and 7 cools the inside of the refrigerator by circulating cold air. In the conventional fan type refrigerator, the flow of the cold air is set so that the stored food is not dried by the direct cold air. Even when a heat storage material is used in a conventional fan-type refrigerator, there is a problem that the heat storage material is not efficiently cooled. In general, fan-type refrigerator-freezers have a lower cooling rate than direct-cooled refrigerator-freezers. For this reason, the fan type refrigerator-freezer has a problem that it takes time to store cold in the latent heat storage material when the latent heat storage material is installed.
 本実施形態の目的は、潜熱蓄熱材を効率よく冷却することができる保温庫を提供することにある。 An object of the present embodiment is to provide a heat storage that can efficiently cool the latent heat storage material.
 上記目的は、周囲温度と異なる温度の空気を生成する熱交換装置と、前記異なる温度の空気を強制対流させて風を発生するとともに前記風を送風する送風機と、前記風が直接当たるように、あるいは、受熱部に直接当たった前記風の熱が前記受熱部を介して間接的に伝わるように配置され、相変化により熱エネルギーを蓄積又は放出する潜熱蓄熱材とを有することを特徴とする保温庫によって達成される。 The purpose is to generate a heat exchange device that generates air having a temperature different from the ambient temperature, to generate a wind by forcibly convection the air having a different temperature, and to blow the wind, and so that the wind directly hits, Or it is arrange | positioned so that the heat of the said wind which directly hit | heated the heat receiving part may be indirectly transmitted through the said heat receiving part, and it has the latent heat storage material which accumulate | stores or discharge | releases thermal energy by a phase change, Achieved by storage.
 上記本実施形態の保温庫であって、貯蔵物を貯蔵する貯蔵室をさらに有し、前記潜熱蓄熱材は、前記貯蔵室に配置されていることを特徴とする。 The heat insulation box according to the present embodiment further includes a storage room for storing a stored product, and the latent heat storage material is disposed in the storage room.
 上記本実施形態の保温庫であって、前記貯蔵室に設けられ、前記貯蔵物が載置される棚部をさらに有し、前記潜熱蓄熱材は、前記棚部に設けられていることを特徴とする。 The heat insulation box according to the present embodiment, further comprising a shelf provided in the storage chamber on which the stored item is placed, and the latent heat storage material is provided in the shelf. And
 上記本実施形態の保温庫であって、前記貯蔵室に設けられ、前記風を前記貯蔵室内に流出する風流出口をさらに有し、前記潜熱蓄熱材は、前記風流出口から流出した前記風が直接当たる場所、あるいは、前記受熱部に直接当たった前記風による熱が前記受熱部を介して間接的に伝わる場所に配置されていることを特徴とする。 The heat insulation box according to the present embodiment, further including a wind outlet provided in the storage chamber and allowing the wind to flow into the storage chamber, and the latent heat storage material is configured such that the wind flowing out from the wind outlet is directly It is arrange | positioned in the place which the heat | fever by the said wind which directly hits the said heat receiving part, or the heat | fever received indirectly through the said heat receiving part.
 上記本実施形態の保温庫であって、前記棚部は、前記風を前記棚部の下方に導く風誘導部を有することを特徴とする。 In the heat insulation box according to the present embodiment, the shelf portion includes a wind guide portion that guides the wind to the lower side of the shelf portion.
 上記本実施形態の保温庫であって、前記風誘導部は、前記風の流入部が前記風の流出部よりも幅広に形成されていることを特徴とする。 In the heat insulation box according to the present embodiment, the wind guide portion is characterized in that the wind inflow portion is formed wider than the wind outflow portion.
 上記本実施形態の保温庫であって、前記貯蔵室に設けられ、前記風を前記貯蔵室内の所定方向に流出する風流出口と、前記風流出口に設けられ、前記所定方向とは異なる方向に前記風の風向を切り替える風向切替部とをさらに有し、前記潜熱蓄熱材は、前記風流出口から見て、前記異なる方向に配置されていることを特徴とする。 The heat insulation box according to the present embodiment, which is provided in the storage chamber, and is provided at the wind outlet and flows in a predetermined direction in the storage chamber, and is provided in the wind outlet and in a direction different from the predetermined direction. It further has a wind direction switching unit that switches the wind direction of the wind, and the latent heat storage material is arranged in the different direction when viewed from the wind outlet.
 上記本実施形態の保温庫であって、前記風向切替部は、前記潜熱蓄熱材を冷却する際に前記風向を前記異なる方向に切り替えることを特徴とする。 In the heat insulation box according to the present embodiment, the wind direction switching unit switches the wind direction to the different direction when the latent heat storage material is cooled.
 上記本実施形態の保温庫であって、前記棚部は、前記風を前記棚部の下方に導くとともに、前記風を反射する風誘導反射部を有することを特徴とする。 In the heat insulation box according to the present embodiment, the shelf portion has a wind guide reflection portion that guides the wind below the shelf portion and reflects the wind.
 上記本実施形態の保温庫であって、前記潜熱蓄熱材は脱着できることを特徴とする。 The heat insulation box according to the present embodiment, wherein the latent heat storage material is detachable.
 上記本実施形態の保温庫であって、前記潜熱蓄熱材は、前記風の熱を伝導する熱伝導シートを有することを特徴とする。 In the heat insulation box according to the present embodiment, the latent heat storage material includes a heat conductive sheet that conducts the heat of the wind.
 上記本実施形態の保温庫であって、前記風の熱を前記熱伝導シートに伝導する伝導パスをさらに有することを特徴とする。 The heat insulation box of the present embodiment, further comprising a conduction path for conducting the heat of the wind to the heat conduction sheet.
 上記本実施形態の保温庫であって、前記潜熱蓄熱材は、前記風の熱を伝導するフィンを有することを特徴とする。 In the heat insulation box of the present embodiment, the latent heat storage material has fins that conduct the heat of the wind.
 上記本実施形態の保温庫であって、熱伝導シートは脱着できることを特徴とする。 The heat insulation box according to the present embodiment, wherein the heat conductive sheet can be detached.
 上記本実施形態の保温庫であって、前記フィンは脱着できることを特徴とする。 In the heat insulation box according to the present embodiment, the fin can be detached.
 上記本実施形態の保温庫であって、前記潜熱蓄熱材は、前記風の熱を伝導する熱伝導性フィラー分散部を有することを特徴とする。 In the heat insulation box according to the present embodiment, the latent heat storage material has a thermally conductive filler dispersion portion that conducts heat of the wind.
 上記本実施形態の保温庫であって、前記潜熱蓄熱材は、前記風の当たる表面に凹凸を有していることを特徴とする。 In the heat insulation box of the present embodiment, the latent heat storage material has irregularities on the surface to which the wind hits.
 上記本実施形態の保温庫であって、前記潜熱蓄熱材は、ノルマルパラフィンであることを特徴とする。 In the heat insulation box of the present embodiment, the latent heat storage material is normal paraffin.
 上記本実施形態の保温庫であって、前記ノルマルパラフィンがゲルであることを特徴とする。 The heat insulation box according to the present embodiment, wherein the normal paraffin is a gel.
 上記本実施形態の保温庫であって、前記熱交換装置は、前記周囲温度よりも低温の冷気を発生する冷却器を有することを特徴とする。 In the heat insulation box according to the present embodiment, the heat exchange device includes a cooler that generates cool air having a temperature lower than the ambient temperature.
 本実施形態によれば、潜熱蓄熱材を効率よく冷却することができる。
 以下、実施例を用いてより具体的に説明する。
According to this embodiment, the latent heat storage material can be efficiently cooled.
Hereinafter, it demonstrates more concretely using an Example.
(実施例1)
 本実施形態の実施例1による保温庫について図17及び図18を用いて説明する。本実施例による保温庫は、定常運転時に周囲温度(室温)と異なる温度で貯蔵物を保管するために用いられ、例えば冷蔵庫、冷凍庫、温蔵庫などを例示することができる。本実施例並びに後述の実施例2及び実施例3では、保温庫がファン式の冷蔵庫であることとして説明する。図17は、本実施例によるファン式の冷蔵庫501の概略構成の要部を示す図である。図17(a)は、扉部517を透過して見た冷蔵庫501の正面図を示し、図17(b)は、右側の壁部505を透過して見た冷蔵庫501の右側面図を示している。なお、理解を容易にするため、図17(a)では、本来は貯蔵室504内に配置されている棚部523の図示は省略されている。また、理解を容易にするため、図17(a)では、本来冷蔵室502内で視認できないダンパ533と、冷凍室508内で視認することのできない送風機506とが図示されている。
Example 1
The heat storage by Example 1 of this embodiment is demonstrated using FIG.17 and FIG.18. The heat storage according to the present embodiment is used for storing stored items at a temperature different from the ambient temperature (room temperature) during steady operation, and examples thereof include a refrigerator, a freezer, and a warm storage. In the present embodiment, and in Embodiments 2 and 3 to be described later, the description will be made assuming that the heat insulating box is a fan-type refrigerator. FIG. 17 is a diagram illustrating a main part of a schematic configuration of a fan-type refrigerator 501 according to the present embodiment. FIG. 17A shows a front view of the refrigerator 501 seen through the door 517, and FIG. 17B shows a right side view of the refrigerator 501 seen through the right wall 505. FIG. ing. In addition, in order to make an understanding easy, illustration of the shelf part 523 originally arrange | positioned in the storage chamber 504 is abbreviate | omitted in Fig.17 (a). In order to facilitate understanding, FIG. 17A shows a damper 533 that cannot be visually recognized in the refrigerator compartment 502 and a blower 506 that cannot be visually recognized in the freezer compartment 508.
 図17(a)及び図17(b)に示すように、冷蔵庫501は全体として直方体形状を有している。冷蔵庫501は、上段に設けられた冷蔵室502と、中段に設けられた冷凍室508と、下段に設けられた不図示の野菜室との3つの領域に分割されている。冷蔵庫501では、冷蔵室502、冷凍室508及び野菜室のそれぞれの設定温度は、野菜室、冷蔵室502及び冷凍室508の順に低くなるように予め設定されている。すなわち、冷蔵庫501では、各収容室の庫内設定温度は、「冷凍室508<冷蔵室502<野菜室」となるように予め設定されている。野菜室の庫内設定温度は、野菜の貯蔵に適した温度であって例えば6℃~8℃程度である。また、冷蔵室502の庫内設定温度は、野菜室の庫内設定温度よりも低い温度であって例えば2~5℃程度である。冷凍室508の庫内設定温度は、冷蔵室502よりもさらに低い温度であって例えば-18℃程度である。 As shown in FIGS. 17A and 17B, the refrigerator 501 has a rectangular parallelepiped shape as a whole. The refrigerator 501 is divided into three regions: a refrigerator compartment 502 provided in the upper stage, a freezer compartment 508 provided in the middle stage, and a vegetable room (not shown) provided in the lower stage. In the refrigerator 501, the set temperatures of the refrigerator compartment 502, the freezer compartment 508, and the vegetable compartment are set in advance so as to decrease in the order of the vegetable compartment, the refrigerator compartment 502, and the freezer compartment 508. That is, in the refrigerator 501, the set temperature in each storage room is set in advance so that “freezer room 508 <refrigeration room 502 <vegetable room”. The set temperature in the vegetable room is a temperature suitable for storing vegetables, for example, about 6 ° C to 8 ° C. Further, the set temperature in the refrigerator compartment 502 is lower than the set temperature in the vegetable compartment, for example, about 2 to 5 ° C. The set temperature in the freezer compartment 508 is lower than that of the refrigerator compartment 502 and is, for example, about −18 ° C.
 冷蔵室502は、不図示のヒンジ部を介して容器本体514に回転自在に設けられた薄板形状の扉部517を有している。冷蔵室502における容器本体514は、長方形状の開口部516と、開口部516で開口されて箱形状を構成する壁部505及び仕切り部525と、貯蔵物を貯蔵する貯蔵室504とを有している。冷蔵室502と冷凍室508とは仕切り部525で仕切られている。貯蔵室504は、扉部517が開いた場合に、開口部516を介して外部と接続されるようになっている。貯蔵室504は壁部505の内側に設けられた空間である。貯蔵室504は、扉部517が閉じられると、扉部517と壁部505とにより囲まれる密閉空間になる。これにより、冷蔵室502は、貯蔵室504内を設定温度に維持できるようになっている。 The refrigerator compartment 502 has a thin plate-shaped door 517 that is rotatably provided on the container main body 514 via a hinge (not shown). The container main body 514 in the refrigerator compartment 502 has a rectangular opening 516, walls 505 and a partition 525 that are opened by the opening 516 and form a box shape, and a storage chamber 504 that stores stored items. ing. The refrigerator compartment 502 and the freezer compartment 508 are partitioned by a partition portion 525. The storage chamber 504 is connected to the outside through the opening 516 when the door 517 is opened. The storage chamber 504 is a space provided inside the wall portion 505. The storage chamber 504 becomes a sealed space surrounded by the door portion 517 and the wall portion 505 when the door portion 517 is closed. Thereby, the refrigerator compartment 502 can maintain the inside of the store room 504 at preset temperature.
 貯蔵室504には、相変化により熱エネルギーを蓄積又は放出する複数の潜熱蓄熱材503(本例では8枚)が配置されている。詳細は後述するが、複数の潜熱蓄熱材503は、貯蔵室504に設けられた冷風流出口(風流出口)509から流出した冷風が直接当たる場所に配置されている。複数の潜熱蓄熱材503は、貯蔵室504の内壁側面に貼付されている。 In the storage room 504, a plurality of latent heat storage materials 503 (eight in this example) that store or release thermal energy by phase change are arranged. Although details will be described later, the plurality of latent heat storage materials 503 are arranged at locations where the cold air flowing out from the cold air outlet (wind outlet) 509 provided in the storage chamber 504 directly hits. The plurality of latent heat storage materials 503 are attached to the inner wall side surface of the storage chamber 504.
 潜熱蓄熱材503は、固相及び液相間の相変化が可逆的に生じる温度を冷蔵室502の使用温度範囲内に有している。潜熱蓄熱材503は、相変化温度よりも高い温度では液相となり、相変化温度よりも低い温度では固相となる。 The latent heat storage material 503 has a temperature at which the phase change between the solid phase and the liquid phase occurs reversibly within the operating temperature range of the refrigerator compartment 502. The latent heat storage material 503 becomes a liquid phase at a temperature higher than the phase change temperature, and becomes a solid phase at a temperature lower than the phase change temperature.
 本実施例における潜熱蓄熱材503はパラフィンを含んでいる。潜熱蓄熱材503には、ノルマル(直鎖型構造)パラフィン(一般式がC2n+2)で炭素数nが10以上の単一物又は混合物が用いられる。パラフィンの融点は、炭素数nによって異なる。本実施例では、潜熱蓄熱材503として例えばn-テトラデカン(分子式:C1430)が用いられる。n-テトラデカンの融点(5.9℃)は、冷蔵室502の使用温度範囲内に含まれる。なお、n-テトラデカンの沸点は約250℃である。なお、パラフィンは炭素数が所定数以上になると常温において半透明又は白色の軟らかい不溶性固体(蝋状)になる。 The latent heat storage material 503 in the present embodiment includes paraffin. As the latent heat storage material 503, a single substance or a mixture of normal (linear structure) paraffin (general formula is C n H 2n + 2 ) and a carbon number n of 10 or more is used. The melting point of paraffin varies depending on the number of carbons n. In this embodiment, for example, n-tetradecane (molecular formula: C 14 H 30 ) is used as the latent heat storage material 503. The melting point (5.9 ° C.) of n-tetradecane is included in the operating temperature range of the refrigerator compartment 502. The boiling point of n-tetradecane is about 250 ° C. Paraffin becomes a translucent or white soft insoluble solid (wax) at room temperature when the carbon number exceeds a predetermined number.
 潜熱蓄熱材503には、パラフィンをゲル化(固化)するゲル化剤が含有されている。ゲル(化学ゲル)とは、分子が架橋されることで三次元的な網目構造を形成し、その内部に溶媒を吸収し膨潤したものをいう。ゲルは、構造を壊さない限り化学的に安定である。ゲル化剤は、パラフィンに数重量%含有させるだけでゲル化の効果を生じる。 The latent heat storage material 503 contains a gelling agent that gels (solidifies) paraffin. A gel (chemical gel) refers to a gel that is formed by forming a three-dimensional network structure by cross-linking molecules, and absorbing the solvent therein to swell. Gels are chemically stable as long as they do not break the structure. A gelling agent produces a gelling effect only by containing it in paraffin by several weight%.
 本実施例で用いるゲル化剤はポリマー材料を含んでいる。また、ポリマー材料としてポリエチレンが用いられている。つまり、本実施例における潜熱蓄熱材503は、ポリエチレンでゲル化したポリエチレン含有パラフィンである。80℃程度まで加熱することで流動性を持たせることができ、自由に成形することができる。また、ポリエチレンの混合割合を調整することにより流動時の粘度を変えることができる。 The gelling agent used in this example contains a polymer material. In addition, polyethylene is used as the polymer material. That is, the latent heat storage material 503 in the present embodiment is polyethylene-containing paraffin gelled with polyethylene. By heating to about 80 ° C., fluidity can be imparted and molding can be performed freely. Moreover, the viscosity at the time of a flow can be changed by adjusting the mixing ratio of polyethylene.
 ポリエチレン含有パラフィンは、パラフィンが固相と液相との間で相変化しても全体として固体状態を維持し、流動性を有しない。したがって、ポリエチレン含有パラフィンは、少なくとも潜熱蓄熱材503の使用温度範囲内では流動性を有しない。このように、ゲル状の潜熱蓄熱材503は、相変化の前後で全体として固体状態を維持できる。これにより潜熱蓄熱材503は、相変化の前後で貯蔵室504内に配置され続けることができるようになっている。 Polyethylene-containing paraffin maintains a solid state as a whole even when the paraffin changes between a solid phase and a liquid phase, and has no fluidity. Accordingly, the polyethylene-containing paraffin does not have fluidity at least within the use temperature range of the latent heat storage material 503. Thus, the gel-like latent heat storage material 503 can maintain a solid state as a whole before and after the phase change. Thereby, the latent heat storage material 503 can be continuously disposed in the storage chamber 504 before and after the phase change.
 一般に潜熱蓄熱材は、物質の相転移の際に外部とやり取りされる熱エネルギーを相変化のための潜熱として蓄える。例えば、固-液間の相変化を利用した蓄熱では、潜熱蓄熱材の融点での融解熱を利用する。相変化の際に固体と液体の二相が混在する限り一定の温度で外部との間で熱交換を行い続けるので、比較的長時間において温度変化を抑制できる。 Generally, a latent heat storage material stores thermal energy exchanged with the outside during phase transition of a substance as latent heat for phase change. For example, in heat storage using phase change between solid and liquid, the heat of fusion at the melting point of the latent heat storage material is used. As long as two phases of solid and liquid coexist at the time of phase change, heat exchange is continuously performed with the outside at a constant temperature, so that temperature change can be suppressed for a relatively long time.
 貯蔵室504は、食品等の貯蔵物が載置される複数の棚部523(本例では、4枚)が設けられている。複数の棚部523は、薄板形状を有し、所定の間隙を設けて配置されている。また、貯蔵室504内の下方には、チルド室529が設けられている。チルド室529には、扉部517を開放した場合に、外部に引き出し可能なチルド収納部529aが収納されている。 The storage chamber 504 is provided with a plurality of shelves 523 (four in this example) on which stored items such as food are placed. The plurality of shelves 523 have a thin plate shape and are arranged with a predetermined gap. A chilled chamber 529 is provided below the storage chamber 504. The chilled chamber 529 stores a chilled storage portion 529a that can be pulled out when the door portion 517 is opened.
 冷蔵庫501は、貯蔵室504の内壁背面に設けられた庫内温度センサ511を有している。庫内温度センサ511は貯蔵室504内の温度を計測するために設けられている。また、冷蔵庫501は、貯蔵室504の内壁背面に設けられた温調部515を有している。温調部515は利用者が貯蔵室504内の温度を2~5℃の範囲内で任意の温度に調整するために用いられる。さらに、冷蔵庫501は、貯蔵室の内壁背面に設けられた庫内灯513を有している。庫内灯513は扉部517が閉じられている場合には消灯し、扉部517が開けられた場合に点灯するようになっている。 The refrigerator 501 has an internal temperature sensor 511 provided on the back of the inner wall of the storage chamber 504. The internal temperature sensor 511 is provided for measuring the temperature in the storage chamber 504. In addition, the refrigerator 501 has a temperature adjustment unit 515 provided on the back of the inner wall of the storage chamber 504. The temperature adjustment unit 515 is used by the user to adjust the temperature in the storage chamber 504 to an arbitrary temperature within the range of 2 to 5 ° C. Furthermore, the refrigerator 501 has an interior lamp 513 provided on the back of the inner wall of the storage room. The interior lamp 513 is turned off when the door portion 517 is closed, and is turned on when the door portion 517 is opened.
 扉部517は、容器本体514上に設けられた扉半固定部519により半固定されるようになっている。扉半固定部519は薄板形状を有している。扉半固定部519は、利用者が扉部517を開放するために扉部517に引っ張り力を加えない限り、扉部517を容器本体514に固定するようになっている。扉部517は、扉部517を閉じた場合に貯蔵室504内に配置される扉収納部517a~517dを有している。扉収納部517a~517dは、例えば卵や飲料水等を収納できるようになっている。 The door portion 517 is semi-fixed by a door semi-fixing portion 519 provided on the container body 514. The door half fixing part 519 has a thin plate shape. The door half fixing portion 519 fixes the door portion 517 to the container main body 514 unless the user applies a pulling force to the door portion 517 in order to open the door portion 517. The door portion 517 includes door storage portions 517a to 517d arranged in the storage chamber 504 when the door portion 517 is closed. The door storage portions 517a to 517d can store, for example, eggs and drinking water.
 冷凍室512は、不図示のヒンジ部を介して容器本体514に回転自在に設けられた薄板形状の扉部520を有している。冷凍室512における容器本体514は、長方形状の開口部518と、開口部518で開口されて箱形状を構成する壁部505、仕切り部525及び冷凍室508と不図示の野菜室(不図示)とを仕切る仕切り部(不図示)と、貯蔵物を貯蔵する貯蔵室510とを有している。貯蔵室510には、不図示の潜熱蓄熱材が設けられている。貯蔵室510は、扉部520が開いた場合に、開口部518を介して外部と接続されるようになっている。貯蔵室510は壁部505の内側に設けられた空間である。貯蔵室510は、扉部520が閉じられると、扉部520と壁部505とにより囲まれる密閉空間になる。これにより、冷凍室508は、貯蔵室510内を設定温度に維持できるようになっている。 The freezer compartment 512 has a thin plate-shaped door 520 that is rotatably provided on the container main body 514 via a hinge (not shown). The container body 514 in the freezer compartment 512 has a rectangular opening 518, a wall 505, a partition 525, a freezer compartment 508, and a vegetable room (not shown) (not shown) that are opened by the opening 518 to form a box shape. And a storage chamber 510 for storing stored items. The storage chamber 510 is provided with a latent heat storage material (not shown). The storage chamber 510 is connected to the outside through the opening 518 when the door 520 is opened. The storage chamber 510 is a space provided inside the wall portion 505. The storage chamber 510 becomes a sealed space surrounded by the door portion 520 and the wall portion 505 when the door portion 520 is closed. As a result, the freezer compartment 508 can maintain the interior of the storage compartment 510 at a set temperature.
 壁部505、扉部517、520、仕切り部525及び冷凍室508と当該野菜室とを仕切る仕切り部の内部には、断熱材が設けられている。当該断熱材は、冷蔵庫501の定常運転時に冷却されている貯蔵室502、508及び潜熱蓄熱材503に外部からの熱が壁部505や扉部517、520等を介して伝わらないように断熱するために設けられている。断熱材は、ガラスウールのような繊維系断熱材、ポリウレタンフォームのような発泡樹脂系断熱材、セルロースファイバーのような天然繊維系断熱材等の材料を用いて形成することができる。 A heat insulating material is provided inside the partition portion that partitions the wall portion 505, the door portions 517 and 520, the partition portion 525, the freezer compartment 508, and the vegetable compartment. The heat insulating material insulates the storage chambers 502 and 508 and the latent heat storage material 503 that are cooled during the steady operation of the refrigerator 501 so that heat from the outside is not transmitted through the wall portion 505, the door portions 517 and 520, and the like. It is provided for. The heat insulating material can be formed using a material such as a fiber heat insulating material such as glass wool, a foamed resin heat insulating material such as polyurethane foam, or a natural fiber heat insulating material such as cellulose fiber.
 冷蔵庫501は、扉部520側から見て、冷凍室512の上側に配置され、熱交換装置537(図17(a)及び図17(b)では不図示)で発生されて周囲温度と異なる温度の空気を強制対流させて風(例えば、冷風)を発生するとともに送風する送風機506を有している。送風機506は、冷風流入口527を介して当該冷風を冷蔵室502の貯蔵室504に送風するようになっている。冷蔵庫501の外気温度や冷蔵庫内の温度設定により当該冷風の温度の数値範囲が決定されるようになっている。 The refrigerator 501 is disposed above the freezer compartment 512 as viewed from the door portion 520 side, and is generated at a heat exchange device 537 (not shown in FIGS. 17A and 17B) and has a temperature different from the ambient temperature. It has a blower 506 that forcibly convects the air and generates wind (for example, cold wind) and blows air. The blower 506 blows the cold air to the storage room 504 of the refrigerating room 502 through the cold air inlet 527. The numerical range of the temperature of the cold air is determined by the outside air temperature of the refrigerator 501 and the temperature setting in the refrigerator.
 ここで、図18を用いて本実施例による冷蔵庫501に設けられた熱交換装置537について説明する。図18は、冷蔵庫501に設けられた熱交換装置537の概略構成を示すブロック図である。 Here, the heat exchange device 537 provided in the refrigerator 501 according to the present embodiment will be described with reference to FIG. FIG. 18 is a block diagram illustrating a schematic configuration of a heat exchange device 537 provided in the refrigerator 501.
 熱交換装置537は、送風機506の下方であって容器本体514内に配置されている。図18に示すように、熱交換装置537は、容器本体514の底部に設けられ、冷媒を圧縮する圧縮機539と、圧縮機539に接続され、圧縮機539で圧縮された高温高圧のガス冷媒を液化しながら凝縮する凝縮器541と、凝縮器541に接続され、液化した冷媒を気化し易いように減圧して膨張する膨張弁543と、膨張弁543に接続されて送風機506の近傍に設けられ、液化した冷媒が蒸発する際の気化熱により周囲を冷却する冷却器545とを有している。冷却器545は、周囲温度よりも低温の冷気を発生するようになっている。なお、冷却器545で気化された冷媒は再び圧縮されるために圧縮機539に戻されるようになっている。圧縮機539と凝縮器541、凝縮器541と膨張弁543、膨張弁543と冷却器545、及び、冷却器545と圧縮機539は、それぞれ所定の配管を介して接続されている。なお、熱交換装置537はその他、冷媒中の水分を除去するためのドライヤー等、通常知られた構成を備えていてもよい。冷却器により容器内の冷却を行う場合、保管容器は、冷蔵庫や冷凍庫として機能し、圧縮器により容器内の加熱を行う場合、保管容器は、温蔵庫として機能する。 The heat exchanging device 537 is disposed below the blower 506 and in the container main body 514. As shown in FIG. 18, the heat exchange device 537 is provided at the bottom of the container main body 514, and compresses the refrigerant 539, and is connected to the compressor 539 and compressed by the compressor 539. A condenser 541 that condenses while liquefying, an expansion valve 543 that is connected to the condenser 541 and expands by reducing the pressure so that the liquefied refrigerant is easily vaporized, and is provided in the vicinity of the blower 506 connected to the expansion valve 543. And a cooler 545 that cools the surroundings by heat of vaporization when the liquefied refrigerant evaporates. The cooler 545 generates cool air having a temperature lower than the ambient temperature. Note that the refrigerant evaporated by the cooler 545 is returned to the compressor 539 to be compressed again. The compressor 539 and the condenser 541, the condenser 541 and the expansion valve 543, the expansion valve 543 and the cooler 545, and the cooler 545 and the compressor 539 are connected to each other through predetermined pipes. In addition, the heat exchange device 537 may include a generally known configuration such as a dryer for removing moisture in the refrigerant. When the inside of the container is cooled by the cooler, the storage container functions as a refrigerator or a freezer, and when the inside of the container is heated by the compressor, the storage container functions as a warm storage.
 図17(a)及び図17(b)に戻って、冷蔵庫501は、ダンパ533を介して冷風流入口527に接続された冷風経路部507を有している。冷風経路部507は、貯蔵室504と壁部505との間に設けられている。冷風経路部507は、扉部517側から見て、Y字形状を有している。冷風経路部507は、冷風流出口509を介して貯蔵室504に接続されている。冷蔵庫501はダンパ533を制御して冷風流入口527と冷風経路部507との導通及び非導通を制御することにより、貯蔵室504内への冷風の送風量を調整して、貯蔵室504内の温度を設定温度に維持するようになっている。また、冷蔵庫501は、ダンパ533を制御して、冷風流入口527に流入した冷風の一部をチルド室529に直接流入するようになっている。チルド室529に流入した冷風は、冷蔵室502の下方であって冷凍室508の奥側に設けられた冷風経路部531に送風される。当該冷風は、冷風経路部531を介して不図示の野菜室に送風され、野菜室の冷却に用いられるようになっている。 17 (a) and 17 (b), the refrigerator 501 has a cold air passage portion 507 connected to the cold air inlet 527 via the damper 533. The cold air path portion 507 is provided between the storage chamber 504 and the wall portion 505. The cold air path portion 507 has a Y shape when viewed from the door portion 517 side. The cold air path unit 507 is connected to the storage chamber 504 via a cold air outlet 509. The refrigerator 501 controls the conduction and non-conduction between the cold air inlet 527 and the cold air passage portion 507 by controlling the damper 533, thereby adjusting the amount of cool air blown into the storage room 504, The temperature is maintained at the set temperature. In addition, the refrigerator 501 controls the damper 533 so that a part of the cold air flowing into the cold air inlet 527 directly flows into the chilled chamber 529. The cold air that has flowed into the chilled chamber 529 is blown to the cold air path portion 531 provided below the refrigerating chamber 502 and on the back side of the freezing chamber 508. The cold air is blown to a vegetable room (not shown) via the cold air path portion 531 and used for cooling the vegetable room.
 次に、本実施例による冷蔵庫501の動作について図17(a)、図17(b)及び図18を用いて説明する。冷蔵庫501の電装ボックス521内の所定の制御回路が電源をオン状態とし、このオン状態において、圧縮機539で圧縮された高温高圧のガス冷媒は、凝縮器541に達する。凝縮器541はガス冷媒を放熱しながら液化する。液化した冷媒は膨張弁543で減圧されて冷却器545に達する。冷却器545は、減圧された冷媒が気化する際の気化熱により、冷気を発生する。 Next, the operation of the refrigerator 501 according to the present embodiment will be described with reference to FIGS. 17 (a), 17 (b), and 18. FIG. A predetermined control circuit in the electrical box 521 of the refrigerator 501 turns on the power. In this on state, the high-temperature and high-pressure gas refrigerant compressed by the compressor 539 reaches the condenser 541. The condenser 541 liquefies while radiating the gas refrigerant. The liquefied refrigerant is decompressed by the expansion valve 543 and reaches the cooler 545. The cooler 545 generates cool air by heat of vaporization when the decompressed refrigerant is vaporized.
 送風機506は、図17(a)及び図17(b)の図中矢印で示すように、熱交換装置537で発生された冷気を強制対流させて冷風を発生し当該冷風を冷風流入口527に送風する。冷蔵庫501は、貯蔵室504に備えられた庫内温度センサ511で計測された貯蔵室504内の温度に基づき電装ボックス521内の温度制御装置によりダンパ533の駆動を制御し、冷風経路部507への冷風の送風量を制御する。例えば庫内温度センサ511が設定温度にほぼ等しい温度を検出した場合には、現状の温度を維持するために、ダンパ533は冷風経路部507への冷風の送風量が所定量となるように制御される。また、庫内温度センサ511が設定温度より高い温度を検出した場合には、貯蔵室504内の温度を低くするために、ダンパ533は冷風経路部507への冷風の送風量が当該所定量より多くなるように制御される。また、庫内温度センサ511が設定温度より低い温度を検出した場合には、貯蔵室504内の温度を高くするために、ダンパ533は冷風経路部507への冷風の送風量が当該所定量より少なくなるように制御される。 As shown by arrows in FIGS. 17A and 17B, the blower 506 generates cold air by forcibly convection of the cold air generated by the heat exchange device 537, and the cold air is supplied to the cold air inlet 527. Blow. The refrigerator 501 controls the drive of the damper 533 by the temperature control device in the electrical box 521 based on the temperature in the storage room 504 measured by the internal temperature sensor 511 provided in the storage room 504, and goes to the cold air path unit 507. The amount of cool air blown is controlled. For example, when the internal temperature sensor 511 detects a temperature substantially equal to the set temperature, the damper 533 is controlled so that the amount of cool air blown to the cool air path section 507 becomes a predetermined amount in order to maintain the current temperature. Is done. In addition, when the internal temperature sensor 511 detects a temperature higher than the set temperature, the damper 533 has an amount of cool air blown to the cool air path portion 507 from the predetermined amount in order to lower the temperature in the storage chamber 504. Controlled to increase. In addition, when the internal temperature sensor 511 detects a temperature lower than the set temperature, the damper 533 causes the amount of cool air blown to the cool air path portion 507 to be higher than the predetermined amount in order to increase the temperature in the storage chamber 504. Controlled to be less.
 図17(a)及び図17(b)の図中矢印で示すように、冷風経路部507に送風された冷風は、冷風流出口509から貯蔵室504内に流出する。貯蔵室504内では、冷風による直接冷却、庫内空気の冷却器を経由した循環によりと貯蔵室504内が冷却される。庫内温度センサ511で計測された貯蔵室504内の温度に基づき温度制御装置により熱交換装置537、送風機506及びダンパ533の駆動が制御され、貯蔵室504内の温度が制御される。 As shown by the arrows in FIGS. 17A and 17B, the cold air blown into the cold air passage portion 507 flows out from the cold air outlet 509 into the storage chamber 504. In the storage room 504, the inside of the storage room 504 is cooled by direct cooling with cold air and circulation through the cooler of the internal air. Based on the temperature in the storage chamber 504 measured by the internal temperature sensor 511, the temperature control device controls the driving of the heat exchange device 537, the blower 506, and the damper 533, thereby controlling the temperature in the storage chamber 504.
 冷風流出口509は、食品等の貯蔵物に直接冷風が当らないように、図中矢印で示すように、所定方向(本例では、貯蔵室504の内壁側面の方向)に冷風を吹出すように構成されている。冷蔵室504内に流出した冷風が向かう方向には、潜熱蓄熱材503が配置されている。潜熱蓄熱材503には、冷気を強制対流させて発生させた冷風が直接当たるようになっている。冷風は潜熱蓄熱材503の表面に対して所定の角度で当たるようになっている。これにより、潜熱蓄熱材503はより短時間で冷却される(詳細は後述)。潜熱蓄熱材503は、貯蔵室504内に流出した冷風が直接当たることにより冷却され、徐々に相転移温度以下の固相状態に維持される。固相状態を維持した潜熱蓄熱材503は貯蔵室504内の温度の時間変化分布を平坦化させる機能を発揮する。 The cold air outlet 509 blows out cold air in a predetermined direction (in this example, the direction of the side of the inner wall of the storage chamber 504) as shown by an arrow in the figure so that the cold air does not directly hit the stored item such as food. It is configured. A latent heat storage material 503 is disposed in the direction in which the cold air that has flowed into the refrigerator compartment 504 is directed. The latent heat storage material 503 is directly exposed to cold air generated by forced convection of cold air. The cold air hits the surface of the latent heat storage material 503 at a predetermined angle. Thereby, the latent heat storage material 503 is cooled in a shorter time (details will be described later). The latent heat storage material 503 is cooled by direct contact with the cold air that has flowed into the storage chamber 504, and is gradually maintained in a solid state that is lower than or equal to the phase transition temperature. The latent heat storage material 503 that maintains the solid state exhibits a function of flattening the temporal change distribution of the temperature in the storage chamber 504.
 チルド室529には、図中矢印で示すように、冷風流入口527から直接送風される冷風と、貯蔵室504を介して送風された冷風とが送られる。チルド室529内では、当該冷風により、チルド室529は所定の設定温度に維持されるようになっている。 The cold air blown directly from the cold air inlet 527 and the cold air blown through the storage chamber 504 are sent to the chilled chamber 529 as indicated by arrows in the figure. In the chilled chamber 529, the chilled chamber 529 is maintained at a predetermined set temperature by the cold air.
 停電等により冷蔵庫501の不図示の電源がオフ状態になると、温度制御装置や熱交換装置537への電力供給が停止して、熱交換装置537による冷却能力は失われる。本実施例による冷蔵庫501は、停電等により熱交換装置537による冷却能力が失われると、潜熱蓄熱材503による保冷が開始される。貯蔵室504内の空気は、貯蔵室504の内壁に備えられた潜熱蓄熱材503により一定期間、所定温度範囲に維持される。より具体的には、潜熱蓄熱材503が固相から液相へそれぞれ相変化するまでの期間において、貯蔵室504内の温度が5℃程度に維持される。 When a power supply (not shown) of the refrigerator 501 is turned off due to a power failure or the like, the power supply to the temperature control device and the heat exchange device 537 is stopped, and the cooling capacity of the heat exchange device 537 is lost. In the refrigerator 501 according to the present embodiment, when the cooling capacity by the heat exchange device 537 is lost due to a power failure or the like, the cold storage by the latent heat storage material 503 is started. The air in the storage chamber 504 is maintained in a predetermined temperature range for a certain period by the latent heat storage material 503 provided on the inner wall of the storage chamber 504. More specifically, the temperature in the storage chamber 504 is maintained at about 5 ° C. until the latent heat storage material 503 undergoes a phase change from the solid phase to the liquid phase.
 次に、潜熱蓄熱材503がより短時間で冷却される点について説明する。物質1(温度T1)と物質2(温度T2)との間の伝熱量Qは、接触面積をA、熱伝達係数をλとすると、以下の式(1)で表すことができる。
 Q=A×λ×(T1-T2) ・・・(1)
Next, the point that the latent heat storage material 503 is cooled in a shorter time will be described. The heat transfer amount Q between the substance 1 (temperature T1) and the substance 2 (temperature T2) can be expressed by the following formula (1), where A is the contact area and λ is the heat transfer coefficient.
Q = A × λ × (T1-T2) (1)
 自然対流での熱伝達係数は例えば2~25(W/(m・K))程度であるのに対して、送風機等による強制対流での熱伝達係数は例えば25~250(W/(m・K))程度である。このように、強制対流での熱伝達係数は、自然対流での熱伝達係数の10倍以上である。したがって、物質1及び2、温度T1及びT2並びに接触面積Aが共通の場合、式(1)に示すように、強制対流での伝熱量Qは、自然対流での伝熱量Qの10倍以上となる。本実施例による冷蔵庫501は、送風機506により冷気を強制対流させて発生させた冷風を潜熱蓄熱材503に直接当てることができる。このため、冷蔵庫501は、自然対流による冷風により冷却する場合と比較して、潜熱蓄熱材503と貯蔵室504内の空気との熱伝達係数を10倍程度に向上させることができる。これにより、冷蔵庫501は潜熱蓄熱材503の冷却時間を短縮化することができる。特に、図1(a)に示すように潜熱蓄熱材503の厚さをt、熱伝導率をkとした場合、蓄熱部材の厚さ方向に移動する熱量Qsは、以下の式(2)で表すことができる。
 Qs=A×(k/t)×(T1-T2) ・・・(2)
The heat transfer coefficient in natural convection is, for example, about 2 to 25 (W / (m 2 · K)), whereas the heat transfer coefficient in forced convection by a fan or the like is, for example, 25 to 250 (W / (m 2 · K)). Thus, the heat transfer coefficient in forced convection is 10 times or more than the heat transfer coefficient in natural convection. Therefore, when the substances 1 and 2, the temperatures T1 and T2, and the contact area A are common, the heat transfer amount Q in forced convection is 10 times or more of the heat transfer amount Q in natural convection as shown in Equation (1). Become. The refrigerator 501 according to the present embodiment can directly apply cold air generated by forced convection of cold air using the blower 506 to the latent heat storage material 503. For this reason, the refrigerator 501 can improve the heat transfer coefficient between the latent heat storage material 503 and the air in the storage chamber 504 to about 10 times as compared with the case where it is cooled by cold air by natural convection. Thereby, the refrigerator 501 can shorten the cooling time of the latent heat storage material 503. In particular, as shown in FIG. 1A, when the thickness of the latent heat storage material 503 is t and the thermal conductivity is k, the amount of heat Qs moving in the thickness direction of the heat storage member is expressed by the following equation (2). Can be represented.
Qs = A × (k / t) × (T1-T2) (2)
 伝熱量Qに対して、熱量Qsが小さい場合、熱量Qsによる熱の移動が全体での熱の移動の律速になり、強制対流による伝熱量の向上効果が小さくなる。そのため、熱量Qsが伝熱量Qよりも大きい構成とすることで、強制対流による伝熱量の向上の効果を大きくすることができる。 When the heat quantity Qs is smaller than the heat transfer quantity Q, the heat transfer by the heat quantity Qs becomes the rate of heat transfer in the whole, and the effect of improving the heat transfer quantity by forced convection becomes small. Therefore, by adopting a configuration in which the heat quantity Qs is larger than the heat transfer quantity Q, the effect of improving the heat transfer quantity by forced convection can be increased.
 また、本実施例による冷蔵庫501は、貯蔵室504の内壁に潜熱蓄熱材503を有することで潜熱蓄熱材503の表面積を大きくすることができる。これにより、冷蔵庫501は潜熱蓄熱材503と貯蔵室504内の空気と熱交換のための表面積が大きくなり、潜熱蓄熱材503の冷却時間を短縮化することができる。 Further, the refrigerator 501 according to the present embodiment can increase the surface area of the latent heat storage material 503 by including the latent heat storage material 503 on the inner wall of the storage chamber 504. Thereby, the refrigerator 501 has a large surface area for heat exchange with the latent heat storage material 503 and the air in the storage chamber 504, and the cooling time of the latent heat storage material 503 can be shortened.
(実施例2)
 次に、本実施形態の実施例2によるファン式の冷蔵庫について図19乃至図22を用いて説明する。本実施例による冷蔵庫550は、冷風流出口509から流出した冷風の風向を切り替える点に特徴を有している。
(Example 2)
Next, a fan-type refrigerator according to Example 2 of the present embodiment will be described with reference to FIGS. The refrigerator 550 according to the present embodiment is characterized in that the direction of the cold air flowing out from the cold air outlet 509 is switched.
 図19は、本実施例による冷蔵庫550の概略構成の要部を示す図である。図19(a)は、扉部517を透過して見た冷蔵庫550の正面図を示し、図19(b)は、右側の壁部505を透過して見た冷蔵庫550の右側面図を示している。理解を容易にするため、図19(a)では、本来冷蔵室502内で視認できないダンパ533と、冷凍室508内で視認することのできない送風機506とが図示されている。なお、上記実施例1による冷蔵庫501と同様の作用・機能を奏する構成要素には、同一の符号を付して説明は省略する。 FIG. 19 is a diagram illustrating a main part of a schematic configuration of the refrigerator 550 according to the present embodiment. 19A shows a front view of the refrigerator 550 seen through the door 517, and FIG. 19B shows a right side view of the refrigerator 550 seen through the right wall 505. FIG. ing. In order to facilitate understanding, FIG. 19A shows a damper 533 that cannot be viewed in the refrigerator compartment 502 and a blower 506 that cannot be viewed in the freezer compartment 508. In addition, the same code | symbol is attached | subjected to the component which show | plays the effect | action and function similar to the refrigerator 501 by the said Example 1, and description is abbreviate | omitted.
 図19(a)及び図19(b)に示すように、本実施例による冷蔵庫550は、潜熱蓄熱材503が棚部523に設けられている。本例では、潜熱蓄熱材503は、4枚の棚部523のうちの上から3枚の棚部523に設けられている。潜熱蓄熱材503は、例えば棚部523内に設けられている。冷蔵庫550は、貯蔵室504の内壁背面に設けられた複数の潜熱蓄熱材503を有している。本例では、上から2番目及び3番目の冷風流出口509の間と、当該3番目と4番目の冷風流出口509の間と、当該4番目の冷風流出口509の下方の合計3枚の潜熱蓄熱材503が内壁背面に設けられている。 19A and 19B, the refrigerator 550 according to the present embodiment has a latent heat storage material 503 provided on the shelf 523. In this example, the latent heat storage material 503 is provided on the three shelves 523 from the top of the four shelves 523. The latent heat storage material 503 is provided in the shelf 523, for example. The refrigerator 550 includes a plurality of latent heat storage materials 503 provided on the inner wall back surface of the storage chamber 504. In this example, a total of three sheets between the second and third cold air outlets 509 from the top, between the third and fourth cold air outlets 509, and below the fourth cold air outlet 509. A latent heat storage material 503 is provided on the back of the inner wall.
 図19(a)の図中に細矢印で示すように、冷蔵庫550は、通常運転時には、冷風流出口509から流出した冷風が貯蔵物に直接当たらないように、所定方向(本例では、貯蔵室504の内壁側面の方向)に流出するようになっている。一方、図19(a)及び図19(b)の図中に太矢印で示すように、冷蔵庫550は、潜熱蓄熱材503を冷却する場合には、貯蔵室504に流出した冷風が潜熱蓄熱材503に直接当たるように、当該所定の方向とは異なる方向に冷風の風向を切り替えるようになっている。 As shown by a thin arrow in the diagram of FIG. 19A, the refrigerator 550 is stored in a predetermined direction (in this example, storage so that the cold air flowing out from the cold air outlet 509 does not directly hit the stored item during normal operation. It flows out in the direction of the inner wall side surface of the chamber 504. On the other hand, as shown by the thick arrows in FIGS. 19A and 19B, when the refrigerator 550 cools the latent heat storage material 503, the cold air flowing out into the storage chamber 504 is the latent heat storage material. In order to directly hit 503, the wind direction of the cold air is switched in a direction different from the predetermined direction.
 本実施例における冷風の向きを変更させる温度条件の決定方法は例えば、以下のようにして実行される。冷蔵庫550は、例えば潜熱蓄熱材503に設置された温度センサを有し、当該温度センサで検知される温度が相変化温度域を越えたか否かを判定し、検知された温度が相変化温度域を越えた場合には、潜熱蓄熱材503の配置されている方向に冷風の風向を切り替えるようになっている。または、冷蔵庫550は、例えば貯蔵室504内の負荷容量を変化させた場合の潜熱蓄熱材503の温度変化と庫内温度センサ511の温度変化との関係を事前に記憶した記憶部を有し、庫内温度センサ511により検出された温度と当該記憶部から読み出した当該関係とを比較して冷風の風向を切り替えるようになっていてもよい。あるいは、冷蔵庫550は、相変化時の潜熱蓄熱材503の体積を検出し、検出された体積が固相状態での体積と比較して例えば10~15%変化している場合には、風向を切り替えるようになっていてもよい。冷蔵庫550は、いずれの決定方法であっても、潜熱蓄熱材503が液相状態に相変化したことを検出して、潜熱蓄熱材503に冷風を直接当てて急速に潜熱蓄熱材503を冷却して固相状態にすることができる。 The method for determining the temperature condition for changing the direction of the cold air in this embodiment is executed as follows, for example. The refrigerator 550 has a temperature sensor installed in the latent heat storage material 503, for example, determines whether or not the temperature detected by the temperature sensor exceeds the phase change temperature range, and the detected temperature is in the phase change temperature range. Is exceeded, the direction of the cold air is switched in the direction in which the latent heat storage material 503 is disposed. Alternatively, the refrigerator 550 has a storage unit that stores in advance the relationship between the temperature change of the latent heat storage material 503 and the temperature change of the internal temperature sensor 511 when the load capacity in the storage room 504 is changed, for example. The temperature detected by the internal temperature sensor 511 and the relationship read from the storage unit may be compared to switch the direction of the cold air. Alternatively, the refrigerator 550 detects the volume of the latent heat storage material 503 at the time of phase change, and if the detected volume has changed by, for example, 10 to 15% compared to the volume in the solid phase, the wind direction is changed. You may switch. Regardless of the determination method, the refrigerator 550 detects that the latent heat storage material 503 has changed to a liquid phase, and directly cools the latent heat storage material 503 by directly applying cold air to the latent heat storage material 503. To be in a solid phase state.
 以下、実施例2-1から実施例2-3を用いて冷風の風向を切り替える機構についてより具体的に説明する。
 図20は、実施例2-1による冷蔵庫550の概略構成の要部を示す図である。図20(a)は、右側の壁部505を透過して見た冷蔵庫550の右側面図を示している。図20(b)及び図20(c)は、本実施例による冷蔵庫550の冷風流出口509近傍の拡大図である。図20(b)は冷風の風向が切り替えられていない状態を示し、図20(c)は冷風の風向が切り替えられている状態を示している。
Hereinafter, a mechanism for switching the direction of the cold air will be described in more detail using the example 2-1 to the example 2-3.
FIG. 20 is a diagram illustrating a main part of a schematic configuration of the refrigerator 550 according to the embodiment 2-1. FIG. 20A shows a right side view of the refrigerator 550 viewed through the right wall 505. FIGS. 20B and 20C are enlarged views of the vicinity of the cold air outlet 509 of the refrigerator 550 according to the present embodiment. FIG. 20B shows a state where the wind direction of the cold wind is not switched, and FIG. 20C shows a state where the wind direction of the cold wind is switched.
 図20(a)の図中に太矢印で示すように、本実施例による冷蔵庫501は、潜熱蓄熱材503を冷却する場合には、冷風の風向を上向きに切り替えて棚部523の底面に冷風を直接当てるようになっている。これにより、棚部523内に設けられた潜熱蓄熱材503は急速に冷却されるようになっている。 As shown by a thick arrow in the diagram of FIG. 20A, the refrigerator 501 according to the present embodiment switches the cool air direction upward to cool the latent heat storage material 503, and cools the cool air on the bottom surface of the shelf 523. It comes to directly hit. Thereby, the latent heat storage material 503 provided in the shelf 523 is rapidly cooled.
 図20(b)及び図20(c)に示すように、冷風流出口509は、冷風の風向を切り替えるルーバー(風向切替部)547を有している。ルーバー547は、電装部21(図20(a)参照)に設けられた所定の制御部により制御されるようになっている。図20(b)に示すように、ルーバー547は、通常運転時には、棚部523(図20(a)参照)の底面に対してほぼ平行になるように配置される。これにより、図中に細矢印で示すように、冷風経路部507から冷風流出口509を介して貯蔵室504内に流出した冷風は、所定方向に向かうようになる。図20(c)に示すように、ルーバー547は、潜熱蓄熱材503の冷却時には、棚部523の底面に対して所定の角度で傾斜して配置される。これにより、図中細矢印で示すように、冷風経路部507から冷風流出口509を介して貯蔵室504内に流出した冷風は、当該所定方向とは異なる方向に向かうようになる。潜熱蓄熱材503は棚部523内に設けられているので、潜熱蓄熱材503は、冷風流出口509から見て、当該異なる方向に配置されている。当該異なる方向に向かう冷風は潜熱蓄熱材503に直接当たるので、本実施例による冷蔵庫550は、潜熱蓄熱材503を急速に冷却することができる。棚部523に設けられた潜熱蓄熱材503は、急速に冷却されて貯蔵室504内の温度の時間変化分布を平坦化させる機能を発揮する。これにより、貯蔵室504の内壁背面に設けられた潜熱蓄熱材503には冷風が直接当たらないものの、当該潜熱蓄熱材503は比較的速く冷却される。 20B and 20C, the cold air outlet 509 has a louver (wind direction switching unit) 547 that switches the wind direction of the cold air. The louver 547 is controlled by a predetermined control unit provided in the electrical equipment unit 21 (see FIG. 20A). As shown in FIG. 20B, the louver 547 is arranged so as to be substantially parallel to the bottom surface of the shelf 523 (see FIG. 20A) during normal operation. As a result, as indicated by thin arrows in the figure, the cold air that has flowed into the storage chamber 504 from the cold air passage portion 507 via the cold air outlet 509 is directed in a predetermined direction. As shown in FIG. 20 (c), the louver 547 is disposed at a predetermined angle with respect to the bottom surface of the shelf 523 when the latent heat storage material 503 is cooled. As a result, as indicated by thin arrows in the figure, the cold air that has flowed out of the cold air passage portion 507 into the storage chamber 504 via the cold air outlet 509 is directed in a direction different from the predetermined direction. Since the latent heat storage material 503 is provided in the shelf 523, the latent heat storage material 503 is disposed in the different direction as viewed from the cold air outlet 509. Since the cold air toward the different direction directly hits the latent heat storage material 503, the refrigerator 550 according to the present embodiment can cool the latent heat storage material 503 rapidly. The latent heat storage material 503 provided in the shelf 523 exhibits a function of being rapidly cooled and flattening the temporal change distribution of the temperature in the storage chamber 504. Thereby, although the cool air is not directly applied to the latent heat storage material 503 provided on the back of the inner wall of the storage chamber 504, the latent heat storage material 503 is cooled relatively quickly.
 次に、実施例2-2による冷蔵庫550について図21を用いて説明する。図21は、本実施例による冷蔵庫550の概略構成の要部を示す図である。図21(a)は、右側の壁部505を透過して見た冷蔵庫550の右側面図を示している。図21(b)は、本実施例による冷蔵庫550に設けられた冷風誘導反射部(風誘導反射部)549の概略構成を示している。図21(b)の図中中央には、棚部523の底面側から見た冷風誘導反射部549が示され、その下方には冷風の流出側から見た冷風誘導反射部549が示され、図中中央に示す図の右側には棚部523の底面に平行な方向であって冷風の流れる方向に直交する方向に見た冷風誘導反射部549が示されている。なお、図21(b)には、理解を容易にするため、冷風流出口509から流出した冷風の風向(図中の細矢印)と、冷風誘導反射部549で反射した冷風の風向(図中の太矢印)とが図示されている。 Next, the refrigerator 550 according to Example 2-2 will be described with reference to FIG. FIG. 21 is a diagram illustrating a main part of a schematic configuration of the refrigerator 550 according to the present embodiment. FIG. 21A shows a right side view of the refrigerator 550 as seen through the right wall 505. FIG. 21B shows a schematic configuration of a cold wind induction reflecting portion (wind induction reflecting portion) 549 provided in the refrigerator 550 according to the present embodiment. In the center of the drawing of FIG. 21 (b), the cold wind induction reflection portion 549 viewed from the bottom surface side of the shelf 523 is shown, and below that, the cold wind induction reflection portion 549 viewed from the cold air outflow side is shown, On the right side of the figure shown in the center of the figure, there is shown a cold wind induction reflecting portion 549 viewed in a direction parallel to the bottom surface of the shelf 523 and perpendicular to the direction in which the cold air flows. In FIG. 21B, for the sake of easy understanding, the direction of the cold air that has flowed out of the cold air outlet 509 (the thin arrow in the figure) and the direction of the cold air reflected by the cold air induction reflecting portion 549 (in the figure). Thick arrows).
 本実施例による冷蔵庫550は、上記実施例2-1による冷蔵庫550と同様に、冷風流出口509にルーバー547(図21では不図示)を有している。このため、図21(a)の図中に太矢印で示すように、本実施例による冷蔵庫550は、潜熱蓄熱材503を冷却する場合には、冷風の風向を上向きに切り替えて棚部523の底面及び冷風誘導反射部549に冷風を直接当てるようになっている。 The refrigerator 550 according to the present embodiment has a louver 547 (not shown in FIG. 21) at the cold air outlet 509, like the refrigerator 550 according to the embodiment 2-1. For this reason, as indicated by a thick arrow in the drawing of FIG. 21A, the refrigerator 550 according to the present embodiment switches the direction of the cold air upward when the latent heat storage material 503 is cooled. Cold air is directly applied to the bottom surface and the cold air induction reflecting portion 549.
 図21(b)に示すように、冷風誘導反射部549は、冷風流出口509から流出した冷風を棚部523の底面に導く複数の誘導部549aと、当該冷風を反射する反射部549bとを有している。誘導部549aは冷風の流れる方向に伸びる薄板形状を有している。誘導部549aは複数設けられている。図21(b)の図中に細矢印で示すように、冷風は隣接する誘導部549aの間を流れて棚部523の底面に導かれるようになっている。反射部549bは隣接する一対の誘導部549aの一端部間に張り渡されて形成されている。隣接する反射部549b間に冷風の通り道が形成されている。反射部549bは冷風の流れる方向に対してほぼ直交して配置されている。冷風は反射部549bで反射して、図21(a)に示すように、貯蔵室504の内壁背面に配置された潜熱蓄熱材503に直接当たるようになっている。 As shown in FIG. 21 (b), the cold wind induction reflecting portion 549 includes a plurality of guide portions 549a that guides the cold air flowing out from the cold air outlet 509 to the bottom surface of the shelf portion 523, and a reflection portion 549b that reflects the cold air. Have. The guide portion 549a has a thin plate shape extending in the direction in which the cold air flows. A plurality of guiding portions 549a are provided. As indicated by thin arrows in the drawing of FIG. 21B, the cold air flows between the adjacent guiding portions 549a and is guided to the bottom surface of the shelf portion 523. The reflection portion 549b is formed to be stretched between one end portions of a pair of adjacent guide portions 549a. A path for cold air is formed between adjacent reflecting portions 549b. The reflection part 549b is disposed substantially orthogonal to the direction in which the cold air flows. The cold air is reflected by the reflecting portion 549b and directly hits the latent heat storage material 503 disposed on the back of the inner wall of the storage chamber 504, as shown in FIG.
 上記実施例2-1と同様に本実施例においても、ルーバー547は、通常運転時には、棚部523(図21(a)参照)の底面に対してほぼ平行になるように配置される。これにより、冷風経路部507から冷風流出口509を介して貯蔵室504内に流出した冷風は、所定方向に向かうので、冷風誘導反射部549にはほとんど到達しない。一方、ルーバー547は、潜熱蓄熱材503の冷却時には、棚部523の底面に対して所定の角度で傾斜して配置される。冷風誘導反射部549は、棚部523の底面に対して所定の角度を設けて配置されている。冷風経路部507から冷風流出口509を介して貯蔵室504内に流出した冷風は、当該所定方向とは異なる方向である冷風誘導反射部549に向かう。冷風誘導反射部549に到達した冷風の一部は誘導部549a間を通って棚部523の底面上を通過する。これにより、棚部523内に設けられた潜熱蓄熱材503は急速に冷却される。冷風誘導反射部549に到達した残余の冷風は、反射部549bで反射して貯蔵室504の内壁背面に設けられた潜熱蓄熱材503に直接当って当該潜熱蓄熱材503を急速に冷却する。このように、本実施例による冷蔵庫550は、貯蔵室504内に設けられた全ての潜熱蓄熱材503に直接冷風を当てることができるので、潜熱蓄熱材503を急速に冷却することができる。 In the present embodiment as in the case of the embodiment 2-1, the louver 547 is disposed so as to be substantially parallel to the bottom surface of the shelf 523 (see FIG. 21A) during normal operation. As a result, the cold air that has flowed out of the cold air path portion 507 into the storage chamber 504 via the cold air outlet 509 is directed in a predetermined direction, and therefore hardly reaches the cold air induction reflecting portion 549. On the other hand, the louver 547 is disposed to be inclined at a predetermined angle with respect to the bottom surface of the shelf 523 when the latent heat storage material 503 is cooled. The cold wind induction reflecting portion 549 is disposed with a predetermined angle with respect to the bottom surface of the shelf portion 523. The cold air that has flowed out of the cold air path portion 507 into the storage chamber 504 through the cold air outlet 509 is directed to the cold air induction reflecting portion 549 that is in a direction different from the predetermined direction. A part of the cold air that has reached the cold air guiding reflection portion 549 passes between the guiding portions 549a and passes over the bottom surface of the shelf portion 523. Thereby, the latent heat storage material 503 provided in the shelf portion 523 is rapidly cooled. The remaining cold wind that has reached the cold wind induction reflecting portion 549 is reflected by the reflecting portion 549b and directly hits the latent heat storage material 503 provided on the back of the inner wall of the storage chamber 504, thereby rapidly cooling the latent heat storage material 503. Thus, since the refrigerator 550 according to the present embodiment can directly apply cold air to all the latent heat storage materials 503 provided in the storage chamber 504, the latent heat storage material 503 can be rapidly cooled.
 本実施例では、棚部523の底面に熱伝導シートが貼付されていてもよい。これにより、潜熱蓄熱材503の冷却効率を向上させることができる。 In this embodiment, a heat conductive sheet may be attached to the bottom surface of the shelf 523. Thereby, the cooling efficiency of the latent heat storage material 503 can be improved.
 次に、実施例2-3による冷蔵庫550について図22を用いて説明する。図22は、本実施例による冷蔵庫550に設けられた棚部523を示している。図22(a)は、冷風流入口9の近傍及び棚部523を模式的に示し、図22(b)は、棚部523に設けられた冷風誘導部(風誘導部)551の概略構成を示し、図22(c)は、図22(b)の図中A-A’線で切断した棚部523の切断面を示している。図22(a)及び図22(b)には、理解を容易にするため、冷風流出口509から流出した冷風の風向(図中の細矢印)が図示されている。なお、本実施例による冷蔵庫550は、ルーバー547を有していない点を除いて、上記実施例2-1と同様の構成を有している。 Next, a refrigerator 550 according to Example 2-3 will be described with reference to FIG. FIG. 22 shows a shelf 523 provided in the refrigerator 550 according to the present embodiment. 22A schematically shows the vicinity of the cold air inlet 9 and the shelf 523, and FIG. 22B shows a schematic configuration of the cold air guiding portion (wind guiding portion) 551 provided in the shelf 523. FIG. 22C shows a cut surface of the shelf 523 cut along the line AA ′ in the drawing of FIG. In FIG. 22A and FIG. 22B, the direction of the cold air flowing out from the cold air outlet 509 (thin arrow in the figure) is shown for easy understanding. The refrigerator 550 according to the present embodiment has the same configuration as that of the embodiment 2-1 except that the refrigerator 550 does not have the louver 547.
 図22(a)乃至図22(c)に示すように、棚部523は、貯蔵室504に流入した冷風を棚部523の下方に導く冷風誘導部551を有している。冷風誘導部551は冷風の流れる方向に伸びる薄板形状を有している。冷風誘導部551は複数設けられており、冷風は隣接する冷風誘導部551の間を流れて棚部523の底面に導かれるようになっている。冷風が流入する冷風誘導部551の冷風流入部は、空気抵抗を減らすために湾曲状に形成されている。冷風誘導部551の冷風流入部は、交互に反対側に湾曲するように形成されている。これにより、図22(b)に示すように、冷風誘導部551は、冷風流入部が冷風流出部よりも幅広に形成されている。 22 (a) to 22 (c), the shelf 523 has a cold air guiding portion 551 that guides the cold air flowing into the storage chamber 504 to the lower side of the shelf 523. The cold air guiding portion 551 has a thin plate shape extending in the direction in which the cold air flows. A plurality of cold air guiding portions 551 are provided, and the cold air flows between adjacent cold air guiding portions 551 and is guided to the bottom surface of the shelf portion 523. The cold air inflow portion of the cold air guiding portion 551 into which the cold air flows is formed in a curved shape in order to reduce air resistance. The cold air inflow portion of the cold air guiding portion 551 is formed so as to bend alternately on the opposite side. Thereby, as shown in FIG.22 (b), the cold wind induction | guidance | derivation part 551 is formed so that the cold wind inflow part is wider than the cold wind outflow part.
 図22(a)及び図22(b)に示すように、冷風経路部9から冷風流入口9を介して貯蔵室504に流出した冷風の一部は、冷風誘導部551で誘導されて所定方向とは異なる方向である棚部523の底面上を通過する。これにより、冷風は棚部523内に設けられた潜熱蓄熱材503に直接当たるので、潜熱蓄熱材503は急速に冷却される。本実施例による冷蔵庫550の棚部523に設けられた潜熱蓄熱材503は、急速に冷却されて貯蔵室504内の温度の時間変化分布を平坦化させる機能を発揮する。これにより、貯蔵室504の内壁背面に設けられた潜熱蓄熱材503(図22では不図示)には冷風が直接当たらないものの、当該潜熱蓄熱材503は比較的速く冷却される。 As shown in FIG. 22A and FIG. 22B, a part of the cold air that has flowed out from the cold air passage portion 9 into the storage chamber 504 through the cold air inlet 9 is guided by the cold air guiding portion 551 and in a predetermined direction. Passes on the bottom surface of the shelf 523 which is in a different direction. Thereby, since the cold air directly hits the latent heat storage material 503 provided in the shelf 523, the latent heat storage material 503 is rapidly cooled. The latent heat storage material 503 provided on the shelf 523 of the refrigerator 550 according to the present embodiment exhibits a function of being rapidly cooled and flattening the temporal change distribution of the temperature in the storage chamber 504. Thereby, although the cool air is not directly applied to the latent heat storage material 503 (not shown in FIG. 22) provided on the back of the inner wall of the storage chamber 504, the latent heat storage material 503 is cooled relatively quickly.
 本実施例では、棚部523の底面に熱伝導シートが貼付されていてもよい。これにより、潜熱蓄熱材503の冷却効率を向上させることができる。 In this embodiment, a heat conductive sheet may be attached to the bottom surface of the shelf 523. Thereby, the cooling efficiency of the latent heat storage material 503 can be improved.
(実施例3)
 次に、本実施形態の実施例3による冷蔵庫について図23乃至図26を用いて説明する。本実施例による冷蔵庫は、潜熱蓄熱材503が冷却効率を高める構成を備えている点に特徴を有している。本実施例による冷蔵庫の概略構成は、上記実施例1又は実施例2による冷蔵庫501、550のいずれであってもよいため、説明は省略する。以下、本実施例による冷蔵庫について実施例3-1から実施例3-4を用いて説明する。
(Example 3)
Next, a refrigerator according to Example 3 of the present embodiment will be described with reference to FIGS. The refrigerator according to the present embodiment is characterized in that the latent heat storage material 503 has a configuration that increases the cooling efficiency. Since the schematic configuration of the refrigerator according to the present embodiment may be any of the refrigerators 501 and 550 according to the first embodiment or the second embodiment, the description thereof is omitted. Hereinafter, the refrigerator according to the present embodiment will be described using Embodiment 3-1 to Embodiment 3-4.
 まず、実施例3-1による冷蔵庫について図23を用いて説明する。本実施例による冷蔵庫は、潜熱蓄熱材503の裏面に熱伝導シートが貼付されている点に特徴を有している。図23(a)に示すように、冷風流出口509近傍に配置された潜熱蓄熱材503は、裏面から冷風流出口509に達する熱伝導シート553を有している。冷風流出口509を通過する冷風の冷熱は熱伝導シート553により潜熱蓄熱材503の背面に誘導される。潜熱蓄熱材503は、面で冷却されるので、より急速に冷却される。 First, the refrigerator according to Example 3-1 will be described with reference to FIG. The refrigerator according to the present embodiment is characterized in that a heat conductive sheet is attached to the back surface of the latent heat storage material 503. As shown in FIG. 23A, the latent heat storage material 503 disposed in the vicinity of the cold air outlet 509 has a heat conductive sheet 553 that reaches the cold air outlet 509 from the back surface. The cold heat of the cold air passing through the cold air outlet 509 is guided to the back surface of the latent heat storage material 503 by the heat conductive sheet 553. Since the latent heat storage material 503 is cooled by the surface, it is cooled more rapidly.
 図23(b)に示すように、本実施例による冷蔵庫は、図23(a)に示す熱伝導シート553に加え、冷風経路部507の側壁に貼付された熱伝導シート554と、熱伝導シート554の冷熱を熱伝導シート553に伝導する伝導パス555とを有していてもよい。伝導パス555は、貯蔵室504の内壁背面内に形成されている。図23(b)に示す冷蔵庫は、冷風経路部507を流通する冷風の冷熱も潜熱蓄熱材503の裏面に誘導できるので、潜熱蓄熱材503をさらに急速に冷却することができる。 As shown in FIG. 23 (b), the refrigerator according to the present embodiment includes a heat conductive sheet 554 affixed to the side wall of the cool air path portion 507 in addition to the heat conductive sheet 553 shown in FIG. 23 (a), and a heat conductive sheet. A conductive path 555 that conducts the cold heat of 554 to the heat conductive sheet 553 may be included. The conduction path 555 is formed in the back surface of the inner wall of the storage chamber 504. In the refrigerator shown in FIG. 23B, since the cold air flowing through the cold air passage portion 507 can be guided to the back surface of the latent heat storage material 503, the latent heat storage material 503 can be further rapidly cooled.
 冷風流出口509が2箇所の場合には、図23(c)に示すように、冷蔵庫は、潜熱蓄熱材503の裏面に配置されるとともに2箇所の冷風流出口509を囲むように形成された熱伝導シート556を用いることにより、潜熱蓄熱材503の冷却効率を向上させることができる。 In the case where there are two cold air outlets 509, as shown in FIG. 23C, the refrigerator is disposed on the back surface of the latent heat storage material 503 and is formed so as to surround the two cold air outlets 509. By using the heat conductive sheet 556, the cooling efficiency of the latent heat storage material 503 can be improved.
 次に、実施例3-2による冷蔵庫について図24を用いて説明する。本実施例による冷蔵庫は、潜熱蓄熱材503がフィン557を備えている点に特徴を有している。図24は、本実施例による冷蔵庫の潜熱蓄熱材503の模式図である。図24(a)は、潜熱蓄熱材503を模式的に示す斜視図であり、図24(b)は、貯蔵室504内の潜熱蓄熱材503の配置状態を説明する図である。 Next, the refrigerator according to Example 3-2 will be described with reference to FIG. The refrigerator according to the present embodiment is characterized in that the latent heat storage material 503 includes fins 557. FIG. 24 is a schematic diagram of the latent heat storage material 503 of the refrigerator according to the present embodiment. FIG. 24A is a perspective view schematically showing the latent heat storage material 503, and FIG. 24B is a view for explaining the arrangement state of the latent heat storage material 503 in the storage chamber 504.
 図24(a)に示すように、本実施例による冷蔵庫は、裏面に複数のピン形状のフィン557を備えた潜熱蓄熱材503を有している。図24(b)に示すように、フィン557は貯蔵室504の壁面504a側に向けられて配置されている。フィン557が貯蔵室504の内側に向けて配置されると、フィン557の空気抵抗のため、フィン557間には冷風が流れず、フィン557の冷却効果が小さくなる。このため、本実施例による冷蔵庫は、貯蔵室504の壁面504a側にフィン557が向けられ、フィン557と壁面504aとの間に冷気を流す構成を有している。図24(b)に示すa(フィン557の高さ)に対するb(フィン557の先端から壁面504aまでの距離)の比率が大きいとフィン557による冷却効率が低下する。このため、本実施例による冷蔵庫は、当該比率が大きくならないように、フィン557の高さaと当該距離bとが調整されている。本実施例のように、冷風を潜熱蓄熱材に必ずしも直接当てる必要はなく、フィンのような受熱部に冷風を直接当て、当該冷風の冷熱が当該受熱部を介して潜熱蓄熱材に間接的に伝わるようにしてもよい。 As shown in FIG. 24A, the refrigerator according to the present embodiment has a latent heat storage material 503 having a plurality of pin-shaped fins 557 on the back surface. As shown in FIG. 24B, the fins 557 are arranged facing the wall surface 504a side of the storage chamber 504. When the fins 557 are arranged toward the inner side of the storage chamber 504, due to the air resistance of the fins 557, the cool air does not flow between the fins 557, and the cooling effect of the fins 557 is reduced. For this reason, the refrigerator according to the present embodiment has a configuration in which the fins 557 are directed to the wall surface 504a side of the storage chamber 504, and cool air flows between the fins 557 and the wall surface 504a. When the ratio of b (the distance from the tip of the fin 557 to the wall surface 504a) with respect to a (the height of the fin 557) shown in FIG. 24B is large, the cooling efficiency by the fins 557 decreases. For this reason, in the refrigerator according to the present embodiment, the height a of the fins 557 and the distance b are adjusted so that the ratio does not increase. As in the present embodiment, it is not always necessary to directly apply the cold air to the latent heat storage material, the cold air is directly applied to the heat receiving portion such as the fin, and the cold heat of the cold air is indirectly applied to the latent heat storage material via the heat receiving portion. It may be transmitted.
 次に、実施例3-3による冷蔵庫について図25を用いて説明する。図25は、本実施例による冷蔵庫に備えられた潜熱蓄熱材503の要部を示している。図25に示すように、潜熱蓄熱材503は、一方の表面が凹凸形状であって当該表面に対向する表面が平坦形状に形成されたパッケージ559と、パッケージ559の複数の凸部内にそれぞれ形成された熱伝導性フィラー分散部560とを有している。冷蔵庫は、凸形状の複数の熱導電性フィラー分散部560を有しているので、上記実施例3-2による冷蔵庫のように別途フィンを設けることなく潜熱蓄熱材503を急冷することができる。熱伝導性フィラーの形成材料として、例えば黒鉛、銀、銅、金、ケイ素、炭化ケイ素、窒化アルミニウム、窒化ホウ素、窒化ケイ素、マグネシア又はアルミナ等を用いることができる。 Next, the refrigerator according to Example 3-3 will be described with reference to FIG. FIG. 25 shows a main part of the latent heat storage material 503 provided in the refrigerator according to the present embodiment. As shown in FIG. 25, the latent heat storage material 503 is formed in a package 559 in which one surface has an uneven shape and a surface opposite to the surface is formed in a flat shape, and in a plurality of convex portions of the package 559. Thermal conductive filler dispersion portion 560. Since the refrigerator has a plurality of convex heat conductive filler dispersion portions 560, the latent heat storage material 503 can be rapidly cooled without providing additional fins unlike the refrigerator according to Example 3-2. As a material for forming the heat conductive filler, for example, graphite, silver, copper, gold, silicon, silicon carbide, aluminum nitride, boron nitride, silicon nitride, magnesia or alumina can be used.
 次に、実施例3-4による冷蔵庫について図26を用いて説明する。図26は、本実施例による冷蔵庫に備えられた潜熱蓄熱材503の概略構成を示している。図26に示すように、潜熱蓄熱材503は冷風の当たる面に凹凸を有している。これにより、潜熱蓄熱材503の空気との接触面積が大きくなる。このため、式(1)に示すように、伝熱量Qが大きくなるので、本実施例による冷蔵庫は、潜熱蓄熱材503と貯蔵室504内の空気との熱交換効率を向上させることができる。 Next, the refrigerator according to Example 3-4 will be described with reference to FIG. FIG. 26 shows a schematic configuration of the latent heat storage material 503 provided in the refrigerator according to the present embodiment. As shown in FIG. 26, the latent heat storage material 503 has irregularities on the surface on which the cold air hits. Thereby, the contact area with the air of the latent heat storage material 503 becomes large. For this reason, as shown in Formula (1), since the heat transfer amount Q becomes large, the refrigerator according to the present embodiment can improve the heat exchange efficiency between the latent heat storage material 503 and the air in the storage chamber 504.
(実施例4)
 前述の実施例1、実施例2及び実施例3で示した潜熱蓄熱材503、熱伝導シート、フィン557の各部材は、脱着可能な形態で固定されていてもよい。脱着可能な形態は、例えば潜熱蓄熱材503と熱伝導シート、或いは、潜熱蓄熱材503とフィン557のように複数の部材から構成される場合は、それぞれが別個に脱着できてもよいし、複数の部材から構成されたユニットが一体で脱着できてもよい。それぞれが別個に脱着できる場合は、個別の部材のみの交換に対応できる。また、一体で脱着できる場合は、各部材の熱的な接触の管理が容易になり、機能のばらつきが低減され、また、交換が容易になる。
 これにより、各部材のメンテナンスが可能になり、劣化、破損が生じた場合でも容易に交換することができる。また、低コスト或いは高性能な新規材料を用いた部材にも容易に交換することができ、機能向上を図ることができる。また、買い換え等で冷蔵庫を新規に導入した場合も、これまで使用していた部材を再利用することができる。
Example 4
Each member of the latent heat storage material 503, the heat conductive sheet, and the fins 557 shown in the above-described Example 1, Example 2, and Example 3 may be fixed in a detachable form. For example, when the latent heat storage material 503 and the heat conduction sheet, or the latent heat storage material 503 and the fins 557 are configured, the detachable form may be separately removable. A unit composed of these members may be integrally removable. In the case where each can be detached and attached separately, it is possible to deal with replacement of only individual members. Moreover, when it can remove | desorb integrally, management of the thermal contact of each member becomes easy, the dispersion | variation in a function is reduced, and replacement | exchange is easy.
Thereby, maintenance of each member becomes possible and can be easily replaced even when deterioration or breakage occurs. Moreover, it can be easily replaced with a member using a low-cost or high-performance new material, and the function can be improved. In addition, even when a refrigerator is newly introduced by replacement, members that have been used can be reused.
 本発明は、上記実施例に限らず種々の変形が可能である。
 例えば、上記実施例では主に冷蔵庫を例に挙げたが、本発明はこれに限らず、冷凍庫、温蔵庫、保冷・保温機能を有する自動販売機等にも適用できる。本発明を冷凍庫(JISワンスター規格まで含む)に適用する場合には、固相から液相へ可逆的に相転移する相転移温度が-20℃~-5℃程度の潜熱蓄熱材を用いることができる。また、本発明を上記実施例のように、冷蔵庫の冷蔵室及び野菜室に適用する場合には、相転移温度が0℃~10℃程度の潜熱蓄熱材を用いることができる。
The present invention is not limited to the above embodiment, and various modifications can be made.
For example, in the above-described embodiments, the refrigerator is mainly exemplified. However, the present invention is not limited to this, and can be applied to a freezer, a warm storage, a vending machine having a cold and warm function, and the like. When the present invention is applied to a freezer (including JIS one-star standards), a latent heat storage material having a phase transition temperature of about −20 ° C. to −5 ° C. that reversibly changes from a solid phase to a liquid phase should be used. Can do. Further, when the present invention is applied to a refrigerator refrigerator room and a vegetable room as in the above embodiment, a latent heat storage material having a phase transition temperature of about 0 ° C. to 10 ° C. can be used.
 また、本発明は、冷蔵室、冷凍室及び野菜室を備えた冷蔵庫にも適用できる。冷蔵室の温度は、約2℃~5℃に設定されている。冷蔵室の開閉用の扉に設けられる扉収納部の温度は、約3℃~7℃に設定されている。冷蔵室内に設けられるチルド室の温度は、約0℃~2℃に設定されている。冷凍室は、氷を貯蔵する氷貯蔵室、上段冷凍室及び下段冷凍室を有している。氷貯蔵室及び下段冷凍室の温度は、約-18℃~-20℃に設定されている。上段冷凍室の設定温度は、約-17℃~-19℃に設定されている。野菜室の温度は、約3℃~8℃に設定されている。これらの設定温度は、冷蔵庫の外気温度が30℃であって、冷蔵庫内に食品等を入れずに扉等を閉じて冷蔵室等を密閉した場合に、冷蔵庫内の温度が安定したときのおおよその目安の温度である。
 本発明をこの冷蔵庫に適用する場合には、固相から液相へ可逆的に相転移する相転移温度がこれらの設定温度範囲内になるような潜熱蓄熱材を用いる。
Moreover, this invention is applicable also to the refrigerator provided with the refrigerator compartment, the freezer compartment, and the vegetable compartment. The temperature of the refrigerator compartment is set to about 2 ° C to 5 ° C. The temperature of the door storage portion provided in the door for opening and closing the refrigerator compartment is set to about 3 ° C to 7 ° C. The temperature of the chilled chamber provided in the refrigerator compartment is set to about 0 ° C. to 2 ° C. The freezing room has an ice storage room for storing ice, an upper freezing room, and a lower freezing room. The temperature of the ice storage room and the lower freezing room is set to about −18 ° C. to −20 ° C. The set temperature of the upper freezer compartment is set to about −17 ° C. to −19 ° C. The temperature of the vegetable room is set to about 3 ° C to 8 ° C. These set temperatures are approximate when the temperature in the refrigerator is stable when the outside air temperature of the refrigerator is 30 ° C. and the door is closed and the refrigerator compartment is closed without food in the refrigerator. This is the approximate temperature.
When the present invention is applied to this refrigerator, a latent heat storage material is used in which the phase transition temperature at which the phase transition from the solid phase to the liquid phase reversibly falls within these set temperature ranges.
 なお、上記詳細な説明で説明した事項、特に実施例および変形例等で説明した事項は組み合わせることが可能である。 It should be noted that the items described in the detailed description above, in particular, the items described in the embodiments and modifications can be combined.
 本発明は、外気温とは異なる温度で貯蔵物を保管する蓄熱容器又は保温庫の分野において広く利用可能である。 The present invention can be widely used in the field of a heat storage container or a heat storage that stores stored items at a temperature different from the outside air temperature.
1、11 閉空間領域
2、52 冷却器
3、4、5、35、53、54、63 潜熱蓄熱材
6 熱移動領域露出部
7、8、31、57 断熱材
10、60 熱移動領域
12、14、15 ドアパッキン
20、80 配管
21、81 コンプレッサ
30 潜熱蓄熱材支持部材
30a、40 基材
30b、31、33、66 取っ手
32 案内溝
34、65 開口部
36 金属板
37 滑車
41 電動機
42 綱
43r、43l 圧縮コイルばね
44r、44l 位置決め部材
48 水受け皿
83 ダクト
101、111 蓄熱容器本体
102、112 冷蔵庫扉
103 冷凍室扉
113 野菜室扉
104 114 冷蔵室
105 冷凍室
115 野菜室
100、110、120、130、140、150、160、170、200、210 蓄熱容器
300、310遮蔽機構
501、550 冷蔵庫
502 冷蔵室
503 潜熱蓄熱材
504、510 貯蔵室
505 壁部
506 送風機
507、531 冷風経路部
508 冷凍室
509 冷風流出口
511 庫内温度センサ
512 冷凍室
513 庫内灯
514 容器本体
515 温調部
516、518 開口部
517、520 扉部
517a~517d 扉収納部
519 扉半固定部
521 電装部
523 棚部
525 仕切り部
527 冷風流入口
529 チルド室
529a チルド収納部
533 ダンパ
537 熱交換装置
539 圧縮機
541 凝縮器
543 膨張弁
545 冷却器
547 ルーバー
549 冷風誘導反射部
549a 誘導部
549b 反射部
551 冷風誘導部
553、554、556 熱伝導シート
555 伝熱パス
557 フィン
559 パッケージ
560 熱伝導性フィラー分散部
1, 11 Closed space region 2, 52 Cooler 3, 4, 5, 35, 53, 54, 63 Latent heat storage material 6 Heat transfer region exposed portion 7, 8, 31, 57 Heat insulating material 10, 60 Heat transfer region 12, 14, 15 Door packing 20, 80 Piping 21, 81 Compressor 30 Latent heat storage material support member 30a, 40 Base material 30b, 31, 33, 66 Handle 32 Guide groove 34, 65 Opening 36 Metal plate 37 Pulley 41 Electric motor 42 Leash 43r , 43 l Compression coil springs 44 r, 44 l Positioning member 48 Water tray 83 Duct 101, 111 Heat storage container main body 102, 112 Refrigerator door 103 Freezer compartment door 113 Vegetable compartment door 104 114 Refrigerator compartment 105 Freezer compartment 115 Vegetable compartment 100, 110, 120, 130, 140, 150, 160, 170, 200, 210 Thermal storage container 300, 310 Shielding mechanism 501, 550 Refrigerator 502 Cold storage room 503 Latent heat storage material 504, 510 Storage room 505 Wall 506 Blower 507, 531 Cold air passage 508 Freezing room 509 Cold air outlet 511 Internal temperature sensor 512 Freezing room 513 Internal light 514 Container body 515 Temperature control part 516, 518 Opening part 517, 520 Door part 517a-517d Door storage part 519 Door semi-fixed part 521 Electrical part 523 Shelf part 525 Partition part 527 Cold air inlet 529 Chilled storage part 533 Damper 537 Heat exchanger 539 Compressor 541 Condenser 543 Expansion valve 545 Cooler 547 Louver 549 Cold air induction reflection part 549a Guide part 549b Reflection part 551 Cold air induction part 553, 554, 556 Thermal conduction sheet 555 Heat transfer path 557 Fin 559 Package 560 Thermal conductive filler dispersion part

Claims (38)

  1.  所定容積の閉空間領域と、
     前記閉空間領域の内壁に配置され、前記閉空間領域内の温度を制御するための熱を移動させる熱移動領域と、
     前記熱移動領域に配置された潜熱蓄熱材と、
     前記潜熱蓄熱材が配置されておらず、前記熱移動領域が露出した熱移動領域露出部と
     を有することを特徴とする蓄熱容器。
    A closed space region of a predetermined volume;
    A heat transfer region that is disposed on an inner wall of the closed space region and transfers heat for controlling the temperature in the closed space region;
    A latent heat storage material disposed in the heat transfer region;
    A heat storage container, comprising: a heat transfer region exposed portion in which the latent heat storage material is not disposed and the heat transfer region is exposed.
  2.  請求項1記載の蓄熱容器であって、
     前記熱移動領域露出部は、前記潜熱蓄熱材を貫通して形成した複数の貫通孔を有すること
     を特徴とする蓄熱容器。
    The heat storage container according to claim 1,
    The heat transfer region exposed portion has a plurality of through holes formed through the latent heat storage material.
  3.  請求項2記載の蓄熱容器であって、
     前記貫通孔は中空円筒形であること
     を特徴とする蓄熱容器。
    The heat storage container according to claim 2,
    The heat storage container, wherein the through hole has a hollow cylindrical shape.
  4.  請求項1記載の蓄熱容器であって、
     前記潜熱蓄熱材と前記熱移動領域露出部とは交互に並んで配置されていること
     を特徴とする蓄熱容器。
    The heat storage container according to claim 1,
    The latent heat storage material and the heat transfer region exposed portion are alternately arranged side by side.
  5.  請求項1から4のいずれか一項に記載の蓄熱容器であって、
     前記熱移動領域は熱交換器を有していること
     を特徴とする蓄熱容器。
    The heat storage container according to any one of claims 1 to 4,
    The heat transfer region includes a heat exchanger.
  6.  請求項5記載の蓄熱容器であって、
     前記熱移動領域露出部の前記熱移動領域は突出していること
     を特徴とする蓄熱容器。
    The heat storage container according to claim 5,
    The heat transfer region of the heat transfer region exposed portion protrudes.
  7.  請求項1から4のいずれか一項に記載の蓄熱容器であって、
     前記熱移動領域には所定温度の空気が送風されること
     を特徴とする蓄熱容器。
    The heat storage container according to any one of claims 1 to 4,
    A heat storage container, wherein air having a predetermined temperature is blown into the heat transfer region.
  8.  請求項1から7のいずれか一項に記載の蓄熱容器であって、
     さらに、前記熱移動領域露出部遮蔽用の潜熱蓄熱材と、
     前記遮蔽用の潜熱蓄熱材を前記熱移動領域露出部に移動させて、前記熱移動領域露出部を遮蔽する遮蔽機構とを有すること
     を特徴とする蓄熱容器。
    The heat storage container according to any one of claims 1 to 7,
    Furthermore, the latent heat storage material for shielding the heat transfer region exposed portion,
    A heat storage container, comprising: a shielding mechanism that moves the shielding latent heat storage material to the heat transfer region exposed portion and shields the heat transfer region exposed portion.
  9.  所定容積の閉空間領域と、
     前記閉空間領域の内壁に配置され、前記閉空間領域内の温度を制御するための熱を移動させる熱移動領域と、
     前記熱移動領域遮蔽用の潜熱蓄熱材と、
     前記遮蔽用潜熱蓄熱材を前記熱移動領域に移動させて、前記熱移動領域を遮蔽する遮蔽機構と
     を有することを特徴とする蓄熱容器。
    A closed space region of a predetermined volume;
    A heat transfer region that is disposed on an inner wall of the closed space region and transfers heat for controlling the temperature in the closed space region;
    A latent heat storage material for shielding the heat transfer area;
    A heat storage container, comprising: a shielding mechanism that moves the shielding latent heat storage material to the heat transfer region and shields the heat transfer region.
  10.  請求項1から9のいずれか一項に記載の蓄熱容器であって、
     前記潜熱蓄熱材はゲル化剤を含んでいること
     を特徴とする蓄熱容器。
    The heat storage container according to any one of claims 1 to 9,
    The latent heat storage material includes a gelling agent.
  11.  請求項1から10のいずれか一項に記載の蓄熱容器であって、
     前記潜熱蓄熱材はパラフィンを含んでいること
     を特徴とする蓄熱容器。
    The heat storage container according to any one of claims 1 to 10,
    The latent heat storage material contains paraffin, a heat storage container.
  12.  請求項1から11のいずれか一項に記載の蓄熱容器であって、
     前記潜熱蓄熱材は、定常運転において前記閉空間領域で制御可能な温度と、前記閉空間領域の周囲の雰囲気の温度との間の温度で固相から液相へ可逆的に相転移すること
     を特徴とする蓄熱容器。
    The heat storage container according to any one of claims 1 to 11,
    The latent heat storage material undergoes a reversible phase transition from a solid phase to a liquid phase at a temperature between a temperature controllable in the closed space region and a temperature of the atmosphere around the closed space region in steady operation. Characteristic heat storage container.
  13.  請求項1から12のいずれか一項に記載の蓄熱容器であって、
     前記閉空間領域の内壁と外壁の間に断熱材が配置されていること
     を特徴とする蓄熱容器。
    The heat storage container according to any one of claims 1 to 12,
    A heat storage container, wherein a heat insulating material is disposed between an inner wall and an outer wall of the closed space region.
  14.  請求項1から13いずれか一項に記載の蓄熱容器であって、
     さらに、前記閉空間領域を開放する扉を有していること
     を特徴とする蓄熱容器。
    The heat storage container according to any one of claims 1 to 13,
    Furthermore, it has a door which opens the said closed space area | region, The heat storage container characterized by the above-mentioned.
  15.  請求項5又は6に記載の蓄熱容器であって、
     前記熱交換器は冷却器であること
     を特徴とする蓄熱容器。
    The heat storage container according to claim 5 or 6,
    The heat storage container, wherein the heat exchanger is a cooler.
  16.  請求項15記載の蓄熱容器であって、
     さらに、前記冷却器の除霜時に生じた水を受けるように前記冷却器の下方に配置された水受け皿を有すること
     を特徴とする蓄熱容器。
    The heat storage container according to claim 15,
    Furthermore, it has a water receiving tray arrange | positioned under the said cooler so that the water produced at the time of the defrost of the said cooler may be received. The heat storage container characterized by the above-mentioned.
  17.  請求項1から16のいずれか一項に記載の蓄熱容器を用いたこと
     を特徴とする冷蔵庫。
    A refrigerator using the heat storage container according to any one of claims 1 to 16.
  18.  請求項1から14のいずれか一項に記載の蓄熱容器を用いたこと
     を特徴とする温蔵庫。
    A heat storage container using the heat storage container according to any one of claims 1 to 14.
  19.  周囲温度と異なる温度の空気を生成する熱交換装置と、
     前記異なる温度の空気を強制対流させて風を発生するとともに前記風を送風する送風機と、
     前記風が直接当たるように、あるいは、受熱部に直接当たった前記風による熱が前記受熱部を介して間接的に伝わるように配置され、相変化により熱エネルギーを蓄積又は放出する潜熱蓄熱材と
     を有することを特徴とする保温庫。
    A heat exchange device that generates air at a temperature different from ambient temperature;
    A blower for forcing the convection of air of different temperatures to generate wind and blowing the wind;
    A latent heat storage material that is arranged so that the wind directly hits it, or heat by the wind that directly hits the heat receiving part is transmitted indirectly through the heat receiving part, and stores or releases thermal energy by phase change; A heat storage box characterized by having.
  20.  請求項19記載の保温庫であって、
     貯蔵物を貯蔵する貯蔵室をさらに有し、
     前記潜熱蓄熱材は、前記貯蔵室に配置されていること
     を特徴とする保温庫。
    The heat storage according to claim 19,
    A storage room for storing stored items;
    The latent heat storage material is disposed in the storage chamber.
  21.  請求項20記載の保温庫であって、
     前記貯蔵室に設けられ、前記貯蔵物が載置される棚部をさらに有し、
     前記潜熱蓄熱材は、前記棚部に設けられていること
     を特徴とする保温庫。
    The heat storage according to claim 20,
    The shelf further includes a shelf on which the storage is placed,
    The latent heat storage material is provided on the shelf.
  22.  請求項20又は21に記載の保温庫であって、
     前記貯蔵室に設けられ、前記風を前記貯蔵室内に流出する風流出口をさらに有し、
     前記潜熱蓄熱材は、前記風流出口から流出した前記風が直接当たる場所、あるいは、前記受熱部に直接当たった前記風による熱が前記受熱部を介して間接的に伝わる場所に配置されていること
     を特徴とする保温庫。
    The heat storage according to claim 20 or 21,
    A wind outlet that is provided in the storage chamber and allows the wind to flow into the storage chamber;
    The latent heat storage material is disposed in a place where the wind flowing out from the wind outlet directly hits, or a place where heat from the wind directly hitting the heat receiving part is indirectly transmitted through the heat receiving part. A thermal storage room characterized by
  23.  請求項21又は22に記載の保温庫であって、
     前記棚部は、前記風を前記棚部の下方に導く風誘導部を有すること
     を特徴とする保温庫。
    A heat storage according to claim 21 or 22,
    The said shelf part has a wind guide part which guide | induces the said wind below the said shelf part.
  24.  請求項23記載の保温庫であって、
     前記風誘導部は、前記風の流入部が前記風の流出部よりも幅広に形成されていること
     を特徴とする保温庫。
    The heat storage according to claim 23,
    The warm guide box, wherein the wind guide part is formed so that the wind inflow part is wider than the wind outflow part.
  25.  請求項20又は21に記載の保温庫であって、
     前記貯蔵室に設けられ、前記風を前記貯蔵室内の所定方向に流出する風流出口と、
     前記風流出口に設けられ、前記所定方向とは異なる方向に前記風の風向を切り替える風向切替部と
     をさらに有し、
     前記潜熱蓄熱材は、前記風流出口から見て、前記異なる方向に配置されていること
     を特徴とする保温庫。
    The heat storage according to claim 20 or 21,
    A wind outlet that is provided in the storage chamber and flows out the wind in a predetermined direction in the storage chamber;
    A wind direction switching unit that is provided at the wind outlet and switches the wind direction of the wind in a direction different from the predetermined direction;
    The said heat storage material is arrange | positioned in the said different direction seeing from the said wind outlet, The heat retention box characterized by the above-mentioned.
  26.  請求項25記載の保温庫であって、
     前記風向切替部は、前記潜熱蓄熱材を冷却する際に前記風向を前記異なる方向に切り替えること
     を特徴とする保温庫。
    A heat storage according to claim 25,
    The wind direction switching unit switches the wind direction to the different direction when cooling the latent heat storage material.
  27.  請求項25又は26に記載の保温庫であって、
     前記棚部は、前記風を前記棚部の下方に導くとともに、前記風を反射する風誘導反射部を有すること
     を特徴とする保温庫。
    The heat storage according to claim 25 or 26,
    The shelf includes a wind guide reflection unit that guides the wind to the lower side of the shelf and reflects the wind.
  28.  請求項19から27までのいずれか一項に記載の保温庫であって、
     前記潜熱蓄熱材は脱着できることを特徴とする保温庫。
    It is a heat storage as described in any one of Claim 19-27,
    A heat storage box characterized in that the latent heat storage material can be detached.
  29.  請求項19から28までのいずれか一項に記載の保温庫であって、
     前記潜熱蓄熱材は、前記風の熱を伝導する熱伝導シートを有すること
     を特徴とする保温庫。
    It is a heat storage as described in any one of Claim 19-28,
    The latent heat storage material has a heat conductive sheet that conducts heat of the wind.
  30.  請求項29記載の保温庫であって、
     前記風の熱を前記熱伝導シートに伝導する伝導パスをさらに有すること
     を特徴とする保温庫。
    A heat storage according to claim 29,
    It further has a conduction path for conducting the heat of the wind to the heat conduction sheet.
  31.  請求項19から30までのいずれか一項に記載の保温庫であって、
     前記潜熱蓄熱材は、前記風の熱を伝導するフィンを有すること
     を特徴とする保温庫。
    It is a heat storage as described in any one of Claim 19-30,
    The latent heat storage material has fins that conduct heat of the wind.
  32.  請求項29又は30に記載の保温庫であって、
     熱伝導シートは脱着できることを特徴とする保温庫。
    A heat storage box according to claim 29 or 30,
    A heat insulation chamber characterized in that the heat conductive sheet can be detached.
  33.  請求項31に記載の保温庫であって、
     前記フィンは脱着できることを特徴とする保温庫。
    The heat storage according to claim 31,
    A heat insulating cabinet characterized in that the fins are removable.
  34.  請求項19から28までのいずれか一項に記載の保温庫であって、
     前記潜熱蓄熱材は、前記風の熱を伝導する熱伝導性フィラー分散部を有すること
     を特徴とする保温庫。
    It is a heat storage as described in any one of Claim 19-28,
    The latent heat storage material has a thermally conductive filler dispersion portion that conducts heat of the wind.
  35.  請求項19から28までのいずれか一項に記載の保温庫であって、
     前記潜熱蓄熱材は、前記風の当たる表面に凹凸を有していること
     を特徴とする保温庫。
    It is a heat storage as described in any one of Claim 19-28,
    The latent heat storage material has irregularities on the surface to which the wind hits.
  36.  請求項19から35までのいずれか一項に記載の保温庫であって、
     前記潜熱蓄熱材は、ノルマルパラフィンであること
     を特徴とする保温庫。
    A heat storage according to any one of claims 19 to 35,
    The latent heat storage material is normal paraffin.
  37.  請求項36記載の保温庫であって、
     前記ノルマルパラフィンがゲルであること
     を特徴とする保温庫。
    A heat storage according to claim 36,
    The warming cabinet, wherein the normal paraffin is a gel.
  38.  請求項19から37までのいずれか一項に記載の保温庫であって、
     前記熱交換装置は、前記周囲温度よりも低温の冷気を発生する冷却器を有すること
     を特徴とする保温庫。
    It is a heat storage as described in any one of Claim 19 to 37,
    The heat exchanger has a cooler that generates cold air having a temperature lower than the ambient temperature.
PCT/JP2012/060831 2011-04-26 2012-04-23 Heat storage container and temperature retention compartment WO2012147678A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280020738.3A CN103502753B (en) 2011-04-26 2012-04-23 Heat storage container

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-098766 2011-04-26
JP2011098766 2011-04-26
JP2011-098770 2011-04-26
JP2011098770 2011-04-26

Publications (1)

Publication Number Publication Date
WO2012147678A1 true WO2012147678A1 (en) 2012-11-01

Family

ID=47072197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060831 WO2012147678A1 (en) 2011-04-26 2012-04-23 Heat storage container and temperature retention compartment

Country Status (2)

Country Link
CN (1) CN103502753B (en)
WO (1) WO2012147678A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014206289A (en) * 2013-04-10 2014-10-30 富士電機株式会社 Storage
CN105783160A (en) * 2016-04-05 2016-07-20 李伟源 Environmental energy-saving system for storing residual cool of air conditioner
CN113397361A (en) * 2021-07-08 2021-09-17 华春新能源股份有限公司 Bright express delivery cabinet is given birth to energy-conserving multi-temperature-zone
JP7416991B1 (en) 2023-02-15 2024-01-17 照男 竹中 refrigerator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110779273B (en) * 2019-11-21 2023-09-26 郑州轻工业大学 Novel storage cabinet with energy storage function

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01140474U (en) * 1988-03-17 1989-09-26
JPH05296642A (en) * 1992-04-10 1993-11-09 Sanden Corp Cold storage chamber
JPH0626748A (en) * 1992-04-06 1994-02-04 Sanden Corp Cold accumulating refrigerator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61208493A (en) * 1985-03-14 1986-09-16 Mitsubishi Corp Latent heat utilizing heat storage device
US6484794B1 (en) * 2000-07-06 2002-11-26 Edward R. Schulak Energy transfer system for cold storage facilities
KR101213564B1 (en) * 2009-03-26 2012-12-18 가부시키가이샤 덴소 Cool-storage type heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01140474U (en) * 1988-03-17 1989-09-26
JPH0626748A (en) * 1992-04-06 1994-02-04 Sanden Corp Cold accumulating refrigerator
JPH05296642A (en) * 1992-04-10 1993-11-09 Sanden Corp Cold storage chamber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014206289A (en) * 2013-04-10 2014-10-30 富士電機株式会社 Storage
CN105783160A (en) * 2016-04-05 2016-07-20 李伟源 Environmental energy-saving system for storing residual cool of air conditioner
CN113397361A (en) * 2021-07-08 2021-09-17 华春新能源股份有限公司 Bright express delivery cabinet is given birth to energy-conserving multi-temperature-zone
JP7416991B1 (en) 2023-02-15 2024-01-17 照男 竹中 refrigerator

Also Published As

Publication number Publication date
CN103502753A (en) 2014-01-08
CN103502753B (en) 2016-10-19

Similar Documents

Publication Publication Date Title
US10247462B2 (en) Ice-making device for refrigerator and refrigerator including the same
US8745992B2 (en) Refrigerator
US10001314B2 (en) Freezer
WO2012147678A1 (en) Heat storage container and temperature retention compartment
EP3023717B1 (en) Refrigerator
JP4931880B2 (en) Cold storage panel and freezer / refrigerator equipped with the same
KR102679833B1 (en) Container and Refrigerator including the same
KR20070120765A (en) Refrigerator
JP2006125804A (en) Heat insulation casing and refrigerator
WO2012102234A1 (en) Insulating container, and method for operating same
JP2013245842A (en) Cold storage
KR200320682Y1 (en) A cold-storing shelf of a refrigerator, and a portable ice box using thereof
JP2014137192A (en) Refrigerator
JP2003279222A (en) Refrigerator
JP4260873B1 (en) Cooling method and cooling device
JP2002318066A (en) Freezing and refrigerating device
CN113701417B (en) Refrigeration equipment, control method, control device and computer readable storage medium
KR100701954B1 (en) Thawing room unit and quick freezing room unit of refrigerator having vibrator apparatus
CN113701419B (en) Refrigeration equipment, control method, control device and computer readable storage medium
JP6026966B2 (en) refrigerator
KR20100022278A (en) Refrigerator
CN113701421B (en) Refrigeration equipment, control method, control device and computer readable storage medium
JP6694612B2 (en) refrigerator
ES2399016A2 (en) Cooling appliance
EP3933311A1 (en) Refrigeration apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12776693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP