WO2012147662A1 - Liquid crystal display device and driving method therefor - Google Patents

Liquid crystal display device and driving method therefor Download PDF

Info

Publication number
WO2012147662A1
WO2012147662A1 PCT/JP2012/060777 JP2012060777W WO2012147662A1 WO 2012147662 A1 WO2012147662 A1 WO 2012147662A1 JP 2012060777 W JP2012060777 W JP 2012060777W WO 2012147662 A1 WO2012147662 A1 WO 2012147662A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
display device
pixel
potential
Prior art date
Application number
PCT/JP2012/060777
Other languages
French (fr)
Japanese (ja)
Inventor
真介 横沼
鷲尾 一
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012147662A1 publication Critical patent/WO2012147662A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0814Several active elements per pixel in active matrix panels used for selection purposes, e.g. logical AND for partial update
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0857Static memory circuit, e.g. flip-flop
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • G09G2320/0214Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display with crosstalk due to leakage current of pixel switch in active matrix panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0247Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • G09G2330/022Power management, e.g. power saving in absence of operation, e.g. no data being entered during a predetermined time

Definitions

  • the present invention relates to a liquid crystal display device and a driving method thereof.
  • a liquid crystal display device (hereinafter referred to as a memory-type liquid crystal display device) that performs display by holding image data written in a pixel in a memory circuit in the pixel has been proposed as a liquid crystal display device (Patent Literature). 1).
  • a normal operation for displaying a multi-gradation moving image a new image data is rewritten on a pixel-by-frame basis through a data signal line for display.
  • a rewrite image is displayed. Display is performed using image data held in the memory circuit without supplying data.
  • the operation of the drive circuit that drives the scanning signal line and the data signal line can be stopped, so that power consumption can be greatly reduced. Therefore, the memory operation is often used for image display that is strongly demanded to reduce power consumption, such as a standby screen display of a mobile phone.
  • one memory circuit (DM18 in FIG. 19) is provided for each pixel, and a still image display is performed using image data held in each memory circuit. .
  • JP 2002-229532 A (published on August 16, 2002)
  • the frame frequency (frame rate) is generally set low in order to realize low power consumption.
  • the pixel charge amount (pixel potential) of the data in the memory circuit held in the memory circuit gradually decreases due to natural discharge (leakage), and the liquid crystal display panel Leading to a decrease in the transmittance.
  • the transmittance decreased in the N frame returns to the original transmittance as the pixel charge amount increases (charges) by the writing operation in the next N + 1 frame.
  • the present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a liquid crystal display device and a driving method thereof that can suppress display flicker in a liquid crystal display panel without increasing power consumption. It is in.
  • the luminance of the backlight is increased so as to compensate for a decrease in display luminance in the liquid crystal display panel due to discharge of charges held in the pixels.
  • the display luminance (surface luminance) of the liquid crystal display panel changes according to the pixel charge amount and the backlight luminance
  • the display luminance decrease due to the decrease in the pixel charge amount is displayed by the increase in the backlight luminance.
  • the display luminance of the liquid crystal display panel can be maintained constant. Thereby, flicker can be suppressed.
  • an increase in power consumption can be prevented.
  • the liquid crystal display panel that displays an image and the backlight that irradiates the liquid crystal display panel with light, and discharge of charges held in the pixels.
  • the luminance of the backlight is increased so as to compensate for a decrease in display luminance in the liquid crystal display panel due to the above. Accordingly, display flicker in the liquid crystal display panel can be suppressed without increasing power consumption.
  • FIG. 1 is a block diagram illustrating an overall configuration of a liquid crystal display device according to Embodiment 1.
  • FIG. FIG. 2 is a cross-sectional view illustrating a schematic configuration of a liquid crystal display panel and a backlight in the liquid crystal display device of FIG. 1. It is an equivalent circuit diagram showing a configuration of a circuit formed in a pixel region of a display pixel composed of three pixels of an R pixel, a G pixel, and a B pixel.
  • FIG. 2 is an equivalent circuit diagram illustrating a detailed configuration of a memory circuit in the liquid crystal display device of FIG. 1.
  • FIG. 5 is a signal waveform diagram in the case where black display is performed for a display pixel whose value of in-memory data MD is “1” in the memory circuit of FIG. 4.
  • FIG. 5 is a signal waveform diagram when white display is performed for a display pixel in which the value of in-memory data MD is “0” in the memory circuit of FIG. 4.
  • FIG. 3 is a diagram schematically showing changes in pixel charge amount and backlight luminance of the liquid crystal display device according to the first embodiment.
  • FIG. 2 is a block diagram showing a relationship between a liquid crystal display panel and a backlight in the liquid crystal display device shown in FIG. 1. It is the figure which added the PWM signal to FIG.
  • FIG. 11 is a block diagram illustrating an overall configuration of a liquid crystal display device according to Modification Example 1.
  • FIG. 13 is a block diagram illustrating a relationship between a liquid crystal display panel and a backlight in the liquid crystal display device illustrated in FIG. 12.
  • FIG. 6 is a block diagram illustrating an overall configuration of a liquid crystal display device according to a second embodiment.
  • FIG. 15 is an equivalent circuit diagram illustrating a detailed configuration of a memory circuit in the liquid crystal display device of FIG. 14.
  • FIG. 15 is a block diagram schematically showing a configuration of a memory circuit in the liquid crystal display device of FIG. 14.
  • 15 is a timing chart showing a writing operation of a memory circuit in the liquid crystal display device of FIG. 15 is a timing chart showing a writing operation of a memory circuit in the liquid crystal display device of FIG.
  • It is the equivalent circuit schematic of the pixel in the conventional liquid crystal display device.
  • liquid crystal display device including a memory circuit (in particular, SRAM type)
  • SRAM type a memory circuit
  • the liquid crystal display device of the present invention is not limited to this.
  • a normal liquid crystal display device that does not include a memory circuit is also included.
  • the liquid crystal display device holds image data written in a pixel in a memory circuit in the pixel and performs display using the image data held in the memory circuit during a data holding period.
  • a multi-color (multi-gradation) display mode (normal operation mode) used for screen display during operation of a mobile phone, and a memory operation mode used for screen display during standby of a mobile phone, etc. Switch to operate.
  • the present liquid crystal display device also includes a liquid crystal display device that performs display only in the memory operation mode.
  • the present liquid crystal display device makes the display luminance (surface luminance) of the liquid crystal display panel uniform by adjusting the luminance (backlight luminance) of the light source (backlight) provided on the back side of the liquid crystal display panel. , The flicker is reduced.
  • FIG. 1 is a block diagram showing an overall configuration of a liquid crystal display device 1 according to the present embodiment.
  • the liquid crystal display device 1 includes a liquid crystal display panel 10, a display control circuit 20, and a backlight 70 (see FIG. 2).
  • the liquid crystal display panel 10 includes a source driver 30 (data signal line driving circuit), a gate driver 40 (scanning signal line driving circuit), a display unit 50, and a memory driving driver 60 as a supply voltage generation circuit. Yes.
  • the display control circuit 20 includes a memory drive control unit 21 and a PWM signal generation unit 22 (see FIGS. 1 and 10).
  • the display unit 50 includes a source bus line (data signal line) SL, a gate bus line (scanning signal line) GL, a memory drive selection line SEL described later, a first voltage supply line AL, a second voltage supply line BL, A first power supply line VLCH and a second power supply line VLCL are included (see FIG. 3).
  • the source bus line SL is connected to the source driver 30, the gate bus line GL and the memory drive selection line SEL are connected to the gate driver 40, and the first voltage supply line AL and the second voltage supply line BL are memory driven. Connected to the driver 60.
  • the display unit 50 includes a plurality of pixels provided corresponding to the intersections of the gate bus line GL and the source bus line SL.
  • Each pixel includes a pixel electrode for applying a voltage corresponding to an image to be displayed to a liquid crystal capacitor described later, a common electrode that is a common electrode provided in common to the plurality of pixels, a pixel electrode, and a common electrode And a liquid crystal layer sandwiched between them. Further, if necessary, a storage capacitor is added in parallel with the liquid crystal capacitor formed by the pixel electrode and the common electrode.
  • the display unit 50 includes one bit for each display pixel including three pixels (R pixel, G pixel, and B pixel) for R (red), G (green), and B (blue).
  • a memory circuit MR is provided as a memory circuit capable of holding data.
  • the display pixel further includes a W pixel, a Y pixel, and the like, and may be composed of four or more pixels.
  • the liquid crystal display device 1 will be described as a normally white type.
  • the driving method can be switched between the “normal operation mode” and the “memory operation mode”.
  • the display control circuit 20 receives image data DAT and an operation mode selection signal M sent from the outside, receives a digital video signal DV, a source start pulse signal SSP for controlling image display on the display unit 50, and a source clock signal SCK.
  • the latch strobe signal LS, the gate start pulse signal GSP, the gate clock signal GCK, the first supply voltage control signal SAL, the second supply voltage control signal SBL, and the memory drive control signal SSEL are output. Further, the display control circuit 20 supplies a PWM (pulse width modulation) signal (driving signal) generated by the PWM signal generator 22 to the backlight 70. Details of the PWM signal generation unit 22 will be described later with reference to FIG.
  • the backlight 70 is composed of, for example, an LED (Light Emitting Diode), and is provided on the back side of the liquid crystal display panel 10.
  • LED Light Emitting Diode
  • the source driver 30 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS output from the display control circuit 20, and supplies a driving video signal (data) to each source bus line SL. Signal).
  • the gate driver 40 sequentially selects all the m gate bus lines GL one horizontal scanning period at a time in order to select the gate start pulse signal GSP and the gate clock signal GCK output from the display control circuit 20.
  • the application of the active scanning signal (gate signal) to each gate bus line GL is repeated with one vertical scanning period (one frame) as a cycle.
  • the gate driver 40 selects the gate start pulse signal GSP output from the display control circuit 20 and the gate clock in order to sequentially select the gate bus lines GL one horizontal scanning period at a time. Based on the signal GCK, an active scanning signal is sequentially applied to each gate bus line GL and output from the display control circuit 20 in order to sequentially select each memory drive selection line SEL by one horizontal scanning period. An active signal is sequentially applied to each memory drive selection line SEL based on the memory drive control signal SSEL and the gate clock signal GCK.
  • the gate driver 40 stops the application of the active scanning signal to each gate bus line GL, and applies the active signal to all (m) memory drive selection lines SEL1 to SELm.
  • the memory driving driver 60 Based on the first supply voltage control signal SAL and the second supply voltage control signal SBL output from the display control circuit 20, the memory driving driver 60 uses the first voltage supply line AL and the second voltage supply line. A voltage signal is applied to BL.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the liquid crystal display panel 10 and the backlight 70. In FIG. 2, each signal line is omitted for convenience.
  • the liquid crystal display panel 10 includes an active matrix substrate 11 and a counter substrate 12 which are arranged to face each other, and a liquid crystal layer 13 provided between the substrates 11 and 12. .
  • the backlight 70 is provided on the back side of the liquid crystal display panel 10 and irradiates the liquid crystal display panel 10 with light.
  • the active matrix substrate 11 is provided on the glass substrate 14 so as to extend in parallel to each other in a direction orthogonal to the gate bus lines GL, and a plurality (m) of gate bus lines GL provided to extend in parallel to each other. And a plurality of source bus lines SL, and switching element transistor TFTs (not shown) provided at intersections of the gate bus lines GL and the source bus lines SL.
  • An interlayer insulating film 15 is laminated so as to cover the transistor TFT, and a pixel electrode 16 is provided on the interlayer insulating film 15.
  • a black matrix (not shown) and a color filter 18 are formed on a glass substrate 17, a common electrode 19 (com, counter electrode) is formed thereon, and an alignment film (cover) (Not shown) is formed.
  • FIG. 3 is an equivalent circuit diagram showing a configuration of a circuit (hereinafter referred to as “display pixel circuit”) formed in a pixel region of a display pixel composed of three pixels of an R pixel, a G pixel, and a B pixel.
  • This display pixel circuit includes common portions 50R, 50G, and 50B having a configuration common to the three pixels, and memory circuits MR, MG, and MB as memory circuits.
  • the configuration of the common units 50R, 50G, and 50B will be described by taking the configuration of the common unit 50R of the R pixel for R color as an example.
  • the common unit 50R includes switches SWR1, SWR3, and SWR4 realized by N-type TFTs, a switch SWR2 realized by P-type TFTs, a liquid crystal capacitor 51R, and a holding capacitor 53R.
  • One ends of the liquid crystal capacitor 51R and the holding capacitor 53R are connected to the pixel electrode 55R (corresponding to reference numeral 16 in FIG. 2).
  • the other end of the liquid crystal capacitor 51R is connected to the common electrode 52 (corresponding to reference numeral 19 in FIG. 2), and the other end of the storage capacitor 53R is connected to the storage capacitor electrode.
  • the gate terminal is connected to the gate bus line GL
  • the source terminal is connected to the source bus line SLR
  • the drain terminal is connected to the source terminal of the switch SWR2 and the source terminal of the switch SWR4. Yes.
  • the gate terminal is connected to the memory drive selection line SEL
  • the drain terminal is connected to the pixel electrode 55R.
  • the source terminal of the switch SWR3 is connected to the memory circuit MR.
  • the switch SWR2 and the switch SWR3 are a voltage signal given to the pixel electrode 55R, a voltage signal (video signal) given from the source bus line SLR via the switch SWR1, and a voltage given from the memory circuit MR. Switch between signals.
  • FIG. 4 is an equivalent circuit diagram showing a detailed configuration of the memory circuit MR.
  • This memory circuit MR includes CMOS switches SWM1 and SWM2 composed of P-type TFTs and N-type TFTs, switches SWM4 and SWM6 realized by N-type TFTs, and switches SWM3, SWM5 and SWM7 realized by P-type TFTs. It has.
  • the source terminals of the switches SWM3 and SWM5 are connected to the first power supply line VLCH.
  • the source terminals of the switches SWM4 and SWM6 are connected to the second power supply line VLCL.
  • the gate terminal of the switch SWM7 is connected to the gate bus line GL.
  • a circuit composed of the switches SWM3 and SWM4 and a circuit composed of the switches SWM5 and SWM6 function as an inverter circuit, and the switch SWM7 functions as a transfer gate.
  • the circuit composed of the switches SWM3, SWM4, SWM5, SWM6, and SWM7 functions as a data holding circuit 59 that holds 1-bit data.
  • the input terminal is connected to the first voltage supply line AL, and the output terminal is connected to the source terminal of the switch SWR3 and the output terminal of the switch SWM2.
  • the switch SWM2 has an input terminal connected to the second voltage supply line BL, and an output terminal connected to the source terminal of the switch SWR3 and the output terminal of the switch SWM1.
  • the gate terminal of the N-type TFT of the switch SWM1 is connected to the drain terminal of the switch SWR4 and the data holding circuit 59.
  • the gate terminal of the P-type TFT of the switch SWM1 is connected to the gate terminal of the N-type TFT of the switch SWM2 and the data holding circuit 59.
  • the gate terminal of the N-type TFT of the switch SWM2 is connected to the gate terminal of the P-type TFT of the switch SWM1 and the data holding circuit 59.
  • the gate terminal of the P-type TFT of the switch SWM2 is connected to the data holding circuit 59.
  • the above configuration is configured not only in the source bus line SLR but also in the source bus lines SLG and SLB, and RGB data is stored in the memory circuits MR, MG, and MB.
  • FIG. 5 shows the first, second, third, and m-th gate bus lines GL1, GL2, GL3, and GLm, and the first, second, third, and m-th memory drives. It is a signal waveform diagram of selection lines SEL1, SEL2, SEL3, SELm.
  • switching between the normal operation mode and the memory operation mode is performed. This switching is performed based on an operation mode selection signal M sent from the outside to the display control circuit 20.
  • a driving method during normal operation a driving method when switching from normal operation to memory operation, and a driving method during memory operation will be described in order.
  • the normal operation is performed from time t0 to time t1.
  • active scanning signals are given to the gate bus lines GL1 to GLm in order for a predetermined period.
  • no active signal is applied to the memory drive selection lines SEL1 to SELm.
  • FIG. 5 Driving method when switching from normal operation to memory operation
  • driving for switching from normal operation to memory operation is performed.
  • an active scanning signal is given to each of the gate bus lines GL1 to GLm in order for a predetermined period
  • FIGS. 5A to 5D an active scanning signal is given to each of the memory drive selection lines SEL1 to SELm in order for a predetermined period.
  • an active scanning signal is applied to the gate bus line GL provided corresponding to the display pixel, and a memory drive selection provided corresponding to the display pixel.
  • an active signal is applied to the line SEL, the switches SWR1, SWG1, and SWB1 are turned on, the switches SWR2, SWG2, and SWB2 are turned off, and the switches SWR3, SWG3, and SWB3 are turned on. Also, the switches SWR4, SWG4, and SWB4 are turned on.
  • the video signals applied to the source bus lines SLR, SLG, and SLB are given to the respective memory circuits MR, MG, and MB, and the video signals are stored in the memory circuits MR, MG, and MB as in-memory data MD. Is stored in the data holding circuit 59.
  • the in-memory data MD is stored in the memory circuits MR, MG, and MG for all the display pixels during the period from the time point t1 to the time point t2.
  • the video signal is binarized (when the logic level is divided into high level data and low level data)
  • if the logic level is high level it is stored in the memory. It is assumed that “1” is stored in the memory circuits MR, MG, and MB as the data MD, and “0” is stored in the memory circuits MR, MG, and MB as the in-memory data MD if the logic level is low. To do.
  • the memory operation is performed from time t2 to time t3.
  • active scanning signals are not applied to the gate bus lines GL1 to GLm. Therefore, during this period, the switches SWR1, SWG1, and SWB1 are always off. In this way, since the switches SWR1, SWG1, and SWB1 are turned off, the value of the in-memory data MD is the value of the video signal supplied by the source bus lines SLR, SLG, and SLB during the memory operation period. It will not be affected.
  • FIG. 6 is a signal waveform diagram when black display is performed for a display pixel whose value of the data MD in the memory is “1”.
  • the switch SWM7 since no active signal is applied to the gate bus line GL during the memory operation, the switch SWM7 is in the on state regardless of the value of the in-memory data MD. For this reason, the value of the in-memory data MD is held during the period in which the memory operation is performed.
  • first supply voltage a voltage (hereinafter referred to as “first supply voltage”) VAL supplied from the first voltage supply line AL is applied to the pixel electrodes 55R, 55G, and 55B of the pixels.
  • the first supply voltage VAL when the potential Vcont of the common electrode 52 is set to the high potential side (period T11), the first supply voltage VAL is used. Is set on the low potential side, and when the potential Vcont of the common electrode 52 is set on the low potential side (period T12), the potential of the first supply voltage VAL is set on the high potential side. Therefore, a high voltage is always applied to the liquid crystal capacitors 51R, 51G, and 51B, and black display is performed for the display pixels including the liquid crystal capacitors 51R, 51G, and 51B. That is, a negative ( ⁇ ) black display is displayed in the period T11, and a positive (+) black display is displayed in the period T12.
  • FIG. 7 is a signal waveform diagram when white display is performed for the display pixel whose value of the data MD in the memory is “0”. Focusing on the on / off states of the switches SWM3 to SWM7 in the data holding circuit 59, when the in-memory data MD is “0”, the switch SWM3 is on and the switch SWM4 is off. Therefore, a high-potential power supply voltage is applied from the first power supply line VLCH to the data holding circuit 59 via the switch SWM3. As a result, the switch SWM5 is turned off and the switch SWM6 is turned on. As a result, a low-potential power supply voltage is applied from the second power supply line VLCL to the data holding circuit 59 via the switch SWM6. Note that the switch SWM7 is in an ON state as in the case where the value of the in-memory data MD is “1”. For this reason, the value of the in-memory data MD is held during the period in which the memory operation is performed.
  • one display pixel is composed of three pixels (R pixel, G pixel, and B pixel).
  • R pixel, G pixel, and B pixel the present invention is not limited to this, and a W pixel, a Y pixel, and the like are further included. Including four or more pixels.
  • the memory circuit is provided in each of the three pixels (R pixel, G pixel, and B pixel), but the present invention is not limited to this, and one pixel (R pixel, G pixel, or (B pixel) may be provided only.
  • monochrome display can be performed during memory operation.
  • the pixel charge amount (pixel potential) of the in-memory data MD held in the memory circuit gradually decreases due to natural discharge (leakage).
  • the transmittance of the liquid crystal display panel 10 is reduced.
  • the transmittance decreased in the N frame returns to the original transmittance when the pixel charge amount is increased (charged) by the writing operation in the next N + 1 frame.
  • the luminance (display luminance) on the display screen changes periodically, causing a problem that flicker is visually recognized.
  • the liquid crystal display device 1 has a configuration that compensates for the decrease in transmittance due to the discharge by increasing the backlight luminance.
  • FIG. 9 is a diagram schematically showing how the pixel charge amount (pixel potential) and the backlight luminance of the liquid crystal display device 1 change.
  • 9A shows a change in display luminance of the liquid crystal display panel 10
  • FIG. 9B shows a change in pixel charge amount
  • FIG. 9C shows a change in backlight luminance.
  • the display luminance of the liquid crystal display panel 10 changes in accordance with the pixel charge amount and the backlight luminance, as shown in FIG. 9, the display luminance decrease due to the decrease in the pixel charge amount is increased as the backlight luminance increases.
  • the display brightness of the liquid crystal display panel 10 can be kept constant. Thereby, flicker can be suppressed.
  • an increase in power consumption can be prevented.
  • FIG. 10 is a block diagram showing the relationship between the liquid crystal display panel 10 and the backlight 70 in the liquid crystal display device 1 shown in FIG.
  • the display control circuit 20 includes a PWM signal generator 22 as shown in FIG.
  • the PWM signal generation unit 22 generates a PWM signal for displaying the target luminance based on the amount of change (decrease amount) in the luminance of the liquid crystal display panel 10 caused by natural discharge.
  • the amount of decrease in the luminance of the liquid crystal display panel 10 can be calculated in advance based on the frame frequency, a desired PWM signal corresponding to the calculated amount of decrease in luminance can be generated.
  • it can be realized by a configuration in which the frame frequency set in the liquid crystal display panel 10 and the pulse width (or duty ratio) of the PWM signal are associated with a table in advance.
  • the PWM signal generation unit 22 supplies the generated PWM signal to the backlight 70 in synchronization with the timing of the frame period.
  • FIG. 11D shows a change in the PWM signal generated by the PWM signal generation unit 22.
  • the pulse width of the PWM signal increases as the pixel charge amount decreases, thereby increasing the luminance of the backlight.
  • By supplying such a PWM signal to the backlight 70 it is possible to compensate and equalize the decrease in display luminance of the liquid crystal display panel 10 (see FIG. 8) (see FIG. 11A).
  • the liquid crystal display device 1 in the configuration of the liquid crystal display device 1 described above, an operation of inverting the polarity at a predetermined period is performed in one frame period.
  • the liquid crystal display device of the present invention is not limited to this, and the frame frequency and the polarity The inversion period may be the same.
  • the pulse width of the PWM signal may be set based on the polarity inversion period.
  • FIG. 12 is a block diagram illustrating an overall configuration of a liquid crystal display device 1a according to the first modification.
  • FIG. 13 is a block diagram showing the relationship between the liquid crystal display panel 10 and the backlight 70 in the liquid crystal display device 1a shown in FIG.
  • the charge amount detection unit 10a is added to the liquid crystal display panel 10 as compared with the liquid crystal display device 1 described above.
  • the charge amount detection unit 10 a detects the pixel charge amount in the in-memory data MD held in the memory circuit MR, and gives the detection result to the PWM signal generation unit 22 of the display control circuit 20. For example, the charge amount detection unit 10a detects the amount of decrease in charge with respect to the amount of charge at the time of data writing in the memory circuit MR.
  • the PWM signal generation unit 22 determines the pulse width of the PWM signal based on the detection result (charge reduction amount) acquired from the charge amount detection unit 10a.
  • the display brightness of the liquid crystal display panel 10 can be made more uniform.
  • the frame frequency can be set regardless of the backlight luminance.
  • the frame frequency may be set lower than in the past, or may be changed without being a constant value. Thereby, power consumption can be further reduced.
  • liquid crystal display device (hereinafter simply referred to as “liquid crystal display device”) including a DRAM type memory circuit will be described below.
  • liquid crystal display device including a DRAM type memory circuit
  • FIG. 14 is a block diagram showing an overall configuration of the liquid crystal display device 2 according to the present embodiment.
  • the liquid crystal display device 2 includes a liquid crystal display panel 10b, a display control circuit 20, and a backlight 70 (see FIG. 2).
  • the liquid crystal display panel 10b includes a gate driver / CS driver 80 (scanning signal line driving circuit / holding capacity wiring driving circuit), a control signal buffer circuit 90, a driving signal generation circuit / video signal generation circuit 100, a demultiplexer 110, and A display unit 120 is included.
  • the display unit 120 includes a source bus line (data signal line) SL, a gate bus line (scanning signal line) GL, a CS line (holding capacitor line) CSL, a data transfer control line (data transfer line) DT, and a refresh output control line. (Refresh line) RC and output signal line vd are included.
  • the source bus line SL is connected to the demultiplexer 110
  • the gate bus line GL and the CS line CSL are connected to the gate driver / CS driver 80
  • the data transfer control line DT and the refresh output control line RC are controlled signal buffer circuits. 90.
  • the display unit 120 includes a plurality of pixels provided corresponding to the intersections of the gate bus line GL and the source bus line SL.
  • Each pixel includes a pixel electrode for applying a voltage corresponding to an image to be displayed to the liquid crystal capacitor, a common electrode that is a common electrode provided in common to the plurality of pixels, and a gap between the pixel electrode and the common electrode. And a liquid crystal layer sandwiched between the two.
  • a storage capacitor is added in parallel with the liquid crystal capacitor formed by the pixel electrode and the common electrode.
  • the display unit 120 includes one bit for each display pixel including three pixels (R pixel, G pixel, and B pixel) for R (red), G (green), and B (blue).
  • a memory circuit MR is provided as a memory circuit capable of holding data.
  • the display pixel further includes a W pixel, a Y pixel, and the like, and may be composed of four or more pixels.
  • the liquid crystal display device 2 is a normally white type.
  • the driving method can be switched between the “normal operation mode” and the “memory operation mode”.
  • the display control circuit 20 receives image data DAT and an operation mode selection signal M sent from the outside, receives a digital video signal DV, a source start pulse signal SSP and a source clock signal SCK for controlling image display on the display unit 120. And a latch strobe signal LS. In addition, the display control circuit 20 supplies the PWM signal (drive signal) generated by the PWM signal generation unit 22 to the backlight 70.
  • the backlight 70 is composed of, for example, an LED (Light Emitting Diode), and is provided on the back side of the liquid crystal display panel 10b.
  • LED Light Emitting Diode
  • the drive signal generation circuit / video signal generation circuit 100 is a control drive circuit for performing image display (normal operation) and memory operation, and not only the timing used for the memory operation but also the source start pulse signal used for the normal operation. It can also serve as a circuit for generating timings such as SSP, source clock signal SCK, latch strobe signal LS, gate start pulse signal GSP, and gate clock signal GCK.
  • the drive signal generation circuit / video signal generation circuit 100 outputs a multi-grayscale video signal from the video output terminal in the normal operation mode (memory circuit non-operation), and the source bus line SL via the output signal line vd and the demultiplexer 110. Drive.
  • the drive signal generation circuit / video signal generation circuit 100 simultaneously outputs a signal s1 for driving and controlling the gate driver / CS driver 80. As a result, image data is written to each pixel, and multi-gradation display is performed.
  • the drive signal generation circuit / video signal generation circuit 100 sends image data held in the pixel from the video output terminal to the source bus line SL via the output signal line vd and the demultiplexer 110 during the memory operation.
  • a signal s2 for driving and controlling the gate driver / CS driver 80 and a signal s3 for driving and controlling the control signal buffer circuit 90 are output.
  • the image data is written to the pixel and displayed and held, or the image data held in the pixel is read out.
  • Image data output from the video output terminal to the output signal line vd (k) by the drive signal generation circuit / video signal generation circuit 100 in the memory operation mode is represented by a first potential level and a second potential level. It is a binary level.
  • the display control circuit 20 may be included in the drive signal generation circuit / video signal generation circuit 100.
  • the demultiplexer 110 distributes the image data output to the output signal line vd to the corresponding source bus line SL for output.
  • the drive signal generation circuit / video signal generation circuit 100 and the demultiplexer 110 also have a function as a general source driver (data signal line drive circuit). Hereinafter, it is also referred to as a source driver as necessary.
  • the above operation is a driving method commonly called CS driving, and a liquid crystal capacitor formed by a pixel electrode for realizing liquid crystal display and a common electrode (COM) facing the liquid crystal via the liquid crystal, and a pixel
  • a storage capacitor (auxiliary capacitor) formed by a pixel electrode and a CS line (storage capacitor line) CSL is driven independently.
  • a driving method in which the line CSL has the same potential and the changing timing is the same and a driving method in which the common electrode COM and the CS line CSL have different potentials but the changing timing is the same.
  • the memory operation of the liquid crystal display device 2 having the memory circuit MR will be described together with the configuration of the memory circuit MR.
  • the data signal potential (image data) written in the pixel is held by the memory circuit MR, and display is performed while performing the refresh operation in the data holding period.
  • FIG. 15 is an equivalent circuit diagram showing a configuration of the memory circuit MR according to the liquid crystal display device 2.
  • the memory circuit MR includes a switch circuit SW, a first data holding unit DS1, a data transfer unit TS, a second data holding unit DS2, and a refresh output control unit RS.
  • the switch circuit SW includes a transistor N1 (first transistor) that is an N-channel TFT.
  • the first data holding unit DS1 includes a capacitor Ca (first holding capacitor).
  • the data transfer unit TS includes a transistor N2 (second transistor) which is an N-channel TFT as a transfer element.
  • the second data holding unit DS2 includes a capacitor Cb (second holding capacitor).
  • the refresh output control unit RS includes a transistor N3 (fourth transistor) that is an N-channel TFT and a transistor N4 (third transistor) that is an N-channel TFT.
  • the capacitance Ca is set so that the capacitance value is larger than the capacitance Cb.
  • all transistors are N-channel TFTs (field effect transistors).
  • gate bus line GL data transfer control line DT, refresh output control line RC, source bus line SL, and CS line CSL are provided as signal lines for driving each memory circuit MR.
  • the gate terminal (control terminal) of the transistor N1 is connected to the gate bus line GL
  • the source terminal of the transistor N1 is connected to the source bus line SL
  • the drain terminal of the transistor N1 is a node PIX (holding node) that is one end of the capacitor Ca. It is connected to the.
  • the other end of the capacitor Ca is connected to the CS line CSL.
  • the gate terminal of the transistor N2 is connected to the data transfer control line DT, the source terminal of the transistor N2 is connected to the node PIX, and the drain terminal of the transistor N2 is connected to a node MRY (holding node) that is one end of the capacitor Cb. .
  • the other end of the capacitor Cb is connected to the CS line CSL.
  • the gate terminal of the transistor N3 is connected to the node MRY as the input terminal IN of the refresh output control unit RS, the source terminal of the transistor N3 is connected to the data transfer control line DT, and the drain terminal of the transistor N3 is connected to the source terminal of the transistor N4.
  • the gate terminal of the transistor N4 is connected to the refresh output control line RC, and the drain terminal of the transistor N4 is connected to the node PIX as the output terminal OUT of the refresh output control unit RS. That is, the transistor N3 and the transistor N4 are connected in series so that the transistor N3 is arranged on the input side of the refresh output control unit RS between the input of the refresh output control unit RS and the output of the refresh output control unit RS. It is connected to the. Note that the connection positions of the transistors N3 and N4 may be interchanged, and the transistors N3 and N4 are connected in series between the input of the refresh output control unit RS and the output of the refresh output control unit RS. It only has to be connected to.
  • the refresh output control unit RS When the transistor N4 is in the ON state, the refresh output control unit RS is controlled to perform the first operation, and when the transistor N4 is in the OFF state, the refresh output control unit RS performs the second operation. Controlled. Since the transistor N3 is an N-channel type, when the refresh output control unit RS performs the first operation, the control information that is in the active state, that is, the active level is High, and the control information that is in the inactive state, that is, inactive The level is Low.
  • the first operation is performed to the refresh output control unit RS in accordance with control information indicating whether the binary level held in the second data holding unit DS2 is the first potential level or the second potential level. This is an operation to select whether to enter an active state in which the first data holding unit DS1 is supplied as an output of the refresh output control unit RS or to be in an inactive state in which the output of the refresh output control unit RS is stopped .
  • the second operation is an operation to stop the output of the refresh output control unit RS regardless of the control information.
  • a liquid crystal capacitor Clc is connected between the node PIX and the counter electrode (common electrode) COM.
  • FIG. 16 is a block diagram schematically showing the configuration of the memory circuit MR.
  • the memory circuit MR includes a switch circuit SW, a first data holding unit DS, a data transfer unit TS, a second data holding unit DS2, a refresh output control unit RS, and a supply source VS.
  • the memory circuit MR is also provided with a data input line IN corresponding to the source bus line SL, a switch control line SC corresponding to the gate bus line GL, a data transfer control line DT, and a refresh output control line RC. .
  • the switch circuit SW is selectively turned on and off between the data input line IN and the first data holding unit DS1 by being driven by the gate driver / CS driver 80 via the switch control line SC.
  • the first data holding unit DS1 holds a binary level input to the first data holding unit DS1.
  • the data transfer unit TS is driven by the control signal buffer circuit 90 via the data transfer control line DT, whereby the first data holding unit DS1 holds the binary level held in the first data holding unit DS1.
  • the transfer operation for transferring to the second data holding unit DS2 as it is and the non-transfer operation for not performing the transfer operation are selectively performed. Since the signal supplied to the data transfer control line DT is common to all the memory circuits MR, the data transfer control line DT is not necessarily provided for each row and driven by the control signal buffer circuit 90. It may be driven by the signal generation circuit / video signal generation circuit 100 or others.
  • the second data holding unit DS2 holds the binary level input to the second data holding unit DS2.
  • the refresh output control unit RS is selectively controlled to be in a state of performing the first operation or a state of performing the second operation by being driven by the control signal buffer circuit 90 via the refresh output control line RC. Since the signal supplied to the refresh output control line RC is common to all the memory circuits MR, the refresh output control line RC is not necessarily provided for each row and driven by the control signal buffer circuit 90. It may be driven by the signal generation circuit / video signal generation circuit 100 or others.
  • the supply source VS supplies a set potential to the input of the refresh output control unit RS.
  • FIG. 17 and 18 show the data write operation of the memory circuit MR.
  • each row of the display unit 120 is driven (scanned) in a line sequential manner. Therefore, the writing period T1 is determined for each row, and the writing period T1 for i rows is denoted as T1i.
  • the gate signal line GL (i), the data transfer control line DT (i), and the refresh output control line RC (i) are sent from the control signal buffer circuit 90 to High (active level) and Low (non-active).
  • a binary level potential consisting of (active level) is applied.
  • the binary level High potential and Low potential may be set individually for each of the above lines.
  • the source bus line SL (j) has a binary level consisting of High and Low lower than the High potential of the gate bus line GL (i) from the drive signal generation circuit / video signal generation circuit 100 via the demultiplexer 110. Is output.
  • the high potential of the data transfer control line DT (i) is equal to either the high potential of the source bus line SL (j) or the high potential of the gate bus line GL (i), and the data transfer control line DT (i) Is equal to the low potential of the binary level.
  • the potential (CS potential) supplied by the CS line CSL (i) is constant. Note that i and j are integers of 1 or more.
  • a write period T1i (normal operation mode) and a refresh period T2 (memory operation mode) are provided.
  • the writing period T1i starts from a time twi determined for each row.
  • the refresh period T2 is started simultaneously from the time tr for all the rows after the data writing to the memory circuits MR for all the rows is completed.
  • the writing period T1i is a period in which data to be held in the memory circuit MR is written, and is composed of a period t1i and a period t2i that are successively arranged.
  • the refresh period T2 is a period in which data written in the memory circuit MR is held while being refreshed, and has a period t3 to a period t14 that are successively arranged.
  • the potentials of the gate bus line GL (i) and the data transfer control line DT (i) are both High.
  • the potential of the refresh output control line RC (i) is Low.
  • the transistors N1 and N2 are turned on, so that the switch circuit SW is in a conductive state, the data transfer unit TS is in a transfer operation state, and the first potential level supplied to the source bus line SL (j) at the node PIX. (Here, “High”) is written.
  • the potential of the gate bus line GL (i) becomes Low, while the potential of the data transfer control line DT (i) remains High.
  • the potential of the refresh output control line RC (i) is Low.
  • the transistor N1 is turned off, so that the switch circuit SW is turned off.
  • the data transfer unit TS maintains the transfer operation state. Accordingly, the first potential level is transferred from the node PIX to the node MRY, and the nodes PIX and MRY are disconnected from the source bus line SL (j).
  • the refresh period T2 starts.
  • the potential of the source bus line SL (j) is set to High, which is the first potential level.
  • the gate bus line GL (i), the data transfer control line DT (i), and the refresh output control line RC (i) are driven as described below for all rows. In other words, all memory circuits MR are refreshed all at once (hereinafter, this may be referred to as “all refresh operation”).
  • the transistor N2 is turned off, so that the data transfer unit TS performs a non-transfer operation, and the node PIX and the node MRY are separated from each other. Both the node PIX and the node MRY hold High.
  • the potential of the gate bus line GL (i) becomes High
  • the potential of the data transfer control line DT (i) continues to be Low
  • the potential of the refresh output control line RC (i) continues to be Low. Accordingly, since the transistor N1 is turned on, the switch circuit SW is turned on, and the high potential is again written from the source bus line SL (j) to the node PIX.
  • the potential of the gate bus line GL (i) is kept low, the potential of the data transfer control line DT (i) is kept low, and the potential of the refresh output control line RC (i) becomes High.
  • the transistor N4 is turned on, and the refresh output control unit RS performs the first operation.
  • the transistor N3 is in the ON state, so that the refresh output control unit RS is in the active state, and the data transfer control line DT (i) is connected to the node PIX via the transistors N3 and N4. A low potential is supplied.
  • the potential of the gate bus line GL (i) is kept low, the potential of the data transfer control line DT (i) is high, and the potential of the refresh output control line RC (i) is kept low.
  • the transistor N2 is turned on, so that the data transfer unit TS is in a transfer operation state.
  • charge movement occurs between the capacitor Ca and the capacitor Cb, and the potentials of both the node PIX and the node MRY become Low.
  • the potential of the node PIX rises by a slight voltage ⁇ Vx due to the transfer of positive charges from the capacitor Cb to the capacitor Ca via the transistor N2, but is within the low potential range.
  • This period t8 is a period in which the refreshed binary data is held by both the first data holding unit DS1 and the second data holding unit DS2 connected to each other via the data transfer unit TS, and is set to be long. Is possible.
  • the potential of the gate bus line GL (i) is kept low, the potential of the data transfer control line DT (i) is low, and the potential of the refresh output control line RC (i) is kept low.
  • the transistor N2 is turned off, so that the data transfer unit TS performs a non-transfer operation, and the node PIX and the node MRY are separated from each other. Both the node PIX and the node MRY hold Low.
  • the potential of the gate bus line GL (i) becomes Low
  • the potential of the data transfer control line DT (i) continues Low
  • the potential of the refresh output control line RC (i) continues Low. Accordingly, since the transistor N1 is turned off, the switch circuit SW is turned off, and the node PIX is disconnected from the source bus line SL (j) and holds High.
  • the potential of the gate bus line GL (i) is kept low, the potential of the data transfer control line DT (i) is kept low, and the potential of the refresh output control line RC (i) becomes High.
  • the refresh output control unit RS is in a state of performing the first operation. Since the transistor N3 is in the OFF state because the potential of the node MRY is Low, the refresh output control unit RS is in an inactive state and the output is stopped. Therefore, the node PIX remains holding High.
  • the potential of the gate bus line GL (i) is kept low, the potential of the data transfer control line DT (i) is kept low, and the potential of the refresh output control line RC (i) is low.
  • the transistor N4 is turned off, so that the refresh output control unit RS is in a state of performing the second operation, and the node PIX holds High.
  • the potential of the gate bus line GL (i) is kept low, the potential of the data transfer control line DT (i) is high, and the potential of the refresh output control unit RS is kept low.
  • the transistor N2 is turned on, so that the data transfer unit TS is in a transfer operation state.
  • charge movement occurs between the capacitor Ca and the capacitor Cb, and the potentials of both the node PIX and the node MRY become High.
  • the potential of the node PIX decreases by a slight voltage ⁇ Vy due to the transfer of positive charge from the capacitor Ca to the capacitor Cb through the transistor N2, but is within the High potential range.
  • This period t14 is a period in which the refreshed binary data is held by both the first data holding unit DS1 and the second data holding unit DS2 connected to each other via the data transfer unit TS, and is set to be long. Is possible.
  • the potential of the node PIX is High in the periods t1i to t5 and the periods t10 to t14, and is Low in the periods t6 to t9.
  • the potential of the node MRY is High in the periods t1i to t7 and t14. , And becomes Low during the period t8 to the period t13.
  • a command for all refresh operations may be generated not by an external signal but by a clock generated internally by an oscillator or the like. By doing so, there is an advantage that it is not necessary for the external system to input a refresh command at regular intervals, and a flexible system can be constructed.
  • a dynamic memory circuit using the memory circuit MR it is not necessary to perform all refresh operations by scanning each gate bus line GL (i), and can be performed collectively on the entire array.
  • the dynamic memory circuit it is possible to reduce peripheral circuits necessary for refreshing while destructively reading the potential of the source bus line SL (j).
  • the potential of the node PIX is Low in the periods t1i to t3 and the periods t12 to t14, and is High in the periods t4 to t11, and the potential of the node MRY is Low in the periods t1i to t7 and the period t14. It becomes High from t8 to period t13.
  • the liquid crystal capacitance Clc in FIG. 15 is a capacitance in which a liquid crystal layer is disposed between the node PIX and the common electrode COM. That is, the node PIX is connected to the pixel electrode.
  • the capacitor Ca also functions as a pixel holding capacitor.
  • the transistor N1 constituting the switch circuit SW also functions as a pixel selection element.
  • the common electrode (counter electrode) COM is provided on the counter substrate facing the matrix substrate on which the circuits constituting the memory circuit MR of FIG. 15 are formed. However, the common electrode COM may be on the same substrate as the matrix substrate.
  • the capacitor Ca may function as a storage capacitor by fixing the potential of the data transfer control line DT (i) to Low, or the potential of the data transfer control line DT (i) is set to High.
  • the capacitor Ca and the capacitor Cb may be combined to function as a storage capacitor.
  • the potential of the refresh output control line RC (i) is fixed to Low and the transistor N4 is held in the OFF state, or the potential of the data transfer control line DT (i) is set to be in the OFF state.
  • the potential of the data transfer control line DT (i) can be prevented from affecting the display gradation of the liquid crystal capacitor Clc determined by the charge accumulated in the first data holding section DS1.
  • the same display performance as that of a liquid crystal display device having no memory function can be realized.
  • the potential Vcom of the counter electrode COM is set so that the potential difference between the pixel potential during positive polarity driving and the counter potential Vcom is equal to the potential difference between the pixel potential during negative polarity driving and the counter potential Vcom ( Optimal counter potential).
  • the potential of the common electrode COM is driven so as to invert between High and Low every time the transistor N1 is turned on.
  • the potential of the common electrode COM is low. If the potential of the node PIX is low, the black display is positive, and if the potential of the node PIX is high, the white display is positive. If the potential of the common electrode COM is high and the potential of the node PIX is low, If the negative white display, and the potential of the node PIX is High, the black display is negative.
  • the liquid crystal is driven so that the direction of the liquid crystal applied voltage is reversed while maintaining the display gradation substantially, and the effective value of the liquid crystal applied voltage is constant positive and negative.
  • the AC driving of the liquid crystal becomes possible.
  • the potential (binary value) of the common electrode COM can be configured to be larger than the minimum value of the data signal potential and smaller than the maximum value of the data signal potential. Further, the potential of the common electrode COM may be set to a constant value.
  • the liquid crystal display device 2 can have both functions of the multi-color gradation display mode and the monochrome gradation display (halftone display) mode.
  • a circuit such as an amplifier for displaying a multi-tone image in the video signal generation circuit and a data supply operation can be stopped. Low power consumption can be realized.
  • the potential pixel potential
  • the data polarity can be inverted within the pixel, it is not necessary to rewrite the data while charging / discharging the inverted data in the source bus line SL, so that power consumption can be reduced.
  • the pixel charge amount (pixel potential) of the in-memory data MD held in the memory circuit gradually decreases due to natural discharge (leakage).
  • the transmittance of the liquid crystal display panel 10b is lowered.
  • the transmittance decreased in the N frame returns to the original transmittance when the pixel charge amount is increased (charged) by the writing operation in the next N + 1 frame.
  • the liquid crystal display device 2 according to the present embodiment has a configuration that compensates for the decrease in transmittance due to the discharge by increasing the backlight luminance, as in the liquid crystal display device 1 according to the first embodiment. is doing.
  • the display luminance of the liquid crystal display panel 10b changes according to the pixel charge amount and the backlight luminance, as shown in FIG. 9, the display luminance decrease due to the decrease in the pixel charge amount is reduced to the backlight luminance.
  • the display brightness of the liquid crystal display panel 10b is kept constant by compensating for the increase in display brightness caused by the increase in the display brightness. Thereby, flicker can be suppressed.
  • flicker since it is not necessary to increase the frame frequency, an increase in power consumption can be prevented. A specific configuration will be described below.
  • the display control circuit 20 includes a PWM signal generation unit 22 as shown in FIG.
  • the PWM signal generation unit 22 generates a PWM signal for displaying the target luminance based on the amount of change (decrease amount) in the luminance of the liquid crystal display panel 10b due to natural discharge.
  • the amount of decrease in the luminance of the liquid crystal display panel 10b can be calculated in advance based on the frame frequency, a desired PWM signal corresponding to the calculated amount of decrease in luminance can be generated.
  • it can be realized by a configuration in which the frame frequency set in the liquid crystal display panel 10b and the pulse width (or duty ratio) of the PWM signal are associated with a table in advance.
  • the PWM signal generation unit 22 supplies the generated PWM signal to the backlight 70 in synchronization with the timing of the frame period.
  • FIG. 11D shows a change in the PWM signal generated by the PWM signal generation unit 22.
  • the pulse width of the PWM signal increases as the pixel charge amount decreases, thereby increasing the luminance of the backlight.
  • By supplying such a PWM signal to the backlight 70 it is possible to compensate and equalize the decrease in display luminance (see FIG. 8) of the liquid crystal display panel 10b (see FIG. 11 (a)).
  • the PWM signal generation unit 22 of the present liquid crystal display device 2 may be configured to calculate the amount of decrease in luminance of the liquid crystal display panel 10b based on the period of the refresh operation. Thereby, a desired PWM signal can be generated according to the calculated amount of decrease in luminance. For example, it can be realized by a configuration in which the refresh operation cycle set in the liquid crystal display panel 10b and the pulse width (or duty ratio) of the PWM signal are associated with a table in advance. The PWM signal generation unit 22 supplies the generated PWM signal to the backlight 70 in synchronization with the timing of the refresh operation cycle.
  • charge amount detection unit 10a (see FIG. 13) shown in the first modification may be added to the liquid crystal display device 2.
  • the luminance of the backlight can be increased by widening the pulse width of the drive signal for driving the backlight.
  • backlight brightness can be adjusted with a simple configuration.
  • the pulse width of the drive signal may be set based on the frame frequency.
  • the drive signal is preferably a PWM signal.
  • a charge amount detection unit for detecting the amount of charge held in the pixel may be determined based on the charge amount detected by the charge amount detection unit.
  • the frame frequency can be set regardless of the backlight luminance.
  • the frame frequency may be set lower than in the past, or may be changed without being a constant value. Thereby, power consumption can be further reduced.
  • the drive signal is a PWM signal
  • the PWM signal has a pulse width that increases as the amount of charge held in the pixel decreases. It can also be.
  • each pixel is provided with a memory circuit that holds image data, and an image is displayed based on the image data held in the memory circuit.
  • the above configuration can be applied to a memory type liquid crystal display device.
  • the liquid crystal display device may be configured to perform a refresh operation during a data holding period after writing image data.
  • the liquid crystal display device may be configured to perform a refresh operation while inverting the polarity of the image data held in the memory circuit.
  • the normal operation mode in which display is performed based on the image data supplied through the data signal line, and the memory operation in which display is performed based on the image data held in the memory circuit It is also possible to adopt a configuration including a mode.
  • the liquid crystal display device of the present invention can be suitably used for a liquid crystal display device provided with a memory circuit.

Abstract

A liquid crystal display device is provided with a liquid crystal display panel for displaying an image and a backlight for applying light to the liquid crystal display panel. The brightness of the backlight is increased so as to compensate for a decrease in the display brightness of the liquid crystal display panel due to the discharge of electric charge retained in a pixel. Consequently, flicker in the display of the liquid crystal display panel can be suppressed without an increase in power consumption.

Description

液晶表示装置及びその駆動方法Liquid crystal display device and driving method thereof
 本発明は、液晶表示装置及びその駆動方法に関するものである。 The present invention relates to a liquid crystal display device and a driving method thereof.
 近年、液晶表示装置には、画素に書き込まれた画像データを画素内のメモリ回路に保持して表示を行う液晶表示装置(以下、メモリ型液晶表示装置と称す)が提案されている(特許文献1等)。多階調の動画を表示する通常動作においては、データ信号線を介して画素に1フレームごとに新しい画像データに書き換えて表示を行う一方、静止画を表示するメモリ動作においては、書き換え用の画像データを供給することなく、メモリ回路に保持した画像データを用いて表示を行う。 In recent years, a liquid crystal display device (hereinafter referred to as a memory-type liquid crystal display device) that performs display by holding image data written in a pixel in a memory circuit in the pixel has been proposed as a liquid crystal display device (Patent Literature). 1). In a normal operation for displaying a multi-gradation moving image, a new image data is rewritten on a pixel-by-frame basis through a data signal line for display. On the other hand, in a memory operation for displaying a still image, a rewrite image is displayed. Display is performed using image data held in the memory circuit without supplying data.
 そのため、メモリ動作においては、走査信号線およびデータ信号線を駆動する駆動回路の動作を停止させることが可能になるため、消費電力を大幅に削減することができる。したがって、メモリ動作は、携帯電話の待ち受け画面表示などの低消費電力化の要求が強い画像表示の際によく用いられる。 Therefore, in the memory operation, the operation of the drive circuit that drives the scanning signal line and the data signal line can be stopped, so that power consumption can be greatly reduced. Therefore, the memory operation is often used for image display that is strongly demanded to reduce power consumption, such as a standby screen display of a mobile phone.
 特許文献1の液晶表示装置では、1画素ごとに1つのメモリ回路(図19のDM18)が設けられており、各メモリ回路に保持された画像データにより静止画表示を行う構成を有している。 In the liquid crystal display device of Patent Document 1, one memory circuit (DM18 in FIG. 19) is provided for each pixel, and a still image display is performed using image data held in each memory circuit. .
日本国公開特許公報「特開2002-229532号公報(2002年8月16日公開)」Japanese Patent Publication “JP 2002-229532 A (published on August 16, 2002)”
 このようなメモリ型液晶表示装置では、一般に、低消費電力化を実現するためにフレーム周波数(フレームレート)を低く設定している。しかし、フレーム周波数が低いと、図8に示すように、メモリ回路に保持されているメモリ回路内データの画素電荷量(画素電位)が、自然放電(リーク)により徐々に低下し、液晶表示パネルの透過率の低下に繋がる。そして、Nフレームにおいて低下した透過率は、次のN+1フレームにおける書き込み動作により、画素電荷量が上昇する(充電される)ことにより元の透過率に戻る。このような透過率の低下および上昇を繰り返すことにより、表示画面における輝度(表示輝度、表面輝度)が周期的に変化し、フリッカが視認されるという問題が生じる。 In such a memory type liquid crystal display device, the frame frequency (frame rate) is generally set low in order to realize low power consumption. However, when the frame frequency is low, as shown in FIG. 8, the pixel charge amount (pixel potential) of the data in the memory circuit held in the memory circuit gradually decreases due to natural discharge (leakage), and the liquid crystal display panel Leading to a decrease in the transmittance. Then, the transmittance decreased in the N frame returns to the original transmittance as the pixel charge amount increases (charges) by the writing operation in the next N + 1 frame. By repeating such a decrease and increase in the transmittance, the luminance (display luminance, surface luminance) on the display screen changes periodically, causing a problem that flicker is visually recognized.
 そこで、画素電荷量の低下を防ぐために、フレーム周波数を高くすることが考えられる。しかし、この方法では、消費電力が増大し、メモリ型液晶表示装置の本来の利点が失われてしまう。なお、このようなフリッカの問題は、メモリ回路を備えていない通常の液晶表示装置においても起こり得る。 Therefore, it is conceivable to increase the frame frequency in order to prevent a decrease in the pixel charge amount. However, this method increases power consumption and loses the original advantages of the memory type liquid crystal display device. Such a flicker problem may also occur in a normal liquid crystal display device that does not include a memory circuit.
 本発明は、上記従来の問題点に鑑みなされたものであり、その目的は、消費電力を増大させることなく、液晶表示パネルにおける表示のフリッカを抑制できる液晶表示装置及びその駆動方法を提供することにある。 The present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a liquid crystal display device and a driving method thereof that can suppress display flicker in a liquid crystal display panel without increasing power consumption. It is in.
 本発明に係る液晶表示装置およびその駆動方法は、上記の課題を解決するために、
 画像を表示する液晶表示パネルと、該液晶表示パネルに光を照射するバックライトとを備え、
 画素に保持される電荷の放電に起因する上記液晶表示パネルにおける表示輝度の低下分を補償するように、上記バックライトの輝度を高めることを特徴とする。
In order to solve the above problems, a liquid crystal display device and a driving method thereof according to the present invention are provided.
A liquid crystal display panel for displaying an image, and a backlight for irradiating the liquid crystal display panel with light;
The luminance of the backlight is increased so as to compensate for a decrease in display luminance in the liquid crystal display panel due to discharge of charges held in the pixels.
 液晶表示パネルの表示輝度(表面輝度)は、画素電荷量およびバックライト輝度に応じて変化するため、画素電荷量の低下に起因する表示輝度の低下分を、バックライト輝度の増加に起因する表示輝度の増加分で補償することにより、液晶表示パネルの表示輝度を一定に維持することができる。これにより、フリッカを抑制することができる。また、フレーム周波数を高くする必要がないため、消費電力の増大を防ぐこともできる。 Since the display luminance (surface luminance) of the liquid crystal display panel changes according to the pixel charge amount and the backlight luminance, the display luminance decrease due to the decrease in the pixel charge amount is displayed by the increase in the backlight luminance. By compensating for the increase in luminance, the display luminance of the liquid crystal display panel can be maintained constant. Thereby, flicker can be suppressed. In addition, since it is not necessary to increase the frame frequency, an increase in power consumption can be prevented.
 以上のように、本発明に係る液晶表示装置及びその駆動方法では、画像を表示する液晶表示パネルと、該液晶表示パネルに光を照射するバックライトとを備え、画素に保持される電荷の放電に起因する上記液晶表示パネルにおける表示輝度の低下分を補償するように、上記バックライトの輝度を高める構成である。これにより、消費電力を増大させることなく、液晶表示パネルにおける表示のフリッカを抑制できる。 As described above, in the liquid crystal display device and the driving method thereof according to the present invention, the liquid crystal display panel that displays an image, and the backlight that irradiates the liquid crystal display panel with light, and discharge of charges held in the pixels. In this configuration, the luminance of the backlight is increased so as to compensate for a decrease in display luminance in the liquid crystal display panel due to the above. Accordingly, display flicker in the liquid crystal display panel can be suppressed without increasing power consumption.
実施の形態1に係る液晶表示装置の全体構成を示すブロック図である。1 is a block diagram illustrating an overall configuration of a liquid crystal display device according to Embodiment 1. FIG. 図1の液晶表示装置における液晶表示パネルおよびバックライトの概略構成を示す断面図である。FIG. 2 is a cross-sectional view illustrating a schematic configuration of a liquid crystal display panel and a backlight in the liquid crystal display device of FIG. 1. R画素、G画素、およびB画素の3つの画素からなる表示画素の画素領域に形成される回路の構成を示す等価回路図である。It is an equivalent circuit diagram showing a configuration of a circuit formed in a pixel region of a display pixel composed of three pixels of an R pixel, a G pixel, and a B pixel. 図1の液晶表示装置におけるメモリ回路の詳細な構成を示す等価回路図である。FIG. 2 is an equivalent circuit diagram illustrating a detailed configuration of a memory circuit in the liquid crystal display device of FIG. 1. (a)~(h)は、1行目、2行目、3行目、m行目のゲートバスラインGL1、GL2、GL3、GLm、および1行目、2行目、3行目、m行目のメモリ駆動選択ラインSEL1、SEL2、SEL3、SELmの信号波形図である。(A) to (h) are the first, second, third, and mth gate bus lines GL1, GL2, GL3, and GLm, and the first, second, third, and m lines. It is a signal waveform diagram of the memory drive selection lines SEL1, SEL2, SEL3, and SELm in the row. 図4のメモリ回路おけるメモリ内データMDの値が「1」である表示画素について黒表示を行う場合の信号波形図である。FIG. 5 is a signal waveform diagram in the case where black display is performed for a display pixel whose value of in-memory data MD is “1” in the memory circuit of FIG. 4. 図4のメモリ回路おけるメモリ内データMDの値が「0」である表示画素について白表示を行う場合の信号波形図である。FIG. 5 is a signal waveform diagram when white display is performed for a display pixel in which the value of in-memory data MD is “0” in the memory circuit of FIG. 4. 従来のメモリ型液晶表示装置におけるメモリ回路に保持されているメモリ内データの画素電荷量の変化、および、このときの液晶表示パネルの透過率の低下を模式的に示す図である。It is a figure which shows typically the change of the pixel charge amount of the data in the memory hold | maintained at the memory circuit in the conventional memory type liquid crystal display device, and the fall of the transmittance | permeability of the liquid crystal display panel at this time. 実施の形態1に係る液晶表示装置の画素電荷量およびバックライト輝度の変化の様子を模式的に示す図である。FIG. 3 is a diagram schematically showing changes in pixel charge amount and backlight luminance of the liquid crystal display device according to the first embodiment. 図1に示した液晶表示装置における、液晶表示パネルとバックライトとの関係を示すブロック図である。FIG. 2 is a block diagram showing a relationship between a liquid crystal display panel and a backlight in the liquid crystal display device shown in FIG. 1. 図9にPWM信号を加えた図である。It is the figure which added the PWM signal to FIG. 変形例1に係る液晶表示装置の全体構成を示すブロック図である。FIG. 11 is a block diagram illustrating an overall configuration of a liquid crystal display device according to Modification Example 1. 図12に示した液晶表示装置における、液晶表示パネルとバックライトとの関係を示すブロック図である。FIG. 13 is a block diagram illustrating a relationship between a liquid crystal display panel and a backlight in the liquid crystal display device illustrated in FIG. 12. 実施の形態2に係る液晶表示装置の全体構成を示すブロック図である。FIG. 6 is a block diagram illustrating an overall configuration of a liquid crystal display device according to a second embodiment. 図14の液晶表示装置におけるメモリ回路の詳細な構成を示す等価回路図である。FIG. 15 is an equivalent circuit diagram illustrating a detailed configuration of a memory circuit in the liquid crystal display device of FIG. 14. 図14の液晶表示装置におけるメモリ回路の構成を模式的に示すブロック図である。FIG. 15 is a block diagram schematically showing a configuration of a memory circuit in the liquid crystal display device of FIG. 14. 図14の液晶表示装置におけるメモリ回路の書き込み動作を示すタイミングチャートである。15 is a timing chart showing a writing operation of a memory circuit in the liquid crystal display device of FIG. 図14の液晶表示装置におけるメモリ回路の書き込み動作を示すタイミングチャートである。15 is a timing chart showing a writing operation of a memory circuit in the liquid crystal display device of FIG. 従来の液晶表示装置における画素の等価回路図である。It is the equivalent circuit schematic of the pixel in the conventional liquid crystal display device.
 〔実施の形態1〕
 本発明の一実施の形態について図面を用いて説明する。なお、以下では、メモリ回路(特にSRAM型)を備えた液晶表示装置(以下、単に「液晶表示装置」という。)を例に挙げて説明するが、本発明の液晶表示装置は、これに限定されるものではなく、メモリ回路を備えていない通常の液晶表示装置も含まれる。
[Embodiment 1]
An embodiment of the present invention will be described with reference to the drawings. Hereinafter, a liquid crystal display device (hereinafter, simply referred to as “liquid crystal display device”) including a memory circuit (in particular, SRAM type) will be described as an example. However, the liquid crystal display device of the present invention is not limited to this. However, a normal liquid crystal display device that does not include a memory circuit is also included.
 本実施の形態に係る液晶表示装置は、画素に書き込まれた画像データを画素内のメモリ回路に保持して、データ保持期間に、メモリ回路に保持された画像データにより表示を行うメモリ型液晶表示装置であり、例えば、携帯電話の動作時の画面表示等に用いられる多色(多階調)表示モード(通常動作モード)と、携帯電話の待ち受け時の画面表示等に用いられるメモリ動作モードとを切り替えて動作する。なお、本液晶表示装置は、メモリ動作モードのみにより表示を行う液晶表示装置も含まれる。 The liquid crystal display device according to this embodiment holds image data written in a pixel in a memory circuit in the pixel and performs display using the image data held in the memory circuit during a data holding period. For example, a multi-color (multi-gradation) display mode (normal operation mode) used for screen display during operation of a mobile phone, and a memory operation mode used for screen display during standby of a mobile phone, etc. Switch to operate. The present liquid crystal display device also includes a liquid crystal display device that performs display only in the memory operation mode.
 また、本液晶表示装置は、液晶表示パネルの背面側に設けられた光源(バックライト)の輝度(バックライト輝度)を調整することにより、液晶表示パネルにおける表示輝度(表面輝度)を均一にして、フリッカを低減する構成を有する。 In addition, the present liquid crystal display device makes the display luminance (surface luminance) of the liquid crystal display panel uniform by adjusting the luminance (backlight luminance) of the light source (backlight) provided on the back side of the liquid crystal display panel. , The flicker is reduced.
 図1は、本実施の形態に係る液晶表示装置1の全体構成を示すブロック図である。液晶表示装置1は、液晶表示パネル10、表示制御回路20、および、バックライト70(図2参照)を備えている。液晶表示パネル10には、ソースドライバ30(データ信号線駆動回路)、ゲートドライバ40(走査信号線駆動回路)、表示部50、および、供給電圧生成回路としてのメモリ駆動用ドライバ60が含まれている。 FIG. 1 is a block diagram showing an overall configuration of a liquid crystal display device 1 according to the present embodiment. The liquid crystal display device 1 includes a liquid crystal display panel 10, a display control circuit 20, and a backlight 70 (see FIG. 2). The liquid crystal display panel 10 includes a source driver 30 (data signal line driving circuit), a gate driver 40 (scanning signal line driving circuit), a display unit 50, and a memory driving driver 60 as a supply voltage generation circuit. Yes.
 表示制御回路20には、メモリ駆動制御部21、および、PWM信号生成部22(図1および図10参照)が含まれている。 The display control circuit 20 includes a memory drive control unit 21 and a PWM signal generation unit 22 (see FIGS. 1 and 10).
 表示部50には、ソースバスライン(データ信号線)SL、ゲートバスライン(走査信号線)GL、後述するメモリ駆動選択ラインSEL、第1の電圧供給ラインAL、第2の電圧供給ラインBL、第1の電源ラインVLCH、および第2の電源ラインVLCLが含まれている(図3参照)。なお、ソースバスラインSLはソースドライバ30に接続され、ゲートバスラインGLおよびメモリ駆動選択ラインSELはゲートドライバ40に接続され、第1の電圧供給ラインALおよび第2の電圧供給ラインBLはメモリ駆動用ドライバ60に接続されている。 The display unit 50 includes a source bus line (data signal line) SL, a gate bus line (scanning signal line) GL, a memory drive selection line SEL described later, a first voltage supply line AL, a second voltage supply line BL, A first power supply line VLCH and a second power supply line VLCL are included (see FIG. 3). The source bus line SL is connected to the source driver 30, the gate bus line GL and the memory drive selection line SEL are connected to the gate driver 40, and the first voltage supply line AL and the second voltage supply line BL are memory driven. Connected to the driver 60.
 表示部50は、ゲートバスラインGLとソースバスラインSLとの交差点にそれぞれ対応して設けられた複数個の画素を含んでいる。各画素は、表示すべき画像に応じた電圧を後述の液晶容量に印加するための画素電極と、上記複数の画素に共通的に設けられた対向電極である共通電極と、画素電極および共通電極の間に挟持された液晶層とからなっている。また、必要に応じて、画素電極および共通電極により形成される液晶容量に並列して保持容量が付加される。 The display unit 50 includes a plurality of pixels provided corresponding to the intersections of the gate bus line GL and the source bus line SL. Each pixel includes a pixel electrode for applying a voltage corresponding to an image to be displayed to a liquid crystal capacitor described later, a common electrode that is a common electrode provided in common to the plurality of pixels, a pixel electrode, and a common electrode And a liquid crystal layer sandwiched between them. Further, if necessary, a storage capacitor is added in parallel with the liquid crystal capacitor formed by the pixel electrode and the common electrode.
 また、表示部50には、R(赤色)用、G(緑色)用、およびB(青色)用の3つの画素(R画素、G画素、B画素)からなる表示画素ごとに、1ビットのデータの保持が可能な記憶回路としてのメモリ回路MRが設けられている。なお、表示画素は、さらにW画素やY画素などを含み、4つあるいはそれ以上の画素で構成されていても良い。 In addition, the display unit 50 includes one bit for each display pixel including three pixels (R pixel, G pixel, and B pixel) for R (red), G (green), and B (blue). A memory circuit MR is provided as a memory circuit capable of holding data. The display pixel further includes a W pixel, a Y pixel, and the like, and may be composed of four or more pixels.
 ここで、液晶表示装置1はノーマリーホワイト型であるものとして説明する。また、液晶表示装置1においては、駆動方法が「通常動作モード」と「メモリ動作モード」とで切り替えられる。 Here, the liquid crystal display device 1 will be described as a normally white type. In the liquid crystal display device 1, the driving method can be switched between the “normal operation mode” and the “memory operation mode”.
 表示制御回路20は、外部から送られる画像データDATと動作モード選択信号Mとを受け取り、デジタル映像信号DVと、表示部50における画像表示を制御するためのソーススタートパルス信号SSP、ソースクロック信号SCK、ラッチストローブ信号LS、ゲートスタートパルス信号GSP、ゲートクロック信号GCK、第1の供給電圧制御信号SAL、第2の供給電圧制御信号SBL、および、メモリ駆動制御信号SSELを出力する。また、表示制御回路20は、PWM信号生成部22により生成されたPWM(pulse width modulation)信号(駆動信号)を、バックライト70に供給する。PWM信号生成部22の詳細については、図11を用いて後述する。 The display control circuit 20 receives image data DAT and an operation mode selection signal M sent from the outside, receives a digital video signal DV, a source start pulse signal SSP for controlling image display on the display unit 50, and a source clock signal SCK. The latch strobe signal LS, the gate start pulse signal GSP, the gate clock signal GCK, the first supply voltage control signal SAL, the second supply voltage control signal SBL, and the memory drive control signal SSEL are output. Further, the display control circuit 20 supplies a PWM (pulse width modulation) signal (driving signal) generated by the PWM signal generator 22 to the backlight 70. Details of the PWM signal generation unit 22 will be described later with reference to FIG.
 バックライト70は、例えばLED(Light Emitting Diode:発光ダイオード)などで構成され、液晶表示パネル10の背面側に設けられている。 The backlight 70 is composed of, for example, an LED (Light Emitting Diode), and is provided on the back side of the liquid crystal display panel 10.
 ソースドライバ30は、表示制御回路20から出力されたデジタル映像信号DV、ソーススタートパルス信号SSP、ソースクロック信号SCK、およびラッチストローブ信号LSを受け取り、各ソースバスラインSLに駆動用の映像信号(データ信号)を印加する。 The source driver 30 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS output from the display control circuit 20, and supplies a driving video signal (data) to each source bus line SL. Signal).
 ゲートドライバ40は、通常動作時には、全m本のゲートバスラインGLそれぞれを1水平走査期間ずつ順次に選択するために、表示制御回路20から出力されたゲートスタートパルス信号GSPとゲートクロック信号GCKとに基づいて、アクティブな走査信号(ゲート信号)の各ゲートバスラインGLへの印加を、1垂直走査期間(1フレーム)を周期として繰り返す。 During normal operation, the gate driver 40 sequentially selects all the m gate bus lines GL one horizontal scanning period at a time in order to select the gate start pulse signal GSP and the gate clock signal GCK output from the display control circuit 20. The application of the active scanning signal (gate signal) to each gate bus line GL is repeated with one vertical scanning period (one frame) as a cycle.
 通常動作からメモリ動作に切り替わる際には、ゲートドライバ40は、各ゲートバスラインGLを1水平走査期間ずつ順次に選択するために、表示制御回路20から出力されたゲートスタートパルス信号GSPとゲートクロック信号GCKとに基づいて、アクティブな走査信号を各ゲートバスラインGLに順次に印加するとともに、各メモリ駆動選択ラインSELを1水平走査期間ずつ順次に選択するために、表示制御回路20から出力されたメモリ駆動制御信号SSELとゲートクロック信号GCKとに基づいて、アクティブな信号を各メモリ駆動選択ラインSELに順次に印加する。 When switching from the normal operation to the memory operation, the gate driver 40 selects the gate start pulse signal GSP output from the display control circuit 20 and the gate clock in order to sequentially select the gate bus lines GL one horizontal scanning period at a time. Based on the signal GCK, an active scanning signal is sequentially applied to each gate bus line GL and output from the display control circuit 20 in order to sequentially select each memory drive selection line SEL by one horizontal scanning period. An active signal is sequentially applied to each memory drive selection line SEL based on the memory drive control signal SSEL and the gate clock signal GCK.
 メモリ動作時には、ゲートドライバ40は、各ゲートバスラインGLへのアクティブな走査信号の印加を停止し、全て(m本)のメモリ駆動選択ラインSEL1~SELmにアクティブな信号を印加する。 During the memory operation, the gate driver 40 stops the application of the active scanning signal to each gate bus line GL, and applies the active signal to all (m) memory drive selection lines SEL1 to SELm.
 メモリ駆動用ドライバ60は、表示制御回路20から出力された第1の供給電圧制御信号SALおよび第2の供給電圧制御信号SBLに基づいて、第1の電圧供給ラインALおよび第2の電圧供給ラインBLに電圧信号を印加する。 Based on the first supply voltage control signal SAL and the second supply voltage control signal SBL output from the display control circuit 20, the memory driving driver 60 uses the first voltage supply line AL and the second voltage supply line. A voltage signal is applied to BL.
 (表示画素の回路構成)
 図2は、液晶表示パネル10およびバックライト70の概略構成を示す断面図である。なお、図2では、便宜上、各信号線は省略している。
(Circuit configuration of display pixel)
FIG. 2 is a cross-sectional view showing a schematic configuration of the liquid crystal display panel 10 and the backlight 70. In FIG. 2, each signal line is omitted for convenience.
 液晶表示パネル10は、図2に示すように、互いに対向して配置されたアクティブマトリクス基板11および対向基板12と、これら両基板11、12の間に設けられた液晶層13とを備えている。バックライト70は、液晶表示パネル10の背面側に設けられ、液晶表示パネル10に光を照射する。 As shown in FIG. 2, the liquid crystal display panel 10 includes an active matrix substrate 11 and a counter substrate 12 which are arranged to face each other, and a liquid crystal layer 13 provided between the substrates 11 and 12. . The backlight 70 is provided on the back side of the liquid crystal display panel 10 and irradiates the liquid crystal display panel 10 with light.
 アクティブマトリクス基板11は、ガラス基板14上に、互いに平行に延びるように設けられた複数本(m本)のゲートバスラインGLと、ゲートバスラインGLに直交する方向に互いに平行に延びるように設けられた複数本のソースバスラインSLと、ゲートバスラインGLおよびソースバスラインSLの各交差部分に設けられたスイッチ素子のトランジスタTFT(図示せず)とを備えている。トランジスタTFTを覆うように層間絶縁膜15が積層され、その層間絶縁膜15の上層に画素電極16が設けられている。 The active matrix substrate 11 is provided on the glass substrate 14 so as to extend in parallel to each other in a direction orthogonal to the gate bus lines GL, and a plurality (m) of gate bus lines GL provided to extend in parallel to each other. And a plurality of source bus lines SL, and switching element transistor TFTs (not shown) provided at intersections of the gate bus lines GL and the source bus lines SL. An interlayer insulating film 15 is laminated so as to cover the transistor TFT, and a pixel electrode 16 is provided on the interlayer insulating film 15.
 対向基板12は、ガラス基板17上にブラックマトリクス(図示せず)およびカラーフィルタ18が形成され、その上層に共通電極19(com、対向電極)が形成され、さらにこれを覆うように配向膜(図示せず)が形成されている。 In the counter substrate 12, a black matrix (not shown) and a color filter 18 are formed on a glass substrate 17, a common electrode 19 (com, counter electrode) is formed thereon, and an alignment film (cover) (Not shown) is formed.
 図3は、R画素、G画素、およびB画素の3つの画素からなる表示画素の画素領域に形成される回路(以下、「表示画素回路」と称す)の構成を示す等価回路図である。この表示画素回路は、3つの画素に共通的な構成の共通部50R、50Gおよび50Bと、記憶回路としてのメモリ回路MR、MGおよびMBとを備えている。 FIG. 3 is an equivalent circuit diagram showing a configuration of a circuit (hereinafter referred to as “display pixel circuit”) formed in a pixel region of a display pixel composed of three pixels of an R pixel, a G pixel, and a B pixel. This display pixel circuit includes common portions 50R, 50G, and 50B having a configuration common to the three pixels, and memory circuits MR, MG, and MB as memory circuits.
 共通部50R、50Gおよび50Bの構成については、R色用のR画素の共通部50Rの構成を例に挙げて説明する。共通部50Rは、N型TFTで実現されるスイッチSWR1、SWR3およびSWR4と、P型TFTで実現されるスイッチSWR2と、液晶容量51Rと、保持容量53Rとを備えている。液晶容量51Rおよび保持容量53Rの一端は画素電極55R(図2の符号16に相当)に接続されている。また、液晶容量51Rの他端は共通電極52(図2の符号19に相当)に接続され、保持容量53Rの他端は保持容量電極54に接続されている。 The configuration of the common units 50R, 50G, and 50B will be described by taking the configuration of the common unit 50R of the R pixel for R color as an example. The common unit 50R includes switches SWR1, SWR3, and SWR4 realized by N-type TFTs, a switch SWR2 realized by P-type TFTs, a liquid crystal capacitor 51R, and a holding capacitor 53R. One ends of the liquid crystal capacitor 51R and the holding capacitor 53R are connected to the pixel electrode 55R (corresponding to reference numeral 16 in FIG. 2). The other end of the liquid crystal capacitor 51R is connected to the common electrode 52 (corresponding to reference numeral 19 in FIG. 2), and the other end of the storage capacitor 53R is connected to the storage capacitor electrode.
 共通部50R内のスイッチSWR1については、ゲート端子はゲートバスラインGLに接続され、ソース端子はソースバスラインSLRに接続され、ドレイン端子はスイッチSWR2のソース端子およびスイッチSWR4のソース端子に接続されている。スイッチSWR2およびスイッチSWR3については、ともにゲート端子がメモリ駆動選択ラインSELに接続され、ドレイン端子が画素電極55Rに接続されている。また、スイッチSWR3のソース端子はメモリ回路MRに接続されている。 Regarding the switch SWR1 in the common unit 50R, the gate terminal is connected to the gate bus line GL, the source terminal is connected to the source bus line SLR, and the drain terminal is connected to the source terminal of the switch SWR2 and the source terminal of the switch SWR4. Yes. As for the switches SWR2 and SWR3, the gate terminal is connected to the memory drive selection line SEL, and the drain terminal is connected to the pixel electrode 55R. The source terminal of the switch SWR3 is connected to the memory circuit MR.
 上記の構成により、スイッチSWR2およびスイッチSWR3により切替回路が実現されている。すなわち、スイッチSWR2およびスイッチSWR3(切替回路)は、画素電極55Rに与えられる電圧信号を、スイッチSWR1を介してソースバスラインSLRから与えられる電圧信号(映像信号)と、メモリ回路MRから与えられる電圧信号との間で切り替える。 With the above configuration, a switching circuit is realized by the switch SWR2 and the switch SWR3. That is, the switch SWR2 and the switch SWR3 (switching circuit) are a voltage signal given to the pixel electrode 55R, a voltage signal (video signal) given from the source bus line SLR via the switch SWR1, and a voltage given from the memory circuit MR. Switch between signals.
 (メモリ回路の回路構成)
 次に、メモリ回路MRの詳細な構成について説明する。図4は、メモリ回路MRの詳細な構成を示す等価回路図である。このメモリ回路MRは、P型TFTとN型TFTとからなるCMOSスイッチSWM1およびSWM2と、N型TFTで実現されるスイッチSWM4およびSWM6と、P型TFTで実現されるスイッチSWM3、SWM5およびSWM7とを備えている。
(Circuit configuration of memory circuit)
Next, a detailed configuration of the memory circuit MR will be described. FIG. 4 is an equivalent circuit diagram showing a detailed configuration of the memory circuit MR. This memory circuit MR includes CMOS switches SWM1 and SWM2 composed of P-type TFTs and N-type TFTs, switches SWM4 and SWM6 realized by N-type TFTs, and switches SWM3, SWM5 and SWM7 realized by P-type TFTs. It has.
 スイッチSWM3およびSWM5のソース端子は、第1の電源ラインVLCHに接続されている。一方、スイッチSWM4およびSWM6のソース端子は、第2の電源ラインVLCLに接続されている。スイッチSWM7のゲート端子は、ゲートバスラインGLに接続されている。スイッチSWM3およびSWM4からなる回路、および、スイッチSWM5およびSWM6からなる回路は、インバータ回路として機能し、スイッチSWM7はトランスファゲートとして機能している。 The source terminals of the switches SWM3 and SWM5 are connected to the first power supply line VLCH. On the other hand, the source terminals of the switches SWM4 and SWM6 are connected to the second power supply line VLCL. The gate terminal of the switch SWM7 is connected to the gate bus line GL. A circuit composed of the switches SWM3 and SWM4 and a circuit composed of the switches SWM5 and SWM6 function as an inverter circuit, and the switch SWM7 functions as a transfer gate.
 上記の構成により、スイッチSWM3、SWM4、SWM5、SWM6、およびSWM7からなる回路は、1ビットのデータを保持するデータ保持回路59として機能している。 With the above configuration, the circuit composed of the switches SWM3, SWM4, SWM5, SWM6, and SWM7 functions as a data holding circuit 59 that holds 1-bit data.
 スイッチSWM1については、入力端子は第1の電圧供給ラインALに接続され、出力端子はスイッチSWR3のソース端子およびスイッチSWM2の出力端子に接続されている。スイッチSWM2については、入力端子は第2の電圧供給ラインBLに接続され、出力端子はスイッチSWR3のソース端子およびスイッチSWM1の出力端子に接続されている。 Regarding the switch SWM1, the input terminal is connected to the first voltage supply line AL, and the output terminal is connected to the source terminal of the switch SWR3 and the output terminal of the switch SWM2. The switch SWM2 has an input terminal connected to the second voltage supply line BL, and an output terminal connected to the source terminal of the switch SWR3 and the output terminal of the switch SWM1.
 スイッチSWM1のN型TFTのゲート端子は、スイッチSWR4のドレイン端子およびデータ保持回路59に接続されている。スイッチSWM1のP型TFTのゲート端子は、スイッチSWM2のN型TFTのゲート端子およびデータ保持回路59に接続されている。スイッチSWM2のN型TFTのゲート端子は、スイッチSWM1のP型TFTのゲート端子およびデータ保持回路59に接続されている。スイッチSWM2のP型TFTのゲート端子は、データ保持回路59に接続されている。 The gate terminal of the N-type TFT of the switch SWM1 is connected to the drain terminal of the switch SWR4 and the data holding circuit 59. The gate terminal of the P-type TFT of the switch SWM1 is connected to the gate terminal of the N-type TFT of the switch SWM2 and the data holding circuit 59. The gate terminal of the N-type TFT of the switch SWM2 is connected to the gate terminal of the P-type TFT of the switch SWM1 and the data holding circuit 59. The gate terminal of the P-type TFT of the switch SWM2 is connected to the data holding circuit 59.
 上記の構成は、ソースバスラインSLRだけではなく、ソースバスラインSLGおよびSLBにも同様に構成されており、RGBそれぞれのデータがメモリ回路MR、MG、およびMBに格納される。 The above configuration is configured not only in the source bus line SLR but also in the source bus lines SLG and SLB, and RGB data is stored in the memory circuits MR, MG, and MB.
 (駆動方法)
 次に、図3、図4および図5を参照しつつ、液晶表示装置1の駆動方法について説明する。なお、液晶表示装置1にはm本のゲートバスラインが設けられているものとして説明する。図5は、1行目、2行目、3行目、m行目のゲートバスラインGL1、GL2、GL3、GLm、および1行目、2行目、3行目、m行目のメモリ駆動選択ラインSEL1、SEL2、SEL3、SELmの信号波形図である。本実施の形態においては、上述のとおり、通常動作モードとメモリ動作モードとの切り替えが行われる。この切り替えは、外部から表示制御回路20に送られる動作モード選択信号Mに基づいて行われる。以下、通常動作時の駆動方法、通常動作からメモリ動作に切り替える際の駆動方法、およびメモリ動作時の駆動方法について順に説明する。
(Driving method)
Next, a method for driving the liquid crystal display device 1 will be described with reference to FIGS. 3, 4, and 5. In the following description, it is assumed that the liquid crystal display device 1 is provided with m gate bus lines. FIG. 5 shows the first, second, third, and m-th gate bus lines GL1, GL2, GL3, and GLm, and the first, second, third, and m-th memory drives. It is a signal waveform diagram of selection lines SEL1, SEL2, SEL3, SELm. In the present embodiment, as described above, switching between the normal operation mode and the memory operation mode is performed. This switching is performed based on an operation mode selection signal M sent from the outside to the display control circuit 20. Hereinafter, a driving method during normal operation, a driving method when switching from normal operation to memory operation, and a driving method during memory operation will be described in order.
 (通常動作時の駆動方法)
 図5において、時点t0から時点t1までは通常動作が行われている。通常動作時には、図5の(a)~(d)に示すように、各ゲートバスラインGL1~GLmに順に所定の期間ずつアクティブな走査信号が与えられる。一方、通常動作時には、メモリ駆動選択ラインSEL1~SELmにアクティブな信号が与えられることはない。
(Driving method during normal operation)
In FIG. 5, the normal operation is performed from time t0 to time t1. During normal operation, as shown in FIGS. 5A to 5D, active scanning signals are given to the gate bus lines GL1 to GLm in order for a predetermined period. On the other hand, during normal operation, no active signal is applied to the memory drive selection lines SEL1 to SELm.
 ここで、ある表示画素に着目すると、当該表示画素に対応して設けられているゲートバスラインGLにアクティブな走査信号が印加されると、スイッチSWR1、SWG1およびSWB1がオン状態になる。通常動作時にはメモリ駆動選択ラインSELにアクティブな信号が与えられることはないので、スイッチSWR2、SWG2およびSWB2はオン状態、スイッチSWR3、SWG3、SWB3、および、SWR4、SWG4、SWB4はオフ状態になる。これにより、ソースバスラインSLR、SLG、およびSLBにそれぞれ印加されている映像信号に基づいて、液晶容量51R、51Gおよび51Bへの書き込みが行われる。このようにして、1フレーム期間内に全ての表示画素について液晶容量51R、51Gおよび51Bへの映像信号の書き込みが行われ、表示部50に所望の画像が表示される。 Here, focusing on a certain display pixel, when an active scanning signal is applied to the gate bus line GL provided corresponding to the display pixel, the switches SWR1, SWG1, and SWB1 are turned on. Since no active signal is applied to the memory drive selection line SEL during normal operation, the switches SWR2, SWG2, and SWB2 are turned on, and the switches SWR3, SWG3, SWB3, and SWR4, SWG4, SWB4 are turned off. Thus, writing to the liquid crystal capacitors 51R, 51G, and 51B is performed based on the video signals applied to the source bus lines SLR, SLG, and SLB, respectively. In this manner, video signals are written to the liquid crystal capacitors 51R, 51G, and 51B for all the display pixels within one frame period, and a desired image is displayed on the display unit 50.
 (通常動作からメモリ動作に切り替わる際の駆動方法)
 図5において、時点t1から時点t2までの期間には、通常動作からメモリ動作に切り替えるための駆動が行われている。この期間には、図5の(a)~(d)に示すように、各ゲートバスラインGL1~GLmに順に所定の期間ずつアクティブな走査信号が与えられるとともに、図5の(e)~(h)に示すように、各メモリ駆動選択ラインSEL1~SELmに順に所定の期間ずつアクティブな信号が与えられる。
(Driving method when switching from normal operation to memory operation)
In FIG. 5, during the period from time t1 to time t2, driving for switching from normal operation to memory operation is performed. During this period, as shown in FIGS. 5A to 5D, an active scanning signal is given to each of the gate bus lines GL1 to GLm in order for a predetermined period, and FIGS. As shown in h), an active signal is given to each of the memory drive selection lines SEL1 to SELm in order for a predetermined period.
 ここで、ある表示画素に着目すると、当該表示画素に対応して設けられているゲートバスラインGLにアクティブな走査信号が印加され、かつ、当該表示画素に対応して設けられているメモリ駆動選択ラインSELにアクティブな信号が印加されると、スイッチSWR1、SWG1およびSWB1はオン状態、スイッチSWR2、SWG2およびSWB2はオフ状態、スイッチSWR3、SWG3およびSWB3はオン状態になる。また、スイッチSWR4、SWG4およびSWB4はオン状態になる。これにより、ソースバスラインSLR、SLGおよびSLBに印加されている映像信号が、それぞれのメモリ回路MR、MGおよびMBに与えられ、当該映像信号はメモリ内データMDとしてメモリ回路MR、MGおよびMB内のデータ保持回路59に格納される。 Here, focusing on a certain display pixel, an active scanning signal is applied to the gate bus line GL provided corresponding to the display pixel, and a memory drive selection provided corresponding to the display pixel. When an active signal is applied to the line SEL, the switches SWR1, SWG1, and SWB1 are turned on, the switches SWR2, SWG2, and SWB2 are turned off, and the switches SWR3, SWG3, and SWB3 are turned on. Also, the switches SWR4, SWG4, and SWB4 are turned on. Thereby, the video signals applied to the source bus lines SLR, SLG, and SLB are given to the respective memory circuits MR, MG, and MB, and the video signals are stored in the memory circuits MR, MG, and MB as in-memory data MD. Is stored in the data holding circuit 59.
 このようにして、時点t1から時点t2までの期間に、全ての表示画素についてメモリ回路MR、MGおよびMGにメモリ内データMDが格納される。なお、以下においては、映像信号を2値化した場合(論理レベルがハイレベルのデータと、論理レベルがローレベルのデータとに分けた場合)に、その論理レベルがハイレベルであればメモリ内データMDとして「1」がメモリ回路MR、MGおよびMBに格納され、当該論理レベルがローレベルであればメモリ内データMDとして「0」がメモリ回路MR、MGおよびMBに格納されるものとして説明する。 In this way, the in-memory data MD is stored in the memory circuits MR, MG, and MG for all the display pixels during the period from the time point t1 to the time point t2. In the following, when the video signal is binarized (when the logic level is divided into high level data and low level data), if the logic level is high level, it is stored in the memory. It is assumed that “1” is stored in the memory circuits MR, MG, and MB as the data MD, and “0” is stored in the memory circuits MR, MG, and MB as the in-memory data MD if the logic level is low. To do.
 (メモリ動作時の駆動方法)
 図5において、時点t2から時点t3まではメモリ動作が行われている。メモリ動作時には、図5の(a)~(d)に示すように、ゲートバスラインGL1~GLmにアクティブな走査信号が与えられることはない。このため、この期間中には、スイッチSWR1、SWG1およびSWB1は常にオフ状態となる。このように、スイッチSWR1、SWG1およびSWB1はオフ状態になるので、メモリ動作が行われている期間中にメモリ内データMDの値が、ソースバスラインSLR、SLGおよびSLBによって供給される映像信号の影響を受けることはない。
(Driving method during memory operation)
In FIG. 5, the memory operation is performed from time t2 to time t3. During memory operation, as shown in FIGS. 5A to 5D, active scanning signals are not applied to the gate bus lines GL1 to GLm. Therefore, during this period, the switches SWR1, SWG1, and SWB1 are always off. In this way, since the switches SWR1, SWG1, and SWB1 are turned off, the value of the in-memory data MD is the value of the video signal supplied by the source bus lines SLR, SLG, and SLB during the memory operation period. It will not be affected.
 一方、この期間中、図5の(e)~(h)に示すように、全てのメモリ駆動選択ラインSEL1~SELmにアクティブな信号が与えられる。このため、メモリ動作が行われている期間中には、スイッチSWR2、SWG2およびSWB2は常にオフ状態となり、スイッチSWR3、SWG3およびSWB3は常にオン状態となる。これにより、メモリ回路MR、MGおよびMB内のスイッチSWM1の出力端子またはスイッチSWM2の出力端子から出力される電圧信号に基づいて、液晶容量51R、51Gおよび51Bへの書き込みが行われる。このように、メモリ動作時には、液晶容量51R、51Gおよび51Bには、それぞれのメモリ回路MR、MGおよびMBの電圧信号に基づいて書き込みが行われる。このため、メモリ動作時には、白黒表示が行われる。以下、メモリ動作について例を挙げて詳しく説明する。 On the other hand, during this period, as shown in (e) to (h) of FIG. 5, active signals are given to all the memory drive selection lines SEL1 to SELm. Therefore, during the period when the memory operation is performed, the switches SWR2, SWG2, and SWB2 are always in the off state, and the switches SWR3, SWG3, and SWB3 are always in the on state. Thus, writing to the liquid crystal capacitors 51R, 51G, and 51B is performed based on the voltage signal output from the output terminal of the switch SWM1 or the output terminal of the switch SWM2 in the memory circuits MR, MG, and MB. Thus, during the memory operation, writing is performed in the liquid crystal capacitors 51R, 51G, and 51B based on the voltage signals of the respective memory circuits MR, MG, and MB. For this reason, monochrome display is performed during the memory operation. Hereinafter, the memory operation will be described in detail with an example.
 図6は、メモリ内データMDの値が「1」である表示画素について黒表示を行う場合の信号波形図である。ところで、直流電圧の印加による液晶の劣化を防ぐため、共通電極52については、通常動作時においてもメモリ動作時においても、反転駆動が行われる。すなわち、共通電極52の電位Vcontは、所定の間隔で高電位と低電位とに切り替えられている。 FIG. 6 is a signal waveform diagram when black display is performed for a display pixel whose value of the data MD in the memory is “1”. By the way, in order to prevent the deterioration of the liquid crystal due to the application of the DC voltage, the common electrode 52 is inverted and driven during both the normal operation and the memory operation. That is, the potential Vcont of the common electrode 52 is switched between a high potential and a low potential at a predetermined interval.
 データ保持回路59内のスイッチSWM3~SWM7のオン/オフ状態に着目すると、メモリ内データMDが「1」の時、スイッチSWM3はオフ状態となり、スイッチSWM4はオン状態となる。このため、スイッチSWM4を介して、第2の電源ラインVLCLからデータ保持回路59内に低電位の電源電圧が与えられる。これにより、スイッチSWM5はオン状態となり、スイッチSWM6はオフ状態となる。その結果、スイッチSWM5を介して、第1の電源ラインVLCHからデータ保持回路59内に高電位の電源電圧が与えられる。また、上述のようにメモリ動作時にはゲートバスラインGLにアクティブな信号が与えられることはないので、スイッチSWM7については、メモリ内データMDの値にかかわらずオン状態となっている。このため、メモリ動作が行われている期間中、メモリ内データMDの値は保持される。 Focusing on the on / off states of the switches SWM3 to SWM7 in the data holding circuit 59, when the in-memory data MD is “1”, the switch SWM3 is turned off and the switch SWM4 is turned on. For this reason, a low-potential power supply voltage is applied from the second power supply line VLCL to the data holding circuit 59 via the switch SWM4. As a result, the switch SWM5 is turned on and the switch SWM6 is turned off. As a result, a high power supply voltage is applied from the first power supply line VLCH to the data holding circuit 59 via the switch SWM5. As described above, since no active signal is applied to the gate bus line GL during the memory operation, the switch SWM7 is in the on state regardless of the value of the in-memory data MD. For this reason, the value of the in-memory data MD is held during the period in which the memory operation is performed.
 以上のように、スイッチSWM4を介してデータ保持回路59内に低電位の電源電圧が与えられるので、スイッチSWM1のP型TFTはオン状態となり、スイッチSWM2のN型TFTはオフ状態となる。一方、スイッチSWM5を介してデータ保持回路59内に高電位の電源電圧が与えられ、かつ、スイッチSWM7がオン状態となっているので、スイッチSWM1のN型TFTはオン状態となり、スイッチSWM2のP型TFTはオフ状態となる。これにより、スイッチSWM1はオン状態となり、スイッチSWM2はオフ状態となる。その結果、第1の電圧供給ラインALから与えられる電圧(以下、「第1の供給電圧」という。)VALが画素の画素電極55R、55G、および55Bに印加される。 As described above, since a low-potential power supply voltage is applied to the data holding circuit 59 via the switch SWM4, the P-type TFT of the switch SWM1 is turned on and the N-type TFT of the switch SWM2 is turned off. On the other hand, since a high-potential power supply voltage is applied to the data holding circuit 59 via the switch SWM5 and the switch SWM7 is on, the N-type TFT of the switch SWM1 is on and the P of the switch SWM2 is on. The type TFT is turned off. As a result, the switch SWM1 is turned on and the switch SWM2 is turned off. As a result, a voltage (hereinafter referred to as “first supply voltage”) VAL supplied from the first voltage supply line AL is applied to the pixel electrodes 55R, 55G, and 55B of the pixels.
 本実施の形態においては、図6の(b)および(c)に示すように、共通電極52の電位Vcontが高電位側に設定されている時(期間T11)には第1の供給電圧VALの電位は低電位側に設定され、共通電極52の電位Vcontが低電位側に設定されている時(期間T12)には第1の供給電圧VALの電位は高電位側に設定されている。このため、液晶容量51R、51Gおよび51Bには常に高い電圧が印加され、当該液晶容量51R、51Gおよび51Bを含む表示画素については黒表示が行われる。すなわち、期間T11では負極性(-)の黒表示、期間T12では正極性(+)の黒表示となる。 In the present embodiment, as shown in FIGS. 6B and 6C, when the potential Vcont of the common electrode 52 is set to the high potential side (period T11), the first supply voltage VAL is used. Is set on the low potential side, and when the potential Vcont of the common electrode 52 is set on the low potential side (period T12), the potential of the first supply voltage VAL is set on the high potential side. Therefore, a high voltage is always applied to the liquid crystal capacitors 51R, 51G, and 51B, and black display is performed for the display pixels including the liquid crystal capacitors 51R, 51G, and 51B. That is, a negative (−) black display is displayed in the period T11, and a positive (+) black display is displayed in the period T12.
 図7は、メモリ内データMDの値が「0」である表示画素について白表示を行う場合の信号波形図である。データ保持回路59内のスイッチSWM3~SWM7のオン/オフ状態に着目すると、メモリ内データMDが「0」の時、スイッチSWM3はオン状態となり、スイッチSWM4はオフ状態となる。このため、スイッチSWM3を介して、第1の電源ラインVLCHからデータ保持回路59内に高電位の電源電圧が与えられる。これにより、スイッチSWM5はオフ状態となり、スイッチSWM6はオン状態となる。その結果、スイッチSWM6を介して、第2の電源ラインVLCLからデータ保持回路59内に低電位の電源電圧が与えられる。なお、スイッチSWM7については、メモリ内データMDの値が「1」の時と同様、オン状態となっている。このため、メモリ動作が行われている期間中、メモリ内データMDの値は保持される。 FIG. 7 is a signal waveform diagram when white display is performed for the display pixel whose value of the data MD in the memory is “0”. Focusing on the on / off states of the switches SWM3 to SWM7 in the data holding circuit 59, when the in-memory data MD is “0”, the switch SWM3 is on and the switch SWM4 is off. Therefore, a high-potential power supply voltage is applied from the first power supply line VLCH to the data holding circuit 59 via the switch SWM3. As a result, the switch SWM5 is turned off and the switch SWM6 is turned on. As a result, a low-potential power supply voltage is applied from the second power supply line VLCL to the data holding circuit 59 via the switch SWM6. Note that the switch SWM7 is in an ON state as in the case where the value of the in-memory data MD is “1”. For this reason, the value of the in-memory data MD is held during the period in which the memory operation is performed.
 以上のように、スイッチSWM3を介してデータ保持回路59内に高電位の電源電圧が与えられるので、スイッチSWM1のP型TFTはオフ状態となり、スイッチSWM2のN型TFTはオン状態となる。一方、スイッチSWM6を介してデータ保持回路59内に低電位の電源電圧が与えられ、かつ、スイッチSWM7がオン状態となっているので、スイッチSWM1のN型TFTはオフ状態となり、スイッチSWM2のP型TFTはオン状態となる。これにより、スイッチSWM1はオフ状態となり、スイッチSWM2はオン状態となる。その結果、第2の電圧供給ラインBLから与えられる電圧信号(以下、「第2の供給電圧」という。)が画素の画素電極55R、55Gおよび55Bに印加される。 As described above, since a high-potential power supply voltage is applied to the data holding circuit 59 via the switch SWM3, the P-type TFT of the switch SWM1 is turned off and the N-type TFT of the switch SWM2 is turned on. On the other hand, since a low-potential power supply voltage is applied to the data holding circuit 59 via the switch SWM6 and the switch SWM7 is on, the N-type TFT of the switch SWM1 is off and the P of the switch SWM2 is turned on. The type TFT is turned on. As a result, the switch SWM1 is turned off and the switch SWM2 is turned on. As a result, a voltage signal (hereinafter referred to as “second supply voltage”) applied from the second voltage supply line BL is applied to the pixel electrodes 55R, 55G, and 55B of the pixels.
 本実施の形態においては、図7の(b)および(d)に示すように、共通電極52の電位Vcontが高電位側に設定されている時(期間T21)には第2の供給電圧VBLの電位は高電位側に設定され、共通電極52の電位Vcontが低電位側に設定されている時(期間T22)には第2の供給電圧VBLの電位は低電位側に設定されている。このため、液晶容量51R、51Gおよび51Bには常に低い電圧が印加され、当該液晶容量51R、51Gおよび51Bを含む表示画素については白表示が行われる。すなわち、期間T21では正極性(+)の白表示、期間T22では負極性(-)の白表示となる。 In the present embodiment, as shown in FIGS. 7B and 7D, when the potential Vcont of the common electrode 52 is set to the high potential side (period T21), the second supply voltage VBL Is set on the high potential side, and when the potential Vcont of the common electrode 52 is set on the low potential side (period T22), the potential of the second supply voltage VBL is set on the low potential side. Therefore, a low voltage is always applied to the liquid crystal capacitors 51R, 51G, and 51B, and white display is performed on the display pixels including the liquid crystal capacitors 51R, 51G, and 51B. That is, positive (+) white display is obtained in the period T21 and negative (−) white display is obtained in the period T22.
 なお、本実施の形態では、1つの表示画素が3つの画素(R画素、G画素、B画素)で構成されているが、これに限定されるものではなく、さらにW画素やY画素などを含み、4つあるいはそれ以上の画素で構成されていても良い。 In this embodiment, one display pixel is composed of three pixels (R pixel, G pixel, and B pixel). However, the present invention is not limited to this, and a W pixel, a Y pixel, and the like are further included. Including four or more pixels.
 また、本実施形態では、メモリ回路が3つの画素(R画素、G画素およびB画素)それぞれに設けられているが、これに限定されるものではなく、1つの画素(R画素、G画素あるいはB画素)のみに設けられていても良い。 In this embodiment, the memory circuit is provided in each of the three pixels (R pixel, G pixel, and B pixel), but the present invention is not limited to this, and one pixel (R pixel, G pixel, or (B pixel) may be provided only.
 以上のような構成及び駆動方法を用いることにより、メモリ動作時に白黒表示を行うことができる。 By using the above configuration and driving method, monochrome display can be performed during memory operation.
 ここで、メモリ型液晶表示装置では、図8に示したように、メモリ回路に保持されているメモリ内データMDの画素電荷量(画素電位)が自然放電(リーク)により徐々に低下することにより、液晶表示パネル10の透過率が低下する。そしてNフレームにおいて低下した透過率は、次のN+1フレームにおける書き込み動作により画素電荷量が上昇する(充電される)ことにより元の透過率に戻る。このような透過率の低下および上昇を繰り返すことにより、表示画面における輝度(表示輝度)が周期的に変化し、フリッカが視認されるという問題が生じる。 Here, in the memory type liquid crystal display device, as shown in FIG. 8, the pixel charge amount (pixel potential) of the in-memory data MD held in the memory circuit gradually decreases due to natural discharge (leakage). The transmittance of the liquid crystal display panel 10 is reduced. The transmittance decreased in the N frame returns to the original transmittance when the pixel charge amount is increased (charged) by the writing operation in the next N + 1 frame. By repeating such a decrease and increase in transmittance, the luminance (display luminance) on the display screen changes periodically, causing a problem that flicker is visually recognized.
 そこで、本実施の形態に係る液晶表示装置1では、上記放電に起因する透過率の低下を、バックライト輝度を高めることにより補償する構成を有している。 Therefore, the liquid crystal display device 1 according to the present embodiment has a configuration that compensates for the decrease in transmittance due to the discharge by increasing the backlight luminance.
 図9は、液晶表示装置1の画素電荷量(画素電位)およびバックライト輝度の変化の様子を模式的に示す図である。図9において、(a)は液晶表示パネル10の表示輝度の変化を示し、(b)は画素電荷量の変化を示し、(c)はバックライト輝度の変化を示している。 FIG. 9 is a diagram schematically showing how the pixel charge amount (pixel potential) and the backlight luminance of the liquid crystal display device 1 change. 9A shows a change in display luminance of the liquid crystal display panel 10, FIG. 9B shows a change in pixel charge amount, and FIG. 9C shows a change in backlight luminance.
 液晶表示パネル10の表示輝度は、画素電荷量およびバックライト輝度に応じて変化するため、図9に示すように、画素電荷量の低下に起因する表示輝度の低下分を、バックライト輝度の増加に起因する表示輝度の増加分で補償することにより、液晶表示パネル10の表示輝度を一定に維持することができる。これにより、フリッカを抑制することができる。また、フレーム周波数を高くする必要がないため、消費電力の増大を防ぐこともできる。 Since the display luminance of the liquid crystal display panel 10 changes in accordance with the pixel charge amount and the backlight luminance, as shown in FIG. 9, the display luminance decrease due to the decrease in the pixel charge amount is increased as the backlight luminance increases. By compensating for the increase in display brightness caused by the above, the display brightness of the liquid crystal display panel 10 can be kept constant. Thereby, flicker can be suppressed. In addition, since it is not necessary to increase the frame frequency, an increase in power consumption can be prevented.
 次に、図9の(c)に示したようなバックライト輝度を調整するための構成について説明する。 Next, a configuration for adjusting the backlight luminance as shown in FIG. 9C will be described.
 図10は、図1に示した液晶表示装置1における、液晶表示パネル10とバックライト70との関係を示すブロック図である。 FIG. 10 is a block diagram showing the relationship between the liquid crystal display panel 10 and the backlight 70 in the liquid crystal display device 1 shown in FIG.
 表示制御回路20は、図1に示したように、PWM信号生成部22を備えている。 The display control circuit 20 includes a PWM signal generator 22 as shown in FIG.
 PWM信号生成部22は、自然放電に起因する液晶表示パネル10の輝度の変化量(低下量)に基づいて、目的の輝度を表示させるためのPWM信号を生成する。ここで、上記液晶表示パネル10の輝度の低下量は、フレーム周波数に基づいて予め算出することができるため、算出した輝度の低下量に応じた所望のPWM信号を生成することができる。例えば、液晶表示パネル10において設定したフレーム周波数と、PWM信号のパルス幅(あるいはデューティ比)とを予めテーブルに関連付けておく構成により実現することができる。PWM信号生成部22は、上記生成したPWM信号を、フレーム周期のタイミングに同期させてバックライト70に供給する。 The PWM signal generation unit 22 generates a PWM signal for displaying the target luminance based on the amount of change (decrease amount) in the luminance of the liquid crystal display panel 10 caused by natural discharge. Here, since the amount of decrease in the luminance of the liquid crystal display panel 10 can be calculated in advance based on the frame frequency, a desired PWM signal corresponding to the calculated amount of decrease in luminance can be generated. For example, it can be realized by a configuration in which the frame frequency set in the liquid crystal display panel 10 and the pulse width (or duty ratio) of the PWM signal are associated with a table in advance. The PWM signal generation unit 22 supplies the generated PWM signal to the backlight 70 in synchronization with the timing of the frame period.
 図11の(d)には、PWM信号生成部22により生成されたPWM信号の変化を示している。同図に示すように、PWM信号は、画素電荷量の低下に伴ってパルス幅が大きくなり、これによりバックライトの輝度が高くなっていることが分かる。このようなPWM信号をバックライト70に供給することにより、液晶表示パネル10の表示輝度の低下(図8参照)を補償して均一化することができる(図11の(a)参照)。 FIG. 11D shows a change in the PWM signal generated by the PWM signal generation unit 22. As shown in the figure, it can be seen that the pulse width of the PWM signal increases as the pixel charge amount decreases, thereby increasing the luminance of the backlight. By supplying such a PWM signal to the backlight 70, it is possible to compensate and equalize the decrease in display luminance of the liquid crystal display panel 10 (see FIG. 8) (see FIG. 11A).
 ここで、上述した液晶表示装置1の構成では、1フレーム期間において、所定の周期で極性が反転する動作を行っているが、本発明の液晶表示装置はこれに限定されず、フレーム周波数と極性反転周期とが一致していてもよい。 Here, in the configuration of the liquid crystal display device 1 described above, an operation of inverting the polarity at a predetermined period is performed in one frame period. However, the liquid crystal display device of the present invention is not limited to this, and the frame frequency and the polarity The inversion period may be the same.
 また、1フレーム期間において、極性反転時にメモリ回路MRのメモリ内データMDをリフレッシュする構成とした場合は、極性反転周期に基づいてPWM信号のパルス幅を設定してもよい。 Further, when the in-memory data MD of the memory circuit MR is refreshed at the time of polarity inversion in one frame period, the pulse width of the PWM signal may be set based on the polarity inversion period.
 (変形例1)
 図12は、変形例1に係る液晶表示装置1aの全体構成を示すブロック図である。また、図13は、図12に示した液晶表示装置1aにおける、液晶表示パネル10とバックライト70との関係を示すブロック図である。
(Modification 1)
FIG. 12 is a block diagram illustrating an overall configuration of a liquid crystal display device 1a according to the first modification. FIG. 13 is a block diagram showing the relationship between the liquid crystal display panel 10 and the backlight 70 in the liquid crystal display device 1a shown in FIG.
 変形例1に係る液晶表示装置1aでは、上述の液晶表示装置1と比較すると、液晶表示パネル10に電荷量検出部10aが追加されている。 In the liquid crystal display device 1a according to the modified example 1, the charge amount detection unit 10a is added to the liquid crystal display panel 10 as compared with the liquid crystal display device 1 described above.
 電荷量検出部10aは、メモリ回路MRに保持されているメモリ内データMDにおける画素電荷量を検出し、検出結果を表示制御回路20のPWM信号生成部22に与える。例えば、電荷量検出部10aは、メモリ回路MRにおける、データ書き込み時の電荷量に対する、電荷の低下量を検出する。 The charge amount detection unit 10 a detects the pixel charge amount in the in-memory data MD held in the memory circuit MR, and gives the detection result to the PWM signal generation unit 22 of the display control circuit 20. For example, the charge amount detection unit 10a detects the amount of decrease in charge with respect to the amount of charge at the time of data writing in the memory circuit MR.
 PWM信号生成部22は、電荷量検出部10aから取得した検出結果(電荷の低下量)に基づいて、PWM信号のパルス幅を決定する。 The PWM signal generation unit 22 determines the pulse width of the PWM signal based on the detection result (charge reduction amount) acquired from the charge amount detection unit 10a.
 このように、メモリ回路MRにおいて検出した画素電荷量(電荷の低下量)をフィードバックすることによって、より正確な補正値(バックライト輝度の増加量)を算出することができる。よって、液晶表示パネル10の表示輝度をより均一化できる。 As described above, by feeding back the pixel charge amount (charge decrease amount) detected in the memory circuit MR, a more accurate correction value (backlight luminance increase amount) can be calculated. Therefore, the display brightness of the liquid crystal display panel 10 can be made more uniform.
 また、本液晶表示装置1aでは、メモリ回路MRの画素電荷量に基づいてバックライト輝度を調整できるため、フレーム周波数を、バックライト輝度とは無関係に設定することができる。例えば、フレーム周波数を、従来よりも低く設定してもよいし、一定値にせずに変動させてもよい。これにより、消費電力をさらに削減できる。 In the present liquid crystal display device 1a, since the backlight luminance can be adjusted based on the pixel charge amount of the memory circuit MR, the frame frequency can be set regardless of the backlight luminance. For example, the frame frequency may be set lower than in the past, or may be changed without being a constant value. Thereby, power consumption can be further reduced.
 〔実施の形態2〕
 次に、本発明の他の実施の形態について図面を用いて説明する。以下では、DRAM型のメモリ回路を備えた液晶表示装置(以下、単に「液晶表示装置」という。)の構成について説明する。なお、説明の便宜上、実施の形態1において定義した用語については、特に断らない限り実施の形態2においてもその定義に則って用いるものとする。
[Embodiment 2]
Next, another embodiment of the present invention will be described with reference to the drawings. The configuration of a liquid crystal display device (hereinafter simply referred to as “liquid crystal display device”) including a DRAM type memory circuit will be described below. For convenience of explanation, the terms defined in the first embodiment are used in accordance with the definitions in the second embodiment unless otherwise specified.
 図14は、本実施の形態に係る液晶表示装置2の全体構成を示すブロック図である。液晶表示装置2は、液晶表示パネル10bと表示制御回路20とバックライト70(図2参照)とを備えている。液晶表示パネル10bには、ゲートドライバ/CSドライバ80(走査信号線駆動回路/保持容量配線駆動回路)、制御信号バッファ回路90、駆動信号発生回路/映像信号発生回路100、デマルチプレクサ110、および、表示部120が含まれている。 FIG. 14 is a block diagram showing an overall configuration of the liquid crystal display device 2 according to the present embodiment. The liquid crystal display device 2 includes a liquid crystal display panel 10b, a display control circuit 20, and a backlight 70 (see FIG. 2). The liquid crystal display panel 10b includes a gate driver / CS driver 80 (scanning signal line driving circuit / holding capacity wiring driving circuit), a control signal buffer circuit 90, a driving signal generation circuit / video signal generation circuit 100, a demultiplexer 110, and A display unit 120 is included.
 表示部120には、ソースバスライン(データ信号線)SL、ゲートバスライン(走査信号線)GL、CSライン(保持容量配線)CSL、データ転送制御線(データ転送線)DT、リフレッシュ出力制御線(リフレッシュ線)RC、および、出力信号線vdが含まれている。なお、ソースバスラインSLはデマルチプレクサ110に接続され、ゲートバスラインGLおよびCSラインCSLはゲートドライバ/CSドライバ80に接続され、データ転送制御線DTおよびリフレッシュ出力制御線RCは、制御信号バッファ回路90に接続されている。 The display unit 120 includes a source bus line (data signal line) SL, a gate bus line (scanning signal line) GL, a CS line (holding capacitor line) CSL, a data transfer control line (data transfer line) DT, and a refresh output control line. (Refresh line) RC and output signal line vd are included. The source bus line SL is connected to the demultiplexer 110, the gate bus line GL and the CS line CSL are connected to the gate driver / CS driver 80, and the data transfer control line DT and the refresh output control line RC are controlled signal buffer circuits. 90.
 表示部120は、ゲートバスラインGLとソースバスラインSLとの交差点にそれぞれ対応して設けられた複数個の画素を含んでいる。各画素は、表示すべき画像に応じた電圧を液晶容量に印加するための画素電極と、上記複数の画素に共通的に設けられた対向電極である共通電極と、画素電極および共通電極の間に挟持された液晶層とからなっている。また、画素電極および共通電極により形成される液晶容量に並列して保持容量が付加される。 The display unit 120 includes a plurality of pixels provided corresponding to the intersections of the gate bus line GL and the source bus line SL. Each pixel includes a pixel electrode for applying a voltage corresponding to an image to be displayed to the liquid crystal capacitor, a common electrode that is a common electrode provided in common to the plurality of pixels, and a gap between the pixel electrode and the common electrode. And a liquid crystal layer sandwiched between the two. In addition, a storage capacitor is added in parallel with the liquid crystal capacitor formed by the pixel electrode and the common electrode.
 また、表示部120には、R(赤色)用、G(緑色)用、およびB(青色)用の3つの画素(R画素、G画素、B画素)からなる表示画素ごとに、1ビットのデータの保持が可能な記憶回路としてのメモリ回路MRが設けられている。なお、表示画素は、さらにW画素やY画素などを含み、4つあるいはそれ以上の画素で構成されていても良い。 In addition, the display unit 120 includes one bit for each display pixel including three pixels (R pixel, G pixel, and B pixel) for R (red), G (green), and B (blue). A memory circuit MR is provided as a memory circuit capable of holding data. The display pixel further includes a W pixel, a Y pixel, and the like, and may be composed of four or more pixels.
 ここで、液晶表示装置2はノーマリーホワイト型であるものとして説明する。また、液晶表示装置2においては、駆動方法が「通常動作モード」と「メモリ動作モード」とで切り替えられる。 Here, it is assumed that the liquid crystal display device 2 is a normally white type. In the liquid crystal display device 2, the driving method can be switched between the “normal operation mode” and the “memory operation mode”.
 表示制御回路20は、外部から送られる画像データDATと動作モード選択信号Mとを受け取り、デジタル映像信号DVと、表示部120における画像表示を制御するためのソーススタートパルス信号SSP、ソースクロック信号SCK、および、ラッチストローブ信号LSを出力する。また、表示制御回路20は、PWM信号生成部22により生成されたPWM信号(駆動信号)を、バックライト70に供給する。 The display control circuit 20 receives image data DAT and an operation mode selection signal M sent from the outside, receives a digital video signal DV, a source start pulse signal SSP and a source clock signal SCK for controlling image display on the display unit 120. And a latch strobe signal LS. In addition, the display control circuit 20 supplies the PWM signal (drive signal) generated by the PWM signal generation unit 22 to the backlight 70.
 バックライト70は、例えばLED(Light Emitting Diode:発光ダイオード)などで構成され、液晶表示パネル10bの背面側に設けられている。 The backlight 70 is composed of, for example, an LED (Light Emitting Diode), and is provided on the back side of the liquid crystal display panel 10b.
 駆動信号発生回路/映像信号発生回路100は、画像表示(通常動作)およびメモリ動作を行うための制御駆動回路であり、メモリ動作に用いられるタイミングのみならず、通常動作に用いられるソーススタートパルス信号SSP、ソースクロック信号SCK、ラッチストローブ信号LS、ゲートスタートパルス信号GSP、および、ゲートクロック信号GCKなどのタイミングを生成する回路を兼ねることができる。 The drive signal generation circuit / video signal generation circuit 100 is a control drive circuit for performing image display (normal operation) and memory operation, and not only the timing used for the memory operation but also the source start pulse signal used for the normal operation. It can also serve as a circuit for generating timings such as SSP, source clock signal SCK, latch strobe signal LS, gate start pulse signal GSP, and gate clock signal GCK.
 駆動信号発生回路/映像信号発生回路100は、通常動作モード(メモリ回路非動作)時にビデオ出力端子から多階調ビデオ信号を出力し、出力信号線vdおよびデマルチプレクサ110を介してソースバスラインSLを駆動する。また、駆動信号発生回路/映像信号発生回路100は、同時に、ゲートドライバ/CSドライバ80を駆動、制御する信号s1を出力する。これによって各画素に画像データを書き込み、多階調の表示を行う。 The drive signal generation circuit / video signal generation circuit 100 outputs a multi-grayscale video signal from the video output terminal in the normal operation mode (memory circuit non-operation), and the source bus line SL via the output signal line vd and the demultiplexer 110. Drive. The drive signal generation circuit / video signal generation circuit 100 simultaneously outputs a signal s1 for driving and controlling the gate driver / CS driver 80. As a result, image data is written to each pixel, and multi-gradation display is performed.
 また、駆動信号発生回路/映像信号発生回路100は、メモリ動作時に、ビデオ出力端子から、画素内に保持する画像データを出力信号線vdおよびデマルチプレクサ110を介して、ソースバスラインSLに送出するとともに、ゲートドライバ/CSドライバ80を駆動、制御する信号s2および制御信号バッファ回路90を駆動、制御する信号s3を出力する。これによって、画素に画像データを書き込んで表示および保持したり、画素に保持された画像データを読み出したりする。 The drive signal generation circuit / video signal generation circuit 100 sends image data held in the pixel from the video output terminal to the source bus line SL via the output signal line vd and the demultiplexer 110 during the memory operation. At the same time, a signal s2 for driving and controlling the gate driver / CS driver 80 and a signal s3 for driving and controlling the control signal buffer circuit 90 are output. As a result, the image data is written to the pixel and displayed and held, or the image data held in the pixel is read out.
 ただし、画素に書き込んでメモリ回路MRに保持した画像データは表示に用いられるだけでもよいので、画素からの読み出し動作は必ずしも行われなくてよい。駆動信号発生回路/映像信号発生回路100が、メモリ動作モードにおいてビデオ出力端子から出力信号線vd(k)に出力する画像データは、第1の電位レベルと第2の電位レベルとで表される2値レベルである。 However, since the image data written in the pixel and held in the memory circuit MR may be used only for display, the reading operation from the pixel is not necessarily performed. Image data output from the video output terminal to the output signal line vd (k) by the drive signal generation circuit / video signal generation circuit 100 in the memory operation mode is represented by a first potential level and a second potential level. It is a binary level.
 表示制御回路20は、駆動信号発生回路/映像信号発生回路100に含まれていても良い。 The display control circuit 20 may be included in the drive signal generation circuit / video signal generation circuit 100.
 デマルチプレクサ110は、出力信号線vdに出力された画像データを、対応するソースバスラインSLに振り分けて出力する。 The demultiplexer 110 distributes the image data output to the output signal line vd to the corresponding source bus line SL for output.
 なお、駆動信号発生回路/映像信号発生回路100およびデマルチプレクサ110は、一般的なソースドライバ(データ信号線駆動回路)としての機能も有する。以下では、必要に応じて、ソースドライバとも言う。 The drive signal generation circuit / video signal generation circuit 100 and the demultiplexer 110 also have a function as a general source driver (data signal line drive circuit). Hereinafter, it is also referred to as a source driver as necessary.
 上記の動作は、通称CSドライビングと呼ばれる駆動方法であり、液晶表示を実現するための画素電極とそれに液晶を介して対峙するコモン(共通)電極(COM)とにより形成される液晶容量と、画素内に画素電極とCSライン(保持容量配線)CSLとで形成される保持容量(補助容量)とが独立して液晶を駆動する方法である。一方、他に一般的な駆動方法として、液晶容量に接続されている共通電極COMと保持容量に接続されているCSラインCSLの電圧とが同期して変化する駆動方法や、共通電極COMとCSラインCSLとが同電位であり変化するタイミングが同じ駆動方法や、共通電極COMとCSラインCSLとが異なる電位であるが、変化するタイミングが同じようにする駆動方法などがある。 The above operation is a driving method commonly called CS driving, and a liquid crystal capacitor formed by a pixel electrode for realizing liquid crystal display and a common electrode (COM) facing the liquid crystal via the liquid crystal, and a pixel In this method, a storage capacitor (auxiliary capacitor) formed by a pixel electrode and a CS line (storage capacitor line) CSL is driven independently. On the other hand, as another general driving method, a driving method in which the voltage of the common electrode COM connected to the liquid crystal capacitor and the voltage of the CS line CSL connected to the storage capacitor changes in synchronization, or the common electrode COM and CS There are a driving method in which the line CSL has the same potential and the changing timing is the same, and a driving method in which the common electrode COM and the CS line CSL have different potentials but the changing timing is the same.
 (メモリ動作時の駆動方法)
 次に、メモリ回路MRを有する液晶表示装置2のメモリ動作について、メモリ回路MRの構成とともに説明する。なお、メモリ動作では、画素に書き込まれたデータ信号電位(画像データ)をメモリ回路MRで保持し、データ保持期間にリフレッシュ動作を行いながら表示を行う。
(Driving method during memory operation)
Next, the memory operation of the liquid crystal display device 2 having the memory circuit MR will be described together with the configuration of the memory circuit MR. In the memory operation, the data signal potential (image data) written in the pixel is held by the memory circuit MR, and display is performed while performing the refresh operation in the data holding period.
 図15は、液晶表示装置2に係るメモリ回路MRの構成を示す等価回路図である。 FIG. 15 is an equivalent circuit diagram showing a configuration of the memory circuit MR according to the liquid crystal display device 2.
 メモリ回路MRは、スイッチ回路SW、第1データ保持部DS1、データ転送部TS、第2データ保持部DS2、および、リフレッシュ出力制御部RSを備えている。 The memory circuit MR includes a switch circuit SW, a first data holding unit DS1, a data transfer unit TS, a second data holding unit DS2, and a refresh output control unit RS.
 スイッチ回路SWは、Nチャネル型のTFTであるトランジスタN1(第1トランジスタ)からなる。第1データ保持部DS1は容量Ca(第1保持容量)からなる。データ転送部TSは転送素子としてのNチャネル型のTFTであるトランジスタN2(第2トランジスタ)からなる。第2データ保持部DS2は容量Cb(第2保持容量)からなる。リフレッシュ出力制御部RSは、Nチャネル型のTFTであるトランジスタN3(第4トランジスタ)と、Nチャネル型のTFTであるトランジスタN4(第3トランジスタ)とからなる。容量Caは容量Cbよりも容量値が大きくなるように設定されている。 The switch circuit SW includes a transistor N1 (first transistor) that is an N-channel TFT. The first data holding unit DS1 includes a capacitor Ca (first holding capacitor). The data transfer unit TS includes a transistor N2 (second transistor) which is an N-channel TFT as a transfer element. The second data holding unit DS2 includes a capacitor Cb (second holding capacitor). The refresh output control unit RS includes a transistor N3 (fourth transistor) that is an N-channel TFT and a transistor N4 (third transistor) that is an N-channel TFT. The capacitance Ca is set so that the capacitance value is larger than the capacitance Cb.
 図15のメモリ回路MRでは、全てのトランジスタがNチャネル型のTFT(電界効果トランジスタ)で構成されている。 In the memory circuit MR of FIG. 15, all transistors are N-channel TFTs (field effect transistors).
 また、各メモリ回路MRを駆動する信号線として、前述のゲートバスラインGL、データ転送制御線DT、リフレッシュ出力制御線RC、ソースバスラインSL、および、CSラインCSLが設けられている。 Also, the above-described gate bus line GL, data transfer control line DT, refresh output control line RC, source bus line SL, and CS line CSL are provided as signal lines for driving each memory circuit MR.
 トランジスタN1のゲート端子(制御端子)はゲートバスラインGLに接続され、トランジスタN1のソース端子はソースバスラインSLに接続され、トランジスタN1のドレイン端子は容量Caの一端であるノードPIX(保持ノード)に接続されている。容量Caの他端はCSラインCSLに接続されている。トランジスタN1がON状態であるときは、スイッチ回路SWは導通状態となり、トランジスタN1がOFF状態であるときは、スイッチ回路SWは遮断状態となる。 The gate terminal (control terminal) of the transistor N1 is connected to the gate bus line GL, the source terminal of the transistor N1 is connected to the source bus line SL, and the drain terminal of the transistor N1 is a node PIX (holding node) that is one end of the capacitor Ca. It is connected to the. The other end of the capacitor Ca is connected to the CS line CSL. When the transistor N1 is in the ON state, the switch circuit SW is in the conductive state, and when the transistor N1 is in the OFF state, the switch circuit SW is in the cutoff state.
 トランジスタN2のゲート端子はデータ転送制御線DTに接続され、トランジスタN2のソース端子はノードPIXに接続され、トランジスタN2のドレイン端子は容量Cbの一端であるノードMRY(保持ノード)に接続されている。容量Cbの他端はCSラインCSLに接続されている。トランジスタN2がON状態であるときは、データ転送部TSは転送動作を行う状態となり、トランジスタN2がOFF状態であるときは、データ転送部TSは非転送動作を行う状態となる。 The gate terminal of the transistor N2 is connected to the data transfer control line DT, the source terminal of the transistor N2 is connected to the node PIX, and the drain terminal of the transistor N2 is connected to a node MRY (holding node) that is one end of the capacitor Cb. . The other end of the capacitor Cb is connected to the CS line CSL. When the transistor N2 is in an ON state, the data transfer unit TS is in a state for performing a transfer operation, and when the transistor N2 is in an OFF state, the data transfer unit TS is in a state for performing a non-transfer operation.
 トランジスタN3のゲート端子はリフレッシュ出力制御部RSの入力端子INとしてノードMRYに接続され、トランジスタN3のソース端子はデータ転送制御線DTに接続され、トランジスタN3のドレイン端子はトランジスタN4のソース端子に接続されている。トランジスタN4のゲート端子はリフレッシュ出力制御線RCに接続され、トランジスタN4のドレイン端子はリフレッシュ出力制御部RSの出力端子OUTとしてノードPIXに接続されている。すなわち、トランジスタN3とトランジスタN4とは、リフレッシュ出力制御部RSの入力とリフレッシュ出力制御部RSの出力との間において、トランジスタN3がリフレッシュ出力制御部RSの入力側に配置されるように、互いに直列に接続されている。なお、トランジスタN3とトランジスタN4との互いの接続位置は入れ替わっていてもよく、トランジスタN3とトランジスタN4とは、リフレッシュ出力制御部RSの入力とリフレッシュ出力制御部RSの出力との間において、互いに直列に接続されていればよい。 The gate terminal of the transistor N3 is connected to the node MRY as the input terminal IN of the refresh output control unit RS, the source terminal of the transistor N3 is connected to the data transfer control line DT, and the drain terminal of the transistor N3 is connected to the source terminal of the transistor N4. Has been. The gate terminal of the transistor N4 is connected to the refresh output control line RC, and the drain terminal of the transistor N4 is connected to the node PIX as the output terminal OUT of the refresh output control unit RS. That is, the transistor N3 and the transistor N4 are connected in series so that the transistor N3 is arranged on the input side of the refresh output control unit RS between the input of the refresh output control unit RS and the output of the refresh output control unit RS. It is connected to the. Note that the connection positions of the transistors N3 and N4 may be interchanged, and the transistors N3 and N4 are connected in series between the input of the refresh output control unit RS and the output of the refresh output control unit RS. It only has to be connected to.
 トランジスタN4がON状態であるときは、リフレッシュ出力制御部RSは第1の動作を行う状態に制御され、トランジスタN4がOFF状態であるときは、リフレッシュ出力制御部RSは第2の動作を行う状態に制御される。トランジスタN3はNチャネル型であるため、リフレッシュ出力制御部RSが第1の動作を行うときは、アクティブ状態となる制御情報すなわちアクティブレベルは、Highであり、非アクティブ状態となる制御情報すなわち非アクティブレベルは、Lowである。 When the transistor N4 is in the ON state, the refresh output control unit RS is controlled to perform the first operation, and when the transistor N4 is in the OFF state, the refresh output control unit RS performs the second operation. Controlled. Since the transistor N3 is an N-channel type, when the refresh output control unit RS performs the first operation, the control information that is in the active state, that is, the active level is High, and the control information that is in the inactive state, that is, inactive The level is Low.
 第1の動作は、第2データ保持部DS2に保持されている2値レベルが第1の電位レベルであるか第2の電位レベルであるかという制御情報に応じて、リフレッシュ出力制御部RSへの入力を取り込んでリフレッシュ出力制御部RSの出力として第1データ保持部DS1に供給するアクティブ状態となるか、リフレッシュ出力制御部RSの出力を停止する非アクティブ状態となるかを選択する動作である。 The first operation is performed to the refresh output control unit RS in accordance with control information indicating whether the binary level held in the second data holding unit DS2 is the first potential level or the second potential level. This is an operation to select whether to enter an active state in which the first data holding unit DS1 is supplied as an output of the refresh output control unit RS or to be in an inactive state in which the output of the refresh output control unit RS is stopped .
 第2の動作は、上記制御情報に関わらずリフレッシュ出力制御部RSの出力を停止する動作である。 The second operation is an operation to stop the output of the refresh output control unit RS regardless of the control information.
 なお、ノードPIXと対向電極(共通電極)COMとの間に、液晶容量Clcが接続されている。 Note that a liquid crystal capacitor Clc is connected between the node PIX and the counter electrode (common electrode) COM.
 図16は、メモリ回路MRの構成を模式的に示すブロック図である。 FIG. 16 is a block diagram schematically showing the configuration of the memory circuit MR.
 メモリ回路MRは、スイッチ回路SW、第1データ保持部DS、データ転送部TS、第2データ保持部DS2、リフレッシュ出力制御部RS、および、供給源VSを備えている。 The memory circuit MR includes a switch circuit SW, a first data holding unit DS, a data transfer unit TS, a second data holding unit DS2, a refresh output control unit RS, and a supply source VS.
 また、メモリ回路MRには、ソースバスラインSLに相当するデータ入力線IN、ゲートバスラインGLに相当するスイッチ制御線SC、データ転送制御線DT、および、リフレッシュ出力制御線RCが設けられている。 The memory circuit MR is also provided with a data input line IN corresponding to the source bus line SL, a switch control line SC corresponding to the gate bus line GL, a data transfer control line DT, and a refresh output control line RC. .
 スイッチ回路SWは、ゲートドライバ/CSドライバ80によりスイッチ制御線SCを介して駆動されることによって、データ入力線INと第1データ保持部DS1との間の導通と遮断とを選択的に行う。 The switch circuit SW is selectively turned on and off between the data input line IN and the first data holding unit DS1 by being driven by the gate driver / CS driver 80 via the switch control line SC.
 第1データ保持部DS1は、第1データ保持部DS1に入力される2値レベルを保持する。 The first data holding unit DS1 holds a binary level input to the first data holding unit DS1.
 データ転送部TSは、制御信号バッファ回路90によりデータ転送制御線DTを介して駆動されることによって、第1データ保持部DS1に保持されている2値レベルを第1データ保持部DS1が保持したまま第2データ保持部DS2へ転送する転送動作と、上記転送動作を行わない非転送動作とを選択的に行う。なお、データ転送制御線DTに供給される信号は全メモリ回路MRに共通であるので、データ転送制御線DTは必ずしも行ごとに設けられて制御信号バッファ回路90によって駆動される必要はなく、駆動信号発生回路/映像信号発生回路100やその他のものによって駆動されてもよい。 The data transfer unit TS is driven by the control signal buffer circuit 90 via the data transfer control line DT, whereby the first data holding unit DS1 holds the binary level held in the first data holding unit DS1. The transfer operation for transferring to the second data holding unit DS2 as it is and the non-transfer operation for not performing the transfer operation are selectively performed. Since the signal supplied to the data transfer control line DT is common to all the memory circuits MR, the data transfer control line DT is not necessarily provided for each row and driven by the control signal buffer circuit 90. It may be driven by the signal generation circuit / video signal generation circuit 100 or others.
 第2データ保持部DS2は、第2データ保持部DS2に入力される2値レベルを保持する。 The second data holding unit DS2 holds the binary level input to the second data holding unit DS2.
 リフレッシュ出力制御部RSは、制御信号バッファ回路90によりリフレッシュ出力制御線RCを介して駆動されることによって第1の動作を行う状態または第2の動作を行う状態に選択的に制御される。なお、リフレッシュ出力制御線RCに供給される信号は全メモリ回路MRに共通であるので、リフレッシュ出力制御線RCは必ずしも行ごとに設けられて制御信号バッファ回路90によって駆動される必要はなく、駆動信号発生回路/映像信号発生回路100やその他のものによって駆動されてもよい。 The refresh output control unit RS is selectively controlled to be in a state of performing the first operation or a state of performing the second operation by being driven by the control signal buffer circuit 90 via the refresh output control line RC. Since the signal supplied to the refresh output control line RC is common to all the memory circuits MR, the refresh output control line RC is not necessarily provided for each row and driven by the control signal buffer circuit 90. It may be driven by the signal generation circuit / video signal generation circuit 100 or others.
 供給源VSは、リフレッシュ出力制御部RSの入力に、設定された電位の供給を行う。 The supply source VS supplies a set potential to the input of the refresh output control unit RS.
 (メモリ回路MRの動作)
 次に、上記構成のメモリ回路MRの動作について、タイミングチャートを用いて具体的に説明する。なお、ここでは、メモリ回路MRの基本的な動作説明を主とするため、寄生容量に起因した電位変動は考慮しないものとする。
(Operation of memory circuit MR)
Next, the operation of the memory circuit MR having the above configuration will be specifically described with reference to a timing chart. Here, since the basic operation of the memory circuit MR is mainly described, the potential fluctuation caused by the parasitic capacitance is not considered.
 図17および図18に、メモリ回路MRのデータの書き込み動作を示す。本実施の形態では、表示部120の各行を線順次に駆動(走査)する。従って、書き込み期間T1は行ごとに決められており、i行の書き込み期間T1をT1iと表記する。図17では書き込み期間T1iに第1のデータとしての「1」=Highが書き込まれる場合を示し、図18では書き込み期間T1iに第2のデータとしての「0」=Lowが書き込まれる場合を示している。 17 and 18 show the data write operation of the memory circuit MR. In the present embodiment, each row of the display unit 120 is driven (scanned) in a line sequential manner. Therefore, the writing period T1 is determined for each row, and the writing period T1 for i rows is denoted as T1i. FIG. 17 shows a case where “1” = High is written as the first data in the writing period T1i, and FIG. 18 shows a case where “0” = Low is written as the second data in the writing period T1i. Yes.
 図17においては、ゲートバスラインGL(i)、データ転送制御線DT(i)、および、リフレッシュ出力制御線RC(i)には、制御信号バッファ回路90からHigh(アクティブレベル)とLow(非アクティブレベル)とからなる2値レベルの電位が印加される。上記2値レベルのHigh電位およびLow電位については、上記の各線に個別に設定されてもよい。ソースバスラインSL(j)には、デマルチプレクサ110を介して駆動信号発生回路/映像信号発生回路100から、ゲートバスラインGL(i)のHigh電位より低いHighとLowとからなる2値レベルが出力される。データ転送制御線DT(i)のHigh電位は、ソースバスラインSL(j)のHigh電位と、ゲートバスラインGL(i)のHigh電位とのいずれかに等しく、データ転送制御線DT(i)のLow電位は、上記2値レベルのLow電位に等しい。また、CSラインCSL(i)が供給する電位(CS電位)は一定である。なお、iおよびjは、1以上の整数とする。 In FIG. 17, the gate signal line GL (i), the data transfer control line DT (i), and the refresh output control line RC (i) are sent from the control signal buffer circuit 90 to High (active level) and Low (non-active). A binary level potential consisting of (active level) is applied. The binary level High potential and Low potential may be set individually for each of the above lines. The source bus line SL (j) has a binary level consisting of High and Low lower than the High potential of the gate bus line GL (i) from the drive signal generation circuit / video signal generation circuit 100 via the demultiplexer 110. Is output. The high potential of the data transfer control line DT (i) is equal to either the high potential of the source bus line SL (j) or the high potential of the gate bus line GL (i), and the data transfer control line DT (i) Is equal to the low potential of the binary level. The potential (CS potential) supplied by the CS line CSL (i) is constant. Note that i and j are integers of 1 or more.
 データの書き込み動作に対しては、書き込み期間T1i(通常動作モード)とリフレッシュ期間T2(メモリ動作モード)とが設けられている。書き込み期間T1iは行ごとに決められた時刻twiから開始される。リフレッシュ期間T2は全行のメモリ回路MRへのデータ書き込みが終了した後に、全行に対して時刻trから一斉に開始される。書き込み期間T1iは、メモリ回路MRに保持させようとするデータを書き込む期間であり、順に連続する期間t1iおよび期間t2iからなる。リフレッシュ期間T2は、メモリ回路MRに書き込んだデータをリフレッシュしながら保持する期間であり、順に連続する期間t3~期間t14を有している。 For the data write operation, a write period T1i (normal operation mode) and a refresh period T2 (memory operation mode) are provided. The writing period T1i starts from a time twi determined for each row. The refresh period T2 is started simultaneously from the time tr for all the rows after the data writing to the memory circuits MR for all the rows is completed. The writing period T1i is a period in which data to be held in the memory circuit MR is written, and is composed of a period t1i and a period t2i that are successively arranged. The refresh period T2 is a period in which data written in the memory circuit MR is held while being refreshed, and has a period t3 to a period t14 that are successively arranged.
 書き込み期間T1iにおいて、期間t1iではゲートバスラインGL(i)およびデータ転送制御線DT(i)の電位がともにHighとなる。リフレッシュ出力制御線RC(i)の電位はLowである。これによりトランジスタN1、N2がON状態になるため、スイッチ回路SWは導通状態、データ転送部TSは転送動作する状態となり、ノードPIXにソースバスラインSL(j)に供給された第1の電位レベル(ここではHighとする)が書き込まれる。期間t2iでは、ゲートバスラインGL(i)の電位がLowとなる一方、データ転送制御線DT(i)の電位はHighを持続する。リフレッシュ出力制御線RC(i)の電位はLowである。これによりトランジスタN1がOFF状態になるため、スイッチ回路SWは遮断状態になる。また、トランジスタN2がON状態を持続するため、データ転送部TSは転送動作する状態を維持する。従って、ノードPIXからノードMRYに第1の電位レベルが転送されるとともに、ノードPIX、MRYはソースバスラインSL(j)から切り離される。 In the writing period T1i, in the period t1i, the potentials of the gate bus line GL (i) and the data transfer control line DT (i) are both High. The potential of the refresh output control line RC (i) is Low. As a result, the transistors N1 and N2 are turned on, so that the switch circuit SW is in a conductive state, the data transfer unit TS is in a transfer operation state, and the first potential level supplied to the source bus line SL (j) at the node PIX. (Here, “High”) is written. In the period t2i, the potential of the gate bus line GL (i) becomes Low, while the potential of the data transfer control line DT (i) remains High. The potential of the refresh output control line RC (i) is Low. As a result, the transistor N1 is turned off, so that the switch circuit SW is turned off. In addition, since the transistor N2 is kept in the ON state, the data transfer unit TS maintains the transfer operation state. Accordingly, the first potential level is transferred from the node PIX to the node MRY, and the nodes PIX and MRY are disconnected from the source bus line SL (j).
 次に、リフレッシュ期間T2が開始される。リフレッシュ期間T2では、ソースバスラインSL(j)の電位は、第1の電位レベルであるHighとされる。また、ゲートバスラインGL(i)、データ転送制御線DT(i)、および、リフレッシュ出力制御線RC(i)については、全行について以下に説明する駆動が行われる。すなわち、全メモリ回路MRについて一斉にリフレッシュ動作を行う(以下、これを「全リフレッシュ動作」と呼ぶことがある)。 Next, the refresh period T2 starts. In the refresh period T2, the potential of the source bus line SL (j) is set to High, which is the first potential level. The gate bus line GL (i), the data transfer control line DT (i), and the refresh output control line RC (i) are driven as described below for all rows. In other words, all memory circuits MR are refreshed all at once (hereinafter, this may be referred to as “all refresh operation”).
 リフレッシュ期間T2において、期間t3では、ゲートバスラインGL(i)の電位がLowとなり、データ転送制御線DT(i)の電位がLowとなり、リフレッシュ出力制御線RC(i)の電位がLowとなる。これにより、トランジスタN2がOFF状態となるため、データ転送部TSは非転送動作を行う状態となり、ノードPIXとノードMRYとは互いに切り離される。ノードPIXとノードMRYとには、ともにHighが保持される。 In the refresh period T2, in the period t3, the potential of the gate bus line GL (i) becomes Low, the potential of the data transfer control line DT (i) becomes Low, and the potential of the refresh output control line RC (i) becomes Low. . As a result, the transistor N2 is turned off, so that the data transfer unit TS performs a non-transfer operation, and the node PIX and the node MRY are separated from each other. Both the node PIX and the node MRY hold High.
 期間t4では、ゲートバスラインGL(i)の電位がHighとなり、データ転送制御線DT(i)の電位がLowを持続し、リフレッシュ出力制御線RC(i)の電位がLowを持続する。これにより、トランジスタN1がON状態となるため、スイッチ回路SWが導通状態となり、ノードPIXにソースバスラインSL(j)から再びHigh電位が書き込まれる。 In the period t4, the potential of the gate bus line GL (i) becomes High, the potential of the data transfer control line DT (i) continues to be Low, and the potential of the refresh output control line RC (i) continues to be Low. Accordingly, since the transistor N1 is turned on, the switch circuit SW is turned on, and the high potential is again written from the source bus line SL (j) to the node PIX.
 期間t5では、ゲートバスラインGL(i)の電位がLowとなり、データ転送制御線DT(i)の電位がLowを持続し、リフレッシュ出力制御線RC(i)の電位がLowを持続する。これにより、トランジスタN1がOFF状態となるため、スイッチ回路SWが遮断状態となり、ノードPIXは、ソースバスラインSL(j)から切り離されてHighを保持する。 In a period t5, the potential of the gate bus line GL (i) becomes Low, the potential of the data transfer control line DT (i) continues Low, and the potential of the refresh output control line RC (i) continues Low. Accordingly, since the transistor N1 is turned off, the switch circuit SW is turned off, and the node PIX is disconnected from the source bus line SL (j) and holds High.
 期間t6では、ゲートバスラインGL(i)の電位がLowを持続し、データ転送制御線DT(i)の電位がLowを持続し、リフレッシュ出力制御線RC(i)の電位がHighになる。これにより、トランジスタN4がON状態になり、リフレッシュ出力制御部RSは第1の動作を行う。また、ノードMRYの電位がHighであることからトランジスタN3はON状態であるので、リフレッシュ出力制御部RSがアクティブ状態となり、データ転送制御線DT(i)からトランジスタN3、N4を介してノードPIXにLow電位が供給される。 In the period t6, the potential of the gate bus line GL (i) is kept low, the potential of the data transfer control line DT (i) is kept low, and the potential of the refresh output control line RC (i) becomes High. Thereby, the transistor N4 is turned on, and the refresh output control unit RS performs the first operation. Further, since the potential of the node MRY is High, the transistor N3 is in the ON state, so that the refresh output control unit RS is in the active state, and the data transfer control line DT (i) is connected to the node PIX via the transistors N3 and N4. A low potential is supplied.
 期間t7では、ゲートバスラインGL(i)の電位がLowを持続し、データ転送制御線DT(i)の電位がLowを持続し、リフレッシュ出力制御線RC(i)の電位がLowになる。これにより、トランジスタN4がOFF状態になるので、リフレッシュ出力制御部RSは第2の動作を行う状態となり、ノードPIXは、データ転送制御線DT(i)から切り離されてLowを保持する。 In period t7, the potential of the gate bus line GL (i) is kept low, the potential of the data transfer control line DT (i) is kept low, and the potential of the refresh output control line RC (i) is low. As a result, the transistor N4 is turned off, so that the refresh output control unit RS is in a state of performing the second operation, and the node PIX is disconnected from the data transfer control line DT (i) and holds Low.
 期間t8では、ゲートバスラインGL(i)の電位がLowを持続し、データ転送制御線DT(i)の電位がHighになり、リフレッシュ出力制御線RC(i)の電位がLowを持続する。これにより、トランジスタN2がON状態となるため、データ転送部TSが転送動作する状態となる。このとき、容量Caと容量Cbとの間で電荷の移動が起こり、ノードPIXおよびノードMRYの両方の電位がLowとなる。ノードPIXの電位は、容量CbからトランジスタN2を介して容量Caに正電荷が移動することにより、若干の電圧ΔVxだけ上昇するが、Lowの電位範囲内にある。 In a period t8, the potential of the gate bus line GL (i) is kept low, the potential of the data transfer control line DT (i) is high, and the potential of the refresh output control line RC (i) is kept low. As a result, the transistor N2 is turned on, so that the data transfer unit TS is in a transfer operation state. At this time, charge movement occurs between the capacitor Ca and the capacitor Cb, and the potentials of both the node PIX and the node MRY become Low. The potential of the node PIX rises by a slight voltage ΔVx due to the transfer of positive charges from the capacitor Cb to the capacitor Ca via the transistor N2, but is within the low potential range.
 この期間t8はリフレッシュされた2値データを、データ転送部TSを介して互いに接続された第1データ保持部DS1と第2データ保持部DS2との両方によって保持する期間であり、長く設定することが可能である。 This period t8 is a period in which the refreshed binary data is held by both the first data holding unit DS1 and the second data holding unit DS2 connected to each other via the data transfer unit TS, and is set to be long. Is possible.
 期間t9では、ゲートバスラインGL(i)の電位がLowを持続し、データ転送制御線DT(i)の電位がLowになり、リフレッシュ出力制御線RC(i)の電位がLowを持続する。これにより、トランジスタN2がOFF状態となるため、データ転送部TSが非転送動作を行う状態となり、ノードPIXとノードMRYとは互いに切り離される。ノードPIXとノードMRYとには、ともにLowが保持される。 In the period t9, the potential of the gate bus line GL (i) is kept low, the potential of the data transfer control line DT (i) is low, and the potential of the refresh output control line RC (i) is kept low. As a result, the transistor N2 is turned off, so that the data transfer unit TS performs a non-transfer operation, and the node PIX and the node MRY are separated from each other. Both the node PIX and the node MRY hold Low.
 期間t10では、ゲートバスラインGL(i)の電位がHighになり、データ転送制御線DT(i)の電位がLowを持続し、リフレッシュ出力制御線RC(i)の電位がLowを持続する。これにより、トランジスタN1がON状態となるため、スイッチ回路SWは導通状態となり、ノードPIXにソースバスラインSL(j)から再びHigh電位が書き込まれる。 In period t10, the potential of the gate bus line GL (i) becomes High, the potential of the data transfer control line DT (i) continues to be Low, and the potential of the refresh output control line RC (i) continues to be Low. Accordingly, since the transistor N1 is turned on, the switch circuit SW is turned on, and the high potential is written to the node PIX from the source bus line SL (j) again.
 期間t11では、ゲートバスラインGL(i)の電位がLowになり、データ転送制御線DT(i)の電位がLowを持続し、リフレッシュ出力制御線RC(i)の電位がLowを持続する。これにより、トランジスタN1がOFF状態となるため、スイッチ回路SWは遮断状態となり、ノードPIXは、ソースバスラインSL(j)から切り離されてHighを保持する。 In the period t11, the potential of the gate bus line GL (i) becomes Low, the potential of the data transfer control line DT (i) continues Low, and the potential of the refresh output control line RC (i) continues Low. Accordingly, since the transistor N1 is turned off, the switch circuit SW is turned off, and the node PIX is disconnected from the source bus line SL (j) and holds High.
 期間t12では、ゲートバスラインGL(i)の電位がLowを持続し、データ転送制御線DT(i)の電位がLowを持続し、リフレッシュ出力制御線RC(i)の電位がHighになる。これにより、トランジスタN4がON状態になるため、リフレッシュ出力制御部RSは第1の動作を行う状態となる。また、ノードMRYの電位がLowであることからトランジスタN3はOFF状態であるので、リフレッシュ出力制御部RSは非アクティブ状態となり、出力を停止した状態となる。従って、ノードPIXはHighを保持したままとなる。 In the period t12, the potential of the gate bus line GL (i) is kept low, the potential of the data transfer control line DT (i) is kept low, and the potential of the refresh output control line RC (i) becomes High. Thereby, since the transistor N4 is turned on, the refresh output control unit RS is in a state of performing the first operation. Since the transistor N3 is in the OFF state because the potential of the node MRY is Low, the refresh output control unit RS is in an inactive state and the output is stopped. Therefore, the node PIX remains holding High.
 期間t13では、ゲートバスラインGL(i)の電位がLowを持続し、データ転送制御線DT(i)の電位がLowを持続し、リフレッシュ出力制御線RC(i)の電位がLowになる。これにより、トランジスタN4はOFF状態となるため、ためリフレッシュ出力制御部RSは第2の動作を行う状態となり、ノードPIXはHighを保持する。 In the period t13, the potential of the gate bus line GL (i) is kept low, the potential of the data transfer control line DT (i) is kept low, and the potential of the refresh output control line RC (i) is low. As a result, the transistor N4 is turned off, so that the refresh output control unit RS is in a state of performing the second operation, and the node PIX holds High.
 期間t14では、ゲートバスラインGL(i)の電位がLowを持続し、データ転送制御線DT(i)の電位がHighになり、リフレッシュ出力制御部RSの電位がLowを持続する。これにより、トランジスタN2がON状態となるため、データ転送部TSは転送動作する状態となる。このとき、容量Caと容量Cbとの間で電荷の移動が起こり、ノードPIXおよびノードMRYの両方の電位がHighとなる。ノードPIXの電位は、容量CaからトランジスタN2を介して容量Cbに正電荷が移動することにより、若干の電圧ΔVyだけ低下するが、Highの電位範囲内にある。 In the period t14, the potential of the gate bus line GL (i) is kept low, the potential of the data transfer control line DT (i) is high, and the potential of the refresh output control unit RS is kept low. As a result, the transistor N2 is turned on, so that the data transfer unit TS is in a transfer operation state. At this time, charge movement occurs between the capacitor Ca and the capacitor Cb, and the potentials of both the node PIX and the node MRY become High. The potential of the node PIX decreases by a slight voltage ΔVy due to the transfer of positive charge from the capacitor Ca to the capacitor Cb through the transistor N2, but is within the High potential range.
 この期間t14はリフレッシュされた2値データを、データ転送部TSを介して互いに接続された第1データ保持部DS1と第2データ保持部DS2との両方によって保持する期間であり、長く設定することが可能である。 This period t14 is a period in which the refreshed binary data is held by both the first data holding unit DS1 and the second data holding unit DS2 connected to each other via the data transfer unit TS, and is set to be long. Is possible.
 以上の動作により、ノードPIXの電位は、期間t1i~期間t5および期間t10~期間t14でHigh、期間t6~期間t9でLowとなり、ノードMRYの電位は、期間t1i~期間t7および期間t14でHigh、期間t8~期間t13でLowとなる。 Through the above operation, the potential of the node PIX is High in the periods t1i to t5 and the periods t10 to t14, and is Low in the periods t6 to t9. The potential of the node MRY is High in the periods t1i to t7 and t14. , And becomes Low during the period t8 to the period t13.
 この後、リフレッシュ期間T2を継続する場合には、期間t3~期間t14の動作を繰り返す。新たなデータを書き込む場合には、リフレッシュ期間T2を終了して全リフレッシュ動作モードを解除する。 Thereafter, when the refresh period T2 is continued, the operation from the period t3 to the period t14 is repeated. When writing new data, the refresh period T2 ends and the all-refresh operation mode is released.
 以上が、図17についての説明である。 The above is the description of FIG.
 なお、全リフレッシュ動作の命令を、外部からの信号ではなく、発振器等にて内部で発生させたクロックにより生成するようにしてもよい。そうすることで外部システムが一定時間毎にリフレッシュ命令を入力する必要がなくなり、柔軟なシステム構築ができるという利点がある。メモリ回路MRを用いたダイナミックメモリ回路においては、全リフレッシュ動作を、ゲートバスラインGL(i)ごとにスキャンすることによって行う必要がなく、アレイ全体に一括で行うことができるため、一般の従来のダイナミックメモリ回路においてソースバスラインSL(j)の電位を破壊読み出ししながらリフレッシュするのに必要となるような周辺回路を削減することができる。 Note that a command for all refresh operations may be generated not by an external signal but by a clock generated internally by an oscillator or the like. By doing so, there is an advantage that it is not necessary for the external system to input a refresh command at regular intervals, and a flexible system can be constructed. In a dynamic memory circuit using the memory circuit MR, it is not necessary to perform all refresh operations by scanning each gate bus line GL (i), and can be performed collectively on the entire array. In the dynamic memory circuit, it is possible to reduce peripheral circuits necessary for refreshing while destructively reading the potential of the source bus line SL (j).
 次に、図18についての説明を行う。 Next, a description will be given of FIG.
 図18では、書き込み期間T1iにメモリ回路MRに第2の電位レベルとしてのLowを書き込むが、書き込み期間T1iにソースバスラインSL(j)の電位をLowとする他は、各期間における、ゲートバスラインGL(i)、データ転送制御線DT(i)、および、リフレッシュ出力制御線RC(i)の電位変化は、図17と同様である。 In FIG. 18, Low as the second potential level is written in the memory circuit MR in the writing period T1i. The gate bus in each period is the same except that the potential of the source bus line SL (j) is Low in the writing period T1i. The potential changes of the line GL (i), the data transfer control line DT (i), and the refresh output control line RC (i) are the same as those in FIG.
 これにより、ノードPIXの電位は、期間t1i~期間t3および期間t12~期間t14でLow、期間t4~期間t11でHighとなり、ノードMRYの電位は、期間t1i~期間t7および期間t14でLow、期間t8~期間t13でHighとなる。 Accordingly, the potential of the node PIX is Low in the periods t1i to t3 and the periods t12 to t14, and is High in the periods t4 to t11, and the potential of the node MRY is Low in the periods t1i to t7 and the period t14. It becomes High from t8 to period t13.
 ここで、図15の液晶容量Clcは、ノードPIXと共通電極COMとの間に液晶層が配置されてなる容量である。すなわち、ノードPIXは画素電極に接続されている。このとき、容量Caは画素の保持容量としても機能する。また、スイッチ回路SWを構成するトランジスタN1は画素の選択素子としても機能する。共通電極(対向電極)COMは、図15のメモリ回路MRを構成する各回路が形成されるマトリクス基板に対向する対向基板上に設けられる。ただし、共通電極COMはマトリクス基板と同一基板上にあってもよい。 Here, the liquid crystal capacitance Clc in FIG. 15 is a capacitance in which a liquid crystal layer is disposed between the node PIX and the common electrode COM. That is, the node PIX is connected to the pixel electrode. At this time, the capacitor Ca also functions as a pixel holding capacitor. The transistor N1 constituting the switch circuit SW also functions as a pixel selection element. The common electrode (counter electrode) COM is provided on the counter substrate facing the matrix substrate on which the circuits constituting the memory circuit MR of FIG. 15 are formed. However, the common electrode COM may be on the same substrate as the matrix substrate.
 メモリ回路MRにおいて、多階調表示モードでは、画素に2値レベルよりも電位レベル数の多いデータ信号を供給して、リフレッシュ出力制御部RSにアクティブ状態となる第1の動作を行わせない状態で表示を行えばよい。多階調表示モードでは、データ転送制御線DT(i)の電位をLowに固定することにより容量Caのみを保持容量として機能させてもよいし、データ転送制御線DT(i)の電位をHighに固定することにより、容量Caと容量Cbとを合わせて保持容量として機能させてもよい。 In the multi-grayscale display mode, in the memory circuit MR, a state in which the data signal having the number of potential levels higher than the binary level is supplied to the pixel so that the refresh operation control unit RS does not perform the first operation to be in the active state. The display can be done with. In the multi-gradation display mode, only the capacitor Ca may function as a storage capacitor by fixing the potential of the data transfer control line DT (i) to Low, or the potential of the data transfer control line DT (i) is set to High. The capacitor Ca and the capacitor Cb may be combined to function as a storage capacitor.
 また、リフレッシュ出力制御線RC(i)の電位をLowに固定してトランジスタN4をOFF状態に保持することにより、もしくは、データ転送制御線DT(i)の電位をトランジスタN3がOFF状態となるように高く設定することにより、データ転送制御線DT(i)の電位が第1データ保持部DS1に蓄積された電荷によって決められる液晶容量Clcの表示階調に影響を与えないようにすることができ、メモリ機能を持たない液晶表示装置と同一の表示性能を実現することができる。 Further, the potential of the refresh output control line RC (i) is fixed to Low and the transistor N4 is held in the OFF state, or the potential of the data transfer control line DT (i) is set to be in the OFF state. By setting it to a high value, the potential of the data transfer control line DT (i) can be prevented from affecting the display gradation of the liquid crystal capacitor Clc determined by the charge accumulated in the first data holding section DS1. The same display performance as that of a liquid crystal display device having no memory function can be realized.
 これに対して、メモリ動作モードでは、第1データ保持部DS1の電位に応じた表示を行うことができる。液晶はAC的に極性を反転させない場合、焼きつきや液晶の劣化を引き起こすため、液晶をオンしているとき(白表示)および液晶をオフしているとき(黒表示)のどちらの場合でも、液晶に印加させる電圧の絶対値を同じにしながら極性を反転させる必要がある。そのため、対向電極COMの電位Vcomは、正極性駆動時の画素電位と対向電位Vcomとの電位差と、負極性駆動時の画素電位と対向電位Vcomとの電位差とが等しくなるように設定される(最適対向電位)。 On the other hand, in the memory operation mode, display according to the potential of the first data holding unit DS1 can be performed. If the polarity of the liquid crystal is not reversed in an AC manner, it will cause burn-in and deterioration of the liquid crystal. Therefore, both when the liquid crystal is on (white display) and when the liquid crystal is off (black display) It is necessary to reverse the polarity while keeping the absolute value of the voltage applied to the liquid crystal the same. Therefore, the potential Vcom of the counter electrode COM is set so that the potential difference between the pixel potential during positive polarity driving and the counter potential Vcom is equal to the potential difference between the pixel potential during negative polarity driving and the counter potential Vcom ( Optimal counter potential).
 なお、図17および図18では、共通電極COMの電位は、トランジスタN1がON状態となるごとにHighとLowとの間で反転するように駆動される。ここで、共通電極COMのHigh電位は上記2値レベルのHigh電位に等しく、共通電極COMのLow電位は上記2値レベルのLow電位に等しいとすると、共通電極COMの電位がLowであるときに、ノードPIXの電位がLowならば正極性の黒表示、ノードPIXの電位がHighならば正極性の白表示となり、共通電極COMの電位がHighであるときに、ノードPIXの電位がLowならば負極性の白表示、ノードPIXの電位がHighならば負極性の黒表示となる。 In FIGS. 17 and 18, the potential of the common electrode COM is driven so as to invert between High and Low every time the transistor N1 is turned on. Here, when the high potential of the common electrode COM is equal to the high potential of the binary level and the low potential of the common electrode COM is equal to the low potential of the binary level, the potential of the common electrode COM is low. If the potential of the node PIX is low, the black display is positive, and if the potential of the node PIX is high, the white display is positive. If the potential of the common electrode COM is high and the potential of the node PIX is low, If the negative white display, and the potential of the node PIX is High, the black display is negative.
 従って、ノードPIXの電位がリフレッシュされるごとに、表示階調をほぼ維持したまま液晶印加電圧の向きが反転するように液晶が駆動されることになり、液晶印加電圧の実効値が正負で一定となる液晶の交流駆動が可能になる。また、共通電極COMの電位(2値)はともに、データ信号電位の最小値よりも大きく、データ信号電位の最大値よりも小さい構成とすることもできる。また、共通電極COMの電位は、一定の値に設定されていても良い。 Accordingly, every time the potential of the node PIX is refreshed, the liquid crystal is driven so that the direction of the liquid crystal applied voltage is reversed while maintaining the display gradation substantially, and the effective value of the liquid crystal applied voltage is constant positive and negative. The AC driving of the liquid crystal becomes possible. Further, the potential (binary value) of the common electrode COM can be configured to be larger than the minimum value of the data signal potential and smaller than the maximum value of the data signal potential. Further, the potential of the common electrode COM may be set to a constant value.
 以上のように、本実施の形態によれば、液晶表示装置2に多色階調表示モードと白黒階調表示(中間調表示)モードとの両方の機能を持たせることができる。また、メモリ動作時には、静止画など時間変化の少ない画像を表示することで、映像信号発生回路で多階調画像を表示するためのアンプ等の回路やデータ供給動作を停止させることができるため、低消費電力を実現することができる。また、メモリ動作時には、画素内で電位(画素電位)をリフレッシュすることができるため、再度ソースバスラインSLを充放電しながら画素のデータを書き換える必要がないため、消費電力を削減することができる。また、画素内でデータ極性を反転することができるため、極性反転時に反転したデータをソースバスラインSLに充放電しながらデータを書き換える必要がないため、消費電力を削減することができる。 As described above, according to the present embodiment, the liquid crystal display device 2 can have both functions of the multi-color gradation display mode and the monochrome gradation display (halftone display) mode. In addition, during memory operation, by displaying an image with little time change such as a still image, a circuit such as an amplifier for displaying a multi-tone image in the video signal generation circuit and a data supply operation can be stopped. Low power consumption can be realized. Further, since the potential (pixel potential) can be refreshed in the pixel during the memory operation, it is not necessary to rewrite the pixel data while charging and discharging the source bus line SL again, so that power consumption can be reduced. . In addition, since the data polarity can be inverted within the pixel, it is not necessary to rewrite the data while charging / discharging the inverted data in the source bus line SL, so that power consumption can be reduced.
 ここで、メモリ型液晶表示装置では、図8に示したように、メモリ回路に保持されているメモリ内データMDの画素電荷量(画素電位)が自然放電(リーク)により徐々に低下することにより、液晶表示パネル10bの透過率が低下する。そしてNフレームにおいて低下した透過率は、次のN+1フレームにおける書き込み動作により画素電荷量が上昇する(充電される)ことにより元の透過率に戻る。このような透過率の低下および上昇を繰り返すことにより、表示画面における輝度が周期的に変化し、フリッカが視認されるという問題が生じる。この問題は、リフレッシュ動作を行う本液晶表示装置2においても同様であり、特にリフレッシュ動作の周期が長い場合に顕著となる。 Here, in the memory type liquid crystal display device, as shown in FIG. 8, the pixel charge amount (pixel potential) of the in-memory data MD held in the memory circuit gradually decreases due to natural discharge (leakage). The transmittance of the liquid crystal display panel 10b is lowered. The transmittance decreased in the N frame returns to the original transmittance when the pixel charge amount is increased (charged) by the writing operation in the next N + 1 frame. By repeating such a decrease and increase in transmittance, there is a problem that the luminance on the display screen changes periodically and flicker is visually recognized. This problem is the same in the present liquid crystal display device 2 that performs the refresh operation, and is particularly noticeable when the cycle of the refresh operation is long.
 そこで、本実施の形態に係る液晶表示装置2では、実施の形態1に係る液晶表示装置1と同様、上記放電に起因する透過率の低下を、バックライト輝度を高めることにより補償する構成を有している。 Therefore, the liquid crystal display device 2 according to the present embodiment has a configuration that compensates for the decrease in transmittance due to the discharge by increasing the backlight luminance, as in the liquid crystal display device 1 according to the first embodiment. is doing.
 すなわち、液晶表示パネル10bの表示輝度は、画素電荷量およびバックライト輝度に応じて変化するため、図9に示すように、画素電荷量の低下に起因する表示輝度の低下分を、バックライト輝度の増加に起因する表示輝度の増加分で補償することにより、液晶表示パネル10bの表示輝度を一定に維持する。これにより、フリッカを抑制することができる。また、フレーム周波数を高くする必要がないため、消費電力の増大を防ぐこともできる。以下、具体的な構成を説明する。 That is, since the display luminance of the liquid crystal display panel 10b changes according to the pixel charge amount and the backlight luminance, as shown in FIG. 9, the display luminance decrease due to the decrease in the pixel charge amount is reduced to the backlight luminance. The display brightness of the liquid crystal display panel 10b is kept constant by compensating for the increase in display brightness caused by the increase in the display brightness. Thereby, flicker can be suppressed. In addition, since it is not necessary to increase the frame frequency, an increase in power consumption can be prevented. A specific configuration will be described below.
 表示制御回路20は、図14に示すように、PWM信号生成部22を備えている。 The display control circuit 20 includes a PWM signal generation unit 22 as shown in FIG.
 PWM信号生成部22は、自然放電に起因する液晶表示パネル10bの輝度の変化量(低下量)に基づいて、目的の輝度を表示させるためのPWM信号を生成する。ここで、上記液晶表示パネル10bの輝度の低下量は、フレーム周波数に基づいて予め算出することができるため、算出した輝度の低下量に応じた所望のPWM信号を生成することができる。例えば、液晶表示パネル10bにおいて設定したフレーム周波数と、PWM信号のパルス幅(あるいはデューティ比)とを予めテーブルに関連付けておく構成により実現することができる。PWM信号生成部22は、上記生成したPWM信号を、フレーム周期のタイミングに同期させてバックライト70に供給する。 The PWM signal generation unit 22 generates a PWM signal for displaying the target luminance based on the amount of change (decrease amount) in the luminance of the liquid crystal display panel 10b due to natural discharge. Here, since the amount of decrease in the luminance of the liquid crystal display panel 10b can be calculated in advance based on the frame frequency, a desired PWM signal corresponding to the calculated amount of decrease in luminance can be generated. For example, it can be realized by a configuration in which the frame frequency set in the liquid crystal display panel 10b and the pulse width (or duty ratio) of the PWM signal are associated with a table in advance. The PWM signal generation unit 22 supplies the generated PWM signal to the backlight 70 in synchronization with the timing of the frame period.
 図11の(d)には、PWM信号生成部22により生成されたPWM信号の変化を示している。同図に示すように、PWM信号は、画素電荷量の低下に伴ってパルス幅が大きくなり、これによりバックライトの輝度が高くなっていることが分かる。このようなPWM信号をバックライト70に供給することにより、液晶表示パネル10bの表示輝度の低下(図8参照)を補償して均一化することができる(図11の(a)参照)。 FIG. 11D shows a change in the PWM signal generated by the PWM signal generation unit 22. As shown in the figure, it can be seen that the pulse width of the PWM signal increases as the pixel charge amount decreases, thereby increasing the luminance of the backlight. By supplying such a PWM signal to the backlight 70, it is possible to compensate and equalize the decrease in display luminance (see FIG. 8) of the liquid crystal display panel 10b (see FIG. 11 (a)).
 なお、本液晶表示装置2のPWM信号生成部22では、液晶表示パネル10bの輝度の低下量を、リフレッシュ動作の周期に基づいて算出する構成としても良い。これにより、算出した輝度の低下量に応じた所望のPWM信号を生成することができる。例えば、液晶表示パネル10bにおいて設定したリフレッシュ動作の周期と、PWM信号のパルス幅(あるいはデューティ比)とを予めテーブルに関連付けておく構成により実現することができる。PWM信号生成部22は、上記生成したPWM信号を、リフレッシュ動作の周期のタイミングに同期させてバックライト70に供給する。 Note that the PWM signal generation unit 22 of the present liquid crystal display device 2 may be configured to calculate the amount of decrease in luminance of the liquid crystal display panel 10b based on the period of the refresh operation. Thereby, a desired PWM signal can be generated according to the calculated amount of decrease in luminance. For example, it can be realized by a configuration in which the refresh operation cycle set in the liquid crystal display panel 10b and the pulse width (or duty ratio) of the PWM signal are associated with a table in advance. The PWM signal generation unit 22 supplies the generated PWM signal to the backlight 70 in synchronization with the timing of the refresh operation cycle.
 なお、本液晶表示装置2に、上記変形例1に示した電荷量検出部10a(図13参照)を追加してもよい。 Note that the charge amount detection unit 10a (see FIG. 13) shown in the first modification may be added to the liquid crystal display device 2.
 本発明の実施の形態に係る液晶表示装置では、上記バックライトを駆動する駆動信号のパルス幅を広げることにより上記バックライトの輝度を高める構成とすることもできる。これにより、簡易な構成により、バックライト輝度を調整することができる。 In the liquid crystal display device according to the embodiment of the present invention, the luminance of the backlight can be increased by widening the pulse width of the drive signal for driving the backlight. Thereby, backlight brightness can be adjusted with a simple configuration.
 本発明の実施の形態に係る液晶表示装置では、上記駆動信号のパルス幅は、フレーム周波数に基づいて設定されている構成とすることもできる。 In the liquid crystal display device according to the embodiment of the present invention, the pulse width of the drive signal may be set based on the frame frequency.
 本発明の実施の形態に係る液晶表示装置では、上記駆動信号は、PWM信号であることが好ましい。 In the liquid crystal display device according to the embodiment of the present invention, the drive signal is preferably a PWM signal.
 本発明の実施の形態に係る液晶表示装置では、
 上記画素に保持された電荷量を検出する電荷量検出部を備え、
 上記電荷量検出部により検出された電荷量に基づいて、上記駆動信号のパルス幅を決定する構成とすることもできる。
In the liquid crystal display device according to the embodiment of the present invention,
A charge amount detection unit for detecting the amount of charge held in the pixel;
The pulse width of the drive signal may be determined based on the charge amount detected by the charge amount detection unit.
 上記の構成によれば、電荷量検出部により検出された電荷量に応じた駆動信号を生成することができるため、より正確な補正値(バックライト輝度の増加量)を算出することができる。よって、液晶表示パネルにおける表示のフリッカを確実に抑制することができる。 According to the above configuration, it is possible to generate a drive signal in accordance with the amount of charge detected by the charge amount detection unit, so that it is possible to calculate a more accurate correction value (amount of increase in backlight luminance). Therefore, display flicker in the liquid crystal display panel can be reliably suppressed.
 また、上記の構成では、画素の電荷量に基づいてバックライト輝度を調整できるため、フレーム周波数を、バックライト輝度とは無関係に設定することができる。例えば、フレーム周波数を、従来よりも低く設定してもよいし、一定値にせずに変動させてもよい。これにより、消費電力をさらに削減できる。 In the above configuration, since the backlight luminance can be adjusted based on the amount of charge of the pixel, the frame frequency can be set regardless of the backlight luminance. For example, the frame frequency may be set lower than in the past, or may be changed without being a constant value. Thereby, power consumption can be further reduced.
 本発明の実施の形態に係る液晶表示装置では、上記駆動信号は、PWM信号であって、上記PWM信号は、上記画素に保持される電荷量の低下に伴ってパルス幅が大きくなっている構成とすることもできる。 In the liquid crystal display device according to the embodiment of the present invention, the drive signal is a PWM signal, and the PWM signal has a pulse width that increases as the amount of charge held in the pixel decreases. It can also be.
 本発明の実施の形態に係る液晶表示装置では、各画素に、画像データを保持するメモリ回路が設けられているとともに、該メモリ回路に保持された画像データに基づいて画像を表示する構成とすることもできる。 In the liquid crystal display device according to the embodiment of the present invention, each pixel is provided with a memory circuit that holds image data, and an image is displayed based on the image data held in the memory circuit. You can also
 上記の構成によれば、メモリ型液晶表示装置に適用することができる。 The above configuration can be applied to a memory type liquid crystal display device.
 本発明の実施の形態に係る液晶表示装置では、画像データの書き込み後のデータ保持期間にリフレッシュ動作を行う構成とすることもできる。 The liquid crystal display device according to the embodiment of the present invention may be configured to perform a refresh operation during a data holding period after writing image data.
 本発明の実施の形態に係る液晶表示装置では、上記メモリ回路に保持された画像データの極性を反転させながらリフレッシュ動作を行う構成とすることもできる。 The liquid crystal display device according to the embodiment of the present invention may be configured to perform a refresh operation while inverting the polarity of the image data held in the memory circuit.
 本発明の実施の形態に係る液晶表示装置では、データ信号線を介して供給された画像データに基づき表示を行う通常動作モードと、上記メモリ回路に保持された画像データに基づき表示を行うメモリ動作モードとを含む構成とすることもできる。 In the liquid crystal display device according to the embodiment of the present invention, the normal operation mode in which display is performed based on the image data supplied through the data signal line, and the memory operation in which display is performed based on the image data held in the memory circuit. It is also possible to adopt a configuration including a mode.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 本発明の液晶表示装置は、メモリ回路を備えた液晶表示装置に好適に用いることができる。 The liquid crystal display device of the present invention can be suitably used for a liquid crystal display device provided with a memory circuit.
1、1a、2 液晶表示装置
10、10b 表示パネル
10a    電荷量検出部
20     表示制御回路
21     メモリ駆動制御部
22     PWM信号生成部
30     ソースドライバ(データ信号線駆動回路)
40     ゲートドライバ(走査信号線駆動回路)
50     表示部
60     メモリ駆動用ドライバ
70     バックライト
80     ゲートドライバ/CSドライバ
90     制御信号バッファ回路
100    駆動信号発生回路/映像信号発生回路
110    デマルチプレクサ
120    表示部
GL     ゲートバスライン(走査信号線)
SL     ソースバスライン(データ信号線)
CSL    CSライン(保持容量配線)
MR     メモリ回路
DESCRIPTION OF SYMBOLS 1, 1a, 2 Liquid crystal display device 10, 10b Display panel 10a Charge amount detection part 20 Display control circuit 21 Memory drive control part 22 PWM signal generation part 30 Source driver (data signal line drive circuit)
40 Gate driver (scanning signal line drive circuit)
50 Display Unit 60 Memory Driver 70 Backlight 80 Gate Driver / CS Driver 90 Control Signal Buffer Circuit 100 Drive Signal Generation Circuit / Video Signal Generation Circuit 110 Demultiplexer 120 Display Unit GL Gate Bus Line (Scanning Signal Line)
SL source bus line (data signal line)
CSL CS line (holding capacity wiring)
MR memory circuit

Claims (11)

  1.  画像を表示する液晶表示パネルと、該液晶表示パネルに光を照射するバックライトとを備え、
     画素に保持される電荷の放電に起因する上記液晶表示パネルにおける表示輝度の低下分を補償するように、上記バックライトの輝度を高めることを特徴とする液晶表示装置。
    A liquid crystal display panel for displaying an image, and a backlight for irradiating the liquid crystal display panel with light;
    A liquid crystal display device characterized by increasing the luminance of the backlight so as to compensate for a decrease in display luminance in the liquid crystal display panel due to discharge of charges held in pixels.
  2.  上記バックライトを駆動する駆動信号のパルス幅を広げることにより上記バックライトの輝度を高めることを特徴とする請求項1に記載の液晶表示装置。 2. The liquid crystal display device according to claim 1, wherein the luminance of the backlight is increased by widening a pulse width of a drive signal for driving the backlight.
  3.  上記駆動信号のパルス幅は、フレーム周波数に基づいて設定されていることを特徴とする請求項2に記載の液晶表示装置。 The liquid crystal display device according to claim 2, wherein the pulse width of the drive signal is set based on a frame frequency.
  4.  上記駆動信号は、PWM信号であることを特徴とする請求項2に記載の液晶表示装置。 3. The liquid crystal display device according to claim 2, wherein the drive signal is a PWM signal.
  5.  上記画素に保持された電荷量を検出する電荷量検出部を備え、
     上記電荷量検出部により検出された電荷量に基づいて、上記駆動信号のパルス幅を決定することを特徴とする請求項2に記載の液晶表示装置。
    A charge amount detection unit for detecting the amount of charge held in the pixel;
    The liquid crystal display device according to claim 2, wherein the pulse width of the drive signal is determined based on the charge amount detected by the charge amount detection unit.
  6.  上記駆動信号は、PWM信号であって、
     上記PWM信号は、上記画素に保持される電荷量の低下に伴ってパルス幅が大きくなっていることを特徴とする請求項2または5に記載の液晶表示装置。
    The drive signal is a PWM signal,
    6. The liquid crystal display device according to claim 2, wherein the PWM signal has a pulse width that increases with a decrease in the amount of charge held in the pixel.
  7.  各画素に、画像データを保持するメモリ回路が設けられているとともに、該メモリ回路に保持された画像データに基づいて画像を表示することを特徴とする請求項1に記載の液晶表示装置。 2. The liquid crystal display device according to claim 1, wherein each pixel is provided with a memory circuit for holding image data, and an image is displayed based on the image data held in the memory circuit.
  8.  画像データの書き込み後のデータ保持期間にリフレッシュ動作を行うことを特徴とする請求項7に記載の液晶表示装置。 The liquid crystal display device according to claim 7, wherein a refresh operation is performed in a data holding period after image data is written.
  9.  上記メモリ回路に保持された画像データの極性を反転させながらリフレッシュ動作を行うことを特徴とする請求項8に記載の液晶表示装置。 The liquid crystal display device according to claim 8, wherein a refresh operation is performed while inverting the polarity of the image data held in the memory circuit.
  10.  データ信号線を介して供給された画像データに基づき表示を行う通常動作モードと、上記メモリ回路に保持された画像データに基づき表示を行うメモリ動作モードとを含むことを特徴とする請求項7に記載の液晶表示装置。 8. A normal operation mode in which display is performed based on image data supplied through a data signal line, and a memory operation mode in which display is performed based on image data held in the memory circuit. The liquid crystal display device described.
  11.  画像を表示する液晶表示パネルと、該液晶表示パネルに光を照射するバックライトとを備えた液晶表示装置の駆動方法であって、
     画素に保持される電荷の放電に起因する上記液晶表示パネルにおける表示輝度の低下分を補償するように、上記バックライトの輝度を高めることを特徴とする液晶表示装置の駆動方法。
    A method for driving a liquid crystal display device comprising a liquid crystal display panel for displaying an image and a backlight for irradiating the liquid crystal display panel with light,
    A driving method of a liquid crystal display device, wherein the luminance of the backlight is increased so as to compensate for a decrease in display luminance in the liquid crystal display panel due to discharge of charges held in pixels.
PCT/JP2012/060777 2011-04-27 2012-04-20 Liquid crystal display device and driving method therefor WO2012147662A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011100078 2011-04-27
JP2011-100078 2011-04-27

Publications (1)

Publication Number Publication Date
WO2012147662A1 true WO2012147662A1 (en) 2012-11-01

Family

ID=47072182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060777 WO2012147662A1 (en) 2011-04-27 2012-04-20 Liquid crystal display device and driving method therefor

Country Status (1)

Country Link
WO (1) WO2012147662A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064741A1 (en) * 2013-11-01 2015-05-07 シャープ株式会社 Display apparatus and control device
WO2023115467A1 (en) * 2021-12-22 2023-06-29 Tcl华星光电技术有限公司 Display device and display method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312633A (en) * 1989-06-12 1991-01-21 Hitachi Ltd Liquid crystal display device
JP2003255914A (en) * 2002-03-06 2003-09-10 Matsushita Electric Ind Co Ltd Liquid crystal display device
JP2007286501A (en) * 2006-04-19 2007-11-01 Sony Corp Method of driving liquid crystal display device assembly
WO2010035548A1 (en) * 2008-09-24 2010-04-01 シャープ株式会社 Liquid crystal display device, active matrix substrate, and electronic device
WO2011064878A1 (en) * 2009-11-27 2011-06-03 Necディスプレイソリューションズ株式会社 Liquid crystal display apparatus and control method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312633A (en) * 1989-06-12 1991-01-21 Hitachi Ltd Liquid crystal display device
JP2003255914A (en) * 2002-03-06 2003-09-10 Matsushita Electric Ind Co Ltd Liquid crystal display device
JP2007286501A (en) * 2006-04-19 2007-11-01 Sony Corp Method of driving liquid crystal display device assembly
WO2010035548A1 (en) * 2008-09-24 2010-04-01 シャープ株式会社 Liquid crystal display device, active matrix substrate, and electronic device
WO2011064878A1 (en) * 2009-11-27 2011-06-03 Necディスプレイソリューションズ株式会社 Liquid crystal display apparatus and control method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064741A1 (en) * 2013-11-01 2015-05-07 シャープ株式会社 Display apparatus and control device
WO2023115467A1 (en) * 2021-12-22 2023-06-29 Tcl华星光电技术有限公司 Display device and display method thereof

Similar Documents

Publication Publication Date Title
JP5351974B2 (en) Display device
JP5308534B2 (en) Pixel circuit and display device
JP5452616B2 (en) Pixel circuit and display device
WO2011052272A1 (en) Pixel circuit and display apparatus
JP5346381B2 (en) Pixel circuit and display device
JP5351973B2 (en) Pixel circuit and display device
JP4510530B2 (en) Liquid crystal display device and driving method thereof
WO2012070316A1 (en) Display device
JPWO2011027599A1 (en) Pixel circuit and display device
JP5342657B2 (en) Display device
JPWO2011027598A1 (en) Pixel circuit and display device
JP2007286237A (en) Display device
US20170069275A1 (en) Display apparatus and a method of driving the same
WO2012056804A1 (en) Display device
JPWO2011033822A1 (en) Liquid crystal display
JP5301673B2 (en) Liquid crystal display device and driving method thereof
US20120200549A1 (en) Display Device And Drive Method For Display Device
WO2012147662A1 (en) Liquid crystal display device and driving method therefor
WO2012008216A1 (en) Data signal line drive circuit, display device, and data signal line drive method
KR20150025104A (en) Liquid Crystal Display and driving method the same
JP2005250034A (en) Electrooptical device, driving method of electrooptical device and electronic appliance
WO2011033812A1 (en) Display device and drive method for display device
WO2009128281A1 (en) Circuit for driving liquid crystal display apparatus
JP2009069626A (en) Liquid crystal display apparatus and driving method thereof
JP2009271267A (en) Driver, display device, and driving method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12777089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12777089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP