WO2012147594A1 - Backlight system, display device, and backlight control method - Google Patents

Backlight system, display device, and backlight control method Download PDF

Info

Publication number
WO2012147594A1
WO2012147594A1 PCT/JP2012/060502 JP2012060502W WO2012147594A1 WO 2012147594 A1 WO2012147594 A1 WO 2012147594A1 JP 2012060502 W JP2012060502 W JP 2012060502W WO 2012147594 A1 WO2012147594 A1 WO 2012147594A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sub
pixels
pixel
along
Prior art date
Application number
PCT/JP2012/060502
Other languages
French (fr)
Japanese (ja)
Inventor
内田 龍男
鈴木 芳人
川上 徹
一雄 関家
真裕 西澤
石鍋 隆宏
片桐 麦
江原 克典
佳拡 橋本
伊藤 康尚
石井 裕
Original Assignee
シャープ株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, 国立大学法人東北大学 filed Critical シャープ株式会社
Publication of WO2012147594A1 publication Critical patent/WO2012147594A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133613Direct backlight characterized by the sequence of light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • G02F1/133623Inclined coloured light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/34Colour display without the use of colour mosaic filters

Definitions

  • the present invention relates to a display device that performs full-color display without using a color filter while using a backlight as a light source for image display, and in particular, each of a plurality of sub-pixels constituting a pixel of the display device is different from the back side.
  • the present invention relates to a backlight control method for collecting colored light, and a backlight system for realizing the control method.
  • the color filter transmits light in the wavelength band corresponding to each RGB and absorbs other light, about 2/3 of the light is lost. That is, in the liquid crystal display device using the color filter, there is a problem that the light use efficiency is lowered.
  • Patent Document 1 listed below proposes a technique for improving the light utilization efficiency by arranging a microlens array on the backlight side of the liquid crystal panel and condensing light of each RGB color in the corresponding subpixel. Has been.
  • FIG. 18 is a cross-sectional view showing a schematic configuration of the image display device described in Patent Document 1.
  • the image display device 51 includes a backlight source 52, a diffraction grating 53, a first microlens array 54, a liquid crystal panel 55, a second microlens array 56, and a diffusion plate 57 in this order.
  • a substantially parallel white light W is emitted from the backlight source 52.
  • the parallel light forms a small angle with the light exit surface 59 of the light guide plate. When the parallel light enters the diffraction grating 53, it is diffracted by the diffraction grating 53.
  • the first-order diffracted light is emitted in a direction substantially perpendicular to the diffraction grating 53. At this time, since light having different wavelengths has different diffraction angles, the first-order diffracted light is separated into red light R, green light G, and blue light B.
  • the first microlens array 54 is arranged such that one microlens 54a corresponds to a set of pixels 60 of the liquid crystal panel 55, that is, three adjacent subpixels. Therefore, the red light R, the green light G, and the blue light B emitted from the diffraction grating 53 in different optical axis directions are condensed by the microlens 54a on different sub-pixels in the set of pixels 60, respectively. . Therefore, by controlling on / off of these sub-pixels, transmission or blocking of the red light R, the green light G, and the blue light B can be controlled independently, and the image display device 51 performs color display. be able to.
  • the second microlens array 56 is arranged so that each microlens 56 a corresponds to the microlens 54 a of the first microlens array 54. Further, the distance L between the main plane of the first microlens array 54 and the main plane of the second microlens array 56 is equal to the focal length of the second microlens array 56. Therefore, the red light R, the green light G, and the blue light B that have passed through the pixel 60 have different optical axis directions, but the red light R, the green light G, and the blue light B pass through the micro lens 56a. The optical axes are aligned in parallel.
  • the second micro lens array 56 the red light R passing through the, the green light G and blue light B is diffused by the diffusion plate 57, as shown in FIG. 18, the directivity characteristics of the respective diffused light T R , T G, is T B equal.
  • the observer visually recognizes the image information by the light that has passed through the diffusion plate 57 disposed on the viewer side from the liquid crystal panel 55. Therefore, Patent Document 1 describes that color misregistration that occurs when an observer views the image display device 51 from different directions can be suppressed, and light use efficiency and viewing angle characteristics can be improved. .
  • Japanese Patent Publication Japanese Patent Laid-Open No. 11-258604 (published September 24, 1999)”
  • FIG. 4 is an explanatory diagram schematically showing how the light emitted from the sub-pixels spreads.
  • the shape of the elongated sub-pixel is observed as it is as shown in [1] of FIG.
  • the shape of the light spot formed on the diffusion plate 57 corresponding to each sub-pixel is substantially circular.
  • the irradiation angle distribution is isotropic (concentric). For this reason, even after the light condensed on each sub-pixel passes through the liquid crystal layer, the light spreads in an isotropic manner, so that the shape of the light spot on the diffusion plate 6 is substantially circular.
  • the present invention has been made in view of the above problems, and an object of the present invention is to use a backlight system capable of improving the display quality of a transmissive display device that does not use a color filter, and the backlight system.
  • the object is to provide a high-quality display device.
  • the backlight system of the present invention (1) One pixel is composed of a plurality of sub-pixels, each of the plurality of sub-pixels has an elongated shape having a different width and length, and a plurality of pixels including the one pixel are extended in the width direction. And a second direction which is an extension direction of the length, and the amount of light passing through each of the plurality of sub-pixels is modulated based on image information.
  • a backlight system provided as a light source for a display device that displays image information, (2) a light source unit including a plurality of light emitting points arranged two-dimensionally along the first direction and the second direction; (3) a condensing unit that individually condenses the first light emitted from at least one of the plurality of light emitting points on the corresponding subpixel; (4) The shape of the light quantity distribution on the plane perpendicular to the light traveling direction with respect to the light beam emitted from one of the sub-pixels while spreading after the first light is condensed on one of the sub-pixels.
  • the light source unit emits light along the first direction so as to have an elongated shape similar to that of one of the sub-pixels.
  • the emission state is different from the light emission state along the second direction.
  • a plurality of pixels are two-dimensionally arranged on the display unit that displays image information, and one pixel is composed of a plurality of sub-pixels.
  • Each sub-pixel has a width and a length, and has an elongated shape extending in the second direction.
  • the display colors of the plurality of sub-pixels constituting one pixel may be different from each other or the same color.
  • multicolor display can be performed.
  • finer gradation expression can be provided by making the light transmittances of the plurality of sub-pixels different from each other.
  • the first light emitted from at least one of the plurality of light emitting points arranged in a two-dimensional manner is condensed on a plurality of subpixels for each subpixel by the light collecting unit.
  • the amount of light passing through the subpixel is modulated based on the image information.
  • the light emission state along the first direction in which the width of the sub-pixel is extended is different from the light emission state in the second direction in which the length of the sub-pixel is extended.
  • the light emission state includes the degree of spread of the light beam of the first light emitted from each of the plurality of light emitting points, or the interval between the plurality of light emitting points.
  • the degree of spread of the light beam means the flatness of the shape of the light quantity distribution in the plane perpendicular to the light traveling direction.
  • the degree of overlapping of the first light beams emitted from the adjacent light emitting points changes, and the condensing position in the corresponding subpixel also changes.
  • the light emission state in the first direction and the second direction in such a light source unit is set to a specific state corresponding to one of the sub-pixels. That is, the specific state means that the shape of the light amount distribution on a plane perpendicular to the light traveling direction is the same as that of one of the sub-pixels regardless of the number of light spots collected on one of the sub-pixels. It is a state of showing the shape.
  • the elongated shape of the light amount distribution is, for example, the shape of a light irradiation range (light spot) formed by a light beam emitted from one of the sub-pixels on a diffusion plate provided on the viewer side with respect to the display unit. This can be easily confirmed.
  • the number of condensing points for one of the sub-pixels is one
  • the light beam emitted from one of the sub-pixels is a light beam that spreads from one condensing point.
  • the light beam emitted from one of the sub-pixels is composed of a plurality of light beams spreading from the plurality of condensing points.
  • the number of condensing points collected on one of the sub-pixels is arbitrary.
  • the display device can display high-quality image information to the same extent as when a color filter is provided for each sub-pixel without providing a color filter for each sub-pixel.
  • the display device can display high-quality color image information when a plurality of sub-pixels constituting one pixel correspond to different display colors.
  • One pixel is composed of a plurality of sub-pixels, each of the plurality of sub-pixels has an elongated shape having a different width and length, and a plurality of pixels including the one pixel are extended in the width direction.
  • the optical system of the backlight is set so as to show an elongated shape similar to that of one of the sub-pixels regardless of the number of light spots condensed on one of the sub-pixels.
  • the observer can visually recognize high-quality image information as described above.
  • the optical system of the backlight includes a light source and an optical system that guides and collects light emitted from the light source to each of the plurality of sub-pixels.
  • a display device including any one of the backlight systems described above also belongs to the category of the present invention.
  • a transmissive display device with high display quality can be provided without using a color filter.
  • the display device of the present invention provides (1) a light source that emits light with different display colors; (2) One pixel is composed of a plurality of sub-pixels corresponding to the different display colors, each of the plurality of sub-pixels having an elongated shape having a different width and length, and a plurality of pixels including the one pixel Are two-dimensionally arranged along a first direction that is the extending direction of the width and a second direction that is the extending direction of the length, and the second light that passes through each of the plurality of sub-pixels.
  • a display unit that displays the image information by modulating the amount of light based on the image information; (3) a condensing unit that individually condenses the light emitted from the light source unit on the corresponding sub-pixels of the display color of the display unit; (4) a diffusing plate that is disposed on the viewer side with respect to the display unit and diffuses the second light that has passed through the display unit; (5) Passing through a condensing region of the condensing unit that collects part of the light emitted by the light source unit with respect to one of the sub-pixels, and corresponding to one of the sub-pixels,
  • the shape of the light irradiation range formed on the surface of the diffusing plate does not depend on the number of light spots condensed on one of the sub-pixels, and exhibits the same elongated shape as that of one of the sub-pixels.
  • the light source unit is characterized in that a light emission state along the first direction is different from a light emission state along the second direction.
  • a plurality of pixels are two-dimensionally arranged in the display unit that displays image information, and one pixel is configured by a plurality of sub-pixels corresponding to different display colors.
  • Each sub-pixel has an elongated shape having a different width and length.
  • the light of a certain display color emitted from the light source unit is condensed by the condensing unit onto the sub pixel having the corresponding display color, and the amount of light passing through the sub pixel is modulated based on the image information.
  • the light that has passed through the sub-pixel is projected onto a diffusion plate arranged on the viewer side.
  • the light emission state along the first direction in which the width of the sub-pixel is extended is different from the light emission state in the second direction in which the length of the sub-pixel is extended.
  • the light emission state refers to the degree of spread of the first light beam of a certain display color emitted from the light source unit or the interval between a plurality of emission points of light emitted from the light source unit for a certain display color.
  • the degree of spread of the light beam means the flatness of the cross-sectional shape perpendicular to the traveling direction of the light beam.
  • the degree of overlapping of the first light beams emitted from the adjacent emission points is changed, and the condensing position in the corresponding sub-pixel is also changed.
  • the light emission state in the first direction and the second direction in such a light source unit is set to a specific state corresponding to one of the sub-pixels. That is, the specific state means that the shape of the light irradiation range formed on the surface of the diffusion plate is the same as that of one of the sub-pixels regardless of the number of light spots collected on one of the sub-pixels. It shows a state of showing an elongated shape.
  • the number of light spots focused on one of the sub-pixels is one, one light irradiation range is formed on the surface of the diffusion plate by the one light spot.
  • the number of light spots is plural, one light irradiation range is formed on the surface of the diffusion plate by the plural light spots.
  • the number of light spots forming one light irradiation range is arbitrary.
  • the observer visually recognizes the shape of one light irradiation range formed on the surface of the diffusion plate as the light emission shape of one sub-pixel. Therefore, since the shape of the one light irradiation range is elongated like the shape of one sub-pixel, the observer has the same degree as when observing a display unit provided with a color filter in each sub-pixel. In addition, high-quality color image information can be visually recognized.
  • a combination of a configuration described in a certain claim and a configuration described in another claim is limited to a combination of the configuration described in the claim cited in the claim.
  • combinations with configurations described in the claims not cited in the focused claims are possible.
  • the light from the light source is condensed on one of the sub-pixels, and then spreads with respect to the light beam emitted from one of the sub-pixels.
  • the shape of the light amount distribution on the surface perpendicular to the traveling direction is characterized by showing an elongated shape similar to that of one of the sub-pixels, regardless of the number of condensing points that are condensed on one of the sub-pixels. .
  • the present invention has the effect that even if a color filter is not provided for each sub-pixel, high-quality image information can be displayed to the same extent as when a color filter is provided for each sub-pixel.
  • FIG. 9 is an explanatory diagram schematically illustrating the appearance of light beams before and after passing through a sub-pixel by enlarging a light collecting unit and a display panel illustrated in FIG. 8 in a first direction X. It is explanatory drawing which shows typically the appearance of the light beam before and behind passing a sub pixel by enlarging the condensing part and display panel which are shown in FIG. 8 to a 2nd direction. It is the schematic which shows one structural example of the backlight system which concerns on other embodiment.
  • FIG. 1 is a schematic configuration diagram showing a backlight system according to an embodiment of the present invention and a display device including the backlight system, and shows an arrangement relationship of each component along a first direction.
  • Reference numeral 2 denotes an arrangement relationship of each component along the second direction.
  • FIG. 3 is a plan view showing the configuration of one pixel.
  • the first direction is referred to as an RGB arrangement direction.
  • the second direction can also be referred to as the same color arrangement direction.
  • the backlight system of the present invention the display device including the backlight system, and the backlight control method have the following preconditions and features in common.
  • the display device is a transmissive display device that displays image information by modulating the amount of light passing through each of the plurality of sub-pixels arranged in the display unit based on the image information.
  • one pixel 1 includes a plurality of sub-pixels (picture elements) 1a, 1b, 1c, and the like.
  • Each of the sub-pixels 1a, 1b, and 1c has an elongated shape having different widths W1 and W2 as shown in FIGS.
  • a plurality of pixels having the same configuration as the pixel 1 are two-dimensionally arranged in a first direction X that is an extension direction of the width W1 and a second direction Y that is an extension direction of the length W2. ing.
  • an example of a display device that performs full color display by assigning different display colors of red, green, and blue to each of the sub-pixels 1a, 1b, and 1c is shown.
  • high-definition monochrome images may be displayed by condensing white light on all the sub-pixels 1a, 1b, and 1c and controlling the luminance of each sub-pixel 1a, 1b, and 1c.
  • M sub-pixels having different display colors are arranged in the second direction Y, and combined with N sub-pixels having different display colors arranged in the first direction X, for a total of M ⁇
  • One pixel may be constituted by N sub-pixels.
  • the shape of one pixel is a square, since the shape of each sub-pixel is elongated along the second direction Y, M ⁇ N.
  • one pixel includes six sub-pixels of six colors of red (R), green (G), blue (B), cyan (C), yellow (Y), and magenta (M). They are arranged in 2 rows and 3 columns.
  • the display colors of the M ⁇ N sub-pixels constituting one pixel may be all different, or at least part or all may be the same color, and is not particularly limited.
  • the light emitted from the light source unit 3 is condensed on one of the plurality of sub-pixels (for example, the sub-pixel 1a), and then the light beam emitted from the sub-pixel 1a while spreading is a surface perpendicular to the light traveling direction.
  • the optical system of the backlight is set so that the shape of the light quantity distribution in FIG. 1 shows an elongated shape similar to that of the sub-pixel 1a regardless of the number of light spots condensed on the sub-pixel 1a.
  • the point that the shape of the light amount distribution described in the above ⁇ feature point> is an elongated shape is that the shape of the light spot (light irradiation range) formed on the surface of the diffusion plate 46 disposed on the viewer side of the display panel 4. This is reflected in the fact that becomes an elongated shape.
  • the width in the first direction X of the light spot formed on the surface of the diffusion plate 46 by the light beam emitted from the sub-pixel 1a is L (X), which is shown in FIG.
  • the length of the same light spot in the second direction Y is L (Y).
  • the magnitude relationship between L (X) and L (Y) is L (X) ⁇ L (Y), and the relational expression L (X) / L (Y) ⁇ W1 / W2 holds.
  • the display state shown in [4] in FIG. 4 is not inferior to the display state in the case where the color filter shown in [1] in FIG. Rather, since a color filter is not provided for each sub-pixel, light quantity loss due to the color filter can be avoided, resulting in a bright display state.
  • One form of setting in the optical system of the backlight described in ⁇ Feature Point> above may be referred to as an irradiation angle (a degree of light spread or an emission angle distribution) of a plurality of light emitting points arranged two-dimensionally in the light source unit 3. )
  • an irradiation angle a degree of light spread or an emission angle distribution of a plurality of light emitting points arranged two-dimensionally in the light source unit 3.
  • the light source unit 3 includes a plurality of light emitting points R, G, and B.
  • the light emitting point R is, for example, an LED (Light Emitting Diode) that emits red light
  • the light emitting points G and B are LEDs that emit green light and blue light, respectively.
  • LED Light Emitting Diode
  • the plurality of light emitting points R are two-dimensionally arranged along the first direction X and the second direction Y.
  • the interval (arrangement interval or pitch) between the light emitting points R is P1 in the first direction X and P1 in the second direction Y.
  • the irradiation angle of light emitted from each of the plurality of light emitting points R is along the second direction Y from the irradiation angle ⁇ (X) spreading along the first direction X.
  • the spread irradiation angle ⁇ (Y) is larger.
  • Each of the light emitting points R has such emission characteristics.
  • the light emission state along the first direction X and the light emission state along the second direction Y are different. As a result, a display device that performs high-quality display without using a color filter can be realized.
  • the light source unit 3 has predetermined light emission points R (red), light emission points G (green), and light emission points B (blue) as a plurality of light emission points that emit different color lights. Are arranged two-dimensionally at a pitch of The interval (pitch) between the light emitting points of the same color is P1 in the first direction X and P1 in the second direction Y as described above.
  • the sub-pixels that display red, green, and blue in one pixel are arranged along the first direction X in the order of RBG, so that the light emitting points of the same color are adjacent to each other along the first direction X.
  • the light emitting points R, B, and G of different colors are arranged along the first direction X so as not to be present.
  • the light emitting points of the same color are arranged along the second direction Y.
  • the arrangement of the colors of the light emitting points depends on the optical design of the condensing unit 5, as long as there is periodicity in order to facilitate the optical design of the condensing unit 5, in order of RGB or RBG, Other orders are also acceptable.
  • a plurality of light emitting points that emit different colored lights may be arranged.
  • the number of colors is not limited to three, and for example, four colors including yellow may be added, or other colors may be added.
  • One pixel is divided into sub-pixels corresponding to the number of colors.
  • the light emission point referred to in the present invention means an effective light emission point 100A as shown in FIG.
  • FIG. 5 is a conceptual diagram showing the definition of the effective light emission point.
  • the effective light emission point 100 ⁇ / b> A is defined as a virtual image of the light emission point 102 by the condenser lens system 101.
  • the effective light emission point 100A coincides with the light emission point 102.
  • the pitch P1 is a point interval between the effective light emitting points 100A.
  • the number of light sources can be reduced by applying a light emitting device using a light source and a light guide instead of the light source unit 3. A significant cost reduction effect can be obtained. This is because many pseudo light sources can be created and taken out from spatially different positions. Each of the pseudo light sources at this time also corresponds to an effective light emission point.
  • the condensing part 5 which condenses the light which the light source part 3 radiate
  • MLAs are arranged at substantially the same intervals for each of a plurality of (for example, three) sub-pixels constituting one pixel (however, detailed intervals will be described later in Embodiment 3). .
  • the light source unit 3 and the light collecting unit 5 constitute a backlight system according to the present invention.
  • FIG. 17 is a diagram schematically showing the appearance of the MLA, and (c) shows a cross section along the A line or B line in (a) or the C line in (c).
  • the MLA is an assembly of lenses whose surface shape or refractive index distribution is changed.
  • An example of an assembly of lenses whose surface shape is changed is, for example, a fly in which microlenses are arranged in two orthogonal directions of a first direction X and a second direction Y, as shown in FIGS. Eye lens.
  • a lenticular lens in which microcylindrical lenses are arranged in one direction orthogonal to the longitudinal direction may be employed, or a fly-eye lens and a lenticular lens. A combination with may be adopted.
  • FIGS. 1 and 2 only the path of light (red light) from the light emitting point R to the corresponding red sub-pixel is shown, and the paths of green light and blue light are omitted.
  • the arrangement position of a plurality of light emitting points, the lens pitch of the MLA, and the pixel pitch are applied to a certain relational expression, the light emitted from each light emitting point can be condensed on the corresponding subpixel (details). A detailed interval will be described later in Embodiment 3).
  • the condensing function of a fly-eye lens having a convex surface as shown in FIG. 1 is a method of deflecting the optical path according to the surface shape, and by utilizing the refractive index difference at the interface on the lens surface, The light path is deflected according to the law.
  • the surface shape of the imaging optical system is preferably designed so that the radius of curvature of the lens surface is 0.5 to 2 mm.
  • the radius of curvature is determined by the distance from the fly-eye lens surface to the light transmission part (liquid crystal layer), the refractive index of the lens array, and the condensing range condition in the liquid crystal layer. Therefore, it is necessary to use a surface shape having an optimum curvature according to the light source size to be used, the liquid crystal panel, and the required thickness of the backlight portion. Further, the surface shape becomes a convex surface in order to have a light collecting action.
  • the arrangement direction of the plurality of light emitting points may be as follows.
  • the arrangement direction of the plurality of light emitting points is the longitudinal direction of the micro cylindrical lens (FIG. It is taken in a direction orthogonal to the C direction shown in 17 (b).
  • the curvature of the surface shape of each of the plurality of microlens arrays is compared to the case of using a single microlens array. Can be suppressed. By suppressing the curvature, the generation of stray light can be suppressed.
  • a method of deflecting the optical path by the refractive index distribution may be adopted.
  • the optical path is deflected by giving a distribution to the refractive index in the lens. That is, by changing the refractive index between the central portion and the peripheral portion of the lens, a gradient of the refractive index is given inside the lens, and light is deflected by this gradient of refractive index.
  • the surface shape of the lens is flat. For this reason, it becomes possible to bond a polarizer, an optical film, etc. directly on a lens array, and space maintenance with them becomes easy.
  • a plurality of pixels including the pixel 1 including the light source unit 3 that emits light in different display colors and the sub-pixels 1 a, 1 b, and 1 c corresponding to the different display colors are arranged in a first direction X.
  • the display panel 4 arranged two-dimensionally in the second direction Y, and the light condensing part for individually condensing the light emitted from the light source part 3 on the sub-pixels 1a, 1b, and 1c of the corresponding display color.
  • the display device 10 is configured as a transmissive liquid crystal display device using a backlight.
  • the light source unit 3 and the light collecting unit 5 correspond to the backlight system of the present invention.
  • the display panel 4 includes, in order from the light incident side of the light source unit 3, a polarizer 41, a glass substrate 42 on which a TFT driving unit is formed, a liquid crystal layer 43, a glass substrate 44, and an analyzer 45.
  • a diffusion plate (diffusion element) 46 is disposed on the viewer side of the display panel 4.
  • the LED array which is an array of point light sources is illustrated as the light source unit 3, the present invention is not limited to this, and any of a linear light source such as CCFL (Cold Cathode Fluorescent Lamp) or a surface light source may be adopted. it can. Further, as the point light source, an organic EL lamp in which the light emitting point 102 (FIG. 5) is filled with an organic EL light emitting unit may be used instead of the LED.
  • CCFL Cold Cathode Fluorescent Lamp
  • the transmissive display device In the transmissive display device according to the present invention, the light from the light source is condensed on the sub-pixels constituting the pixel, so that the light that passes through the liquid crystal layer 43 and exits from the analyzer 45 is directed to the front. It is in a state of being condensed to some extent. For this reason, when the screen of this transmissive display device is observed at a different viewing angle (from an oblique direction), light does not reach much and it is difficult to see the display on the screen as compared with the case where the screen is observed from the front.
  • the diffusion plate 46 on the exit surface of the analyzer 45. Further, when the diffusion plate 46 further has an incident angle independent diffusion characteristic, the light that has passed through each of the sub-pixels that spatially divide the transmissive display device by color has the same diffusion characteristic, so that the display quality is improved. Is more preferable.
  • the incident angle-independent diffusion characteristic is a property that the diffusion intensity distribution when passing through the diffusion plate is constant regardless of the incident angle of the incident light to the diffusion plate.
  • FIG. 6 is an explanatory diagram schematically showing the appearance of the light flux before and after passing through the sub-pixels by enlarging the light collecting unit 5 and the display panel 4 in the first direction X.
  • FIG. 7 is an explanatory diagram schematically showing the appearance of light beams before and after passing through the sub-pixels by enlarging the light collecting unit 5 and the display panel 4 in the second direction Y.
  • the maximum angle of the angle at which this light ray enters one of the sub-pixels in the plane including the normal direction of the plane including the first direction X and the second direction Y and the first direction X is defined as ⁇ a.
  • the maximum angle ⁇ a can be said to be the maximum angle of the inclination angle of the light beam inclined in the first direction X with reference to the normal direction.
  • a light beam included in a light beam collected from the light emitting point R and focused on one corresponding sub-pixel is considered.
  • the maximum angle of the angle at which this light ray enters one of the sub-pixels in a plane including the normal direction and the second direction Y is defined as ⁇ b. Note that the maximum angle ⁇ b can be said to be the maximum angle of the inclination angle of the light beam inclined in the second direction Y with respect to the normal direction.
  • the plane including the first direction X and the second direction Y is synonymous with a plane in which a plurality of pixels are two-dimensionally arranged, and may be synonymous with a display plane.
  • the normal of this surface is shown by broken lines in FIGS.
  • the above-mentioned maximum angle ⁇ a defines the extent of spreading of the luminous flux in the first direction X after the light emitted from the light emitting point R is collected on one corresponding sub-pixel.
  • the maximum angle ⁇ b defines the degree of spread of the light flux in the second direction Y.
  • the irradiation angle ⁇ (X) that spreads along the first direction X is made smaller than the irradiation angle ⁇ (Y) that spreads along the second direction Y.
  • the maximum angle ⁇ a is smaller than the maximum angle ⁇ b.
  • the light source unit 3 and the light condensing unit 5 are designed so that the relationship ⁇ a ⁇ b is established with respect to the maximum angle ⁇ a and the maximum angle ⁇ b.
  • the luminous flux emitted from one sub-pixel can have an elongated light amount distribution similar to the shape of one of the sub-pixels.
  • the light emitted from the light emitting point R has the elongated light amount distribution as described above, and is condensed on one corresponding sub-pixel and then reaches the diffusion plate 46 to reflect the light amount distribution.
  • a light irradiation range, that is, a light spot is formed on the diffusion plate 46.
  • the observer of the display panel 4 recognizes the mixed image information. That is, the observer cannot see a clear image and recognizes a blurred image.
  • the traveling direction of light cannot be deflected.
  • the diffuser plate 46 cannot diffuse the position of the light beam only by diffusing the angle of the light beam that has reached.
  • the parameter that most affects the light beam angle distribution after passing through the MLA is the light beam output angle distribution in the light source unit 3.
  • the display device 10 when the display device 10 is designed under the condition that the first diffusion element arrival width La and the width (P0 / 3) of one subpixel satisfy the following (Formula 2), the subpixels adjacent to each other corresponding to RGB Therefore, the observer can visually recognize clear image information.
  • ⁇ b When comparing the inequality conditions of the maximum angles ⁇ a and ⁇ b, ⁇ b is about three times wider. This is because, in the display device 10 shown in FIGS. 1 and 2, one pixel is configured with three types of subpixels in the first direction X and one type of subpixel is configured in the second direction Y. This is because the shape of one subpixel is vertically long.
  • the irradiation angle of the light source unit is made anisotropic, that is, the irradiation angle is changed between the first direction X and the second direction Y.
  • the maximum angle ⁇ a in the first direction X and the maximum angle ⁇ b in the second direction Y preferably satisfy (Equation 4) and (Equation 8) simultaneously. Also, ⁇ a ⁇ arctan ⁇ P0 / (6 ⁇ h) ⁇ (Formula 9) ⁇ b ⁇ arctan ⁇ P0 / (2 ⁇ h) ⁇ (Formula 10) 4 can be satisfied at the same time, the state shown in [4] of FIG. 4 occurs, preventing color mixing between the sub-pixels in the first direction X (RGB alignment direction), and display information of adjacent sub-pixels of the same color. Since no overlap occurs, the observer can visually recognize clearer image information.
  • N is the number of sub-pixels constituting one pixel arranged in the first direction X within one pixel.
  • M is the number of sub-pixels arranged in the second direction Y within the one pixel, and is an integer of 1 or more.
  • the display colors of the M ⁇ N sub-pixels constituting one pixel may be all different, or at least part or all may be the same color, and is not particularly limited. .
  • the spreading width in the first direction X when the light beam that has passed through one sub-pixel reaches the diffusion plate 46 (hereinafter referred to as the first diffusion element).
  • La (referred to as an arrival width) is expressed by the above-described equation 1 using the distance h and the maximum angle ⁇ a.
  • the display device 10 when the display device 10 is designed under the condition that the first diffusion element arrival width La and the width (P0 / N) of one subpixel satisfy the following (formula 12), the state shown in [4] of FIG. And the display colors of the adjacent sub-pixels corresponding to RGB do not cause color mixing, so that the observer can view clearer image information.
  • the spread width in the second direction Y (hereinafter referred to as the second diffusion element arrival width) Lb when the light beam that has passed through one sub-pixel reaches the diffusion plate 46 is the above distance.
  • the maximum angle ⁇ b it is expressed by Equation 5 above.
  • the display device 10 when the display device 10 is designed under the condition that the second diffusion element arrival width Lb and the length (P0 / M) of one subpixel satisfy the following (Equation 15), the display device 10 is shown in [4] in FIG. Since the state is generated and the display information of the adjacent sub-pixels of the same color does not overlap, the observer can view clearer image information.
  • the first diffusion element arrival width La is expressed by the above formula 1 using the distance h and the maximum angle ⁇ a.
  • the display device 10 when the display device 10 is designed under the condition that the first diffusion element arrival width La and the width (Pa / N) of one subpixel satisfy the following (formula 19), the state shown in [4] of FIG. And the display colors of the adjacent sub-pixels corresponding to RGB do not cause color mixing, so that the observer can view clearer image information.
  • the second diffusion element reach width Lb is expressed by the above-described Expression 5 using the distance h and the maximum angle ⁇ b.
  • Equation 23 is transformed into (Equation 24) below.
  • each light emitted from the light emitting points RGB passes through the MLA and is irradiated into each sub pixel corresponding to RGB of the display panel 4. It is possible to
  • the emission angles in the first direction X (RGB arrangement direction) and the second direction Y (same color arrangement direction) are made different so that the emission angle distribution has anisotropy, thereby corresponding to each sub-pixel.
  • the shape of the light irradiation range formed on the diffusing plate 46 can be made substantially similar to the current color filter type liquid crystal display. As a result, the resolution is comparable to that of the current liquid crystal display.
  • the pitch in the first direction X and the pitch in the second direction Y are equal to each other. .
  • the number of light emitting points involved in the light collection of one subpixel is greater in the second direction Y than in the first direction X.
  • light emitted from two or three light emitting points R is collected on one subpixel corresponding to R, whereas in the case of FIG. Light emitted from three to five light emitting points R is collected on one subpixel.
  • An increase in the number of light emitting points involved in condensing light onto one sub-pixel can be expected to average out the individual difference variation of the light emitting points and to further reduce luminance unevenness and color unevenness.
  • the pitch of the light emitting points in the second direction Y can be increased to the extent that the effect equivalent to the effect of averaging the individual differences obtained in the first direction X can be maintained, the second direction Y can be expanded.
  • the number of light emitting points to be arranged can be reduced. As a result, an effect of cost reduction of the display device can be expected.
  • the pitch of each lens constituting the fly-eye lens is 2 if the pitches of the same color light emitting points in both the first direction X and the second direction Y are equal to each other.
  • the two directions X and Y are preferably equal to each other.
  • FIG. 8 is a schematic configuration diagram showing a backlight system according to another embodiment of the present invention and a display device including the backlight system, and each component along the first direction (RGB alignment direction). The arrangement relationship is shown.
  • FIG. 9 is a schematic configuration diagram showing the backlight system and the display device, and shows an arrangement relationship of each component along the second direction (same color arrangement direction).
  • the backlight system of the present embodiment shown in FIGS. 8 and 9 is different from the first embodiment in the following two points.
  • (2) The irradiation angle of each light emitting point in the light source unit 3 ′ will be described in more detail below.
  • the light emission point R is The pitch along the second direction Y (FIG. 9) is narrower than the pitch along the first direction X (FIG. 8).
  • the pitch along the second direction Y is set to half the pitch P1 along the first direction X, that is, (P1) / 2.
  • the pitch P1 along the first direction X is the same value as in the first embodiment.
  • the light emitted from the light emitting points R arranged along the first direction X is condensed on the liquid crystal layer 43 after passing through the MLA as in the first embodiment, one light is emitted to one corresponding sub-pixel. A condensing point is formed.
  • the light emitted from the light emitting points R arranged along the second direction Y forms a plurality (two in FIG. 9) of condensing points in one corresponding sub pixel.
  • the irradiation angle ⁇ (X) spreading along the first direction X and the second direction Y are related to the irradiation angle of the light emitted from each of the plurality of light emitting points.
  • the irradiation angle ⁇ (Y) that spreads out is equal. Therefore, the way in which the light beam spreads from the liquid crystal layer 43 to the diffusion plate 46 is equal in the first direction X and the second direction Y.
  • FIG. 10 is an explanatory diagram schematically showing the appearance of light beams before and after passing through the sub-pixels by enlarging the light collecting unit 5 and the display panel 4 in the first direction X.
  • FIG. 11 is explanatory drawing which shows typically the appearance of the light beam before and behind passing a sub pixel by enlarging the condensing part 5 and the display panel 4 to a 2nd direction.
  • the irradiation angle ⁇ (X) extending along the first direction X is equal to the irradiation angle ⁇ (Y) extending along the second direction Y.
  • the maximum angle ⁇ a and the maximum angle ⁇ b are equal.
  • is the length of the passage region when the light emitted from the light source unit 3 ′ passes through the liquid crystal layer 43.
  • the length of the passing region means an interval between the condensing positions at both ends among the plurality of condensing positions arranged in the second direction Y within one subpixel.
  • the diffusion element arrival width Lb has a concentration in the liquid crystal layer 43. The effect of the light region is also added.
  • Equation 28 is transformed into the following (Equation 29).
  • Embodiment 2 in the color filterless system using MLA, similarly to Embodiment 1, in the light source part 3 ′, the light emission state along the first direction X and the second direction Y By making the light emission state along the same, display quality equivalent to that of the color filter type display device can be realized.
  • the maximum angle ⁇ a in the first direction X and the length ⁇ of the passage region satisfy (Equation 4) and (Equation 29) at the same time.
  • ⁇ a ⁇ arctan ⁇ P0 / (6 ⁇ h) ⁇ (Formula 9) ⁇ ⁇ P0-2 ⁇ h ⁇ tan ⁇ a (Formula 30) 4 can be satisfied at the same time, the state shown in [4] of FIG. 4 occurs. That is, color mixing between sub-pixels in the first direction X (RGB alignment direction) is prevented, and display information of adjacent sub-pixels of the same color does not overlap, so that an observer can visually recognize clearer image information. Is possible.
  • N is the number of sub-pixels constituting one pixel arranged in the first direction X within one pixel.
  • M is the number of sub-pixels arranged in the second direction Y within the one pixel, and is an integer of 1 or more.
  • the display colors of the M ⁇ N sub-pixels constituting one pixel may be all different, or at least part or all may be the same color, and is not particularly limited. .
  • the spreading width in the first direction X when the light beam that has passed through one sub-pixel reaches the diffusion plate 46 (hereinafter referred to as the first diffusion element).
  • La is referred to as the following equation using the distance h and the maximum angle ⁇ a.
  • FIG. 4 occurs. That is, since the display colors of adjacent sub-pixels corresponding to RGB do not cause color mixing, the observer can view clearer image information.
  • each light emitted from the light emitting points RGB passes through the MLA and then corresponds to the RGB of the display panel 4 as in the first embodiment.
  • Each of the sub-pixels can be irradiated.
  • the shape of the light irradiation range formed on the diffusion plate 46 can be made almost similar to that of the current color filter type liquid crystal display. As a result, the resolution is comparable to that of the current liquid crystal display.
  • the irradiation angle of each light emitting point in the first direction X and the second direction Y is equal, and the pitch of the same color light emitting points is narrower in the second direction Y (same color arrangement direction). For this reason, the number of light emitting points involved in condensing one subpixel of the liquid crystal layer 43 is larger in the number in the second direction Y than in the first direction X.
  • An increase in the number of light emitting points involved in condensing light onto one sub-pixel can be expected to average out the individual difference variation of the light emitting points and to further reduce luminance unevenness and color unevenness.
  • FIG. 12 is a schematic diagram illustrating one configuration example of the backlight system according to the present embodiment.
  • the light source units 3 and 3 ′ an array of a plurality of light emitting points R, G, and B that emit different color lights is used.
  • the light emitting points R, G, and B are arranged in order of RGB colors from the right side to the left side in FIG.
  • an MLA having an imaging magnification (1 / n) in which a plurality of microlenses 5A are two-dimensionally arranged is used.
  • the pixel pitch in the first direction X is P as in the first and second embodiments, and the pitch P1 between the light emitting points of the same color is P1 ⁇ n ⁇ P (Expression 37) And the pitch P2 between the microlenses 5A is P2 ⁇ (n / (n + 1)) ⁇ P (Equation 38) And
  • a real image 1 / n times as large as one light emitting point can be formed on one corresponding sub-pixel.
  • FIG. 13 is an explanatory diagram showing preferable setting conditions among a pitch of a plurality of light emission points of the same color, a pitch of a plurality of microlenses, and a pitch of subpixels of the same color.
  • FIG. 13 only the principal ray path passing through the center of the microlens 5A among the light (R light) from the light emitting point R to the corresponding sub-pixel is illustrated, and the paths of the G light and the B light are illustrated. Omitted. Further, the refraction phenomenon due to the difference in refractive index at the interface of the microlens 5A was also excluded.
  • the positions of the light emitting points R adjacent along the first direction X (RGB alignment direction) in FIG. 13 are denoted by L1 and L2, respectively, and similarly the centers of the microlenses 5A adjacent along the first direction X.
  • L1 and L2 the positions of the light emitting points R adjacent along the first direction X
  • S1 and S2 the positions of sub-pixels adjacent to each other along the first direction X corresponding to R.
  • the line segment S1S2 P (pixel pitch)
  • the lens pitch P2 of the MLA is substantially equal to (n / (n + 1)) ⁇ P
  • the light from the light emitting point R can be condensed on each of the subpixels adjacent along the first direction X. .
  • the pitch P1 between the light emitting points of the same color is substantially equal to n ⁇ P
  • the light from the light emitting points of the same color adjacent along the first direction X corresponds to R.
  • the light can be condensed on one sub-pixel.
  • the pitch P1 between the light emitting points of the same color is equal to or approximately equal to n ⁇ P
  • the lens pitch P2 of the MLA is equal to or approximately equal to (n / (n + 1)) ⁇ P.
  • L3 since the heights of the plurality of light emitting points are all the same, L3 always exists on the line segment from L1 to L2. From FIG. 13, since a similar relationship is established between ⁇ L1L2M2 and ⁇ S1S2M2, the light emitted from L3 existing on the line segment from L1 to L2 is on the line segment from S1 to S2. Be sure to collect light.
  • the line segment from S1 to S2 corresponding to the pixel pitch P it may be considered that only one subpixel corresponding to one color (R) exists as shown in FIG. Therefore, the R light emitted from L3 is also condensed in the one sub-pixel. Thereby, a plurality of (for example, two) condensing points are formed in one sub-pixel.
  • the maximum angles ⁇ a and ⁇ b described with reference to FIGS. 6, 7, 10 and 11 are more preferably within 40 °.
  • the incident angle of the light beam incident on the MLA with respect to the optical axis direction of the MLA is increased. In this case, the aberration including the field curvature is so large that it cannot be ignored.
  • the maximum angles ⁇ a and ⁇ b are preferably 40 degrees or less.
  • the maximum angle ⁇ a is set smaller than the maximum angle ⁇ b, the maximum angle ⁇ a naturally becomes 40 degrees or less if the condition that the maximum angle ⁇ b is 40 degrees or less is satisfied.
  • the maximum angles ⁇ a and ⁇ b are within 30 °.
  • each subpixel that is a light-transmitting portion corresponds to a light emission corresponding to each subpixel. That is, only light emitted from points R, G, and B passes.
  • a color filter-less display device can be realized ideally.
  • optical components cannot be manufactured as designed, or optical components cannot be assembled, or optical components that are slightly out of design must be manufactured in consideration of manufacturing costs. Due to such problems, it may be difficult to focus only the corresponding light on the sub-pixels forming the pixel array with the liquid crystal layer.
  • the present invention does not prohibit the provision of a color filter layer.
  • the transmittance is about 90% even at a wavelength at which light is transmitted, and it is difficult to avoid light loss.
  • the diffusing plate 46 As a function of the diffusing plate 46, the light irradiated from the back side of the display panel 4 is emitted as diffused light to the viewer side, while the light irradiated to the diffusing plate 46 from the viewer side is transmitted to the display panel 4 side. While diffusing as light, it is also diffused as reflected light on the observer side. This reflection action is called backscattering with respect to external light. When this reflected diffused light is observed together with the normal light for image display transmitted through the display panel 4, the image floats white and the image quality is degraded.
  • a circularly polarizing plate is a polarizing plate that combines a polarizer and a quarter-wave plate. Specifically, from the light source side, the (first) polarizer 41, the glass substrate 42 on which the TFT driving unit is formed, the liquid crystal layer 43, the glass substrate 44, the analyzer 45, and the first quarter-wave plate , A diffusion plate 46, a second quarter-wave plate, and a second polarizer.
  • the absorption axes of the polarizer 41 and the analyzer 45 are orthogonal to each other, and the absorption axes of the analyzer 45 and the second polarizer are parallel to each other. Further, the slow axes of the first quarter-wave plate and the second quarter-wave plate are arranged so as to be orthogonal to each other, and the absorption axis of the analyzer 45 and the first quarter-wavelength. Each slow axis of the plate is arranged to be inclined 45 degrees.
  • the light source used in the present invention requires a plurality of light sources that emit light having different principal wavelengths.
  • a light source may be any one of an LED light source, a laser light source, and an organic EL light source, or may be a light emitting device including the light source and a light guide.
  • the light emitting device 311 includes a light source 312 (R light source, G light source, B light source) and a light guide 313, and introduces light emitted from the light source 312 into the light guide 313.
  • the light is emitted from a plurality of emission parts (tip parts). This emission part can be regarded as a pseudo light source.
  • each light of a set of RGB light sources 312 is divided into three backlight units (light guides 313) and guided.
  • Each backlight unit (light guide 313) forms a pseudo light source 314, which is an R ′ light source, a G ′ light source, and a B ′ light source, and condenses light from each light source 314 on each sub-pixel by MLA.
  • a white light source may be used as the light source.
  • a white light source it is desirable to emit RGB light in a spatially or angularly different state.
  • a method of emitting RGB light in a spatially different state there is a light emitting device using a white light source 321 and a light guide 323 incorporating a dichroic filter 322 that reflects RGB light, respectively, as shown in FIG.
  • the dichroic filter 322 is a filter that reflects only light in a specific wavelength range and transmits light in the remaining wavelength range.
  • a light source there is a method using a white light source, a light guide, and a diffraction grating as shown in FIG.
  • the light emitted from the white light source 331 is guided into the light guide 332, and the substantially parallel white light is extracted from the light guide 332 with uniform brightness in the surface.
  • this parallel light enters the diffraction grating 333, it is diffracted by the diffraction grating 333.
  • the first-order diffracted light is emitted in a direction substantially perpendicular to the diffraction grating 333.
  • the first-order diffracted light is separated into R, G, and B light.
  • a white LED such as a combination of blue LED + YG fluorescence or a combination of blue LED + GR fluorescence
  • a multi-color LED a diode chip that emits a plurality of different main wavelengths is mounted in one LED.
  • LED and white organic EL can be used.
  • a linear light source such as CCFL or EEFL (external electrode fluorescent tube: External Electrofluorescent Lamp) that emits RGB colors may be used as the light source.
  • CCFL or EEFL external electrode fluorescent tube: External Electrofluorescent Lamp
  • a means for controlling the light quantity of each light source unit is displayed with the light source area in which light sources emitting each color are collected one by one as a minimum unit unit. It can also be provided in the apparatus. If local dimming driving is applied to this embodiment, it is expected that the power consumption can be further reduced to about 1 ⁇ 2.
  • the backlight system includes the light source unit 3 and the light collecting unit 5, and the light source unit 3 has a first direction X that is an extending direction of the width of the sub-pixel having an elongated shape, A plurality of light emitting points R, G, and B arranged two-dimensionally along a second direction Y that is an extension direction of the length of the sub-pixel, and the light collecting unit 5 includes a plurality of light emitting points.
  • the light emitted from at least one of R, G, and B is individually condensed on the corresponding sub-pixel of the display unit 4.
  • the shape of the light amount distribution on the surface perpendicular to the light traveling direction is not dependent on the number of condensing points that are collected on one of the sub-pixels.
  • the light emission state along the first direction X and the light emission state along the second direction Y are different so as to show an elongated shape similar to one.
  • each of the plurality of light emitting points emits light such that the irradiation angle extending along the second direction is larger than the irradiation angle extending along the first direction.
  • each of the plurality of light emitting points has anisotropy in the extent of the emitted light, that is, the irradiation angle.
  • the anisotropy is an emission characteristic that the irradiation angle that spreads along the second direction is larger than the irradiation angle that spreads along the first direction.
  • the light emitted from each of the plurality of light emitting points is condensed on one of the sub-pixels, and then spreads as a light beam having a light amount distribution of a desired shape.
  • the desired shape is an elongated shape similar to one of the sub-pixels.
  • a display device using the backlight system having the above configuration as a light source displays high-quality image information as if a color filter is provided for each sub-pixel, without providing a color filter for each sub-pixel. can do.
  • the light rays contained in the light beam condensed on one of the sub-pixels are in the normal direction of the surface including the first direction and the second direction, and the first direction.
  • the maximum angle ⁇ a of the incident angle on one of the sub-pixels in the plane that includes the light beam is such that the light beam included in the luminous flux is within the plane that includes the normal direction and the second direction. It is characterized by being smaller than the maximum angle ⁇ b of the incident angle.
  • the irradiation angle of each of the plurality of light emitting points has a correlation with the angle of incidence on one of the sub-pixels. That is, with respect to the first direction with a relatively small irradiation angle, the angle incident on one of the sub-pixels is also relatively small, and with respect to the second direction with a relatively large irradiation angle, one of the sub-pixels.
  • the optical relationship among the light source unit, the condensing unit, and the sub-pixels is set so that the angle at which the light enters is relatively large.
  • the maximum angle ⁇ a is the maximum incident angle of light incident on one of the sub-pixels obliquely along the first direction. After the light is condensed on one of the sub-pixels, It is also an angle that defines the degree of spreading of the spreading light beam in the first direction.
  • the maximum angle ⁇ b is the maximum incident angle of light incident on one of the subpixels obliquely along the second direction, but after the light is condensed on one of the subpixels. It is also an angle that defines the degree of spreading of the spreading light flux in the second direction.
  • the subpixel Similarly to the one shape, a light amount distribution having an elongated shape can be provided.
  • the number of sub-pixels arranged in the first direction within the one pixel is N
  • the number of sub-pixels arranged in the second direction within the one pixel is an integer M equal to or greater than 1
  • the pitch in the first direction of the plurality of pixels is Pa and the pitch in the second direction is Pb
  • a light beam included in a light beam condensed on one of the sub-pixels, and the first direction is defined with reference to a normal direction of the display surface defined by the first direction and the second direction.
  • N sub-pixels are arranged in the first pixel along the first direction.
  • M sub-pixels are arranged along the second direction.
  • the display colors of the M ⁇ N sub-pixels constituting one pixel may be all different, or at least part or all may be the same color, and is not particularly limited.
  • the ratio between the pitch Pa in the first direction and the pitch Pb in the second direction of the plurality of pixels and also regarding the magnitude relationship between the number of sub-pixels M and N, the shape of the sub-pixel There is no particular limitation as long as the condition of being elongated along two directions is satisfied.
  • the maximum angle ⁇ a that defines the degree of spread of the luminous flux in the first direction and the maximum angle ⁇ b that defines the degree of spread of the luminous flux in the second direction,
  • (M / Pb) ⁇ tan ⁇ b ⁇ (N / Pa) ⁇ tan ⁇ a it is possible to prevent light beams adjacent along the first direction from overlapping in the first direction, and along the second direction. Adjacent light beams can also be prevented from overlapping in the second direction. As a result, display quality can be further improved.
  • the maximum angle ⁇ b is 40 degrees or less.
  • the maximum angle ⁇ b is preferably 40 degrees or less.
  • the maximum angle ⁇ a is set smaller than the maximum angle ⁇ b in the present invention, if the condition that the maximum angle ⁇ b is 40 degrees or less is satisfied, the maximum angle ⁇ a is also 40 degrees or less.
  • the maximum angle ⁇ b is more preferably 30 degrees or less.
  • the light emitting points in the backlight system of the present invention are two-dimensionally arranged such that the arrangement interval along the second direction is closer than the arrangement interval along the first direction. It is characterized by being.
  • the light traveling direction with respect to the light flux that is emitted from one of the sub-pixels while spreading after the first light is collected on one of the sub-pixels. It is assumed that the shape of the light amount distribution on the plane perpendicular to the above shows the same elongated shape as that of one of the sub-pixels regardless of the number of condensing points collected on one of the sub-pixels. As one mode for embodying the premise, the arrangement interval of the plurality of light emitting points is denser in the second direction than in the first direction.
  • the light emitted from each of the plurality of light emitting points corresponding to one of the sub-pixels of the plurality of light emitting points is incident on the condensing unit as a light beam having the same spread, and the light is emitted in the same state. Focused on one of the sub-pixels. That is, a plurality of condensing points are formed in one of the sub-pixels, and a plurality of light beams spread from one of the sub-pixels.
  • the adjacent intervals of the plurality of light beams are denser in the second direction than the first direction, similarly to the arrangement interval of the plurality of light emitting points.
  • a diffusion plate is arranged on the viewer side of the display unit, many light spots are arranged on the surface of the diffusion plate along the second direction from the first direction.
  • the plurality of light beams emitted from one of the sub-pixels can have a desired amount of light distribution in total.
  • the desired shape is an elongated shape similar to one of the sub-pixels.
  • a display device using the backlight system having the above configuration as a light source displays high-quality image information as if a color filter is provided for each sub-pixel, without providing a color filter for each sub-pixel. can do.
  • a plurality of light beams that have passed through the light condensing unit are collected with respect to one of the sub-pixels, and a condensing position of the plurality of light beams in one of the sub-pixels is It is preferable to arrange along the second direction.
  • a plurality of light beams emitted from one can appropriately have a light amount distribution having the desired shape.
  • ⁇ a is characterized in that a light ray included in the light flux and having a spread in the second direction is equal to a maximum angle ⁇ b of an incident angle on one of the sub-pixels.
  • a light beam having a circular cross section corresponding to one of the sub-pixels can be arranged densely or in a large number along the second direction. Similar light quantity distribution can be obtained appropriately.
  • the condensing unit is configured by a microlens array
  • P2 When the pitch of the microlenses adjacent in the first direction constituting the microlens array is P2, (6) P1 ⁇ n ⁇ P and P2 ⁇ (n / (n + 1)) ⁇ P.
  • the light emitted from one of the plurality of light emitting points is spatially separated and the plurality of adjacent pixels in the first direction. Condensing light onto one subpixel in a state where the light emitted from the light emitting points overlap each other can be achieved.
  • the plurality of light emitting points are two-dimensionally arranged such that the arrangement interval along the second direction is denser than the arrangement interval along the first direction, (2)
  • the maximum angle ⁇ a of the angle at which a light beam, which is included in the light beam condensed on one of the sub-pixels and spreads in the first direction, enters one of the sub-pixels, and the light beam Included in the second direction, and the maximum angle ⁇ b of the angles at which the light rays having the spread in the second direction are incident on one of the sub-pixels are equal to each other, (3)
  • the number of the plurality of sub-pixels constituting the one pixel arranged in the first direction is N
  • the number arranged in the second direction is an integer M of 1 or more, and M ⁇ N.
  • N sub-pixels are arranged in the first pixel along the first direction.
  • M sub-pixels are arranged along the second direction.
  • the display colors of the M ⁇ N sub-pixels constituting one pixel may be all different, or at least part or all may be the same color, and is not particularly limited.
  • M ⁇ N for the magnitude relationship between the number of sub-pixels M and N. This is because the shape of the sub-pixel is set to be elongated along the second direction, and the pitch in the first direction and the pitch in the second direction of the plurality of pixels are equal to each other. This is because the ratio is set to 1: 1.
  • the plurality of light emitting points are two-dimensionally arranged so that the arrangement interval along the second direction is denser than the arrangement interval along the first direction.
  • a plurality of condensing points are formed along the second direction.
  • ⁇ ⁇ (N ⁇ M) / M ⁇ ⁇ 2 ⁇ h ⁇ tan ⁇ a holds, so that adjacent light beams along the first direction can be prevented from overlapping in the first direction.
  • a plurality of condensing points arranged along the second direction are formed so as to be appropriately within the area of each sub-pixel. As a result, display quality can be further improved.
  • the maximum angle ⁇ a is 40 degrees or less.
  • the display device of the present invention includes a functional film that suppresses backscattering of the diffuser plate with respect to outside light.
  • the diffuser plate emits the light emitted from the display unit to the viewer side as diffused light, and diffuses and transmits the external light applied to the diffuser plate from the viewer side to the display unit side. At the same time, part of the external light is reflected as diffused light on the viewer side. This action of reflecting a part of the external light is called backscattering with respect to the external light.
  • the reflected diffused light is observed together with the display light transmitted through the display unit based on the image information, the image floats white and the image quality is deteriorated.
  • An imaging optical system that includes a light emitting unit that emits light having different principal wavelengths, an imaging optical system that focuses light emitted from the light emitting unit on a light modulation element, and a diffusion element.
  • a transmissive image display device in which an image is displayed through the light modulation element and the diffusion element.
  • the transmissive image display device includes a plurality of pixels arranged at a predetermined pitch, each pixel including a plurality of picture elements corresponding to each color
  • the imaging optical system includes a lens array in which a plurality of lenses are arranged at a predetermined pitch, and the lens separates the light emitted from the light-emitting unit according to color and separates the separated light from a pixel. Focus the light at the same pitch as the array pitch,
  • the transmissive image display device wherein the light emitting unit emits light at different irradiation angles in the RGB arrangement direction and the same color arrangement direction of the transmissive image display device.
  • (Configuration 4) Light having a light emitting unit that emits light having different main wavelengths, an imaging optical system that focuses light emitted from the light emitting unit on a light modulation element, and a diffusion element, and that has passed through the imaging optical system Is a transmissive image display device in which an image is displayed through a light modulation element and a diffusion element,
  • the transmissive image display device includes a plurality of pixels arranged at a predetermined pitch, each pixel including a plurality of picture elements corresponding to each color
  • the imaging optical system includes a lens array in which a plurality of lenses are arranged at a predetermined pitch, and the lens separates the light emitted from the light-emitting unit according to color and separates the separated light from a pixel. Focus the light at the same pitch as the array pitch,
  • the transmissive image display device is characterized in that the light emitting unit has light emitting units that emit the same color in the same color arrangement direction as the RGB arrangement direction of the transmissive image display
  • (Configuration 7) The transmissive image display device according to any one of Configurations 1 to 6, further comprising a film having a function of suppressing backscattering of external light on an emission surface of the transmissive image display device.
  • the present invention can be applied to a transmissive image display device, and in particular, can be applied to a backlight mounted on a transmissive image display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

In a light source unit (3) comprising a plurality of light emission points (R, G, B) which are arrayed in a first direction (X) and a second direction (Y) which are directions of the width and length of sub-pixels which have an elongated shape, the light discharge state varies in the first direction (X) and the second direction (Y) such that the light quantity distribution shapes of light beams which are collected by light collection units (5) and discharged from sub-pixels (1) depict an elongated shape similar to that of one sub-pixel.

Description

バックライトシステム、表示装置およびバックライトの制御方法Backlight system, display device, and backlight control method
 本発明は、画像表示の光源としてバックライトを用いながら、カラーフィルタレスでフルカラー表示を行う表示装置に関し、特に、上記表示装置の画素を構成する複数のサブ画素のそれぞれに、その背面から互いに異なる色の光を集光させる場合のバックライトの制御方法と、その制御方法を実現するバックライトシステムとに関する。 The present invention relates to a display device that performs full-color display without using a color filter while using a backlight as a light source for image display, and in particular, each of a plurality of sub-pixels constituting a pixel of the display device is different from the back side. The present invention relates to a backlight control method for collecting colored light, and a backlight system for realizing the control method.
 従来のフルカラー表示を行う液晶表示装置は、赤(R)、緑(G)、青(B)のカラーフィルタを用いている。具体的には、透過型液晶表示素子の1つの画素を3つのサブ画素に分割し、それぞれのサブ画素に表示色に対応した色のカラーフィルタを貼り付けている。バックライトは、各サブ画素の背面から白色光を照射する。その白色光が各サブ画素を透過する際の透過率は、各サブ画素の液晶セルへの印加電圧信号によって制御されるようになっている。 Conventional liquid crystal display devices that perform full color display use red (R), green (G), and blue (B) color filters. Specifically, one pixel of the transmissive liquid crystal display element is divided into three sub-pixels, and a color filter of a color corresponding to the display color is attached to each sub-pixel. The backlight emits white light from the back surface of each sub-pixel. The transmittance when the white light is transmitted through each sub-pixel is controlled by a voltage signal applied to the liquid crystal cell of each sub-pixel.
 しかし、カラーフィルタは、RGB毎に対応する波長帯の光を透過し、それ以外の光は吸収するため、光の約2/3を損失してしまう。すなわち、カラーフィルタを用いた液晶表示装置では、光利用効率が低下するという問題がある。 However, since the color filter transmits light in the wavelength band corresponding to each RGB and absorbs other light, about 2/3 of the light is lost. That is, in the liquid crystal display device using the color filter, there is a problem that the light use efficiency is lowered.
 そこで、液晶パネルのバックライト側にマイクロレンズアレイを配置し、RGB各色の光を対応するサブ画素内に集光させることによって、光利用効率を高める技術が、例えば下掲の特許文献1で提案されている。 Therefore, for example, Patent Document 1 listed below proposes a technique for improving the light utilization efficiency by arranging a microlens array on the backlight side of the liquid crystal panel and condensing light of each RGB color in the corresponding subpixel. Has been.
 図18は、特許文献1に記載の画像表示装置の概略構成を示す断面図である。画像表示装置51は、バックライト光源52、回折格子53、第1のマイクロレンズアレイ54、液晶パネル55、第2のマイクロレンズアレイ56および拡散板57をこの順に備えている。バックライト光源52からはほぼ平行な白色光Wが出射される。この平行光は導光板の光出射面59と小さな角度をなしており、この平行光が回折格子53に入射すると、回折格子53により回折される。回折格子53により回折された回折光のうち、1次回折光が回折格子53とほぼ垂直な方向に出射される。このとき、波長の異なる光は異なる回折角を持つので、1次回折光は、赤色光R、緑色光Gおよび青色光Bに分離される。 FIG. 18 is a cross-sectional view showing a schematic configuration of the image display device described in Patent Document 1. The image display device 51 includes a backlight source 52, a diffraction grating 53, a first microlens array 54, a liquid crystal panel 55, a second microlens array 56, and a diffusion plate 57 in this order. A substantially parallel white light W is emitted from the backlight source 52. The parallel light forms a small angle with the light exit surface 59 of the light guide plate. When the parallel light enters the diffraction grating 53, it is diffracted by the diffraction grating 53. Of the diffracted light diffracted by the diffraction grating 53, the first-order diffracted light is emitted in a direction substantially perpendicular to the diffraction grating 53. At this time, since light having different wavelengths has different diffraction angles, the first-order diffracted light is separated into red light R, green light G, and blue light B.
 第1のマイクロレンズアレイ54は、液晶パネル55の一組の画素60、すなわち隣接する3つのサブ画素に対して1つのマイクロレンズ54aが対応するように配置されている。したがって、異なる光軸方向で回折格子53から出射された赤色光R、緑色光Gおよび青色光Bは、それぞれ、マイクロレンズ54aによって、一組の画素60のうち互いに異なるサブ画素に集光される。よって、これらサブ画素のオン/オフを制御することによって、赤色光R、緑色光Gおよび青色光Bの透過もしくは遮断を独立して制御することができ、画像表示装置51にカラー表示を行わせることができる。 The first microlens array 54 is arranged such that one microlens 54a corresponds to a set of pixels 60 of the liquid crystal panel 55, that is, three adjacent subpixels. Therefore, the red light R, the green light G, and the blue light B emitted from the diffraction grating 53 in different optical axis directions are condensed by the microlens 54a on different sub-pixels in the set of pixels 60, respectively. . Therefore, by controlling on / off of these sub-pixels, transmission or blocking of the red light R, the green light G, and the blue light B can be controlled independently, and the image display device 51 performs color display. be able to.
 さらに、第2のマイクロレンズアレイ56は、各マイクロレンズ56aが第1のマイクロレンズアレイ54のマイクロレンズ54aに対応するように配置されている。また、第1のマイクロレンズアレイ54の主平面と第2のマイクロレンズアレイ56の主平面との距離Lが、第2のマイクロレンズアレイ56の焦点距離に等しくなっている。したがって、画素60を通過した赤色光R、緑色光Gおよび青色光Bは互いに光軸方向が異なっているが、マイクロレンズ56aを通過することによって、赤色光R、緑色光Gおよび青色光Bの光軸が平行に揃えられる。 Furthermore, the second microlens array 56 is arranged so that each microlens 56 a corresponds to the microlens 54 a of the first microlens array 54. Further, the distance L between the main plane of the first microlens array 54 and the main plane of the second microlens array 56 is equal to the focal length of the second microlens array 56. Therefore, the red light R, the green light G, and the blue light B that have passed through the pixel 60 have different optical axis directions, but the red light R, the green light G, and the blue light B pass through the micro lens 56a. The optical axes are aligned in parallel.
 これにより、第2のマイクロレンズアレイ56を通過した赤色光R、緑色光Gおよび青色光Bが拡散板57により拡散されると、図18に示すように、それぞれの拡散光の指向特性T,T,Tが等しくなる。観察者は、液晶パネル55より観察者側に配置された拡散板57を経た光によって、画像情報を視認する。よって、観察者が異なる方向から画像表示装置51を見たときに生じる色ずれを抑えることができ、光利用効率および視野角特性を向上させることができると、特許文献1には記載されている。 Thus, the second micro lens array 56 the red light R passing through the, the green light G and blue light B is diffused by the diffusion plate 57, as shown in FIG. 18, the directivity characteristics of the respective diffused light T R , T G, is T B equal. The observer visually recognizes the image information by the light that has passed through the diffusion plate 57 disposed on the viewer side from the liquid crystal panel 55. Therefore, Patent Document 1 describes that color misregistration that occurs when an observer views the image display device 51 from different directions can be suppressed, and light use efficiency and viewing angle characteristics can be improved. .
日本国特許公開公報「特開平11-258604(1999年9月24日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 11-258604 (published September 24, 1999)”
 しかしながら、上記特許文献1に開示された構成では、各サブ画素に光が集光された後、各サブ画素に対応して拡散板57において形成される光スポットの形状が、サブ画素の細長い形状と不一致になるため、高い表示品位を得ることはできないという問題がある。 However, in the configuration disclosed in Patent Document 1, the light spot formed on the diffusion plate 57 corresponding to each sub pixel after the light is condensed on each sub pixel has an elongated shape of the sub pixel. Therefore, there is a problem that high display quality cannot be obtained.
 すなわち、一般的な液晶表示装置では、RGB各色の3つのサブ画素によって1画素が構成されているため、1つ1つのサブ画素は細長い形状をしている。図4は、サブ画素から出射される光の広がり具合を模式的に示す説明図である。サブ画素に表示色に対応した色のカラーフィルタを貼り付けた構成では、図4の〔1〕に示すように、細長いサブ画素の形状がそのまま観察される。 That is, in a general liquid crystal display device, since one pixel is constituted by three subpixels of each color of RGB, each subpixel has an elongated shape. FIG. 4 is an explanatory diagram schematically showing how the light emitted from the sub-pixels spreads. In the configuration in which the color filter of the color corresponding to the display color is attached to the sub-pixel, the shape of the elongated sub-pixel is observed as it is as shown in [1] of FIG.
 これに対して、カラーフィルタを用いない図18に示すような構成では、各サブ画素に対応して拡散板57において形成される光スポットの形状は、ほぼ円形をしている。これは、通常、バックライト等に用いられる照明系では、発光部が出射する光の広がり方、つまり照射角度分布は、等方的(同心円状)になっているからである。このため、各サブ画素に集光された光が液晶層を通過した後でも、光の広がり方は等方的になるので、拡散板6の光スポットの形状が、ほぼ円形となる。 On the other hand, in the configuration as shown in FIG. 18 in which no color filter is used, the shape of the light spot formed on the diffusion plate 57 corresponding to each sub-pixel is substantially circular. This is because, in an illumination system used for a backlight or the like, the way in which the light emitted from the light emitting portion spreads, that is, the irradiation angle distribution is isotropic (concentric). For this reason, even after the light condensed on each sub-pixel passes through the liquid crystal layer, the light spreads in an isotropic manner, so that the shape of the light spot on the diffusion plate 6 is substantially circular.
 そうすると、図18において、液晶パネル55と拡散板57との間隔を大きくした場合、図4の〔2〕に示すように、拡散板57上で、円形の光スポット同士が重なり合うため、RGB各色の画像情報が混色され、解像度も低下する。 Then, in FIG. 18, when the distance between the liquid crystal panel 55 and the diffusion plate 57 is increased, the circular light spots overlap on the diffusion plate 57 as shown in [2] of FIG. The image information is mixed and the resolution is also lowered.
 逆に、液晶パネル55と拡散板57との間隔を小さくした場合、図4の〔3〕に示すように、円形の光スポット同士の重なりは生じないため、画像情報の混色は発生しない。ところが、同色のサブ画素同士の間に大きな暗部が生じるので、やはり画像品位の低下を招く。 On the contrary, when the distance between the liquid crystal panel 55 and the diffusion plate 57 is reduced, as shown in [3] of FIG. 4, there is no overlap between the circular light spots, and thus no color mixing of the image information occurs. However, since a large dark portion is generated between the sub-pixels of the same color, the image quality is also deteriorated.
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、カラーフィルタを用いない透過型表示装置の表示品位を高めることができるバックライトシステムと、そのバックライトシステムを用いた高品位表示装置を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to use a backlight system capable of improving the display quality of a transmissive display device that does not use a color filter, and the backlight system. The object is to provide a high-quality display device.
 本発明のバックライトシステムは、上記の課題を解決するために、
(1) 1画素が、複数のサブ画素によって構成され、上記複数のサブ画素のそれぞれは、幅と長さとが異なる細長い形状を備え、上記1画素を含む複数の画素が、上記幅の延長方向である第1方向と、上記長さの延長方向である第2方向とに2次元的に配列され、上記複数のサブ画素のそれぞれを通過する光の光量を画像情報に基づいて変調することにより、画像情報の表示を行う表示装置に対し、光源として設けられたバックライトシステムであって、
(2) 上記第1方向と上記第2方向とに沿って2次元的に配列された複数の発光点を備えた光源部と、
(3) 上記複数の発光点の少なくとも1つが発した第1の光を対応するサブ画素に個々に集光する集光部とを備え、
(4) 上記第1の光が、上記サブ画素の1つに集光された後、広がりながら上記サブ画素の1つから出射される光束に関して、光進行方向に垂直な面における光量分布の形状が、上記サブ画素の1つに集光される集光点の数によらず、上記サブ画素の1つと同様の細長い形状を示すように、上記光源部では、上記第1方向に沿った光出射状態と上記第2方向に沿った光出射状態とが異なっていることを特徴とする。
In order to solve the above problems, the backlight system of the present invention
(1) One pixel is composed of a plurality of sub-pixels, each of the plurality of sub-pixels has an elongated shape having a different width and length, and a plurality of pixels including the one pixel are extended in the width direction. And a second direction which is an extension direction of the length, and the amount of light passing through each of the plurality of sub-pixels is modulated based on image information. A backlight system provided as a light source for a display device that displays image information,
(2) a light source unit including a plurality of light emitting points arranged two-dimensionally along the first direction and the second direction;
(3) a condensing unit that individually condenses the first light emitted from at least one of the plurality of light emitting points on the corresponding subpixel;
(4) The shape of the light quantity distribution on the plane perpendicular to the light traveling direction with respect to the light beam emitted from one of the sub-pixels while spreading after the first light is condensed on one of the sub-pixels. However, regardless of the number of condensing points collected on one of the sub-pixels, the light source unit emits light along the first direction so as to have an elongated shape similar to that of one of the sub-pixels. The emission state is different from the light emission state along the second direction.
 上記の構成によれば、画像情報の表示を行う表示部には、複数の画素が2次元的に配列され、1つの画素は、複数のサブ画素によって構成されている。個々のサブ画素は、幅と長さとが異なり、上記第2方向に延びた細長い形状を備えている。 According to the above configuration, a plurality of pixels are two-dimensionally arranged on the display unit that displays image information, and one pixel is composed of a plurality of sub-pixels. Each sub-pixel has a width and a length, and has an elongated shape extending in the second direction.
 なお、1画素を構成する複数のサブ画素の表示色は、互いに異なっていてもよいし、同色であってもよい。表示色が、互いに異なっている場合には、多色のカラー表示を行うことができる。また、同色の場合には、複数のサブ画素の光透過率を互いに異ならせることによって、より細密な階調表現を提供することができる。 Note that the display colors of the plurality of sub-pixels constituting one pixel may be different from each other or the same color. When the display colors are different from each other, multicolor display can be performed. In the case of the same color, finer gradation expression can be provided by making the light transmittances of the plurality of sub-pixels different from each other.
 2次元的に配列された複数の発光点の少なくとも1つから出射された第1の光は、複数のサブ画素に、集光部によってサブ画素毎に集光される。各サブ画素では、サブ画素を通過する光の光量が、上記画像情報に基づいて変調される。 The first light emitted from at least one of the plurality of light emitting points arranged in a two-dimensional manner is condensed on a plurality of subpixels for each subpixel by the light collecting unit. In each subpixel, the amount of light passing through the subpixel is modulated based on the image information.
 ここで、上記光源部では、上記サブ画素の幅を延長した第1方向に沿った光出射状態と、上記サブ画素の長さを延長した第2方向に沿った光出射状態とが異なっている。光出射状態とは、複数の発光点のそれぞれが出射する上記第1の光の光束の広がり具合や、あるいは、複数の発光点同士の間隔などを含んでいる。 Here, in the light source unit, the light emission state along the first direction in which the width of the sub-pixel is extended is different from the light emission state in the second direction in which the length of the sub-pixel is extended. . The light emission state includes the degree of spread of the light beam of the first light emitted from each of the plurality of light emitting points, or the interval between the plurality of light emitting points.
 前者の場合、光束の広がり具合とは、光進行方向に垂直な面における光量分布の形状の扁平具合を意味する。また、後者の場合、複数の発光点同士の間隔が変われば、隣り合う発光点から出射された第1の光の光束が重なり合う程度が変わるとともに、対応するサブ画素での集光位置も変わる。 In the former case, the degree of spread of the light beam means the flatness of the shape of the light quantity distribution in the plane perpendicular to the light traveling direction. In the latter case, if the interval between the plurality of light emitting points changes, the degree of overlapping of the first light beams emitted from the adjacent light emitting points changes, and the condensing position in the corresponding subpixel also changes.
 このような光源部での上記第1方向および第2方向における光出射状態が、上記サブ画素の1つに対応して、特定状態に設定されている。すなわち、その特定状態とは、光進行方向に垂直な面における光量分布の形状が、上記サブ画素の1つに集光される光スポットの数によらず、上記サブ画素の1つと同様の細長い形状を示すという状態である。 The light emission state in the first direction and the second direction in such a light source unit is set to a specific state corresponding to one of the sub-pixels. That is, the specific state means that the shape of the light amount distribution on a plane perpendicular to the light traveling direction is the same as that of one of the sub-pixels regardless of the number of light spots collected on one of the sub-pixels. It is a state of showing the shape.
 なお、上記光量分布の細長い形状は、例えば、上記表示部に対し観察者側に設けた拡散板上に、サブ画素の1つから出射された光束が形成する光照射範囲(光スポット)の形状を見ることによって、容易に確認することができる。 The elongated shape of the light amount distribution is, for example, the shape of a light irradiation range (light spot) formed by a light beam emitted from one of the sub-pixels on a diffusion plate provided on the viewer side with respect to the display unit. This can be easily confirmed.
 「集光点の数によらず」の意味について説明する。上記サブ画素の1つに対する集光点の数が1つのとき、そのサブ画素の1つから出射される光束は、1つの集光点から広がる光束である。一方、上記サブ画素の1つに対する集光点の数が複数のとき、そのサブ画素の1つから出射される光束は、複数の集光点から広がる複数の光束から成っている。要するに、サブ画素の1つに集光される集光点の数は、任意である。 Explain the meaning of “regardless of the number of condensing points”. When the number of condensing points for one of the sub-pixels is one, the light beam emitted from one of the sub-pixels is a light beam that spreads from one condensing point. On the other hand, when there are a plurality of condensing points for one of the sub-pixels, the light beam emitted from one of the sub-pixels is composed of a plurality of light beams spreading from the plurality of condensing points. In short, the number of condensing points collected on one of the sub-pixels is arbitrary.
 このようなバックライトシステムを光源とする表示装置では、観察者は、1つのサブ画素から出射される光束を、1つのサブ画素と同様に細長い形状を持った光束として視認する。したがって、上記表示装置は、各サブ画素にカラーフィルタを設けなくても、各サブ画素にカラーフィルタを設けた場合と同程度に、高品位の画像情報を表示することができる。また、1画素を構成する複数のサブ画素が、異なる表示色に対応している場合には、上記表示装置は、高品位のカラー画像情報を表示することができる。 In a display device using such a backlight system as a light source, an observer visually recognizes a light beam emitted from one subpixel as a light beam having an elongated shape like one subpixel. Therefore, the display device can display high-quality image information to the same extent as when a color filter is provided for each sub-pixel without providing a color filter for each sub-pixel. In addition, when a plurality of sub-pixels constituting one pixel correspond to different display colors, the display device can display high-quality color image information.
 本発明のバックライトの制御方法は、上記の課題を解決するために、
(1) 1画素が、複数のサブ画素によって構成され、上記複数のサブ画素のそれぞれは、幅と長さとが異なる細長い形状を備え、上記1画素を含む複数の画素が、上記幅の延長方向である第1方向と、上記長さの延長方向である第2方向とに沿って2次元的に配列され、上記複数のサブ画素のそれぞれを通過する光の光量を画像情報に基づいて変調することにより、画像情報の表示を行う表示装置に対し、上記光を照射するバックライトの制御方法であって、
(2) 上記光が、上記サブ画素の1つに集光された後、広がりながら上記サブ画素の1つから出射される光束に関して、光進行方向に垂直な面における光量分布の形状が、上記サブ画素の1つに集光される光スポットの数によらず、上記サブ画素の1つと同様の細長い形状を示すように、上記バックライトの光学系を設定することを特徴とする。
In order to solve the above problems, the backlight control method of the present invention
(1) One pixel is composed of a plurality of sub-pixels, each of the plurality of sub-pixels has an elongated shape having a different width and length, and a plurality of pixels including the one pixel are extended in the width direction. Are modulated two-dimensionally along the first direction and the second direction, which is the extension direction of the length, and modulate the amount of light passing through each of the plurality of sub-pixels based on image information A control method of a backlight that irradiates the light with respect to a display device that displays image information,
(2) After the light is condensed on one of the sub-pixels, the shape of the light amount distribution on the surface perpendicular to the light traveling direction is about the luminous flux emitted from one of the sub-pixels while spreading. The optical system of the backlight is set so as to show an elongated shape similar to that of one of the sub-pixels regardless of the number of light spots condensed on one of the sub-pixels.
 上記のバックライトの制御方法を適用した表示装置では、既に説明したとおり、観察者は、高品位の画像情報を視認することができる。 In the display device to which the above backlight control method is applied, the observer can visually recognize high-quality image information as described above.
 なお、バックライトの光学系には、光源と、光源が出射した光を、複数のサブ画素の1つ1つへ導いて集光する光学系とが含まれる。 Note that the optical system of the backlight includes a light source and an optical system that guides and collects light emitted from the light source to each of the plurality of sub-pixels.
 上述したいずれかのバックライトシステムを備えた表示装置も本発明の範疇に属する。 A display device including any one of the backlight systems described above also belongs to the category of the present invention.
 本発明によれば、カラーフィルタを用いなくても、表示品位が高い透過型表示装置を提供することができる。 According to the present invention, a transmissive display device with high display quality can be provided without using a color filter.
 また、本発明の表示装置は、上記の課題を解決するために、
(1) 異なる表示色で発光する光源部と、
(2) 1画素が、上記異なる表示色に対応した複数のサブ画素によって構成され、上記複数のサブ画素のそれぞれは、幅と長さとが異なる細長い形状を備え、上記1画素を含む複数の画素が、上記幅の延長方向である第1方向と、上記長さの延長方向である第2方向とに沿って2次元的に配列され、上記複数のサブ画素のそれぞれを通過する第2の光の光量を画像情報に基づいて変調することにより、上記画像情報の表示を行う表示部と、
(3) 上記光源部が発した光を上記表示部の対応する表示色のサブ画素に個々に集光する集光部と、
(4) 上記表示部に対して観察者側に配置され、上記表示部を通過した上記第2の光を拡散させる拡散板とを備え、
(5) 上記サブ画素の1つに対して上記光源部が発した光の一部を集光する上記集光部の集光領域を通過し、上記サブ画素の1つに対応して、上記拡散板の表面に形成される光照射範囲の形状が、上記サブ画素の1つに集光される光スポットの数によらず、上記サブ画素の1つと同様の細長い形状を示すように、上記光源部では、上記第1方向に沿った光出射状態と上記第2方向に沿った光出射状態とが異なっていることを特徴とする。
Moreover, in order to solve the above problems, the display device of the present invention provides
(1) a light source that emits light with different display colors;
(2) One pixel is composed of a plurality of sub-pixels corresponding to the different display colors, each of the plurality of sub-pixels having an elongated shape having a different width and length, and a plurality of pixels including the one pixel Are two-dimensionally arranged along a first direction that is the extending direction of the width and a second direction that is the extending direction of the length, and the second light that passes through each of the plurality of sub-pixels. A display unit that displays the image information by modulating the amount of light based on the image information;
(3) a condensing unit that individually condenses the light emitted from the light source unit on the corresponding sub-pixels of the display color of the display unit;
(4) a diffusing plate that is disposed on the viewer side with respect to the display unit and diffuses the second light that has passed through the display unit;
(5) Passing through a condensing region of the condensing unit that collects part of the light emitted by the light source unit with respect to one of the sub-pixels, and corresponding to one of the sub-pixels, The shape of the light irradiation range formed on the surface of the diffusing plate does not depend on the number of light spots condensed on one of the sub-pixels, and exhibits the same elongated shape as that of one of the sub-pixels. The light source unit is characterized in that a light emission state along the first direction is different from a light emission state along the second direction.
 上記の構成によれば、画像情報の表示を行う表示部には、複数の画素が2次元的に配列され、1つの画素は、異なる表示色に対応した複数のサブ画素によって構成されている。個々のサブ画素は、幅と長さとが異なる細長い形状を備えている。 According to the above configuration, a plurality of pixels are two-dimensionally arranged in the display unit that displays image information, and one pixel is configured by a plurality of sub-pixels corresponding to different display colors. Each sub-pixel has an elongated shape having a different width and length.
 光源部から出射されたある表示色の光は、集光部によって、対応する表示色のあるサブ画素に集光され、そのサブ画素を通過する光の光量が、上記画像情報に基づいて変調される。 The light of a certain display color emitted from the light source unit is condensed by the condensing unit onto the sub pixel having the corresponding display color, and the amount of light passing through the sub pixel is modulated based on the image information. The
 そのサブ画素を通過した光は、観察者側に配置された拡散板に投射される。 The light that has passed through the sub-pixel is projected onto a diffusion plate arranged on the viewer side.
 ここで、上記光源部では、上記サブ画素の幅を延長した第1方向に沿った光出射状態と、上記サブ画素の長さを延長した第2方向に沿った光出射状態とが異なっている。光出射状態とは、光源部が出射する、ある表示色の第1の光の光束の広がり具合や、あるいは、ある表示色について、光源部が出射する光の複数の出射点同士の間隔などを含んでいる。 Here, in the light source unit, the light emission state along the first direction in which the width of the sub-pixel is extended is different from the light emission state in the second direction in which the length of the sub-pixel is extended. . The light emission state refers to the degree of spread of the first light beam of a certain display color emitted from the light source unit or the interval between a plurality of emission points of light emitted from the light source unit for a certain display color. Contains.
 前者の場合、光束の広がり具合とは、光束の進行方向に垂直な横断面の形状の扁平具合を意味する。また、後者の場合、複数の出射点同士の間隔が変われば、隣り合う出射点から出射された第1の光の光束が重なり合う程度が変わるとともに、対応するサブ画素での集光位置も変わる。 In the former case, the degree of spread of the light beam means the flatness of the cross-sectional shape perpendicular to the traveling direction of the light beam. In the latter case, if the interval between the plurality of emission points is changed, the degree of overlapping of the first light beams emitted from the adjacent emission points is changed, and the condensing position in the corresponding sub-pixel is also changed.
 このような光源部での上記第1方向および第2方向における光出射状態が、上記サブ画素の1つに対応して、特定状態に設定されている。すなわち、その特定状態とは、上記拡散板の表面に形成される光照射範囲の形状が、上記サブ画素の1つに集光される光スポットの数によらず、上記サブ画素の1つと同様の細長い形状を示すという状態である。 The light emission state in the first direction and the second direction in such a light source unit is set to a specific state corresponding to one of the sub-pixels. That is, the specific state means that the shape of the light irradiation range formed on the surface of the diffusion plate is the same as that of one of the sub-pixels regardless of the number of light spots collected on one of the sub-pixels. It shows a state of showing an elongated shape.
 「光スポットの数によらず」の意味について説明する。上記サブ画素の1つに集光される光スポットの数が1つのとき、その1つの光スポットによって、拡散板の表面に1つの光照射範囲が形成される。また、光スポットの数が複数のとき、その複数の光スポットによって、拡散板の表面に1つの光照射範囲が形成される。要するに、1つの光照射範囲を形成する光スポットの数は、任意である。 Explain the meaning of “regardless of the number of light spots”. When the number of light spots focused on one of the sub-pixels is one, one light irradiation range is formed on the surface of the diffusion plate by the one light spot. Moreover, when the number of light spots is plural, one light irradiation range is formed on the surface of the diffusion plate by the plural light spots. In short, the number of light spots forming one light irradiation range is arbitrary.
 こうして、観察者は、拡散板の表面に形成される1つの光照射範囲の形状を1つのサブ画素の発光形状として視認する。したがって、その1つの光照射範囲の形状が、1つのサブ画素の形状と同じように細長くなっているので、観察者は、各サブ画素にカラーフィルタを設けた表示部を観察した場合と同程度に、高品位のカラー画像情報を視認することができる。 Thus, the observer visually recognizes the shape of one light irradiation range formed on the surface of the diffusion plate as the light emission shape of one sub-pixel. Therefore, since the shape of the one light irradiation range is elongated like the shape of one sub-pixel, the observer has the same degree as when observing a display unit provided with a color filter in each sub-pixel. In addition, high-quality color image information can be visually recognized.
 なお、ある着目した請求項に記載された構成と、その他の請求項に記載された構成との組み合わせが、その着目した請求項で引用された請求項に記載された構成との組み合わせのみに限られることはなく、本発明の目的を達成できる限り、その着目した請求項で引用されていない請求項に記載された構成との組み合わせが可能である。 A combination of a configuration described in a certain claim and a configuration described in another claim is limited to a combination of the configuration described in the claim cited in the claim. However, as long as the object of the present invention can be achieved, combinations with configurations described in the claims not cited in the focused claims are possible.
 本発明のバックライトシステム、表示装置およびバックライトの制御方法では、光源の光が、サブ画素の1つに集光された後、広がりながら上記サブ画素の1つから出射される光束に関して、光進行方向に垂直な面における光量分布の形状が、上記サブ画素の1つに集光される集光点の数によらず、上記サブ画素の1つと同様の細長い形状を示すことを特徴としている。 In the backlight system, the display device, and the backlight control method of the present invention, the light from the light source is condensed on one of the sub-pixels, and then spreads with respect to the light beam emitted from one of the sub-pixels. The shape of the light amount distribution on the surface perpendicular to the traveling direction is characterized by showing an elongated shape similar to that of one of the sub-pixels, regardless of the number of condensing points that are condensed on one of the sub-pixels. .
 それゆえ、本発明は、各サブ画素にカラーフィルタを設けなくても、各サブ画素にカラーフィルタを設けた場合と同程度に、高品位の画像情報を表示することができるという効果を奏する。 Therefore, the present invention has the effect that even if a color filter is not provided for each sub-pixel, high-quality image information can be displayed to the same extent as when a color filter is provided for each sub-pixel.
本発明の一実施形態のバックライトシステムと、そのバックライトシステムを備えた表示装置とを示す概略構成図であり、第1の方向(RGB並び方向)に沿った各構成要素の配置関係を示している。It is a schematic block diagram which shows the backlight system of one Embodiment of this invention, and a display apparatus provided with the backlight system, and shows the arrangement | positioning relationship of each component along a 1st direction (RGB alignment direction). ing. 上記バックライトシステムおよび表示装置を示す概略構成図であり、第2の方向(同色並び方向)に沿った各構成要素の配置関係を示している。It is a schematic block diagram which shows the said backlight system and a display apparatus, and has shown the arrangement | positioning relationship of each component along a 2nd direction (same color arrangement direction). 1画素の構成を示す平面図である。It is a top view which shows the structure of 1 pixel. サブ画素から出射される光の広がり具合を模式的に示す説明図である。It is explanatory drawing which shows typically the spreading | diffusion condition of the light radiate | emitted from a sub pixel. 実効発光点の定義を示す概念図である。It is a conceptual diagram which shows the definition of an effective light emission point. 集光部および表示パネルを第1方向に拡大することによって、サブ画素を通過する前後の光束のようすを模式的に示す説明図である。It is explanatory drawing which shows typically the appearance of the light beam before and behind passing through a sub pixel by enlarging a condensing part and a display panel in a 1st direction. 集光部および表示パネルを第2方向に拡大することによって、サブ画素を通過する前後の光束のようすを模式的に示す説明図である。It is explanatory drawing which shows typically the appearance of the light beam before and behind passing through a sub pixel by enlarging a condensing part and a display panel in a 2nd direction. 本発明の他の実施形態のバックライトシステムと、そのバックライトシステムを備えた表示装置とを示す概略構成図であり、第1の方向(RGB並び方向)に沿った各構成要素の配置関係を示している。It is a schematic block diagram which shows the backlight system of other embodiment of this invention, and a display apparatus provided with the backlight system, The arrangement | positioning relationship of each component along a 1st direction (RGB alignment direction) is shown. Show. 上記バックライトシステムおよび表示装置を示す概略構成図であり、第2の方向(同色並び方向)に沿った各構成要素の配置関係を示している。It is a schematic block diagram which shows the said backlight system and a display apparatus, and has shown the arrangement | positioning relationship of each component along a 2nd direction (same color arrangement direction). 図8に示す集光部および表示パネルを第1方向Xに拡大することによって、サブ画素を通過する前後の光束のようすを模式的に示す説明図である。FIG. 9 is an explanatory diagram schematically illustrating the appearance of light beams before and after passing through a sub-pixel by enlarging a light collecting unit and a display panel illustrated in FIG. 8 in a first direction X. 図8に示す集光部および表示パネルを第2方向に拡大することによって、サブ画素を通過する前後の光束のようすを模式的に示す説明図である。It is explanatory drawing which shows typically the appearance of the light beam before and behind passing a sub pixel by enlarging the condensing part and display panel which are shown in FIG. 8 to a 2nd direction. さらに他の実施形態に係るバックライトシステムの1構成例を示す概略図である。It is the schematic which shows one structural example of the backlight system which concerns on other embodiment. 複数の同色発光点のピッチと、複数のマイクロレンズのピッチと、同色のサブ画素のピッチとの間の好ましい設定条件を示す説明図である。It is explanatory drawing which shows the preferable setting conditions among the pitch of several light emission point of the same color, the pitch of several micro lens, and the pitch of the sub pixel of the same color. 光源部の他の構成例を模式的に示す説明図である。It is explanatory drawing which shows the other structural example of a light source part typically. 光源部のさらに他の構成例を模式的に示す説明図である。It is explanatory drawing which shows the other structural example of a light source part typically. 光源部のさらに他の構成例を模式的に示す説明図である。It is explanatory drawing which shows the other structural example of a light source part typically. マイクロレンズアレイの外観を模式的に示す図であり、(c)は、(a)のA線またはB線、あるいは(c)のC線に沿う断面を示している。It is a figure which shows the external appearance of a micro lens array typically, (c) has shown the cross section which follows the A line or B line of (a), or the C line of (c). 特許文献1に記載の画像表示装置の概略構成を示す断面図である。10 is a cross-sectional view illustrating a schematic configuration of an image display device described in Patent Literature 1. FIG. 1画素の他の構成例を示す説明図である。It is explanatory drawing which shows the other structural example of 1 pixel. 図6に示す説明図の変形例を示す説明図である。It is explanatory drawing which shows the modification of explanatory drawing shown in FIG. 図7に示す説明図の変形例を示す説明図である。It is explanatory drawing which shows the modification of explanatory drawing shown in FIG. 図6に示す説明図のさらに他の変形例を示す説明図である。It is explanatory drawing which shows the further another modification of explanatory drawing shown in FIG. 図7に示す説明図のさらに他の変形例を示す説明図である。It is explanatory drawing which shows the other modification of explanatory drawing shown in FIG.
 〔本発明の概要〕
 図1は、本発明の一実施形態のバックライトシステムと、そのバックライトシステムを備えた表示装置とを示す概略構成図であり、第1方向に沿った各構成要素の配置関係を示し、図2は、第2方向に沿った各構成要素の配置関係を示している。また、図3は、1画素の構成を示す平面図である。
[Outline of the Invention]
FIG. 1 is a schematic configuration diagram showing a backlight system according to an embodiment of the present invention and a display device including the backlight system, and shows an arrangement relationship of each component along a first direction. Reference numeral 2 denotes an arrangement relationship of each component along the second direction. FIG. 3 is a plan view showing the configuration of one pixel.
 なお、図1に示すように、赤(R)緑(G)青(B)に対応したサブ画素が上記第1方向に配列している場合には、上記第1方向をRGB並び方向と呼ぶこともできる。また、図2に示すように、同色(例えばR)のサブ画素が上記第2方向に配列している場合には、上記第2方向を同色並び方向と呼ぶこともできる。 As shown in FIG. 1, when the sub-pixels corresponding to red (R), green (G), and blue (B) are arranged in the first direction, the first direction is referred to as an RGB arrangement direction. You can also Further, as shown in FIG. 2, when sub-pixels of the same color (for example, R) are arranged in the second direction, the second direction can also be referred to as the same color arrangement direction.
 本発明のバックライトシステムと、そのバックライトシステムを備えた表示装置と、バックライトの制御方法とは、以下の前提構成と特徴点とを共通して備えている。なお、上記表示装置は、表示部に配列された複数のサブ画素のそれぞれを通過する光の光量を画像情報に基づいて変調することにより、画像情報の表示を行う透過型の表示装置である。 The backlight system of the present invention, the display device including the backlight system, and the backlight control method have the following preconditions and features in common. The display device is a transmissive display device that displays image information by modulating the amount of light passing through each of the plurality of sub-pixels arranged in the display unit based on the image information.
 <前提構成>
 図3に示すように、1つの画素1は、複数のサブ画素(絵素)1a,1b,1cなどによって構成されている。サブ画素1a,1b,1cのそれぞれは、図1および図2にも示すように、幅W1と長さW2とが異なる細長い形状を備えている。上記画素1と同様の構成を備えた複数の画素が、上記幅W1の延長方向である第1方向Xと、上記長さW2の延長方向である第2方向Yとに2次元的に配列されている。
<Prerequisite configuration>
As shown in FIG. 3, one pixel 1 includes a plurality of sub-pixels (picture elements) 1a, 1b, 1c, and the like. Each of the sub-pixels 1a, 1b, and 1c has an elongated shape having different widths W1 and W2 as shown in FIGS. A plurality of pixels having the same configuration as the pixel 1 are two-dimensionally arranged in a first direction X that is an extension direction of the width W1 and a second direction Y that is an extension direction of the length W2. ing.
 なお、本実施形態では、サブ画素1a,1b,1cのそれぞれに赤色、緑色、青色の相異なる表示色を割り当て、フルカラー表示を行う表示装置の例を示している。しかし、全てのサブ画素1a,1b,1cに白色光を集光し、各サブ画素1a,1b,1cの輝度を制御することによって、高精細なモノクロ画像を表示させるようにしてもよい。 In the present embodiment, an example of a display device that performs full color display by assigning different display colors of red, green, and blue to each of the sub-pixels 1a, 1b, and 1c is shown. However, high-definition monochrome images may be displayed by condensing white light on all the sub-pixels 1a, 1b, and 1c and controlling the luminance of each sub-pixel 1a, 1b, and 1c.
 なお、図19に示すように、表示色の異なるM個のサブ画素を第2方向Yに配置し、第1方向Xに配置した表示色の異なるN個のサブ画素と組み合わせて、合計M×N個のサブ画素によって1画素を構成してもよい。1画素の形状を正方形とする場合には、各サブ画素の形状が、第2方向Yに沿って細長いため、M<Nとなる。 As shown in FIG. 19, M sub-pixels having different display colors are arranged in the second direction Y, and combined with N sub-pixels having different display colors arranged in the first direction X, for a total of M × One pixel may be constituted by N sub-pixels. When the shape of one pixel is a square, since the shape of each sub-pixel is elongated along the second direction Y, M <N.
 図19に示す例では、1画素が、赤(R)、緑(G)、青(B)、シアン(C)、黄(Y)およびマゼンダ(M)の6色6個のサブ画素を、2行3列に配置した状態で構成されている。 In the example shown in FIG. 19, one pixel includes six sub-pixels of six colors of red (R), green (G), blue (B), cyan (C), yellow (Y), and magenta (M). They are arranged in 2 rows and 3 columns.
 なお、1画素を構成するM×N個のサブ画素の表示色は、全て相違していてもよいし、少なくとも一部または全部が同色になっていてもよく、特に限定されない。 Note that the display colors of the M × N sub-pixels constituting one pixel may be all different, or at least part or all may be the same color, and is not particularly limited.
 <特徴点>
 光源部3から出射された光が、上記複数のサブ画素の1つ(例えばサブ画素1a)に集光された後、広がりながらサブ画素1aから出射される光束に関して、光進行方向に垂直な面における光量分布の形状が、サブ画素1aに集光される光スポットの数によらず、サブ画素1aと同様の細長い形状を示すように、バックライトの光学系が設定されている。
<Features>
The light emitted from the light source unit 3 is condensed on one of the plurality of sub-pixels (for example, the sub-pixel 1a), and then the light beam emitted from the sub-pixel 1a while spreading is a surface perpendicular to the light traveling direction. The optical system of the backlight is set so that the shape of the light quantity distribution in FIG. 1 shows an elongated shape similar to that of the sub-pixel 1a regardless of the number of light spots condensed on the sub-pixel 1a.
 上記<特徴点>に記載した光量分布の形状が細長い形状であるという点は、表示パネル4の観察者側に配された拡散板46の表面に形成された光スポット(光照射範囲)の形状が細長い形状になるという点に反映されている。 The point that the shape of the light amount distribution described in the above <feature point> is an elongated shape is that the shape of the light spot (light irradiation range) formed on the surface of the diffusion plate 46 disposed on the viewer side of the display panel 4. This is reflected in the fact that becomes an elongated shape.
 すなわち、図1に示すように、サブ画素1aから出射された光束によって、拡散板46の表面に形成された光スポットの第1方向Xの幅は、L(X)であり、図2に示すように、同光スポットの第2方向Yの長さは、L(Y)である。L(X)とL(Y)の大小関係は、L(X)<L(Y)であり、かつL(X)/L(Y)≒W1/W2という関係式が成り立つ。 That is, as shown in FIG. 1, the width in the first direction X of the light spot formed on the surface of the diffusion plate 46 by the light beam emitted from the sub-pixel 1a is L (X), which is shown in FIG. Thus, the length of the same light spot in the second direction Y is L (Y). The magnitude relationship between L (X) and L (Y) is L (X) <L (Y), and the relational expression L (X) / L (Y) ≈W1 / W2 holds.
 これによって、観察者が拡散板46を観察すると、図4の〔4〕に示すように、各サブ画素の細長い形状が反映された高品位の表示を視認することができる。図4の〔4〕に示す表示状態は、図4の〔1〕に示すカラーフィルタを各サブ画素に設けた場合の表示状態と比べて遜色がない。むしろ、各サブ画素にカラーフィルタを設けないため、カラーフィルタによる光量損失を回避できる結果、明るい表示状態となる。 Thereby, when the observer observes the diffusion plate 46, as shown in [4] of FIG. 4, a high-quality display reflecting the elongated shape of each sub-pixel can be visually recognized. The display state shown in [4] in FIG. 4 is not inferior to the display state in the case where the color filter shown in [1] in FIG. Rather, since a color filter is not provided for each sub-pixel, light quantity loss due to the color filter can be avoided, resulting in a bright display state.
 〔実施形態1〕
 以下、本発明の一実施形態について図面に基づいて説明する。但し、本明細書の実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例に過ぎない。
[Embodiment 1]
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments of the present specification are not intended to limit the scope of the present invention to that unless otherwise specified. It is merely an illustrative example.
 (光源部の出射特性)
 上記<特徴点>に記載したバックライトの光学系における設定の一形態は、光源部3に2次元的に配列された複数の発光点の照射角度(光の広がり具合または出射角度分布ともいい得る)に、第1方向Xと第2方向Yとで異方性を持たせることである。これにより、光源部3では、第1方向Xに沿った光出射状態と第2方向Yに沿った光出射状態とが相違するようになっている。
(Emission characteristics of the light source)
One form of setting in the optical system of the backlight described in <Feature Point> above may be referred to as an irradiation angle (a degree of light spread or an emission angle distribution) of a plurality of light emitting points arranged two-dimensionally in the light source unit 3. ) In the first direction X and the second direction Y. Thereby, in the light source part 3, the light emission state along the 1st direction X and the light emission state along the 2nd direction Y differ.
 一例として、図1に示すように、光源部3は複数の発光点R,G,Bを備えている。発光点Rは、例えば赤色光を出射するLED(Light Emitting Diode)であり、発光点G,Bはそれぞれ緑色光および青色光を出射するLEDである。ただし、発光点R,G,Bを全て白色光を出射するLEDとみなし、上述したようにモノクロ表示のみを行う表示装置を考えることができる。 As an example, as shown in FIG. 1, the light source unit 3 includes a plurality of light emitting points R, G, and B. The light emitting point R is, for example, an LED (Light Emitting Diode) that emits red light, and the light emitting points G and B are LEDs that emit green light and blue light, respectively. However, it is possible to consider a display device that performs only monochrome display as described above, assuming that the light emitting points R, G, and B are all LEDs that emit white light.
 以下、発光点R,G,Bに関する各構成は三者とも同様なので、発光点G,Bに関する説明が必要な場合を除いて、発光点Rに関する構成を代表的に説明する。 Hereinafter, since the respective configurations relating to the light emitting points R, G, and B are the same for the three parties, the configuration relating to the light emitting point R will be described representatively, except for the case where the description relating to the light emitting points G, B is necessary.
 複数の発光点Rは、第1方向Xと第2方向Yとに沿って、2次元的に配列されている。複数の発光点R同士の間隔(配列間隔またはピッチ)は、第1方向XについてP1、第2方向YについてもP1である。 The plurality of light emitting points R are two-dimensionally arranged along the first direction X and the second direction Y. The interval (arrangement interval or pitch) between the light emitting points R is P1 in the first direction X and P1 in the second direction Y.
 図1および図2に示すように、複数の発光点Rのそれぞれが出射する光の照射角度に関して、第1方向Xに沿って広がる照射角度φ(X)より、上記第2方向Yに沿って広がる照射角度φ(Y)の方が大きい。複数の発光点Rのそれぞれは、そのような出射特性を有している。 As shown in FIGS. 1 and 2, the irradiation angle of light emitted from each of the plurality of light emitting points R is along the second direction Y from the irradiation angle φ (X) spreading along the first direction X. The spread irradiation angle φ (Y) is larger. Each of the light emitting points R has such emission characteristics.
 この出射特性によって、上記光源部3では、第1方向Xに沿った光出射状態と第2方向Yに沿った光出射状態とが異なっている。これにより、カラーフィルタを用いずに高品位表示を行う表示装置を実現することができる。 Due to this emission characteristic, in the light source unit 3, the light emission state along the first direction X and the light emission state along the second direction Y are different. As a result, a display device that performs high-quality display without using a color filter can be realized.
 なお、フルカラー表示を行う表示装置では、光源部3には、相異なる色光を出射する複数の発光点として、発光点R(赤)、発光点G(緑)、発光点B(青)が所定のピッチで2次元的に配列される。同色の発光点同士の間隔(ピッチ)は、上記と同様に、第1方向XについてP1、第2方向YについてもP1である。 In a display device that performs full-color display, the light source unit 3 has predetermined light emission points R (red), light emission points G (green), and light emission points B (blue) as a plurality of light emission points that emit different color lights. Are arranged two-dimensionally at a pitch of The interval (pitch) between the light emitting points of the same color is P1 in the first direction X and P1 in the second direction Y as described above.
 図1では、1画素内に、赤緑青をそれぞれが表示するサブ画素が、RBGの順に第1方向Xに沿って並んでいるので、第1方向Xに沿って同じ色の発光点が隣り合わないように、異なる色の発光点R、B、Gが、第1方向Xに沿って配列している。 In FIG. 1, the sub-pixels that display red, green, and blue in one pixel are arranged along the first direction X in the order of RBG, so that the light emitting points of the same color are adjacent to each other along the first direction X. The light emitting points R, B, and G of different colors are arranged along the first direction X so as not to be present.
 第2方向Yについては、同色のサブ画素が並んでいるので、同じ色の発光点が第2方向Yに沿って配列している。 In the second direction Y, since the sub-pixels of the same color are arranged, the light emitting points of the same color are arranged along the second direction Y.
 なお、発光点の色の並びは、集光部5の光学設計によるので、集光部5の光学設計を容易化するために周期性がありさえすれば、RGBの順でもRBGの順でも、それ以外の順でも構わない。また、第2方向Yにも、相異なる色光を発する複数の発光点を配列してもよい。 In addition, since the arrangement of the colors of the light emitting points depends on the optical design of the condensing unit 5, as long as there is periodicity in order to facilitate the optical design of the condensing unit 5, in order of RGB or RBG, Other orders are also acceptable. In the second direction Y, a plurality of light emitting points that emit different colored lights may be arranged.
 また、色数も3色に限らず、例えば黄色を加えた4色でもよいし、さらに他の色を加えてもよい。1画素は、色数に対応したサブ画素に分割される。 Also, the number of colors is not limited to three, and for example, four colors including yellow may be added, or other colors may be added. One pixel is divided into sub-pixels corresponding to the number of colors.
 (発光点に関する補足)
 ここで、本発明にいう発光点とは、図5に示すような実効発光点100Aを意味する。図5は、実効発光点の定義を示す概念図である。実効発光点100Aは、集光レンズ系101による発光点102の虚像であると定義される。集光レンズ系101のない光源100の場合、実効発光点100Aは発光点102と一致する。
(Supplementary information on luminous points)
Here, the light emission point referred to in the present invention means an effective light emission point 100A as shown in FIG. FIG. 5 is a conceptual diagram showing the definition of the effective light emission point. The effective light emission point 100 </ b> A is defined as a virtual image of the light emission point 102 by the condenser lens system 101. In the case of the light source 100 without the condenser lens system 101, the effective light emission point 100A coincides with the light emission point 102.
 また、上記ピッチP1は、実効発光点100Aの点間隔である。
なお、図14~図16を参照した(光源部の変形例)として後述するように、上記光源部3に代えて、光源と導光体とを用いた発光装置を適用することにより、光源数の削減という大きなコストダウン効果を得ることができる。これは、多くの擬似的な光源を作り出し、空間的に異なる位置から取り出すことができるためである。このときの擬似的な光源のそれぞれもまた、実効発光点に相当する。
The pitch P1 is a point interval between the effective light emitting points 100A.
As will be described later with reference to FIGS. 14 to 16 (variation examples of the light source unit), the number of light sources can be reduced by applying a light emitting device using a light source and a light guide instead of the light source unit 3. A significant cost reduction effect can be obtained. This is because many pseudo light sources can be created and taken out from spatially different positions. Each of the pseudo light sources at this time also corresponds to an effective light emission point.
 (集光部の構成)
 光源部3が出射する光を表示パネル4に集光する集光部5は、例えばマイクロレンズアレイ(MLA)を用いて構成することができる。MLAは、1画素を構成する複数(例えば3つ)のサブ画素の1つずつに対して、ほぼ同じ間隔で配置されている(ただし、詳細な間隔については、実施形態3にて後述する)。
(Construction of light condensing part)
The condensing part 5 which condenses the light which the light source part 3 radiate | emits on the display panel 4 can be comprised, for example using a micro lens array (MLA). The MLAs are arranged at substantially the same intervals for each of a plurality of (for example, three) sub-pixels constituting one pixel (however, detailed intervals will be described later in Embodiment 3). .
 なお、光源部3および集光部5は、本発明に係るバックライトシステムを構成している。 Note that the light source unit 3 and the light collecting unit 5 constitute a backlight system according to the present invention.
 図17は、MLAの外観を模式的に示す図であり、(c)は、(a)のA線またはB線、あるいは(c)のC線に沿う断面を示している。MLAは、表面形状、または屈折率分布を変化させたレンズの集合体である。表面形状を変化させたレンズの集合体の一例は、例えば、図17の(a)(c)に示すように、マイクロレンズを第1方向Xおよび第2方向Yの直交2方向に配列したフライアイレンズである。ほかに、図17の(b)(c)に示すように、マイクロシリンドリカルレンズをその長手方向に直交する一方向に配列したレンティキュラレンズを採用してもよいし、フライアイレンズとレンティキュラレンズとの組み合わせを採用してもよい。 FIG. 17 is a diagram schematically showing the appearance of the MLA, and (c) shows a cross section along the A line or B line in (a) or the C line in (c). The MLA is an assembly of lenses whose surface shape or refractive index distribution is changed. An example of an assembly of lenses whose surface shape is changed is, for example, a fly in which microlenses are arranged in two orthogonal directions of a first direction X and a second direction Y, as shown in FIGS. Eye lens. In addition, as shown in FIGS. 17B and 17C, a lenticular lens in which microcylindrical lenses are arranged in one direction orthogonal to the longitudinal direction may be employed, or a fly-eye lens and a lenticular lens. A combination with may be adopted.
 MLAを構成する1つのマイクロレンズ面に注目した場合、複数の発光点からそれぞれ出射された光は、異なる主光線角度で1つのマイクロレンズ面に入射する。異なる主光線角度で入射した光は、1つのマイクロレンズ面によって空間的に異なる位置に集光されるため、複数の発光点からそれぞれ出射された光は、MLAを通過後、それぞれ空間的に異なる位置に集光することになる。 When attention is paid to one microlens surface constituting the MLA, light respectively emitted from a plurality of light emitting points enters one microlens surface at different principal ray angles. Since light incident at different principal ray angles is condensed at spatially different positions by one microlens surface, the light emitted from a plurality of light emitting points is spatially different after passing through the MLA. It will be focused on the position.
 ただし、1つのサブ画素に対する集光には、複数のマイクロレンズ面が対応しているので、複数の発光点が1つのサブ画素に対する集光に関与している。 However, since a plurality of microlens surfaces correspond to condensing with respect to one subpixel, a plurality of light emitting points are involved in condensing with respect to one subpixel.
 なお、図1および図2では、発光点Rから、対応する赤色用サブ画素への光(赤色光)の経路のみを図示し、緑色光、青色光の経路は図示を省略した。 In FIGS. 1 and 2, only the path of light (red light) from the light emitting point R to the corresponding red sub-pixel is shown, and the paths of green light and blue light are omitted.
 ここで、複数の発光点の配列位置、MLAのレンズピッチ、画素ピッチをある関係式にあてはめた場合、各発光点から出射された光を、対応したサブ画素に集光させることができる(詳細な間隔については、実施形態3にて後述する)。 Here, when the arrangement position of a plurality of light emitting points, the lens pitch of the MLA, and the pixel pitch are applied to a certain relational expression, the light emitted from each light emitting point can be condensed on the corresponding subpixel (details). A detailed interval will be described later in Embodiment 3).
 図1に示すような、表面が凸形状をしたフライアイレンズの集光機能は、表面形状により光路を偏向する方式であり、レンズの表面における界面での屈折率差を利用して、スネルの法則に従い光路を偏向する。 The condensing function of a fly-eye lens having a convex surface as shown in FIG. 1 is a method of deflecting the optical path according to the surface shape, and by utilizing the refractive index difference at the interface on the lens surface, The light path is deflected according to the law.
 結像光学系の表面形状として、レンズ面の曲率半径を0.5~2mmに設計することが好ましい。曲率半径は、フライアイレンズ面から通光部(液晶層)までの距離、およびレンズアレイの屈折率、液晶層での集光範囲条件により決定される。したがって、使用する光源サイズ、液晶パネル、要求されるバックライト部の厚さによって最適な曲率を持つ表面形状を用いることが必要である。また、表面形状は集光作用を持たせるために凸面となる。 The surface shape of the imaging optical system is preferably designed so that the radius of curvature of the lens surface is 0.5 to 2 mm. The radius of curvature is determined by the distance from the fly-eye lens surface to the light transmission part (liquid crystal layer), the refractive index of the lens array, and the condensing range condition in the liquid crystal layer. Therefore, it is necessary to use a surface shape having an optimum curvature according to the light source size to be used, the liquid crystal panel, and the required thickness of the backlight portion. Further, the surface shape becomes a convex surface in order to have a light collecting action.
 ここで、複数の発光点からの光の空間的分離を最良に行うには、複数の発光点の配列方向は、次のようにとるとよい。 Here, in order to best perform the spatial separation of light from the plurality of light emitting points, the arrangement direction of the plurality of light emitting points may be as follows.
 (A)レンズアレイとしてフライアイレンズを単独で用いる場合、図17の(a)に示すように、複数の発光点の配列方向は、マイクロレンズの配列方向とした縦横の直交二方向(図17の(a)に示すA方向およびB方向)のいずれか一方に直交する方向にとる。 (A) When a fly-eye lens is used alone as the lens array, as shown in FIG. 17A, the arrangement direction of the plurality of light emitting points is two orthogonal directions (vertical and horizontal directions) (FIG. 17). (A direction and B direction shown in (a)).
 (B)レンズアレイとしてレンティキュラレンズを単独でもしくはフライアイレンズと組み合わせて用いる場合、図17の(b)に示すように、複数の発光点の配列方向は、マイクロシリンドリカルレンズの長手方向(図17の(b)に示すC方向)に直交する方向にとる。 (B) When a lenticular lens is used alone or in combination with a fly-eye lens as the lens array, as shown in FIG. 17B, the arrangement direction of the plurality of light emitting points is the longitudinal direction of the micro cylindrical lens (FIG. It is taken in a direction orthogonal to the C direction shown in 17 (b).
 複数のマイクロレンズアレイを光の進行方向に沿って並べることによって、結像光学系を形成する場合、1枚のマイクロレンズアレイを用いる場合に比べて、複数のマイクロレンズアレイそれぞれの表面形状の曲率を抑えることが可能となる。曲率を抑えることにより、迷光の発生を抑制することができる。 When forming an imaging optical system by arranging a plurality of microlens arrays along the light traveling direction, the curvature of the surface shape of each of the plurality of microlens arrays is compared to the case of using a single microlens array. Can be suppressed. By suppressing the curvature, the generation of stray light can be suppressed.
 一方、表面形状により光路を偏向する方式に代えて、屈折率分布により光路を偏向する方式を採用してもよい。この方式では、レンズ中の屈折率に分布を持たせることによって光路を偏向する。すなわち、レンズの中心部と周辺部との屈折率を変化させることによって、レンズ内部に屈折率の勾配をつけ、この屈折率の勾配によって光を偏向していく。 On the other hand, instead of the method of deflecting the optical path by the surface shape, a method of deflecting the optical path by the refractive index distribution may be adopted. In this method, the optical path is deflected by giving a distribution to the refractive index in the lens. That is, by changing the refractive index between the central portion and the peripheral portion of the lens, a gradient of the refractive index is given inside the lens, and light is deflected by this gradient of refractive index.
 また、屈折率分布により光路を偏向する方式では、レンズの表面形状は平坦となっている。このため、レンズアレイ上に直接偏光子や光学フィルム等を貼り合せすることが可能となり、それらとの空間保持が容易となる。 Also, in the method of deflecting the optical path by the refractive index distribution, the surface shape of the lens is flat. For this reason, it becomes possible to bond a polarizer, an optical film, etc. directly on a lens array, and space maintenance with them becomes easy.
 (表示装置の構成)
 表示装置10は、異なる表示色で発光する上記光源部3、上記異なる表示色に対応した上記サブ画素1a,1b,1cによって構成された上記画素1を含む複数の画素が、第1方向Xと第2方向Yとに2次元的に配列された上記表示パネル4と、光源部3が発した光を、対応する表示色のサブ画素1a,1b,1cに個々に集光する上記集光部5とを備えている。より具体的には、表示装置10は、バックライトを用いる透過型液晶表示装置として構成されている。
(Configuration of display device)
In the display device 10, a plurality of pixels including the pixel 1 including the light source unit 3 that emits light in different display colors and the sub-pixels 1 a, 1 b, and 1 c corresponding to the different display colors are arranged in a first direction X. The display panel 4 arranged two-dimensionally in the second direction Y, and the light condensing part for individually condensing the light emitted from the light source part 3 on the sub-pixels 1a, 1b, and 1c of the corresponding display color. And 5. More specifically, the display device 10 is configured as a transmissive liquid crystal display device using a backlight.
 なお、光源部3および集光部5は、本発明のバックライトシステムに相当している。 The light source unit 3 and the light collecting unit 5 correspond to the backlight system of the present invention.
 表示パネル4は、光源部3の光が入射する側から順に、偏光子41、TFT駆動部が形成されたガラス基板42、液晶層43、ガラス基板44、および検光子45を備えている。表示パネル4の観察者側に、拡散板(拡散素子)46が配置されている。 The display panel 4 includes, in order from the light incident side of the light source unit 3, a polarizer 41, a glass substrate 42 on which a TFT driving unit is formed, a liquid crystal layer 43, a glass substrate 44, and an analyzer 45. A diffusion plate (diffusion element) 46 is disposed on the viewer side of the display panel 4.
 光源部3として、点光源の配列であるLEDアレイを例示したが、本発明はこれに限られず、CCFL(Cold Cathode Fluorescent Lamp)のような線光源、または面光源のいずれをも採用することができる。また、点光源として、LEDの代わりに、前記発光点102(図5)に有機EL発光部を充てた有機ELランプを用いてもよい。 Although the LED array which is an array of point light sources is illustrated as the light source unit 3, the present invention is not limited to this, and any of a linear light source such as CCFL (Cold Cathode Fluorescent Lamp) or a surface light source may be adopted. it can. Further, as the point light source, an organic EL lamp in which the light emitting point 102 (FIG. 5) is filled with an organic EL light emitting unit may be used instead of the LED.
 (拡散板の必要性)
 本発明に係る透過型表示装置では、画素を構成するサブ画素に、光源の光を集光しているので、液晶層43を通過して、検光子45から出てくる光は、正面に向かってある程度集光された状態となっている。そのため、この透過型表示装置の画面を、視角を振って(斜め方向から)観察したとき、画面を正面から観察する場合と比較して、光があまり届かず画面内の表示が見えづらくなる。
(Necessity of diffusion plate)
In the transmissive display device according to the present invention, the light from the light source is condensed on the sub-pixels constituting the pixel, so that the light that passes through the liquid crystal layer 43 and exits from the analyzer 45 is directed to the front. It is in a state of being condensed to some extent. For this reason, when the screen of this transmissive display device is observed at a different viewing angle (from an oblique direction), light does not reach much and it is difficult to see the display on the screen as compared with the case where the screen is observed from the front.
 そこで、この問題を解決する為に、検光子45の出射面上に拡散板46を配置することが好ましい。また、拡散板46が、さらに、入射角無依存拡散特性を有する場合、透過型表示装置を色別に空間分割するサブ画素の各々を通過した光が、同じ拡散特性を有するため、表示品位の向上が見込めるのでより好ましい。上記入射角無依存拡散特性とは、拡散板への入射光の入射角によらず、拡散板を通過する際の拡散強度分布が一定になる性質をいう。 Therefore, in order to solve this problem, it is preferable to dispose the diffusion plate 46 on the exit surface of the analyzer 45. Further, when the diffusion plate 46 further has an incident angle independent diffusion characteristic, the light that has passed through each of the sub-pixels that spatially divide the transmissive display device by color has the same diffusion characteristic, so that the display quality is improved. Is more preferable. The incident angle-independent diffusion characteristic is a property that the diffusion intensity distribution when passing through the diffusion plate is constant regardless of the incident angle of the incident light to the diffusion plate.
 (サブ画素を通過する前後の光束のようす)
 図6は、集光部5および表示パネル4を第1方向Xに拡大することによって、サブ画素を通過する前後の光束のようすを模式的に示す説明図である。また、図7は、集光部5および表示パネル4を第2方向Yに拡大することによって、サブ画素を通過する前後の光束のようすを模式的に示す説明図である。
(Like the light flux before and after passing through the sub-pixel)
FIG. 6 is an explanatory diagram schematically showing the appearance of the light flux before and after passing through the sub-pixels by enlarging the light collecting unit 5 and the display panel 4 in the first direction X. FIG. 7 is an explanatory diagram schematically showing the appearance of light beams before and after passing through the sub-pixels by enlarging the light collecting unit 5 and the display panel 4 in the second direction Y.
 図6に示すように、上記発光点Rから出射された光が、対応する1つのサブ画素に対して集光される光束に含まれる光線を考える。この光線が、第1方向Xおよび第2方向Yを含む面の法線方向と、第1方向Xとを含む面内で、上記サブ画素の1つに入射する角度の最大角度をθaとする。なお、最大角度θaは、上記法線方向を基準として、上記第1方向Xへ傾斜した光線の傾斜角度の最大角度ともいえる。 As shown in FIG. 6, let us consider a light beam included in a light beam that is emitted from the light emitting point R and collected on one corresponding sub-pixel. The maximum angle of the angle at which this light ray enters one of the sub-pixels in the plane including the normal direction of the plane including the first direction X and the second direction Y and the first direction X is defined as θa. . Note that the maximum angle θa can be said to be the maximum angle of the inclination angle of the light beam inclined in the first direction X with reference to the normal direction.
 また、図7に示すように、上記発光点Rから出射された光が、対応する1つのサブ画素に対して集光される光束に含まれる光線を考える。この光線が、上記法線方向と第2方向Yとを含む面内で、上記サブ画素の1つに入射する角度の最大角度をθbとする。なお、最大角度θbは、上記法線方向を基準として、上記第2方向Yへ傾斜した光線の傾斜角度の最大角度ともいえる。 Further, as shown in FIG. 7, a light beam included in a light beam collected from the light emitting point R and focused on one corresponding sub-pixel is considered. The maximum angle of the angle at which this light ray enters one of the sub-pixels in a plane including the normal direction and the second direction Y is defined as θb. Note that the maximum angle θb can be said to be the maximum angle of the inclination angle of the light beam inclined in the second direction Y with respect to the normal direction.
 なお、第1方向Xおよび第2方向Yを含む面とは、複数の画素が2次元的に配列した面と同義であり、表示面と同義であるともいい得る。この面の法線は、図6および図7において、破線にて図示されている。 Note that the plane including the first direction X and the second direction Y is synonymous with a plane in which a plurality of pixels are two-dimensionally arranged, and may be synonymous with a display plane. The normal of this surface is shown by broken lines in FIGS.
 上記最大角度θaは、発光点Rから出射された光が、対応する1つのサブ画素に集光された後、広がる光束の第1方向Xの広がり具合を規定している。同様に、上記最大角度θbは、上記光束の第2方向Yの広がり具合を規定している。 The above-mentioned maximum angle θa defines the extent of spreading of the luminous flux in the first direction X after the light emitted from the light emitting point R is collected on one corresponding sub-pixel. Similarly, the maximum angle θb defines the degree of spread of the light flux in the second direction Y.
 本実施形態のバックライトシステムでは、発光点Rの照射角度に関して、第1方向Xに沿って広がる照射角度φ(X)を、第2方向Yに沿って広がる照射角度φ(Y)より小さくしたことによって、上記最大角度θaは、上記最大角度θbより小さくなっている。 In the backlight system of the present embodiment, with respect to the irradiation angle of the light emitting point R, the irradiation angle φ (X) that spreads along the first direction X is made smaller than the irradiation angle φ (Y) that spreads along the second direction Y. Thus, the maximum angle θa is smaller than the maximum angle θb.
 このように、上記最大角度θaおよび最大角度θbについて、θa<θbという関係が成り立つように、光源部3および集光部5を設計する。これによって、1つのサブ画素から出射される光束に、上記サブ画素の1つの形状と同様に、細長い形状をした光量分布を持たせることができる。 Thus, the light source unit 3 and the light condensing unit 5 are designed so that the relationship θa <θb is established with respect to the maximum angle θa and the maximum angle θb. As a result, the luminous flux emitted from one sub-pixel can have an elongated light amount distribution similar to the shape of one of the sub-pixels.
 (混色防止の意義)
 発光点Rから出射された光は、上述のように細長い形状をした光量分布を持ちながら、対応する1つのサブ画素に集光された後、拡散板46に到達し、上記光量分布を反映した光照射範囲、すなわち光スポットを拡散板46上に形成する。
(Significance of preventing color mixing)
The light emitted from the light emitting point R has the elongated light amount distribution as described above, and is condensed on one corresponding sub-pixel and then reaches the diffusion plate 46 to reflect the light amount distribution. A light irradiation range, that is, a light spot is formed on the diffusion plate 46.
 液晶層43の各サブ画素で輝度変調された表示光が、拡散板46において混色する場合、表示パネル4の観察者は、混色した画像情報を認識することになる。すなわち、観察者は、鮮明な画像を見ることができず、ぼやけた画像を認識することになる。 When the display light whose luminance is modulated by each sub-pixel of the liquid crystal layer 43 is mixed in the diffusion plate 46, the observer of the display panel 4 recognizes the mixed image information. That is, the observer cannot see a clear image and recognizes a blurred image.
 ここで、MLAと拡散板46との間に配置された液晶層43では、光の進行方向を偏向することができない。また、拡散板46では、到達した光線の角度のみを拡散させるだけで、光線の位置を変えることはできない。 Here, in the liquid crystal layer 43 disposed between the MLA and the diffusion plate 46, the traveling direction of light cannot be deflected. In addition, the diffuser plate 46 cannot diffuse the position of the light beam only by diffusing the angle of the light beam that has reached.
 これらのことより、拡散板46で画像情報の混色を防止するためには、MLA通過後の光線角度分布を制御する必要がある。ここで、MLA通過後の光線角度分布に最も影響を与えるパラメータが、光源部3における光線出射角度分布である。 For these reasons, it is necessary to control the light angle distribution after passing through the MLA in order to prevent color mixing of the image information with the diffusion plate 46. Here, the parameter that most affects the light beam angle distribution after passing through the MLA is the light beam output angle distribution in the light source unit 3.
 以下、光線出射角度分布についてさらに詳しく説明する。 Hereinafter, the light emission angle distribution will be described in more detail.
 (混色防止条件~第1方向)
 図6において、液晶層43から拡散板46までの距離をhとすると、1つのサブ画素を通過した光線が拡散板46に到達したときの第1方向Xにおける広がり幅(以下、第1拡散素子到達幅と呼ぶ)Laは、上記距離hと上記最大角度θaとを用いて、次式で表される。
(Color mixing prevention condition-first direction)
In FIG. 6, when the distance from the liquid crystal layer 43 to the diffusion plate 46 is h, the spreading width in the first direction X (hereinafter referred to as the first diffusion element) when the light beam that has passed through one sub-pixel reaches the diffusion plate 46. La (referred to as a reach width) is expressed by the following equation using the distance h and the maximum angle θa.
 La=2×h×tanθa  (式1)
 ここで、画素ピッチを図1および図2に示すように、第1方向Xおよび第2方向Yの双方についてP0とした場合、第1方向X(RGB並び方向)におけるRGBに対応した各サブ画素の幅はP0/3である。
La = 2 × h × tan θa (Formula 1)
Here, as shown in FIGS. 1 and 2, when the pixel pitch is P0 in both the first direction X and the second direction Y, each subpixel corresponding to RGB in the first direction X (RGB alignment direction). The width of is P0 / 3.
 したがって、上記第1拡散素子到達幅Laと1つのサブ画素の幅(P0/3)が下記の(式2)を満たす条件で表示装置10を設計した場合、RGBに対応して隣り合うサブ画素の表示色が混色を起こさないので、観察者は、鮮明な画像情報を視認することが可能になる。 Therefore, when the display device 10 is designed under the condition that the first diffusion element arrival width La and the width (P0 / 3) of one subpixel satisfy the following (Formula 2), the subpixels adjacent to each other corresponding to RGB Therefore, the observer can visually recognize clear image information.
 La<P0/3  (式2)
 (式1)と(式2)とから、下記の(式3)が導かれる。
La <P0 / 3 (Formula 2)
From (Expression 1) and (Expression 2), the following (Expression 3) is derived.
 2×h×tanθa<P0/3  (式3)
 さらに、(式3)は下記の(式4)に変形される。
2 × h × tan θa <P0 / 3 (Formula 3)
Furthermore, (Formula 3) is transformed into the following (Formula 4).
 θa<arctan{P0/(6×h)}  (式4)
 つまり、各発光点から出射される光の第1方向Xにおける最大角度θaが、上記(式4)にて示す不等式条件を満たすことができれば、第1方向X(RGB並び方向)におけるサブ画素同士の混色を防止することができる。
θa <arctan {P0 / (6 × h)} (Formula 4)
That is, if the maximum angle θa in the first direction X of the light emitted from each light emitting point can satisfy the inequality condition shown in (Expression 4), the subpixels in the first direction X (RGB alignment direction) Color mixing can be prevented.
 (混色防止条件~第2方向)
 一方、図7に示すように、1つのサブ画素を通過した光線が拡散板46に到達したときの第2方向Yにおける広がり幅(以下、第2拡散素子到達幅と呼ぶ)Lbは、上記距離hと上記最大角度θbとを用いて、次式で表される。
(Color mixing prevention condition-second direction)
On the other hand, as shown in FIG. 7, when the light beam that has passed through one sub-pixel reaches the diffusion plate 46, the spread width in the second direction Y (hereinafter referred to as the second diffusion element arrival width) Lb is the above distance. Using h and the maximum angle θb, it is expressed by the following equation.
 Lb=2×h×tanθb  (式5)
 ここで、図7の場合、画素ピッチをP0としたときに、第2方向Y(同色並び方向)においては、同色のサブ画素しか配列していないため、各サブ画素の長さはP0となる。
Lb = 2 × h × tan θb (Formula 5)
In the case of FIG. 7, when the pixel pitch is P0, only the subpixels of the same color are arranged in the second direction Y (same color arrangement direction), so the length of each subpixel is P0. .
 したがって、上記第2拡散素子到達幅Lbと1つのサブ画素の長さ(P0)が下記の(式6)を満たす条件で表示装置10を設計した場合、隣り合う同色のサブ画素の表示情報が重なりを起こさないので、観察者は、鮮明な画像情報を視認することが可能になる。 Therefore, when the display device 10 is designed under the condition that the second diffusion element arrival width Lb and the length (P0) of one subpixel satisfy the following (Equation 6), the display information of adjacent subpixels of the same color is displayed. Since no overlap occurs, the observer can visually recognize clear image information.
 Lb<P0  (式6)
 (式5)と(式6)とから、下記の(式7)が導かれる。
Lb <P0 (Formula 6)
From (Expression 5) and (Expression 6), the following (Expression 7) is derived.
 2×h×tanθb<P0  (式7)
 さらに、(式7)は下記の(式8)に変形される。
2 × h × tan θb <P0 (Formula 7)
Further, (Equation 7) is transformed into (Equation 8) below.
 θb<arctan{P0/(2×h)}  (式8)
 つまり、各発光点から出射される光の第2方向Yにおける最大角度θbが、上記(式8)にて示す不等式条件を満たすことができれば、第2方向Y(同色並び方向)に沿って隣り合う同色のサブ画素の表示情報が重なり合うことを防止することができる。また、第2方向Yに沿って、異なる色のサブ画素が配列している場合には、第2方向Yにおけるサブ画素同士の混色を防止できる。
θb <arctan {P0 / (2 × h)} (Formula 8)
In other words, if the maximum angle θb in the second direction Y of the light emitted from each light emitting point can satisfy the inequality condition shown in (Expression 8) above, it is adjacent along the second direction Y (same color arrangement direction). It is possible to prevent display information of matching sub-pixels of the same color from overlapping. In addition, when sub-pixels of different colors are arrayed along the second direction Y, it is possible to prevent color mixing between the sub-pixels in the second direction Y.
 なお、最大角度θaおよびθbの不等式条件を比較してみると、θbの方が約3倍広くなっている。これは、図1および図2に示す表示装置10において、1画素を第1方向Xについて3種のサブ画素で構成し、第2方向Yについて1種のサブ画素で構成しているために、1つのサブ画素の形状が縦長であることに起因している。 When comparing the inequality conditions of the maximum angles θa and θb, θb is about three times wider. This is because, in the display device 10 shown in FIGS. 1 and 2, one pixel is configured with three types of subpixels in the first direction X and one type of subpixel is configured in the second direction Y. This is because the shape of one subpixel is vertically long.
 仮に、θa=θb≒arctan{P0/(2×h)}とした場合、第2方向Y(同色並び方向)では、各画素間で表示情報の重なりまたは混色は発生しないが、第1方向X(RGB並び方向)では、各サブ画素の表示色が混色してしまう。すなわち、図4の〔2〕に示す状態が発生する。 Assuming that θa = θb≈arctan {P0 / (2 × h)}, in the second direction Y (same color arrangement direction), display information is not overlapped or mixed between pixels, but the first direction X In (RGB alignment direction), the display colors of the sub-pixels are mixed. That is, the state shown in [2] of FIG. 4 occurs.
 また、θa=θb≒arctan{P0/(6×h)}とした場合、第1方向Xにおいて混色は発生しないが、第2方向Yの画素間に大きな暗領域が発生してしまう。すなわち、図4の〔3〕に示す状態が発生する。 When θa = θb≈arctan {P0 / (6 × h)}, no color mixture occurs in the first direction X, but a large dark region occurs between pixels in the second direction Y. That is, the state shown in [3] of FIG. 4 occurs.
 このように、MLAのような集光部を用いたカラーフィルタレス方式において、光源部の照射角度に異方性を持たせる、すなわち、第1方向Xと第2方向Yとで、照射角度を異ならせることによって、カラーフィルタ方式の表示装置と同等の表示品位に近づけることが可能となる。 Thus, in a color filterless system using a condensing unit such as MLA, the irradiation angle of the light source unit is made anisotropic, that is, the irradiation angle is changed between the first direction X and the second direction Y. By making it different, it becomes possible to bring the display quality close to that of a color filter type display device.
 なお、第1方向Xの最大角度θaと第2方向Yの最大角度θbとは(式4)と(式8)とを同時に満たすことが好ましい。また、
 θa≒arctan{P0/(6×h)}  (式9)
 θb≒arctan{P0/(2×h)}  (式10)
を同時に満たすことができれば、図4の〔4〕に示す状態が発生し、第1方向X(RGB並び方向)におけるサブ画素同士の混色を防止するとともに、隣り合う同色のサブ画素の表示情報が重なりを起こさないので、観察者はより鮮明な画像情報を視認することが可能になる。
The maximum angle θa in the first direction X and the maximum angle θb in the second direction Y preferably satisfy (Equation 4) and (Equation 8) simultaneously. Also,
θa≈arctan {P0 / (6 × h)} (Formula 9)
θb≈arctan {P0 / (2 × h)} (Formula 10)
4 can be satisfied at the same time, the state shown in [4] of FIG. 4 occurs, preventing color mixing between the sub-pixels in the first direction X (RGB alignment direction), and display information of adjacent sub-pixels of the same color. Since no overlap occurs, the observer can visually recognize clearer image information.
 (混色防止の普遍的条件1)
 上記(式9)と(式10)とに普遍性を持たせる条件として、第2方向Yの最大角度θbと第1方向Xの最大角度θaとは次式の関係を満たすことがより好ましい。
(Universal condition 1 to prevent color mixing)
As a condition for imparting universality to (Equation 9) and (Equation 10), it is more preferable that the maximum angle θb in the second direction Y and the maximum angle θa in the first direction X satisfy the relationship of the following equation.
 M×tanθb≒N×tanθa  (式11)
 ここで、Nとは、1画素を構成するサブ画素が、1画素内で第1方向Xに配列した数である。Mとは、サブ画素が、上記1画素内で第2方向Yに配列した数であり、1以上の整数である。MとNとの間には、M<Nの関係がある。図1および図2の例では、それぞれN=3、M=1となり、図19の例では、N=3、M=2となる。
M × tan θb≈N × tan θa (Formula 11)
Here, N is the number of sub-pixels constituting one pixel arranged in the first direction X within one pixel. M is the number of sub-pixels arranged in the second direction Y within the one pixel, and is an integer of 1 or more. There is a relationship of M <N between M and N. In the example of FIGS. 1 and 2, N = 3 and M = 1, respectively, and in the example of FIG. 19, N = 3 and M = 2.
 なお、既に説明したとおり、1画素を構成するM×N個のサブ画素の表示色は、全て相違していてもよいし、少なくとも一部または全部が同色になっていてもよく、特に限定されない。 As described above, the display colors of the M × N sub-pixels constituting one pixel may be all different, or at least part or all may be the same color, and is not particularly limited. .
 以下、図20および図21を用いて(式11)の導出についてさらに詳しく説明する。 Hereinafter, the derivation of (Equation 11) will be described in more detail with reference to FIG. 20 and FIG.
 図20において、液晶層43から拡散板46までの距離をhとすると、1つのサブ画素を通過した光線が拡散板46に到達したときの第1方向Xにおける広がり幅(以下、第1拡散素子到達幅と呼ぶ)Laは、上記距離hと上記最大角度θaとを用いて、前出の式1で表される。 In FIG. 20, when the distance from the liquid crystal layer 43 to the diffusion plate 46 is h, the spreading width in the first direction X when the light beam that has passed through one sub-pixel reaches the diffusion plate 46 (hereinafter referred to as the first diffusion element). La (referred to as an arrival width) is expressed by the above-described equation 1 using the distance h and the maximum angle θa.
 La=2×h×tanθa  (式1)
 ここで、画素ピッチを図20および図21に示すように、第1方向Xおよび第2方向Yの双方についてP0とした場合、第1方向X(RGB並び方向)における各サブ画素の幅はP0/Nである。
La = 2 × h × tan θa (Formula 1)
Here, as shown in FIGS. 20 and 21, when the pixel pitch is P0 in both the first direction X and the second direction Y, the width of each sub-pixel in the first direction X (RGB alignment direction) is P0. / N.
 したがって、上記第1拡散素子到達幅Laと1つのサブ画素の幅(P0/N)が下記の(式12)を満たす条件で表示装置10を設計した場合、図4の〔4〕に示す状態が発生し、RGBに対応して隣り合うサブ画素の表示色が混色を起こさないので、観察者は、より鮮明な画像情報を視認することが可能になる。 Therefore, when the display device 10 is designed under the condition that the first diffusion element arrival width La and the width (P0 / N) of one subpixel satisfy the following (formula 12), the state shown in [4] of FIG. And the display colors of the adjacent sub-pixels corresponding to RGB do not cause color mixing, so that the observer can view clearer image information.
 La≒P0/N  (式12)
 (式1)と(式12)とから、下記の(式13)が導かれる。
La≈P0 / N (Formula 12)
The following (Expression 13) is derived from (Expression 1) and (Expression 12).
 2×h×tanθa≒P0/N  (式13)
 さらに、(式13)は下記の(式14)に変形される。
2 × h × tan θa≈P0 / N (Formula 13)
Furthermore, (Formula 13) is transformed into the following (Formula 14).
 2×h×N×tanθa≒P0  (式14)
 一方、図21に示すように、1つのサブ画素を通過した光線が拡散板46に到達したときの第2方向Yにおける広がり幅(以下、第2拡散素子到達幅と呼ぶ)Lbは、上記距離hと上記最大角度θbとを用いて、前出の式5で表される。
2 × h × N × tan θa≈P0 (Formula 14)
On the other hand, as shown in FIG. 21, the spread width in the second direction Y (hereinafter referred to as the second diffusion element arrival width) Lb when the light beam that has passed through one sub-pixel reaches the diffusion plate 46 is the above distance. Using h and the maximum angle θb, it is expressed by Equation 5 above.
 Lb=2×h×tanθb  (式5)
ここで、図21の場合、画素ピッチをP0としたときに、第2方向Y(同色並び方向)における各サブ画素の長さはP0/Mである。
Lb = 2 × h × tan θb (Formula 5)
In the case of FIG. 21, when the pixel pitch is P0, the length of each sub-pixel in the second direction Y (same color arrangement direction) is P0 / M.
 したがって、上記第2拡散素子到達幅Lbと1つのサブ画素の長さ(P0/M)が下記の(式15)を満たす条件で表示装置10を設計した場合、図4の〔4〕に示す状態が発生し、隣り合う同色のサブ画素の表示情報が重なりを起こさないので、観察者は、より鮮明な画像情報を視認することが可能になる。 Therefore, when the display device 10 is designed under the condition that the second diffusion element arrival width Lb and the length (P0 / M) of one subpixel satisfy the following (Equation 15), the display device 10 is shown in [4] in FIG. Since the state is generated and the display information of the adjacent sub-pixels of the same color does not overlap, the observer can view clearer image information.
 Lb≒P0/M  (式15)
 (式5)と(式15)とから、下記の(式16)が導かれる。
Lb≈P0 / M (Formula 15)
From (Expression 5) and (Expression 15), the following (Expression 16) is derived.
 2×h×tanθb≒P0/M  (式16)
 さらに、(式13)は下記の(式17)に変形される。
2 × h × tan θb≈P0 / M (Formula 16)
Further, (Equation 13) is transformed into (Equation 17) below.
 2×h×M×tanθb≒P0  (式17)
ここで、第1方向Xおよび第2方向Yの双方について画素ピッチはP0と等しいことから(式18)が成り立つ。
2 × h × M × tan θb≈P0 (Expression 17)
Here, since the pixel pitch in both the first direction X and the second direction Y is equal to P0, (Equation 18) holds.
 2×h×M×tanθb≒2×h×N×tanθa  (式18)
 さらに、(式18)は下記に示す前記(式11)に変形される。
M×tanθb≒N×tanθa  (式11)
なお、図20および図21の例では、それぞれN=4、M=2となる。
2 × h × M × tan θb≈2 × h × N × tan θa (Formula 18)
Further, (Equation 18) is transformed into (Equation 11) shown below.
M × tan θb≈N × tan θa (Formula 11)
In the examples of FIGS. 20 and 21, N = 4 and M = 2, respectively.
 (混色防止の普遍的条件2)
 また、1画素の縦横のサイズ比が1:1ではない場合として、1画素の縦横サイズ比がPa:Pbの場合の混色防止の普遍的条件の導出について、図22および図23を用いてさらに詳しく説明する。
(Universal condition 2 to prevent color mixing)
Further, with reference to FIGS. 22 and 23, the derivation of the universal condition for preventing color mixture when the vertical / horizontal size ratio of one pixel is not 1: 1 and the vertical / horizontal size ratio of one pixel is Pa: Pb. explain in detail.
 液晶層43から拡散板46までの距離をhとすると、第1拡散素子到達幅Laは、上記距離hと上記最大角度θaとを用いて、前出の式1で表される。 Assuming that the distance from the liquid crystal layer 43 to the diffusion plate 46 is h, the first diffusion element arrival width La is expressed by the above formula 1 using the distance h and the maximum angle θa.
 La=2×h×tanθa  (式1)
 ここで、画素ピッチを図22に示すように、第1方向XについてPaとした場合、第1方向X(RGB並び方向)における各サブ画素の幅はPa/Nである。
La = 2 × h × tan θa (Formula 1)
Here, as shown in FIG. 22, when the pixel pitch is Pa in the first direction X, the width of each sub-pixel in the first direction X (RGB alignment direction) is Pa / N.
 したがって、上記第1拡散素子到達幅Laと1つのサブ画素の幅(Pa/N)が下記の(式19)を満たす条件で表示装置10を設計した場合、図4の〔4〕に示す状態が発生し、RGBに対応して隣り合うサブ画素の表示色が混色を起こさないので、観察者は、より鮮明な画像情報を視認することが可能になる。 Therefore, when the display device 10 is designed under the condition that the first diffusion element arrival width La and the width (Pa / N) of one subpixel satisfy the following (formula 19), the state shown in [4] of FIG. And the display colors of the adjacent sub-pixels corresponding to RGB do not cause color mixing, so that the observer can view clearer image information.
 La≒Pa/N  (式19)
 (式1)と(式19)とから、下記の(式20)が導かれる。
La≈Pa / N (Formula 19)
The following (Expression 20) is derived from (Expression 1) and (Expression 19).
 2×h×tanθa≒Pa/N  (式20)
 さらに、(式20)は下記の(式21)に変形される。
2 × h × tan θa≈Pa / N (Formula 20)
Furthermore, (Equation 20) is transformed into (Equation 21) below.
 2×h×N×tanθa≒Pa  (式21)
 一方、図23に示すように、第2拡散素子到達幅Lbは、上記距離hと上記最大角度θbとを用いて、前出の式5で表される。
2 × h × N × tan θa≈Pa (Formula 21)
On the other hand, as shown in FIG. 23, the second diffusion element reach width Lb is expressed by the above-described Expression 5 using the distance h and the maximum angle θb.
 Lb=2×h×tanθb  (式5)
 ここで、図23の場合、画素ピッチをPbとしたときに、第2方向Y(同色並び方向)における各サブ画素の幅はPb/Mである。
Lb = 2 × h × tan θb (Formula 5)
In the case of FIG. 23, when the pixel pitch is Pb, the width of each sub-pixel in the second direction Y (same color arrangement direction) is Pb / M.
 したがって、上記第2拡散素子到達幅Lbと1つのサブ画素の幅(Pb/M)が下記の(式22)を満たす条件で表示装置10を設計した場合、図4の〔4〕に示す状態が発生し、隣り合う同色のサブ画素の表示情報が重なりを起こさないので、観察者は、より鮮明な画像情報を視認することが可能になる。 Therefore, when the display device 10 is designed under the condition that the second diffusion element arrival width Lb and the width (Pb / M) of one subpixel satisfy the following (formula 22), the state shown in [4] of FIG. And the display information of adjacent sub-pixels of the same color does not overlap, so that the observer can view clearer image information.
 Lb≒Pb/M  (式22)
 (式5)と(式22)とから、下記の(式23)が導かれる。
Lb≈Pb / M (Formula 22)
From (Expression 5) and (Expression 22), the following (Expression 23) is derived.
 2×h×tanθb≒Pb/M  (式23)
 さらに、(式23)は下記の(式24)に変形される。
2 × h × tan θb≈Pb / M (Formula 23)
Further, (Equation 23) is transformed into (Equation 24) below.
 2×h×M×tanθb≒Pb  (式24)
 ここで、第1方向Xおよび第2方向Yについて画素ピッチはPaおよびPbであること、および(式21)と(式24)とから(式25)が成り立つ。
2 × h × M × tan θb≈Pb (Equation 24)
Here, with respect to the first direction X and the second direction Y, the pixel pitch is Pa and Pb, and (Expression 25) holds from (Expression 21) and (Expression 24).
 Pa/Pb≒(2×h×N×tanθa)/(2×h×M×tanθb)  (式25)
 さらに、(式25)は下記の(式26)に変形される。
Pa / Pb≈ (2 × h × N × tan θa) / (2 × h × M × tan θb) (Formula 25)
Further, (Equation 25) is transformed into the following (Equation 26).
 (M/Pb)×tanθb≒(N/Pa)×tanθa  (式26)
 このように、1画素の縦横サイズ比がPa:Pbの場合の混色防止の普遍的条件として、第2方向Yの最大角度θbと第1方向Xの最大角度θaとは、上記(式26)の関係を満たすことが好ましい。
(M / Pb) × tan θb≈ (N / Pa) × tan θa (Formula 26)
Thus, as a universal condition for preventing color mixture when the vertical / horizontal size ratio of one pixel is Pa: Pb, the maximum angle θb in the second direction Y and the maximum angle θa in the first direction X are the above (formula 26). It is preferable to satisfy the relationship.
 (本実施形態の効果)
 本実施形態で説明した光源部3における光線出射角度分布の設定によって、発光点RGBからそれぞれ出射された光は、MLAを通過後、表示パネル4のRGBに対応した各サブ画素内にそれぞれ照射されることが可能となる。
(Effect of this embodiment)
According to the setting of the light beam emission angle distribution in the light source unit 3 described in the present embodiment, each light emitted from the light emitting points RGB passes through the MLA and is irradiated into each sub pixel corresponding to RGB of the display panel 4. It is possible to
 これにより、カラーフィルタを用いずにフルカラー表示を行うことが可能となり、カラーフィルタに吸収される光量分に見合った光利用効率の向上(約3倍)を図ることができる。したがって、従来と同等の輝度で表示を行う場合には、表示装置の光源に必要な消費電力を、理論上約1/3に低減させることができる。 This makes it possible to perform full color display without using a color filter, and it is possible to improve the light utilization efficiency (about 3 times) corresponding to the amount of light absorbed by the color filter. Therefore, in the case of performing display with the same luminance as the conventional one, the power consumption required for the light source of the display device can theoretically be reduced to about 1/3.
 また、第1方向X(RGB並び方向)と第2方向Y(同色並び方向)における各出射角度を相違させ、出射角度分布に異方性を持たせたことによって、各サブ画素に対応して拡散板46に形成される光照射範囲の形状を、カラーフィルタ方式の現行液晶ディスプレイとほぼ相似な形状とすることができる。この結果、解像度が、現行液晶ディスプレイと同等程度になる。 In addition, the emission angles in the first direction X (RGB arrangement direction) and the second direction Y (same color arrangement direction) are made different so that the emission angle distribution has anisotropy, thereby corresponding to each sub-pixel. The shape of the light irradiation range formed on the diffusing plate 46 can be made substantially similar to the current color filter type liquid crystal display. As a result, the resolution is comparable to that of the current liquid crystal display.
 さらに、本実施形態では、複数の発光点R,G,Bのうち、同色の発光点のピッチに着目すると、第1方向Xにおけるピッチと第2方向Yにおけるピッチとは、互いに等しくなっている。このため、1つのサブ画素の集光に関与する発光点の数は、第1方向Xにおける数よりも、第2方向Yにおける数の方が多くなる。具体的には、図1の場合、Rに対応した1つのサブ画素には、2つまたは3つの発光点Rから出射された光が集光されているのに対して、図2の場合、1つのサブ画素には、3つから5つの発光点Rから出射された光が集光されている。 Furthermore, in this embodiment, when attention is paid to the pitch of the light emitting points of the same color among the light emitting points R, G, B, the pitch in the first direction X and the pitch in the second direction Y are equal to each other. . For this reason, the number of light emitting points involved in the light collection of one subpixel is greater in the second direction Y than in the first direction X. Specifically, in the case of FIG. 1, light emitted from two or three light emitting points R is collected on one subpixel corresponding to R, whereas in the case of FIG. Light emitted from three to five light emitting points R is collected on one subpixel.
 1つのサブ画素への集光に関与する発光点の数が増加するということは、発光点の個体差バラツキをより平均化し、輝度ムラおよび色ムラをより低減する効果を期待することができる。もしくは、第1方向Xについて得られる、個体差バラツキを平均化する効果と同等の効果を維持できる程度に、第2方向Yにおける発光点のピッチを拡げていい場合には、第2方向Yに配列させる発光点の数を減少させることができる。この結果、表示装置のコストダウンの効果を期待することができる。 An increase in the number of light emitting points involved in condensing light onto one sub-pixel can be expected to average out the individual difference variation of the light emitting points and to further reduce luminance unevenness and color unevenness. Alternatively, if the pitch of the light emitting points in the second direction Y can be increased to the extent that the effect equivalent to the effect of averaging the individual differences obtained in the first direction X can be maintained, the second direction Y can be expanded. The number of light emitting points to be arranged can be reduced. As a result, an effect of cost reduction of the display device can be expected.
 なお、MLAとしてフライアイレンズを採用する場合、第1方向Xと第2方向Yの双方における同色発光点のピッチを互いに等しくするのであれば、フライアイレンズを構成する各レンズのピッチも、2つの方向X,Yで互いに等しくすることが好ましい。これにより、画素の縦横のサイズ比が1:1の場合に、集光点が1点に集まりやすくなる。なお、画素の縦横のサイズ比を1:1に設定することは、ほぼ全てのタイプの画像表示装置(LCD、プラズマディスプレイ、有機ELディスプレイなど)において一般的となっている。 When a fly-eye lens is used as the MLA, the pitch of each lens constituting the fly-eye lens is 2 if the pitches of the same color light emitting points in both the first direction X and the second direction Y are equal to each other. The two directions X and Y are preferably equal to each other. Thereby, when the vertical / horizontal size ratio of the pixels is 1: 1, the condensing points are easily gathered at one point. Note that setting the vertical / horizontal size ratio of pixels to 1: 1 is common in almost all types of image display devices (LCD, plasma display, organic EL display, etc.).
 〔実施形態2〕
 本発明の他の実施形態について図面に基づいて説明する。なお、説明の便宜上、前実施形態で説明した構成と同じ構成については、同じ符号を付し、重複する説明を省略する。
[Embodiment 2]
Another embodiment of the present invention will be described with reference to the drawings. For convenience of explanation, the same reference numerals are given to the same components as those explained in the previous embodiment, and duplicate explanations are omitted.
 図8は、本発明の他の実施形態のバックライトシステムと、そのバックライトシステムを備えた表示装置とを示す概略構成図であり、第1の方向(RGB並び方向)に沿った各構成要素の配置関係を示している。また、図9は、上記バックライトシステムおよび表示装置を示す概略構成図であり、第2の方向(同色並び方向)に沿った各構成要素の配置関係を示している。 FIG. 8 is a schematic configuration diagram showing a backlight system according to another embodiment of the present invention and a display device including the backlight system, and each component along the first direction (RGB alignment direction). The arrangement relationship is shown. FIG. 9 is a schematic configuration diagram showing the backlight system and the display device, and shows an arrangement relationship of each component along the second direction (same color arrangement direction).
 (実施形態1との相違点)
 図8および図9に示す本実施形態のバックライトシステムは、実施形態1と次の2点で相違している。
(1)第2方向Y(同色並び方向)における発光点の配置間隔
(2)光源部3’における各発光点の照射角度
以下、より具体的に説明する。
(Differences from Embodiment 1)
The backlight system of the present embodiment shown in FIGS. 8 and 9 is different from the first embodiment in the following two points.
(1) Light emitting point arrangement interval in the second direction Y (same color arrangement direction) (2) The irradiation angle of each light emitting point in the light source unit 3 ′ will be described in more detail below.
 上記相違点(1)について、光源部3’において、第1方向Xに沿った光出射状態と第2方向Yに沿った光出射状態とを異ならせるために、発光点Rに着目すると、第1方向Xに沿ったピッチ(図8)より、第2方向Yに沿ったピッチ(図9)を狭くしている。一例として、第1方向Xに沿ったピッチP1に対し、第2方向Yに沿ったピッチを半分、つまり(P1)/2に設定している。なお、第1方向Xに沿ったピッチP1は、実施形態1と同じ値である。 Regarding the difference (1), in the light source unit 3 ′, if the light emission state along the first direction X is different from the light emission state along the second direction Y, the light emission point R is The pitch along the second direction Y (FIG. 9) is narrower than the pitch along the first direction X (FIG. 8). As an example, the pitch along the second direction Y is set to half the pitch P1 along the first direction X, that is, (P1) / 2. The pitch P1 along the first direction X is the same value as in the first embodiment.
 そのため、第1方向Xに沿って配列した発光点Rから出射された光は、実施形態1と同じように、MLA通過後に液晶層43に集光する際、対応する1つのサブ画素に1つの集光点を形成する。これに対し、第2方向Yに沿って配列した発光点Rから出射された光は、対応する1つのサブ画素に複数(図9では2つ)の集光点を形成する。 Therefore, when the light emitted from the light emitting points R arranged along the first direction X is condensed on the liquid crystal layer 43 after passing through the MLA as in the first embodiment, one light is emitted to one corresponding sub-pixel. A condensing point is formed. On the other hand, the light emitted from the light emitting points R arranged along the second direction Y forms a plurality (two in FIG. 9) of condensing points in one corresponding sub pixel.
 上記相違点(2)について、本実施形態では、複数の発光点のそれぞれが出射する光の照射角度に関して、第1方向Xに沿って広がる照射角度φ(X)と、第2方向Yに沿って広がる照射角度φ(Y)とは等しくなっている。そのため、液晶層43から拡散板46に至る光束の広がり方は、第1方向Xと第2方向Yとで等しくなる。 Regarding the difference (2), in the present embodiment, the irradiation angle φ (X) spreading along the first direction X and the second direction Y are related to the irradiation angle of the light emitted from each of the plurality of light emitting points. The irradiation angle φ (Y) that spreads out is equal. Therefore, the way in which the light beam spreads from the liquid crystal layer 43 to the diffusion plate 46 is equal in the first direction X and the second direction Y.
 (サブ画素を通過する前後の光束のようす)
 図10は、集光部5および表示パネル4を第1方向Xに拡大することによって、サブ画素を通過する前後の光束のようすを模式的に示す説明図である。また、図11は、集光部5および表示パネル4を第2方向に拡大することによって、サブ画素を通過する前後の光束のようすを模式的に示す説明図である。
(Like the light flux before and after passing through the sub-pixel)
FIG. 10 is an explanatory diagram schematically showing the appearance of light beams before and after passing through the sub-pixels by enlarging the light collecting unit 5 and the display panel 4 in the first direction X. Moreover, FIG. 11 is explanatory drawing which shows typically the appearance of the light beam before and behind passing a sub pixel by enlarging the condensing part 5 and the display panel 4 to a 2nd direction.
 ここで、第1方向Xに関して、上記サブ画素の1つに入射する角度の最大角度θaの定義と、第2方向Yに関して、上記サブ画素の1つに入射する角度の最大角度θbの定義とについては、実施形態1で説明したとおりである。 Here, with respect to the first direction X, the definition of the maximum angle θa that is incident on one of the sub-pixels, and the definition of the maximum angle θb that is incident on one of the sub-pixels with respect to the second direction Y, Is as described in the first embodiment.
 本実施形態のバックライトシステムでは、発光点Rの照射角度に関して、第1方向Xに沿って広がる照射角度φ(X)と、第2方向Yに沿って広がる照射角度φ(Y)とを等しくしたことによって、上記最大角度θaと、上記最大角度θbとは等しくなっている。 In the backlight system of the present embodiment, with respect to the irradiation angle of the light emitting point R, the irradiation angle φ (X) extending along the first direction X is equal to the irradiation angle φ (Y) extending along the second direction Y. As a result, the maximum angle θa and the maximum angle θb are equal.
 このように、上記最大角度θaおよび最大角度θbについて、θa=θbという関係が成り立つ一方で、第2方向Yに沿った発光点のピッチを、第1方向Xに沿った発光点のピッチの1/m(mは自然数)に設定したことによって、1つのサブ画素の長手方向(第2方向Y)に沿って、m個の集光点を形成するように、光源部3’および集光部5を設計することができる。この結果、1つのサブ画素から出射されるトータルの光束に、上記サブ画素の1つの形状と同様に、細長い形状をした光量分布を持たせることができる。 As described above, the relationship θa = θb holds for the maximum angle θa and the maximum angle θb, while the pitch of the light emitting points along the second direction Y is 1 of the pitch of the light emitting points along the first direction X. / M (m is a natural number), so that m light condensing points are formed along the longitudinal direction (second direction Y) of one subpixel. 5 can be designed. As a result, the total luminous flux emitted from one subpixel can have an elongated light amount distribution, similar to the shape of one of the subpixels.
 以下、光線出射角度分布についてさらに詳しく説明する。 Hereinafter, the light emission angle distribution will be described in more detail.
 (混色防止条件~第1方向)
 図10において、液晶層43から拡散板46までの距離をhとすると、第1方向X(RGB並び方向)におけるサブ画素同士の混色を防止するための条件は、実施形態1で(式4)を導出する説明を行ったとおりである。
(Color mixing prevention condition-first direction)
In FIG. 10, when the distance from the liquid crystal layer 43 to the diffusion plate 46 is h, the condition for preventing the color mixture between the sub-pixels in the first direction X (RGB alignment direction) is the same as that in the first embodiment (Formula 4). This is as described above.
 θa<arctan{P0/(6×h)}  (式4)
 つまり、各発光点から出射される光の第1方向Xにおける最大角度θaが、上記(式4)にて示す不等式条件を満たすことができれば、第1方向X(RGB並び方向)におけるサブ画素同士の混色を防止することができる。
θa <arctan {P0 / (6 × h)} (Formula 4)
That is, if the maximum angle θa in the first direction X of the light emitted from each light emitting point can satisfy the inequality condition shown in (Expression 4), the subpixels in the first direction X (RGB alignment direction) Color mixing can be prevented.
 (混色防止条件~第2方向)
 一方、図11において、上記最大角度θbと上記最大角度θaとは等しいが、液晶層43での集光箇所が1点ではなく、複数個所に集光していることから、第2方向Y(同色並び方向)における拡散素子到達幅Lbは次式で表される。
(Color mixing prevention condition-second direction)
On the other hand, in FIG. 11, the maximum angle θb and the maximum angle θa are equal, but the condensing points in the liquid crystal layer 43 are not confined to one point, but are condensing in a plurality of places. The diffusion element arrival width Lb in the same color arrangement direction is expressed by the following equation.
 Lb=α+2×h×tanθb=α+2×h×tanθa=α+La  (式27)
 ここで、上記αは、光源部3’から出射された光が液晶層43を通過する際の通過領域の長さとする。言い換えると、通過領域の長さとは、1つのサブ画素内で、第2方向Yに並んだ複数の集光位置のうち、両端の集光位置間の間隔を意味している。
Lb = α + 2 × h × tan θb = α + 2 × h × tan θa = α + La (Formula 27)
Here, α is the length of the passage region when the light emitted from the light source unit 3 ′ passes through the liquid crystal layer 43. In other words, the length of the passing region means an interval between the condensing positions at both ends among the plurality of condensing positions arranged in the second direction Y within one subpixel.
 つまり、図11に示す第2方向Yにおける拡散素子到達幅Lbには、最大角度θb(=θa)の影響が、第1方向Xと同等程度に発生する。その一方で、第1方向Xにおける同色の発光点の配置間隔と、第2方向Yにおける同色の発光点の配置間隔とが異なるために、上記拡散素子到達幅Lbには、液晶層43における集光領域の影響も加算されることになる。 That is, the influence of the maximum angle θb (= θa) occurs in the diffusion element arrival width Lb in the second direction Y shown in FIG. On the other hand, since the arrangement interval of the light emission points of the same color in the first direction X is different from the arrangement interval of the light emission points of the same color in the second direction Y, the diffusion element arrival width Lb has a concentration in the liquid crystal layer 43. The effect of the light region is also added.
 言い換えれば、第1方向Xおよび第2方向Yの各最大角度が等しい場合においても、第1方向Xおよび第2方向Yにおける同色発光点の配置間隔を相違させることにより、実施形態1と同様の効果を得ることが可能となる。 In other words, even when the maximum angles in the first direction X and the second direction Y are equal, the arrangement intervals of the same color light emitting points in the first direction X and the second direction Y are made different, so that the same as in the first embodiment An effect can be obtained.
 ここで、図11において、第2方向Y(同色並び方向)における隣り合う同色のサブ画素同士の混色を防止する条件は、実施形態1の(式6)と同じ条件である。 Here, in FIG. 11, the condition for preventing color mixture between adjacent sub-pixels of the same color in the second direction Y (same color arrangement direction) is the same as (Formula 6) of the first embodiment.
 Lb<P0  (式6)
 (式6)と(式27)とから下記の(式28)が導かれる。
Lb <P0 (Formula 6)
The following (Expression 28) is derived from (Expression 6) and (Expression 27).
 α+2×h×tanθa<P0  (式28)
 さらに、(式28)は下記の(式29)に変形される。
α + 2 × h × tan θa <P0 (Formula 28)
Further, (Equation 28) is transformed into the following (Equation 29).
 α<P0-2×h×tanθa  (式29)
 つまり、実施形態2の場合においても、上記通過領域の長さαが、上記(式29)にて示す不等式条件を満たすことができれば、第2方向Y(同色並び方向)に沿って隣り合う同色のサブ画素の表示情報が重なり合うことを防止することができる。また、第2方向Yに沿って、異なる色のサブ画素が配列している場合には、第2方向Yにおけるサブ画素同士の混色を防止できる。
α <P0-2 × h × tan θa (Formula 29)
That is, even in the case of the second embodiment, if the length α of the passage region satisfies the inequality condition shown in (Expression 29), the same color adjacent in the second direction Y (same color arrangement direction). It is possible to prevent the display information of the sub-pixels from overlapping. In addition, when sub-pixels of different colors are arrayed along the second direction Y, it is possible to prevent color mixing between the sub-pixels in the second direction Y.
 これにより、実施形態2の場合においても、実施形態1と同様に、MLAを用いたカラーフィルタレス方式において、光源部3’で、第1方向Xに沿った光出射状態と第2方向Yに沿った光出射状態とを相違させることによって、カラーフィルタ方式の表示装置と同等の表示品位を実現することが可能となる。 Thereby, also in the case of Embodiment 2, in the color filterless system using MLA, similarly to Embodiment 1, in the light source part 3 ′, the light emission state along the first direction X and the second direction Y By making the light emission state along the same, display quality equivalent to that of the color filter type display device can be realized.
 なお、第1方向Xの最大角度θaと上記通過領域の長さαは(式4)と(式29)とを同時に満たすことが好ましい。また、
 θa≒arctan{P0/(6×h)}  (式9)
 α≒P0-2×h×tanθa  (式30)
を同時に満たすことができれば、図4の〔4〕に示す状態が発生する。すなわち、第1方向X(RGB並び方向)におけるサブ画素同士の混色を防止するとともに、隣り合う同色のサブ画素の表示情報が重なりを起こさないので、観察者はより鮮明な画像情報を視認することが可能になる。
In addition, it is preferable that the maximum angle θa in the first direction X and the length α of the passage region satisfy (Equation 4) and (Equation 29) at the same time. Also,
θa≈arctan {P0 / (6 × h)} (Formula 9)
α ≒ P0-2 × h × tanθa (Formula 30)
4 can be satisfied at the same time, the state shown in [4] of FIG. 4 occurs. That is, color mixing between sub-pixels in the first direction X (RGB alignment direction) is prevented, and display information of adjacent sub-pixels of the same color does not overlap, so that an observer can visually recognize clearer image information. Is possible.
 (混色防止の普遍的条件)
 上記(式9)と(式30)とに普遍性を持たせる条件として、上記通過領域の長さαと第1方向X(RGB並び方向)の最大角度θaとは、次式の関係を満たすことがより好ましい。
(Universal conditions for preventing color mixing)
As a condition for imparting universality to (Equation 9) and (Equation 30), the length α of the passing region and the maximum angle θa in the first direction X (RGB alignment direction) satisfy the relationship of the following equation: It is more preferable.
 α≒{(N-M)/M}×2×h×tanθa  (式31)
 ここで、Nとは、1画素を構成するサブ画素が、1画素内で第1方向Xに配列した数である。Mとは、サブ画素が、上記1画素内で第2方向Yに配列した数であり、1以上の整数である。MとNとの間には、M<Nの関係がある。図8および図9の例では、それぞれN=3、M=1となる。
α≈ {(NM) / M} × 2 × h × tan θa (Formula 31)
Here, N is the number of sub-pixels constituting one pixel arranged in the first direction X within one pixel. M is the number of sub-pixels arranged in the second direction Y within the one pixel, and is an integer of 1 or more. There is a relationship of M <N between M and N. In the examples of FIGS. 8 and 9, N = 3 and M = 1, respectively.
 なお、既に説明したとおり、1画素を構成するM×N個のサブ画素の表示色は、全て相違していてもよいし、少なくとも一部または全部が同色になっていてもよく、特に限定されない。 As described above, the display colors of the M × N sub-pixels constituting one pixel may be all different, or at least part or all may be the same color, and is not particularly limited. .
 以下、図11および図20を用いて(式31)の導出についてさらに詳しく説明する。 Hereinafter, the derivation of (Equation 31) will be described in more detail with reference to FIGS. 11 and 20.
 図20において、液晶層43から拡散板46までの距離をhとすると、1つのサブ画素を通過した光線が拡散板46に到達したときの第1方向Xにおける広がり幅(以下、第1拡散素子到達幅と呼ぶ)Laは、既に説明したとおり、上記距離hと上記最大角度θaとを用いて、前出の次式で表される。 In FIG. 20, when the distance from the liquid crystal layer 43 to the diffusion plate 46 is h, the spreading width in the first direction X when the light beam that has passed through one sub-pixel reaches the diffusion plate 46 (hereinafter referred to as the first diffusion element). As described above, La is referred to as the following equation using the distance h and the maximum angle θa.
 La=2×h×tanθa  (式1)
 ここで、画素ピッチを図11および図20に示すように、第1方向Xおよび第2方向Yの双方についてP0とした場合、第1方向X(RGB並び方向)における各サブ画素の幅はP0/Nである。
La = 2 × h × tan θa (Formula 1)
Here, as shown in FIGS. 11 and 20, when the pixel pitch is P0 in both the first direction X and the second direction Y, the width of each sub-pixel in the first direction X (RGB alignment direction) is P0. / N.
 したがって、既に説明したとおり、上記第1拡散素子到達幅Laと1つのサブ画素の幅(P0/N)が下記の(式12)を満たす条件で表示装置10を設計した場合、図4の〔4〕に示す状態が発生する。すなわち、RGBに対応して隣り合うサブ画素の表示色が混色を起こさないので、観察者は、より鮮明な画像情報を視認することが可能になる。 Therefore, as described above, when the display device 10 is designed under the condition that the first diffusion element arrival width La and the width (P0 / N) of one subpixel satisfy the following (formula 12), FIG. 4] occurs. That is, since the display colors of adjacent sub-pixels corresponding to RGB do not cause color mixing, the observer can view clearer image information.
 La≒P0/N  (式12)
 (式1)と(式12)とから、下記の(式13)が導かれる。
La≈P0 / N (Formula 12)
The following (Expression 13) is derived from (Expression 1) and (Expression 12).
 2×h×tanθa≒P0/N  (式13)
 さらに、(式13)は下記の(式14)に変形される。
2 × h × tan θa≈P0 / N (Formula 13)
Furthermore, (Formula 13) is transformed into the following (Formula 14).
 2×h×N×tanθa≒P0  (式14)
 一方、図11において、上記最大角度θbと上記最大角度θaとは等しいが、液晶層43での集光箇所が1点ではなく、複数個所に集光していることから、第2方向Y(同色並び方向)における拡散素子到達幅Lbは、前出の次式で表される。
2 × h × N × tan θa≈P0 (Formula 14)
On the other hand, in FIG. 11, the maximum angle θb and the maximum angle θa are equal, but the condensing points in the liquid crystal layer 43 are not confined to one point, but are condensing in a plurality of places. The diffusion element arrival width Lb in the same color arrangement direction is expressed by the following equation.
 Lb=α+2×h×tanθb=α+2×h×tanθa=α+La  (式27)
ここで、図11の場合、画素ピッチをP0としたときに、第2方向Y(同色並び方向)における各サブ画素の幅はP0/Mである。
Lb = α + 2 × h × tan θb = α + 2 × h × tan θa = α + La (Formula 27)
In the case of FIG. 11, when the pixel pitch is P0, the width of each sub-pixel in the second direction Y (same color arrangement direction) is P0 / M.
 したがって、上記第2拡散素子到達幅Lbと1つのサブ画素の幅(P0/M)が下記の(式15)を満たす条件で表示装置10を設計した場合、図4の〔4〕に示す状態が発生する。すなわち、隣り合う同色のサブ画素の表示情報が重なりを起こさないので、観察者は、より鮮明な画像情報を視認することが可能になる。 Therefore, when the display device 10 is designed under the condition that the second diffusion element arrival width Lb and the width (P0 / M) of one subpixel satisfy the following (Formula 15), the state shown in [4] in FIG. Occurs. That is, since the display information of adjacent sub-pixels of the same color does not overlap, the observer can view clearer image information.
 Lb≒P0/M  (式15)
 (式15)と(式27)とから、下記の(式32)が導かれる。
Lb≈P0 / M (Formula 15)
The following (Expression 32) is derived from (Expression 15) and (Expression 27).
 α+2×h×tanθa≒P0/M  (式32)
 さらに、(式32)は下記の(式33)に変形される。
α + 2 × h × tan θa≈P0 / M (Formula 32)
Further, (Expression 32) is transformed into (Expression 33) below.
 M×(α+2×h×tanθa)≒P0  (式33)
ここで、第1方向Xおよび第2方向Yの双方について画素ピッチはP0と等しいことから(式14)と(式33)より(式34)が成り立つ。
M × (α + 2 × h × tan θa) ≈P0 (Formula 33)
Here, since the pixel pitch in both the first direction X and the second direction Y is equal to P0, (Expression 34) is established from (Expression 14) and (Expression 33).
 2×h×N×tanθa≒M×(α+2×h×tanθa)  (式34)
 さらに、(式34)は下記の(式35)に変形される。
2 × h × N × tan θa≈M × (α + 2 × h × tan θa) (Formula 34)
Further, (Expression 34) is transformed into (Expression 35) below.
 M×α≒(N-M)×2×h×tanθa  (式35)
 さらに、(式35)は下記に示す前記(式31)に変形される、
 α≒{(N-M)/M}×2×h×tanθa  (式31)
 なお、図11および図20の例では、それぞれN=4、M=1となる。
M × α≈ (NM) × 2 × h × tan θa (Formula 35)
Further, (Expression 35) is transformed into (Expression 31) shown below.
α≈ {(NM) / M} × 2 × h × tan θa (Formula 31)
In the examples of FIGS. 11 and 20, N = 4 and M = 1, respectively.
 (本実施形態の効果)
 以上のように、光源部3’における発光点のピッチの設定によって、実施形態1と同様に、発光点RGBからそれぞれ出射された光は、MLAを通過後、表示パネル4のRGBに対応した各サブ画素内にそれぞれ照射されることが可能となる。
(Effect of this embodiment)
As described above, according to the setting of the pitch of the light emitting points in the light source unit 3 ′, each light emitted from the light emitting points RGB passes through the MLA and then corresponds to the RGB of the display panel 4 as in the first embodiment. Each of the sub-pixels can be irradiated.
 これにより、カラーフィルタを用いずにフルカラー表示を行うことが可能となり、カラーフィルタに吸収される光量分に見合った光利用効率の向上(約3倍)を図ることができる。また、第1方向X(RGB並び方向)と第2方向Y(同色並び方向)における発光点の各ピッチを相違させ、光出射状態に異方性を持たせたことによって、各サブ画素に対応して拡散板46に形成される光照射範囲の形状を、カラーフィルタ方式の現行液晶ディスプレイとほぼ相似な形状とすることができる。この結果、解像度が、現行液晶ディスプレイと同等程度になる。 This makes it possible to perform full color display without using a color filter, and it is possible to improve the light utilization efficiency (about 3 times) corresponding to the amount of light absorbed by the color filter. In addition, it corresponds to each sub pixel by making each light emitting point pitch different in the first direction X (RGB alignment direction) and the second direction Y (same color alignment direction) and making the light emission state anisotropic. Thus, the shape of the light irradiation range formed on the diffusion plate 46 can be made almost similar to that of the current color filter type liquid crystal display. As a result, the resolution is comparable to that of the current liquid crystal display.
 さらに、本実施形態では、第1方向Xおよび第2方向Yにおける各発光点の照射角度は等しく、同色発光点のピッチは、第2方向Y(同色並び方向)の方が狭くなっている。このため、液晶層43の1つのサブ画素の集光に関与する発光点の数は、第1方向Xにおける数よりも、第2方向Yにおける数の方が多くなる。 Furthermore, in this embodiment, the irradiation angle of each light emitting point in the first direction X and the second direction Y is equal, and the pitch of the same color light emitting points is narrower in the second direction Y (same color arrangement direction). For this reason, the number of light emitting points involved in condensing one subpixel of the liquid crystal layer 43 is larger in the number in the second direction Y than in the first direction X.
 1つのサブ画素への集光に関与する発光点の数が増加するということは、発光点の個体差バラツキをより平均化し、輝度ムラおよび色ムラをより低減する効果を期待することができる。 An increase in the number of light emitting points involved in condensing light onto one sub-pixel can be expected to average out the individual difference variation of the light emitting points and to further reduce luminance unevenness and color unevenness.
 〔実施形態3〕
 本発明のさらに他の実施形態について図面に基づいて説明する。なお、説明の便宜上、前実施形態で説明した構成と同じ構成については、同じ符号を付し、重複する説明を省略する。
[Embodiment 3]
Still another embodiment of the present invention will be described with reference to the drawings. For convenience of explanation, the same reference numerals are given to the same components as those explained in the previous embodiment, and duplicate explanations are omitted.
 本実施形態では、表示装置10および20について、発光点のピッチと、MLAを構成する複数のマイクロレンズのピッチとの好ましい関係および好ましい設定について詳述する。 In the present embodiment, with respect to the display devices 10 and 20, a preferable relationship and a preferable setting between the pitch of the light emitting points and the pitch of the plurality of microlenses constituting the MLA will be described in detail.
 (1つのサブ画素に複数の光束をオーバーラップさせる構成)
 図12は、本実施形態に係るバックライトシステムの1構成例を示す概略図である。本例では、光源部3および3’として、相異なる色光を発する複数の発光点R,G,Bのアレイを用いた。発光点R,G,Bは、図12の右側から左側へ順次RGBの色順に配列している。
(Configuration in which multiple light beams overlap one subpixel)
FIG. 12 is a schematic diagram illustrating one configuration example of the backlight system according to the present embodiment. In this example, as the light source units 3 and 3 ′, an array of a plurality of light emitting points R, G, and B that emit different color lights is used. The light emitting points R, G, and B are arranged in order of RGB colors from the right side to the left side in FIG.
 また、結像光学系を構成する集光部5として、複数のマイクロレンズ5Aが2次元的に配列された結像倍率(1/n)のMLAを用いている。 Further, as the light condensing unit 5 constituting the imaging optical system, an MLA having an imaging magnification (1 / n) in which a plurality of microlenses 5A are two-dimensionally arranged is used.
 第1方向Xにおける画素ピッチを、実施形態1および2と同様にPとし、同色の発光点間のピッチP1を
P1≒n×P  (式37)
とし、かつ、マイクロレンズ5A間のピッチP2を
P2≒(n/(n+1))×P  (式38)
とする。
The pixel pitch in the first direction X is P as in the first and second embodiments, and the pitch P1 between the light emitting points of the same color is P1≈n × P (Expression 37)
And the pitch P2 between the microlenses 5A is P2≈ (n / (n + 1)) × P (Equation 38)
And
 これにより、例えば図12に示すように、MLAの焦点距離fに応じて、MLAから液晶層43の画素までの距離bを
b=((n+1)/n)×f  (式39)
とし、かつ、1つの発光点からMLAに至る主光線経路長aを
a=n×b  (式40)
とすれば、a,bおよびfは、
(1/a)+(1/b)=(1/f)
を満足するので、各発光点R,G,Bからの光をそれぞれRGBに対応する各サブ画素に集光させることができる。言い換えると、1つの発光点の1/n倍の実像を、対応する1つのサブ画素に結像させることができる。
Thus, for example, as shown in FIG. 12, the distance b from the MLA to the pixel of the liquid crystal layer 43 is set to b = ((n + 1) / n) × f (Equation 39) according to the focal length f of the MLA.
And the principal ray path length a from one light emitting point to the MLA is a = n × b (formula 40)
Then a, b and f are
(1 / a) + (1 / b) = (1 / f)
Therefore, the light from each light emitting point R, G, B can be condensed on each subpixel corresponding to RGB. In other words, a real image 1 / n times as large as one light emitting point can be formed on one corresponding sub-pixel.
 なお、上記(式37)および(式38)の導出の仕方については、後述する。 In addition, how to derive the above (formula 37) and (formula 38) will be described later.
 1つのサブ画素において、そのサブ画素の色に対応する色光を発する複数の発光点からの光束による結像が、オーバーラップし合うことによって、その1つのサブ画素に光スポットが照射される。 In one subpixel, image formation by light beams from a plurality of light emitting points that emit colored light corresponding to the color of the subpixel overlap each other, whereby a light spot is irradiated to the one subpixel.
 この結果、複数の発光点から出射された光束の空間的均一化が実現し、表示画面内のエリア間の輝度ムラおよび色ムラが有効に軽減し、より高画質の表示が可能となる。 As a result, spatial uniformity of the light beams emitted from a plurality of light emitting points is realized, luminance unevenness and color unevenness between areas in the display screen are effectively reduced, and higher image quality can be displayed.
 なお、図12では、発光点Rに対応したサブ画素への光(R光)の経路のみを図示し、G光およびB光の経路は図示を省略した。 In FIG. 12, only the light (R light) path to the sub-pixel corresponding to the light emitting point R is shown, and the G light and B light paths are not shown.
 (複数の光束のオーバーラップと色分離とを両立させる光学的原理)
 これら発光点R,G,Bからの光をそれぞれRGBに対応した各サブ画素に集光させること(色分離)と、複数の同色発光点からの光を同一のサブ画素にオーバーラップさせることとを両立させる光学系の原理について、図13を用いて数学的に解説する。
(Optical principle that achieves both overlap of multiple light beams and color separation)
Condensing the light from these light emitting points R, G, and B onto each subpixel corresponding to RGB (color separation), and overlapping the light from a plurality of light emitting points with the same color onto the same subpixel; The principle of the optical system that achieves both is mathematically explained with reference to FIG.
 図13は、複数の同色発光点のピッチと、複数のマイクロレンズのピッチと、同色のサブ画素のピッチとの間の好ましい設定条件を示す説明図である。 FIG. 13 is an explanatory diagram showing preferable setting conditions among a pitch of a plurality of light emission points of the same color, a pitch of a plurality of microlenses, and a pitch of subpixels of the same color.
 なお、図13では、発光点Rから対応するサブ画素への光(R光)のうち、マイクロレンズ5Aの中心を通る主光線の経路のみを図示し、G光およびB光の経路は図示を省略した。また、マイクロレンズ5Aの界面での屈折率差による屈折現象も考慮外とした。 In FIG. 13, only the principal ray path passing through the center of the microlens 5A among the light (R light) from the light emitting point R to the corresponding sub-pixel is illustrated, and the paths of the G light and the B light are illustrated. Omitted. Further, the refraction phenomenon due to the difference in refractive index at the interface of the microlens 5A was also excluded.
 ここで、図13中の第1方向X(RGB並び方向)に沿って隣り合う発光点Rの位置をそれぞれL1、L2で表し、同様に第1方向Xに沿って隣り合うマイクロレンズ5Aの中心をM1、M2で表し、Rに対応して第1方向Xに沿って隣り合うサブ画素の位置をS1、S2で表す。 Here, the positions of the light emitting points R adjacent along the first direction X (RGB alignment direction) in FIG. 13 are denoted by L1 and L2, respectively, and similarly the centers of the microlenses 5A adjacent along the first direction X. Are represented by M1 and M2, and the positions of sub-pixels adjacent to each other along the first direction X corresponding to R are represented by S1 and S2.
 まず、1つの発光点Rからの光をS1、S2それぞれのサブ画素に集光させるためには、図13より、△L1S1S2と△L1M1M2とが、互いに相似関係にあることが必要である。これを満たすには次式が成り立たねばならない。
線分M1M2/線分L1M1=線分S1S2/線分L1S1
上式を変形すると、
線分M1M2=線分L1M1×線分S1S2/線分L1S1
となる。
First, in order to condense light from one light emitting point R on each of the subpixels S1 and S2, it is necessary that ΔL1S1S2 and ΔL1M1M2 have a similar relationship from FIG. To satisfy this, the following equation must hold.
Line segment M1M2 / Line segment L1M1 = Line segment S1S2 / Line segment L1S1
Transforming the above equation,
Line segment M1M2 = Line segment L1M1 × Line segment S1S2 / Line segment L1S1
It becomes.
 ここで、線分L1M1=a=n×b、線分S1S2=P(画素ピッチ)、線分L1S1=a+b=(n+1)×bであるから、
線分M1M2、すなわち、MLAのレンズピッチP2は、
P2=(n/(n+1))×P
という等式が導出される。
Here, the line segment L1M1 = a = n × b, the line segment S1S2 = P (pixel pitch), and the line segment L1S1 = a + b = (n + 1) × b.
The line segment M1M2, that is, the lens pitch P2 of the MLA is
P2 = (n / (n + 1)) × P
This equation is derived.
 なお、マイクロレンズ5Aの界面での屈折率差による屈折現象を考慮すると、P2は、
P2≒(n/(n+1))×P
と表されるので、前記(式38)が導出される。
In consideration of the refraction phenomenon due to the difference in refractive index at the interface of the microlens 5A, P2 is
P2≈ (n / (n + 1)) × P
(Expression 38) is derived.
 よって、MLAのレンズピッチP2が(n/(n+1))×Pにほぼ等しい場合、発光点Rからの光を、第1方向Xに沿って隣り合うサブ画素のそれぞれに集光させることができる。 Therefore, when the lens pitch P2 of the MLA is substantially equal to (n / (n + 1)) × P, the light from the light emitting point R can be condensed on each of the subpixels adjacent along the first direction X. .
 次に、複数の同色光源からの光(ここでは、隣り合う2つの発光点Rからの光)を、Rに対応した1つのサブ画素に集光させるためには、図13より、△L1L2S1と△M1M2S1とが、互いに相似関係にあることが必要である。これを満たすには次式の成立を要する。
線分L1L2/線分L1S1=線分M1M2/線分M1S1
上式を変形すると、
線分L1L2=線分L1S1×線分M1M2/線分M1S1
となる。
Next, in order to condense light from a plurality of light sources of the same color (here, light from two adjacent light emitting points R) onto one sub-pixel corresponding to R, from FIG. 13, ΔL1L2S1 ΔM1M2S1 needs to be similar to each other. In order to satisfy this, the following formula must be established.
Line segment L1L2 / Line segment L1S1 = Line segment M1M2 / Line segment M1S1
Transforming the above equation,
Line segment L1L2 = Line segment L1S1 × Line segment M1M2 / Line segment M1S1
It becomes.
 ここで、線分L1S1=a+b=(n+1)×b、線分M1S1はbであるから、先ほど導出した線分M1M2=(n/(n+1))×Pの関係を適用すると、線分L1L2、すなわち同色の発光点間のピッチP1は、
P1=n×P
と計算される。
Here, since the line segment L1S1 = a + b = (n + 1) × b and the line segment M1S1 are b, the line segment L1L2, That is, the pitch P1 between the light emitting points of the same color is
P1 = n × P
Is calculated.
 なお、P2と同様に、マイクロレンズ5Aの界面での屈折率差による屈折現象を考慮すると、P1は、
P1≒n×P
と表されるので、前記の(式37)が導出される。
Similarly to P2, considering the refraction phenomenon due to the difference in refractive index at the interface of the micro lens 5A, P1 is
P1≈n × P
Therefore, the above (Equation 37) is derived.
 よって、同色の発光点間ピッチP1がn×Pにほぼ等しい場合、第1方向Xに沿って隣り合う同色の発光点からの光(ここでは2つの発光点Rからの光)をRに対応した1つのサブ画素に集光させることができる。 Therefore, when the pitch P1 between the light emitting points of the same color is substantially equal to n × P, the light from the light emitting points of the same color adjacent along the first direction X (here, the light from the two light emitting points R) corresponds to R. The light can be condensed on one sub-pixel.
 これら2つの結果より、同色の発光点間のピッチP1をn×Pと等しいか、ほぼ等しくし、かつ、MLAのレンズピッチP2を(n/(n+1))×Pと等しいか、ほぼ等しくすることにより、複数の光束のオーバーラップと色分離とを両立させられることが判る。すなわち、1つの発光点Rからの光を、Rに対応して隣り合うサブ画素にそれぞれ集光させ、それと同時に、複数の発光点Rからの光を、Rに対応した1つのサブ画素にオーバーラップし合って集光させることができる。このことは、Rに代えてGまたはBとした場合にも同様である。 From these two results, the pitch P1 between the light emitting points of the same color is equal to or approximately equal to n × P, and the lens pitch P2 of the MLA is equal to or approximately equal to (n / (n + 1)) × P. Thus, it can be seen that the overlap of the plurality of light fluxes and the color separation can be made compatible. That is, the light from one light emitting point R is condensed on adjacent subpixels corresponding to R, and at the same time, the light from a plurality of light emitting points R is overlaid on one subpixel corresponding to R. It can wrap and collect light. This is the same when G or B is substituted for R.
 図13に基づいた上記説明は、図1に示す第1方向X(RGB並び方向)および図2に示す第2方向Y(同色並び方向)に沿って配列した同色の発光点(例えば発光点R)についてそのまま適用することができる。 The above description based on FIG. 13 is the same color emission points (for example, emission point R) arranged along the first direction X (RGB alignment direction) shown in FIG. 1 and the second direction Y (same color alignment direction) shown in FIG. ) Can be applied as it is.
 一方、図9に示す第2方向Y(同色並び方向)に沿って配列した同色の発光点の場合には、図13の各発光点Rを示すL1とL2との間に、別の発光点Rを示すL3を仮定して同様に説明することができる。 On the other hand, in the case of light emission points of the same color arranged along the second direction Y (same color arrangement direction) shown in FIG. 9, another light emission point is provided between L1 and L2 indicating each light emission point R in FIG. The same explanation can be made assuming L3 indicating R.
 ここで、複数の発光点の高さは全て同じなので、L3は必ずL1からL2に至る線分上に存在することになる。図13より、△L1L2M2と△S1S2M2との間には、相似関係が成立するため、L1からL2までの線分上に存在するL3から出射された光は、S1からS2に至る線分上に必ず集光することになる。ここで、画素ピッチPに対応したS1からS2までの線分上には、図9に示すように、1つの色(R)に対応した1つのサブ画素のみが存在していると考えてよいのだから、L3から出射されたR光も、上記1つのサブ画素内に集光される。これにより、1つのサブ画素内に複数(例えば2つ)の集光点が形成される。 Here, since the heights of the plurality of light emitting points are all the same, L3 always exists on the line segment from L1 to L2. From FIG. 13, since a similar relationship is established between ΔL1L2M2 and ΔS1S2M2, the light emitted from L3 existing on the line segment from L1 to L2 is on the line segment from S1 to S2. Be sure to collect light. Here, on the line segment from S1 to S2 corresponding to the pixel pitch P, it may be considered that only one subpixel corresponding to one color (R) exists as shown in FIG. Therefore, the R light emitted from L3 is also condensed in the one sub-pixel. Thereby, a plurality of (for example, two) condensing points are formed in one sub-pixel.
 (本実施形態の効果)
 前述した実施形態1および2の効果を満足しながら、さらに、非常に個体差の大きなLEDなどの光源を上記発光点に用いた場合でも、光源光の個体差バラツキを平均化させることができる。その結果、輝度ムラおよび色ムラを低減させることができるバックライトシステムの提供を可能にする。
(Effect of this embodiment)
While satisfying the effects of the first and second embodiments, even when a light source such as an LED having a very large individual difference is used as the light emitting point, the individual difference variation of the light source light can be averaged. As a result, it is possible to provide a backlight system that can reduce luminance unevenness and color unevenness.
 〔実施形態1~3に共通する補足説明〕
 (最大角度の制限)
 図6,7,10および11を参照して説明した最大角度θaとθbは、40°以内であることがより好ましい。光源部3および3’からの照射角度が大きくなると、MLAに入射する光線において、MLAの光軸方向に対する入射角度が大きくなる。この場合、像面湾曲を含めた収差が無視できない程大きく発生する。
[Supplementary explanation common to Embodiments 1 to 3]
(Maximum angle limit)
The maximum angles θa and θb described with reference to FIGS. 6, 7, 10 and 11 are more preferably within 40 °. When the irradiation angle from the light source units 3 and 3 ′ is increased, the incident angle of the light beam incident on the MLA with respect to the optical axis direction of the MLA is increased. In this case, the aberration including the field curvature is so large that it cannot be ignored.
 この収差を解消するためには、複数のレンズを組み合わせた光学系によって補正するやり方が一般的であるが、製造コストの観点で現実的ではない。また、レンズの非球面化によって収差を補正することも可能であるが、レンズ界面が1枚だけの場合、改善効果は限定的となる。これらのことより、上記最大角度θaとθbは40度以下であることが好ましい。 In order to eliminate this aberration, a correction method using an optical system in which a plurality of lenses are combined is generally used, but it is not realistic from the viewpoint of manufacturing cost. Although it is possible to correct the aberration by making the lens aspherical, the improvement effect is limited when there is only one lens interface. Therefore, the maximum angles θa and θb are preferably 40 degrees or less.
 なお、上記最大角度θaは、最大角度θbより小さく設定されるので、最大角度θbが40度以下の条件が満たされれば、最大角度θaも自ずと40度以下になる。 Since the maximum angle θa is set smaller than the maximum angle θb, the maximum angle θa naturally becomes 40 degrees or less if the condition that the maximum angle θb is 40 degrees or less is satisfied.
 また、MLAの各レンズを非球面化することなく、球面レンズを用いて液晶層43の各サブ画素に集光させるには、最大角度θaとθbは30°以内であることがさらに好ましい。 Further, in order to collect light on each sub-pixel of the liquid crystal layer 43 using a spherical lens without making each lens of MLA aspherical, it is more preferable that the maximum angles θa and θb are within 30 °.
 (カラーフィルタの使用について)
 カラーフィルタを設けずに、表示装置にフルカラー表示を行わせる構成で重要なのは、図1に示しているように、通光部である各サブ画素には、それぞれのサブ画素が対応している発光点R,G,Bから発した光のみが通っているということである。この状態で、各サブ画素に対応する駆動素子を通じて、画像情報に基づく電圧を印加することにより、理想的には、カラーフィルタレスの表示装置を実現できる。
(About using color filters)
As shown in FIG. 1, what is important in the configuration in which a display device performs full color display without providing a color filter is that each subpixel that is a light-transmitting portion corresponds to a light emission corresponding to each subpixel. That is, only light emitted from points R, G, and B passes. In this state, by applying a voltage based on image information through a driving element corresponding to each sub-pixel, a color filter-less display device can be realized ideally.
 しかし、実際には、製造上のバラツキによって、設計どおりに光学部品を製造できない、または光学部品の組立てができない、もしくは製造コストを考えれば多少設計から外れた形状の光学部品を製造する必要がある、等の問題によって、液晶層で画素アレイをなすサブ画素に、対応する光だけを集光することが困難になるケースも考えられる。 However, in reality, due to manufacturing variations, optical components cannot be manufactured as designed, or optical components cannot be assembled, or optical components that are slightly out of design must be manufactured in consideration of manufacturing costs. Due to such problems, it may be difficult to focus only the corresponding light on the sub-pixels forming the pixel array with the liquid crystal layer.
 その場合、最悪には、表示品位の低下を招くことにもなりかねない。かかる事態を回避するために、本発明では、カラーフィルタ層を設けることを禁止しない。ただし、カラーフィルタ層を用いると、光の透過する波長においても透過率は90%前後であって、光損失が避け難いため、カラーフィルタ層は用いないに越したことはない。 In that case, in the worst case, the display quality may be degraded. In order to avoid such a situation, the present invention does not prohibit the provision of a color filter layer. However, when a color filter layer is used, the transmittance is about 90% even at a wavelength at which light is transmitted, and it is difficult to avoid light loss.
 (拡散素子の外光対策)
 さらに、表示品位を高めるには、表示パネル4の表面に配置する拡散板46で発生する「外光に対する後方散乱」を抑制する対策を取ることができる。
(Measures against external light of diffusion elements)
Furthermore, in order to improve the display quality, it is possible to take measures to suppress “backscattering with respect to external light” generated in the diffusion plate 46 disposed on the surface of the display panel 4.
 拡散板46の機能として、表示パネル4の背面側から照射された光を観察者側に拡散光として出射する一方、観察者側から拡散板46に照射された光は、表示パネル4側に透過光として拡散させるとともに、観察者側にも反射光として拡散させる。この反射作用を外光に対する後方散乱と呼ぶ。この反射された拡散光を、表示パネル4を透過した画像表示の通常光とともに観察すると、画像が白く浮いてしまい画像品位の低下を招く。 As a function of the diffusing plate 46, the light irradiated from the back side of the display panel 4 is emitted as diffused light to the viewer side, while the light irradiated to the diffusing plate 46 from the viewer side is transmitted to the display panel 4 side. While diffusing as light, it is also diffused as reflected light on the observer side. This reflection action is called backscattering with respect to external light. When this reflected diffused light is observed together with the normal light for image display transmitted through the display panel 4, the image floats white and the image quality is degraded.
 後方散乱を抑制する方法として、拡散板46の上下に機能性フィルム、例えば円偏光板を配置する方法がある。円偏光板とは、偏光子と4分の1波長板とを組合せた偏光板のことである。具体的な配置として、光源側から、(第1)偏光子41、TFT駆動部が形成されたガラス基板42、液晶層43、ガラス基板44、検光子45、第1の4分の1波長板、拡散板46、第2の4分の1波長板および第2偏光子とする。なお、偏光子41と検光子45の吸収軸は互いに直交しており、検光子45と第2偏光子の吸収軸は互いに平行である。また、第1の4分の1波長板と第2の4分の1波長板の各遅相軸は互いに直交するように配置され、検光子45の吸収軸と第1の4分の1波長板の各遅相軸は45度傾くように配置する。 As a method of suppressing backscattering, there is a method of disposing functional films, for example, circularly polarizing plates, above and below the diffusion plate 46. A circularly polarizing plate is a polarizing plate that combines a polarizer and a quarter-wave plate. Specifically, from the light source side, the (first) polarizer 41, the glass substrate 42 on which the TFT driving unit is formed, the liquid crystal layer 43, the glass substrate 44, the analyzer 45, and the first quarter-wave plate , A diffusion plate 46, a second quarter-wave plate, and a second polarizer. The absorption axes of the polarizer 41 and the analyzer 45 are orthogonal to each other, and the absorption axes of the analyzer 45 and the second polarizer are parallel to each other. Further, the slow axes of the first quarter-wave plate and the second quarter-wave plate are arranged so as to be orthogonal to each other, and the absorption axis of the analyzer 45 and the first quarter-wavelength. Each slow axis of the plate is arranged to be inclined 45 degrees.
 (光源部の変形例)
 上記光源部3および3’に代えて、光源と導光体とを用いた発光装置を適用することができる。
(Modification of light source)
Instead of the light source units 3 and 3 ′, a light emitting device using a light source and a light guide can be applied.
 本発明に用いる光源は、相異なる主波長の光を発する複数の光源を必要とする。そのような光源は、LED光源、レーザー光源、および有機EL光源のうちのいずれか1種類の光源でもよいし、該光源と導光体とを備えた発光装置であってもよい。 The light source used in the present invention requires a plurality of light sources that emit light having different principal wavelengths. Such a light source may be any one of an LED light source, a laser light source, and an organic EL light source, or may be a light emitting device including the light source and a light guide.
 本発明では、図14~16に示すような光源と導光体とを備えた発光装置を用いると、光源数の削減という大きなコストダウン効果を奏する。以下に、該発光装置について詳細に説明する。 In the present invention, when a light emitting device including a light source and a light guide as shown in FIGS. 14 to 16 is used, a significant cost reduction effect of reducing the number of light sources is achieved. The light emitting device will be described in detail below.
 図14に示すように、発光装置311は、光源312(R光源、G光源、B光源)と、導光体313とを備え、光源312から出射された光を、導光体313内へ導入させ、複数形成された出射部(先端部)から出射させる。この出射部は擬似的な光源と捉えることができる。 As shown in FIG. 14, the light emitting device 311 includes a light source 312 (R light source, G light source, B light source) and a light guide 313, and introduces light emitted from the light source 312 into the light guide 313. The light is emitted from a plurality of emission parts (tip parts). This emission part can be regarded as a pseudo light source.
 例えば、図14に示すように、一組のRGB光源312の各光を、それぞれ3つのバックライトユニット(導光体313)に分けて導光している。各バックライトユニット(導光体313)によって、R’光源、G’光源およびB’光源という擬似的な光源314が形成され、各光源314からの光を、MLAによって各サブ画素に集光させることにより、図1等の発光点R,G,Bと同様の効果が得られる。 For example, as shown in FIG. 14, each light of a set of RGB light sources 312 is divided into three backlight units (light guides 313) and guided. Each backlight unit (light guide 313) forms a pseudo light source 314, which is an R ′ light source, a G ′ light source, and a B ′ light source, and condenses light from each light source 314 on each sub-pixel by MLA. As a result, the same effects as those of the light emitting points R, G, and B in FIG.
 また、光源として、白色光源を用いてもよい。白色光源を用いる場合には、RGB光を、空間的もしくは角度的に異なる状態で出射させることが望ましい。RGB光を空間的に異なる状態で出射させる方法として、図15のように、白色光源321と、RGB光をそれぞれ反射させるダイクロイックフィルタ322を内蔵した導光体323とを用いる発光装置がある。ダイクロイックフィルタ322とは、特定範囲の波長の光のみを反射し、残りの波長範囲の光を透過させるフィルタである。それぞれR、G、B光を反射するダイクロイックフィルタ322を空間的に配置することによって、R、G、B光を異なる位置から取り出すことができる。 Further, a white light source may be used as the light source. When using a white light source, it is desirable to emit RGB light in a spatially or angularly different state. As a method of emitting RGB light in a spatially different state, there is a light emitting device using a white light source 321 and a light guide 323 incorporating a dichroic filter 322 that reflects RGB light, respectively, as shown in FIG. The dichroic filter 322 is a filter that reflects only light in a specific wavelength range and transmits light in the remaining wavelength range. By spatially disposing dichroic filters 322 that respectively reflect R, G, and B light, the R, G, and B light can be extracted from different positions.
 また、光源として、図16に示すように、白色光源と導光体と回折格子とを用いる方法もある。この方法では、白色光源331の出射光を導光体332内に導き、面内均一な明るさで導光体332からほぼ平行な白色光を取り出す。この平行光が回折格子333に入射すると、回折格子333により回折される。回折格子333により回折された回折光のうち、1次回折光が回折格子333とほぼ垂直な方向に出射される。このとき、波長の異なる光は異なる回折角を持つので、1次回折光はR、G、B光に分離される。 Further, as a light source, there is a method using a white light source, a light guide, and a diffraction grating as shown in FIG. In this method, the light emitted from the white light source 331 is guided into the light guide 332, and the substantially parallel white light is extracted from the light guide 332 with uniform brightness in the surface. When this parallel light enters the diffraction grating 333, it is diffracted by the diffraction grating 333. Of the diffracted light diffracted by the diffraction grating 333, the first-order diffracted light is emitted in a direction substantially perpendicular to the diffraction grating 333. At this time, since light having different wavelengths has different diffraction angles, the first-order diffracted light is separated into R, G, and B light.
 図16の白色光源331としては、白色LED(青色LED+YG蛍光の組み合わせや青色LED+GR蛍光の組み合わせのものなど)、マルチカラーLED(1LED内に複数の異なる主波長を発光するダイオードチップが搭載されているLED)、白色有機EL、を用いることが可能である。 As the white light source 331 in FIG. 16, a white LED (such as a combination of blue LED + YG fluorescence or a combination of blue LED + GR fluorescence), a multi-color LED (a diode chip that emits a plurality of different main wavelengths is mounted in one LED). LED) and white organic EL can be used.
 また、光源として、RGB各色を発光するCCFLまたはEEFL(外部電極蛍光管:External Electrode Fluorescent Lamp)等の線光源を用いてもよい。 Also, a linear light source such as CCFL or EEFL (external electrode fluorescent tube: External Electrofluorescent Lamp) that emits RGB colors may be used as the light source.
 (ローカルディミング駆動)
 また、ローカルディミング駆動による低消費電力化に対応できるように、各色を発する光源をそれぞれ1つずつまとめた光源領域を最小単位ユニットとして、ある程度の光源ユニットごとに光源の光量を制御する手段を表示装置に設けることも可能である。本実施形態にローカルディミング駆動を適用すれば、消費電力をさらにおおよそ1/2に低減することが見込める。
(Local dimming drive)
In addition, in order to cope with the reduction in power consumption by local dimming drive, a means for controlling the light quantity of each light source unit is displayed with the light source area in which light sources emitting each color are collected one by one as a minimum unit unit. It can also be provided in the apparatus. If local dimming driving is applied to this embodiment, it is expected that the power consumption can be further reduced to about ½.
 以上のように、本発明に係るバックライトシステムは、光源部3と集光部5とを備え、光源部3は、細長い形状を持つサブ画素の幅の延長方向である第1方向Xと、当該サブ画素の長さの延長方向である第2方向Yとに沿って2次元的に配列された複数の発光点R,G,Bを備えており、集光部5は、複数の発光点R,G,Bの少なくとも1つが発した光を表示部4の対応するサブ画素に個々に集光する。サブ画素の1つから出射される光束に関して、光進行方向に垂直な面における光量分布の形状が、上記サブ画素の1つに集光される集光点の数によらず、上記サブ画素の1つと同様の細長い形状を示すように、光源部3では、第1方向Xに沿った光出射状態と第2方向Yに沿った光出射状態とが異なっている。 As described above, the backlight system according to the present invention includes the light source unit 3 and the light collecting unit 5, and the light source unit 3 has a first direction X that is an extending direction of the width of the sub-pixel having an elongated shape, A plurality of light emitting points R, G, and B arranged two-dimensionally along a second direction Y that is an extension direction of the length of the sub-pixel, and the light collecting unit 5 includes a plurality of light emitting points. The light emitted from at least one of R, G, and B is individually condensed on the corresponding sub-pixel of the display unit 4. Regarding the luminous flux emitted from one of the sub-pixels, the shape of the light amount distribution on the surface perpendicular to the light traveling direction is not dependent on the number of condensing points that are collected on one of the sub-pixels. In the light source unit 3, the light emission state along the first direction X and the light emission state along the second direction Y are different so as to show an elongated shape similar to one.
 これにより、カラーフィルタを用いない透過型表示装置の表示品位を高めることができる。 This makes it possible to improve the display quality of a transmissive display device that does not use a color filter.
 本発明のバックライトシステムでは、上記複数の発光点のそれぞれは、上記第1方向に沿って広がる照射角度より、上記第2方向に沿って広がる照射角度の方が大きくなるように発光することを特徴とする。 In the backlight system of the present invention, each of the plurality of light emitting points emits light such that the irradiation angle extending along the second direction is larger than the irradiation angle extending along the first direction. Features.
 上記の構成によれば、複数の発光点のそれぞれは、出射する光の広がり具合、つまり照射角度に異方性を有している。その異方性とは、上記第1方向に沿って広がる照射角度より、上記第2方向に沿って広がる照射角度の方が大きいという出射特性である。 According to the above configuration, each of the plurality of light emitting points has anisotropy in the extent of the emitted light, that is, the irradiation angle. The anisotropy is an emission characteristic that the irradiation angle that spreads along the second direction is larger than the irradiation angle that spreads along the first direction.
 この出射特性によって、複数の発光点のそれぞれが出射した光は、上記サブ画素の1つに集光された後、所望の形状の光量分布を持った光束となって広がる。所望の形状とは、既に説明したとおり、上記サブ画素の1つと同様の細長い形状である。 Due to this emission characteristic, the light emitted from each of the plurality of light emitting points is condensed on one of the sub-pixels, and then spreads as a light beam having a light amount distribution of a desired shape. As described above, the desired shape is an elongated shape similar to one of the sub-pixels.
 したがって、上記構成のバックライトシステムを光源とする表示装置は、各サブ画素にカラーフィルタを設けなくても、各サブ画素にカラーフィルタを設けた場合と同程度に、高品位の画像情報を表示することができる。 Therefore, a display device using the backlight system having the above configuration as a light source displays high-quality image information as if a color filter is provided for each sub-pixel, without providing a color filter for each sub-pixel. can do.
 本発明のバックライトシステムでは、上記サブ画素の1つに対して集光される光束に含まれる光線が、上記第1方向および第2方向を含む面の法線方向と、上記第1方向とを含む面内で、上記サブ画素の1つに入射する角度の最大角度θaは、上記光束に含まれる光線が、上記法線方向と上記第2方向とを含む面内で、上記サブ画素の1つに入射する角度の最大角度θbより小さいことを特徴とする。 In the backlight system of the present invention, the light rays contained in the light beam condensed on one of the sub-pixels are in the normal direction of the surface including the first direction and the second direction, and the first direction. The maximum angle θa of the incident angle on one of the sub-pixels in the plane that includes the light beam is such that the light beam included in the luminous flux is within the plane that includes the normal direction and the second direction. It is characterized by being smaller than the maximum angle θb of the incident angle.
 上記の構成において、上記複数の発光点のそれぞれの照射角度は、上記サブ画素の1つに入射する角度と相関を持たせている。すなわち、照射角度が相対的に小さい第1方向に関しては、上記サブ画素の1つに入射する角度も相対的に小さくなり、照射角度が相対的に大きい第2方向に関しては、上記サブ画素の1つに入射する角度も相対的に大きくなるように、光源部と集光部とサブ画素との光学的関係が設定されている。 In the above configuration, the irradiation angle of each of the plurality of light emitting points has a correlation with the angle of incidence on one of the sub-pixels. That is, with respect to the first direction with a relatively small irradiation angle, the angle incident on one of the sub-pixels is also relatively small, and with respect to the second direction with a relatively large irradiation angle, one of the sub-pixels. The optical relationship among the light source unit, the condensing unit, and the sub-pixels is set so that the angle at which the light enters is relatively large.
 また、最大角度θaは、第1方向に沿って斜めに上記サブ画素の1つに入射する光の最大入射角度であるが、その光が、上記サブ画素の1つに集光された後、広がる光束の第1方向の広がり具合を規定する角度でもある。 The maximum angle θa is the maximum incident angle of light incident on one of the sub-pixels obliquely along the first direction. After the light is condensed on one of the sub-pixels, It is also an angle that defines the degree of spreading of the spreading light beam in the first direction.
 同様に、最大角度θbは、第2方向に沿って斜めに上記サブ画素の1つに入射する光の最大入射角度であるが、その光が、上記サブ画素の1つに集光された後、広がる光束の第2方向の広がり具合を規定する角度でもある。 Similarly, the maximum angle θb is the maximum incident angle of light incident on one of the subpixels obliquely along the second direction, but after the light is condensed on one of the subpixels. It is also an angle that defines the degree of spreading of the spreading light flux in the second direction.
 このように、上記最大角度θaおよび最大角度θbについて、θa<θbという関係が成り立つように、光源部および集光部を設計することによって、1つのサブ画素から出射される光束に、上記サブ画素の1つの形状と同様に、細長い形状をした光量分布を持たせることができる。 In this way, by designing the light source unit and the condensing unit so that the relationship θa <θb is established with respect to the maximum angle θa and the maximum angle θb, the subpixel Similarly to the one shape, a light amount distribution having an elongated shape can be provided.
 本発明のバックライトシステムでは、
(1) 上記1画素を構成する上記複数のサブ画素のうち、上記1画素内で上記第1方向に配列したサブ画素の数をNとし、
(2) 上記複数のサブ画素のうち、上記1画素内で上記第2方向に配列したサブ画素の数を1以上の整数Mとし、
(3) さらに、上記複数の画素の上記第1方向のピッチをPaとし、上記第2方向のピッチをPbとすると、
(4) 上記サブ画素の1つに対して集光される光束に含まれた光線であって、上記第1方向および第2方向によって規定される表示面の法線方向を基準として、上記第1方向へ傾斜した光線の傾斜角度の最大角度θaを有した光線と、
(5) 上記第2方向へ傾斜した光線の傾斜角度の最大角度θbを有した光線とについて、
(6) (M/Pb)×tanθb≒(N/Pa)×tanθaを満たすことを特徴とする。
In the backlight system of the present invention,
(1) Among the plurality of sub-pixels constituting the one pixel, the number of sub-pixels arranged in the first direction within the one pixel is N,
(2) Among the plurality of sub-pixels, the number of sub-pixels arranged in the second direction within the one pixel is an integer M equal to or greater than 1,
(3) Furthermore, when the pitch in the first direction of the plurality of pixels is Pa and the pitch in the second direction is Pb,
(4) A light beam included in a light beam condensed on one of the sub-pixels, and the first direction is defined with reference to a normal direction of the display surface defined by the first direction and the second direction. A light ray having a maximum angle θa of the inclination angle of the light ray inclined in one direction;
(5) With respect to the light beam having the maximum angle θb of the light beam inclined in the second direction,
(6) It is characterized by satisfying (M / Pb) × tan θb≈ (N / Pa) × tan θa.
 上記の構成において、上記1画素内では、上記第1方向に沿って、N個のサブ画素が並んでいる。一方、上記1画素内では、上記第2方向に沿って、M個のサブ画素が並んでいる。ただし、Mは1以上の整数なので、M=1の場合は、サブ画素が、上記1画素内で第2方向に並んでいない状態を意味する。 In the above configuration, N sub-pixels are arranged in the first pixel along the first direction. On the other hand, within the one pixel, M sub-pixels are arranged along the second direction. However, since M is an integer of 1 or more, when M = 1, it means that the sub-pixels are not arranged in the second direction within the one pixel.
 なお、1画素を構成するM×N個のサブ画素の表示色は、全て相違していてもよいし、少なくとも一部または全部が同色になっていてもよく、特に限定されない。また、複数の画素の第1方向のピッチPaと、第2方向のピッチPbとの比についても、さらに、サブ画素の配列数MおよびNの大小関係についても、サブ画素の形状が、上記第2方向に沿って細長いという条件が満たされる限り、特に限定されない。 Note that the display colors of the M × N sub-pixels constituting one pixel may be all different, or at least part or all may be the same color, and is not particularly limited. In addition, regarding the ratio between the pitch Pa in the first direction and the pitch Pb in the second direction of the plurality of pixels, and also regarding the magnitude relationship between the number of sub-pixels M and N, the shape of the sub-pixel There is no particular limitation as long as the condition of being elongated along two directions is satisfied.
 上述したように、サブ画素の1つに集光された後、広がる光束の第1方向の広がり具合を規定する最大角度θaと、当該光束の第2方向の広がり具合を規定する最大角度θbとについて、(M/Pb)×tanθb≒(N/Pa)×tanθaを満たすことにより、第1方向に沿って隣り合う光束同士が、第1方向で重なり合うことを防止できるとともに、第2方向に沿って隣り合う光束同士が、第2方向で重なり合うことも防止できる。この結果、表示品位をさらに高めることができる。 As described above, after being condensed on one of the sub-pixels, the maximum angle θa that defines the degree of spread of the luminous flux in the first direction, and the maximum angle θb that defines the degree of spread of the luminous flux in the second direction, By satisfying (M / Pb) × tan θb≈ (N / Pa) × tan θa, it is possible to prevent light beams adjacent along the first direction from overlapping in the first direction, and along the second direction. Adjacent light beams can also be prevented from overlapping in the second direction. As a result, display quality can be further improved.
 本発明のバックライトシステムでは、上記最大角度θbは、40度以下であることを特徴とする。 In the backlight system of the present invention, the maximum angle θb is 40 degrees or less.
 上記の構成において、上記最大角度θbが40度を上回ると、上記集光部の光軸方向に対する入射角度が大きくなる。この場合、像面湾曲を含めた収差が無視できない程大きく発生する。 In the above configuration, when the maximum angle θb exceeds 40 degrees, the incident angle with respect to the optical axis direction of the light converging portion increases. In this case, the aberration including the field curvature is so large that it cannot be ignored.
 この収差を解消するためには、複数のレンズを組み合わせた光学系によって補正するやり方が一般的であるが、製造コストの観点で現実的ではない。また、レンズの非球面化によって収差を補正することも可能であるが、レンズ界面が1枚だけの場合、改善効果は限定的となる。これらのことより、上記最大角度θbは40度以下であることが好ましい。 In order to eliminate this aberration, a correction method using an optical system in which a plurality of lenses are combined is generally used, but it is not realistic from the viewpoint of manufacturing cost. Although it is possible to correct the aberration by making the lens aspherical, the improvement effect is limited when there is only one lens interface. For these reasons, the maximum angle θb is preferably 40 degrees or less.
 一方、上記最大角度θaは、本発明では、最大角度θbより小さく設定されるので、最大角度θbが40度以下の条件が満たされれば、最大角度θaも40度以下になる。 On the other hand, since the maximum angle θa is set smaller than the maximum angle θb in the present invention, if the condition that the maximum angle θb is 40 degrees or less is satisfied, the maximum angle θa is also 40 degrees or less.
 なお、集光部に非球面レンズを用いることなく、球面レンズを用いて、光源部が発した光をサブ画素に集光するには、上記最大角度θbは30度以下であることがさらに好ましい。 In order to condense the light emitted from the light source unit on the sub-pixels using a spherical lens without using an aspheric lens for the condensing unit, the maximum angle θb is more preferably 30 degrees or less. .
 本発明のバックライトシステムにおける上記複数の発光点は、上記第1方向に沿った配列間隔より、上記第2方向に沿った配列間隔の方が密になるように、2次元的に配列されていることを特徴とする。 The light emitting points in the backlight system of the present invention are two-dimensionally arranged such that the arrangement interval along the second direction is closer than the arrangement interval along the first direction. It is characterized by being.
 上記の構成によれば、前述したとおり、「上記第1の光が、上記サブ画素の1つに集光された後、広がりながら上記サブ画素の1つから出射される光束に関して、光進行方向に垂直な面における光量分布の形状が、上記サブ画素の1つに集光される集光点の数によらず、上記サブ画素の1つと同様の細長い形状を示す」ことを前提としており、その前提を具体化する一態様として、複数の発光点の配列間隔が、第1方向より第2方向において密になっている。 According to the above configuration, as described above, “the light traveling direction with respect to the light flux that is emitted from one of the sub-pixels while spreading after the first light is collected on one of the sub-pixels”. It is assumed that the shape of the light amount distribution on the plane perpendicular to the above shows the same elongated shape as that of one of the sub-pixels regardless of the number of condensing points collected on one of the sub-pixels. As one mode for embodying the premise, the arrangement interval of the plurality of light emitting points is denser in the second direction than in the first direction.
 これにより、上記複数の発光点のうち、上記サブ画素の1つに対応した複数の発光点のそれぞれから出射された光は、同じ広がりを持つ光束として集光部に入射し、同じ状態で上記サブ画素の1つに集光される。すなわち、上記サブ画素の1つには、複数の集光点が形成され、そのサブ画素の1つから複数の光束が広がる。 Thereby, the light emitted from each of the plurality of light emitting points corresponding to one of the sub-pixels of the plurality of light emitting points is incident on the condensing unit as a light beam having the same spread, and the light is emitted in the same state. Focused on one of the sub-pixels. That is, a plurality of condensing points are formed in one of the sub-pixels, and a plurality of light beams spread from one of the sub-pixels.
 このとき、複数の光束の隣り合う間隔は、複数の発光点の配列間隔と同様に、第1方向より第2方向において密になる。例えば、表示部の観察者側に拡散板を配置した場合、その拡散板の表面に、第1方向より第2方向に沿って、多くの光スポットが配列する。 At this time, the adjacent intervals of the plurality of light beams are denser in the second direction than the first direction, similarly to the arrangement interval of the plurality of light emitting points. For example, when a diffusion plate is arranged on the viewer side of the display unit, many light spots are arranged on the surface of the diffusion plate along the second direction from the first direction.
 この結果、上記サブ画素の1つから出射される複数の光束は、トータルで、所望の形状の光量分布を持つことができる。所望の形状とは、既に説明したとおり、上記サブ画素の1つと同様の細長い形状である。 As a result, the plurality of light beams emitted from one of the sub-pixels can have a desired amount of light distribution in total. As described above, the desired shape is an elongated shape similar to one of the sub-pixels.
 したがって、上記構成のバックライトシステムを光源とする表示装置は、各サブ画素にカラーフィルタを設けなくても、各サブ画素にカラーフィルタを設けた場合と同程度に、高品位の画像情報を表示することができる。 Therefore, a display device using the backlight system having the above configuration as a light source displays high-quality image information as if a color filter is provided for each sub-pixel, without providing a color filter for each sub-pixel. can do.
 本発明のバックライトシステムでは、上記サブ画素の1つに対して上記集光部を通過した複数の光束が集光され、上記サブ画素の1つにおける上記複数の光束の集光位置は、上記第2方向に沿って配列していることが好ましい。 In the backlight system of the present invention, a plurality of light beams that have passed through the light condensing unit are collected with respect to one of the sub-pixels, and a condensing position of the plurality of light beams in one of the sub-pixels is It is preferable to arrange along the second direction.
 このように、サブ画素の1つにおいて、複数の集光位置が第2方向に沿って一列に並ぶように、光源部と集光部とを含む光学系を設定することによって、そのサブ画素の1つから出射された複数の光束は、上記所望の形状をした光量分布を適切に備えることができる。 As described above, by setting an optical system including the light source unit and the condensing unit so that a plurality of condensing positions are arranged in a line along the second direction in one of the sub-pixels, A plurality of light beams emitted from one can appropriately have a light amount distribution having the desired shape.
 本発明のバックライトシステムでは、上記サブ画素の1つに対して集光される光束に含まれ、上記第1方向に広がりを持つ光線が、上記サブ画素の1つに入射する角度の最大角度θaは、上記光束に含まれ、上記第2方向に広がりを持つ光線が、上記サブ画素の1つに入射する角度の最大角度θbと等しいことを特徴とする。 In the backlight system of the present invention, the maximum angle of the angle at which a light beam, which is included in the light beam condensed on one of the sub-pixels and has a spread in the first direction, is incident on one of the sub-pixels. θa is characterized in that a light ray included in the light flux and having a spread in the second direction is equal to a maximum angle θb of an incident angle on one of the sub-pixels.
 上記の構成によれば、上記サブ画素の1つに入射する1つの光束の集光状態には、異方性がなくなる。すなわち、上記サブ画素の1つに対して上記集光領域を通過して集光される光束の断面、すなわちその進行方向に垂直な断面の強度分布は等方的になっている。 According to the above configuration, there is no anisotropy in the condensing state of one light beam incident on one of the sub-pixels. That is, the intensity distribution of the cross section of the light beam collected through the condensing region with respect to one of the sub-pixels, that is, the cross section perpendicular to the traveling direction thereof is isotropic.
 したがって、上記サブ画素の1つに対応して、断面が円形の光束を、第2方向に沿って、密に、あるいは多数並べることができるので、カラーフィルタを設けた細長いサブ画素から広がる光束と同様の光量分布を適切に得ることができる。 Accordingly, a light beam having a circular cross section corresponding to one of the sub-pixels can be arranged densely or in a large number along the second direction. Similar light quantity distribution can be obtained appropriately.
 本発明のバックライトシステムでは、
(1) 上記集光部は、マイクロレンズアレイによって構成され、
(2) 上記複数の画素のうち、少なくとも上記第1方向に配列した画素のピッチをPとし、
(3) 上記複数の発光点が、上記第1方向に沿って配列した間隔をP1とし、
(4) 上記集光部の結像倍率を(1/n)とし、
(5) 上記マイクロレンズアレイを構成する上記第1方向に隣り合うマイクロレンズのピッチをP2とすると、
(6) P1≒n×Pに設定するとともに、P2≒(n/(n+1))×Pに設定したことを特徴とする。
In the backlight system of the present invention,
(1) The condensing unit is configured by a microlens array,
(2) Among the plurality of pixels, at least the pitch of the pixels arranged in the first direction is P,
(3) The interval between the plurality of light emitting points arranged along the first direction is P1,
(4) The imaging magnification of the light condensing part is (1 / n),
(5) When the pitch of the microlenses adjacent in the first direction constituting the microlens array is P2,
(6) P1≈n × P and P2≈ (n / (n + 1)) × P.
 上記の構成によれば、第1方向に隣り合う複数のサブ画素毎に、複数の発光点の1つから出射された光を、空間的に分離することと、第1方向に隣り合う複数の発光点から出射された光を互いにオーバーラップした状態で、1つのサブ画素に集光させることとを両立させることができる。 According to the above configuration, for each of the plurality of sub-pixels adjacent in the first direction, the light emitted from one of the plurality of light emitting points is spatially separated and the plurality of adjacent pixels in the first direction. Condensing light onto one subpixel in a state where the light emitted from the light emitting points overlap each other can be achieved.
 なお、複数の発光点が、複数種類の色の光を発する発光点の組み合わせから成る場合であっても、それぞれの色毎に、上記の作用効果を得ることができる。 In addition, even if it is a case where a some light emission point consists of the combination of the light emission point which emits the light of a several kind of color, said effect can be obtained for every color.
 この結果、複数の発光点から出射された光束の空間的均一化が実現するので、表示画面内の輝度ムラが有効に軽減する。また、カラー表示に対応した構成では、さらに色ムラが有効に軽減する。したがって、より高画質の表示が可能となる。 As a result, spatial uniformity of the light beams emitted from a plurality of light emitting points is realized, so that uneven brightness in the display screen is effectively reduced. Further, in the configuration corresponding to the color display, the color unevenness is further reduced effectively. Therefore, display with higher image quality is possible.
 本発明の表示装置では、
(1) 上記複数の発光点は、上記第1方向に沿った配列間隔より、上記第2方向に沿った配列間隔の方が密になるように、2次元的に配列され、
(2) 上記サブ画素の1つに対して集光される光束に含まれ、上記第1方向に広がりを持つ光線が、上記サブ画素の1つに入射する角度の最大角度θaと、上記光束に含まれ、上記第2方向に広がりを持つ光線が、上記サブ画素の1つに入射する角度の最大角度θbとは、互いに等しく、
(3) 上記1画素を構成する上記複数のサブ画素が、上記第1方向に配列した数をNとし、
(4) 上記第2方向に配列した数を1以上の整数Mとし、かつM<Nとし、
(5) さらに、上記複数の画素の上記第1方向のピッチと上記第2方向のピッチとが、互いに等しいとし、
(6) 上記サブ画素の1つにおいて、上記複数の光束の上記第2方向に沿って隣り合う集光位置同士の間隔をαとし、
(7) 上記表示部と上記拡散板との間隔をhとすると、
(8) α≒{(N-M)/M}×2×h×tanθaを満たすことを特徴とする。
In the display device of the present invention,
(1) The plurality of light emitting points are two-dimensionally arranged such that the arrangement interval along the second direction is denser than the arrangement interval along the first direction,
(2) The maximum angle θa of the angle at which a light beam, which is included in the light beam condensed on one of the sub-pixels and spreads in the first direction, enters one of the sub-pixels, and the light beam Included in the second direction, and the maximum angle θb of the angles at which the light rays having the spread in the second direction are incident on one of the sub-pixels are equal to each other,
(3) The number of the plurality of sub-pixels constituting the one pixel arranged in the first direction is N,
(4) The number arranged in the second direction is an integer M of 1 or more, and M <N.
(5) Furthermore, it is assumed that the pitch in the first direction and the pitch in the second direction of the plurality of pixels are equal to each other,
(6) In one of the sub-pixels, an interval between condensing positions adjacent to each other along the second direction of the plurality of light beams is α,
(7) If the distance between the display unit and the diffusion plate is h,
(8) It is characterized by satisfying α≈ {(NM) / M} × 2 × h × tan θa.
 上記の構成において、上記1画素内では、上記第1方向に沿って、N個のサブ画素が並んでいる。一方、上記1画素内では、上記第2方向に沿って、M個のサブ画素が並んでいる。ただし、Mは1以上の整数なので、M=1の場合は、サブ画素が、上記1画素内で第2方向に並んでいない状態を意味する。 In the above configuration, N sub-pixels are arranged in the first pixel along the first direction. On the other hand, within the one pixel, M sub-pixels are arranged along the second direction. However, since M is an integer of 1 or more, when M = 1, it means that the sub-pixels are not arranged in the second direction within the one pixel.
 なお、1画素を構成するM×N個のサブ画素の表示色は、全て相違していてもよいし、少なくとも一部または全部が同色になっていてもよく、特に限定されない。 Note that the display colors of the M × N sub-pixels constituting one pixel may be all different, or at least part or all may be the same color, and is not particularly limited.
 サブ画素の配列数MおよびNの大小関係については、M<Nを条件とする。なぜなら、サブ画素の形状が、第2方向に沿って細長く設定され、かつ、上記複数の画素の上記第1方向のピッチと上記第2方向のピッチが、互いに等しい、言い換えると、1画素の縦横比が1:1に設定されているためである。 Suppose that M <N for the magnitude relationship between the number of sub-pixels M and N. This is because the shape of the sub-pixel is set to be elongated along the second direction, and the pitch in the first direction and the pitch in the second direction of the plurality of pixels are equal to each other. This is because the ratio is set to 1: 1.
 上記複数の発光点は、上記第1方向に沿った配列間隔より、上記第2方向に沿った配列間隔の方が密になるように、2次元的に配列され、1つのサブ画素には、第2方向に沿って、複数の集光点が形成されるようになっている。このとき、上記最大角度θaと上記最大角度θbとは、互いに等しくなっているので、1つのサブ画素に入射する複数の光束のそれぞれは、等方的な広がりを持っている。 The plurality of light emitting points are two-dimensionally arranged so that the arrangement interval along the second direction is denser than the arrangement interval along the first direction. A plurality of condensing points are formed along the second direction. At this time, since the maximum angle θa and the maximum angle θb are equal to each other, each of the plurality of light beams incident on one sub-pixel has an isotropic spread.
 このような構成において、α≒{(N-M)/M}×2×h×tanθaが成り立つことによって、第1方向に沿って隣り合う光束同士が、第1方向で重なり合うことを防止できるとともに、第2方向に沿って並ぶ複数の集光点が、各サブ画素の領域内に適切に収まるように形成される。この結果、表示品位をさらに高めることができる。 In such a configuration, α≈ {(N−M) / M} × 2 × h × tan θa holds, so that adjacent light beams along the first direction can be prevented from overlapping in the first direction. A plurality of condensing points arranged along the second direction are formed so as to be appropriately within the area of each sub-pixel. As a result, display quality can be further improved.
 本発明の表示装置では、上記最大角度θaは、40度以下であることを特徴とする。 In the display device of the present invention, the maximum angle θa is 40 degrees or less.
 上記の構成によれば、既に説明したように、集光部における像面湾曲を含む収差の発生を抑えることができる。 According to the above configuration, as described above, it is possible to suppress the occurrence of aberration including curvature of field in the light condensing unit.
 本発明の表示装置は、上記拡散板の外光に対する後方散乱を抑制する機能性フィルムを備えたことを特徴とする。 The display device of the present invention includes a functional film that suppresses backscattering of the diffuser plate with respect to outside light.
 上記の構成において、拡散板は、表示部から観察者側へ出射された光を拡散光として出射する一方、観察者側から拡散板に照射された外光を表示部側に拡散して透過させるとともに、観察者側にも外光の一部を拡散光として反射する。この外光の一部を反射する作用を、外光に対する後方散乱と呼ぶ。この反射された拡散光を、画像情報に基づいて表示部を透過した表示光とともに観察すると、画像が白く浮いてしまい画像品位の低下を招く。 In the above configuration, the diffuser plate emits the light emitted from the display unit to the viewer side as diffused light, and diffuses and transmits the external light applied to the diffuser plate from the viewer side to the display unit side. At the same time, part of the external light is reflected as diffused light on the viewer side. This action of reflecting a part of the external light is called backscattering with respect to the external light. When the reflected diffused light is observed together with the display light transmitted through the display unit based on the image information, the image floats white and the image quality is deteriorated.
 そこで、上記の機能性フィルムを設けることによって、後方散乱を抑制することができるので、表示品位をさらに向上させることができる。 Therefore, by providing the above functional film, it is possible to suppress backscattering, so that the display quality can be further improved.
 (本発明の補足)
 本発明に係る表示装置として、以下の構成を採用することもできる。
(Supplement of the present invention)
The following configuration can also be employed as the display device according to the present invention.
 (構成1)相異なる主波長の光を発する発光部と、該発光部から射出された光を光変調素子に集光させる結像光学系と、拡散素子とを有し、該結像光学系を通過した光が、光変調素子と拡散素子を通過して画像が表示される透過型画像表示装置であって、
 前記透過型画像表示装置は、所定のピッチで配列された複数の画素を含み、各画素が、色ごとに対応する複数の絵素を含んで構成されており、
 前記結像光学系は、レンズが所定のピッチで複数配列されてなるレンズアレイを有し、前記レンズは、前記発光部から射出された光を色別に分離するとともに、分離した光を絵素の配列ピッチと同じピッチで集光させ、
 前記発光部は、前記透過型画像表示装置のRGB並び方向と同色並び方向とに、それぞれ異なる照射角度で光を射出することを特徴とする透過型画像表示装置。
(Configuration 1) An imaging optical system that includes a light emitting unit that emits light having different principal wavelengths, an imaging optical system that focuses light emitted from the light emitting unit on a light modulation element, and a diffusion element. Is a transmissive image display device in which an image is displayed through the light modulation element and the diffusion element.
The transmissive image display device includes a plurality of pixels arranged at a predetermined pitch, each pixel including a plurality of picture elements corresponding to each color,
The imaging optical system includes a lens array in which a plurality of lenses are arranged at a predetermined pitch, and the lens separates the light emitted from the light-emitting unit according to color and separates the separated light from a pixel. Focus the light at the same pitch as the array pitch,
The transmissive image display device, wherein the light emitting unit emits light at different irradiation angles in the RGB arrangement direction and the same color arrangement direction of the transmissive image display device.
 (構成2)前記透過型画像表示装置の各画素を構成する絵素のRGB並び方向と同色並び方向の数をそれぞれM、Nとし、
 前記発光部から射出された光が前記透過型画像表示装置を通過する際のRGB並び方向と同色並び方向における最大通過角度をそれぞれθa、θbとしたとき、
 M*tanθb≧N*tanθa
を満たすことを特徴とする構成1に記載の透過型画像表示装置。
(Arrangement 2) The numbers of the RGB arrangement directions of the picture elements constituting each pixel of the transmissive image display device are the same as M and N, respectively.
When the maximum emission angles in the same color arrangement direction as the RGB arrangement direction when the light emitted from the light emitting unit passes through the transmissive image display device are θa and θb, respectively,
M * tanθb ≧ N * tanθa
The transmissive image display device according to Configuration 1, wherein:
 (構成3)
 前記発光部から射出された光が前記透過型画像表示装置を通過する際のRGB並び方向と同色並び方向における最大通過角度θa、θbの大きいほうが40°以内であることを特徴とする構成1または2に記載の透過型画像表示装置。
(Configuration 3)
Configuration 1 or 2 in which the maximum passing angles θa and θb in the same color arrangement direction as the RGB arrangement direction when the light emitted from the light emitting unit passes through the transmissive image display device is within 40 ° 3. The transmission type image display device according to 2.
 (構成4)
 相異なる主波長の光を発する発光部と、該発光部から射出された光を光変調素子に集光させる結像光学系と、拡散素子とを有し、該結像光学系を通過した光が、光変調素子と拡散素子を通過して画像が表示される透過型画像表示装置であって、
 前記透過型画像表示装置は、所定のピッチで配列された複数の画素を含み、各画素が、色ごとに対応する複数の絵素を含んで構成されており、
 前記結像光学系は、レンズが所定のピッチで複数配列されてなるレンズアレイを有し、前記レンズは、前記発光部から射出された光を色別に分離するとともに、分離した光を絵素の配列ピッチと同じピッチで集光させ、
 前記発光部は、前記透過型画像表示装置のRGB並び方向と同色並び方向における同色を発する発光部をそれぞれ異なる間隔にて配置することを特徴とする透過型画像表示装置。
(Configuration 4)
Light having a light emitting unit that emits light having different main wavelengths, an imaging optical system that focuses light emitted from the light emitting unit on a light modulation element, and a diffusion element, and that has passed through the imaging optical system Is a transmissive image display device in which an image is displayed through a light modulation element and a diffusion element,
The transmissive image display device includes a plurality of pixels arranged at a predetermined pitch, each pixel including a plurality of picture elements corresponding to each color,
The imaging optical system includes a lens array in which a plurality of lenses are arranged at a predetermined pitch, and the lens separates the light emitted from the light-emitting unit according to color and separates the separated light from a pixel. Focus the light at the same pitch as the array pitch,
The transmissive image display device is characterized in that the light emitting unit has light emitting units that emit the same color in the same color arrangement direction as the RGB arrangement direction of the transmissive image display device.
 (構成5)
 前記透過型画像表示装置の各画素を構成する絵素のRGB並び方向と同色並び方向の数をそれぞれM、Nとし、
 前記発光部から射出された光が前記液晶パネルを通過する際の最大通過角度をθa、前記液晶パネルを通過する際の通過領域をαとしたとき、
 α≦{(N-M)/M}*2*h*tanθa
を満たすことを特徴とする構成4に記載の透過型画像表示装置。
(Configuration 5)
The numbers of the same color arrangement direction as the RGB arrangement direction of the picture elements constituting each pixel of the transmissive image display device are M and N, respectively.
When the maximum passage angle when the light emitted from the light emitting unit passes through the liquid crystal panel is θa, and the passage region when passing through the liquid crystal panel is α,
α ≦ {(NM) / M} * 2 * h * tanθa
The transmissive image display device according to Configuration 4, wherein:
 (構成6)
 前記透過型画像表示装置が、少なくともRGB並び方向において、画素アレイ面上に配列された複数の画素の所定のピッチをPとし、前記結像光学系の結像倍率を(1/n)とし、前記発光部間ピッチP1を、ほぼP1=n×Pとし、前記第1のレンズアレイのレンズピッチP2をほぼP2=(n/(n+1))×Pとすることを特徴とする構成1~5のいずれか1つに記載の透過型画像表示装置。
(Configuration 6)
In the transmissive image display device, at least in the RGB alignment direction, a predetermined pitch of a plurality of pixels arranged on the pixel array surface is P, and an imaging magnification of the imaging optical system is (1 / n), Configuration 1 to 5 characterized in that the pitch P1 between the light emitting portions is approximately P1 = n × P, and the lens pitch P2 of the first lens array is approximately P2 = (n / (n + 1)) × P. The transmissive image display device according to any one of the above.
 (構成7)
 前記透過型画像表示装置の射出面上に外光の後方散乱を抑制する機能を持つフィルムを有することを特徴とする構成1~6のいずれか1つに記載の透過型画像表示装置。
(Configuration 7)
7. The transmissive image display device according to any one of Configurations 1 to 6, further comprising a film having a function of suppressing backscattering of external light on an emission surface of the transmissive image display device.
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments, respectively. Is also included in the technical scope of the present invention.
 本発明は、透過型画像表示装置に適用することができ、特に、透過型画像表示装置に搭載されるバックライトに適用することができる。 The present invention can be applied to a transmissive image display device, and in particular, can be applied to a backlight mounted on a transmissive image display device.
  1  画素
  1a サブ画素
  1b サブ画素
  1c サブ画素
  3  光源部(バックライトシステム)
  4  表示パネル(表示部)
  5  集光部(バックライトシステム)
  10 表示装置
  46 拡散板
  R  発光点
  G  発光点
  B  発光点
  X  第1方向
  Y  第2方向
  θa  最大角度
  θb  最大角度
  φ(X) 照射角度
  φ(Y) 照射角度
1 pixel 1a sub-pixel 1b sub-pixel 1c sub-pixel 3 light source section (backlight system)
4 Display panel (display section)
5 Condenser (backlight system)
10 Display device 46 Diffuser R Light emission point G Light emission point B Light emission point X First direction Y Second direction θa Maximum angle θb Maximum angle φ (X) Irradiation angle φ (Y) Irradiation angle

Claims (15)

  1.  1画素が、複数のサブ画素によって構成され、上記複数のサブ画素のそれぞれは、幅と長さとが異なる細長い形状を備え、上記1画素を含む複数の画素が、上記幅の延長方向である第1方向と、上記長さの延長方向である第2方向とに2次元的に配列され、上記複数のサブ画素のそれぞれを通過する光の光量を画像情報に基づいて変調することにより、画像情報の表示を行う表示装置に対し、光源として設けられたバックライトシステムであって、
     上記第1方向と上記第2方向とに沿って2次元的に配列された複数の発光点を備えた光源部と、
     上記複数の発光点の少なくとも1つが発した第1の光を対応するサブ画素に個々に集光する集光部とを備え、
     上記第1の光が、上記サブ画素の1つに集光された後、広がりながら上記サブ画素の1つから出射される光束に関して、光進行方向に垂直な面における光量分布の形状が、上記サブ画素の1つに集光される集光点の数によらず、上記サブ画素の1つと同様の細長い形状を示すように、上記光源部では、上記第1方向に沿った光出射状態と上記第2方向に沿った光出射状態とが異なっていることを特徴とするバックライトシステム。
    One pixel is composed of a plurality of sub-pixels, each of the plurality of sub-pixels has an elongated shape having a different width and length, and the plurality of pixels including the one pixel are in the extending direction of the width. Image information is obtained by modulating the amount of light that is two-dimensionally arranged in one direction and a second direction that is an extension direction of the length and that passes through each of the plurality of sub-pixels based on image information. A backlight system provided as a light source for a display device that displays
    A light source unit including a plurality of light emitting points arranged two-dimensionally along the first direction and the second direction;
    A light collecting section for individually collecting the first light emitted from at least one of the plurality of light emitting points on the corresponding sub-pixel,
    After the first light is condensed on one of the sub-pixels, the shape of the light amount distribution on the plane perpendicular to the light traveling direction is related to the light beam emitted from one of the sub-pixels while spreading. Regardless of the number of condensing points condensed on one of the sub-pixels, the light source unit has a light emission state along the first direction so as to show an elongated shape similar to that of one of the sub-pixels. A backlight system, wherein the light emission state along the second direction is different.
  2.  上記複数の発光点のそれぞれは、上記第1方向に沿って広がる照射角度より、上記第2方向に沿って広がる照射角度の方が大きくなるように発光すること
    を特徴とする請求項1に記載のバックライトシステム。
    2. The light emission point according to claim 1, wherein each of the plurality of light emitting points emits light such that an irradiation angle extending along the second direction is larger than an irradiation angle extending along the first direction. Backlight system.
  3.  上記サブ画素の1つに対して集光される光束に含まれる光線が、上記第1方向および第2方向を含む面の法線方向と、上記第1方向とを含む面内で、上記サブ画素の1つに入射する角度の最大角度θaは、上記光束に含まれる光線が、上記法線方向と上記第2方向とを含む面内で、上記サブ画素の1つに入射する角度の最大角度θbより小さいこと
    を特徴とする請求項2に記載のバックライトシステム。
    A light beam included in a light beam condensed on one of the sub-pixels is within the plane including the normal direction of the surface including the first direction and the second direction and the first direction. The maximum angle θa at which the light beam is incident on one of the pixels is the maximum angle at which the light beam included in the light beam is incident on one of the sub-pixels in a plane including the normal direction and the second direction. The backlight system according to claim 2, wherein the backlight system is smaller than the angle θb.
  4.  上記1画素を構成する上記複数のサブ画素のうち、上記1画素内で上記第1方向に配列したサブ画素の数をNとし、
     上記複数のサブ画素のうち、上記1画素内で上記第2方向に配列したサブ画素の数を1以上の整数Mとし、
     さらに、上記複数の画素の上記第1方向のピッチをPaとし、上記第2方向のピッチをPbとすると、
     上記サブ画素の1つに対して集光される光束に含まれた光線であって、上記第1方向および第2方向によって規定される表示面の法線方向を基準として、上記第1方向へ傾斜した光線の傾斜角度の最大角度θaを有した光線と、上記第2方向へ傾斜した光線の傾斜角度の最大角度θbを有した光線とについて、
     (M/Pb)×tanθb≒(N/Pa)×tanθa
    を満たすこと
    を特徴とする請求項2に記載のバックライトシステム。
    Among the plurality of sub-pixels constituting the one pixel, the number of sub-pixels arranged in the first direction within the one pixel is N,
    Among the plurality of sub-pixels, the number of sub-pixels arranged in the second direction within the one pixel is an integer M equal to or greater than 1,
    Furthermore, when the pitch in the first direction of the plurality of pixels is Pa and the pitch in the second direction is Pb,
    A light ray included in a light beam condensed on one of the sub-pixels, and is directed to the first direction with reference to a normal direction of the display surface defined by the first direction and the second direction. A light beam having a maximum inclination angle θa of the inclined light beam and a light beam having a maximum angle θb of the light beam inclined in the second direction,
    (M / Pb) × tan θb≈ (N / Pa) × tan θa
    The backlight system according to claim 2, wherein:
  5.  上記最大角度θbは、40度以下であること
    を特徴とする請求項3または4に記載のバックライトシステム。
    The backlight system according to claim 3 or 4, wherein the maximum angle θb is 40 degrees or less.
  6.  上記複数の発光点は、上記第1方向に沿った配列間隔より、上記第2方向に沿った配列間隔の方が密になるように、2次元的に配列されていること
    を特徴とする請求項1に記載のバックライトシステム。
    The plurality of light emitting points are two-dimensionally arranged such that an arrangement interval along the second direction is denser than an arrangement interval along the first direction. Item 2. The backlight system according to Item 1.
  7.  上記サブ画素の1つに対して上記集光部を通過した複数の光束が集光され、
     上記サブ画素の1つにおける上記複数の光束の集光位置は、上記第2方向に沿って配列していること
    を特徴とする請求項1または6に記載のバックライトシステム。
    A plurality of light beams that have passed through the light condensing unit are condensed on one of the sub-pixels,
    7. The backlight system according to claim 1, wherein condensing positions of the plurality of light beams in one of the sub-pixels are arranged along the second direction. 8.
  8.  上記サブ画素の1つに対して集光される光束に含まれ、上記第1方向に広がりを持つ光線が、上記サブ画素の1つに入射する角度の最大角度θaは、上記光束に含まれ、上記第2方向に広がりを持つ光線が、上記サブ画素の1つに入射する角度の最大角度θbと等しいこと
    を特徴とする請求項6または7に記載のバックライトシステム。
    The maximum angle θa of the angle at which a light beam spread in the first direction is incident on one of the sub-pixels is included in the light beam. The backlight system according to claim 6, wherein the light beam having a spread in the second direction is equal to a maximum angle θb of an incident angle on one of the sub-pixels.
  9.  上記集光部は、マイクロレンズアレイによって構成され、
     上記複数の画素のうち、少なくとも上記第1方向に配列した画素のピッチをPとし、
     上記複数の発光点が、上記第1方向に沿って配列した間隔をP1とし、
     上記集光部の結像倍率を(1/n)とし、
     上記マイクロレンズアレイを構成する上記第1方向に隣り合うマイクロレンズのピッチをP2とすると、
     P1≒n×Pに設定するとともに、P2≒(n/(n+1))×Pに設定したこと
    を特徴とする請求項1~8のいずれか1項に記載のバックライトシステム。
    The condensing unit is configured by a microlens array,
    Among the plurality of pixels, P is a pitch of pixels arranged in at least the first direction,
    The interval at which the plurality of light emitting points are arranged along the first direction is P1,
    The imaging magnification of the light collecting part is (1 / n),
    When the pitch of the microlenses adjacent in the first direction constituting the microlens array is P2,
    9. The backlight system according to claim 1, wherein P1≈n × P and P2≈ (n / (n + 1)) × P are set.
  10.  請求項1~9のいずれか1項に記載のバックライトシステムを備えたこと
    を特徴とする表示装置。
    A display device comprising the backlight system according to any one of claims 1 to 9.
  11.  異なる表示色で発光する光源部と、
     1画素が、上記異なる表示色に対応した複数のサブ画素によって構成され、上記複数のサブ画素のそれぞれは、幅と長さとが異なる細長い形状を備え、上記1画素を含む複数の画素が、上記幅の延長方向である第1方向と、上記長さの延長方向である第2方向とに沿って2次元的に配列され、上記複数のサブ画素のそれぞれを通過する第2の光の光量を画像情報に基づいて変調することにより、上記画像情報の表示を行う表示部と、
     上記光源部が発した光を上記表示部の対応する表示色のサブ画素に個々に集光する集光部と、
     上記表示部に対して観察者側に配置され、上記表示部を通過した上記第2の光を拡散させる拡散板とを備え、
     上記サブ画素の1つに対して上記光源部が発した光の一部を集光する上記集光部の集光領域を通過し、上記サブ画素の1つに対応して、上記拡散板の表面に形成される光照射範囲の形状が、上記サブ画素の1つに集光される光スポットの数によらず、上記サブ画素の1つと同様の細長い形状を示すように、上記光源部では、上記第1方向に沿った光出射状態と上記第2方向に沿った光出射状態とが異なっていること
    を特徴とする表示装置。
    A light source that emits light in different display colors;
    One pixel includes a plurality of sub-pixels corresponding to the different display colors, each of the plurality of sub-pixels has an elongated shape having a different width and length, and the plurality of pixels including the one pixel are The amount of the second light that is two-dimensionally arranged along the first direction that is the extending direction of the width and the second direction that is the extending direction of the length, and that passes through each of the plurality of sub-pixels. A display unit that displays the image information by modulating the image information; and
    A condensing unit for individually condensing the light emitted from the light source unit on the sub-pixels of the display color corresponding to the display unit;
    A diffusion plate that is disposed on the viewer side with respect to the display unit and diffuses the second light that has passed through the display unit;
    One of the sub-pixels passes through a condensing region of the condensing unit that condenses a part of the light emitted from the light source unit, In the light source unit, the shape of the light irradiation range formed on the surface shows an elongated shape similar to that of one of the sub-pixels, regardless of the number of light spots collected on one of the sub-pixels. The display device is characterized in that the light emission state along the first direction is different from the light emission state along the second direction.
  12.  上記複数の発光点は、上記第1方向に沿った配列間隔より、上記第2方向に沿った配列間隔の方が密になるように、2次元的に配列され
     上記サブ画素の1つに対して集光される光束に含まれ、上記第1方向に広がりを持つ光線が、上記サブ画素の1つに入射する角度の最大角度θaと、上記光束に含まれ、上記第2方向に広がりを持つ光線が、上記サブ画素の1つに入射する角度の最大角度θbとは、互いに等しく、
     上記1画素を構成する上記複数のサブ画素が、上記第1方向に配列した数をNとし、
     上記第2方向に配列した数を1以上の整数Mとし、かつM<Nとし、
     さらに、上記複数の画素の上記第1方向のピッチと上記第2方向のピッチとが、互いに等しいとし、
     上記サブ画素の1つにおいて、上記複数の光束の上記第2方向に沿って隣り合う集光位置同士の間隔をαとし、
     上記表示部と上記拡散板との間隔をhとすると、
     α≒{(N-M)/M}×2×h×tanθa
    を満たすこと
    を特徴とする請求項11に記載の表示装置。
    The light emitting points are two-dimensionally arranged such that the arrangement interval along the second direction is denser than the arrangement interval along the first direction. The light beam that is included in the light flux collected and spreads in the first direction is included in the light flux and spreads in the second direction. The maximum angle θb of the angles at which the light rays are incident on one of the sub-pixels is equal to each other,
    The number of the plurality of sub-pixels constituting the one pixel arranged in the first direction is N,
    The number arranged in the second direction is an integer M of 1 or more, and M <N.
    Furthermore, it is assumed that the pitch in the first direction and the pitch in the second direction of the plurality of pixels are equal to each other,
    In one of the sub-pixels, an interval between condensing positions adjacent to each other along the second direction of the plurality of light beams is α,
    When the interval between the display unit and the diffusion plate is h,
    α≈ {(NM) / M} × 2 × h × tan θa
    The display device according to claim 11, wherein:
  13.  上記最大角度θaは、40度以下であること
    を特徴とする請求項12に記載の表示装置。
    The display device according to claim 12, wherein the maximum angle θa is 40 degrees or less.
  14.  上記拡散板の外光に対する後方散乱を抑制する機能性フィルムを備えたこと
    を特徴とする請求項11~13のいずれか1項に記載の表示装置。
    The display device according to any one of claims 11 to 13, further comprising a functional film that suppresses backscattering of the diffusion plate with respect to external light.
  15.  1画素が、複数のサブ画素によって構成され、上記複数のサブ画素のそれぞれは、幅と長さとが異なる細長い形状を備え、上記1画素を含む複数の画素が、上記幅の延長方向である第1方向と、上記長さの延長方向である第2方向とに沿って2次元的に配列され、上記複数のサブ画素のそれぞれを通過する光の光量を画像情報に基づいて変調することにより、画像情報の表示を行う表示装置に対し、上記光を照射するバックライトの制御方法であって、
     上記光が、上記サブ画素の1つに集光された後、広がりながら上記サブ画素の1つから出射される光束に関して、光進行方向に垂直な面における光量分布の形状が、上記サブ画素の1つに集光される光スポットの数によらず、上記サブ画素の1つと同様の細長い形状を示すように、上記バックライトの光学系を設定することを特徴とするバックライトの制御方法。
    One pixel is composed of a plurality of sub-pixels, each of the plurality of sub-pixels has an elongated shape having a different width and length, and the plurality of pixels including the one pixel are in the extending direction of the width. By two-dimensionally arranging along one direction and a second direction that is an extension direction of the length, and modulating the amount of light passing through each of the plurality of sub-pixels based on image information, A control method of a backlight that irradiates the light to a display device that displays image information,
    After the light is condensed on one of the sub-pixels, the shape of the light amount distribution in a plane perpendicular to the light traveling direction of the light beam emitted from one of the sub-pixels while spreading is that of the sub-pixel. A backlight control method, wherein the backlight optical system is set so as to show an elongated shape similar to that of one of the sub-pixels, regardless of the number of light spots condensed into one.
PCT/JP2012/060502 2011-04-25 2012-04-18 Backlight system, display device, and backlight control method WO2012147594A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011097535 2011-04-25
JP2011-097535 2011-04-25

Publications (1)

Publication Number Publication Date
WO2012147594A1 true WO2012147594A1 (en) 2012-11-01

Family

ID=47072115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060502 WO2012147594A1 (en) 2011-04-25 2012-04-18 Backlight system, display device, and backlight control method

Country Status (1)

Country Link
WO (1) WO2012147594A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258604A (en) * 1998-03-11 1999-09-24 Omron Corp Image display device
JP2007188858A (en) * 2006-01-12 2007-07-26 Samsung Corning Co Ltd Backlight unit and its light source
JP2010276757A (en) * 2009-05-27 2010-12-09 Seiko Epson Corp Projector and electro-optical device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258604A (en) * 1998-03-11 1999-09-24 Omron Corp Image display device
JP2007188858A (en) * 2006-01-12 2007-07-26 Samsung Corning Co Ltd Backlight unit and its light source
JP2010276757A (en) * 2009-05-27 2010-12-09 Seiko Epson Corp Projector and electro-optical device

Similar Documents

Publication Publication Date Title
US9122097B2 (en) Backlight system and LCD device using the same
US8714804B2 (en) Backlight assembly and display apparatus having the same
US11187969B2 (en) Projector including a light modulator
JP4122041B2 (en) Display device
US8345182B2 (en) Liquid crystal display device
US8810752B2 (en) Thin backlight system and liquid crystal display device using the same
JP2020106692A (en) projector
KR100332512B1 (en) Display
JP2020126089A (en) projector
US8922735B2 (en) Backlight system and liquid crystal display device using the same
JP5320469B2 (en) Stereoscopic image display device
JP2011128205A (en) Image display device
WO2013122170A1 (en) Multi-display device and display modules
US20190196270A1 (en) Display device
US11378878B2 (en) Projector
JP2009063892A (en) Projector, optical element, and optical modulating device
JP2007199510A (en) Surface film and color display
JP2013054091A (en) Projector
WO2012147594A1 (en) Backlight system, display device, and backlight control method
JP5669210B2 (en) Display device
GB2373620A (en) Light source arrangements for displays
JP2007199508A (en) Surface film and color display
KR101101792B1 (en) Liquid crystal display device and lighting display device
WO2023153278A1 (en) Light source apparatus and head-up display
JP3633361B2 (en) Projection type LCD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12776453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP