WO2012147530A1 - Fluid pressure transfer method - Google Patents

Fluid pressure transfer method Download PDF

Info

Publication number
WO2012147530A1
WO2012147530A1 PCT/JP2012/060028 JP2012060028W WO2012147530A1 WO 2012147530 A1 WO2012147530 A1 WO 2012147530A1 JP 2012060028 W JP2012060028 W JP 2012060028W WO 2012147530 A1 WO2012147530 A1 WO 2012147530A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer
liquid
liquid discharge
film
design surface
Prior art date
Application number
PCT/JP2012/060028
Other languages
French (fr)
Japanese (ja)
Inventor
栄 牛渡
鈴木 栄次
揚一郎 吉井
Original Assignee
株式会社タイカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タイカ filed Critical 株式会社タイカ
Priority to JP2013512007A priority Critical patent/JPWO2012147530A1/en
Publication of WO2012147530A1 publication Critical patent/WO2012147530A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/16Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like
    • B44C1/165Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like for decalcomanias; sheet material therefor
    • B44C1/175Transfer using solvent
    • B44C1/1758Decalcomanias applied under pressure only, e.g. provided with a pressure sensitive layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F16/00Transfer printing apparatus

Definitions

  • a transfer film which is formed with an appropriate transfer pattern (surface ink layer) in advance by transfer ink, is supported in a floating manner on the liquid surface, and is immersed in the transfer liquid while pressing the transfer target.
  • the liquid pressure is used to transfer the transfer pattern on the film to the transferred material using the hydraulic pressure, and the liquid discharge position of the transferred material is raised to a substantially constant position when it is pulled up from the transfer liquid.
  • the present invention relates to a novel hydraulic pressure transfer method that prevents the occurrence of deficiency defects or sagging defects on the design surface.
  • a transfer film formed by applying a suitable non-water-soluble transfer pattern in advance is floated in a transfer tank (transfer liquid), and the transfer film (water-soluble film) is transferred to the transfer liquid (primarily In a state wetted with water), the transferred object is pushed into the liquid in the transfer tank while contacting the transfer film, and the transfer pattern on the film is transferred and formed on the surface of the transferred object using the liquid pressure.
  • Hydraulic transfer is known.
  • a transfer pattern is formed (printed) in advance on the water-soluble film with ink on the transfer film, and the transfer pattern ink is in a dry state. For this reason, when transferring, it is necessary to apply an activator or thinner to the transfer pattern on the transfer film to return the transfer pattern to the same wetness, that is, adhesion, just after printing. It is called.
  • the transfer object taken out from the transfer tank is dried after the semi-dissolved water-soluble film is removed by washing with water or the like to protect the decorative layer transferred and formed on the transfer object. For this reason, it was often used as a top coat.
  • solvent-based clear paint is first used for the top coat, so there is a problem that the environmental load is high, and it takes a relatively long time for top coat defects and paint drying. The cost of the entire hydraulic transfer is incurred due to the cost and energy required.
  • Patent Document 1 uses a cured resin composition (liquid) as an activator while using a conventional transfer film in which only a transfer pattern is formed on a water-soluble film, and irradiates the transferred object with ultraviolet rays after transfer. This is a technique for curing the cured resin composition (surface protective layer) that is steadily integrated with the transfer pattern.
  • Patent Document 2 uses a transfer film in which a curable resin layer is formed between a water-soluble film and a transfer pattern, and the transferred object is irradiated with active energy rays such as ultraviolet rays or heated on the transfer pattern. This is a method of curing the curable resin layer.
  • the thin film M is initially stretched on the frame of the jig J, and bubbles A of the rupture residue drift on the transfer liquid surface, moving the liquid surface in the liquid discharge area P2 (raising the transfer target W).
  • the bubble A is taken into the thin film M stretched on the opening Wa of the transfer target W, and then the rupture residue of the thin film M floats on the liquid surface as the bubble A and indirectly. In particular, it adheres to the design surface S1 or directly as a bubble A is transmitted through the surface of the transfer target W and adheres to the design surface S1, resulting in the state shown in FIG.
  • the liquid level residual film, the film residue, the surplus film, the bubble A, and the like are not adhered to the design surface S1 as much as possible. (It is collectively referred to as “poor defect” that bubbles A and foreign substances adhere to the design surface).
  • the article (hydraulic transfer product) that has undergone pattern distortion or dropout is once cured, irregularities due to pattern distortion or dropout stand out and transfer cannot be performed again (reproduction). Therefore, such a defective product significantly deteriorates mass productivity, and a fundamental solution for reducing the defective rate itself has been strongly desired.
  • the transfer pattern including the ink attached to the design surface S1 and the thick film curable resin is still in the transfer target W until irradiation with active energy rays and / or curing by heating. Since it is in an uncured state, it is easy to flow. Accordingly, when a load is applied to the design surface S1 due to the rotational operation of the transfer target W in the transfer liquid, the transfer speed, the ripples of the transfer liquid surface, the vibration of the transfer target W during liquid discharge or immediately after liquid discharge, and the like.
  • the transfer pattern containing the ink that has just adhered to the design surface S1 and the thick curable resin flows, and the design surface is likely to be damaged (this is considered to be a sagging defect).
  • the sagging failure for example, as shown in FIG. 26, there is a liquid surface wave phenomenon (negative pressure attack) that occurs when the design surface S1 comes out in parallel with the transfer liquid surface.
  • FIG. 27 shows the liquid discharge operation when the transfer target W is pulled up at a certain inclination angle from the transfer tank 2 in which no liquid flow is formed near the liquid surface (so-called batch type).
  • the liquid discharge position is as shown in FIGS. 27A to 27C, as shown in FIGS. 27A to 27C.
  • the “liquid discharge position” is a liquid discharge point (point) of the transfer target W on the design surface S1 when the transfer target W to be discharged is viewed from the side, and the design surface S1 and the transfer liquid. It can be said that it is an intersection with the surface.
  • the transferred object W itself takes on an action like a scum that scrapes water (liquid). Is transferred (guided) to the rear end side of the liquid discharge along the inclination of the transfer target W.
  • a flow of the transfer liquid L is a movement (flow) that relatively falls in the transfer tank 2 while bypassing the liquid discharge rear end side of the transfer target W, and this is inclined waterfall.
  • the inclined falling water forms a stirring flow that directs the transfer liquid L in the transfer tank 2 toward the design surface S1 (liquid discharge position) of the transfer target W, as shown in FIGS. 27 (b) and (c). To do.
  • the present applicant has deepened the recognition that it is necessary to review from the liquid discharge operation of the transferred body in order to prevent deficiency defects and sagging defects, while maintaining the liquid discharge position substantially constant. This has led to the idea that pulling up the transfer medium prevents the stir flow as much as possible.
  • Patent Document 3 there has been no technical idea considering the falling water at the time of pulling up (see, for example, Patent Document 3).
  • this Patent Document 3 is intended only for a large transferred object, and when such a large transferred object is pulled up in parallel with the water surface (liquid surface), the resistance by water is extremely large. In order to prevent this, the member to be transferred is inclined and pulled up, and there is no idea of maintaining the liquid discharge position constant. In this way, in the past, it was the fact that there was not much interest in liquid discharge operation, this is that hydraulic transfer was performed and completed at the same time as immersion, and transfer was already completed at the time of liquid discharge Seems to be greatly related.
  • the present invention is made by recognizing such a background, and is a hydraulic transfer technique that focuses on the liquid discharge operation of the transfer target, and maintains the liquid discharge position substantially constant. By pulling up, the flow of agitation caused by this is suppressed, so that film residue and bubbles are not brought close to the design surface of the transferred material during discharge (prevention of defective residue), and so as not to cause drip defects as much as possible.
  • the hydraulic transfer method according to claim 1 is: A transfer film formed by forming at least a transfer pattern on a water-soluble film in a dry state is supported by floating on the liquid surface in the transfer tank, and the transfer target is pressed from above, and the liquid pressure generated thereby mainly causes the transfer to occur.
  • the design surface of the transfer object When pulling up the transfer medium from the transfer liquid, the design surface of the transfer object is inclined with respect to the transfer liquid surface while maintaining the liquid discharge position from the transfer liquid surface at a substantially constant position. In this state, the transferred object is discharged.
  • the hydraulic transfer method of claim 2 In discharging the transferred material from the transfer solution, When the liquid flow is not formed near the liquid surface of the transfer tank, the liquid discharge position is maintained at a substantially constant position by pulling up the transferred body along the design surface. In addition, when a liquid flow is formed near the liquid surface of the transfer tank, the transfer target is lifted along the design surface while moving the transfer target in the liquid flow direction at the same speed as the liquid flow.
  • the liquid discharge position is maintained at a substantially constant position, When pulling up the transferred material, if the design surface that has once drained is re-immersed in the transfer solution, or if the design surface is dull or dull in the operation from immersion to liquid discharge, or the liquid discharge operation If you can't do it smoothly, Assuming an effluent imaginary line that smoothly connects the design surfaces, the transferred material is discharged along the effluent imaginary line to prevent re-immersion, prevention of sagging defects and scum defects, or smooth output. This is characterized in that the liquid operation is intended.
  • the hydraulic transfer method according to claim 3 is in addition to the requirement according to claim 1 or 2,
  • the liquid discharge position is maintained at a substantially constant position by pulling up the transferred body along the design surface or the liquid discharge virtual line.
  • the object to be transferred is transferred along the design surface or the liquid discharge virtual line while moving the transfer target in the liquid flow direction at the same speed as the liquid flow.
  • the liquid discharge position is maintained at a substantially constant position by pulling up the body, When pulling up the transferred material, if the design surface that has once drained is re-immersed in the transfer solution, or if the design surface is dull or dull in the operation from immersion to liquid discharge, or the liquid discharge operation If you can't do it smoothly,
  • the liquid discharge angle of the transfer target By setting the liquid discharge angle of the transfer target at the liquid discharge position on the design surface or the liquid discharge virtual line in the range of 25 degrees to 55 degrees, it prevents re-immersion, prevention of sagging defects and scrap defects, or smoothness This is characterized by the fact that the liquid discharge operation is intended.
  • the hydraulic transfer method of Claim 4 WHEREIN In the transfer tank, in the liquid discharge area for discharging the transferred material from the transfer liquid, Forms a design surface separation flow that separates from the design surface of the transferred material in the liquid discharge, and keeps the bubbles on the transfer liquid surface and the foreign matter staying in the liquid away from the design surface of the transferred material in the liquid transfer. It is characterized by being discharged out of the tank.
  • the hydraulic transfer method according to claim 5 includes: In discharging the transferred material from the transfer liquid, during the liquid discharge operation, the distance between the liquid discharge position on the design surface and the discharge port for collecting the transfer liquid to form the design surface separation flow is set. It is characterized by being kept substantially constant.
  • the design surface separation flow is formed by an overflow tank provided so as to face the design surface of the transferred material in the liquid discharge.
  • the hydraulic transfer method according to claim 7 includes: Below the overflow tank for forming the design surface separation flow, clean water that does not contain contaminants, or new water such as purified water after removing contaminants from the transfer liquid collected from the transfer tank is put into the tank. There is a new water supply port to supply, The design surface separation flow is formed using fresh water supplied upward from the fresh water supply port toward the liquid discharge area.
  • the hydraulic transfer method according to claim 8 is in addition to the requirement according to claim 7, From the new water supply port, downward fresh water is also supplied toward the liquid discharge area, In addition, on the back side of the new water supply port, a siphon type discharge unit that sucks up the transfer liquid containing impurities such as film residue from below and discharges it outside the tank is provided. The suction flow by the siphon type discharge unit is formed using fresh water supplied downward toward the liquid discharge area.
  • the transfer tank is provided with a tapered inclined plate below the fresh water supply port, and is formed so that the tank depth gradually becomes smaller toward the end of the tank.
  • the suction port of the siphon type discharge part is provided so as to face the uppermost end part of the inclined plate.
  • the hydraulic transfer method according to claim 10 is in addition to the requirements of claim 8 or 9, From the fresh water supply port, fresh water that is almost parallel to the liquid discharge area is also supplied. The fresh water is supplied from a fresh water supply port between both fresh waters that are supplied upward and downward toward the liquid discharge area.
  • the fresh water supply port is provided with a punching metal at a discharge port portion for supplying fresh water, from which fresh water supplied to the transfer tank is uniformly discharged from a relatively wide range. It consists of
  • the overflow tank for forming the design surface separation flow is characterized in that a flow rate enhancement collar for increasing the flow rate of the transfer liquid introduced into the overflow tank is formed at the discharge port serving as the liquid recovery port. is there.
  • the hydraulic transfer method according to claim 13 is in addition to the requirements of claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12,
  • the transferred body is held by a manipulator, and at least the operation from the immersion of the transferred body into the transfer liquid to the liquid discharge is performed by the operation of the manipulator.
  • the hydraulic transfer method according to claim 14 is in addition to the requirements of claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13,
  • a liquid flow from the upstream side to the downstream side is formed near the liquid surface, and the hydraulic transfer is continuously performed while supplying the transfer film from the upstream side of the transfer tank. It consists of.
  • the hydraulic transfer method according to claim 15 is in addition to the requirement according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14.
  • a transfer film either a water-soluble film formed with a transfer pattern only in a dry state is applied, or a film having a curable resin layer between the water-soluble film and the transfer pattern is applied.
  • a liquid curable resin composition is used as an active agent.
  • a transfer pattern having a surface protection function is formed on the transfer object during hydraulic transfer, and this is cured by irradiation with active energy rays after transfer and / or heating. It is.
  • the liquid discharge position is gradually moved toward the liquid discharge rear end side in order to pull up the transfer body from the transfer liquid in an inclined posture while maintaining the liquid discharge position at a substantially constant position.
  • the transfer liquid positioned on the back surface side (upward side) of the inclined transfer target body follows the inclination along with the liquid discharge.
  • the transferred body when the transferred body has a bending point on the design surface, if the transferred body is pulled up along the design surface in an attempt to maintain the liquid discharge position, The transferred body is mainly rotated at the bending point, and may cause a sagging defect or a defective chip.
  • a liquid discharge virtual line that smoothly connects the design surfaces is assumed, and the transferred object is pulled up along this line, so that the transferred object is continuously lifted even at the bending point. And the above problems can be avoided.
  • the liquid discharge angle of the transferred body is controlled in an appropriate state by setting the liquid discharge angle of the transferred body in the range of 25 to 55 degrees. While avoiding, it is possible to pull up while maintaining the liquid discharge position substantially constant.
  • the distance between the liquid discharge position and the transfer liquid recovery port (discharge port) for forming the design surface separation flow is substantially constant while the transfer target is pulled up from the transfer liquid. Therefore, the design surface separation and flow with the same force can be applied to the design surface at all times during the liquid discharge operation, and it is possible to more effectively prevent dregs and sagging defects.
  • the method for forming the design surface separation flow becomes specific, and the design surface separation flow is surely applied to the design surface of the transferred material discharged from the transfer liquid.
  • the overflow tank itself has been used for this type of transfer tank (hydraulic transfer technique), so from the viewpoint of designing the hydraulic transfer apparatus, It is also easy to adopt from the viewpoint of implementing the hydraulic transfer method.
  • fresh water clean water containing no contaminants or purified water from which contaminants have been removed from the recovered solution supplied from below the overflow tank for forming the design surface separation flow ) Is used to generate a design surface separation flow, so that a much more beautiful transfer product (transfer object) can be obtained as compared with the case where the collected transfer liquid is reused almost as it is as the design surface separation flow.
  • the siphon-type discharge portion is provided on the back side of the new water supply port for supplying new water downward toward the liquid discharge area, the film stays in the transfer liquid, particularly the middle layer water. After transferring foreign matters such as debris to the bottom (bottom) of the transfer tank (after flowing), it can be sucked up from here and effectively recovered. For this reason, it is possible to prevent the contaminants from rising to the upper liquid discharge area, and the liquid discharge area can be maintained in a cleaner state. In addition, even if the transfer liquid cannot be sucked up by the siphon-type discharge unit, fresh water can be drawn into the transfer tank and a flow toward the suction port (downward flow) can be formed. A stream that facilitates precipitation separation can be formed.
  • a tapered inclined plate is provided at the bottom end of the treatment tank, and the suction port of the siphon discharger is provided so as to face the uppermost end of the inclined plate. From the fresh water supplied downward toward the liquid area, it is possible to more efficiently form the suction flow by the siphon discharger. That is, the flow of the transfer liquid that rises along the inclination of the inclined plate can be efficiently taken into the suction port of the siphon-type discharge portion while maintaining its momentum, and it becomes easier to form the suction flow from the fresh water. Is.
  • the punching metal is provided in the discharge port portion of the new water supply port, the new water supplied from here to the transfer tank is uniformly discharged from a relatively wide range. Can be prevented from being partially fed straight.
  • the flange for increasing the flow velocity is formed in the overflow tank that forms the design surface separation flow, the contaminants that float near the liquid surface on the design surface side mainly in the liquid discharge area And bubbles on the liquid surface can be more reliably collected.
  • the degree of freedom of movement (movement) of the transferred object is increased, and the immersion is performed.
  • the operation of the transferred object from the liquid to the liquid discharge becomes smoother, and the liquid discharge position can be maintained more accurately.
  • a so-called continuous mode is adopted in which a liquid flow is formed near the liquid surface of the transfer tank, and continuous hydraulic transfer is performed while supplying a transfer film from the upstream side. Therefore, a new hydraulic pressure transfer method of pulling up the transferred material from the transfer liquid while maintaining the liquid discharge position almost constant can be performed continuously (making the production system at a specific mass production level a reality). .
  • a transfer pattern having a surface protection function is formed on the transfer target body by hydraulic transfer, and this is cured by subsequent active energy ray irradiation and / or heating.
  • the transfer target pulled up from the transfer liquid has a deficiency in which dust such as film residue adheres and bubbles, or a transfer pattern containing ink and a thick film curable resin immediately after adhering to the design surface. It is important not to cause defects, and such hydraulic transfer can be performed at a very low defect rate.
  • FIG. 4 is a side cross-sectional view showing the internal structure of the transfer tank, particularly the use state of the transfer liquid, with respect to the plan view.
  • FIG. 5 is an enlarged explanatory view showing a discharge form of fresh water supplied from a fresh water supply port to a transfer tank and a transfer liquid suction form by a siphon type discharge unit. It is a skeletal perspective view showing a transfer tank. It is a perspective view which shows the example of handling when a film holding mechanism is comprised with a belt.
  • FIG. 3 is a plan view of a transfer tank in which three blowers are used as means for dividing the liquid level residual film and the film is divided into two in the liquid flow direction.
  • Explanatory drawing which shows the modification which cancels
  • a skeletal perspective view (a) showing a transfer tank to which a housing-type shield is applied as a blocking means for blocking liquid recovery, and a perspective view showing only the overflow tank in an enlarged manner
  • FIG. 5 is an explanatory diagram showing a method of pulling up a transferred body whose design surface is curved in a convex shape while keeping the liquid discharge position substantially constant when pulling up from the transfer liquid. It is two kinds of explanatory views showing a preferred embodiment when the transferred object is discharged from the transfer liquid surface (at the start of liquid discharge).
  • FIG. 5 is an explanatory view showing a pulling method in which a liquid discharge position is made substantially constant when hydraulic transfer is performed by attaching a plurality of transfer objects to one jig. It is a side view which shows the to-be-transferred material conveying apparatus which connected the triangular conveyor part and the linear conveyor part by the liquid discharge side wheel, (a) shows the case where the immersion angle (alpha) is comparatively small, and shows (b) immersion. It is the figure which showed the case where angle (alpha) is comparatively large with the continuous line.
  • FIG. 5 is a side view showing a transferred object transport apparatus in which a transport track is formed in a generally rectangular shape in a side view and the immersion angle ⁇ and the liquid discharge angle ⁇ can be changed.
  • FIG. 5 is a partial side view showing a transferred object transport apparatus that gradually moves up the transferred object in a transfer liquid in a section from an immersion side wheel to a liquid output side wheel.
  • the transferred body has an opening on the design surface, a rear view and a sectional view (a) of the transferred body showing a state in which a thin film derivative is provided by opening a gap on the back side of the opening;
  • It is explanatory drawing (b) * (c) which shows a mode that a thin film derivative is provided and hydraulic pressure transfer and ultraviolet irradiation are performed.
  • It is explanatory drawing which shows the Example which was made not to make constant the clearance gap with an opening part, but to make it uniform in a perimeter, when providing a to-be-transferred body with a thin film derivative.
  • FIG. 2 is an explanatory diagram conceptually showing a state in which a transfer film supplied on a transfer liquid surface is generally curled upward by a difference in elongation between an upper transfer pattern and a lower water-soluble film.
  • the mode for carrying out the present invention includes one described in the following embodiments, and further includes various methods that can be improved within the technical idea.
  • the transfer film F suitably used in the present invention will be described, and then the entire configuration of the hydraulic transfer device 1 will be described.
  • the transfer film F suitably used in the present invention will be described.
  • the transfer pattern is referred to as a “transfer pattern also having a surface protection function”), which is because a top coat which has been conventionally applied after transfer is not necessary. That is, in the hydraulic transfer that also provides the surface protection function, the transferred pattern W formed by the hydraulic transfer is cured by irradiating the transferred object W after transfer with active energy rays such as ultraviolet rays and electron beams, The surface can be protected.
  • the transfer film F a film in which only a transfer pattern with a transfer ink is formed on a water-soluble film (for example, PVA; polyvinyl alcohol), or a curable resin between the water-soluble film and the transfer pattern.
  • a film in which a layer is formed is preferable, and in particular, when a transfer film F in which only a transfer pattern is formed on a water-soluble film is used, a liquid cured resin composition is used as an activator.
  • the cured resin composition is preferably a solventless ultraviolet or electron beam curable resin composition containing a photopolymerizable monomer.
  • the transfer patterns include wood grain patterns, metal (glossy) patterns, stone patterns that simulate the surface of rocks such as marble patterns, fabric patterns that simulate cloth and cloth-like patterns, Various patterns such as a pattern such as a tiled pattern and a brickwork pattern, a geometric pattern, a pattern having a hologram effect, and the like may be used.
  • the geometric pattern includes not only figures but also patterns with letters and photographs.
  • the transfer surface on which the decoration layer is formed is a design surface S1, and this design surface S1 can be said to be a surface that requires precise transfer. Is a surface facing the transfer film F (transfer pattern) floated on the transfer liquid surface.
  • the liquid level residual film F ′, surplus film, film residue This is to prevent bubbles A and the like from adhering as much as possible (preventing deficient defects and freezing defects).
  • the surface on which the decorative layer is not formed is defined as a decoration-unnecessary surface S2, on which the film residue, bubbles A, etc. may adhere (
  • the transfer pattern wrapping around from the design surface S1 side may be transferred in a distorted state). Therefore, in other words, the design surface S1 becomes a part visually observed in a state where the transferred object W (hydraulic transfer product) is finally assembled as an assembly or the like as a finished product, and the decoration unnecessary surface S2 is It is a portion that is not visually observed in the assembled state and is often the back side of the design surface S1.
  • the hydraulic transfer apparatus 1 includes a transfer tank 2 that stores a transfer liquid L, a transfer film supply apparatus 3 that supplies the transfer film F to the transfer tank 2, and a transfer film F. Is activated (applied) from the upper side of the transfer film F suspended and supported in the transfer tank 2, and the transferred object W is introduced (immersed) in an appropriate posture and discharged ( And a transfer object transport device 5. Further, the transfer tank 2 transfers a film holding mechanism 6 that holds both sides of the transfer film F supplied onto the transfer liquid surface, and a liquid surface residual film F ′ that is no longer necessary after the transfer target W is immersed.
  • the liquid level residual film recovery mechanism 7 that collects (discharges) from the liquid and the liquid discharge area purification mechanism 8 that mainly purifies the liquid discharge area (mainly the decoration-unneeded surface S2 side (design surface S1) And the design surface purification mechanism 9 that purifies the design surface S1 side of the transfer target W that floats in the liquid discharge area, and moves away from the transferred transfer film F and flows onto the transfer liquid surface.
  • It comprises an extension reduction preventing mechanism 10 for preventing the extension of the transfer film F supplied onto the transfer liquid surface by removing the activator component K.
  • the main feature is that the transfer position is lifted while maintaining the liquid discharge position substantially constant.
  • the transfer tank 2 is a part that floats and supports the transfer film F in performing the hydraulic transfer, and the processing tank 21 that can store the transfer liquid L at a substantially constant liquid level (water level) is a main constituent member.
  • the processing tank 21 has a bottomed shape in which the top surface is opened and the front, rear, left and right are surrounded by wall surfaces, and in particular, reference numerals 22 are attached to both side walls constituting the left and right sides of the processing tank 21.
  • an area (incident range) where the object to be processed W is poured into the transfer liquid L in the processing tank 21 is defined as an immersion area P1, and an area (exit area) where the object W is pulled up from the transfer liquid L is discharged.
  • the immersion area P1 can be said to be a transfer area (transfer position).
  • the phrase “area” is mainly used in the above names.
  • the transfer position is moved back and forth depending on the type and state of the transfer pattern of the transfer film F, and has a certain extent.
  • the immersion / extraction of the transfer target W is at a certain angle (a certain range or width) with respect to the liquid surface. This is because it is often performed.
  • the immersion angle ⁇ is not always maintained constant from the start of the immersion of the transferred object W until the immersion of the transferred object W. This is the same for the liquid discharge angle ⁇ , and the transferred object W starts to discharge. It is not always maintained constant until the liquid is discharged.
  • a film remaining on the liquid surface (an unnecessary liquid surface remaining film F ′ that is not used for transfer) is transferred to the transfer tank 2.
  • the interval between the immersion area P1 and the liquid discharge area P2 is provided with a certain distance.
  • the liquid level residual film F ′ divided in the longitudinal direction of the transfer tank 2 is then moved (sent) to both side walls 22 of the transfer tank 2 and discharged (collected) from the transfer tank 2 from here. Is.
  • a liquid flow of the transfer liquid L from the film supply side (upstream side) toward the liquid discharge area P2 (downstream side) can be formed in the vicinity of the liquid surface (surface layer portion).
  • an overflow tank an overflow tank 82, 92, 97, etc., which will be described later
  • the liquid flow is formed near the liquid surface of the transfer liquid L by circulating supply from the upstream portion of the tank 2.
  • a purifier such as a sedimentation tank or filtering removes extraneous films and film residues, etc., dispersed and retained in the transfer liquid L from the collected liquid (suspension). There is a method of removing.
  • the transfer film F is transferred from the upstream side to the downstream side at a speed synchronized with the liquid flow of the transfer liquid L.
  • the film holding mechanism 6 (conveyor 61). Is also responsible for regulating the elongation of the film from both sides.
  • the film holding mechanism 6 (conveyor 61) is responsible for transferring the transfer film F to at least the immersion area P1 (transfer position) in a state where the elongation of the transfer film F is maintained almost constant. At the transfer position, the elongation of the transfer film F is maintained at the same level every time, and continuous fine transfer can be performed.
  • the film holding mechanism 6 (conveyor 61) is not only responsible for the transfer action of the transfer film F but also for maintaining the film elongation at the transfer position constant (action for regulating the elongation). In the present specification, these are collectively referred to as “film holding action”. Incidentally, in this embodiment, the holding action of the film is canceled at the portion where the liquid level residual film F ′ is recovered, and details thereof will be described later.
  • the conveyor 61 as the film holding mechanism 6 is formed by winding an endless belt 63 around a plurality of pulleys 62, and the belt 63 contacts both sides of the transfer film F. And a track portion that holds the film (referred to as an “outward belt 63G” for feeding the film in the downstream direction at the same speed as the liquid flow while holding the film) and a position near the side wall 22 on the outside thereof. It is divided into a return path portion (this is referred to as “return path belt 63B”).
  • the pulley provided on the film supply side is referred to as a start pulley 62A
  • the pulley provided in the terminal portion is referred to as a terminal pulley 62B
  • the intermediate pulley 62C that supports the forward belt 63G from the side in the middle portion of the start pulley 62A and the end pulley 62B is provided (two in this case).
  • driving by a motor or the like is input to the terminal pulley 62B.
  • the rotation shaft 64 is set substantially in the vertical direction, and the width direction of the forward belt 63G that bears the film holding action is the depth (height) of the transfer liquid L. This is because even if the liquid level in the transfer tank 2 changes, the width of the belt 63 can be used, and the entire conveyor 61 need not be moved up and down. Yes (structure that can easily cope with liquid level change in the transfer tank 2).
  • the return belt 63B is a portion where the relay pulley 62C is provided, and is routed so that a part of the track hangs downward (in other words, a folded state), and the length of the suspending portion is appropriately changed to change the belt 63.
  • the tension applied to the whole is adjusted (for this reason, this hanging portion is referred to as a tension adjusting portion 63C).
  • the tension adjusting unit 63C includes a total of three pulleys, a position fixing pulley 62D provided on both sides of the relay pulley 62C and a vertically moving pulley 62E provided below the pulley.
  • a conveyor When it is desired to shorten the plan view dimension of 61, that is, the apparent total length from the start pulley 62A to the end pulley 62B, the vertical movement pulley 62E is lowered to extend the downward folding length of the tension adjustment section 63C.
  • the apparent planar size of the conveyor 61 is shortened without changing the overall length of the belt 63.
  • the rotation shafts 64 of the position fixing pulley 62D and the vertically moving pulley 62E constituting the tension adjusting unit 63C are set in a horizontal state substantially orthogonal to the side wall 22 of the transfer tank 2. Therefore, in the tension adjusting portion 63C (hanging portion), the width direction of the belt 63 is set so as to be substantially horizontal, and the posture of the belt 63 is changed (twisted) by 90 degrees in the return path portion. That is, the belt 63 is twisted by 90 degrees at the track portion from the end pulley 62B to the position fixing pulley 62D and the track portion from the position fixing pulley 62D to the start end pulley 62A in the return belt 63B.
  • two tension adjusting portions 63C are provided, but this may be omitted, may be one, or may be three or more.
  • such a film holding mechanism 6 is preferably configured such that the distance (width dimension) between the left and right forward belts 63G can be freely adjusted in consideration of the various width dimensions of the transfer film F.
  • This will be described below.
  • the arm bar 65 that rotatably supports the relay pulley 62 ⁇ / b> C can be protruded (expandable) with respect to the side wall 22 of the transfer tank 2.
  • Is provided so-called telescopic type).
  • the arm bar 65 can be fixed at any position (with a protruding dimension) by a clamp 66 or the like.
  • the start pulley 62A is also provided so as to protrude in the width direction of the transfer tank 2 by the same method.
  • adjustment of the tension adjusting unit 63C that is, the vertical movement pulley 62E is moved up and down to adjust the tension of the entire belt 63.
  • an arm bar 65 that supports the pulleys 62C and 62A is rotated around the side wall 22 of the transfer tank 2.
  • a method is also conceivable in which the arm bar 65 is provided so as to be freely movable and fixed at an arbitrary rotational position (angle) by a clamp 66 or the like (so-called swing type).
  • swing type a telescopic type and a swing type in combination in any place.
  • the belt 63 is used as the film holding mechanism 6.
  • a blower 26 is provided above the film supply side (upstream side) of the processing tank 21, thereby achieving uniform extension around the transfer film F and progressing toward the downstream side of the transfer film F.
  • the air blow by the blower 26 is characterized in that the wind is directly applied (struck) to the transfer film F.
  • the blower 26 is a method of blowing air to the transfer film F itself, and has the idea of forcibly spreading (extending) the transfer film F around by the force of wind.
  • the air blower 26 assists the transfer operation
  • the mounting position of the blower 26 is also set to the center position (width center) of the transfer tank 2.
  • the air volume is set to be relatively strong (large), and the accompanying ripples may reach the transfer position (immersion area P1). Conceivable. Therefore, in order to prevent this, a wave vanishing plate or the like is provided between the blower 26 and the transfer position in the transfer tank 2 to stabilize the transfer liquid surface, particularly the liquid surface at the transfer position. preferable.
  • the transfer tank 2 in which the liquid flow is formed near the liquid surface has been described. However, it is possible to apply the transfer tank 2 in which no liquid flow is formed in the vicinity of the liquid surface.
  • the liquid level residual film recovery mechanism 7 is a mechanism for recovering the liquid level residual film F ′ remaining on the transfer liquid level after the transfer target W is immersed, whereby the liquid level residual film F ′ is removed from the liquid discharge area P2. Is not allowed to reach. That is, the transfer film F is in a pierced state (here, an oval hole is opened), for example, as shown in FIG. The film is immersed in the liquid together with the transfer target W and is attached and transferred to the design surface S1 by the liquid pressure, but the film remaining on the liquid surface (the film floating in the open state) is used for transfer. Therefore, it becomes an unnecessary part (this is the liquid level residual film F ′).
  • the liquid level residual film F ′ is collected as soon as possible and reliably after transfer because it adheres to the transfer body W (design surface S1). Specifically, first, the liquid level residual film F ′ is divided in the longitudinal direction of the transfer tank 2, that is, in the liquid flow direction, and is moved to both side walls 22 of the transfer tank 2 and pushed out from here. To be discharged.
  • the liquid level residual film recovery mechanism 7 includes a dividing unit 71 that divides the liquid level residual film F ′ in the liquid flow direction, and a discharge unit 72 that discharges outside the tank at the side wall 22 portion of the transfer tank 2. These are provided and will be described below.
  • the dividing means 71 will be described.
  • the dividing means 71 quickly divides (branches) the liquid level residual film F ′ after the transfer of the transfer target W, that is, after the transfer.
  • the air blowing method that can do is adopted. Specifically, as shown in FIG. 1, as an example, a blower 73 is provided on one side wall 22 of the processing tank 21, and air is applied to the liquid level residual film F ′ on the liquid level from here.
  • the liquid level residual film F ′ has been described as being quickly divided, but the dividing action (here, the air volume) of the dividing means 71 is transformed into the transfer film F at the transfer position (immersion area P1) ( Since the transfer itself cannot be precisely performed if an adverse effect such as a pattern distortion due to a return wave) or a stress is generated, the range of action of the dividing means 71 does not adversely affect the transfer position (for example, Provided at a certain distance).
  • the air volume (wind power) of the blower 73 as the dividing means 71 is set to be relatively weak in consideration of having no adverse effect on the transfer position. Therefore, it is preferable that the blower 73 as the dividing means 71 can be freely moved along the longitudinal direction of the transfer tank 2 according to the back-and-forth movement of the transfer position, thereby preventing the transfer position from being adversely affected. It is easy to set an appropriate position to exert the dividing action.
  • the liquid level residual film F ′ is divided into left and right by the air blown from the blower 73.
  • a point at which the division starts in the liquid level residual film F ′ is defined as a division start point P3.
  • the liquid level residual film F ′ is divided into a substantially arc shape or a substantially V shape by blowing from the dividing start point P3 and looks as if it is a line. Therefore, this film separation line is defined as a dividing line FL.
  • the vicinity of the edge of the dividing line FL gradually approaches the both side walls 22 by blowing or liquid flow while gradually dissolving and spreading. Therefore, in FIG. 4, the dividing line FL is drawn with a clear solid line in the vicinity of the dividing start point P ⁇ b> 3, but is drawn with a broken line at the side wall 22 part away from the dividing line FL.
  • the blower 73 as the dividing means 71 has the liquid level residual after the division.
  • the film F ′ is also brought into the side wall 22.
  • the liquid flow formed in the transfer tank 2 also compensates for this effect.
  • the blower 73 as the dividing means 71 is provided on one side wall 22 and the liquid level residual film F ′ is divided into two, so that the dividing ratio to the side walls 22 is about 8: 2 as an example. The ratio is about 7: 3.
  • the liquid level residual film F ′ it is possible to divide the left and right side walls 22 almost equally.
  • a dividing means 71 (blower 73) is installed at the center of the width of the transfer tank 2. This is generally considered to be performed, and it is necessary to consider the installation mode with the transferred object conveyance device 5 located in the center of the width of the transfer tank 2.
  • the blower 73 as the dividing means 71 is not necessarily limited to one, and two or more blowers can be used in combination. As described above, the airflow of the blower 73 is forcibly increased (strongly). ) It can be said that it is a measure for not being able to. Specifically, for example, as shown in FIG. 1, a further small auxiliary blower 73a is installed on the side wall 22 provided with the blower 73, and is surely pushed into the direction of collecting a large amount of the liquid level residual film F ′. Is.
  • the air blowing direction of the auxiliary blower 73a is not necessarily limited to the mode of FIG. 1. For example, as shown in FIG.
  • the air blowing direction of the auxiliary air blower 73 a is substantially aligned with the air blowing direction of the main blower 73. It is also possible to set. Incidentally, in the embodiment of FIG. 6, the liquid level residual film F ′ is eventually divided into three parts and collected at three locations. Therefore, in this example, the liquid level residual film F ′ is not necessarily divided. It can also be said that it is not limited to two divisions (not limited to collection in two places). That is, various division forms and collection forms can be adopted depending on the properties of the transfer film F, the state of division / collection, and the like. Further, for example, FIG.
  • FIG. 7 shows an embodiment in which three fans (the main fan is 73 and the auxiliary fans are 73a and 73b) are provided as the dividing means 71, because the air volume of the auxiliary fan 73a is weak (largely).
  • This is the idea of finally pushing one of the divided liquid level residual films F ′ laterally with another auxiliary blower 73b.
  • the above-described method of dividing the liquid level residual film F ′ by blowing can cut the liquid level residual film F ′ in a non-contact state (the fan 73 itself can be divided without directly touching the film), and the transfer position can be transferred.
  • the film F is effective in that it does not easily exert an adverse effect such as deformation on the film F.
  • the discharge means 72 collects the liquid level residual film F ′ pushed to the side wall 22 of the transfer tank 2 and discharges it to the outside of the transfer tank 2.
  • the discharge means 72 is provided inside the left and right side walls 22 of the processing tank 21.
  • Apply the overflow tank 75 a recovery port for introducing the liquid level residual film F ′ together with the transfer liquid L is referred to as a discharge port 76.
  • the film holding mechanism 6 here, the conveyor 61 using the belt 63
  • the discharge port 76 is released from the film holding mechanism 6 at the discharge port 76 as described above.
  • the release method of the film holding mechanism 6 at the discharge port 76 will be described in detail.
  • the conveyor 61 (belt 63) is folded back here.
  • the film holding action by the film holding mechanism 6 is canceled at the discharge port 76 portion of the overflow tank 75.
  • the conveyor 61 is provided so as to be somewhat overlapped with the overflow tank 75 (the discharge port 76 portion) when viewed from the side, that is, the terminal pulley 62B is somewhat overlapped with the overflow tank 75 when viewed from the side. This will be described later (see FIG. 9A).
  • reference numeral 69A in the drawing is a guide body that regulates the chain conveyor 67 upward or downward so that the chain 68 does not block the discharge opening 76 in the vicinity of the discharge port 76.
  • reference numeral 69B in the drawing indicates the chain conveyor 67. Is a guide body that guides the vehicle at a normal height (orbit).
  • a weir plate 78 as a blocking means 77 for blocking liquid recovery is provided in the middle of the discharge port 76.
  • This overflow tank 75 is also intended to collect the liquid level residual film F ′ in two stages before and after the blocking means 77 (dam plate 78).
  • the blocking means 77 performs control to weaken the flow velocity after releasing the film holding action in order to narrow the flow velocity induction range of the discharge port 76, thereby reliably transferring the liquid level residual film F '. Recovery is performed without adversely affecting the position (immersion area P1).
  • the liquid level residual film F ′ when the liquid level residual film F ′ is introduced into the overflow tank 75 from the entire area of the discharge port 76 without providing the blocking means 77 at the discharge port 76, the liquid level residual film F approaching the side wall 22. It has been confirmed by the present applicant that ′ is pulled as a whole, and reaches the transfer position and adversely affects the transfer film F at the transfer position, such as deformation. Further, the transfer liquid L collected in the overflow tank 75 contains a lot of residual liquid film F ′, that is, a transfer pattern (ink component), a semi-dissolved water-soluble film, etc. Although it is preferable to dispose, these contaminants can be removed by a purifier and then recycled.
  • the overflow tank 75 is secured to the side wall 22 (frame) of the transfer tank 2 by a bolt or the like in the front-rear direction, which is the liquid flow direction, and the overall height of the overflow tank 75 can be changed. It is preferable to attach so that the inclination of the front-back direction of itself can be adjusted. Further, like the blower 73, it is preferable that the entire overflow tank 75 can freely move back and forth in the longitudinal direction of the transfer tank 2 in consideration of the change of the transfer position. Further, it is preferable that the blocking unit 77 can be appropriately changed in the installation position with respect to the discharge port 76 and can also change the width (length in the front-rear direction) as appropriate.
  • FIG. 9B shows a case where the conveyor 61 does not overlap with the overflow tank 75, and at this time, the terminal pulley 62 ⁇ / b> B of the conveyor 61 is located upstream of the overflow tank 75.
  • the both sides of the liquid level residual film F ′ held by the belt 63 (outward belt 63G) tend to be gradually released from the film holding (contact) by the falling liquid force at a high flow rate in the overflow tank 75 ( Originally, the portion held by the belt 63 tends to be separated from the belt 63).
  • both side end portions of the liquid level residual film F ′ are first pulled by the overflow liquid, and the holding is released. This causes the pattern bending of the entire film to go upstream. Can trigger. Naturally, the influence of such pattern bending leads to pattern distortion of the transfer film F in the immersion area P1.
  • FIG. 9A when the conveyor 61 is somewhat overlapped with the overflow tank 75, the liquid level residual film F ′ reaches the overflow tank 75 (discharge port 76). The film 61 can be held by the conveyor 61 (outward belt 63G).
  • the liquid level residual film F ′ is securely held by the conveyor 61 until the liquid level residual film F ′ reaches the discharge port 76, and is introduced into the overflow tank 75 (the front side of the blocking means 77). F 'falls as if it goes around the end pulley 62B, and is reliably recovered without adversely affecting the transfer position.
  • the weir plate 78 is applied as the blocking means 77, but other forms may be adopted as the blocking means 77, for example, as shown in FIG. A form is also possible and preferable (this is referred to as a housing-type shield 79).
  • 10 is a side groove-shaped member having a U-shaped cross section as an example, but this is not used as a container (groove) for receiving the recovered liquid.
  • it is stored (dropped) in the overflow tank 75 so that the opening part (open part) of the U-shaped cross section faces downward, and the overflow tank at the central plane part of the U-shaped cross section.
  • the upper opening side of 75 is partially closed.
  • the accommodating shield 79 is installed in a bridge shape in the overflow tank 75, and in this installed state, a planar portion located on the upper part of the accommodating shield 79 (the portion that closes the overflow tank 75). ) Is responsible for the action of the weir like the dam plate 78, and for this reason, the plane portion is referred to as a dam action part 79a. Moreover, the part which is oppositely provided on both sides of the weir action part 79a is a leg part 79b. By housing both the leg parts 79b in the overflow tank 75, the accommodating shield 79 can only move in the front-rear direction. Is acceptable.
  • the merit of forming the storage type shield 79 in such a U shape is that the storage type shield 79 (blocking means 77) can be fixed simply by dropping this into the overflow tank 75, Further, by moving this in the front-rear direction (sliding in the longitudinal direction of the transfer tank 2), the front-rear two-stage discharge position and its discharge balance can be easily adjusted and changed.
  • the above-described dam plate 78 is normally installed at the discharge port 76 of the overflow tank 75, a fixing means for attaching the dam plate 78 to the overflow tank 75 (discharge port 76) is required separately.
  • the adjustment described above involves attachment and detachment. However, if the housing type shield 79 is used, such a fixing means is not particularly required, and the adjustment can be performed very easily.
  • the weir action portion 79a (top surface) is provided with the overflow tank 75 as shown in FIG. Is set higher than the discharge port 76 (for example, about 1 mm to 3 mm).
  • the weir action portion 79a is set slightly lower than the transfer liquid surface (as an example, about 2 to 3 mm), which is a normal discharge amount setting.
  • the containment shield 79 is slightly submerged in the liquid.
  • the dam plate 78 described above has a general damming structure, and since the dam plate 78 protrudes above the transfer liquid surface, it is conceivable that film residue is caught on the dam plate 78. In the meantime, this eventually becomes shattered and falls into the transfer tank 2, which may contaminate the transfer liquid L.
  • the overflow tank 75a transports the transfer target W. It is necessary to consider not to disturb. Further, even if the liquid level residual film F ′ is divided into two in this way, the subsequent recovery may be performed at four locations (two locations on one side), and the number of divisions of the liquid level residual film F ′ by the dividing means 71 is not necessarily performed. And the number of collection points do not always match. Further, the liquid level residual film recovery mechanism 7 (discharge unit 72) is not necessarily limited to the overflow structure, and other recovery methods can be adopted. For example, the transfer liquid L near the liquid level is divided. A vacuum technique of sucking together with the liquid level residual film F ′. That is, in this case, a suction nozzle is applied as the discharge means 72.
  • the liquid level residual film recovery mechanism 7 is further provided with a liquid discharge area purification mechanism 8, which will be described below.
  • the liquid discharge area purification mechanism 8 is a mechanism that removes contaminants and bubbles A in the transfer liquid and on the liquid surface mainly on the decoration-unnecessary surface S2 side (the back side of the design surface S1) in the liquid discharge area P2.
  • a film residue (relatively fine thing such as string waste in which a water-soluble film and ink are mixed) generated because the transferred object W is immersed so as to break through the transfer film F
  • Examples thereof include bubbles A and film residue generated in large quantities on the liquid surface on the unnecessary surface S2.
  • the liquid discharge area purification mechanism 8 is provided with overflow tanks 82 as discharge means 81 on both the left and right sides of the liquid discharge area P 2. It is provided so as to overlap with the liquid discharge area P2. More specifically, a discharge means 81 (overflow tank 82) is provided inside the left and right side walls 22 of the liquid discharge area P2 in the transfer tank 2, and the liquid flow from the liquid output area P2 toward the overflow tank 82 (this is separated from the side). A flow LS) is generated mainly in the vicinity of the liquid surface, placed on the side separation flow LS, and foreign matters such as film residue and bubbles A are collected in the overflow tank 82 and discharged out of the tank.
  • a discharge means 81 (overflow tank 82) is provided inside the left and right side walls 22 of the liquid discharge area P2 in the transfer tank 2, and the liquid flow from the liquid output area P2 toward the overflow tank 82 (this is separated from the side).
  • a flow LS) is generated mainly in the vicinity of the liquid surface, placed on the side separation
  • an overflow tank 75 for collecting the liquid level residual film and an overflow tank 82 for purifying the liquid discharge area are provided in series.
  • a collection port for introducing impurities such as film residue together with the transfer liquid L is referred to as a discharge port 83.
  • the overflow tank 82 for purifying the liquid discharge area is formed with a flange for guiding the recovered liquid at the discharge port 83.
  • the discharge port 83 is provided.
  • the overhanging length from the surface to the processing tank 21 is formed to be relatively long, and this is a structure for increasing the flow rate of the transfer liquid L guided to the overflow tank 82 (for this reason, the flange is referred to as a flow rate enhancement flange 84).
  • the transfer liquid L collected in the overflow tank 82 has a relatively low contamination mixing ratio, it is preferable to remove the contaminants by a purification device such as a precipitation tank or filtering and then use them for circulation (see FIG. 2).
  • the liquid discharge area purification mechanism 8 is also for recovering foreign matter and bubbles A on the liquid surface of the liquid discharge area P2 (decoration unnecessary surface S2 side) as described above, in order to recover more reliably, It is preferable that air is blown over the liquid discharge area P2 and the foreign substances and bubbles A are pushed more positively into the overflow tank 82 (flow velocity enhancing brim 84). That is, in this embodiment, as shown in FIGS. 1, 2, and 4, for example, a blower 85 is provided on one side wall 22 of the transfer tank 2 (above the overflow tank 82).
  • Contaminants such as bubbles A and film residue generated on the liquid surface in the area P2 (decoration unnecessary surface S2 side) are sent to the overflow tank 82 on the opposite side to the installation location and collected.
  • the liquid discharge area P2 has the synergistic effect because the bubbles A and the contaminants are continuously removed by the blower 85 on the liquid surface, and the contaminants in the liquid are also collected by the overflow tank 82.
  • high cleanliness can be achieved, and at the same time, even the wraparound of foreign matters to the design surface S1 side of the transfer target W can be prevented.
  • blower 73 for dividing the liquid level residual film F ′ by providing the blower 85 that acts on the liquid level in the liquid discharge area P2 as described above, a total of a plurality of units are provided in this apparatus.
  • a blower will be installed.
  • the bubble A on the liquid level P2 is continuously blown by blowing the liquid level residual film F ′.
  • the dust can be sent to the overflow tank 82.
  • the blower 73 for dividing the film can also be used as the blower 85 for purifying the liquid discharge area, and these can be combined into one blower. It is also possible to do this.
  • the discharge means 81 of the liquid discharge area purification mechanism 8 is not necessarily limited to the overflow structure described above, and other discharge methods may be employed.
  • the transfer liquid L in which impurities are mixed is mainly used near the liquid surface.
  • the vacuum method to inhale is mentioned. That is, in this case, a suction nozzle is applied as the discharge means 81.
  • the design surface purification mechanism 9 will be described, but before that, the bubbles A generated on the design surface S1 side of the liquid discharge area P2 will be described.
  • the transfer target W jig J
  • the transfer target W is already lifted above the transfer target W in the liquid discharge.
  • the transferred object W or jig J may be positioned (this is referred to as the transferred object W or jig J pulled up in advance).
  • the transfer liquid L may be drowned from the transfer target W or jig J pulled up in advance and dripped onto the liquid surface of the transfer tank 2, and the dropped wrinkle jumps on the liquid surface, for example.
  • Bubbles A may be adhered to the design surface S1 of the transfer target W in the discharged liquid. Thereafter, when the transferred object W is irradiated with ultraviolet rays or the like in this state, the portion where the bubbles A adhere is transferred due to the stress of the bubbles A or the refraction of the ultraviolet rays as shown in FIG. Pattern distortion of the pattern (decorative layer) or defect that the pattern falls off (so-called pinhole). Accordingly, in the present embodiment, the design surface S1 of the transfer target W floating from the transfer liquid L in the liquid discharge area P2 is purified (mainly by the action of new water described later), on the liquid surface on the design surface S1 side. A design surface purification mechanism 9 is provided for the purpose of removing the generated bubbles A and removing impurities in the transfer liquid and on the liquid surface.
  • the design surface purification mechanism 9 forms a liquid flow downstream from the design surface S1 of the transferred body W during liquid discharge or a liquid flow away from the design surface S1 (this is referred to as a design surface separation flow LR).
  • the purpose is to prevent the foreign matter dispersed and staying in the transfer liquid L as much as possible from approaching (not adhering to) the design surface S1, and falling from the transfer target W pulled up in advance.
  • the bubbles A and impurities on the liquid surface generated by the soot may be discharged away from the design surface S1 and out of the tank.
  • the design surface separation flow LR is preferably formed by applying clean water that does not contain contaminants, or purified water from which contaminants have been removed from the recovered liquid (collectively referred to as new water). .
  • the design surface purification mechanism 9 is configured so that the overflow tank 92 as the separation flow forming means 91 is discharged from the liquid receiving area W2 in the liquid discharge area P2, as shown in FIG. It is provided on the design surface S1 side. More specifically, in this embodiment, since the transfer target W floats in a state where the design surface S1 is inclined downward in the liquid discharge area P2, the transfer target W faces the design surface S1 of the transfer target W ( An overflow tank 92 is provided so as to oppose, and a design surface separation flow LR directed from the lower side to the upper side and further toward the overflow tank 92 in the liquid to be transferred (design surface S1) is formed.
  • a recovery port that mainly introduces fresh water together with the transfer liquid L is referred to as a discharge port 93.
  • the design surface separation flow LR is preferably formed by supplying fresh water as described above, for example, in FIG. 2, a new water supply port 97 is provided below the overflow tank 92 for design surface separation flow formation, From here, fresh water is supplied upward toward the liquid discharge area P2 (this new water is referred to as PU), and a design surface separation flow LR is generated using this.
  • the fresh water PU supplied upward toward the liquid discharge area P2 is not only used for the generation and formation of the design surface separation flow LR, but also the side separation flow LS of the liquid discharge area purification mechanism 8 described above. It can also be used for generation and formation of.
  • fresh water PD that is supplied downward from the new water supply port 97 toward the liquid discharge area P2, which facilitates the formation of a suction flow LV by a siphon type discharge unit 98 described later.
  • fresh water PP supplied from the new water supply port 97 substantially parallel (horizontal) to the liquid discharge area P2 (in FIG. 2, the flow is directed toward the upstream side). It is discharged (supplied) at a lower speed than the fresh water PU and the fresh water PD from the vicinity of the middle layer between the water PD.
  • the “middle layer (near)” classifies the transfer liquid L in the transfer tank 2 into three types of upper layer (near the liquid surface) / middle layer / lower layer (near the bottom) depending on the depth (height) in the liquid. In this case, it is a middle layer, and this is likely to contain film residue.
  • the siphon type discharge unit 98 is provided on the back side of the new water supply port 97, and transfers the transfer liquid L (mainly middle layer water) containing impurities such as film residue from below the transfer tank 2 (treatment tank 21). Sucking (collecting) and discharging out of the tank. That is, the siphon type discharge unit 98 of the present embodiment is provided in the middle so that the lower suction port 98a is provided at a position lower than the fresh water supply port 97, and the transfer liquid L taken in from here can be sucked up to the liquid level.
  • the transfer path is formed to be extremely narrow (for example, an interval of about 10 mm in the cross section of the flow path), and this path is a siphon path 98b.
  • suction flow LV the flow in the transfer liquid L sucked by the siphon type discharge unit 98 is referred to as a suction flow LV, and this suction flow LV is supplied downward from the fresh water supply port 97 toward the liquid discharge area P2. It is formed using new water PD (it is formed effectively by new water PD).
  • the tapered inclined plate 23 and to form the suction port 98a of the siphon type discharge portion 98 so as to face the uppermost end portion of the inclined plate 23. That is, the transfer tank 2 (processing tank 21) is formed by the inclined plate 23 such that the tank depth gradually decreases toward the tank end (formed so that the tank bottom gradually rises). It is desirable to provide the suction port 98a of the siphon type discharge portion 98 so as to face the uppermost end portion of the plate 23.
  • the flow of the transfer liquid L rising along the inclination of the inclined plate 23 can be efficiently taken into the suction port 98a while maintaining its momentum.
  • the purpose of forming the suction flow LV by the siphon type discharge unit 98 (or the inclined plate 23 in addition to this) is to make the contaminants such as film residue staying in the transfer liquid L (especially middle layer water) downward (bottom). This is to prevent the contaminants from being raised to the upper liquid discharge area P2 by sucking (recovering) this from after being transported so as to flow (after flowing).
  • the fresh water PD becomes a suction flow LV, and a flow (downward flow) toward the suction port 98a can be formed.
  • a stream that promotes the separation of the precipitate can be formed.
  • the design surface purification mechanism 9 if the design surface purification mechanism 9 is not provided, impurities easily adhere to the design surface S1.
  • the transfer target W that is pulled up from the transfer liquid L usually leaks the transfer liquid L from the upstream to the downstream. It emerges in a coughing state.
  • the damped transfer liquid L flows so as to wrap around the lower side or the side of the transfer target W, and becomes a flow toward the design surface S1 facing the downstream side (flow wrapping around).
  • the force flowing from the vicinity of the transfer target W toward the transfer target W due to the difference between the pulling speed of the transfer target W and the remaining liquid level. Will work.
  • a flow velocity enhancing brim 94 is formed at the discharge port 93, which is overflow. This is because the flow rate of the transfer liquid L introduced into the tank 92 is increased.
  • the separation flow forming means 91 in the design surface purification mechanism 9 is not necessarily limited to the overflow structure, and other discharge methods may be employed. For example, as shown in FIG. There is a vacuum method in which the transfer liquid L and fresh water are sucked mainly near the liquid surface. That is, in this case, the suction nozzle 95 is applied as the separation flow forming means 91.
  • the main feature is that the transfer target W is pulled up from the transfer liquid L while the liquid discharge position PO on the design surface S1 is maintained substantially constant.
  • the “liquid discharge position PO” refers to a liquid discharge point (liquid discharge point) on the design surface S1 of the transfer target W floating from the liquid, and is different from the liquid discharge area P2.
  • the “liquid discharge area P2” refers to a range from the start of liquid discharge to the end of liquid discharge, and is a term (phrase) compared with the immersion area P1. .
  • a pulling method (pulling method) for maintaining the liquid discharge position PO at a substantially constant position will be described.
  • liquid flow pear when a liquid flow is not formed near the liquid surface of the transfer tank 2 (hereinafter, this may be abbreviated as “liquid flow pear”), for example, as shown in FIG.
  • the design surface S1 of the body W is kept at a substantially constant inclination angle (this is the liquid discharge angle ⁇ with respect to the liquid surface, which is 34 degrees in this case) while being pulled up along the design surface S1, the liquid discharge position is constant.
  • a pulling method is referred to as “raising along the design surface” / “pulling up along the design surface”. That is, in the case of the transfer pear 2 with a liquid flow, the liquid discharge position PO on the design surface S1 is the same line when (i), (ii), and (iii) in FIG. It can be seen that the liquid discharge position PO is kept constant because it is lined up (becomes the same position with respect to the transfer tank 2).
  • liquid flow ant a liquid flow (horizontal transfer direction) is formed near the liquid surface of the transfer tank 2 (hereinafter, this is abbreviated as “liquid flow ant”).
  • liquid flow ant a liquid flow (horizontal transfer direction) is formed near the liquid surface of the transfer tank 2 (hereinafter, this is abbreviated as “liquid flow ant”).
  • 3) shows a case where the transfer target W is lifted obliquely along the design surface S1 at a constant liquid discharge angle ⁇ (for example, 34 degrees) (pickup along the design surface).
  • for example, 34 degrees
  • the liquid discharge position “I” in (i) of FIG. 13B is slightly moved downstream in the horizontal direction (advancing direction of the transfer target W) in (ii) of FIG. 13B.
  • the position is “i ′” in the figure and deviates from the actual liquid discharge position “b”.
  • the position “I” shown in (iii) of FIG. 13B indicates that the position “I ′” is further shifted to the downstream side in the horizontal direction (moved position).
  • liquid discharge position PO can be kept constant by pulling up the transfer target W at the liquid discharge angle ⁇ (vector synthesized).
  • a pulling method is “picking up with a liquid flow” / “pulling up with a liquid flow”, and the liquid discharge angle is more than the angle of “pickup along the design surface”.
  • the tilt angle approaches the liquid level, and the liquid discharge angle ⁇ is small.
  • liquid discharge angle ⁇ in the present specification indicates an angle formed between the liquid surface and the design surface S1, and in particular, the liquid surface here refers to the traveling direction (liquid flow direction) of the transfer target W. pointing.
  • liquid discharge position (almost) constant” in the present invention means that the liquid discharge position PO is maintained constant by pulling up the transfer target W along the design surface in the case of liquid flow.
  • the liquid discharge position PO is kept constant by pulling up (combining) the horizontal transfer component of the flow rate.
  • the transfer target W is pulled up along the design surface S ⁇ b> 1, it basically means that no liquid flow is formed in the transfer tank 2.
  • the overflow tank 92 since the preferable installation aspect of the overflow tank 92 (for design surface separation flow formation) differs with the ant pear of a liquid flow, this is demonstrated below.
  • the overflow tank 92 it is preferable to keep a constant distance from the liquid discharge position PO to the overflow tank 92 (discharge port 93) from the start to the end of liquid discharge of the transfer target W (as an example, about 10 to 200 mm).
  • the design surface separation flow LR is reliably and uniformly applied to the design surface S1 of the transfer target W. For this reason, in the case of no liquid flow (that is, when the transfer target W is pulled up along the design surface), for example, as shown in FIG.
  • the overflow tank 92 is also maintained at a substantially constant position (fixed). By doing so, the separation distance D between the liquid discharge position PO and the overflow tank 92 can be kept constant.
  • the transfer target W is lifted while adding the horizontal transfer component of the liquid flow. For example, as shown in FIG.
  • the overflow tank 92 is also moved at the same speed and in the same direction as the liquid flow during the discharge of the transfer target W, so that the separation distance D between the discharge position PO and the overflow tank 92 can be kept constant.
  • the transfer target W (design surface S1) is bent into a “he” shape as shown in FIG. 15, for example, the same applies to the case where it is bent into a “ku” shape. ) And a pulling method (preferably pulling method) for maintaining the liquid discharge position PO substantially constant will be described.
  • the short piece portion of the transfer target W is WS
  • the long piece portion is WL
  • the bending point is WP.
  • the design surface S1 is assumed to be the inside (small-angle side) of the “he” shape.
  • an undesired pulling method that is, the liquid discharge position PO can be maintained substantially constant in such a transfer target W based on FIG. 15A.
  • FIG. 15A it is assumed that both the short piece portion WS and the long piece portion WL are pulled up at the same liquid discharge angle ⁇ (34 degrees in this case).
  • 34 degrees
  • FIG. 15 (a) pull the transfer object W obliquely at a constant angle (liquid discharge angle ⁇ ) of 34 degrees, for example, along the inclination (design surface S1) of the short piece portion WS. It is a state (lifting along the design surface).
  • FIG. 15A it is assumed that both the short piece portion WS and the long piece portion WL are pulled up at the same liquid discharge angle ⁇ (34 degrees in this case).
  • a liquid discharge virtual line CV substantially along the design surface S1 is assumed. This is a line that smoothly connects the short piece portion WS and the long piece portion WL in order to avoid the rotation operation at the bending point WP as described above, and to avoid this (not necessarily a curve),
  • the transfer target W is pulled up along the liquid discharge virtual line CV. That is, the transfer target W is pulled up so that the liquid discharge position in the liquid discharge virtual line CV is constant.
  • the liquid discharge virtual line CV is set so that the liquid discharge angle ⁇ of the transfer target W is within a certain range (for example, 25 degrees to 55 degrees) when shifting from the short piece section WS to the long piece section WL. It is preferable to set, and in this way, the transfer target W can be moved at a constant speed and smoothly ascend from the liquid or smoothly move from immersion to liquid discharge. Is.
  • the liquid discharge angle of the transfer target W is set to about 25 to 55 degrees because if the liquid discharge angle ⁇ is smaller than 25 degrees, the design surface S1 is easily affected by the surface tension, and the sagging defect is likely to occur. This is because, when the liquid discharge angle ⁇ is larger than 55 degrees, the trace of the liquid drop or the liquid flow that has passed down easily appears on the design surface S1 side.
  • the short piece portion WS is arranged along the portion with a substantially constant liquid discharge angle ⁇ (here, 34 degrees).
  • substantially constant liquid discharge angle
  • the liquid discharge angle ⁇ on the line CV (inclination of the tangent at the liquid discharge position on the line) is set to 54 degrees, for example, and the transfer target W is pulled up. That is, in the case of the present embodiment, between (i) and (ii) in FIG.
  • the transferred object W is pulled up along the virtual liquid discharge line CV while gradually increasing the liquid discharge angle ⁇ .
  • the position at which the liquid discharge angle ⁇ (tangent) is set may be set at a point where the liquid discharge virtual line CV intersects the liquid surface (in other words, the current liquid discharge position).
  • the “liquid discharge position (liquid discharge point)” considering the liquid discharge angle ⁇ includes not only the current liquid discharge position but also the liquid discharge position immediately thereafter (immediately after the current time). It is a waste.
  • the transfer target W is pulled up along the liquid discharge virtual line CV, for example, as shown in (ii) and (iii) of FIG.
  • the transfer target W is pulled up along the liquid discharge virtual line CV, for example, as shown in (ii) and (iii) of FIG.
  • the transfer target W is pulled up along the liquid discharge virtual line CV, for example, as shown in (ii) and (iii) of FIG.
  • the transfer target W is pulled up along the liquid discharge virtual line CV, for example, as shown in (ii) and (iii) of FIG.
  • the transfer target W is pulled up along the liquid discharge virtual line CV, for example, as shown in (ii) and (iii) of FIG.
  • the transfer target W is pulled up along the liquid discharge virtual line CV, for example, as shown in (
  • the transferred object W is pulled up along the virtual liquid discharge line CV while gradually decreasing (gradually decreasing) the liquid discharge angle ⁇ .
  • the liquid discharge angle ⁇ is 52 degrees
  • the liquid discharge angle ⁇ is 47 degrees
  • the liquid output angle ⁇ is 45 degrees
  • the liquid angle ⁇ is 34 degrees.
  • the liquid discharge virtual line CV and the liquid discharge angle ⁇ are set so as to take such a smooth liquid discharge operation.
  • the angle formed with the transfer liquid surface is within 25 to 55 degrees for the part that has already been discharged, for example, the short piece WS when the long piece WL is discharged.
  • the above-described method of pulling up along this line is not limited to the transfer target W having the bent portion WP as described above, but the transfer target W (design surface S1). This is a technique that can be applied to a case where the curvature greatly changes, a surface is discontinuous, or there is an opening Wa.
  • the state in which the design surface S1 is curved in a concave shape means that, as shown in FIG. 16, for example, the design surface S1 facing the lower transfer liquid surface during transfer is formed in a concave shape with respect to the transfer liquid surface. Refers to what is being done. Even in such a transfer target W, if the transfer target W is pulled up along the design surface S1 (here, the transfer target W is pulled up along the arc-shaped locus of the design surface S1), the liquid discharge position PO is kept constant.
  • the transfer target W may be re-immersed, and the transfer target W from immersion to liquid discharge It is also possible that the operation transition cannot be performed smoothly.
  • the liquid discharge angle ⁇ of the transfer target W is preferably 25 ° to 55 °, but the liquid discharge angle ⁇ of the transfer target W may not be within this range simply by pulling up along the design surface S1. Conceivable. Specifically, in the case of a liquid flow ant, it is preferable to move the transfer target W so as to always go downstream from immersion (transfer) to liquid discharge.
  • the transfer target W is pulled up while maintaining the liquid discharge angle ⁇ at the liquid discharge position PO at approximately 34 degrees. is there. That is, in FIG. 16 (a), the liquid discharge angle ⁇ (design) at the liquid discharge position PO is basically based on pulling up the transfer target W along the design surface S1 so as to maintain the liquid discharge position PO substantially constant. By keeping the tangent line on the surface S1 substantially constant, the transfer target W is controlled to be discharged smoothly (so that a smooth liquid discharge operation is performed).
  • the liquid discharge angle ⁇ is not necessarily maintained constant, and may be changed within the range of 25 to 55 degrees as described above as long as the smooth liquid discharge operation of the transfer target W is not hindered. This may be determined by the shape of the design surface S1 or the like.
  • this is defined as a liquid discharge virtual line CV
  • the transfer target W is pulled up at a constant liquid discharge angle ⁇ (for example, 34 degrees) along this line.
  • for example, 34 degrees
  • such pulling up is inevitable at the liquid discharge position PO on the actual design surface S1 and the liquid discharge position on the liquid discharge virtual line CV as shown in (ii) of FIG. If the deviation is small and has no adverse effect (for example, if the stirring flow does not occur in the transfer liquid L, or if the stirring flow is generated, the adverse effect exerted by this is extremely small). ), A method of pulling that can be fully adopted.
  • the state in which the design surface S1 is curved in a convex shape means that, for example, as shown in FIG. 17, the design surface S1 facing the lower transfer liquid surface during transfer is convex with respect to the transfer liquid surface. It refers to what is formed (so that it protrudes).
  • the transfer target W is pulled up along the design surface S1 (here, the transfer target W is pulled up along the arcuate locus of the design surface S1), The position PO is kept constant.
  • a drip defect or a deficiency defect occurs only by pulling up the transfer target W along the design surface S1.
  • the transferred object W is pulled up while gradually decreasing the liquid discharge angle ⁇ at the liquid discharge position PO from 55 degrees to 25 degrees.
  • the reason why the liquid discharge angle ⁇ near the start of liquid discharge is set large in this embodiment is to smoothly carry a series of operations from immersion to liquid discharge, and the design surface S1 is affected by the surface tension. This is to make it difficult. That is, in the case of the present embodiment, for example, when the liquid discharge angle ⁇ near the liquid discharge start is extremely small, the liquid discharge start posture of the transfer target W is lying near the liquid surface, and the previous immersion operation is performed. It is difficult, and the transition from the immersion operation to the liquid discharge operation cannot be performed smoothly.
  • the design surface S1 is easily affected by the surface tension, and the sagging defect is likely to occur.
  • the reason why the liquid discharge angle ⁇ in the vicinity of the liquid discharge end is set small is to reduce the rising angle of the liquid discharge front end part already floating above the transfer liquid surface, thereby suppressing the occurrence of liquid dripping on the design surface S1. Because.
  • the above-described pulling-up method of the transfer target W is mainly related to the design surface S1, and can be said to be an intermediate operation during liquid discharge.
  • the liquid discharge start time is an operation when the transfer target W comes out from the surface of the transfer liquid and starts to rise, and this will be described below.
  • the transfer target W usually has a thickness, and when the design surface S1 including the thickness portion is included, the design surface S1 is bent at the thickness portion.
  • the thick portion is not so much included in the design surface S1, and that the liquid discharge position PO is not particularly maintained at a fixed position.
  • FIG. As shown in (b), importance is attached to the fact that the transfer target W is discharged from one point in a side view state. This is for preventing the transfer target W from being parallel to the liquid surface at the time of the start of liquid discharge. For example, in the case of the transfer target W having the shape of “he” shown in FIG. If the liquid is discharged in a state where the short piece portion WS is parallel to the water surface, as shown in FIG. 26, the liquid surface of the short piece portion WS is rippled (negative pressure attack), and the short piece portion has already been generated.
  • the transfer target W is hydraulically transferred while being attached to the jig J, and the liquid discharge operation of the transfer target W is also accompanied by the jig J. For this reason, it is desirable to consider the lifting operation including the jig J in the actual hydraulic pressure transfer. Specifically, when the jig J is pulled up prior to the transfer target W, when the jig J is discharged, a wave due to the pulling up of the jig can occur on the transfer liquid surface. If the fixing position to the jig J can be changed, the position is set in consideration of the jig J.
  • the plurality of transfer bodies W are pulled up along the assumed liquid discharge virtual line CV instead of along the design surface S1 of each transfer target body W, and liquid discharge on this line is performed.
  • the position is pulled up so as to maintain a certain position.
  • the liquid discharge angle ⁇ at this time may be substantially constant (for example, 34 degrees), or may be raised while changing in the range of 25 degrees to 55 degrees.
  • the transfer liquid L collected in the overflow tank 82 for forming the side separation flow, the overflow tank 92 for forming the design surface separation flow, and the siphon discharge unit 98 will be described.
  • the transfer liquid L collected by these is sent to a purification device through a water level adjustment tank, and after impurities are removed, fresh water (purified water) is passed through a temperature control tank. Are reused. Of course, the foreign matter captured by the purification device is discarded.
  • a waste pipe for discharging contaminants (sludge) accumulated here is provided in the middle of the pipe for sending the transfer liquid L (including impurities) collected in the overflow tank 82 to the water level adjusting tank or at the bottom of the water level adjusting tank.
  • the overflow tank 75 serving as the liquid level residual film recovery mechanism 7 is generally discarded as it is because of the high mixing ratio of impurities as described above.
  • the liquid in the adjustment tank or precipitation tank is temporarily stored with a plate (damage plate), etc. Purification can be achieved by sending a relatively clean supernatant to the subsequent stage.
  • the fresh water purified as described above is supplied, for example, from below the guide conveyor 33 on the film supply side (upstream side) as shown in FIG.
  • it is supplied from the new water supply port 97 (below the overflow tank 92 for forming the design surface separation flow ) upward, downward, and parallel (horizontal) toward the liquid discharge area P2.
  • “new water PU supplied upward toward the liquid discharge area P2” is new water for forming the design surface separation flow LR and the side separation flow LS as described above.
  • the “new water PD supplied downward” is the new water for forming the suction flow LV by the siphon discharge unit 98.
  • a punching metal or the like is provided at the discharge port for supplying fresh water to the transfer tank 2, specifically, the inclined portion 24 in the middle of the transfer tank and the new water supply port 97, and the supplied fresh water It is preferable that the water is uniformly discharged from a relatively wide range (preventing the fresh water from partially going straight).
  • the immersion area P1 is used.
  • the liquid discharge area P2 may be moved back and forth by about 800 mm to 1200 mm. Therefore, the immersion area P1, the terminal pulley 62B of the film holding mechanism 6, the dividing means 71 (blowers 73 and 73a) and the overflow tank 75 of the liquid level residual film recovery mechanism 7, the overflow tank 82 and the blower of the liquid discharge area purification mechanism 8 are used.
  • the overflow tank 92 (separation flow forming means 91) of the design surface purification mechanism 9 are in a close positional relationship with each other. Therefore, it is preferable to move each of the above components simultaneously or independently with the movement of the immersion area P1. For this reason, in this embodiment, as shown in FIG. 2, for example, the end pulley 62B of the film holding mechanism 6 is used.
  • the blowers 73, 73a, and 85 and the overflow tanks 75 and 82 are mounted on a gantry 29 that can move in the longitudinal direction of the transfer tank 2 (in the front-and-rear direction), and the basin that can independently move the overflow tank 92 back and forth.
  • each gantry 29 and 30 is configured so that these can be appropriately moved in accordance with the movement of the immersion area P1 and the liquid discharge area P2.
  • the movement method of each gantry 29 and 30 can be automatically controlled manually or using a linear motor or the like (actually, the positions of the gantry 29 and 30 are adjusted according to the lifting program of the transfer target W). A program that runs automatically is realistic).
  • an extension reduction preventing mechanism 10 that suppresses the extension reduction of the transfer film F is provided.
  • the extension reduction prevention mechanism 10 prevents the active agent component K, which is liberated and exuded from the film surface on the transfer liquid surface upon adhering to the liquid surface, from staying on the liquid surface and stretching the film to inhibit the extension of the transfer film F.
  • both sides of the transfer film F supplied onto the transfer liquid surface are reliably attached to the conveyor 61 (belt 63) provided in the vicinity of the side wall 22 of the transfer tank 2.
  • the reason (background) for inhibiting the extension of the transfer film F by the activator component K flowing out from the transferred transfer film F will be described.
  • an activator is applied to the transfer film F in order to activate the transfer pattern.
  • a part of the activator applied to the film is transferred to the transfer film (contact with the transfer liquid L). It separates (releases) from the surface of F and flows out (exudes) on the surface of the transfer liquid (this is mainly referred to as the activator component K in this specification).
  • the outflow of the activator component K onto the liquid surface is not necessarily limited to the supply direction (liquid flow direction) of the transfer film F, and may flow out in various directions. It is considered that the outflow (preceding) in the film supply direction is relatively large because the film is being supplied.
  • the activator component K gradually increases on the transfer liquid surface and stays, for example, near the side wall 22 of the transfer tank 2 having a weak liquid flow. .
  • the activator component K staying in the vicinity of the side wall 22 becomes highly concentrated on the liquid surface, and it becomes as if the oil component forms a film (oil film) on the water surface (this is referred to as a liquid film for convenience), which is a transfer film. It acts to refuse the extension (spreading) of F. That is, if the hydraulic transfer is continued, the liquid film formed by the activator component K hinders the extension (spreading) of the film.
  • the transfer liquid L in the transfer tank 2 is used for environmental protection and effective use (recycling) of resources. Most of them are recycled. For this reason, the activator component K (liquid film) released on the transfer liquid surface does not simply accumulate (float) on the liquid surface but also partially dissolves in the transfer liquid L. Therefore, if the hydraulic transfer is repeated, the concentration of the activator in the transfer liquid L gradually increases, and the viscosity of the transfer liquid L increases, which also becomes a factor that hinders the extension of the transfer film F.
  • the activator of the ultraviolet curable resin is indoors, the activator component K is slightly cured by light, so that the viscosity of the transfer liquid L tends to be further increased. Further, as described above, since most of the transfer liquid L is reused and there is a social environment in which the amount of waste liquid is to be suppressed, this is a factor that further increases the viscosity of the transfer liquid L. However, since hydraulic transfer requires stable transfer at a high level, the surface of the transfer liquid is inevitably stabilized by suppressing ripples, and this is a transfer liquid of an activator (resin component). It is also a fact that it acts to prevent mixing into L.
  • the phenomenon in which the extension of the transfer film F is hindered by the activator component K on the transfer liquid surface is an activator used for hydraulic transfer (hydraulic transfer that does not require a top coat) to form a transfer pattern having a surface protection function.
  • This is conspicuous, and it is considered that the activator has a higher viscosity than ordinary solvent-based ones, and therefore tends to suppress the elongation of the transfer film F.
  • the transfer film F supplied on the transfer liquid surface generally has a difference in elongation between the transfer pattern located on the upper side of the transfer liquid surface and the water-soluble film located on the lower side. (The water-soluble film has a higher elongation rate) and gradually curls upward.
  • a blow method is adopted as the extension reduction preventing mechanism 10 and spreads as a liquid film on the transfer liquid surface between the film holding mechanism 6 (conveyor 61) and the transfer film F,
  • the activator component K that inhibits the extension of the transfer film F is removed by blowing air. That is, as shown in FIG. 1 as an example, the mechanism sends air to the vicinity of the side wall 22 where the flow of the transfer liquid L (liquid flow) is weakened and the activator component K is likely to stagnate, particularly to the left and right sides of the blower 26. It is preferable to push (send) the active agent component K located (floating) in the region between the film holding mechanism 6 and the side wall 22.
  • the activator component K is pushed to the site.
  • the overflow tank 75 is provided along the both side walls 22 of the transfer tank 2 outside the conveyor 61 as the film holding mechanism 6. The activator component K sent between the two is recovered.
  • a discharge port 76a for introducing and collecting the activator component K is also formed on the front edge side (upstream side) of the overflow tank 75.
  • two compressed air blowing nozzles 102 are applied as the extension reduction preventing mechanism 10 (removing means 101). More specifically, since the transfer film F supplied to the transfer tank 2 inherently swells and softens including the transfer liquid L and gradually expands in all directions, in FIG. Air is blown from the nozzle 102 so as to act on the liquid surface facing the spreading edge of the transfer film F, so that the activator component K mainly floating near the edge is removed from the air, and the transfer film F is removed. It is intended to extend in both directions near the edge (to prevent reduction in extension).
  • the compressed air blowing nozzle 102 is preferably provided with an articulated joint type flexible hose as shown in the figure, because it is easy to finely adjust the position of the nozzle and the blowing direction.
  • the air blow for removing the activator component K does not act on the transfer film F but applies air only to the surface of the transfer liquid where no film is present. This is because the surface is stably held and the transfer film F is transferred to the transfer position (immersion area P1) with as little ripple as possible.
  • a nozzle formed in a tapered shape toward the discharge port is used, and the target liquid level (such as a liquid level facing the spreading edge of the film) is set. It is desirable to let air act at a pinpoint.
  • the blowers 73 and 85 and the like it is preferable to use a fan having a relatively wide discharge port. Further, in FIG.
  • the air is blown from the two compressed air blowing nozzles 102 slightly reverse to the transfer liquid flow.
  • the two compressed air blowing nozzles 102 are arranged on the liquid surface. Therefore, there is no concern that the air flow by the compressed air blowing nozzle 102 hinders the liquid flow itself of the transfer liquid L because it is sufficient that the activator component K (liquid film) is driven to the side wall 22.
  • the air blowing by the compressed air blowing nozzle 102 can be performed in the downstream direction along the flow of the transfer liquid L as shown in FIG.
  • the activator component K on the transfer liquid surface so as to repel the both side walls 22. More specifically, the activator component K on the liquid surface floating in the vicinity of the side wall 22 on the film supply side is transferred from the front end 62A of the film holding mechanism 6 (conveyor 61) to the film holding mechanism 6 (conveyor 61). It is preferable to blow air so as to push between the side walls 22. Incidentally, in such a downstream blowing mode, about 50 to 90 degrees with respect to the liquid flow direction (downstream direction) is preferable.
  • the blowing as the extension reduction preventing mechanism 10 is preferably the same as the blower 26 in that the air is not directly applied to the transfer film F and the blowing direction is wide.
  • the blower 26 directly applies air to the surface of the transfer film F, and the air blowing direction is set in one direction from upstream to downstream in consideration of film transfer. It is.
  • trial 1 As a result, in trial 1, after about 5 hours, when about 4 kg of the activator was used, the transfer film did not adhere to the film holding mechanism 6.
  • Trial 2 was carried out under the same conditions except that the water in the transfer tank 2 was replaced and the extension reduction prevention mechanism 10 was blown as described above. In Trial 2, no change was observed. Since the transfer film always reached the film holding mechanism 6 stably, the confirmation (test) was completed after 10 hours of continuous operation (using about 8 kg of activator).
  • trial 1 did not perform blowing for preventing the reduction in stretching, and therefore the stretching force of the transfer film F was gradually lost, causing a reduction in stretching and no longer adhering to the film holding mechanism 6.
  • trial 2 since the blowing for preventing the decrease in stretch is always performed, the activator component K on the liquid surface is removed (concentration on the liquid surface is reduced), and the film stretch force has a stronger relationship. Therefore, it is considered that the extension of the transfer film F (arrival at the film holding mechanism 6) was always maintained.
  • the removal means 101 in the extension reduction preventing mechanism 10 not only the activator component K is driven to the side wall 22 by blowing air, but also other removal methods can be adopted.
  • the activator component K on the liquid surface is used.
  • the compressed air blowing nozzle 102 of the extension reduction preventing mechanism 10 is provided together with the blower 26.
  • the extension reduction preventing mechanism 10 is not necessarily provided together with the blower 26.
  • the blower 26 is deleted from the entire configuration of the hydraulic transfer apparatus 1. It is possible.
  • the transfer film supply device 3 includes a film roll 31 formed of a rolled transfer film F, a heat roller 32 that heats the transfer film F drawn from the film roll 31, and a transfer film A guide conveyor 33 for supplying the film F to the transfer tank 2 is provided.
  • the transfer film F is supplied to the transfer tank 2 by a guide roller 34 while passing between these members.
  • the transfer film F is fed out to the transfer tank 2 sequentially from the roll film roll 31.
  • the transfer film F cut into a rectangular shape from the beginning is transferred to the transfer tank 2 one by one.
  • a so-called batch-type hydraulic pressure transfer is also possible in which the transfer target W is pressed from above.
  • the activator coating device 4 is provided, for example, at a stage subsequent to the heat roller 32 of the transfer film supply device 3 and includes a roll coater 41 that coats the transfer film F with a required activator.
  • the activator is applied to the transfer film F and then supplied to the transfer tank 2, but the structure and the like of the apparatus are changed and supplied to the transfer tank 2. -It is also possible to apply the activator from above onto the transfer film F in the liquid landing state.
  • the transferred object conveyance device 5 immerses the transferred object W into the transfer liquid L in an appropriate posture and pulls it up from the transfer liquid L.
  • the liquid discharge position on the design surface The main feature is that the transfer target W is pulled up while maintaining PO at a substantially constant position. In order to perform such pulling up, it is rare that the design surface S1 of the transfer target W is a simple plane. Therefore, the transfer target conveying device 5 can cope with various design surface shapes. It is considered preferable to apply a manipulator (robot). However, since it is also possible to apply a conveyor as the transferred object transport apparatus 5, in the following description, the transferred object transport apparatus 5 to which the conveyor is applied will be described first.
  • the transfer target W is pulled up along the design surface (to maintain the liquid discharge position PO at a substantially constant position), and if the design surface S1 is not complicated, a conveyor is sufficient. It can be applied to.
  • the transfer target W is usually attached to the conveyor via a transfer jig (simply referred to as a jig J)
  • the transfer target transporting device 5 is also a conveyor responsible for transporting in this embodiment.
  • a structure including 51 and a jig holder 52 is basically used.
  • the transfer target W is attached to the jig J in advance, and the jig J is attached to and detached from the jig holder 52 and set on the conveyor 51 (setting of the transfer target W). Is to do.
  • the conveyor 51 will be further described. As shown in FIGS. 12 and 20, for example, the conveyor 51 lays a link bar 54 on a pair of link chains 53 arranged in parallel, and a jig holder 52 is arranged on the link bar 54 at a predetermined interval.
  • the transfer target W is continuously immersed in and discharged from the transfer liquid L together with the jig J.
  • the robot automatically attaches the transferred object W (jig J) to the conveyor 51 on the immersion side and removes the transferred object W (jig J) from the conveyor 51 on the liquid discharge side after transfer. It can also be performed, or can be performed manually by an operator.
  • the conveyance speed of the transfer target W by the conveyor 51 at the time of immersion is set to be substantially synchronized with the transfer speed on the liquid surface of the transfer film F (that is, the liquid flow speed of the transfer liquid L). It is common to be done.
  • FIG. 20 A specific configuration of the conveyor 51 will be described. As shown in FIG. 20 as an example, this is for a normal triangular conveyor section 55 that draws a conveyance path of an inverted triangle when viewed from the side (the apex located below the inverted triangle).
  • the portion is defined as an immersion side wheel 56), and a liquid discharge side wheel 57 is added.
  • the transferred object W is substantially immersed in a section from the immersion side wheel 56 to the liquid discharge side wheel 57, and the liquid discharge area P2 Is set at a position different from the immersion area P1. More specifically, the liquid discharge area P2 viewed from the plane is set so as to be clearly located downstream of the immersion area P1.
  • the transferred object W is immersed only at the lower apex portion (immersion side wheel 56), which is, for example, a short time or instantaneous immersion.
  • immersion side wheel 56 which is, for example, a short time or instantaneous immersion.
  • the immersion of the transfer target W is linear, and it can be said that the immersion time is secured long.
  • a relatively long distance from the immersion area P1 to the liquid discharge area P2 can be secured, the liquid level residual film F ′ is divided while the transfer target W is immersed, and both side walls are separated. This is a transport mode suitable for collecting in 22 parts.
  • the conveyor 51 takes the structure which connected the conventional triangular conveyor part 55 and the linear conveyor 58 part by the liquid discharge side wheel 57 on such a structure, and these structural members are demonstrated below.
  • the triangular conveyor section 55 is configured to be tiltable as a whole with the immersing side wheel 56 that hits the lower apex being the center of rotation, and is configured so that the immersing angle ⁇ of the transfer target W can be appropriately changed.
  • the immersion angle ⁇ here is an angle with respect to the transfer liquid surface (upstream side) of the design surface S1, as shown in FIG. 20, and as an example, a set range of about 15 to 35 degrees is assumed.
  • the linear conveyor 58 is also configured to be rotatable about the lower chain wheel 59 and has a so-called pantograph-like structure.
  • the linear conveyor unit 58 is rotatable, even if the immersion angle of the transfer target W is changed by the rotation of the triangular conveyor unit 55, the transfer length of the entire conveyor 51 (the total length of the link chain 53). This is because the tension applied to the conveyor 51 needs to be maintained. In other words, by rotating the straight conveyor 58, the rotation free end side of this is functioned as a so-called tension pulley.
  • the solid line portion in FIG. 20 (a) is a conveyance trajectory when the immersion angle ⁇ is relatively small (about 15 degrees as an example), and the solid line portion in FIG. 20 (b) is compared with the immersion angle ⁇ . This is a transport trajectory when the target is large (as an example, about 30 degrees).
  • the liquid discharge angle ⁇ cannot be changed. (Fixed setting).
  • the transfer target W is always pulled up at the same inclination angle as the design surface S1 (pull-up along the design surface), which is suitable for the case of liquid flow pear. This can be said to be a method of pulling up (suitable for making the liquid position PO substantially constant).
  • the liquid discharge side wheel 57 is given the name “wheel”, it is not necessarily a member that rotates as the link chain 53 travels. For example, as shown in FIG. However, it may be a guide member that smoothly guides this (so-called sliding contact).
  • the diameter of the liquid discharge side wheel 57 is preferably the same as or larger than that of the immersion wheel 56. If the liquid discharge side wheel 57 is small, the liquid discharge side wheel 57 is discharged when the transfer target W is discharged. This is because the peripheral speed (rotational speed) and the angle change around the outside of the liquid side wheel 57 become large (the speed difference with respect to the transfer liquid L becomes excessive).
  • the liquid discharge angle ⁇ is fixed and cannot be changed as described above, but the liquid discharge angle ⁇ can be made variable. That is, for example, as shown in FIG. 21, the conveyor track (link chain 53) is viewed from the side, and the conveyance track is formed to have a rectangular shape (particularly trapezoidal shape) as a whole.
  • the immersion side wheel 56 and the liquid discharge side wheel 57 are set in a fixed state (only rotation at a fixed position is possible), and the remaining two chain wheels 59A and 59B are respectively connected to the immersion side wheel 56 and the liquid discharge side wheel 57. It is formed so as to be rotatable with respect to.
  • the linear conveyor portions 58A and 58B on the immersing side and the liquid discharging side connected to the immersing side wheel 56 and the liquid discharging side wheel 57 are formed to be rotatable around the immersing side wheel 56 and the liquid discharging side wheel 57. Is.
  • the transfer length of the entire conveyor 51 (the total length of the link chain 53) cannot be changed, when the immersion angle ⁇ of the transfer target W is changed, the liquid is discharged like a tension pulley.
  • the straight conveyor section 58B on the side is also shaken to change the liquid discharge angle ⁇ .
  • the liquid discharge angle ⁇ can be changed, this is a change related to the immersion angle ⁇ , and the liquid discharge angle ⁇ cannot be freely changed without any limitation.
  • the solid line portion in FIG. 21 is a conveyance mode when the immersion angle ⁇ is large and the liquid discharge angle ⁇ is small, and the two-dot chain line portion in the figure is a small immersion angle ⁇ and a large liquid discharge angle ⁇ . It is a conveyance aspect in the case.
  • the immersion angle ⁇ can be changed when it is about 15 to 35 degrees
  • the liquid discharge angle ⁇ can be changed when it is about 25 to 55 degrees.
  • the transferred object W is transferred substantially horizontally in the liquid between the immersion side wheel 56 and the liquid discharge side wheel 57.
  • the transport mode is not necessarily limited to this, and for example, as shown in FIG. 22, a transfer mode in which the transfer target W is gradually raised in the above-described section is also possible.
  • the transfer target W is lifted and transferred with an appropriate inclination angle (liquid discharge angle ⁇ ) during transfer between both wheels. From this, after the immersion of the transfer target W, if only the liquid discharge side wheel 57 is gradually moved upward in the above section, the discharge angle ⁇ of the transfer target W is gradually increased. Is possible. Accordingly, if the liquid discharge side wheel 57 can be raised and lowered in FIG. 21, the liquid discharge angle ⁇ can be changed with a higher degree of freedom, and in some cases, the liquid discharge side wheel 57 can be changed without depending on the immersion angle ⁇ . It is.
  • the conveyor 51 described above is intended to ensure a certain amount of time and distance between the immersion area P1 and the liquid discharge area P2, so that the triangular conveyor section 55 and the linear conveyor section 58 are combined.
  • the conveyor 51 it is also possible to configure the conveyor 51 with only the conventional triangular conveyor section 55.
  • the jig leg JL shown in FIG. 20 is set to be slightly longer so that the transfer target W is submerged deeply in the liquid, and the distance from the immersion area P1 to the liquid discharge area P2. It is preferable to ensure a longer length.
  • simply increasing the length of the jig leg JL increases the peripheral speed and angle change of the transferred object W that rotates around the outside of the immersion wheel 56 (the lower vertex of the triangular conveyor).
  • the conveyor 51 constituted only by the triangular conveyor section 55 is divided into the immersive side and the liquid discharge side (each side of the triangle is discontinuous), and the speed and angle are set separately on the immersive side and the liquid discharge side. By making it possible, it is possible to raise the liquid flow.
  • the robot 110 (a multi-joint robot, so-called manipulator) as shown in FIG.
  • the transfer tank 2 follows the above-described form, and it is more preferable that the liquid level residual film F ′ is divided and discharged from the transfer tank 2 while the transfer target W is immersed.
  • the design surface purification mechanism 9 it is desirable to provide the liquid discharge area purification mechanism 8, the extension reduction prevention mechanism 10, and the like so that the transfer liquid L and the liquid discharge area P 2 can be cleaned at a high level.
  • reference numeral 111 indicating a broken line portion is a transfer robot hand for immersing the transfer target W in the transfer liquid L, and generally holds a jig J holding the transfer target W. Is. Also, in the figure, reference numeral 112 indicating a two-dot chain line portion is a transfer robot hand for lifting the transferred object W from the liquid and placing it on the conveyor C for UV irradiation process. In general, the jig J holding the body W is gripped.
  • the angle / posture of the transfer target W can be changed more freely than the conveyor 51, so the liquid discharge position PO is substantially constant.
  • the transfer target W can be pulled up more accurately while maintaining the same, and the liquid discharge speed can be easily controlled.
  • the immersion angle ⁇ , the immersion speed, the moving speed in the liquid, and the like of the transfer target W can be set with a high degree of freedom. It is also possible to arrange a plurality of robots 110 on the left and right of the transfer tank 2 to alternately perform from immersion to liquid discharge.
  • the separation distance between the liquid discharge position PO and the overflow tank 92 for forming the design surface separation flow is approximately during the liquid discharge of the transfer target W. It is preferable to keep it constant. In particular, it is preferable to pull up the transfer target W so that this distance is constant at 100 mm or less. This is for the purpose of preventing the defect that the bubbles A and impurities adhere to the design surface S1 of the transfer target W, and the transfer pattern having an uncured surface protection function attached to the design surface S1 is not flowed. (Preventing sagging defects).
  • the hydraulic transfer device 1 is based on the above-described configuration, and hereinafter, a hydraulic transfer method will be described while explaining a transfer mode by the hydraulic transfer device 1.
  • (1) Supply of transfer film In performing the hydraulic transfer, first, the transfer film F is supplied to the transfer tank 2 in which the transfer liquid L is stored.
  • the transfer film F is also formed on a water-soluble film.
  • the transfer film F when the transfer film F is supplied to the transfer tank 2, the transfer film F becomes a liquid film on the transfer liquid surface between the film holding mechanism 6 (conveyor 61) and the transfer film F, and the transfer film F extends. Is to remove the activator component K that lowers.
  • the compressed air blowing nozzle 102 blows air to the liquid surface facing the spreading edge of the transfer film F, and the activator component K that accumulates (floats) there is supplied to the film holding mechanism 6. This is driven between the film holding mechanism 6 and the side wall 22 while turning around the action start end (starting pulley 62A).
  • both side parts (both side edge parts) of the transfer film F are reliably transferred to the conveyor 61 as the film holding mechanism 6. It continues to reach and is transferred to the immersion area P1 (transfer position) while maintaining a substantially constant elongation rate.
  • the activator component K driven between the film holding mechanism 6 and the side wall 22 is preferably introduced into the overflow tank 75 (discharge port 76a) and then recovered. This is because the transfer film F is continuously collected (discharged) from 2 and the transfer film F is extended, and fine fluid pressure transfer is continuously performed.
  • the transferred object W held by the robot 110 is sequentially placed in an appropriate posture / immersion angle. It is introduced into the transfer liquid L at ⁇ .
  • the immersion angle ⁇ can be changed as appropriate depending on the shape and unevenness of the transfer target W (design surface S1).
  • the immersion area P1 is somewhat separated from the liquid discharge area P2 that is subsequently pulled up from the liquid, and the time during which the transfer target W is immersed in the transfer liquid L is relatively long. It's long.
  • the transfer film F on the liquid level is pierced by the immersion of the transfer target W as shown in FIG.
  • the liquid level residual film F ′ is recovered as soon as possible after transfer so as not to reach the downstream liquid discharge area P2, and this recovery mode will be described below.
  • the liquid level residual film F ′ is flowed downstream of the immersion area P1 and upstream of the liquid discharge area P2. In this case, as shown in FIG. 1, air is blown onto the liquid level residual film F ′ after the transfer to divide the film. Thereafter, the liquid level residual film F ′ divided by the air is gradually sent to the both side walls 22 by air blowing, liquid flow or the like, and here, as shown in FIG. 4, overflow tanks 75 provided on the both side walls 22. It is collected by etc.
  • the overflow tank 75 (discharge port 76) uses the film holding mechanism 6 (conveyor 61) so as not to prevent recovery of the liquid level residual film F ′.
  • the film holding action is released, it is not released before the overflow tank 75 (on the upstream side of the discharge port 76).
  • FIG. Heating state
  • the overflow tank 75 flows around the terminal pulley 62B of the conveyor 61 and falls into the overflow tank 75 and is collected.
  • the vicinity of the edge of the dividing line FL gradually approaches the side walls 22 by blowing or liquid flow while gradually dissolving and spreading as described above. For this reason, when recovering the liquid level residual film F ′, it is preferable to collect the entire lump portion of the dividing line FL and the scattered impurities of the dividing line FL in two stages, which is suitable for this.
  • the structure is blocking means 77 provided in the middle of the discharge port 76 of the overflow tank 75. In other words, due to the presence of the blocking means 77, even in one overflow tank 75, the liquid level residual film F ′ is recovered in two stages before and after the blocking means 77. Specifically, as shown in FIG.
  • the entire lump of the dividing line FL is guided upstream from the blocking means 77 (the dam plate 78 or the accommodating shield 79) and recovered at the first stage in front.
  • the scattered impurities on the dividing line FL are collected in the second stage behind the blocking means 77.
  • the blocking means 77 also narrows the flow velocity induction range of the discharge port 76. For this reason, the blocking means 77 also performs control to weaken the flow rate after the release of the film holding action. In this way, the liquid level residual film F ′ divided by the air is reliably recovered by the overflow tank 75 without adversely affecting the transfer position (immersion area P1).
  • the blocking means 77 as shown in FIGS. 4 and 10, it is possible to apply a dam plate 78 or a housing shield 79, but if it is a housing shield 79, it is dropped into the overflow tank 75.
  • the liquid discharge area purification mechanism 8 purifies the liquid discharge area P2, particularly the decoration unnecessary surface S2 side, which will be described below. .
  • the liquid discharge area purification mechanism 8 is configured to keep the impurities in the transfer liquid and on the liquid surface in the liquid discharge area P2 and the bubbles A on the liquid surface away from the liquid discharge area P2 and discharged outside the tank.
  • overflow tanks 82 are provided on the left and right side walls 22 of the liquid discharge area P2, and a side separation flow LS from the liquid discharge area P2 toward the overflow tank 82 is formed.
  • a blower 85 is provided on one side wall 22 (above the overflow tank 82) of the transfer tank 2, and from there through the liquid discharge area P2, the opposite side The air is blown so as to reach the overflow tank 82.
  • the bubbles A and impurities generated on the liquid surface in the liquid discharge area P2 (decoration unnecessary surface S2 side) are sent to the overflow tank 82 and collected.
  • the overflow tank 82 is provided with a flange 84 for increasing the flow velocity to increase the flow velocity (introduction speed) near the liquid surface.
  • the design surface purification mechanism 9 purifies the design surface S1 side of the liquid discharge area P2. That is, when the mechanism pulls up the transfer target W, the design surface S1 of the transfer target W in the discharged liquid is purified, and the mechanism drops further from the transfer target W (jig J) pulled up earlier. The bubbles A on the liquid surface and the impurities on the liquid surface and on the liquid surface generated by the above are removed from the design surface S1 and removed from the liquid discharge area P2, and this will be described below.
  • an overflow tank 92 is provided in the liquid discharge area P ⁇ b> 2, so that the transferred surface W (design surface S ⁇ b> 1) in the liquid discharge is separated from the design surface by new water.
  • a flow LR is formed.
  • the overflow tank 92 is preferably provided with a flange 94 for increasing the flow velocity, and the flow velocity (introduction speed) near the liquid surface is preferably increased (see FIGS. 4 and 12).
  • the separation distance from the discharge position PO to the overflow tank 92 for forming the design surface separation flow is maintained substantially constant during the discharge of the transfer target W.
  • Is preferable for example, a constant distance of 100 mm or less, which is to cause the design surface separation flow LR to always act on the design surface S1 with the same strength. That is, in the case of liquid flow, the overflow tank 92 is set in a stationary state (fixed state) with respect to the transfer tank 2, and in the case of a liquid flow ant, it is moved in the liquid flow direction at the same speed as the liquid flow. Is.
  • the water-soluble film adhered to the transfer target W (design surface S1) by performing water washing after the hydraulic transfer. Since the top coat was performed after the removal, the adhering of foreign matters such as film residue to the design surface S1 at the time of transfer does not immediately become defective.
  • the transfer target W may be a main rotating operation, or a series of operations from immersion to discharge of the transfer target W may not be performed smoothly.
  • a liquid discharge virtual line CV that smoothly connects the design surfaces S1 is assumed so as not to cause these, and the liquid discharge angle on the design surface S1 or the liquid discharge virtual line CV may be pulled up along the design surface S1.
  • is set in the range of 25 to 55 degrees, and the liquid discharge posture of the transfer target W is controlled.
  • the liquid discharge angle ⁇ can be gradually changed within the above range during the liquid discharge, or the liquid can be discharged while maintaining a constant value such as 34 degrees.
  • the liquid discharge speed of the transfer target W and the movement speed in the transfer liquid L be as slow as possible, but here also consider productivity.
  • the upper limit is 2 m / min.
  • the description “active energy ray irradiation and / or heating” described in the claims means that one or both of these curing processes are performed. Thereafter, the PVA is removed from the transfer target W by water washing or the like (defilming), and after drying, a series of operations is completed. In this embodiment, since the transfer pattern (decoration layer) has already been cured, a top coat after drying is unnecessary. However, after that, further top coating can be performed.
  • the thin film M is generally similar to a soap bubble, and therefore has a property of stretching the film so as to reduce the area (surface area) (Fermer's law). For this reason, by providing the thin film derivative 120 so as to reduce the entire peripheral area of the gap CL (this is referred to as the separation total circumferential area) with respect to the area of the opening Wa (opening area), the thin film M is formed in the gap CL. It can be guided to the side (decoration unnecessary surface S2 side). For this reason, as shown in FIG.
  • the thin film derivative 120 is substantially the same size as the opening Wa when viewed from the front, or slightly more than that. It is formed to be large, and this is a configuration for reliably forming the gap CL around the entire circumference of the opening Wa. Further, when the thin film derivative 120 is positioned on the back side of the opening Wa, the thin film derivative 120 may be attached to the jig J, or the thin film derivative 120 is assembled using the back surface (assembled structure as an assembly). The derivative 120 may be directly attached to the transfer target W.
  • the thin film derivative 120 is preferably placed on the decoration unnecessary surface S2 side until the decoration layer is cured. Further, there is no particular problem with the thin film M being ruptured during liquid discharge or during the main curing process. This is because the thin film M is formed on the surface S2 of the transfer object W that does not require decoration, and the design surface S1 even if it ruptures. This is because it is difficult for the bubbles A due to the burst residue to be generated to the side.
  • the gap CL described above does not necessarily have to be formed constant with respect to the entire circumference of the opening Wa, and can be gradually decreased, for example, as shown in FIG. In this case, it is easy to induce air evacuation between the transfer target W and the thin film derivative 120 when the transfer is immersed, and precise fluid pressure transfer is possible. Moreover, quick drainage and drying after liquid discharge can be expected.
  • the present invention is suitable for the hydraulic transfer (hydraulic transfer that does not require a top coat) that forms a transfer pattern that also has a surface protection function at the time of transfer, but the transfer pattern is formed at the time of transfer,
  • the present invention can also be applied to conventional hydraulic transfer for protecting the surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Decoration By Transfer Pictures (AREA)

Abstract

[Problem] To address the problem of developing a novel fluid pressure transfer method designed in such a manner as not to produce residue or roughness on an object to be transferred, by maintaining a fluid discharge position at a roughly constant position when pulling up the object to be transferred from within a transfer fluid. [Solution] The present invention involves a fluid pressure transfer method in which an object to be transferred is pressed from above a transfer tank, and an appropriate transfer pattern is formed on the surface of the object to be transferred, said fluid pressure transfer method being characterized in that, when lifting up the object to be transferred, the object to be transferred is lifted up in an inclined state along a design surface or a virtual fluid discharge line that smoothly connects design surfaces, thereby discharging the object to be transferred while maintaining a fluid discharge position on a design surface of the object to be transferred at a roughly constant position. The fluid pressure transfer method is further characterized in that a fluid discharge angle β is set within a range of 25 degrees to 55 degrees, and the fluid discharge orientation of the object to be transferred is controlled in such a manner that an operation for discharging the object to be transferred can be smoothly performed.

Description

液圧転写方法Hydraulic transfer method
 本発明は、転写インクによってあらかじめ適宜の転写パターン(表面インク層)が施されて成る転写フィルムを、液面上で浮遊支持し、ここに被転写体を押し当てながら転写液中に没入させることにより、その液圧を利用してフィルム上の転写パターンを被転写体に転写する液圧転写に関するものであって、特に転写液中から引き上げる際の被転写体の出液位置をほぼ一定の位置に維持することにより、意匠面にカス不良やタダレ不良を生じさせないようにした新規な液圧転写方法に係るものである。 In the present invention, a transfer film, which is formed with an appropriate transfer pattern (surface ink layer) in advance by transfer ink, is supported in a floating manner on the liquid surface, and is immersed in the transfer liquid while pressing the transfer target. The liquid pressure is used to transfer the transfer pattern on the film to the transferred material using the hydraulic pressure, and the liquid discharge position of the transferred material is raised to a substantially constant position when it is pulled up from the transfer liquid. Thus, the present invention relates to a novel hydraulic pressure transfer method that prevents the occurrence of deficiency defects or sagging defects on the design surface.
 水溶性フィルム(担持シート)の上に、あらかじめ非水溶性の適宜の転写パターンを施して成る転写フィルムを転写槽(転写液)に浮かばせ、転写フィルム(水溶性フィルム)を転写液(端的には水)で湿潤させた状態で、被転写体をこの転写フィルムに接触させながら転写槽内の液中に押し入れ、液圧を利用してフィルム上の転写パターンを被転写体の表面に転写形成する液圧転写が知られている。なお、転写フィルムには、上述したように、水溶性フィルム上に転写パターンがインクによって事前に形成(印刷)されており、転写パターンのインクは乾燥状態にある。このため転写に際しては、転写フィルム上の転写パターンに活性剤やシンナー類を塗布して、転写パターンを印刷直後と同様の湿潤つまり付着性を発現させた状態に戻す必要があり、これは活性化と称される。 On the water-soluble film (supporting sheet), a transfer film formed by applying a suitable non-water-soluble transfer pattern in advance is floated in a transfer tank (transfer liquid), and the transfer film (water-soluble film) is transferred to the transfer liquid (primarily In a state wetted with water), the transferred object is pushed into the liquid in the transfer tank while contacting the transfer film, and the transfer pattern on the film is transferred and formed on the surface of the transferred object using the liquid pressure. Hydraulic transfer is known. As described above, a transfer pattern is formed (printed) in advance on the water-soluble film with ink on the transfer film, and the transfer pattern ink is in a dry state. For this reason, when transferring, it is necessary to apply an activator or thinner to the transfer pattern on the transfer film to return the transfer pattern to the same wetness, that is, adhesion, just after printing. It is called.
 そして、転写後、転写槽から取り出された被転写体は、半溶解状の水溶性フィルムが水洗浄等によって除去されたのち乾燥され、被転写体上に転写形成された装飾層の保護を図るためにトップコートに供されることが多かった。しかし、このような従来の液圧転写においては、まずトップコートに溶剤系クリヤー塗料を使用していたため環境負荷が高いことが問題であり、またトップコート時の不良や塗装乾燥に比較的長い時間やエネルギーを要すること等から、液圧転写全体のコスト高を招いていた。 After the transfer, the transfer object taken out from the transfer tank is dried after the semi-dissolved water-soluble film is removed by washing with water or the like to protect the decorative layer transferred and formed on the transfer object. For this reason, it was often used as a top coat. However, in such conventional hydraulic pressure transfer, solvent-based clear paint is first used for the top coat, so there is a problem that the environmental load is high, and it takes a relatively long time for top coat defects and paint drying. The cost of the entire hydraulic transfer is incurred due to the cost and energy required.
 このようなことから、液圧転写の際に表面保護機能も有した転写パターンを被転写体に形成し、転写後にこれを硬化させて装飾層を形成し、トップコートを省く手法が案出されている(例えば特許文献1、2参照)。
 このうち特許文献1は、水溶性フィルムの上に転写パターンのみを形成した従来の転写フィルムを用いながら、活性剤として硬化樹脂組成物(液体)を用い、転写後に被転写体に紫外線を照射することで、転写パターンと渾然一体となった硬化樹脂組成物(表面保護層)を硬化させる手法である。
 また、特許文献2は、水溶性フィルムと転写パターンの間に硬化性樹脂層を形成した転写フィルムを用い、転写後の被転写体に紫外線等の活性エネルギー線の照射もしくは加熱によって転写パターン上の硬化性樹脂層を硬化させる手法である。
For this reason, a method has been devised in which a transfer pattern having a surface protection function is formed on a transfer object during hydraulic pressure transfer, and this is cured after transfer to form a decorative layer, thereby omitting the top coat. (For example, refer to Patent Documents 1 and 2).
Among these, Patent Document 1 uses a cured resin composition (liquid) as an activator while using a conventional transfer film in which only a transfer pattern is formed on a water-soluble film, and irradiates the transferred object with ultraviolet rays after transfer. This is a technique for curing the cured resin composition (surface protective layer) that is steadily integrated with the transfer pattern.
Further, Patent Document 2 uses a transfer film in which a curable resin layer is formed between a water-soluble film and a transfer pattern, and the transferred object is irradiated with active energy rays such as ultraviolet rays or heated on the transfer pattern. This is a method of curing the curable resin layer.
 ところで、表面保護機能も有した転写パターンを形成した液圧転写では、被転写体の没入時(転写時)に、被転写体が液面上に浮遊した転写フィルムを突き破って液中に没する動作となるため、没入後に液面上に残ったフィルムは、もはや転写に使用されない不要なものとなる(これを液面残留フィルムとする)。また、被転写体が液面上の転写フィルムを突き破ることによって、微細なフィルムカス(例えば水溶性フィルムとインクが混ざり合った紐屑状のもの)が転写液中に大量に分散・放出されるため、これが転写液中に滞留するものである。更に、被転写体の没入(転写)は、通常、治具に取り付けられた状態で行われるため、没入の際に、治具や被転写体に付いた余剰フィルムが液中で剥離し放出されることもあった。そのため転写液から引き上げる被転写体の意匠面には、このような液面残留フィルム、フィルムカス、余剰フィルム等が付着することがあった(これらは転写液面や液中に残る不要なものであるため、本明細書ではこれらを「夾雑物」と総称する)。 By the way, in the hydraulic transfer in which a transfer pattern having a surface protection function is formed, when the transferred object is immersed (during transfer), the transferred object breaks through the transfer film floating on the liquid surface and is immersed in the liquid. Since it becomes operation | movement, the film which remained on the liquid level after immersion becomes an unnecessary thing which is no longer used for transfer (this is made into a liquid level residual film). In addition, when the transfer target breaks through the transfer film on the liquid surface, fine film residue (for example, string waste in which a water-soluble film and ink are mixed) is dispersed and released in a large amount in the transfer liquid. Therefore, this stays in the transfer liquid. Furthermore, since the immersion (transfer) of the transfer object is usually performed in a state where it is attached to the jig, the excess film attached to the jig or the transfer object is peeled off and released in the liquid during the immersion. Sometimes there was. For this reason, such a liquid level residual film, film residue, surplus film, etc. may adhere to the design surface of the transfer target pulled up from the transfer liquid (these are unnecessary ones remaining on the transfer liquid level or in the liquid). Therefore, these are collectively referred to as “contaminants” in this specification).
 更にまた、例えば図25(a)に示すように、被転写体Wが意匠面S1に開口部Waを有している場合には、液面から引き上げる際、開口部Waに水溶性フィルムの水溶解物による薄膜Mが張られることが多く、これが弾けて被転写体Wの意匠面S1に泡Aが付着したり、また被転写体Wの突起部や開口部Waの上縁部などから転写液Lが液面に落下した際に、液面上に泡Aが発生したりして、これが意匠面S1に付着することがあった。すなわち図25(a)では、当初、治具Jの枠に薄膜Mが張り、この破裂残渣の泡Aが転写液面上に漂い、出液エリアP2の液面移動(被転写体Wの引き上げに伴う相対的な下降)に伴い、泡Aが被転写体Wの開口部Waに張られた薄膜Mに取り込まれ、その後、この薄膜Mの破裂残渣が泡Aとして液面上に漂い、間接的に意匠面S1に付着、あるいは泡Aとして直接、被転写体Wの表面を伝わり意匠面S1に付着し、結果的に図25(b)に示す状態となる。 Furthermore, for example, as shown in FIG. 25 (a), when the transfer target W has an opening Wa on the design surface S1, water of the water-soluble film is formed in the opening Wa when the transfer surface W is pulled up from the liquid surface. The thin film M is often stretched by the melted material, and the film A is flipped and bubbles A adhere to the design surface S1 of the transfer target W. Alternatively, the transfer is performed from the protrusion of the transfer target W or the upper edge of the opening Wa. When the liquid L falls on the liquid surface, bubbles A may be generated on the liquid surface, which may adhere to the design surface S1. That is, in FIG. 25 (a), the thin film M is initially stretched on the frame of the jig J, and bubbles A of the rupture residue drift on the transfer liquid surface, moving the liquid surface in the liquid discharge area P2 (raising the transfer target W). The bubble A is taken into the thin film M stretched on the opening Wa of the transfer target W, and then the rupture residue of the thin film M floats on the liquid surface as the bubble A and indirectly. In particular, it adheres to the design surface S1 or directly as a bubble A is transmitted through the surface of the transfer target W and adheres to the design surface S1, resulting in the state shown in FIG.
 そして、この状態で活性エネルギー線の照射または/および加熱による硬化処理を行うと、例えば図25(c)に示すように、泡Aが付着した部位だけは、泡Aの応力や活性エネルギー線の屈折等が原因で、当該部位のみ装飾層(転写パターン・表面保護層)の柄歪みや、柄が抜け落ちる現象(いわゆるピンホール不良)等が生じていた。もちろん、このような柄歪みや抜け落ちは、意匠面S1に泡Aが付着した場合に限らず、上記液面残留フィルム、フィルムカス、余剰フィルム等の夾雑物が意匠面S1に付着した場合にも起こり得る現象(不具合)である。ここで図中符号fは、主に被転写体W(意匠面S1)等に転写された装飾層を示している。このようなことから、液圧転写時に表面保護機能までを有した転写パターンを形成する液圧転写においては、液面残留フィルム、フィルムカス、余剰フィルム、泡Aなどを意匠面S1に極力付着させないことが重要となっている(意匠面に泡Aや夾雑物が付着することをまとめて「カス不良」とする)。
 なお、柄歪みや抜け落ちを起こした物品(液圧転写品)は、一旦、硬化処理が成されているために、柄歪みや抜け落ちによる凹凸が際立ち、もう一度、転写をやり直すことができず(再生不可)、そのためこのような不良品は量産性を著しく損ねるものであり、不良率そのものを下げる根本的な解決手法が強く望まれていた。
Then, when the curing process is performed by irradiation with active energy rays or / and heating in this state, for example, as shown in FIG. Due to refraction or the like, pattern distortion of the decorative layer (transfer pattern / surface protective layer), a phenomenon that the pattern falls off (so-called pinhole defect), or the like occurs only at the portion concerned. Of course, such pattern distortion and drop-off are not limited to the case where the bubble A adheres to the design surface S1, but also when the liquid surface residual film, film residue, excess film, or other foreign matter adheres to the design surface S1. This is a phenomenon (problem) that can occur. Here, reference numeral f in the figure indicates a decorative layer transferred mainly to the transfer target W (design surface S1) or the like. Therefore, in the hydraulic transfer that forms a transfer pattern having a surface protection function at the time of the hydraulic transfer, the liquid level residual film, the film residue, the surplus film, the bubble A, and the like are not adhered to the design surface S1 as much as possible. (It is collectively referred to as “poor defect” that bubbles A and foreign substances adhere to the design surface).
In addition, because the article (hydraulic transfer product) that has undergone pattern distortion or dropout is once cured, irregularities due to pattern distortion or dropout stand out and transfer cannot be performed again (reproduction). Therefore, such a defective product significantly deteriorates mass productivity, and a fundamental solution for reducing the defective rate itself has been strongly desired.
 また転写後、活性エネルギー線の照射または/および加熱による硬化処理を行うまでの被転写体Wにあっては、意匠面S1に付着したインクおよび厚膜の硬化性樹脂を含む転写パターンが、まだ未硬化の状態であるため流動し易い状態にある。従って、転写液中における被転写体Wの回転動作、移送速度、転写液面の波立ち、出液時または出液直後の被転写体Wの振動等によって意匠面S1に負荷が掛かった場合には、意匠面S1に付着したばかりのインクおよび厚膜の硬化性樹脂を含む転写パターンが流動し、意匠面がただれたようになる不具合が起き易い(これをタダレ不良とする)。なお、タダレ不良の代表例としては、例えば図26に示すように、転写液面に対し意匠面S1が平行状態で出液した場合に起こる液面波現象(負圧アタック)が挙げられる。 In addition, after the transfer, the transfer pattern including the ink attached to the design surface S1 and the thick film curable resin is still in the transfer target W until irradiation with active energy rays and / or curing by heating. Since it is in an uncured state, it is easy to flow. Accordingly, when a load is applied to the design surface S1 due to the rotational operation of the transfer target W in the transfer liquid, the transfer speed, the ripples of the transfer liquid surface, the vibration of the transfer target W during liquid discharge or immediately after liquid discharge, and the like. The transfer pattern containing the ink that has just adhered to the design surface S1 and the thick curable resin flows, and the design surface is likely to be damaged (this is considered to be a sagging defect). As a representative example of the sagging failure, for example, as shown in FIG. 26, there is a liquid surface wave phenomenon (negative pressure attack) that occurs when the design surface S1 comes out in parallel with the transfer liquid surface.
 ところで液面付近に液流が形成されていない転写槽2から、被転写体Wを一定の傾斜角度で真上に引き上げた場合(いわゆるバッチ式)の出液動作を図27に示す。この場合、被転写体Wの引き上げに伴い、出液位置が図27(a)~(c)に示すように、出液後端側(時間的に後から出液する方であり図27では左側)に、徐々に移動して行く様子が分かる。なお、上記「出液位置」とは、出液する被転写体Wを側面から視た場合の意匠面S1上における被転写体Wの出液地点(ポイント)であり、意匠面S1と転写液面との交点とも言える。
 このような引き上げ方では(出液位置を出液後端側に徐々に移動させる引き上げ方では)、被転写体W自体が水(液)を掻く櫂のような作用を担い、被転写体Wの裏側(上方)に位置する転写液Lを、被転写体Wの傾斜に沿って出液後端側に送る(案内する)ものである。このような転写液Lの流れは、被転写体Wの出液後端側を迂回しながら転写槽2内を相対的に落下するような動き(流れ)となるため、これを傾斜落水とする。そして、この傾斜落水は、図27(b)・(c)に示すように、転写槽2内の転写液Lを被転写体Wの意匠面S1(出液位置)に向かわせる撹拌流を形成する。このため被転写体W(意匠面S1)には、撹拌流による転写液Lが寄せ付けられることとなり、転写液中に存在するフィルムカス等の夾雑物が付着し易くなる(カス不良)。もちろん、このような撹拌流によって、意匠面S1にタダレ不良も生じ易いものである。
 また、傾斜落水による撹拌流が生じると、液面が静止(安定)するまでに時間が掛かるため、従来の液圧転写と同じタクトタイムでは液面が安定せず(収まらず)、連続して転写を行うほど撹拌流による悪影響(カス不良・タダレ不良)が増長する傾向にあった。
By the way, FIG. 27 shows the liquid discharge operation when the transfer target W is pulled up at a certain inclination angle from the transfer tank 2 in which no liquid flow is formed near the liquid surface (so-called batch type). In this case, as the transfer target W is pulled up, the liquid discharge position is as shown in FIGS. 27A to 27C, as shown in FIGS. 27A to 27C. On the left side, you can see how it moves gradually. The “liquid discharge position” is a liquid discharge point (point) of the transfer target W on the design surface S1 when the transfer target W to be discharged is viewed from the side, and the design surface S1 and the transfer liquid. It can be said that it is an intersection with the surface.
In such a pulling-up method (in a pulling-up method in which the liquid discharge position is gradually moved toward the liquid discharge rear end side), the transferred object W itself takes on an action like a scum that scrapes water (liquid). Is transferred (guided) to the rear end side of the liquid discharge along the inclination of the transfer target W. Such a flow of the transfer liquid L is a movement (flow) that relatively falls in the transfer tank 2 while bypassing the liquid discharge rear end side of the transfer target W, and this is inclined waterfall. . The inclined falling water forms a stirring flow that directs the transfer liquid L in the transfer tank 2 toward the design surface S1 (liquid discharge position) of the transfer target W, as shown in FIGS. 27 (b) and (c). To do. For this reason, the transfer liquid L due to the stirring flow is brought close to the transfer target W (design surface S1), and foreign matters such as film residue existing in the transfer liquid are easily attached (debris failure). Of course, due to such a stirring flow, sagging defects are likely to occur on the design surface S1.
In addition, when stirring flow due to sloping falling water occurs, it takes time for the liquid surface to stop (stable), so the liquid surface does not stabilize (contains) at the same tact time as conventional hydraulic transfer, and continuously. As the transfer was performed, the adverse effects (debris failure / sagging failure) due to the stirring flow tended to increase.
 なお、近年は、印刷コスト削減化のため短時間での液圧転写が求められてきており、また生産性向上と転写フィルムの膨潤促進化のため、薄く延びやすい転写フィルムが望まれており、上記カス不良・タダレ不良がより生じ易い環境になりつつある。
 また、UV硬化型の転写フィルムでは、撹拌流等により意匠面S1にカス不良(気泡付着)やタダレ不良が発生してしまうと、その部分でUV光が拡散してしまい、当該部分が未硬化となる不具合(問題)が無視できなくなってきている(従来は、低速の転写であり、また転写フィルムもそれほど薄くなかったため想定されなかった)。
 このようなことから、本出願人は、カス不良やタダレ不良を防止するには、被転写体の出液動作から見直す必要があるとの認識を深め、出液位置をほぼ一定に維持しながら被転写体を引き上げることで、極力、撹拌流を起こさないようにするとの思想に至ったものである。
In recent years, there has been a demand for hydraulic transfer in a short time to reduce printing costs, and in order to improve productivity and promote swelling of the transfer film, a transfer film that is easy to extend thinly is desired. The environment is becoming more prone to the above-mentioned deficiency defects and sagging defects.
In addition, in the case of a UV curable transfer film, if a deficient defect (bubble adhesion) or a sagging defect occurs on the design surface S1 due to a stirring flow or the like, UV light diffuses in that part, and the part is uncured. The problem (problem) that becomes is not negligible (previously, it was a low-speed transfer and the transfer film was not so thin, so it was not assumed).
For this reason, the present applicant has deepened the recognition that it is necessary to review from the liquid discharge operation of the transferred body in order to prevent deficiency defects and sagging defects, while maintaining the liquid discharge position substantially constant. This has led to the idea that pulling up the transfer medium prevents the stir flow as much as possible.
 もちろん、従来から引き上げ時の落水を考慮する技術思想が全くなかったわけではない(例えば特許文献3参照)。しかしながら、この特許文献3は、専ら大きな被転写体を対象としたものであり、また、このような大きな被転写体を水面(液面)と平行に引き上げると、水による抵抗が極めて大きいため、これを防止すべく被転写体を傾斜させて引き上げるというものであり、出液位置を一定に維持するという思想は全くない。
 このように従来は、出液動作にそれほど関心が持たれていなかったのが実状であり、これは没入と同時に液圧転写が実施・完了し、出液時点ではもはや転写が終了していることも大きく関係していると思われる。すなわち液圧転写が行われる没入時の被転写体の動作や姿勢制御については、正に転写の出来栄えや仕上がりに直結する事項であるため、多くの開発・研究がなされているが、既に転写が完了している出液時点から液圧転写全体を見直す技術思想は、ある種、時間を遡るような思想であったため、このような出液動作には、ほとんど開発・研究の着眼が向けられていなかったものと考えられる。
Needless to say, there has been no technical idea considering the falling water at the time of pulling up (see, for example, Patent Document 3). However, this Patent Document 3 is intended only for a large transferred object, and when such a large transferred object is pulled up in parallel with the water surface (liquid surface), the resistance by water is extremely large. In order to prevent this, the member to be transferred is inclined and pulled up, and there is no idea of maintaining the liquid discharge position constant.
In this way, in the past, it was the fact that there was not much interest in liquid discharge operation, this is that hydraulic transfer was performed and completed at the same time as immersion, and transfer was already completed at the time of liquid discharge Seems to be greatly related. In other words, the movement and posture control of the transferred object during immersion, where hydraulic transfer is performed, is a matter that is directly related to the quality and finish of the transfer, so much development and research has been done, but transfer has already been done. The technical philosophy of reviewing the entire hydraulic transfer from the time of completion of brewing was a sort of philosophy that goes back in time, so this brewing operation is mostly focused on development and research. It is thought that there was not.
特開2005-169693号公報Japanese Patent Laid-Open No. 2005-169693 特開2005-162298号公報JP 2005-162298 A 特開2006-123441号公報JP 2006-123441 A
 本発明は、このような背景を認識してなされたものであって、被転写体の出液動作に着眼した液圧転写手法であり、出液位置をほぼ一定に維持しながら被転写体の引き上げを行うことにより、これによる撹拌流を抑え、出液中の被転写体の意匠面にフィルムカスや泡等を寄せ付けないようにし(カス不良の防止)、またタダレ不良も極力生じさせないようにした新規な液圧転写方法の開発を試みたものである。 The present invention is made by recognizing such a background, and is a hydraulic transfer technique that focuses on the liquid discharge operation of the transfer target, and maintains the liquid discharge position substantially constant. By pulling up, the flow of agitation caused by this is suppressed, so that film residue and bubbles are not brought close to the design surface of the transferred material during discharge (prevention of defective residue), and so as not to cause drip defects as much as possible. We tried to develop a new hydraulic transfer method.
 まず請求項1記載の液圧転写方法は、
 水溶性フィルムに少なくとも転写パターンを乾燥状態で形成して成る転写フィルムを、転写槽内の液面上に浮遊支持し、その上方から被転写体を押し付け、これによって生じる液圧によって、主に被転写体の意匠面側に転写パターンを転写する方法において、
 前記被転写体を転写液中から引き上げるにあたっては、被転写体の意匠面が、転写液面から出液する出液位置をほぼ一定の位置に維持しながら、意匠面を転写液面に対し傾斜させた状態で被転写体を出液させるようにしたことを特徴として成るものである。
First, the hydraulic transfer method according to claim 1 is:
A transfer film formed by forming at least a transfer pattern on a water-soluble film in a dry state is supported by floating on the liquid surface in the transfer tank, and the transfer target is pressed from above, and the liquid pressure generated thereby mainly causes the transfer to occur. In the method of transferring the transfer pattern to the design surface side of the transfer body,
When pulling up the transfer medium from the transfer liquid, the design surface of the transfer object is inclined with respect to the transfer liquid surface while maintaining the liquid discharge position from the transfer liquid surface at a substantially constant position. In this state, the transferred object is discharged.
 また請求項2記載の液圧転写方法は、前記請求項1記載の要件に加え、
 前記被転写体を転写液中から出液させるにあたり、
 転写槽の液面付近に液流が形成されていない場合には、意匠面に沿って被転写体を引き上げることにより出液位置をほぼ一定の位置に維持するものであり、
 また、転写槽の液面付近に液流が形成されている場合には、被転写体を液流と同じ速度で液流方向に移動させながら、意匠面に沿って被転写体を引き上げることにより出液位置をほぼ一定の位置に維持するものであり、
 被転写体を引き上げる際、一旦、出液した意匠面が転写液中に再没入する場合、または没入から出液までの動作において意匠面にタダレ不良やカス不良が生じる場合、または出液動作がスムーズに行えない場合には、
 意匠面を滑らかにつなぐ出液仮想ラインを想定し、この出液仮想ラインに沿って被転写体を出液させることにより、再没入の防止、またはタダレ不良・カス不良の防止、またはスムーズな出液動作を図るようにしたことを特徴として成るものである。
In addition to the requirement of claim 1, the hydraulic transfer method of claim 2
In discharging the transferred material from the transfer solution,
When the liquid flow is not formed near the liquid surface of the transfer tank, the liquid discharge position is maintained at a substantially constant position by pulling up the transferred body along the design surface.
In addition, when a liquid flow is formed near the liquid surface of the transfer tank, the transfer target is lifted along the design surface while moving the transfer target in the liquid flow direction at the same speed as the liquid flow. The liquid discharge position is maintained at a substantially constant position,
When pulling up the transferred material, if the design surface that has once drained is re-immersed in the transfer solution, or if the design surface is dull or dull in the operation from immersion to liquid discharge, or the liquid discharge operation If you can't do it smoothly,
Assuming an effluent imaginary line that smoothly connects the design surfaces, the transferred material is discharged along the effluent imaginary line to prevent re-immersion, prevention of sagging defects and scum defects, or smooth output. This is characterized in that the liquid operation is intended.
 また請求項3記載の液圧転写方法は、前記請求項1または2記載の要件に加え、
 前記被転写体を転写液中から出液させるにあたり、
 転写槽の液面付近に液流が形成されていない場合には、意匠面または出液仮想ラインに沿って被転写体を引き上げることにより出液位置をほぼ一定の位置に維持するものであり、
 また、転写槽の液面付近に液流が形成されている場合には、被転写体を液流と同じ速度で液流方向に移動させながら、意匠面または出液仮想ラインに沿って被転写体を引き上げることにより出液位置をほぼ一定の位置に維持するものであり、
 被転写体を引き上げる際、一旦、出液した意匠面が転写液中に再没入する場合、または没入から出液までの動作において意匠面にタダレ不良やカス不良が生じる場合、または出液動作がスムーズに行えない場合には、
 意匠面または出液仮想ラインの出液位置における被転写体の出液角を25度~55度の範囲で設定することにより、再没入の防止、またはタダレ不良・カス不良の防止、またはスムーズな出液動作を図るようにしたことを特徴として成るものである。
Further, the hydraulic transfer method according to claim 3 is in addition to the requirement according to claim 1 or 2,
In discharging the transferred material from the transfer solution,
When the liquid flow is not formed near the liquid surface of the transfer tank, the liquid discharge position is maintained at a substantially constant position by pulling up the transferred body along the design surface or the liquid discharge virtual line.
In addition, when a liquid flow is formed near the liquid surface of the transfer tank, the object to be transferred is transferred along the design surface or the liquid discharge virtual line while moving the transfer target in the liquid flow direction at the same speed as the liquid flow. The liquid discharge position is maintained at a substantially constant position by pulling up the body,
When pulling up the transferred material, if the design surface that has once drained is re-immersed in the transfer solution, or if the design surface is dull or dull in the operation from immersion to liquid discharge, or the liquid discharge operation If you can't do it smoothly,
By setting the liquid discharge angle of the transfer target at the liquid discharge position on the design surface or the liquid discharge virtual line in the range of 25 degrees to 55 degrees, it prevents re-immersion, prevention of sagging defects and scrap defects, or smoothness This is characterized by the fact that the liquid discharge operation is intended.
 また請求項4記載の液圧転写方法は、前記請求項1、2または3記載の要件に加え、
 前記転写槽には、被転写体を転写液中から出液させる出液エリアに、
 出液中の被転写体の意匠面から離れる意匠面離反流を形成し、転写液面上の泡や液中に滞留する夾雑物を、出液中の被転写体の意匠面から遠ざけ、転写槽外に排出するようにしたことを特徴として成るものである。
Moreover, in addition to the requirements of the said Claim 1, 2, or 3, the hydraulic transfer method of Claim 4 WHEREIN:
In the transfer tank, in the liquid discharge area for discharging the transferred material from the transfer liquid,
Forms a design surface separation flow that separates from the design surface of the transferred material in the liquid discharge, and keeps the bubbles on the transfer liquid surface and the foreign matter staying in the liquid away from the design surface of the transferred material in the liquid transfer. It is characterized by being discharged out of the tank.
 また請求項5記載の液圧転写方法は、前記請求項4記載の要件に加え、
 前記被転写体を転写液中から出液させるにあたっては、出液動作中、意匠面上の出液位置と、前記意匠面離反流を形成するために転写液を回収する排出口との距離をほぼ一定に維持するようにしたことを特徴として成るものである。
In addition to the requirement described in claim 4, the hydraulic transfer method according to claim 5 includes:
In discharging the transferred material from the transfer liquid, during the liquid discharge operation, the distance between the liquid discharge position on the design surface and the discharge port for collecting the transfer liquid to form the design surface separation flow is set. It is characterized by being kept substantially constant.
 また請求項6記載の液圧転写方法は、前記請求項4または5記載の要件に加え、
 前記意匠面離反流は、出液中の被転写体の意匠面に臨むように設けられたオーバーフロー槽によって形成されることを特徴として成るものである。
Further, the hydraulic transfer method according to claim 6 is in addition to the requirements of claim 4 or 5,
The design surface separation flow is formed by an overflow tank provided so as to face the design surface of the transferred material in the liquid discharge.
 また請求項7記載の液圧転写方法は、前記請求項6記載の要件に加え、
 前記意匠面離反流形成用のオーバーフロー槽の下方には、夾雑物を含まない綺麗な水、あるいは転写槽より回収した転写液から夾雑物を除去した後の浄化水などの新水を槽内に供給する新水供給口が設けられ、
 前記意匠面離反流は、この新水供給口から出液エリアに向けて上向きに供給される新水を利用して形成されることを特徴として成るものである。
In addition to the requirement described in claim 6, the hydraulic transfer method according to claim 7 includes:
Below the overflow tank for forming the design surface separation flow, clean water that does not contain contaminants, or new water such as purified water after removing contaminants from the transfer liquid collected from the transfer tank is put into the tank. There is a new water supply port to supply,
The design surface separation flow is formed using fresh water supplied upward from the fresh water supply port toward the liquid discharge area.
 また請求項8記載の液圧転写方法は、前記請求項7記載の要件に加え、
 前記新水供給口からは、出液エリアに向けて下向きの新水も供給されるものであり、
 且つ、この新水供給口の背面側には、フィルムカス等の夾雑物を含む転写液を、下方から吸い上げて槽外に排出するサイフォン式排出部が設けられるものであり、
 前記サイフォン式排出部による吸い込み流は、前記出液エリアに向けて下向きに供給される新水を利用して形成されることを特徴として成るものである。
Further, the hydraulic transfer method according to claim 8 is in addition to the requirement according to claim 7,
From the new water supply port, downward fresh water is also supplied toward the liquid discharge area,
In addition, on the back side of the new water supply port, a siphon type discharge unit that sucks up the transfer liquid containing impurities such as film residue from below and discharges it outside the tank is provided.
The suction flow by the siphon type discharge unit is formed using fresh water supplied downward toward the liquid discharge area.
 また請求項9記載の液圧転写方法は、前記請求項8記載の要件に加え、
 前記転写槽は、新水供給口の下方にテーパ状の傾斜板が設けられ、槽末端部に向かうにしたがい徐々に槽深さが浅くなるように形成されるものであり、
 前記サイフォン式排出部の吸い込み口は、この傾斜板の最上端部に臨むように設けられることを特徴として成るものである。
Further, the hydraulic transfer method according to claim 9 is in addition to the requirements of claim 8,
The transfer tank is provided with a tapered inclined plate below the fresh water supply port, and is formed so that the tank depth gradually becomes smaller toward the end of the tank.
The suction port of the siphon type discharge part is provided so as to face the uppermost end part of the inclined plate.
 また請求項10記載の液圧転写方法は、前記請求項8または9記載の要件に加え、
 前記新水供給口からは、出液エリアに対しほぼ平行に向かう新水も供給されるものであり、
 この新水は、前記出液エリアに向けて上向きおよび下向きに供給される双方の新水の間において新水供給口から供給されることを特徴として成るものである。
Further, the hydraulic transfer method according to claim 10 is in addition to the requirements of claim 8 or 9,
From the fresh water supply port, fresh water that is almost parallel to the liquid discharge area is also supplied.
The fresh water is supplied from a fresh water supply port between both fresh waters that are supplied upward and downward toward the liquid discharge area.
 また請求項11記載の液圧転写方法は、前記請求項7、8、9または10記載の要件に加え、
 前記新水供給口には、新水を供給する吐出口部分にパンチングメタルが設けられ、ここから転写槽に供給される新水が比較的広い範囲から均一に吐出されるようにしたことを特徴として成るものである。
Further, the hydraulic transfer method according to claim 11 is in addition to the requirements of claim 7, 8, 9 or 10,
The fresh water supply port is provided with a punching metal at a discharge port portion for supplying fresh water, from which fresh water supplied to the transfer tank is uniformly discharged from a relatively wide range. It consists of
 また請求項12記載の液圧転写方法は、前記請求項6、7、8、9、10または11記載の要件に加え、
 前記意匠面離反流を形成するオーバーフロー槽には、液回収口となる排出口に、オーバーフロー槽に導入する転写液の流速を速めるための流速増強用ツバが形成されることを特徴として成るものである。
Further, the hydraulic transfer method according to claim 12 is in addition to the requirements according to claim 6, 7, 8, 9, 10 or 11,
The overflow tank for forming the design surface separation flow is characterized in that a flow rate enhancement collar for increasing the flow rate of the transfer liquid introduced into the overflow tank is formed at the discharge port serving as the liquid recovery port. is there.
 また請求項13記載の液圧転写方法は、前記請求項1、2、3、4、5、6、7、8、9、10、11または12記載の要件に加え、
 前記被転写体はマニピュレータによって保持され、少なくとも被転写体の転写液中への没入から出液までの動作がマニピュレータの作動によって行われることを特徴として成るものである。
Further, the hydraulic transfer method according to claim 13 is in addition to the requirements of claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12,
The transferred body is held by a manipulator, and at least the operation from the immersion of the transferred body into the transfer liquid to the liquid discharge is performed by the operation of the manipulator.
 また請求項14記載の液圧転写方法は、前記請求項1、2、3、4、5、6、7、8、9、10、11、12または13記載の要件に加え、
 前記転写槽には、液面付近に上流側から下流側に向かう液流が形成され、転写槽の上流側から転写フィルムを供給しながら液圧転写を連続的に行うものであることを特徴として成るものである。
Further, the hydraulic transfer method according to claim 14 is in addition to the requirements of claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13,
In the transfer tank, a liquid flow from the upstream side to the downstream side is formed near the liquid surface, and the hydraulic transfer is continuously performed while supplying the transfer film from the upstream side of the transfer tank. It consists of.
 また請求項15記載の液圧転写方法は、前記請求項1、2、3、4、5、6、7、8、9、10、11、12、13または14記載の要件に加え、
 前記転写フィルムとしては、水溶性フィルム上に転写パターンのみを乾燥状態に形成したものを適用するか、水溶性フィルムと転写パターンの間に硬化性樹脂層を具えたものを適用するかのいずれかであり、更に水溶性フィルム上に転写パターンのみを乾燥状態に形成したフィルムを適用した場合には、活性剤として液体状の硬化性樹脂組成物を用いるものであり、
 これにより液圧転写の際には被転写体に表面保護機能も有した転写パターンを形成し、これを転写後の活性エネルギー線照射または/および加熱によって硬化させるようにしたことを特徴として成るものである。
Further, the hydraulic transfer method according to claim 15 is in addition to the requirement according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14.
As the transfer film, either a water-soluble film formed with a transfer pattern only in a dry state is applied, or a film having a curable resin layer between the water-soluble film and the transfer pattern is applied. In addition, when a film in which only a transfer pattern is formed on a water-soluble film is applied in a dry state, a liquid curable resin composition is used as an active agent.
As a result, a transfer pattern having a surface protection function is formed on the transfer object during hydraulic transfer, and this is cured by irradiation with active energy rays after transfer and / or heating. It is.
 これら各請求項記載の発明の構成を手段として前記課題の解決が図られる。
 まず請求項1記載の発明によれば、出液位置をほぼ一定の位置に維持しながら被転写体を傾斜姿勢で転写液中から引き上げるため、出液位置が出液後端側に徐々に移動して行く引き上げ方に比べ、転写液中の撹拌流を抑えることができ、これに起因する意匠面へのタダレ不良、カス不良を防止することができる。すなわち、出液位置が出液後端側に徐々に移動して行く引き上げ方では、傾斜姿勢の被転写体の裏面側に(上方側に)位置する転写液が、出液に伴い傾斜に沿って落下するため(傾斜落水)、これが転写槽内に撹拌流(液波)を生じさせ、これにより転写液側(下方)を向いた意匠面に、転写液中のフィルムカス等の夾雑物が付着し易く(カス不良)、また意匠面に付着したばかりのインクが流動し、意匠面がただれたようになるタダレ不良が起き易いものであったが、本発明ではこれらカス不良・タダレ不良を防止できるものである。
The above-described problems can be solved by using the configuration of the invention described in each of the claims.
According to the first aspect of the present invention, the liquid discharge position is gradually moved toward the liquid discharge rear end side in order to pull up the transfer body from the transfer liquid in an inclined posture while maintaining the liquid discharge position at a substantially constant position. Compared with the method of pulling up, it is possible to suppress the stirring flow in the transfer liquid, and it is possible to prevent the sagging defect and the dregs defect on the design surface due to this. That is, in the pulling method in which the liquid discharge position gradually moves toward the liquid discharge rear end side, the transfer liquid positioned on the back surface side (upward side) of the inclined transfer target body follows the inclination along with the liquid discharge. This causes a stir flow (liquid wave) in the transfer tank, which causes film residue and other contaminants in the transfer liquid on the design surface facing the transfer liquid side (downward). It was easy to adhere (scrap defect), and the ink that had just adhered to the design surface flowed, and the sagging failure that caused the design surface to sag was likely to occur. It can be prevented.
 また請求項2記載の発明によれば、例えば被転写体が意匠面上に屈曲点を有する場合、出液位置を頑に維持しようとして意匠面に沿って被転写体を引き上げると、出液中、被転写体は、上記屈曲点で回転動作主体となり、タダレ不良・カス不良を生じることがある。しかしながら、このような場合、本発明では、意匠面を滑らかにつなぐ出液仮想ラインを想定し、このラインに沿って被転写体を引き上げるため、上記屈曲点でも被転写体をスムーズに引き上げ続けることができ、上記不具合を回避することができる。 According to the second aspect of the present invention, for example, when the transferred body has a bending point on the design surface, if the transferred body is pulled up along the design surface in an attempt to maintain the liquid discharge position, The transferred body is mainly rotated at the bending point, and may cause a sagging defect or a defective chip. However, in such a case, in the present invention, a liquid discharge virtual line that smoothly connects the design surfaces is assumed, and the transferred object is pulled up along this line, so that the transferred object is continuously lifted even at the bending point. And the above problems can be avoided.
 また請求項3記載の発明によれば、被転写体によっては、意匠面または出液仮想ラインに沿って被転写体を引き上げるても、没入から出液にわたる被転写体の一連の動作がスムーズに運ばなかったり、タダレ不良・カス不良が生じ易くなったりすることがある。しかし、このような場合、本発明では、被転写体の出液角を25度~55度の範囲で設定することにより被転写体の出液姿勢を適切な状態に制御するため、上記不具合を回避しながら、出液位置をほぼ一定に維持した引き上げが可能となる。 According to the invention described in claim 3, depending on the transfer object, even if the transfer object is pulled up along the design surface or the liquid discharge virtual line, a series of operations of the transfer object from immersion to liquid discharge is smooth. It may not be carried, or it may become easy to cause a sagging defect or a defective defect. However, in such a case, in the present invention, the liquid discharge angle of the transferred body is controlled in an appropriate state by setting the liquid discharge angle of the transferred body in the range of 25 to 55 degrees. While avoiding, it is possible to pull up while maintaining the liquid discharge position substantially constant.
 また請求項4記載の発明によれば、出液中の被転写体に対して、意匠面から離れる方向の意匠面離反流を形成するため(作用させるため)、泡やフィルムカス等の夾雑物が意匠面に付着し難く、綺麗な転写製品(被転写体)が得られる。また、意匠面に泡や夾雑物が付着し難いことから、転写パターンそのものを精緻に転写することができ、柄歪みや変形も生じ難いものとなる。 According to the invention described in claim 4, in order to form (act) a design surface separation flow in a direction away from the design surface with respect to the transferred material being discharged, impurities such as bubbles and film residues are formed. Is difficult to adhere to the design surface, and a beautiful transfer product (transfer object) can be obtained. In addition, since bubbles and impurities are difficult to adhere to the design surface, the transfer pattern itself can be precisely transferred, and pattern distortion and deformation hardly occur.
 また請求項5記載の発明によれば、被転写体を転写液中から引き上げている間、出液位置と、意匠面離反流形成用の転写液回収口(排出口)との距離がほぼ一定に維持されるため、出液動作中、常に同じ力の意匠面離反流を意匠面に作用させることができ、カス不良・タダレ不良をより効果的に防止することができる。 According to the fifth aspect of the present invention, the distance between the liquid discharge position and the transfer liquid recovery port (discharge port) for forming the design surface separation flow is substantially constant while the transfer target is pulled up from the transfer liquid. Therefore, the design surface separation and flow with the same force can be applied to the design surface at all times during the liquid discharge operation, and it is possible to more effectively prevent dregs and sagging defects.
 また請求項6記載の発明によれば、意匠面離反流を形成する手法が具体的なものとなり、転写液中から出液してくる被転写体の意匠面に、確実に意匠面離反流を作用させることができる。また、作用・目的は相違するが、オーバーフロー槽そのものは、この種の転写槽(液圧転写手法)に従来から用いられてきたものであるため、液圧転写装置の設計上の観点からも、また液圧転写方法を実施する観点からも採用し易いものである。 According to the invention described in claim 6, the method for forming the design surface separation flow becomes specific, and the design surface separation flow is surely applied to the design surface of the transferred material discharged from the transfer liquid. Can act. Although the action and purpose are different, the overflow tank itself has been used for this type of transfer tank (hydraulic transfer technique), so from the viewpoint of designing the hydraulic transfer apparatus, It is also easy to adopt from the viewpoint of implementing the hydraulic transfer method.
 また請求項7記載の発明によれば、意匠面離反流形成用のオーバーフロー槽の下方から供給される新水(夾雑物を含まない綺麗な水や、回収液から強雑物を除去した浄化水)を利用して意匠面離反流を生起させるため、回収した転写液をほぼそのまま意匠面離反流として再利用する場合に比べ、格段に綺麗な転写製品(被転写体)を得ることができる。 Further, according to the invention described in claim 7, fresh water (clean water containing no contaminants or purified water from which contaminants have been removed from the recovered solution) supplied from below the overflow tank for forming the design surface separation flow ) Is used to generate a design surface separation flow, so that a much more beautiful transfer product (transfer object) can be obtained as compared with the case where the collected transfer liquid is reused almost as it is as the design surface separation flow.
 また請求項8記載の発明によれば、出液エリアに向けて下向きに新水を供給する新水供給口の背面側にサイフォン式排出部を設けるため、転写液、特に中層水に滞留するフィルムカス等の夾雑物を転写槽の下方(底部)に向かうように移送した後(流した後)、ここから吸い上げて効果的に回収することができる。このため夾雑物を上方の出液エリアに上昇させないようにすることができ、出液エリアをよりクリーンな状態で維持できるものである。また、たとえサイフォン式排出部によって、転写液が吸い上げきれなくても、転写槽内に新水が吸い込み流となって吸い込み口に向かう流れ(下向き流れ)は形成できるため、転写槽底部において下向きの沈殿分離を促進させる流れを形成することができる。 Further, according to the invention described in claim 8, since the siphon-type discharge portion is provided on the back side of the new water supply port for supplying new water downward toward the liquid discharge area, the film stays in the transfer liquid, particularly the middle layer water. After transferring foreign matters such as debris to the bottom (bottom) of the transfer tank (after flowing), it can be sucked up from here and effectively recovered. For this reason, it is possible to prevent the contaminants from rising to the upper liquid discharge area, and the liquid discharge area can be maintained in a cleaner state. In addition, even if the transfer liquid cannot be sucked up by the siphon-type discharge unit, fresh water can be drawn into the transfer tank and a flow toward the suction port (downward flow) can be formed. A stream that facilitates precipitation separation can be formed.
 また請求項9記載の発明によれば、処理槽の末端底部にテーパ状の傾斜板を設けるとともに、サイフォン式排出部の吸い込み口を、この傾斜板の最上端部に臨むように設けるため、出液エリアに向けて下向きに供給された新水から、サイフォン式排出部による吸い込み流をより効率的に形成することができる。すなわち、傾斜板の傾斜に沿って上昇してくる転写液の流れをその勢いのまま効率的にサイフォン式排出部の吸い込み口に取り込むことができ、新水から吸い込み流の形成がより行い易くなるものである。 According to the ninth aspect of the present invention, a tapered inclined plate is provided at the bottom end of the treatment tank, and the suction port of the siphon discharger is provided so as to face the uppermost end of the inclined plate. From the fresh water supplied downward toward the liquid area, it is possible to more efficiently form the suction flow by the siphon discharger. That is, the flow of the transfer liquid that rises along the inclination of the inclined plate can be efficiently taken into the suction port of the siphon-type discharge portion while maintaining its momentum, and it becomes easier to form the suction flow from the fresh water. Is.
 また請求項10記載の発明によれば、新水供給口から上向きおよび下向きに供給される新水の間には、出液エリアに対し平行に向かう新水も供給されるため、これが上向きおよび下向きに供給される新水の作用を促進し(互いに阻害することを防止し)、出液エリアにおけるクリーンゾーンの拡大化に寄与する。 According to the invention described in claim 10, since the fresh water that is supplied upward and downward from the fresh water supply port is also supplied in parallel to the liquid discharge area, this is upward and downward. It promotes the action of fresh water supplied to the water (prevents interfering with each other), and contributes to the expansion of the clean zone in the drainage area.
 また請求項11記載の発明によれば、新水供給口の吐出口部分に、パンチングメタルを設けるため、ここから転写槽に供給される新水が比較的広い範囲から均一に吐出され、新水が部分的に直進状態で供給されることを防止できる。 According to the invention of claim 11, since the punching metal is provided in the discharge port portion of the new water supply port, the new water supplied from here to the transfer tank is uniformly discharged from a relatively wide range. Can be prevented from being partially fed straight.
 また請求項12記載の発明によれば、意匠面離反流を形成するオーバーフロー槽に流速増強用のツバが形成されるため、主に出液エリアにおいて意匠面側の液面付近に浮遊する夾雑物や液面上の泡等をより確実に回収することができる。 Further, according to the invention of claim 12, since the flange for increasing the flow velocity is formed in the overflow tank that forms the design surface separation flow, the contaminants that float near the liquid surface on the design surface side mainly in the liquid discharge area And bubbles on the liquid surface can be more reliably collected.
 また請求項13記載の発明によれば、被転写体はマニピュレータによって保持され、没入から出液までが動作(移動)が行われるため、被転写体の移動(動き)の自由度が増し、没入から出液までの被転写体の動作がよりスムーズなものとなり、また出液位置もより正確に維持することができる。 According to the invention described in claim 13, since the transferred object is held by the manipulator and the operation (movement) is performed from immersion to liquid discharge, the degree of freedom of movement (movement) of the transferred object is increased, and the immersion is performed. The operation of the transferred object from the liquid to the liquid discharge becomes smoother, and the liquid discharge position can be maintained more accurately.
 また請求項14記載の発明によれば、転写槽の液面付近に液流が形成され、この上流側から転写フィルムを供給しながら連続的に液圧転写を行う、いわゆる連続式の形態を採るため、出液位置をほぼ一定に維持しながら被転写体を転写液中から引き上げるという新規な液圧転写方法が連続して行える(具体的な量産レベルでの生産体制を現実のものとする)。 According to the invention described in claim 14, a so-called continuous mode is adopted in which a liquid flow is formed near the liquid surface of the transfer tank, and continuous hydraulic transfer is performed while supplying a transfer film from the upstream side. Therefore, a new hydraulic pressure transfer method of pulling up the transferred material from the transfer liquid while maintaining the liquid discharge position almost constant can be performed continuously (making the production system at a specific mass production level a reality). .
 また請求項15記載の発明によれば、液圧転写によって被転写体に表面保護機能も有する転写パターンを形成し、これを事後の活性エネルギー線照射または/および加熱によって硬化させるものであるため、転写液中から引き上げる被転写体には、フィルムカス等の夾雑物や泡などが付着するカス不良や、意匠面に付着した直後のインクおよび厚膜の硬化性樹脂を含む転写パターンが流動するタダレ不良を生じさせないことが重要となり、このような液圧転写が極めて低い不良率で行い得る。 According to the invention of claim 15, a transfer pattern having a surface protection function is formed on the transfer target body by hydraulic transfer, and this is cured by subsequent active energy ray irradiation and / or heating. The transfer target pulled up from the transfer liquid has a deficiency in which dust such as film residue adheres and bubbles, or a transfer pattern containing ink and a thick film curable resin immediately after adhering to the design surface. It is important not to cause defects, and such hydraulic transfer can be performed at a very low defect rate.
本発明の液圧転写方法を実施する液圧転写装置の一例を示す平面図並びに側面断面図である。It is the top view and side sectional drawing which show an example of the hydraulic transfer apparatus which enforces the hydraulic transfer method of this invention. 同上、平面図に対して転写槽の内部構造、特に転写液の使用状況を併せ示す側面断面図である。FIG. 4 is a side cross-sectional view showing the internal structure of the transfer tank, particularly the use state of the transfer liquid, with respect to the plan view. 新水供給口から転写槽に供給される新水の吐出形態と、サイフォン式排出部による転写液の吸い込み態様とを併せて示す拡大説明図である。FIG. 5 is an enlarged explanatory view showing a discharge form of fresh water supplied from a fresh water supply port to a transfer tank and a transfer liquid suction form by a siphon type discharge unit. 転写槽を示す骨格的斜視図である。It is a skeletal perspective view showing a transfer tank. フィルム保持機構をベルトで構成した場合の取り回し例を示す斜視図である。It is a perspective view which shows the example of handling when a film holding mechanism is comprised with a belt. 液面残留フィルムの分割手段として送風機を二基用いて、該フィルムを液流方向に三つに分断し、三カ所で回収するようにした転写槽の平面図である。It is a top view of the transfer tank which divided | segmented this film into three in the liquid flow direction, and collect | recovered at three places, using two air blowers as a division means of a liquid level residual film. 液面残留フィルムの分割手段として送風機を三基用いて、該フィルムを液流方向に二つに分断するようにした転写槽の平面図である。FIG. 3 is a plan view of a transfer tank in which three blowers are used as means for dividing the liquid level residual film and the film is divided into two in the liquid flow direction. フィルム保持機構としてチェーンコンベヤを適用した場合において、分断した液面残留フィルムを転写槽の側壁部に寄せ、ここから排出する際に、該機構によるフィルムの保持作用を解除する改変例を示す説明図(フィルム保持機構を側面から視た図)である。Explanatory drawing which shows the modification which cancels | releases the holding | maintenance effect | action of the film by this mechanism, when a chain conveyor is applied as a film holding mechanism, when the liquid level residual film parted is brought to the side wall part of a transfer tank, and discharged from here It is the figure which looked at the film holding mechanism from the side. フィルム保持機構によるフィルムの保持作用を、液面残留フィルム回収用のオーバーフロー槽に至るまで及ぶようにした様子(a)と、該保持作用をオーバーフロー槽まで及ばないようにした様子(b)とを対比して示す平面図である。A state in which the holding action of the film by the film holding mechanism extends to the overflow tank for recovering the liquid level residual film (a) and a state in which the holding action is not extended to the overflow tank (b) It is a top view shown in contrast. 液面残留フィルム回収用のオーバーフロー槽において、液回収を遮る遮断手段として収容式遮蔽体を適用した転写槽を示す骨格的斜視図(a)、並びに該オーバーフロー槽のみを拡大して示す斜視図(b)・断面図(c)である。In an overflow tank for recovering a liquid level residual film, a skeletal perspective view (a) showing a transfer tank to which a housing-type shield is applied as a blocking means for blocking liquid recovery, and a perspective view showing only the overflow tank in an enlarged manner ( b) Cross-sectional view (c). 液面残留フィルムを液流方向に二つに分断しながら、四カ所で回収するようにした転写槽を示す平面図である。It is a top view which shows the transfer tank made to collect | recover in four places, dividing | segmenting a liquid level residual film into two in a liquid flow direction. 意匠面浄化機構を具えた転写槽を、被転写体搬送装置としてのコンベヤ(三角コンベヤ)とともに併せ示す骨格的斜視図(a)、並びに出液中の被転写体に作用する意匠面離反流の様子を拡大して示す説明図(b)・(c)である。A skeletal perspective view (a) showing a transfer tank provided with a design surface purification mechanism together with a conveyor (triangular conveyor) as a transfer object conveyance device, and a design surface separation flow acting on the transfer object in liquid discharge It is explanatory drawing (b) and (c) which expands and shows a mode. 転写槽に液流が形成されていない場合に、出液位置を一定に維持する被転写体の引き上げ方を骨格的に示す説明図(a)、並びに転写槽に液流が形成されている場合に、同様の引き上げ方をしても出液位置が一定の位置に維持されないことを骨格的に示す説明図(b)、並びに転写槽に液流が形成されている場合に、出液位置を一定に維持する被転写体の引き上げ方を骨格的に示す説明図(c)である。When a liquid flow is not formed in the transfer tank, an explanatory view (a) skeletally showing how to pull up the transfer target that maintains the liquid discharge position, and a case where a liquid flow is formed in the transfer tank In addition, an explanatory view (b) skeletally showing that the liquid discharge position is not maintained at a constant position even if the same pulling method is used, and when the liquid flow is formed in the transfer tank, the liquid discharge position is changed. It is explanatory drawing (c) which shows the method of pulling up the to-be-transferred body maintained constant. 転写槽に液流が形成されていない場合に、意匠面離反流形成用のオーバーフロー槽の好ましい態様を示す説明図(a)、並びに転写槽に液流が形成されている場合に、意匠面離反流形成用のオーバーフロー槽の好ましい態様を示す説明図(b)である。Explanatory drawing (a) which shows the preferable aspect of the overflow tank for design surface separation / flow formation when the liquid flow is not formed in the transfer tank, and the design surface separation when the liquid flow is formed in the transfer tank It is explanatory drawing (b) which shows the preferable aspect of the overflow tank for flow formation. 意匠面が「へ」の字状に屈曲している被転写体を転写液中から引き上げる場合に、出液位置をほぼ一定に維持しながらも好ましくない引き上げ方を示す説明図(a)と、好ましい引き上げ方を示す説明図(b)である。An explanatory view (a) showing an undesired pulling method while keeping the liquid discharge position substantially constant when pulling up the transferred body whose design surface is bent in the shape of "he" from the transfer liquid; It is explanatory drawing (b) which shows the preferable pulling method. 意匠面が凹状に湾曲している被転写体を転写液中から引き上げる場合に、出液位置をほぼ一定に維持しながら引き上げる手法を二種示す説明図(a)・(b)である。When drawing up the to-be-transferred body in which a design surface is curving concavely from a transfer liquid, it is explanatory drawing (a) * (b) which shows two types of methods which pull up, maintaining a liquid discharge position substantially constant. 意匠面が凸状に湾曲している被転写体を転写液中から引き上げる場合に、出液位置をほぼ一定に維持しながら引き上げる手法を示す説明図である。FIG. 5 is an explanatory diagram showing a method of pulling up a transferred body whose design surface is curved in a convex shape while keeping the liquid discharge position substantially constant when pulling up from the transfer liquid. 被転写体を転写液面から出液させる際(出液開始時)の好ましい態様を示す二種の説明図である。It is two kinds of explanatory views showing a preferred embodiment when the transferred object is discharged from the transfer liquid surface (at the start of liquid discharge). 一つの治具に複数の被転写体を取り付けて液圧転写を行う場合に、出液位置をほぼ一定とする引き上げ方を示す説明図である。FIG. 5 is an explanatory view showing a pulling method in which a liquid discharge position is made substantially constant when hydraulic transfer is performed by attaching a plurality of transfer objects to one jig. 三角コンベヤ部と直線コンベヤ部とを出液側ホイールによって接続した被転写体搬送装置を示す側面図であり、(a)は没入角αが比較的小さい場合を実線で示し、(b)は没入角αが比較的大きい場合を実線で示した図である。It is a side view which shows the to-be-transferred material conveying apparatus which connected the triangular conveyor part and the linear conveyor part by the liquid discharge side wheel, (a) shows the case where the immersion angle (alpha) is comparatively small, and shows (b) immersion. It is the figure which showed the case where angle (alpha) is comparatively large with the continuous line. 搬送軌道を側面視状態で全体的に四角形状に形成し、没入角αと出液角βとを変更できるようにした被転写体搬送装置を示す側面図である。FIG. 5 is a side view showing a transferred object transport apparatus in which a transport track is formed in a generally rectangular shape in a side view and the immersion angle α and the liquid discharge angle β can be changed. 没入側ホイールから出液側ホイールまでの区間において被転写体を転写液中で徐々に上昇移送するようにした被転写体搬送装置を示す部分的な側面図である。FIG. 5 is a partial side view showing a transferred object transport apparatus that gradually moves up the transferred object in a transfer liquid in a section from an immersion side wheel to a liquid output side wheel. 被転写体が意匠面に開口部を有している場合に、この開口部の裏面側に隙間を開けて薄膜誘導体を設けた様子を示す被転写体の背面図及び断面図(a)、並びに薄膜誘導体を設けて液圧転写並びに紫外線照射を行う様子を示す説明図(b)・(c)である。When the transferred body has an opening on the design surface, a rear view and a sectional view (a) of the transferred body showing a state in which a thin film derivative is provided by opening a gap on the back side of the opening; It is explanatory drawing (b) * (c) which shows a mode that a thin film derivative is provided and hydraulic pressure transfer and ultraviolet irradiation are performed. 被転写体に薄膜誘導体を設ける際に開口部との隙間を全周で一定にせず、異ならせるようにした実施例を示す説明図である。It is explanatory drawing which shows the Example which was made not to make constant the clearance gap with an opening part, but to make it uniform in a perimeter, when providing a to-be-transferred body with a thin film derivative. 液圧転写時に転写パターンのみならず表面保護層までを形成し、その後に紫外線照射等によって、これら装飾層を硬化させるようにした場合において、液圧転写時に意匠面に泡が付着する様子、並びにこの状態で紫外線照射を行う様子を示す説明図である。When not only the transfer pattern at the time of hydraulic transfer but also the surface protective layer is formed, and then these decorative layers are cured by ultraviolet irradiation or the like, bubbles adhere to the design surface at the time of hydraulic transfer, and It is explanatory drawing which shows a mode that ultraviolet irradiation is performed in this state. 意匠面の一部を液面と平行にして被転写体を転写液中から出液させた場合に、タダレ不良の要因となる液面波(負圧アタック)を発生させる様子を段階的に拡大して示す説明図である。Step-by-step expansion of the generation of liquid surface waves (negative pressure attack) that can cause sagging failure when the design surface is parallel to the liquid surface and the transferred material is discharged from the transfer liquid. It is explanatory drawing shown. 転写槽に液流が形成されていない場合に、被転写体を一定の傾斜角度で真上に引き上げた際に(いわゆるバッチ式)、出液位置が出液後端側に徐々に移動して行く様子と、この引き上げ動作に伴い転写液中に撹拌流が形成されることを段階的に示す説明図である。When the liquid flow is not formed in the transfer tank, when the transfer target is pulled straight up at a certain inclination angle (so-called batch type), the liquid discharge position gradually moves to the liquid discharge rear end side. It is explanatory drawing which shows in a step manner that a stirring flow is formed in a transfer liquid in connection with this going up and this raising operation | movement. 一般に、転写液面上に供給された転写フィルムが、上側の転写パターンと、下側の水溶性フィルムとの伸び差によって上方にカールする様子を概念的に示す説明図である。FIG. 2 is an explanatory diagram conceptually showing a state in which a transfer film supplied on a transfer liquid surface is generally curled upward by a difference in elongation between an upper transfer pattern and a lower water-soluble film.
 1     液圧転写装置
 2     転写槽
 3     転写フィルム供給装置
 4     活性剤塗布装置
 5     被転写体搬送装置
 6     フィルム保持機構
 7     液面残留フィルム回収機構
 8     出液エリア浄化機構
 9     意匠面浄化機構
 10    伸展低下防止機構

  2    転写槽
 21    処理槽
 22    側壁
 23    傾斜板
 24    傾斜部
 26    送風機
 29    架台
 30    架台

  3    転写フィルム供給装置
 31    フィルムロール
 32    ヒートローラ
 33    案内コンベヤ
 34    ガイドローラ
 
  4    活性剤塗布装置
 41    ロールコータ

  5    被転写体搬送装置
 51    コンベヤ
 52    治具ホルダ
 53    リンクチェーン
 54    リンクバー
 55    三角コンベヤ部
 56    没入側ホイール
 57    出液側ホイール
 58    直線コンベヤ部
 58A   直線コンベヤ部
 58B   直線コンベヤ部
 59    チェーンホイール
 59A   チェーンホイール
 59B   チェーンホイール
 110   ロボット(多関節形ロボット)
 111   ハンド(転写ロボット)
 112   ハンド(移載ロボット)

 120   薄膜誘導体

  6    フィルム保持機構
 61    コンベヤ
 62    プーリ
 62A   始端プーリ
 62B   終端プーリ
 62C   中継プーリ
 62D   位置固定プーリ
 62E   上下動プーリ
 63    ベルト
 63G   往路ベルト
 63B   復路ベルト
 63C   テンション調整部
 64    回転軸
 65    アームバー
 66    クランプ
 67    チェーンコンベヤ
 68    チェーン
 69A   ガイド体
 69B   ガイド体

  7    液面残留フィルム回収機構
 71    分割手段
 72    排出手段
 73    送風機
 73a   補助送風機
 73b   補助送風機
 75    オーバーフロー槽
 75a   補助オーバーフロー槽
 76    排出口
 76a   排出口
 77    遮断手段
 78    堰板
 79    収容式遮蔽体
 79a   堰作用部
 79b   脚部

  8    出液エリア浄化機構
 81    排出手段
 82    オーバーフロー槽
 83    排出口
 84    流速増強用ツバ
 85    送風機

  9    意匠面浄化機構
 91    離反流形成手段
 92    オーバーフロー槽
 93    排出口
 94    流速増強用ツバ
 95    吸い込みノズル
 97    新水供給口
 98    サイフォン式排出部
 98a   吸い込み口
 98b   サイフォン経路

 10    伸展低下防止機構
 101   除去手段
 102   圧縮空気吹出ノズル

 A     泡
 C     コンベヤ(UV照射工程用)
 CL    間隙
 CV    出液仮想ライン
 F     転写フィルム
 FL    分断ライン
 F′    液面残留フィルム
 f     転写された装飾層
 J     治具
 JL    治具脚
 K     活性剤成分
 L     転写液
 LR    意匠面離反流
 LS    サイド離反流
 LV    吸い込み流
 M     薄膜
 W     被転写体
 Wa    開口部
 WS    短片部
 WL    長片部
 WP    屈曲点
 P1    没入エリア(転写位置)
 P2    出液エリア
 P3    分断開始地点
 PO    出液位置
 PU    新水(上向き)
 PD    新水(下向き)
 PP    新水(平行)
 S1    意匠面
 S2    装飾不要面
 α     没入角
 β     出液角
DESCRIPTION OF SYMBOLS 1 Hydraulic transfer apparatus 2 Transfer tank 3 Transfer film supply apparatus 4 Activating agent application apparatus 5 Transfer object conveyance apparatus 6 Film holding mechanism 7 Liquid surface residual film collection mechanism 8 Liquid discharge area purification mechanism 9 Design surface purification mechanism 10 Prevention of extension reduction mechanism

2 Transfer tank 21 Processing tank 22 Side wall 23 Inclined plate 24 Inclined part 26 Blower 29 Mounting base 30 Mounting base

3 Transfer Film Supply Device 31 Film Roll 32 Heat Roller 33 Guide Conveyor 34 Guide Roller
4 Activator Application Equipment 41 Roll Coater

5 Transfer object transport device 51 Conveyor 52 Jig holder 53 Link chain 54 Link bar 55 Triangle conveyor part 56 Immersion side wheel 57 Liquid discharge side wheel 58 Linear conveyor part 58A Linear conveyor part 58B Linear conveyor part 59 Chain wheel 59A Chain wheel 59B Chain wheel 110 robot (articulated robot)
111 hands (transfer robot)
112 hand (transfer robot)

120 Thin film derivatives

6 Film holding mechanism 61 Conveyor 62 Pulley 62A Start pulley 62B End pulley 62C Relay pulley 62D Position fixed pulley 62E Vertical pulley 63 Belt 63G Outward belt 63B Return belt 63C Tension adjustment section 64 Rotating shaft 65 Arm bar 66 Clamp 67 Chain conveyor 68 Chain 69 Guide body 69B Guide body

7 Liquid Level Residual Film Recovery Mechanism 71 Dividing Means 72 Discharge Means 73 Blower 73a Auxiliary Blower 73b Auxiliary Blower 75 Overflow Tank 75a Auxiliary Overflow Tank 76 Discharge Port 76a Discharge Port 77 Blocking Means 78 Weir Plate 79 Contained Shield 79a Weir Acting Section 79b leg

8 Discharge area purification mechanism 81 Discharge means 82 Overflow tank 83 Discharge port 84 Flange for enhancing flow velocity 85 Blower

DESCRIPTION OF SYMBOLS 9 Design surface purification mechanism 91 Separation flow formation means 92 Overflow tank 93 Discharge port 94 Flange for pressure increase 95 Suction nozzle 97 Fresh water supply port 98 Siphon type discharge part 98a Suction port 98b Siphon path

DESCRIPTION OF SYMBOLS 10 Extension fall prevention mechanism 101 Removal means 102 Compressed air blowing nozzle

A Foam C Conveyor (for UV irradiation process)
CL Clearance CV Discharge virtual line F Transfer film FL Split line F 'Liquid level residual film f Transferred decorative layer J Jig JL Jig leg K Activator component L Transfer liquid LR Design surface separation flow LS Side separation flow LV Suction Flow M Thin film W Transfer object Wa Opening WS Short piece WL Long piece WP Bending point P1 Immersion area (transfer position)
P2 Discharge area P3 Dividing start point PO Discharge position PU Fresh water (upward)
PD fresh water (downward)
PP fresh water (parallel)
S1 Design surface S2 Decoration-free surface α Immersion angle β Liquid discharge angle
 本発明を実施するための形態は、以下の実施例に述べるものをその一つとするとともに、更にその技術思想内において改良し得る種々の手法を含むものである。
 なお、説明にあたっては、まず本発明において好適に用いられる転写フィルムFについて説明し、その後、液圧転写装置1の全体構成について説明する。
The mode for carrying out the present invention includes one described in the following embodiments, and further includes various methods that can be improved within the technical idea.
In the description, first, the transfer film F suitably used in the present invention will be described, and then the entire configuration of the hydraulic transfer device 1 will be described.
 まず本発明において好適に用いられる転写フィルムFについて説明する。本発明では、液圧転写の際、転写パターンのみを被転写体Wに転写することや、とりわけ表面保護機能を併せ持たせた転写パターンを転写することが好ましく(本明細書では、このような転写パターンを「表面保護機能も有する転写パターン」と称する)、これは従来、転写後に施していたトップコートが必要なくなるためである。すなわち、表面保護機能も付与する液圧転写では、転写後の被転写体Wに、例えば紫外線や電子線等の活性エネルギー線を照射することにより、液圧転写によって形成した転写パターンを硬化させ、表面保護を図ることができるものである。もちろん、表面保護機能も有する転写パターンを転写した後、更にトップコートを施すことは何ら構わない。
 このようなことから、転写フィルムFとしても、水溶性フィルム(例えばPVA;ポリビニルアルコール)上に転写インクによる転写パターンのみが形成されたフィルム、あるいは水溶性フィルムと転写パターンとの間に硬化性樹脂層が形成されたフィルムの適用が好ましく、とりわけ水溶性フィルム上に転写パターンのみが形成された転写フィルムFを用いる場合には、活性剤として液体状の硬化樹脂組成物を使用するものである。ここで硬化樹脂組成物とは、光重合性モノマーを含む無溶剤タイプの紫外線または電子線硬化樹脂組成物が好ましいものである。
First, the transfer film F suitably used in the present invention will be described. In the present invention, at the time of hydraulic transfer, it is preferable to transfer only the transfer pattern to the transfer target W, and particularly to transfer a transfer pattern having a surface protection function (in this specification, such a transfer pattern is used). The transfer pattern is referred to as a “transfer pattern also having a surface protection function”), which is because a top coat which has been conventionally applied after transfer is not necessary. That is, in the hydraulic transfer that also provides the surface protection function, the transferred pattern W formed by the hydraulic transfer is cured by irradiating the transferred object W after transfer with active energy rays such as ultraviolet rays and electron beams, The surface can be protected. Of course, after transferring the transfer pattern having the surface protection function, it is possible to apply a top coat.
Therefore, as the transfer film F, a film in which only a transfer pattern with a transfer ink is formed on a water-soluble film (for example, PVA; polyvinyl alcohol), or a curable resin between the water-soluble film and the transfer pattern. Application of a film in which a layer is formed is preferable, and in particular, when a transfer film F in which only a transfer pattern is formed on a water-soluble film is used, a liquid cured resin composition is used as an activator. Here, the cured resin composition is preferably a solventless ultraviolet or electron beam curable resin composition containing a photopolymerizable monomer.
 ここで転写パターンとしては、木目模様のパターン、金属(光沢)模様のパターン、大理石模様などの岩石の表面を模した石目模様のパターン、布目や布状の模様を模した布地模様のパターン、タイル張り模様・レンガ積み模様などのパターン、幾何学模様、ホログラム効果を有するパターン等の各種パターンが挙げられ、更にはこれらを適宜複合したものでも構わない。なお、上記幾何学模様については、図形はもちろん文字や写真を施したパターンも含むものである。 Here, the transfer patterns include wood grain patterns, metal (glossy) patterns, stone patterns that simulate the surface of rocks such as marble patterns, fabric patterns that simulate cloth and cloth-like patterns, Various patterns such as a pattern such as a tiled pattern and a brickwork pattern, a geometric pattern, a pattern having a hologram effect, and the like may be used. The geometric pattern includes not only figures but also patterns with letters and photographs.
 また被転写体Wにおける面を定義すると、まず装飾層が形成される転写面を意匠面S1とするものであり、この意匠面S1は、精緻な転写が要求される面と言え、没入の際には転写液面上に浮かべた転写フィルムF(転写パターン)に対向する面となる。ここで、上述したように、特に表面保護機能も有する転写パターンを液圧転写時に形成する場合には、被転写体Wの意匠面S1に、液面残留フィルムF′、余剰フィルム、フィルムカス、泡Aなどを極力付着させないようにするものである(カス不良、タダレ不良の防止)。
 一方、被転写体Wにおいて装飾層が形成されない面(液圧転写を要しない面)を装飾不要面S2とし、ここには上記フィルムカス、泡Aなどが付着しても構わないものである(例えば意匠面S1側から回り込んだ転写パターンが歪んだ状態で転写されても構わないものである)。
 このため換言すれば、意匠面S1は、完成品として被転写体W(液圧転写品)を最終的にアッセンブリ等として組み付けた状態において外観的に目視される部分となり、装飾不要面S2は、組み付け状態で外観的に目視されない部分であり意匠面S1の裏側となることが多い。
When the surface of the transfer target W is defined, first, the transfer surface on which the decoration layer is formed is a design surface S1, and this design surface S1 can be said to be a surface that requires precise transfer. Is a surface facing the transfer film F (transfer pattern) floated on the transfer liquid surface. Here, as described above, in particular, when a transfer pattern having a surface protection function is formed at the time of hydraulic transfer, the liquid level residual film F ′, surplus film, film residue, This is to prevent bubbles A and the like from adhering as much as possible (preventing deficient defects and freezing defects).
On the other hand, the surface on which the decorative layer is not formed (the surface that does not require hydraulic transfer) is defined as a decoration-unnecessary surface S2, on which the film residue, bubbles A, etc. may adhere ( For example, the transfer pattern wrapping around from the design surface S1 side may be transferred in a distorted state).
Therefore, in other words, the design surface S1 becomes a part visually observed in a state where the transferred object W (hydraulic transfer product) is finally assembled as an assembly or the like as a finished product, and the decoration unnecessary surface S2 is It is a portion that is not visually observed in the assembled state and is often the back side of the design surface S1.
  次に液圧転写装置1について説明する。液圧転写装置1は、一例として図1・2に示すように、転写液Lを貯留する転写槽2と、この転写槽2に転写フィルムFを供給する転写フィルム供給装置3と、転写フィルムFを活性化し転写可能な状態とする活性剤塗布装置4と、転写槽2に浮遊支持された転写フィルムFの上方から適宜の姿勢で被転写体Wを投入(没入)させ、且つ出液させる(引き上げる)被転写体搬送装置5とを具えて成るものである。
 更に転写槽2は、転写液面上に供給された転写フィルムFの両サイドを保持するフィルム保持機構6と、被転写体Wの没入後に不要となった液面残留フィルムF′を転写槽2から回収(排出)する液面残留フィルム回収機構7と、主に出液エリアの浄化を図る出液エリア浄化機構8(出液する被転写体Wの主に装飾不要面S2側(意匠面S1の反対側))と、出液エリアにおいて浮上してくる被転写体Wの意匠面S1側の浄化を図る意匠面浄化機構9と、着液した転写フィルムFから離れ転写液面上に流出する活性剤成分Kを除去することにより転写液面上に供給された転写フィルムFの伸展低下を防止する伸展低下防止機構10とを具えて成るものである。ここで、本発明では被転写体Wを転写液L中から引き上げる際、出液位置をほぼ一定に維持しながら引き上げることが大きな特徴である。以下、各構成部について説明する。
Next, the hydraulic transfer device 1 will be described. As shown in FIG. 1 and FIG. 2 as an example, the hydraulic transfer apparatus 1 includes a transfer tank 2 that stores a transfer liquid L, a transfer film supply apparatus 3 that supplies the transfer film F to the transfer tank 2, and a transfer film F. Is activated (applied) from the upper side of the transfer film F suspended and supported in the transfer tank 2, and the transferred object W is introduced (immersed) in an appropriate posture and discharged ( And a transfer object transport device 5.
Further, the transfer tank 2 transfers a film holding mechanism 6 that holds both sides of the transfer film F supplied onto the transfer liquid surface, and a liquid surface residual film F ′ that is no longer necessary after the transfer target W is immersed. The liquid level residual film recovery mechanism 7 that collects (discharges) from the liquid and the liquid discharge area purification mechanism 8 that mainly purifies the liquid discharge area (mainly the decoration-unneeded surface S2 side (design surface S1) And the design surface purification mechanism 9 that purifies the design surface S1 side of the transfer target W that floats in the liquid discharge area, and moves away from the transferred transfer film F and flows onto the transfer liquid surface. It comprises an extension reduction preventing mechanism 10 for preventing the extension of the transfer film F supplied onto the transfer liquid surface by removing the activator component K. Here, in the present invention, when the transfer target W is pulled up from the transfer liquid L, the main feature is that the transfer position is lifted while maintaining the liquid discharge position substantially constant. Hereinafter, each component will be described.
 まず転写槽2について説明する。転写槽2は、液圧転写を行うにあたり、転写フィルムFを浮遊支持する部位であり、転写液Lをほぼ一定の液レベル(水位)で貯留できる処理槽21を主な構成部材とする。このため処理槽21は天面が開口され、前後左右が壁面で囲まれた有底状を成し、特に処理槽21の左右両サイドを構成する両側壁に符号22を付すものである。
 ここで処理槽21において被処理体Wが転写液L中に投入される領域(入射範囲)を没入エリアP1とし、被処理体Wが転写液L中から引き上げられる領域(出射範囲)を出液エリアP2とするものである。因みに、液圧転写においては、被転写体Wの没入と同時に転写が実行・完了するものであるため、前記没入エリアP1は転写エリア(転写位置)とも言える。また、上記名称において主に「エリア」という語句を使用したのは、通常は、転写フィルムFの転写パターンの種類や状態により転写位置を前後に移動させたり、また、ある程度の広さを有した意匠面S1に、転写フィルムF(転写パターン)を転写するため、被転写体Wの没入/出液は、液面に対して、ある程度の角度を持った状態(ある程度の範囲ないしは広さ)で行われることが多いためである。因みに、没入角αは、被転写体Wが没入し始めてから没入し終わるまで必ずしも一定に維持するとは限らないし、これは出液角βについても同様であり、被転写体Wが出液し始めてから出液し終わるまで必ずしも一定に維持するとは限らない。
 そして、本実施例では、被転写体Wが転写液Lに没入している間に、液面上に残ったフィルム(転写には使われず不要の液面残留フィルムF′)を、転写槽2の長手方向(液流方向)に分断するため、上記没入エリアP1と出液エリアP2との間隔は、ある程度の距離を設けるものである。なお、転写槽2の長手方向に分断された液面残留フィルムF′は、その後、転写槽2の両側壁22に寄せられ(送られ)、ここから転写槽2外に排出(回収)されるものである。
First, the transfer tank 2 will be described. The transfer tank 2 is a part that floats and supports the transfer film F in performing the hydraulic transfer, and the processing tank 21 that can store the transfer liquid L at a substantially constant liquid level (water level) is a main constituent member. For this reason, the processing tank 21 has a bottomed shape in which the top surface is opened and the front, rear, left and right are surrounded by wall surfaces, and in particular, reference numerals 22 are attached to both side walls constituting the left and right sides of the processing tank 21.
Here, an area (incident range) where the object to be processed W is poured into the transfer liquid L in the processing tank 21 is defined as an immersion area P1, and an area (exit area) where the object W is pulled up from the transfer liquid L is discharged. This area is designated as area P2. Incidentally, in the hydraulic transfer, since the transfer is executed and completed simultaneously with the immersion of the transfer target W, the immersion area P1 can be said to be a transfer area (transfer position). In addition, the phrase “area” is mainly used in the above names. Usually, the transfer position is moved back and forth depending on the type and state of the transfer pattern of the transfer film F, and has a certain extent. In order to transfer the transfer film F (transfer pattern) to the design surface S1, the immersion / extraction of the transfer target W is at a certain angle (a certain range or width) with respect to the liquid surface. This is because it is often performed. Incidentally, the immersion angle α is not always maintained constant from the start of the immersion of the transferred object W until the immersion of the transferred object W. This is the same for the liquid discharge angle β, and the transferred object W starts to discharge. It is not always maintained constant until the liquid is discharged.
In this embodiment, while the transfer target W is immersed in the transfer liquid L, a film remaining on the liquid surface (an unnecessary liquid surface remaining film F ′ that is not used for transfer) is transferred to the transfer tank 2. In order to divide in the longitudinal direction (liquid flow direction), the interval between the immersion area P1 and the liquid discharge area P2 is provided with a certain distance. The liquid level residual film F ′ divided in the longitudinal direction of the transfer tank 2 is then moved (sent) to both side walls 22 of the transfer tank 2 and discharged (collected) from the transfer tank 2 from here. Is.
 また、処理槽21内には、例えば液面付近(表層部分)において転写液Lをフィルム供給側(上流側)から出液エリアP2(下流側)に向かう液流を形成することが可能である。具体的には、転写槽2の下流端近くにオーバーフロー槽(後述するオーバーフロー槽82・92・97等)を設けるとももに、ここで回収した転写液Lを浄化した後、その一部を転写槽2の上流部分から循環供給することにより転写液Lの液面付近に上記液流を形成するものである。因みに回収した転写液Lを浄化するには、例えば沈殿槽やフィルタリング等の浄化装置によって、転写液L中に分散・滞留する余剰フィルムやフィルムカス等の夾雑物を回収液(懸濁液)から除去する手法が挙げられる。 Further, in the processing tank 21, for example, a liquid flow of the transfer liquid L from the film supply side (upstream side) toward the liquid discharge area P2 (downstream side) can be formed in the vicinity of the liquid surface (surface layer portion). . Specifically, an overflow tank (an overflow tank 82, 92, 97, etc., which will be described later) is provided near the downstream end of the transfer tank 2, and a part of the transferred liquid L is transferred after purification. The liquid flow is formed near the liquid surface of the transfer liquid L by circulating supply from the upstream portion of the tank 2. In order to purify the collected transfer liquid L, for example, a purifier such as a sedimentation tank or filtering removes extraneous films and film residues, etc., dispersed and retained in the transfer liquid L from the collected liquid (suspension). There is a method of removing.
 また、処理槽21の両側壁22の内側には、例えばフィルム保持機構6としてのコンベヤ61を設けることが可能であり、これは液面上に供給された転写フィルムFの両サイドを保持することで、転写フィルムFを転写液Lの液流と同調した速度で、上流側から下流側に移送するものである。もちろん、転写液面上に供給された転写フィルムF(特に水溶性フィルム)は、着液以降、徐々に四方に延展して行くため(伸びて行くため)、上記フィルム保持機構6(コンベヤ61)は、このフィルムの伸びを両サイドから規制する作用も担うものである。すなわち、フィルム保持機構6(コンベヤ61)は、転写フィルムFの伸びをほぼ一定に維持した状態で、転写フィルムFを少なくとも没入エリアP1(転写位置)まで移送する作用を担うものであり、これにより転写位置では転写フィルムFの伸びが毎回同じ程度に維持され、連続して精緻な転写が行えるものである。
 このようにフィルム保持機構6(コンベヤ61)は、単に転写フィルムFの移送作用を担うだけでなく、転写位置におけるフィルムの伸びを一定に維持する作用(伸びを規制する作用)をも担うものであり、本明細書では、これらをまとめて「フィルムの保持作用」と称する。因みに、本実施例においては、このフィルムの保持作用を、液面残留フィルムF′を回収する部位では解除するものであり、その詳細は後述する。
Moreover, it is possible to provide, for example, a conveyor 61 as the film holding mechanism 6 inside the both side walls 22 of the processing tank 21, which holds both sides of the transfer film F supplied on the liquid surface. Thus, the transfer film F is transferred from the upstream side to the downstream side at a speed synchronized with the liquid flow of the transfer liquid L. Of course, since the transfer film F (especially water-soluble film) supplied onto the transfer liquid surface gradually spreads in four directions (becomes extended) after the landing, the film holding mechanism 6 (conveyor 61). Is also responsible for regulating the elongation of the film from both sides. That is, the film holding mechanism 6 (conveyor 61) is responsible for transferring the transfer film F to at least the immersion area P1 (transfer position) in a state where the elongation of the transfer film F is maintained almost constant. At the transfer position, the elongation of the transfer film F is maintained at the same level every time, and continuous fine transfer can be performed.
Thus, the film holding mechanism 6 (conveyor 61) is not only responsible for the transfer action of the transfer film F but also for maintaining the film elongation at the transfer position constant (action for regulating the elongation). In the present specification, these are collectively referred to as “film holding action”. Incidentally, in this embodiment, the holding action of the film is canceled at the portion where the liquid level residual film F ′ is recovered, and details thereof will be described later.
 フィルム保持機構6としてのコンベヤ61は、一例として図5に示すように、複数のプーリ62に無端状のベルト63を巻回して成るものであり、ベルト63は、転写フィルムFの両サイドに接触し、これを保持する軌道部分(フィルムを保持しながら液流とほぼ同じ速度でフィルムを下流方向に送るため「往路ベルト63G」とする)と、その外側で側壁22寄りの位置に配される復路部分(これを「復路ベルト63B」とする)とに分けられる。
 また複数のプーリのうちフィルム供給側(上流側)に設けられるものを始端プーリ62Aとし、終端部分(液面残留フィルム回収用のオーバーフロー槽側)に設けられるプーリを終端プーリ62Bとする。更に、これら始端プーリ62Aと終端プーリ62Bとの途中部分で、往路ベルト63Gを側方から支持するものを中継プーリ62Cとする(ここでは二基ある)。
 因みに本実施例では、終端プーリ62Bにモータ等による駆動が入力されるものである。
As shown in FIG. 5 as an example, the conveyor 61 as the film holding mechanism 6 is formed by winding an endless belt 63 around a plurality of pulleys 62, and the belt 63 contacts both sides of the transfer film F. And a track portion that holds the film (referred to as an “outward belt 63G” for feeding the film in the downstream direction at the same speed as the liquid flow while holding the film) and a position near the side wall 22 on the outside thereof. It is divided into a return path portion (this is referred to as “return path belt 63B”).
Of the plurality of pulleys, the pulley provided on the film supply side (upstream side) is referred to as a start pulley 62A, and the pulley provided in the terminal portion (the overflow tank side for collecting the liquid level residual film) is referred to as a terminal pulley 62B. Further, the intermediate pulley 62C that supports the forward belt 63G from the side in the middle portion of the start pulley 62A and the end pulley 62B is provided (two in this case).
Incidentally, in this embodiment, driving by a motor or the like is input to the terminal pulley 62B.
 始端プーリ62A、終端プーリ62B、中継プーリ62Cは、どれも回転軸64がほぼ鉛直方向に設定され、フィルムの保持作用を担う往路ベルト63Gそのものの幅方向が転写液Lの深さ(高さ)方向になるように設定されており、これは転写槽2内の液レベルが変化しても、ベルト63の幅寸法で対応し、コンベヤ61全体を上下動させなくても済むように考慮したためである(転写槽2の液レベル変化に対応し易い構造)。
 一方、復路ベルト63Bは、中継プーリ62Cが設けられる部位で、軌道の一部が下方に垂れ下がるように取り回され(言わば折り返し状態)、この垂れ下がり部分の長さ寸法を適宜変更することでベルト63全体に掛かるテンションを調整するものである(このため、この垂れ下がり部位をテンション調整部63Cとする)。
In the start pulley 62A, the end pulley 62B, and the relay pulley 62C, the rotation shaft 64 is set substantially in the vertical direction, and the width direction of the forward belt 63G that bears the film holding action is the depth (height) of the transfer liquid L. This is because even if the liquid level in the transfer tank 2 changes, the width of the belt 63 can be used, and the entire conveyor 61 need not be moved up and down. Yes (structure that can easily cope with liquid level change in the transfer tank 2).
On the other hand, the return belt 63B is a portion where the relay pulley 62C is provided, and is routed so that a part of the track hangs downward (in other words, a folded state), and the length of the suspending portion is appropriately changed to change the belt 63. The tension applied to the whole is adjusted (for this reason, this hanging portion is referred to as a tension adjusting portion 63C).
 テンション調整部63Cは、中継プーリ62Cの両側に設けられる位置固定プーリ62Dと、その下方に設けられる上下動プーリ62Eの計三つのプーリを具えて成るものであり、実際のテンション調整において、例えばコンベヤ61の平面視寸法、つまり始端プーリ62Aから終端プーリ62Bまでの見かけ上の全長を短くしたい場合には、上下動プーリ62Eを下げて、テンション調整部63Cにおける下方への折り返し長さを伸ばすことで、ベルト63の全長は変えずに、コンベヤ61の見かけ上の平面視寸法を短縮するものである。 The tension adjusting unit 63C includes a total of three pulleys, a position fixing pulley 62D provided on both sides of the relay pulley 62C and a vertically moving pulley 62E provided below the pulley. In actual tension adjustment, for example, a conveyor When it is desired to shorten the plan view dimension of 61, that is, the apparent total length from the start pulley 62A to the end pulley 62B, the vertical movement pulley 62E is lowered to extend the downward folding length of the tension adjustment section 63C. The apparent planar size of the conveyor 61 is shortened without changing the overall length of the belt 63.
 また、テンション調整部63Cを構成する位置固定プーリ62Dと上下動プーリ62Eとの回転軸64は、転写槽2の側壁22にほぼ直交する水平状態に設定される。このためテンション調整部63C(垂れ下がり部分)では、ベルト63の幅方向が、ほぼ水平になるように設定され、復路部分でベルト63の姿勢が90度変えられる(ねじられる)ものである。すなわち、復路ベルト63Bにおける終端プーリ62Bから位置固定プーリ62Dに至る軌道部分と、位置固定プーリ62Dから始端プーリ62Aに至る軌道部分とにおいてベルト63が90度ねじられるものである。
 因みに、図5では、テンション調整部63Cを二カ所設けたが、これは無くても、また一カ所でも構わないし、あるいは三カ所以上でも構わない。
Further, the rotation shafts 64 of the position fixing pulley 62D and the vertically moving pulley 62E constituting the tension adjusting unit 63C are set in a horizontal state substantially orthogonal to the side wall 22 of the transfer tank 2. Therefore, in the tension adjusting portion 63C (hanging portion), the width direction of the belt 63 is set so as to be substantially horizontal, and the posture of the belt 63 is changed (twisted) by 90 degrees in the return path portion. That is, the belt 63 is twisted by 90 degrees at the track portion from the end pulley 62B to the position fixing pulley 62D and the track portion from the position fixing pulley 62D to the start end pulley 62A in the return belt 63B.
Incidentally, in FIG. 5, two tension adjusting portions 63C are provided, but this may be omitted, may be one, or may be three or more.
 なお、このようなフィルム保持機構6(コンベヤ61)は、転写フィルムFの幅寸法が種々異なることを考慮すると、左右の往路ベルト63Gの間隔(幅寸法)が自由に調整できるような構成が好ましく、以下これについて説明する。このような構成(幅寸法調整機能)としては、例えば図5の拡大図に示すように、中継プーリ62Cを回転自在に支持するアームバー65を、転写槽2の側壁22に対し突出自在(伸縮自在)に設けておく手法が挙げられる(いわゆる伸縮式)。なお、アームバー65は、クランプ66等により任意の位置で(突出寸法で)固定できるようにしておくものである。
 また、本実施例では、始端プーリ62Aについても同様の手法で、転写槽2の幅方向に対し突出自在に設けている。因みに、転写フィルムFに合わせて左右の往路ベルト63Gの間隔を変更した場合にも、テンション調整部63Cの調整、つまり上下動プーリ62Eを上下動させてベルト63全体のテンションを調整するものである。
 なお、中継プーリ62Cや始端プーリ62Aを、側壁22(転写槽2)に対し突出自在に設ける他の手法としては、プーリ62C・62Aを支持するアームバー65を、転写槽2の側壁22に対し回動自在に設けておき、このアームバー65をクランプ66等により任意の回動位置(角度)で固定する手法も考えられる(いわゆるスイング式)。もちろん、このような伸縮式とスイング式とを随所に組み合わせて適用することも何ら構わない。
 また、本実施例では、フィルム保持機構6としてベルト63を採用したが、チェーンや比較的太いロープ・ワイヤ等を適用することも可能である。
Note that such a film holding mechanism 6 (conveyor 61) is preferably configured such that the distance (width dimension) between the left and right forward belts 63G can be freely adjusted in consideration of the various width dimensions of the transfer film F. This will be described below. As such a configuration (width dimension adjusting function), for example, as shown in the enlarged view of FIG. 5, the arm bar 65 that rotatably supports the relay pulley 62 </ b> C can be protruded (expandable) with respect to the side wall 22 of the transfer tank 2. ) Is provided (so-called telescopic type). The arm bar 65 can be fixed at any position (with a protruding dimension) by a clamp 66 or the like.
In this embodiment, the start pulley 62A is also provided so as to protrude in the width direction of the transfer tank 2 by the same method. Incidentally, even when the distance between the left and right forward belts 63G is changed in accordance with the transfer film F, adjustment of the tension adjusting unit 63C, that is, the vertical movement pulley 62E is moved up and down to adjust the tension of the entire belt 63. .
As another method of providing the relay pulley 62C and the start end pulley 62A so as to protrude from the side wall 22 (transfer tank 2), an arm bar 65 that supports the pulleys 62C and 62A is rotated around the side wall 22 of the transfer tank 2. A method is also conceivable in which the arm bar 65 is provided so as to be freely movable and fixed at an arbitrary rotational position (angle) by a clamp 66 or the like (so-called swing type). Of course, it is also possible to apply such a telescopic type and a swing type in combination in any place.
In this embodiment, the belt 63 is used as the film holding mechanism 6. However, it is also possible to apply a chain, a relatively thick rope or wire, or the like.
 また、処理槽21のフィルム供給側(上流側)の上方には、送風機26が設けられ、これにより転写フィルムFの周囲への均一な延展を図るとともに、転写フィルムFの下流側への進行を補うものである。
 ここで送風機26による送風は、転写フィルムFに直接、風を作用させる(当てる)ことが大きな特徴である。つまり送風機26は、転写フィルムFそのものに送風する手法であって、転写フィルムFを風の力で強制的に周囲に押し広げる(伸展させる)という着想である。
 また、送風機26は、転写フィルムFの下流側への移送作用を補助的に担うものであるため、その送風方向は、専ら上流側から下流側に向かう一方向である。もちろん、送風機26の取付位置も、転写槽2のセンター位置(幅中央)に設定されるものである。
 更に、送風機26は転写フィルムFに直接、風を作用させるものであるため、比較的風量が強め(多め)に設定され、これに伴う波立ちが転写位置(没入エリアP1)にまで波及することが考えられる。従って、これを防ぐには、転写槽2内における送風機26から転写位置までの間に波消板などを設け、転写液面の安定化、とりわけ転写位置での液面の安定化を図ることが好ましい。
 なお、ここでは液面付近に液流が形成されている転写槽2について説明したが、液面付近に液流が形成されていない転写槽2を適用することも可能である。
In addition, a blower 26 is provided above the film supply side (upstream side) of the processing tank 21, thereby achieving uniform extension around the transfer film F and progressing toward the downstream side of the transfer film F. It is a supplement.
Here, the air blow by the blower 26 is characterized in that the wind is directly applied (struck) to the transfer film F. In other words, the blower 26 is a method of blowing air to the transfer film F itself, and has the idea of forcibly spreading (extending) the transfer film F around by the force of wind.
Moreover, since the air blower 26 assists the transfer operation | movement to the downstream of the transfer film F, the ventilation direction is one direction which goes only from the upstream to the downstream. Of course, the mounting position of the blower 26 is also set to the center position (width center) of the transfer tank 2.
Further, since the blower 26 directly applies wind to the transfer film F, the air volume is set to be relatively strong (large), and the accompanying ripples may reach the transfer position (immersion area P1). Conceivable. Therefore, in order to prevent this, a wave vanishing plate or the like is provided between the blower 26 and the transfer position in the transfer tank 2 to stabilize the transfer liquid surface, particularly the liquid surface at the transfer position. preferable.
Here, the transfer tank 2 in which the liquid flow is formed near the liquid surface has been described. However, it is possible to apply the transfer tank 2 in which no liquid flow is formed in the vicinity of the liquid surface.
 次に液面残留フィルム回収機構7について説明する。液面残留フィルム回収機構7は、被転写体Wの没入後に、転写液面上に残った液面残留フィルムF′を回収する機構であり、これにより液面残留フィルムF′を出液エリアP2まで到達させないようにしている。すなわち転写フィルムFは、被転写体Wの没入によって例えば図1に示すように、突き破られた状態(ここでは長円状の孔が開いた状態)となり、突き破られた部分は、主に被転写体Wとともに液中に没し、その液圧によって意匠面S1に付着転写される部位であるが、液面上に残ったフィルム(開口状態で浮遊するフィルム)は、転写には用いられず、不要な部位となる(これが液面残留フィルムF′)。このような液面残留フィルムF′をそのまま放置すれば転写液Lを汚す要因となり、また液面残留フィルムF′が下流の出液エリアP2までに至れば、転写液中から引き上げられてくる被転写体W(意匠面S1)に付着してしまうため、本実施例では、この液面残留フィルムF′を、転写後できるだけ速やかに且つ確実に回収するものである。具体的には、まず液面残留フィルムF′を転写槽2の長手方向、つまり液流方向に分断し、これを転写槽2の両側壁22に寄せて(押しやって)、ここから槽外に排出するものである。 Next, the liquid level residual film recovery mechanism 7 will be described. The liquid level residual film recovery mechanism 7 is a mechanism for recovering the liquid level residual film F ′ remaining on the transfer liquid level after the transfer target W is immersed, whereby the liquid level residual film F ′ is removed from the liquid discharge area P2. Is not allowed to reach. That is, the transfer film F is in a pierced state (here, an oval hole is opened), for example, as shown in FIG. The film is immersed in the liquid together with the transfer target W and is attached and transferred to the design surface S1 by the liquid pressure, but the film remaining on the liquid surface (the film floating in the open state) is used for transfer. Therefore, it becomes an unnecessary part (this is the liquid level residual film F ′). If such a liquid level residual film F ′ is left as it is, it will cause the transfer liquid L to become dirty, and if the liquid level residual film F ′ reaches the downstream liquid discharge area P2, it will be lifted from the transfer liquid. In this embodiment, the liquid level residual film F ′ is collected as soon as possible and reliably after transfer because it adheres to the transfer body W (design surface S1). Specifically, first, the liquid level residual film F ′ is divided in the longitudinal direction of the transfer tank 2, that is, in the liquid flow direction, and is moved to both side walls 22 of the transfer tank 2 and pushed out from here. To be discharged.
 このため液面残留フィルム回収機構7としては、液面残留フィルムF′を液流方向に割くように分ける分割手段71と、転写槽2の側壁22部分で槽外に排出する排出手段72とを具えて成るものであり、以下これらについて説明する。
 まず分割手段71から説明する。分割手段71は、被転写体Wの没入後つまり転写後、液面残留フィルムF′を速やかに分断する(分岐させる)ものであり、ここではフィルムに対して非接触でありながらも確実に分断が行える送風手法を採用する。具体的には、一例として図1に示すように、送風機73を処理槽21の一方の側壁22上に設け、ここから液面上の液面残留フィルムF′に風を当てるものである。ここで、上記説明では単に「送風機(73)」と記載したが、この文言には、送風機に接続される延長ダクトやノズル等を含むものである。
 また、上記説明では、液面残留フィルムF′の分断を速やかに行うように記載したが、分割手段71の分断作用(ここでは風量)が転写位置(没入エリアP1)の転写フィルムFに変形(返り波等による柄歪み)、応力等などの悪影響を生じさせては、転写そのものが精緻に行えなくなるため、分割手段71の作用が及ぶ範囲は、転写位置に悪影響を及ぼさないように(例えば、ある程度の距離をおいて)設けられる。別の言い方をすれば、分割手段71としての送風機73の風量(風力)は、転写位置に悪影響を及ぼさないことを考慮して比較的弱く設定される。そのため、分割手段71としての送風機73は、転写位置の前後移動に応じて、設置位置が転写槽2の長手方向に沿って自由に移動できることが好ましく、これにより転写位置に悪影響を及ぼさずに、分断作用を発揮する適切な位置設定が容易となる。
For this reason, the liquid level residual film recovery mechanism 7 includes a dividing unit 71 that divides the liquid level residual film F ′ in the liquid flow direction, and a discharge unit 72 that discharges outside the tank at the side wall 22 portion of the transfer tank 2. These are provided and will be described below.
First, the dividing means 71 will be described. The dividing means 71 quickly divides (branches) the liquid level residual film F ′ after the transfer of the transfer target W, that is, after the transfer. The air blowing method that can do is adopted. Specifically, as shown in FIG. 1, as an example, a blower 73 is provided on one side wall 22 of the processing tank 21, and air is applied to the liquid level residual film F ′ on the liquid level from here. Here, in the above description, it is simply described as “blower (73)”, but this term includes an extension duct, a nozzle and the like connected to the fan.
In the above description, the liquid level residual film F ′ has been described as being quickly divided, but the dividing action (here, the air volume) of the dividing means 71 is transformed into the transfer film F at the transfer position (immersion area P1) ( Since the transfer itself cannot be precisely performed if an adverse effect such as a pattern distortion due to a return wave) or a stress is generated, the range of action of the dividing means 71 does not adversely affect the transfer position (for example, Provided at a certain distance). In other words, the air volume (wind power) of the blower 73 as the dividing means 71 is set to be relatively weak in consideration of having no adverse effect on the transfer position. Therefore, it is preferable that the blower 73 as the dividing means 71 can be freely moved along the longitudinal direction of the transfer tank 2 according to the back-and-forth movement of the transfer position, thereby preventing the transfer position from being adversely affected. It is easy to set an appropriate position to exert the dividing action.
 ここで上記送風機73による液面残留フィルムF′の分断状況について説明する。液面残留フィルムF′は、送風機73からの送風により左右に分かれるものであり、とりわけ液面残留フィルムF′において分断が始まる地点を分断開始地点P3とする。また液面残留フィルムF′は、この分断開始地点P3から送風により略円弧状または略V字状に分かれ、あたかもラインにように見えるため、このフィルム別れ線を分断ラインFLと定義する。もちろん分断ラインFLのエッジ付近は、次第に少しずつ溶解、ばらけながら送風や液流により両側壁22に寄って行く。このため図4では分断ラインFLを分断開始地点P3付近では明確な実線で描いたが、ここから離れた側壁22部位では破線で描いたものである。 Here, the division state of the liquid level residual film F ′ by the blower 73 will be described. The liquid level residual film F ′ is divided into left and right by the air blown from the blower 73. In particular, a point at which the division starts in the liquid level residual film F ′ is defined as a division start point P3. Further, the liquid level residual film F ′ is divided into a substantially arc shape or a substantially V shape by blowing from the dividing start point P3 and looks as if it is a line. Therefore, this film separation line is defined as a dividing line FL. Of course, the vicinity of the edge of the dividing line FL gradually approaches the both side walls 22 by blowing or liquid flow while gradually dissolving and spreading. Therefore, in FIG. 4, the dividing line FL is drawn with a clear solid line in the vicinity of the dividing start point P <b> 3, but is drawn with a broken line at the side wall 22 part away from the dividing line FL.
 因みに、本実施例では、分断後の液面残留フィルムF′を、一見、両側壁22に寄せる作用部材がないように思えるが、上記分割手段71としての送風機73が、分断後の液面残留フィルムF′を側壁22に寄せる作用も担っている。もちろん、転写槽2に形成されている液流も、当該作用を補っている。
 また、本実施例では、分割手段71としての送風機73を一方の側壁22上に設け、液面残留フィルムF′を二分割することから、両側壁22への分割比率は一例として約8:2~7:3程度の割合である。もちろん液面残留フィルムF′を分割するには、左右の側壁22にほぼ均等に分けることも可能であるが、この場合には、転写槽2の幅中央に分割手段71(送風機73)を設置するのが一般的と考えられ、転写槽2の幅中央に位置する被転写体搬送装置5との設置態様を考慮する必要がある。
Incidentally, in this embodiment, it seems that there is no acting member that brings the liquid level residual film F ′ after the division into the side walls 22 at first glance, but the blower 73 as the dividing means 71 has the liquid level residual after the division. The film F ′ is also brought into the side wall 22. Of course, the liquid flow formed in the transfer tank 2 also compensates for this effect.
Further, in this embodiment, the blower 73 as the dividing means 71 is provided on one side wall 22 and the liquid level residual film F ′ is divided into two, so that the dividing ratio to the side walls 22 is about 8: 2 as an example. The ratio is about 7: 3. Of course, in order to divide the liquid level residual film F ′, it is possible to divide the left and right side walls 22 almost equally. In this case, a dividing means 71 (blower 73) is installed at the center of the width of the transfer tank 2. This is generally considered to be performed, and it is necessary to consider the installation mode with the transferred object conveyance device 5 located in the center of the width of the transfer tank 2.
 なお、分割手段71としての送風機73は、必ずしも一基に限定されるものではなく、二基以上を組み合わせて用いることも可能であり、これは上述したように送風機73の風量を無理やり多く(強く)できないための対策と言える。具体的には、例えば図1に併せ示すように、送風機73を設けた側壁22の方に、更に小型の補助送風機73aを設置し、液面残留フィルムF′を多く回収する方に確実に押し込むものである。
 もちろん、補助送風機73aの送風方向は、必ずしも図1の態様に限定されるものではなく、例えば図6に示すように、補助送風機73aの送風方向をメインの送風機73の送風方向とほぼ沿うように設定することも可能である。因みに、この図6の実施例では、液面残留フィルムF′は結果的に三分割され、三カ所で回収されており、このため本実施例は、液面残留フィルムF′の分割態様が必ずしも二分割に限定されないこと(二カ所での回収に限定されないこと)を示しているとも言える。つまり、転写フィルムFの性状や分割・回収の状況等によって、種々の分割形態、回収形態が採り得るものである。
 更に、例えば図7は、分割手段71として三基の送風機(メインの送風機を73、補助送風機を73a、73bとする)を設けた実施例であり、補助送風機73aの風量が弱いために(大きくし難いために)、最後に別の補助送風機73bで、分断した液面残留フィルムF′の一方を横方向に確実に押しやる思想である。
 なお、液面残留フィルムF′を送風によって分断する上記手法は、液面残留フィルムF′を非接触状態で分断でき(送風機73自体をフィルムに直接触れさせずに分断でき)、転写位置の転写フィルムFに変形等の悪影響を及ぼし難い点で効果を奏するものである。
Note that the blower 73 as the dividing means 71 is not necessarily limited to one, and two or more blowers can be used in combination. As described above, the airflow of the blower 73 is forcibly increased (strongly). ) It can be said that it is a measure for not being able to. Specifically, for example, as shown in FIG. 1, a further small auxiliary blower 73a is installed on the side wall 22 provided with the blower 73, and is surely pushed into the direction of collecting a large amount of the liquid level residual film F ′. Is.
Of course, the air blowing direction of the auxiliary blower 73a is not necessarily limited to the mode of FIG. 1. For example, as shown in FIG. 6, the air blowing direction of the auxiliary air blower 73 a is substantially aligned with the air blowing direction of the main blower 73. It is also possible to set. Incidentally, in the embodiment of FIG. 6, the liquid level residual film F ′ is eventually divided into three parts and collected at three locations. Therefore, in this example, the liquid level residual film F ′ is not necessarily divided. It can also be said that it is not limited to two divisions (not limited to collection in two places). That is, various division forms and collection forms can be adopted depending on the properties of the transfer film F, the state of division / collection, and the like.
Further, for example, FIG. 7 shows an embodiment in which three fans (the main fan is 73 and the auxiliary fans are 73a and 73b) are provided as the dividing means 71, because the air volume of the auxiliary fan 73a is weak (largely). This is the idea of finally pushing one of the divided liquid level residual films F ′ laterally with another auxiliary blower 73b.
Note that the above-described method of dividing the liquid level residual film F ′ by blowing can cut the liquid level residual film F ′ in a non-contact state (the fan 73 itself can be divided without directly touching the film), and the transfer position can be transferred. The film F is effective in that it does not easily exert an adverse effect such as deformation on the film F.
 次に、液面残留フィルム回収機構7における排出手段72について説明する。排出手段72は、転写槽2の側壁22に押しやった液面残留フィルムF′を回収し、転写槽2外に排出するものであり、本実施例では処理槽21の左右両側壁22内側に設けたオーバーフロー槽75を適用する。ここでオーバーフロー槽75において、液面残留フィルムF′を転写液Lとともに導入する回収口を排出口76とする。
 また、このようなオーバーフローによる排出構造を採ることから、上述したように排出口76ではフィルム保持機構6(ここではベルト63を用いたコンベヤ61)によるフィルムの保持作用を解除するものであり、これにより両側壁22に押しやった液面残留フィルムF′を排出(回収)し易くしている。逆に言えば、オーバーフロー槽75の排出口76にベルト63が存在すると、ベルト63が排出口76を塞ぎ、あたかも液面残留フィルムF′の排出を阻害するように働いてしまうため、本実施例では、排出口76部分でフィルムの保持作用を解除するものである。
Next, the discharging means 72 in the liquid level residual film recovery mechanism 7 will be described. The discharge means 72 collects the liquid level residual film F ′ pushed to the side wall 22 of the transfer tank 2 and discharges it to the outside of the transfer tank 2. In this embodiment, the discharge means 72 is provided inside the left and right side walls 22 of the processing tank 21. Apply the overflow tank 75. Here, in the overflow tank 75, a recovery port for introducing the liquid level residual film F ′ together with the transfer liquid L is referred to as a discharge port 76.
Further, since the discharge structure due to such overflow is adopted, the film holding mechanism 6 (here, the conveyor 61 using the belt 63) is released from the film holding mechanism 6 at the discharge port 76 as described above. This makes it easy to discharge (collect) the liquid level residual film F ′ pushed to the both side walls 22. In other words, if the belt 63 is present at the discharge port 76 of the overflow tank 75, the belt 63 closes the discharge port 76 and acts as if the discharge of the liquid level residual film F ′ is obstructed. Then, the film holding action is canceled at the discharge port 76 portion.
 排出口76におけるフィルム保持機構6の解除手法について具体的に説明すると、本実施例では例えば図4に示すように、フィルム保持作用の終端部となる終端プーリ62Bを、側面から視て分断開始地点P3付近に設け、ここでコンベヤ61(ベルト63)を折り返すものである。このような配置態様により、オーバーフロー槽75の排出口76部分で、フィルム保持機構6(コンベヤ61)によるフィルム保持作用を解除するものである。
 ただし、コンベヤ61は、側面から視てオーバーフロー槽75(排出口76部分)に対し幾らかオーバーラップするよう、つまり終端プーリ62Bが側面から視てオーバーフロー槽75と幾らか重なるように設けることが好ましく、これについては後述する(図9(a)参照)。
 なお、フィルム保持機構6としてチェーンコンベヤ67を適用した場合にも(図28参照)、上記と同様の手法により、排出口76部分でチェーンコンベヤ67によるフィルムの保持作用を解除することができるが、特にチェーンコンベヤ67を適用した場合には、上記以外の他の手法も採用できる。すなわち、この場合には、通常、側面視状態で、上側のチェーン68の中心が液面レベルと合致するように設定されるため、例えば図8(a)に示すように、排出口76付近では、チェーンコンベヤ67(チェーン68)を全体的に液面下に沈降させて、排出口76における液面部分でフィルムの保持作用を解除することが可能である。もちろん、これとは逆の構成つまり図8(b)に示すように、排出口76における液面部分で、チェーンコンベヤ67(チェーン68)を液面より高く持ち上げて、フィルムの保持作用を解除することも可能である。ここで図中符号69Aは、排出口76付近でチェーン68が排出口76を塞がないようにチェーンコンベヤ67を上または下に規制するガイド体であり、更に図中符号69Bは、チェーンコンベヤ67を通常の高さ(軌道)で案内するガイド体である。
The release method of the film holding mechanism 6 at the discharge port 76 will be described in detail. In this embodiment, for example, as shown in FIG. It is provided in the vicinity of P3, and the conveyor 61 (belt 63) is folded back here. With such an arrangement mode, the film holding action by the film holding mechanism 6 (conveyor 61) is canceled at the discharge port 76 portion of the overflow tank 75.
However, it is preferable that the conveyor 61 is provided so as to be somewhat overlapped with the overflow tank 75 (the discharge port 76 portion) when viewed from the side, that is, the terminal pulley 62B is somewhat overlapped with the overflow tank 75 when viewed from the side. This will be described later (see FIG. 9A).
Even when the chain conveyor 67 is applied as the film holding mechanism 6 (see FIG. 28), the film holding action by the chain conveyor 67 can be canceled at the discharge port 76 portion by the same method as described above. In particular, when the chain conveyor 67 is applied, other methods than the above can also be adopted. That is, in this case, since the center of the upper chain 68 is usually set to match the liquid level in a side view state, for example, in the vicinity of the discharge port 76 as shown in FIG. The chain conveyor 67 (chain 68) can be entirely submerged below the liquid level to release the film holding action at the liquid level in the discharge port 76. Of course, as shown in FIG. 8 (b), the opposite of this structure, that is, the liquid level portion at the discharge port 76, the chain conveyor 67 (chain 68) is lifted above the liquid level to release the film holding action. It is also possible. Here, reference numeral 69A in the drawing is a guide body that regulates the chain conveyor 67 upward or downward so that the chain 68 does not block the discharge opening 76 in the vicinity of the discharge port 76. Further, reference numeral 69B in the drawing indicates the chain conveyor 67. Is a guide body that guides the vehicle at a normal height (orbit).
 また、本実施例のオーバーフロー槽75には、例えば図4に示すように、排出口76の途中部分に、液回収を遮る遮断手段77としての堰板78を設けるものであり、これは一基のオーバーフロー槽75においても、遮断手段77(堰板78)の前後二段階で液面残留フィルムF′を回収することを意図した構成である。また、遮断手段77は、排出口76の流速誘導範囲を狭めるため、フィルムの保持作用を解除した後の流速を弱める制御も行っており、これにより液面残留フィルムF′を確実に、しかも転写位置(没入エリアP1)に悪影響を及ぼすことなく回収するようにしている。
 因みに、排出口76に遮断手段77を設けずに、排出口76の全域から液面残留フィルムF′をオーバーフロー槽75に導入した場合には、側壁22に寄って来ている液面残留フィルムF′を全体的に引っ張ってしまい、これが転写位置にまで及んで転写位置の転写フィルムFに変形等の悪影響を与えてしまうことが本出願人によって確認されている。
 また、このオーバーフロー槽75で回収した転写液Lは、液面残留フィルムF′すなわち転写パターン(インク成分)や半溶解状の水溶性フィルム等を多く含み、夾雑物の混入割合が高いため、そのまま廃棄されることが好ましいが、浄化装置によって、これら夾雑物を除去した後、循環使用に供することも可能である。
 また、オーバーフロー槽75は、転写槽2の側壁22(フレーム)に対して液流方向となる前後方向がボルト等によって留められ、オーバーフロー槽75の全体的な高さが変更できるともに、オーバーフロー槽75自体の前後方向の傾きが調整できるように取り付けられることが好ましい。また、前記送風機73と同様に、オーバーフロー槽75全体が、転写位置の変更を考慮して、転写槽2の長手方向に自由に前後移動できることが好ましい。更に、遮断手段77も、排出口76に対する設置位置が適宜変更でき、またその幅(前後方向長)も適宜変更できる構成が好ましい。
Further, in the overflow tank 75 of the present embodiment, as shown in FIG. 4, for example, a weir plate 78 as a blocking means 77 for blocking liquid recovery is provided in the middle of the discharge port 76. This overflow tank 75 is also intended to collect the liquid level residual film F ′ in two stages before and after the blocking means 77 (dam plate 78). In addition, the blocking means 77 performs control to weaken the flow velocity after releasing the film holding action in order to narrow the flow velocity induction range of the discharge port 76, thereby reliably transferring the liquid level residual film F '. Recovery is performed without adversely affecting the position (immersion area P1).
Incidentally, when the liquid level residual film F ′ is introduced into the overflow tank 75 from the entire area of the discharge port 76 without providing the blocking means 77 at the discharge port 76, the liquid level residual film F approaching the side wall 22. It has been confirmed by the present applicant that ′ is pulled as a whole, and reaches the transfer position and adversely affects the transfer film F at the transfer position, such as deformation.
Further, the transfer liquid L collected in the overflow tank 75 contains a lot of residual liquid film F ′, that is, a transfer pattern (ink component), a semi-dissolved water-soluble film, etc. Although it is preferable to dispose, these contaminants can be removed by a purifier and then recycled.
In addition, the overflow tank 75 is secured to the side wall 22 (frame) of the transfer tank 2 by a bolt or the like in the front-rear direction, which is the liquid flow direction, and the overall height of the overflow tank 75 can be changed. It is preferable to attach so that the inclination of the front-back direction of itself can be adjusted. Further, like the blower 73, it is preferable that the entire overflow tank 75 can freely move back and forth in the longitudinal direction of the transfer tank 2 in consideration of the change of the transfer position. Further, it is preferable that the blocking unit 77 can be appropriately changed in the installation position with respect to the discharge port 76 and can also change the width (length in the front-rear direction) as appropriate.
 ここで、側面視状態でフィルム保持機構6(コンベヤ61)をオーバーフロー槽75(排出口76部分)に対し幾らかオーバーラップさせることが好ましい理由(経緯)を、図9に基づいて説明する。
 まず、図9(b)は、コンベヤ61がオーバーフロー槽75とオーバーラップしない場合を示しており、このときコンベヤ61の終端プーリ62Bは、オーバーフロー槽75よりも上流側に位置する。この場合、ベルト63(往路ベルト63G)に保持された液面残留フィルムF′の両サイド部分は、オーバーフロー槽75の速い流速の落液の力によって次第にフィルム保持(接触)が解除される傾向(本来はベルト63に保持されている部位でもベルト63から離れる傾向)となる。そのため、この場合には図示するように、液面残留フィルムF′の両サイド端部が、先にオーバーフロー落液に引っ張られて保持が解除され、これが上流側に遡ってフィルム全体の柄曲がりを誘発し得る。当然、このような柄曲がりの影響は、没入エリアP1の転写フィルムFの柄歪みにつながるものである。
 これに対し、図9(a)に示すように、コンベヤ61をオーバーフロー槽75に対し幾らかオーバーラップさせた場合には、液面残留フィルムF′がオーバーフロー槽75(排出口76)に至るまで、コンベヤ61(往路ベルト63G)によるフィルムの保持作用が及ぶものである。このため、液面残留フィルムF′は、排出口76に到達するまで、両サイド部分がコンベヤ61によって確実に保持され、オーバーフロー槽75(遮断手段77の手前側)に導入される液面残留フィルムF′は、あたかも終端プーリ62Bを回り込むように落水し、転写位置に悪影響を及ぼすことなく確実に回収されるものである。
Here, the reason why the film holding mechanism 6 (conveyor 61) is somewhat overlapped with the overflow tank 75 (the discharge port 76 portion) in a side view will be described with reference to FIG.
First, FIG. 9B shows a case where the conveyor 61 does not overlap with the overflow tank 75, and at this time, the terminal pulley 62 </ b> B of the conveyor 61 is located upstream of the overflow tank 75. In this case, the both sides of the liquid level residual film F ′ held by the belt 63 (outward belt 63G) tend to be gradually released from the film holding (contact) by the falling liquid force at a high flow rate in the overflow tank 75 ( Originally, the portion held by the belt 63 tends to be separated from the belt 63). Therefore, in this case, as shown in the drawing, both side end portions of the liquid level residual film F ′ are first pulled by the overflow liquid, and the holding is released. This causes the pattern bending of the entire film to go upstream. Can trigger. Naturally, the influence of such pattern bending leads to pattern distortion of the transfer film F in the immersion area P1.
On the other hand, as shown in FIG. 9A, when the conveyor 61 is somewhat overlapped with the overflow tank 75, the liquid level residual film F ′ reaches the overflow tank 75 (discharge port 76). The film 61 can be held by the conveyor 61 (outward belt 63G). Therefore, the liquid level residual film F ′ is securely held by the conveyor 61 until the liquid level residual film F ′ reaches the discharge port 76, and is introduced into the overflow tank 75 (the front side of the blocking means 77). F 'falls as if it goes around the end pulley 62B, and is reliably recovered without adversely affecting the transfer position.
 ここで、例えば上記図4の実施例では、遮断手段77として堰板78を適用したが、遮断手段77としては他の形態も採り得、例えば図10に示すように、オーバーフロー槽75内に収める形態も可能であり、好ましいものである(これを収容式遮蔽体79とする)。
 すなわち図10に示す収容式遮蔽体79は、一例として断面コの字型を成す側溝状の部材であるが、このものは回収液を受け入れる容器(溝)として使用されるのではなく、図10(b)に示すように、コの字型断面の開口部分(開放部分)を下に向けるようにオーバーフロー槽75に収められ(落とし込まれ)、コの字型断面の中央平面部分でオーバーフロー槽75の上部開口側を部分的に閉塞するものである。このため収容式遮蔽体79は、オーバーフロー槽75内で、言わばブリッジ状に設置されるものであり、この設置状態で収容式遮蔽体79の上部に位置する平面部位(オーバーフロー槽75を閉塞する部分)が、上記堰板78と同様に堰の作用を担うものであり、このようなことから当該平面部分を堰作用部79aとする。また、堰作用部79aの両側に対設される部位を脚部79bとするものであり、この両脚部79bをオーバーフロー槽75内に収めることにより、収容式遮蔽体79は、前後方向の移動のみが許容されるものである。
Here, for example, in the embodiment of FIG. 4 described above, the weir plate 78 is applied as the blocking means 77, but other forms may be adopted as the blocking means 77, for example, as shown in FIG. A form is also possible and preferable (this is referred to as a housing-type shield 79).
10 is a side groove-shaped member having a U-shaped cross section as an example, but this is not used as a container (groove) for receiving the recovered liquid. As shown in (b), it is stored (dropped) in the overflow tank 75 so that the opening part (open part) of the U-shaped cross section faces downward, and the overflow tank at the central plane part of the U-shaped cross section. The upper opening side of 75 is partially closed. Therefore, the accommodating shield 79 is installed in a bridge shape in the overflow tank 75, and in this installed state, a planar portion located on the upper part of the accommodating shield 79 (the portion that closes the overflow tank 75). ) Is responsible for the action of the weir like the dam plate 78, and for this reason, the plane portion is referred to as a dam action part 79a. Moreover, the part which is oppositely provided on both sides of the weir action part 79a is a leg part 79b. By housing both the leg parts 79b in the overflow tank 75, the accommodating shield 79 can only move in the front-rear direction. Is acceptable.
 なお、収容式遮蔽体79を、このようなコの字型に形成するメリットは、このものをオーバーフロー槽75内に落とし込むだけで収容式遮蔽体79(遮断手段77)を固定することができ、またこのものを前後方向に移動(転写槽2の長手方向にスライド)させることにより前後二段階の排出位置や、その排出バランスが容易に調整・変更できることである。
 この点、先に述べた堰板78では、通常、このものをオーバーフロー槽75の排出口76に立設することから、堰板78をオーバーフロー槽75(排出口76)に取り付ける固定手段が別途必要となり、また上述した調整を行うには着脱を伴うが、収容式遮蔽体79であれば、特にこのような固定手段が要らず、また調整も極めて容易に行い得るものである。
The merit of forming the storage type shield 79 in such a U shape is that the storage type shield 79 (blocking means 77) can be fixed simply by dropping this into the overflow tank 75, Further, by moving this in the front-rear direction (sliding in the longitudinal direction of the transfer tank 2), the front-rear two-stage discharge position and its discharge balance can be easily adjusted and changed.
In this respect, since the above-described dam plate 78 is normally installed at the discharge port 76 of the overflow tank 75, a fixing means for attaching the dam plate 78 to the overflow tank 75 (discharge port 76) is required separately. In addition, the adjustment described above involves attachment and detachment. However, if the housing type shield 79 is used, such a fixing means is not particularly required, and the adjustment can be performed very easily.
 ここで収容式遮蔽体79は、既に述べたようにオーバーフロー槽75による液回収を遮るものであるため、図10(c)に示すように、堰作用部79a(天面)が、オーバーフロー槽75の排出口76よりも高く設定されるものである(一例として1mm~3mm程度)。なお且つ、この堰作用部79aは、同図10(c)に示すように、転写液面よりもわずかに低く設定されるものであり(一例として2~3mm程度)、これは通常排出量設定時に収容式遮蔽体79が、わずかに液中に没することを示している。しかし、このような状態でも、収容式遮蔽体79(堰作用部79a)が設置されていない排出口76部分と、堰作用部79aとでは、液回収の速度差が生じ(堰作用部79a部分で遅くなる)、充分に堰としての機能を果たすものである。
 更に、堰作用部79aをわずかに水没させることで、当該部分にフィルムカスが引っ掛かり難く、またたとえ当該部分にフィルムカスが引っ掛かって止まっても(乗り上げて止まっても)、これを回収でき、転写槽2内の転写液Lを汚すことがないものである。
 この点、先に述べた堰板78は、一般的なせき止め構造であり、堰板78が転写液面よりも上に突出するため、堰板78にフィルムカスが引っ掛かることが考えられ、その場合には、これがやがて粉々になり転写槽2内に落下し、転写液Lを汚しかねないものである。
Here, since the housing-type shield 79 blocks liquid recovery by the overflow tank 75 as described above, the weir action portion 79a (top surface) is provided with the overflow tank 75 as shown in FIG. Is set higher than the discharge port 76 (for example, about 1 mm to 3 mm). In addition, as shown in FIG. 10C, the weir action portion 79a is set slightly lower than the transfer liquid surface (as an example, about 2 to 3 mm), which is a normal discharge amount setting. Sometimes the containment shield 79 is slightly submerged in the liquid. However, even in such a state, there is a difference in the speed of liquid recovery between the discharge port 76 portion where the accommodating shield 79 (weir action portion 79a) is not installed and the weir action portion 79a (weir action portion 79a portion). It will fully function as a weir.
Furthermore, by slightly submerging the weir action part 79a, it is difficult for the film residue to be caught on the part, and even if the film residue is caught on the part and stopped (climbing up and stopped), it can be recovered and transferred. The transfer liquid L in the tank 2 is not soiled.
In this respect, the dam plate 78 described above has a general damming structure, and since the dam plate 78 protrudes above the transfer liquid surface, it is conceivable that film residue is caught on the dam plate 78. In the meantime, this eventually becomes shattered and falls into the transfer tank 2, which may contaminate the transfer liquid L.
 なお、転写槽2の側壁22部分で液面残留フィルムF′を回収するにあたっては、必ずしも片側一カ所ずつでなくてもよく(左右の側壁22で各一カ所ずつでなくてもよく)、例えば図11に示すように、片側二カ所ずつでもよい。因みに、この図11の実施例は、分割手段71としての送風機73が風量を大きく設定し難いため、液面残留フィルムF′をコンベヤ61の外側まで押しやる能力がない場合に、コンベヤ61の内側にも補助的なオーバーフロー槽75a(排出手段72)を設けるようにした実施例である。ただ、この場合、補助オーバーフロー槽75aは、幾らか転写槽2の中央(被転写体Wの搬送経路上)に張り出し状に設けることになるため、該オーバーフロー槽75aが被転写体Wの搬送を妨げないように考慮する必要がある。また、このように液面残留フィルムF′を二分割しても、その後の回収は四カ所(片側二カ所)で行うこともあり得、必ずしも分割手段71による液面残留フィルムF′の分割数と、回収個所数とが一致するとは限らない。
 また、液面残留フィルム回収機構7(排出手段72)としては、必ずしもオーバーフロー構造に限定されるものではなく、他の回収手法も採り得るものであり、例えば液面付近の転写液Lを、分断した液面残留フィルムF′とともに吸い込むバキューム手法が挙げられる。すなわち、この場合には、排出手段72として吸い込みノズルが適用される。
In collecting the liquid level residual film F ′ at the side wall 22 portion of the transfer tank 2, it is not always necessary to have one place on each side (one on each of the left and right side walls 22). As shown in FIG. 11, two portions on one side may be provided. Incidentally, in the embodiment of FIG. 11, the blower 73 as the dividing means 71 is difficult to set a large air volume, and therefore, when there is no ability to push the liquid level residual film F ′ to the outside of the conveyor 61, This is an embodiment in which an auxiliary overflow tank 75a (discharge means 72) is provided. However, in this case, since the auxiliary overflow tank 75a is provided in a protruding manner in the center of the transfer tank 2 (on the transport path of the transfer target W), the overflow tank 75a transports the transfer target W. It is necessary to consider not to disturb. Further, even if the liquid level residual film F ′ is divided into two in this way, the subsequent recovery may be performed at four locations (two locations on one side), and the number of divisions of the liquid level residual film F ′ by the dividing means 71 is not necessarily performed. And the number of collection points do not always match.
Further, the liquid level residual film recovery mechanism 7 (discharge unit 72) is not necessarily limited to the overflow structure, and other recovery methods can be adopted. For example, the transfer liquid L near the liquid level is divided. A vacuum technique of sucking together with the liquid level residual film F ′. That is, in this case, a suction nozzle is applied as the discharge means 72.
 また、本実施例では、液面残留フィルム回収機構7の後段に、出液エリア浄化機構8を更に具えるものであり、以下この機構について説明する。出液エリア浄化機構8は、出液エリアP2における主に装飾不要面S2側(意匠面S1の裏側)の転写液中・液面上の夾雑物や泡Aを除去する機構であり、回収対象物を具体的に例示すると、例えば被転写体Wが転写フィルムFを突き破るように没入するために発生するフィルムカス(水溶性フィルムとインクが混ざり合った紐屑状等の比較的細かいもの)、没入時に治具Jや被転写体Wに付着して一旦液面下に潜ったのち液中において放出された余剰フィルム、被転写体W(治具J)の出液時に被転写体Wの装飾不要面S2側の液面上に多量に発生する泡Aやフィルムカスなどが挙げられる。
 そして、当該機構により、被転写体Wがまだ転写液L中に存在する間に、これらの夾雑物や泡Aを出液エリアP2から連続的に遠ざけ、出液エリアP2の浄化を図ると同時に、被転写体Wの意匠面S1側への回り込みまでをできる限り防止するものである。
Further, in this embodiment, the liquid level residual film recovery mechanism 7 is further provided with a liquid discharge area purification mechanism 8, which will be described below. The liquid discharge area purification mechanism 8 is a mechanism that removes contaminants and bubbles A in the transfer liquid and on the liquid surface mainly on the decoration-unnecessary surface S2 side (the back side of the design surface S1) in the liquid discharge area P2. Specifically, for example, a film residue (relatively fine thing such as string waste in which a water-soluble film and ink are mixed) generated because the transferred object W is immersed so as to break through the transfer film F, The surplus film released from the liquid after adhering to the jig J or the transferred object W during immersion and once submerged below the liquid surface, the decoration of the transferred object W when the transferred object W (jig J) is discharged. Examples thereof include bubbles A and film residue generated in large quantities on the liquid surface on the unnecessary surface S2.
Then, by this mechanism, while the transfer target W is still present in the transfer liquid L, these contaminants and bubbles A are continuously moved away from the liquid discharge area P2, and the liquid discharge area P2 is purified at the same time. Thus, the wraparound to the design surface S1 side of the transfer target W is prevented as much as possible.
 出液エリア浄化機構8は、一例として図1・2・4に示すように、排出手段81としてのオーバーフロー槽82が出液エリアP2の左右両側に設けられ、側面視状態では、オーバーフロー槽82が出液エリアP2と重なるように設けられる。より詳細には、転写槽2における出液エリアP2の左右両側壁22の内側に、排出手段81(オーバーフロー槽82)を設け、出液エリアP2からオーバーフロー槽82に向かう液流(これをサイド離反流LSとする)を主に液面付近で生じさせ、このサイド離反流LSに乗せてフィルムカス等の夾雑物や泡Aをオーバーフロー槽82で回収し、槽外に排出するものである。このため平面から視た状態では、図1・2に示すように、液面残留フィルム回収用のオーバーフロー槽75と、出液エリア浄化用のオーバーフロー槽82とが前後に連なって設けられるものである。ここでオーバーフロー槽82において、フィルムカス等の夾雑物を転写液Lとともに導入する回収口を排出口83とする。 As shown in FIGS. 1, 2, and 4, the liquid discharge area purification mechanism 8 is provided with overflow tanks 82 as discharge means 81 on both the left and right sides of the liquid discharge area P 2. It is provided so as to overlap with the liquid discharge area P2. More specifically, a discharge means 81 (overflow tank 82) is provided inside the left and right side walls 22 of the liquid discharge area P2 in the transfer tank 2, and the liquid flow from the liquid output area P2 toward the overflow tank 82 (this is separated from the side). A flow LS) is generated mainly in the vicinity of the liquid surface, placed on the side separation flow LS, and foreign matters such as film residue and bubbles A are collected in the overflow tank 82 and discharged out of the tank. For this reason, in the state seen from the plane, as shown in FIGS. 1 and 2, an overflow tank 75 for collecting the liquid level residual film and an overflow tank 82 for purifying the liquid discharge area are provided in series. . Here, in the overflow tank 82, a collection port for introducing impurities such as film residue together with the transfer liquid L is referred to as a discharge port 83.
 また出液エリア浄化用のオーバーフロー槽82には、一例として図4に示すように、排出口83に回収液案内用のツバが形成されるものであり、特に本実施例においては、排出口83から処理槽21側への張り出し長が比較的長めに形成され、これはオーバーフロー槽82に導く転写液Lの流速を速めるための構造である(このため該ツバを流速増強用ツバ84とする)。
 なお、オーバーフロー槽82で回収した転写液Lは、比較的、夾雑物の混入割合が低いため、沈殿槽やフィルタリング等の浄化装置により夾雑物を除去した後、循環使用に供することが好ましい(図2参照)。
Further, as shown in FIG. 4 as an example, the overflow tank 82 for purifying the liquid discharge area is formed with a flange for guiding the recovered liquid at the discharge port 83. In particular, in this embodiment, the discharge port 83 is provided. The overhanging length from the surface to the processing tank 21 is formed to be relatively long, and this is a structure for increasing the flow rate of the transfer liquid L guided to the overflow tank 82 (for this reason, the flange is referred to as a flow rate enhancement flange 84). .
Since the transfer liquid L collected in the overflow tank 82 has a relatively low contamination mixing ratio, it is preferable to remove the contaminants by a purification device such as a precipitation tank or filtering and then use them for circulation (see FIG. 2).
 また、出液エリア浄化機構8は、上述したように出液エリアP2の液面上(装飾不要面S2側)の夾雑物や泡Aを回収するものでもあるため、より確実に回収すべく、出液エリアP2液面上に送風して、より積極的に夾雑物や泡Aをオーバーフロー槽82(流速増強用ツバ84)に押しやることが好ましい。すなわち、本実施例では例えば図1・2・4に示すように、転写槽2の一方の側壁22上(オーバーフロー槽82の上方)に送風機85を設けるものであり、ここからの送風により出液エリアP2の液面上(装飾不要面S2側)に多量に発生する泡Aやフィルムカス等の夾雑物を、設置個所とは反対側のオーバーフロー槽82に送り込み回収するものである。
 このように出液エリアP2は、液面上では送風機85によって泡Aや夾雑物が連続的に除去され、且つ液中の夾雑物も併せてオーバーフロー槽82によって回収されるため、これらの相乗効果により、高クリーン化が図られると同時に、被転写体Wの意匠面S1側への夾雑物の回り込みまでも防止できるものである。
In addition, since the liquid discharge area purification mechanism 8 is also for recovering foreign matter and bubbles A on the liquid surface of the liquid discharge area P2 (decoration unnecessary surface S2 side) as described above, in order to recover more reliably, It is preferable that air is blown over the liquid discharge area P2 and the foreign substances and bubbles A are pushed more positively into the overflow tank 82 (flow velocity enhancing brim 84). That is, in this embodiment, as shown in FIGS. 1, 2, and 4, for example, a blower 85 is provided on one side wall 22 of the transfer tank 2 (above the overflow tank 82). Contaminants such as bubbles A and film residue generated on the liquid surface in the area P2 (decoration unnecessary surface S2 side) are sent to the overflow tank 82 on the opposite side to the installation location and collected.
In this manner, the liquid discharge area P2 has the synergistic effect because the bubbles A and the contaminants are continuously removed by the blower 85 on the liquid surface, and the contaminants in the liquid are also collected by the overflow tank 82. As a result, high cleanliness can be achieved, and at the same time, even the wraparound of foreign matters to the design surface S1 side of the transfer target W can be prevented.
 更に、上記のように出液エリアP2液面上に作用する送風機85を設けることで、液面残留フィルムF′を分断するための送風機73と勘案すると、本装置においては、トータルで複数基の送風機を設置することになる。しかしながら、種々の転写条件、例えば被転写体Wの形状や被転写体搬送装置5の態様等によっては、液面残留フィルムF′を分断した送風で、引き続き出液エリアP2液面上の泡Aや夾雑物をオーバーフロー槽82に送り得ることも考えられ、その場合には、フィルム分断用の送風機73を出液エリア浄化用の送風機85として兼用でき、更にはこれらをまとめて一基の送風機で行うことも可能である。
 なお、出液エリア浄化機構8の排出手段81としては、必ずしも上記オーバーフロー構造だけでなく、他の排出手法も採り得るものであり、例えば夾雑物が混入した転写液Lを主に液面付近で吸い込むバキューム手法が挙げられる。すなわち、この場合には、排出手段81として吸い込みノズルが適用される。
Furthermore, in consideration of the blower 73 for dividing the liquid level residual film F ′ by providing the blower 85 that acts on the liquid level in the liquid discharge area P2 as described above, a total of a plurality of units are provided in this apparatus. A blower will be installed. However, depending on various transfer conditions, for example, the shape of the transfer target W and the mode of the transfer target transporting device 5, the bubble A on the liquid level P2 is continuously blown by blowing the liquid level residual film F ′. It is also conceivable that the dust can be sent to the overflow tank 82. In that case, the blower 73 for dividing the film can also be used as the blower 85 for purifying the liquid discharge area, and these can be combined into one blower. It is also possible to do this.
The discharge means 81 of the liquid discharge area purification mechanism 8 is not necessarily limited to the overflow structure described above, and other discharge methods may be employed. For example, the transfer liquid L in which impurities are mixed is mainly used near the liquid surface. The vacuum method to inhale is mentioned. That is, in this case, a suction nozzle is applied as the discharge means 81.
 次に、意匠面浄化機構9について説明するが、その前に出液エリアP2の意匠面S1側に生じる泡Aについて説明する。例えば、被転写体W(治具J)が液面から次々に斜め上方に引き上げられて行く場合、出液エリアP2では、出液中の被転写体Wの上方に、既に液面上方に引き上げられた被転写体Wや治具Jが位置することがある(これを先行して引き上げられた被転写体Wや治具Jとする)。その際、先行して引き上げられた被転写体Wや治具Jから転写液Lが雫となって転写槽2の液面に滴り落ちることがあり、落下した雫は例えば液面上で跳ねて泡Aとなり、これが出液中の被転写体Wの意匠面S1に付着することがある。その後、この状態のまま被転写体Wに紫外線等を照射すると、上記図25(c)で示したように、泡Aの応力や紫外線の屈折等が原因で、泡Aの付着した部分は転写パターン(装飾層)の柄歪み不良や、柄が抜け落ちてしまう不良となる(いわゆるピンホール)。従って、本実施例では、出液エリアP2において転写液L中から浮上する被転写体Wの意匠面S1の浄化と(主に後述する新水による作用)、意匠面S1側の液面上に生じる泡Aの除去、また転写液中・液面上の夾雑物の排除等を目的として意匠面浄化機構9を具えるものである。 Next, the design surface purification mechanism 9 will be described, but before that, the bubbles A generated on the design surface S1 side of the liquid discharge area P2 will be described. For example, when the transfer target W (jig J) is pulled up obliquely upward from the liquid level one after another, in the liquid discharge area P2, the transfer target W is already lifted above the transfer target W in the liquid discharge. The transferred object W or jig J may be positioned (this is referred to as the transferred object W or jig J pulled up in advance). At that time, the transfer liquid L may be drowned from the transfer target W or jig J pulled up in advance and dripped onto the liquid surface of the transfer tank 2, and the dropped wrinkle jumps on the liquid surface, for example. Bubbles A may be adhered to the design surface S1 of the transfer target W in the discharged liquid. Thereafter, when the transferred object W is irradiated with ultraviolet rays or the like in this state, the portion where the bubbles A adhere is transferred due to the stress of the bubbles A or the refraction of the ultraviolet rays as shown in FIG. Pattern distortion of the pattern (decorative layer) or defect that the pattern falls off (so-called pinhole). Accordingly, in the present embodiment, the design surface S1 of the transfer target W floating from the transfer liquid L in the liquid discharge area P2 is purified (mainly by the action of new water described later), on the liquid surface on the design surface S1 side. A design surface purification mechanism 9 is provided for the purpose of removing the generated bubbles A and removing impurities in the transfer liquid and on the liquid surface.
 以下、意匠面浄化機構9について更に説明する。意匠面浄化機構9は、出液中の被転写体Wの意匠面S1から下流に向かう液流ないしは意匠面S1から離れる液流を形成するものであり(これを意匠面離反流LRとする)、その目的は、上述したように転写液L中に分散・滞留する夾雑物を極力、意匠面S1に寄せ付けない(付着させない)ことであり、また先行して引き上げられた被転写体Wから落下した雫によって生じた液面上の泡Aや夾雑物を、意匠面S1から遠ざけ槽外に排出すること等である。このため、意匠面離反流LRは、夾雑物を含まない綺麗な水、あるいは回収液から夾雑物を除去した浄化水(これらを総称して新水とする)を適用して形成することが好ましい。 Hereinafter, the design surface purification mechanism 9 will be further described. The design surface purification mechanism 9 forms a liquid flow downstream from the design surface S1 of the transferred body W during liquid discharge or a liquid flow away from the design surface S1 (this is referred to as a design surface separation flow LR). As described above, the purpose is to prevent the foreign matter dispersed and staying in the transfer liquid L as much as possible from approaching (not adhering to) the design surface S1, and falling from the transfer target W pulled up in advance. For example, the bubbles A and impurities on the liquid surface generated by the soot may be discharged away from the design surface S1 and out of the tank. For this reason, the design surface separation flow LR is preferably formed by applying clean water that does not contain contaminants, or purified water from which contaminants have been removed from the recovered liquid (collectively referred to as new water). .
  このようなことから意匠面浄化機構9は、例えば図12(a)に示すように、離反流形成手段91としてのオーバーフロー槽92を、出液エリアP2において出液してくる被転写体Wの意匠面S1側に具えて成るものである。より詳細には、本実施例では、被転写体Wが出液エリアP2において意匠面S1を下方に向けた傾斜状態で浮上してくるため、被転写体Wの意匠面S1に臨むように(対向するように)オーバーフロー槽92を設け、出液中の被転写体W(意匠面S1)の下側から上側、更にオーバーフロー槽92に向かう意匠面離反流LRを形成するものである。ここでオーバーフロー槽92において、主に新水を転写液Lとともに導入する回収口を排出口93とする。
 なお、意匠面離反流LRは、上述したように新水供給によって形成することが好ましいため、例えば図2では、意匠面離反流形成用のオーバーフロー槽92の下方に新水供給口97を設け、ここから出液エリアP2に向けて上向きに新水を供給するようにしており(この新水をPUとする)、これを利用して意匠面離反流LRを生じさせている。もちろんん、出液エリアP2に向けて上向きに供給される新水PUは、意匠面離反流LRの発生・形成に利用されるだけでなく、上述した出液エリア浄化機構8のサイド離反流LSの発生・形成にも利用され得るものである。
For this reason, the design surface purification mechanism 9 is configured so that the overflow tank 92 as the separation flow forming means 91 is discharged from the liquid receiving area W2 in the liquid discharge area P2, as shown in FIG. It is provided on the design surface S1 side. More specifically, in this embodiment, since the transfer target W floats in a state where the design surface S1 is inclined downward in the liquid discharge area P2, the transfer target W faces the design surface S1 of the transfer target W ( An overflow tank 92 is provided so as to oppose, and a design surface separation flow LR directed from the lower side to the upper side and further toward the overflow tank 92 in the liquid to be transferred (design surface S1) is formed. Here, in the overflow tank 92, a recovery port that mainly introduces fresh water together with the transfer liquid L is referred to as a discharge port 93.
Since the design surface separation flow LR is preferably formed by supplying fresh water as described above, for example, in FIG. 2, a new water supply port 97 is provided below the overflow tank 92 for design surface separation flow formation, From here, fresh water is supplied upward toward the liquid discharge area P2 (this new water is referred to as PU), and a design surface separation flow LR is generated using this. Of course, the fresh water PU supplied upward toward the liquid discharge area P2 is not only used for the generation and formation of the design surface separation flow LR, but also the side separation flow LS of the liquid discharge area purification mechanism 8 described above. It can also be used for generation and formation of.
 また、新水供給口97からは、出液エリアP2に向けて下向きに供給される新水PDもあり、これは後述するサイフォン式排出部98による吸い込み流LVを形成し易くするものである。
 また、新水供給口97からは、出液エリアP2に対しほぼ平行(水平)に供給される新水PPもあり(図2では上流側に向かう流れとなる)、これは新水PUと新水PDとの間の言わば中層付近から、新水PUと新水PDよりも低速で吐出(供給)されるものである。ここで「中層(付近)」とは、転写槽2内の転写液Lを液中の深さ(高さ)によって、上層(液面付近)/中層/下層(底部付近)の3種に区分した場合の中層であり、ここはフィルムカスを含み易いものである。
In addition, there is also fresh water PD that is supplied downward from the new water supply port 97 toward the liquid discharge area P2, which facilitates the formation of a suction flow LV by a siphon type discharge unit 98 described later.
In addition, there is also fresh water PP supplied from the new water supply port 97 substantially parallel (horizontal) to the liquid discharge area P2 (in FIG. 2, the flow is directed toward the upstream side). It is discharged (supplied) at a lower speed than the fresh water PU and the fresh water PD from the vicinity of the middle layer between the water PD. Here, the “middle layer (near)” classifies the transfer liquid L in the transfer tank 2 into three types of upper layer (near the liquid surface) / middle layer / lower layer (near the bottom) depending on the depth (height) in the liquid. In this case, it is a middle layer, and this is likely to contain film residue.
 サイフォン式排出部98は、この新水供給口97の背面側に設けられ、フィルムカス等の夾雑物を含む転写液L(主に中層水)を、転写槽2(処理槽21)の下方から吸い上げ(回収し)、槽外に排出するものである。すなわち、本実施例のサイフォン式排出部98は、下方の吸い込み口98aが新水供給口97よりも低い位置に設けられ、ここから取り込んだ転写液Lを液面上まで吸い上げ得るように、途中の移送経路が極めて狭く形成されるものであり(例えば流路断面10mm程度の間隔)、この経路をサイフォン経路98bとするものである。また、サイフォン式排出部98によって吸い込まれる転写液L中の流れを吸い込み流LVとするものであり、この吸い込み流LVは、新水供給口97から出液エリアP2に向けて下向きに供給される新水PDを利用して形成されるものである(新水PDによって効果的に形成されるものである)。 The siphon type discharge unit 98 is provided on the back side of the new water supply port 97, and transfers the transfer liquid L (mainly middle layer water) containing impurities such as film residue from below the transfer tank 2 (treatment tank 21). Sucking (collecting) and discharging out of the tank. That is, the siphon type discharge unit 98 of the present embodiment is provided in the middle so that the lower suction port 98a is provided at a position lower than the fresh water supply port 97, and the transfer liquid L taken in from here can be sucked up to the liquid level. The transfer path is formed to be extremely narrow (for example, an interval of about 10 mm in the cross section of the flow path), and this path is a siphon path 98b. Further, the flow in the transfer liquid L sucked by the siphon type discharge unit 98 is referred to as a suction flow LV, and this suction flow LV is supplied downward from the fresh water supply port 97 toward the liquid discharge area P2. It is formed using new water PD (it is formed effectively by new water PD).
 なお、新水PDから吸い込み流LVをより形成し易くするには(新水PDから吸い込み流LVをより効率的に形成するには)、図2に示すように、処理槽21の末端底部にテーパ状の傾斜板23を設けるとともに、上記サイフォン式排出部98の吸い込み口98aを、この傾斜板23の最上端部に臨むように形成することが好ましい。すなわち傾斜板23により、転写槽2(処理槽21)は、槽末端部に向かうにしたがい徐々に槽深さが浅くなるように形成され(槽底部が徐々に上がるように形成され)、この傾斜板23の最上端部に臨むように、前記サイフォン式排出部98の吸い込み口98aを設けることが望ましい。これにより傾斜板23の傾斜に沿って上昇してくる転写液Lの流れをその勢いのまま効率的に吸い込み口98aに取り込めるものである。
 また、サイフォン式排出部98(またはこれに加え傾斜板23)によって吸い込み流LVを形成する目的は、転写液L(特に中層水)中に滞留するフィルムカス等の夾雑物を下方(底部)に向かうように移送した後(流した後)、これをここから吸い上げる(回収する)ことで、夾雑物を上方の出液エリアP2に上昇させないようにするためである。従って、たとえサイフォン式排出部98によって、転写液Lが吸い上げきれなくても、新水PDが吸い込み流LVとなって吸い込み口98aに向かう流れ(下向き流れ)は形成でき、転写槽2底部において下向きの沈殿分離を促進させる流れが形成できるものである。
In order to make it easier to form the suction flow LV from the fresh water PD (to more efficiently form the suction flow LV from the new water PD), as shown in FIG. It is preferable to provide the tapered inclined plate 23 and to form the suction port 98a of the siphon type discharge portion 98 so as to face the uppermost end portion of the inclined plate 23. That is, the transfer tank 2 (processing tank 21) is formed by the inclined plate 23 such that the tank depth gradually decreases toward the tank end (formed so that the tank bottom gradually rises). It is desirable to provide the suction port 98a of the siphon type discharge portion 98 so as to face the uppermost end portion of the plate 23. As a result, the flow of the transfer liquid L rising along the inclination of the inclined plate 23 can be efficiently taken into the suction port 98a while maintaining its momentum.
Further, the purpose of forming the suction flow LV by the siphon type discharge unit 98 (or the inclined plate 23 in addition to this) is to make the contaminants such as film residue staying in the transfer liquid L (especially middle layer water) downward (bottom). This is to prevent the contaminants from being raised to the upper liquid discharge area P2 by sucking (recovering) this from after being transported so as to flow (after flowing). Accordingly, even if the transfer liquid L cannot be sucked up by the siphon-type discharge unit 98, the fresh water PD becomes a suction flow LV, and a flow (downward flow) toward the suction port 98a can be formed. A stream that promotes the separation of the precipitate can be formed.
 また、新水供給口97から出液エリアP2に対しほぼ平行(水平)に供給される新水PPは、各々の新水PU・PDの作用が互いに阻害されることを防止し、各々の新水PU・PDの作用を促進させるものである。具体的には、新水PPは、新水PDから形成される吸い込み流LVに乗って夾雑物を含む中層水を排出する作用を促進するものであり、また新水PUが意匠面離反流LRやサイド離反流LSとなって各オーバーフロー槽82・92に誘導されることも促進し、クリーンゾーンの拡大化に寄与するものである。 Further, the fresh water PP supplied from the fresh water supply port 97 substantially parallel (horizontally) to the liquid discharge area P2 prevents the actions of the respective fresh water PUs and PDs from being inhibited from each other. It promotes the action of water PU / PD. Specifically, the fresh water PP promotes the action of discharging the middle layer water containing impurities on the suction flow LV formed from the fresh water PD, and the fresh water PU is designed to separate the design surface separation flow LR. It is also promoted that it is guided to the overflow tanks 82 and 92 as a side separation flow LS, contributing to the expansion of the clean zone.
 ここで、意匠面浄化機構9がないと、意匠面S1に夾雑物が付着し易いことについて説明する。例えば、転写槽2の液面付近に液流が形成されている場合には、通常、転写液Lから引き上げられる被転写体Wは、少なからず上流から下流へと向かう転写液Lの液れをせき止めるような状態で浮上してくるものである。この際、せき止められた転写液Lは、被転写体Wの下側または側方を回り込むようにして流れ、これが下流側を向いた意匠面S1に向かう流れ(回り込む流れ)となる。
 また、被転写体Wを液中から引き上げるとき、被転写体Wの引き上げ速度と留まっている液面との速度差により、被転写体Wの液面近傍から被転写体Wに向かって流れる力が働くことになる。
 このようなことから、出液中の被転写体Wに対しては、自ずと意匠面S1に回り込む流れ(意匠面S1に向かう流れ)が形成されるものであり、従って、そのままでは転写液L中に分散・滞留する夾雑物が意匠面S1に寄せ付けられて付着することがある。このため、本実施例では意匠面浄化機構9による意匠面離反流LRによって、意匠面S1に向かう転写液Lの流れを打ち消す、もしくは極力抑えるようにしたものである。
Here, it will be described that if the design surface purification mechanism 9 is not provided, impurities easily adhere to the design surface S1. For example, when a liquid flow is formed in the vicinity of the liquid surface of the transfer tank 2, the transfer target W that is pulled up from the transfer liquid L usually leaks the transfer liquid L from the upstream to the downstream. It emerges in a coughing state. At this time, the damped transfer liquid L flows so as to wrap around the lower side or the side of the transfer target W, and becomes a flow toward the design surface S1 facing the downstream side (flow wrapping around).
Further, when pulling up the transfer target W from the liquid, the force flowing from the vicinity of the transfer target W toward the transfer target W due to the difference between the pulling speed of the transfer target W and the remaining liquid level. Will work.
For this reason, a flow that naturally flows around the design surface S1 (flow toward the design surface S1) is formed with respect to the transfer target W in the discharged liquid. Contaminants that are dispersed and stay in the surface may be attracted to and adhered to the design surface S1. For this reason, in this embodiment, the flow of the transfer liquid L toward the design surface S1 is canceled or suppressed as much as possible by the design surface separation flow LR by the design surface purification mechanism 9.
 また、意匠面離反流形成用のオーバーフロー槽92においても、一例として図4、図12(b)に示すように、排出口93に流速増強用ツバ94が形成されるものであり、これはオーバーフロー槽92に導入する転写液Lの流速を速めるためである。
 なお、意匠面浄化機構9における離反流形成手段91としては、必ずしも上記オーバーフロー構造だけでなく、他の排出手法も採り得るものであり、例えば図12(c)に示すように、夾雑物を含む転写液Lと新水を主に液面付近で吸い込むバキューム手法が挙げられる。すなわち、この場合には、離反流形成手段91として吸い込みノズル95が適用されるものである。
Also, in the overflow tank 92 for forming the design surface separation flow, as shown in FIG. 4 and FIG. 12B, as an example, a flow velocity enhancing brim 94 is formed at the discharge port 93, which is overflow. This is because the flow rate of the transfer liquid L introduced into the tank 92 is increased.
Note that the separation flow forming means 91 in the design surface purification mechanism 9 is not necessarily limited to the overflow structure, and other discharge methods may be employed. For example, as shown in FIG. There is a vacuum method in which the transfer liquid L and fresh water are sucked mainly near the liquid surface. That is, in this case, the suction nozzle 95 is applied as the separation flow forming means 91.
 なお本発明では、意匠面S1上の出液位置POをほぼ一定に維持しながら、被転写体Wを転写液L中から引き上げることが大きな特徴である。ここで上記「出液位置PO」とは、液中から浮上する被転写体Wの意匠面S1における出液地点(出液ポイント)を指しており、上記の出液エリアP2とは異なる。因みに、上記「出液エリアP2」とは、被転写体Wが出液し始めてから出液し終わるまでの範囲を指したものであって、没入エリアP1に対比させた用語(語句)である。
 以下、上記出液位置POをほぼ一定の位置に維持する引き上げ方(引き上げ手法)について説明する。まず転写槽2の液面付近に液流が形成されていない場合(以下、これを「液流ナシ」と省略することがある)には、例えば図13(a)に示すように、被転写体Wの意匠面S1をほぼ一定の傾斜角度(これを液面に対する出液角βとするものであり、ここでは34度)に保ちながら、意匠面S1に沿って引き上げると、出液位置一定となり、このような引き上げ方を「意匠面に沿った引き上げ」/「意匠面に沿って引き上げる」とする。すなわち、液流ナシの転写槽2の場合には、図13(a)の(i)・(ii)・(iii)を縦方向に見て、意匠面S1上の出液位置POが同じライン上に並ぶため(転写槽2に対して同じ位置になるため)、出液位置POが一定に維持されることが分かる。
In the present invention, the main feature is that the transfer target W is pulled up from the transfer liquid L while the liquid discharge position PO on the design surface S1 is maintained substantially constant. Here, the “liquid discharge position PO” refers to a liquid discharge point (liquid discharge point) on the design surface S1 of the transfer target W floating from the liquid, and is different from the liquid discharge area P2. Incidentally, the “liquid discharge area P2” refers to a range from the start of liquid discharge to the end of liquid discharge, and is a term (phrase) compared with the immersion area P1. .
Hereinafter, a pulling method (pulling method) for maintaining the liquid discharge position PO at a substantially constant position will be described. First, when a liquid flow is not formed near the liquid surface of the transfer tank 2 (hereinafter, this may be abbreviated as “liquid flow pear”), for example, as shown in FIG. When the design surface S1 of the body W is kept at a substantially constant inclination angle (this is the liquid discharge angle β with respect to the liquid surface, which is 34 degrees in this case) while being pulled up along the design surface S1, the liquid discharge position is constant. Thus, such a pulling method is referred to as “raising along the design surface” / “pulling up along the design surface”. That is, in the case of the transfer pear 2 with a liquid flow, the liquid discharge position PO on the design surface S1 is the same line when (i), (ii), and (iii) in FIG. It can be seen that the liquid discharge position PO is kept constant because it is lined up (becomes the same position with respect to the transfer tank 2).
 これに対し、図13(b)に示す引き上げ方は、転写槽2の液面付近に液流(水平移送方向)が形成されている場合(以下、これを「液流アリ」と省略することがある)に、被転写体Wを意匠面S1に沿って一定の出液角β(例えば34度)で斜めに引き上げた場合を示している(意匠面に沿った引き上げ)。この場合、図13(b)の(i)・(ii)・(iii)を縦方向に見ると、各段階における各々の出液位置「イ」・「ロ」・「ハ」は、やはり同じライン上に並ぶため、一見、出液位置が同じであるように思える。しかし、図13(b)の場合は、液流が形成されているため、液面付近では常に転写液Lが水平方向に移動していると考えられる。従って、例えば図13(b)の(i)における出液位置「イ」は、図13(b)の(ii)では、水平方向下流側(被転写体Wの進行方向)にやや移動しており、例えば図中「イ′」の位置となり、実際の出液位置「ロ」からずれるものである。なお、図13(b)の(iii)に示す位置「イ″」は、上記「イ′」が更に水平方向下流側にずれた位置(移動した位置)にあることを示している。 On the other hand, in the method of pulling up shown in FIG. 13B, a liquid flow (horizontal transfer direction) is formed near the liquid surface of the transfer tank 2 (hereinafter, this is abbreviated as “liquid flow ant”). 3) shows a case where the transfer target W is lifted obliquely along the design surface S1 at a constant liquid discharge angle β (for example, 34 degrees) (pickup along the design surface). In this case, when (i), (ii), and (iii) in FIG. 13B are viewed in the vertical direction, the liquid discharge positions “I”, “B”, and “C” in each stage are the same. At first glance, it seems that the liquid discharge position is the same because it is lined up on the line. However, in the case of FIG. 13B, since the liquid flow is formed, it is considered that the transfer liquid L always moves in the horizontal direction near the liquid surface. Therefore, for example, the liquid discharge position “I” in (i) of FIG. 13B is slightly moved downstream in the horizontal direction (advancing direction of the transfer target W) in (ii) of FIG. 13B. For example, the position is “i ′” in the figure and deviates from the actual liquid discharge position “b”. Note that the position “I” shown in (iii) of FIG. 13B indicates that the position “I ′” is further shifted to the downstream side in the horizontal direction (moved position).
 このようなことから、液流アリの場合には、図13(c)に示すように、上記「意匠面に沿った引き上げ」に対し、液流と同速度・同方向の移送成分を加味した(ベクトル合成した)出液角βで被転写体Wを引き上げることにより、出液位置POを一定に維持することができるものである。なお、このような引き上げ方を「液流を加味した引き上げ」/「液流を加味して引き上げる」とするものであり、出液角度としては「意匠面に沿った引き上げ」の角度よりも、液面に近づいた傾倒角となり、出液角βとしては小さくなるものである。なお、本明細書での出液角βとは、液面と意匠面S1との成す角度を示しており、特にここでの液面とは被転写体Wの進行方向(液流方向)を指している。
 このように、本発明での「出液位置(ほぼ)一定」とは、液流ナシの場合には、被転写体Wを意匠面に沿って引き上げることにより、出液位置POが一定に維持されるものであり、液流アリの場合には、これに流速の水平移送成分を加味して(合成して)引き上げることにより出液位置POが一定に維持されるものである。
 以上述べたように、液流のアリ・ナシに関わらず、出液位置POを一定に維持しながら被転写体Wを引き上げることは可能であり、以下の説明でも特に液流のアリ・ナシについて断らないが、意匠面S1に沿って被転写体Wを引き上げている場合には、基本的に転写槽2に液流が形成されていないことを意味するものである。
For this reason, in the case of a liquid flow ant, as shown in FIG. 13 (c), a transfer component in the same speed and in the same direction as the liquid flow is added to the above-mentioned "pull up along the design surface" The liquid discharge position PO can be kept constant by pulling up the transfer target W at the liquid discharge angle β (vector synthesized). In addition, such a pulling method is “picking up with a liquid flow” / “pulling up with a liquid flow”, and the liquid discharge angle is more than the angle of “pickup along the design surface”. The tilt angle approaches the liquid level, and the liquid discharge angle β is small. The liquid discharge angle β in the present specification indicates an angle formed between the liquid surface and the design surface S1, and in particular, the liquid surface here refers to the traveling direction (liquid flow direction) of the transfer target W. pointing.
As described above, “liquid discharge position (almost) constant” in the present invention means that the liquid discharge position PO is maintained constant by pulling up the transfer target W along the design surface in the case of liquid flow. In the case of a liquid flow ant, the liquid discharge position PO is kept constant by pulling up (combining) the horizontal transfer component of the flow rate.
As described above, it is possible to pull up the transfer target W while maintaining the liquid discharge position PO regardless of the ant pear of the liquid flow. Although not noted, when the transfer target W is pulled up along the design surface S <b> 1, it basically means that no liquid flow is formed in the transfer tank 2.
 また、液流のアリ・ナシで、オーバーフロー槽92(意匠面離反流形成用)の好ましい設置態様が異なるため、以下、これについて説明する。
 上記オーバーフロー槽92については、被転写体Wの出液の開始から終了までにわたって出液位置POからオーバーフロー槽92(排出口93)までの距離を一定に保つことが好ましく(一例として10~200mm程度)、これは被転写体Wの意匠面S1に、確実に且つ均一に意匠面離反流LRを作用させるためである。
 このため、液流ナシの場合(つまり被転写体Wを意匠面に沿って引き上げる場合)には、例えば図14(a)に示すように、オーバーフロー槽92もほぼ一定の位置に維持する(固定する)ことで、出液位置POとオーバーフロー槽92との離反距離Dを一定に保つことができる。
 一方、液流アリの場合(つまり液流を加味して引き上げる場合)には、液流の水平移送成分を加えながら被転写体Wを引き上げることから、例えば図14(b)に示すように、被転写体Wの出液中はオーバーフロー槽92も液流と同速度・同方向に移動させることで、出液位置POとオーバーフロー槽92との離反距離Dを一定に保つことができる。
Moreover, since the preferable installation aspect of the overflow tank 92 (for design surface separation flow formation) differs with the ant pear of a liquid flow, this is demonstrated below.
With respect to the overflow tank 92, it is preferable to keep a constant distance from the liquid discharge position PO to the overflow tank 92 (discharge port 93) from the start to the end of liquid discharge of the transfer target W (as an example, about 10 to 200 mm). This is because the design surface separation flow LR is reliably and uniformly applied to the design surface S1 of the transfer target W.
For this reason, in the case of no liquid flow (that is, when the transfer target W is pulled up along the design surface), for example, as shown in FIG. 14A, the overflow tank 92 is also maintained at a substantially constant position (fixed). By doing so, the separation distance D between the liquid discharge position PO and the overflow tank 92 can be kept constant.
On the other hand, in the case of a liquid flow ant (that is, when the liquid flow is taken into consideration), the transfer target W is lifted while adding the horizontal transfer component of the liquid flow. For example, as shown in FIG. The overflow tank 92 is also moved at the same speed and in the same direction as the liquid flow during the discharge of the transfer target W, so that the separation distance D between the discharge position PO and the overflow tank 92 can be kept constant.
 次に、被転写体W(意匠面S1)が、例えば図15に示すように、「へ」の字状に屈曲している場合に(「く」の字状に屈曲している場合も同様)、出液位置POをほぼ一定に維持する引き上げ方(好ましい引き上げ方)について説明する。ここで被転写体Wにおける短片部をWS、長片部をWLとし、屈曲点をWPとする。また被転写体Wの引き上げ方としては、短片部WSから出液させ始め、次いで屈曲点WP、長片部WLを順次出液させて行くものとする。更に、意匠面S1は、「へ」の字状の内側(小角側)と想定する。
 なお、以下の説明にあたっては、このような被転写体Wにおいて、図15(a)に基づき、好ましくない引き上げ方、つまり出液位置POはほぼ一定に維持できるが、好ましくない引き上げ方から説明する。因みに、図15(a)では、短片部WSも長片部WLも、ともに同じ出液角β(ここでは34度)で引き上げることを想定したものである。
 例えば図15(a)の(i)・(ii)は、被転写体Wを短片部WSの傾斜(意匠面S1)に沿って例えば34度の一定角度(出液角β)で斜めに引き上げる様子である(意匠面に沿った引き上げ)。その際、図15(a)の(ii)に示すように、屈曲点WPが液面に到達した段階で、被転写体Wの引き上げ(上昇動作)を一旦中断し、今度は図15(a)の(ii)・(iii)に示すように、屈曲点WPを中心にして被転写体Wを回転させ、長片部WLが上記出液角β(ここでは34度)となるように姿勢変換させるものである。なお、図15(a)では、このような被転写体W(長片部WL)の回転動作中に、一旦浮上した短片部WSが再没入してしまうものである。その後、図15(a)の(iv)・(v)・(vi)に示すように、被転写体Wを、長片部WL(意匠面S1)に沿って上記出液角β(ここでは34度)で斜めに引き上げるものである(意匠面に沿った引き上げ)。
Next, when the transfer target W (design surface S1) is bent into a “he” shape as shown in FIG. 15, for example, the same applies to the case where it is bent into a “ku” shape. ) And a pulling method (preferably pulling method) for maintaining the liquid discharge position PO substantially constant will be described. Here, the short piece portion of the transfer target W is WS, the long piece portion is WL, and the bending point is WP. Further, as a method of pulling up the transfer target W, it is assumed that liquid is started to be discharged from the short piece portion WS, and then the bending point WP and the long piece portion WL are sequentially discharged. Furthermore, the design surface S1 is assumed to be the inside (small-angle side) of the “he” shape.
In the following description, an undesired pulling method, that is, the liquid discharge position PO can be maintained substantially constant in such a transfer target W based on FIG. 15A. . Incidentally, in FIG. 15A, it is assumed that both the short piece portion WS and the long piece portion WL are pulled up at the same liquid discharge angle β (34 degrees in this case).
For example, (i) and (ii) in FIG. 15 (a) pull the transfer object W obliquely at a constant angle (liquid discharge angle β) of 34 degrees, for example, along the inclination (design surface S1) of the short piece portion WS. It is a state (lifting along the design surface). At that time, as shown in (ii) of FIG. 15 (a), when the bending point WP reaches the liquid level, the pulling-up (lifting operation) of the transfer target W is temporarily interrupted, and this time FIG. As shown in (ii) and (iii) of), the transferred object W is rotated around the bending point WP, and the long piece WL is at the liquid discharge angle β (34 degrees in this case). It is to be converted. In FIG. 15A, the short piece portion WS that has once floated is re-immersed during the rotation of the transfer target W (long piece portion WL). Thereafter, as shown in (iv), (v), and (vi) of FIG. 15A, the transfer target W is placed along the long piece portion WL (design surface S1) with the liquid discharge angle β (here, 34 degrees) at an angle (pick up along the design surface).
 上記図15(a)による引き上げ方では、途中、屈曲点WPでの回転動作が入るものの、意匠面S1に沿って被転写体Wを引き上げれば、出液位置POを一定に維持(固持)することができるが、以下のような不都合(不具合)が生じる。
 まず屈曲点WPを中心として、被転写体W(長片部WL)を転写液L中で比較的大きく回転させることが好ましくなく、これは転写液面に波立ちや撹拌流を生じさせる要因となり、これによって意匠面S1に付着した表面保護機能も有する転写パターンが流動してしまうこと(タダレ不良)が考えられる。もちろん、上記のような回転動作によって、被転写体Wの同一部位が、転写液L中に比較的長い時間とどまることもタダレ不良の要因になり得るものである。
 更に、被転写体Wの回転動作によって、一旦、出液した短片部WSが再没入することも好ましくなく、この場合もやはり再没入した意匠面S1にタダレ不良やカス不良が生じ易いものである。
In the pulling method shown in FIG. 15 (a), a rotation operation at a bending point WP is entered midway. However, if the transfer target W is lifted along the design surface S1, the liquid discharge position PO is kept constant (fixed). However, the following inconvenience (defect) occurs.
First, it is not preferable to rotate the transfer target W (long piece WL) relatively large in the transfer liquid L around the bending point WP, which causes a ripple or stirring flow on the transfer liquid surface, As a result, it is conceivable that the transfer pattern having the surface protection function attached to the design surface S1 flows (sagging defect). Of course, the same portion of the transfer target W remaining in the transfer liquid L for a relatively long period of time due to the rotational operation as described above can also cause a sagging failure.
Further, it is not preferable that the short piece WS once discharged is re-immersed by the rotation operation of the transfer target W. In this case as well, the sagging defect and the scrap defect are liable to occur on the redesigned design surface S1. .
 次に、上記「へ」の字状に屈曲した被転写体Wの好ましい引き上げ方(出液位置POをほぼ一定に維持しながらの好ましい引き上げ方)について図15(b)に基づき説明する。
 ここでは、まず、一例として図15(b)の(i)に示すように、意匠面S1にほぼ沿った出液仮想ラインCVを想定する。これは、上述したように屈曲点WPにおける回転動作が特に問題となり、これを回避するために、短片部WSと長片部WLとを滑らかにつなぐラインであり(必ずしも曲線とは限らない)、被転写体Wの引き上げを、この出液仮想ラインCVに沿って行うものである。すなわち、被転写体Wの引き上げは、この出液仮想ラインCVにおける出液位置が一定となるように引き上げるものである。
 なお、出液仮想ラインCVは、短片部WSから長片部WLの引き上げに移行するにあたり、被転写体Wの出液角βが一定の範囲内(例えば25度から55度)に収まるように設定することが好ましく、このようにすることで被転写体Wは、全体的に一定速度で、なお且つ液中からのスムーズな上昇動作ないしは没入から出液へのスムーズな動作移行が可能となるものである。因みに、被転写体Wの出液角を25度~55度程度に設定するのは、出液角βが25度より小さいと意匠面S1が表面張力の影響を受けてタダレ不良が生じ易く、出液角βが55度より大きいと液落下や伝い落ちた液流れの痕跡が意匠面S1側に出現し易いためである。
Next, a preferred method of pulling up the transfer target W bent in the shape of “he” (preferably pulling up while maintaining the liquid discharge position PO substantially constant) will be described with reference to FIG.
Here, first, as shown in FIG. 15B (i) as an example, a liquid discharge virtual line CV substantially along the design surface S1 is assumed. This is a line that smoothly connects the short piece portion WS and the long piece portion WL in order to avoid the rotation operation at the bending point WP as described above, and to avoid this (not necessarily a curve), The transfer target W is pulled up along the liquid discharge virtual line CV. That is, the transfer target W is pulled up so that the liquid discharge position in the liquid discharge virtual line CV is constant.
Note that the liquid discharge virtual line CV is set so that the liquid discharge angle β of the transfer target W is within a certain range (for example, 25 degrees to 55 degrees) when shifting from the short piece section WS to the long piece section WL. It is preferable to set, and in this way, the transfer target W can be moved at a constant speed and smoothly ascend from the liquid or smoothly move from immersion to liquid discharge. Is. Incidentally, the liquid discharge angle of the transfer target W is set to about 25 to 55 degrees because if the liquid discharge angle β is smaller than 25 degrees, the design surface S1 is easily affected by the surface tension, and the sagging defect is likely to occur. This is because, when the liquid discharge angle β is larger than 55 degrees, the trace of the liquid drop or the liquid flow that has passed down easily appears on the design surface S1 side.
 具体的な引き上げ方について説明すると、ここでは一例として図15(b)の(i)に示すように、短片部WSを当該部位に沿ってほぼ一定の出液角β(ここでは34度)で斜めに引き上げ始め(意匠面に沿った引き上げ)、その後、屈曲点WPが液面を通過する時点(出液する時点)では、図15(b)の(ii)に示すように、出液仮想ラインCV上の出液角β(ライン上の出液位置における接線の傾き)が例えば54度になるように設定し、被転写体Wを引き上げて行くものである。すなわち、本実施例の場合、図15(b)の(i)から(ii)の間では、出液角βを徐々に増加させながら被転写体Wを出液仮想ラインCVに沿って引き上げて行くものである。
 ここで出液角β(接線)を設定する位置は、出液仮想ラインCVが液面と交差する点(言わば現時点での出液位置)で設定することが多いかも知れないが、現時点の直後の出液姿勢を決定するために出液角βを設定することを考慮すると、その直後に液面に到達する出液地点で設定することが好ましい。なお、これは被転写体Wを出液仮想ラインCVに沿って引き上げる場合だけでなく、意匠面S1に沿って引き上げる場合も同様である。また、このため本明細書では、出液角βを考える「出液位置(出液地点)」とは、現時点での出液位置はもちろん、その直後(現時点の直後)の出液位置も含むものである。
 因みに、本実施例では、出液仮想ラインCVに沿って被転写体Wを引き上げるため、例えば図15(b)の(ii)・(iii)に示すように、出液仮想ラインCVが、実際の意匠面S1から離れた地点、特にここでは屈曲点WP部位では、実際の意匠面S1における出液位置POと、出液仮想ラインCV上の出液位置とにおいて、必然的にズレが生じるものであり、このようなことを考慮して特許請求の範囲では「(出液位置を)ほぼ一定」と「ほぼ」を付している。また、出液位置POと意匠面離反流形成用のオーバーフロー槽92との距離をほぼ一定に維持する場合の「ほぼ」も同様である。
A specific method of pulling up will be described. Here, as an example, as shown in FIG. 15B (i), the short piece portion WS is arranged along the portion with a substantially constant liquid discharge angle β (here, 34 degrees). At the time when the bend point WP passes through the liquid surface (at the time of liquid discharge) after starting to pull up diagonally (pulling along the design surface), as shown in (ii) of FIG. The liquid discharge angle β on the line CV (inclination of the tangent at the liquid discharge position on the line) is set to 54 degrees, for example, and the transfer target W is pulled up. That is, in the case of the present embodiment, between (i) and (ii) in FIG. 15B, the transferred object W is pulled up along the virtual liquid discharge line CV while gradually increasing the liquid discharge angle β. Is something to go.
Here, the position at which the liquid discharge angle β (tangent) is set may be set at a point where the liquid discharge virtual line CV intersects the liquid surface (in other words, the current liquid discharge position). In consideration of setting the liquid discharge angle β in order to determine the liquid discharge posture of the liquid, it is preferable to set it at the liquid discharge point that reaches the liquid surface immediately after that. This is the same not only when the transfer target W is pulled up along the liquid discharge virtual line CV but also when the transfer target W is pulled up along the design surface S1. For this reason, in this specification, the “liquid discharge position (liquid discharge point)” considering the liquid discharge angle β includes not only the current liquid discharge position but also the liquid discharge position immediately thereafter (immediately after the current time). It is a waste.
Incidentally, in this embodiment, since the transfer target W is pulled up along the liquid discharge virtual line CV, for example, as shown in (ii) and (iii) of FIG. At the point away from the design surface S1, particularly at the bending point WP here, there is inevitably a deviation between the liquid discharge position PO on the actual design surface S1 and the liquid discharge position on the liquid discharge virtual line CV. In view of the above, “(almost liquid discharge position)” and “substantially” are attached in the scope of claims. The same applies to “almost” when the distance between the liquid discharge position PO and the overflow tank 92 for forming the design surface separation flow is maintained substantially constant.
 その後、図15(b)の(iii)~(vi)に示すように、出液角βを徐々に減少(漸減)させながら、出液仮想ラインCVに沿って被転写体Wを引き上げて行くものであり、例えば図(iii)では出液角βが52度、図(iv)では出液角βが47度、図(v)では出液角βが45度、図(vi)では出液角βが34度である。
 なお、図15(b)の被転写体Wの出液動作を全体的に見るとは、被転写体Wは回転しながら、その回転中心を常に出液後端側に移動させるように徐々に浮上する態様となっている。逆に言えば、このようなスムーズな出液動作をとるように、出液仮想ラインCVや出液角βが設定されるものである。
 また、既に出液した部位、例えば長片部WLを出液させている際の短片部WSについても、転写液面との成す角は25度から55度に収めることが好ましい。
 更に、出液仮想ラインCVを想定し、このラインに沿って引き上げる上記手法は、被転写体Wが上記のような屈曲部WPを有するものに限らず、被転写体W(意匠面S1)の途中で、曲率が大きく変化するものや面が不連続であるもの、あるいは開口部Waがある場合などにも適用できる手法である。
Thereafter, as shown in (iii) to (vi) of FIG. 15B, the transferred object W is pulled up along the virtual liquid discharge line CV while gradually decreasing (gradually decreasing) the liquid discharge angle β. For example, in the figure (iii), the liquid discharge angle β is 52 degrees, in the figure (iv) the liquid discharge angle β is 47 degrees, in the figure (v) the liquid output angle β is 45 degrees, and in the figure (vi) The liquid angle β is 34 degrees.
Note that the overall liquid discharge operation of the transfer target W in FIG. 15B is that the transfer target W gradually rotates so as to always move the rotation center to the liquid discharge rear end side. It is a form that rises. In other words, the liquid discharge virtual line CV and the liquid discharge angle β are set so as to take such a smooth liquid discharge operation.
In addition, it is preferable that the angle formed with the transfer liquid surface is within 25 to 55 degrees for the part that has already been discharged, for example, the short piece WS when the long piece WL is discharged.
Further, assuming the liquid discharge virtual line CV, the above-described method of pulling up along this line is not limited to the transfer target W having the bent portion WP as described above, but the transfer target W (design surface S1). This is a technique that can be applied to a case where the curvature greatly changes, a surface is discontinuous, or there is an opening Wa.
 次に、被転写体Wの意匠面S1が凹状に湾曲している場合に、出液位置POをほぼ一定に維持しながら被転写体Wを引き上げる手法について説明する。
 まず、意匠面S1が凹状に湾曲している状態とは、例えば図16に示すように、転写の際に下方の転写液面を向く意匠面S1が、転写液面に対して凹陥状に形成されるものを指す。このような被転写体Wでも、意匠面S1に沿って被転写体Wを引き上げれば(ここでは意匠面S1の円弧状軌跡に沿って被転写体Wを引き上げることになる)、出液位置POは一定に維持される。
 しかし、単に、被転写体Wを意匠面S1に沿って引き上げるというだけでは、上述したように、被転写体Wが再没入することが考えられ、また没入から出液までの被転写体Wの動作移行がスムーズに行えないことも考えられる。また、被転写体Wの出液角βは25度~55度が好ましいが、意匠面S1に沿って引き上げるというだけでは、被転写体Wの出液角βがこの範囲内に収まらないことも考えられる。具体的には、液流アリの場合、没入(転写)から出液まで被転写体Wは常に下流側に進むように動かすことが好ましいが、意匠面S1に沿って引き上げるだけでは、この液流に逆行する動き(戻るような動き)となることが考えられ、また転写液L中で大きな回転動作をとることも考えられる(タダレ不良・カス不良につながる)。なお被転写体Wを常に戻すことなく(没入側から出液側という進行方向に)スムーズに動かすことが良いのは、液流がない場合も同様である。
Next, a method for pulling up the transfer target W while maintaining the liquid discharge position PO substantially constant when the design surface S1 of the transfer target W is curved in a concave shape will be described.
First, the state in which the design surface S1 is curved in a concave shape means that, as shown in FIG. 16, for example, the design surface S1 facing the lower transfer liquid surface during transfer is formed in a concave shape with respect to the transfer liquid surface. Refers to what is being done. Even in such a transfer target W, if the transfer target W is pulled up along the design surface S1 (here, the transfer target W is pulled up along the arc-shaped locus of the design surface S1), the liquid discharge position PO is kept constant.
However, simply by pulling up the transfer target W along the design surface S1, as described above, the transfer target W may be re-immersed, and the transfer target W from immersion to liquid discharge It is also possible that the operation transition cannot be performed smoothly. Further, the liquid discharge angle β of the transfer target W is preferably 25 ° to 55 °, but the liquid discharge angle β of the transfer target W may not be within this range simply by pulling up along the design surface S1. Conceivable. Specifically, in the case of a liquid flow ant, it is preferable to move the transfer target W so as to always go downstream from immersion (transfer) to liquid discharge. However, by simply pulling up along the design surface S1, this liquid flow It is conceivable that the movement reversely moves (returning movement), and a large rotational movement in the transfer liquid L may be taken (leading to sagging defects and dregs defects). It should be noted that it is good to move the transfer target W smoothly without always returning it (in the direction of travel from the immersion side to the liquid discharge side), even when there is no liquid flow.
 このようなことから本実施例では、一例として図16(a)に示すように、出液位置POの出液角βをほぼ34度に維持するようにして、被転写体Wを引き上げるものである。すなわち、図16(a)では、出液位置POをほぼ一定に維持すべく、意匠面S1に沿って被転写体Wを引き上げることを基本としながら、出液位置POの出液角β(意匠面S1上の接線)をほぼ一定に保つことで、被転写体Wを無理なく出液させるように(スムーズな出液動作となるように)制御するものである。
 もちろん、出液角βは必ずしも一定に維持する必要はなく、被転写体Wのスムーズな出液動作に支障をきたさない限りは、上述したように25度~55度の範囲内で変更しても良く、これは意匠面S1の形状等によって決定すれば良いものである。
For this reason, in this embodiment, as shown in FIG. 16A as an example, the transfer target W is pulled up while maintaining the liquid discharge angle β at the liquid discharge position PO at approximately 34 degrees. is there. That is, in FIG. 16 (a), the liquid discharge angle β (design) at the liquid discharge position PO is basically based on pulling up the transfer target W along the design surface S1 so as to maintain the liquid discharge position PO substantially constant. By keeping the tangent line on the surface S1 substantially constant, the transfer target W is controlled to be discharged smoothly (so that a smooth liquid discharge operation is performed).
Of course, the liquid discharge angle β is not necessarily maintained constant, and may be changed within the range of 25 to 55 degrees as described above as long as the smooth liquid discharge operation of the transfer target W is not hindered. This may be determined by the shape of the design surface S1 or the like.
 また、被転写体Wの意匠面S1が凹状に湾曲している場合の他の引き上げ方としては、例えば図16(b)に示すように、意匠面S1における出液開始部と出液終了部とを結び、これを出液仮想ラインCVとし、このラインに沿って被転写体Wを一定の出液角β(例えば34度)で引き上げることも考えられる。もちろん、このような引き上げでは、例えば図16(b)の(ii)に示すように、実際の意匠面S1上の出液位置POと、出液仮想ラインCV上の出液位置とにおいて必然的に幾らかのズレが生じるが、このズレが小さく悪影響を及ぼすものでなければ(例えば転写液L中に撹拌流を起こすことがない、あるいは撹拌流を生じても、これが及ぼす悪影響が極めて小さければ)、充分に採用できる引き上げ方である。 Further, as another method of pulling up when the design surface S1 of the transfer target W is curved in a concave shape, for example, as shown in FIG. 16B, a liquid discharge start portion and a liquid discharge end portion on the design surface S1. It is also conceivable that this is defined as a liquid discharge virtual line CV, and the transfer target W is pulled up at a constant liquid discharge angle β (for example, 34 degrees) along this line. Of course, such pulling up is inevitable at the liquid discharge position PO on the actual design surface S1 and the liquid discharge position on the liquid discharge virtual line CV as shown in (ii) of FIG. If the deviation is small and has no adverse effect (for example, if the stirring flow does not occur in the transfer liquid L, or if the stirring flow is generated, the adverse effect exerted by this is extremely small). ), A method of pulling that can be fully adopted.
 次に、被転写体Wの意匠面S1が凸状に湾曲している場合に、出液位置POをほぼ一定に維持しながら被転写体Wを引き上げる手法について説明する。
 まず、意匠面S1が凸状に湾曲している状態とは、例えば図17に示すように、転写の際に下方の転写液面を向く意匠面S1が、転写液面に対して凸状に(突出するように)形成されるものを指す。このような被転写体Wでも、意匠面S1に沿って被転写体Wを引き上げれば、(ここでは意匠面S1の円弧状軌跡に沿って被転写体Wを引き上げることになる)、出液位置POは一定に維持される。しかし、ここでも被転写体Wを意匠面S1に沿って引き上げるだけでは、タダレ不良やカス不良が生じることが考えられる。
Next, a method for pulling up the transfer body W while maintaining the liquid discharge position PO substantially when the design surface S1 of the transfer body W is curved in a convex shape will be described.
First, the state in which the design surface S1 is curved in a convex shape means that, for example, as shown in FIG. 17, the design surface S1 facing the lower transfer liquid surface during transfer is convex with respect to the transfer liquid surface. It refers to what is formed (so that it protrudes). Even in such a transfer target W, if the transfer target W is pulled up along the design surface S1 (here, the transfer target W is pulled up along the arcuate locus of the design surface S1), The position PO is kept constant. However, also here, it is conceivable that a drip defect or a deficiency defect occurs only by pulling up the transfer target W along the design surface S1.
 このため本実施例においては、一例として図17に示すように、出液位置POの出液角βを55度から25度に徐々に漸減させるようにしながら、被転写体Wを引き上げるものである。
 ここで本実施例において出液開始付近の出液角βを大きく設定したのは、没入から出液までの一連の動作をスムーズに運ぶためであり、また意匠面S1が表面張力の影響を受けにくくするためである。すなわち、本実施例の場合、例えば出液開始付近での出液角βが極端に小さいと、被転写体Wの出液開始姿勢が液面付近に横たわる状態となり、その前の没入動作が行い難く、また没入動作から出液動作への移行もスムーズに行えないものである。また、上記姿勢では、意匠面S1が表面張力の影響を受けてタダレ不良も生じ易いものである。
 また出液終了付近での出液角βを小さく設定したのは、既に転写液面より上方に浮上した出液先端部の立ち上がり角度を小さくし、意匠面S1に液ダレが生じることを抑制するためである。
For this reason, in this embodiment, as shown in FIG. 17 as an example, the transferred object W is pulled up while gradually decreasing the liquid discharge angle β at the liquid discharge position PO from 55 degrees to 25 degrees. .
Here, the reason why the liquid discharge angle β near the start of liquid discharge is set large in this embodiment is to smoothly carry a series of operations from immersion to liquid discharge, and the design surface S1 is affected by the surface tension. This is to make it difficult. That is, in the case of the present embodiment, for example, when the liquid discharge angle β near the liquid discharge start is extremely small, the liquid discharge start posture of the transfer target W is lying near the liquid surface, and the previous immersion operation is performed. It is difficult, and the transition from the immersion operation to the liquid discharge operation cannot be performed smoothly. Further, in the above posture, the design surface S1 is easily affected by the surface tension, and the sagging defect is likely to occur.
The reason why the liquid discharge angle β in the vicinity of the liquid discharge end is set small is to reduce the rising angle of the liquid discharge front end part already floating above the transfer liquid surface, thereby suppressing the occurrence of liquid dripping on the design surface S1. Because.
 次に、被転写体Wを転写液L中から引き上げる際(出液開始時)の好ましい状況について説明する。因みに、上述した被転写体Wの引き上げ手法は、主に意匠面S1に関する内容であり、言わば出液中の中間動作と言える。これに対し、出液開始時とは、被転写体Wが転写液面から始めて出る、正に浮上開始時点の動作であり、以下これについて説明する。
 被転写体Wは、通常、肉厚を有するものであり、この肉厚部分も含めて意匠面S1となる場合には、肉厚部分で意匠面S1が屈曲することになる。この屈曲部分(意匠面S1の肉厚部分)でも、上記のような出液仮想ラインCVを想定し、このラインに沿って被転写体Wを引き上げることが考えられるが、通常、肉厚は意匠面S1の広さ・大きさに比べて極めて小さい寸法であるため(薄いため)、このような短寸のところで、出液仮想ラインCVを想定し、これに沿って引き上げることは、被転写体Wを転写液L中で大きく回転させることになり、タダレ不良・カス不良が懸念される。このため、現実には、肉厚部分が意匠面S1に含まれていても、このような引き上げ方は行わないのが一般的である。すなわち、出液開始時には、肉厚部分が意匠面S1に含まれるか否かにそれほどこだわらず、また出液位置POを一定の位置に維持することもこだわらないものとし、例えば図18(a)・(b)に示すように、側面視状態で被転写体Wが一点から出液することを重視するものである。これは、出液開始時点で被転写体Wが、液面と平行になることを防止するためであり、例えば図18(a)に示す「へ」の字状の被転写体Wの場合には、短片部WSを水面と平行にした状態で出液させしまうと、上記図26に示すように、短片部WSの出液で液面に波立ちが発生し(負圧アタック)、既に短片部WSに付着したインクが流動する虞があるためである(タダレ不良)。
 なお、出液開始部(肉厚部分)で上記のような引き上げ方を行うことから、この出液開始部や、ここから中間動作に移行する際には、多少、出液位置POがずれることが考えられ、特許請求の範囲における「(出液位置を)ほぼ一定」の「ほぼ」は、このことも考慮したものである。
Next, a preferable situation when the transfer target W is pulled up from the transfer liquid L (at the start of liquid discharge) will be described. Incidentally, the above-described pulling-up method of the transfer target W is mainly related to the design surface S1, and can be said to be an intermediate operation during liquid discharge. On the other hand, the liquid discharge start time is an operation when the transfer target W comes out from the surface of the transfer liquid and starts to rise, and this will be described below.
The transfer target W usually has a thickness, and when the design surface S1 including the thickness portion is included, the design surface S1 is bent at the thickness portion. Even in this bent portion (thick portion of the design surface S1), it is conceivable that the liquid discharge virtual line CV as described above is assumed and the transfer target W is pulled up along this line. Since the dimension is extremely small compared to the width and size of the surface S1 (because it is thin), it is assumed that a liquid discharge virtual line CV is assumed at such a short dimension, and pulling up along this line is to be transferred. W is greatly rotated in the transfer liquid L, and there is a concern about sagging defects and defective chips. For this reason, in practice, such a method of raising is generally not performed even if a thick portion is included in the design surface S1. That is, at the beginning of the liquid discharge, it is assumed that the thick portion is not so much included in the design surface S1, and that the liquid discharge position PO is not particularly maintained at a fixed position. For example, FIG. As shown in (b), importance is attached to the fact that the transfer target W is discharged from one point in a side view state. This is for preventing the transfer target W from being parallel to the liquid surface at the time of the start of liquid discharge. For example, in the case of the transfer target W having the shape of “he” shown in FIG. If the liquid is discharged in a state where the short piece portion WS is parallel to the water surface, as shown in FIG. 26, the liquid surface of the short piece portion WS is rippled (negative pressure attack), and the short piece portion has already been generated. This is because the ink adhering to the WS may flow (sagging failure).
In addition, since the above-described method of pulling up is performed at the liquid discharge start portion (thick portion), the liquid discharge position PO is slightly shifted when the liquid discharge start portion or the intermediate operation is shifted from here. In the claims, “almost” of “almost constant (the position of liquid discharge)” also takes this into consideration.
 また、通常、被転写体Wは、治具Jに取り付けられた状態で液圧転写がなされ、被転写体Wの出液動作も治具Jを伴った動作となる。このため、実際の液圧転写では、治具Jを含めた引き上げ動作で考慮することが望ましい。具体的には、治具Jが被転写体Wよりも先に引き上げられる場合、治具Jの出液時には、治具引き上げによる波立ちが転写液面に発生し得ることから、被転写体Wの治具Jへの固定位置が変更できるものであれば、治具Jとの兼ね合いで、その位置を設定するものである。 Further, normally, the transfer target W is hydraulically transferred while being attached to the jig J, and the liquid discharge operation of the transfer target W is also accompanied by the jig J. For this reason, it is desirable to consider the lifting operation including the jig J in the actual hydraulic pressure transfer. Specifically, when the jig J is pulled up prior to the transfer target W, when the jig J is discharged, a wave due to the pulling up of the jig can occur on the transfer liquid surface. If the fixing position to the jig J can be changed, the position is set in consideration of the jig J.
 また、例えば図19に示すように、一つの治具Jに複数の被転写体Wが取り付けられている場合には、個々の被転写体Wの意匠面S1に沿う引き上げ動作は困難となるものである。すなわち、このような引き上げ方(個々の被転写体Wの意匠面S1に沿った引き上げ方)を行うと、被転写体Wが転写液L中で複雑な動作となってカス不良やタダレ不良が生じ易い場合や、再没入の虞がある場合等に、同図19に示すように、被転写体Wの端部同士を結んだ直線を出液仮想ラインCVと想定し、このラインに沿って複数の被転写体Wを引き上げるものである。つまり、このような場合にも、個々の被転写体Wの意匠面S1に沿うのではなく、想定した出液仮想ラインCVに沿って複数の被転写体Wを引き上げ、このライン上における出液位置を一定の位置に維持するように引き上げるものである。もちろん、この際の出液角βは、ほぼ一定(例えば34度)でも構わないし、25度~55度の範囲で変化させながら引き上げても構わないものである。 Further, for example, as shown in FIG. 19, when a plurality of transferred objects W are attached to one jig J, it is difficult to pull up the individual transferred objects W along the design surface S1. It is. That is, when such a pulling method (how to pull along the design surface S1 of each transferred object W) is performed, the transferred object W becomes a complicated operation in the transfer liquid L, resulting in defective or sagging defects. When it is likely to occur or when there is a risk of re-immersion, as shown in FIG. 19, a straight line connecting the ends of the transfer target W is assumed as a liquid discharge virtual line CV, and along this line. A plurality of transferred objects W are pulled up. That is, even in such a case, the plurality of transfer bodies W are pulled up along the assumed liquid discharge virtual line CV instead of along the design surface S1 of each transfer target body W, and liquid discharge on this line is performed. The position is pulled up so as to maintain a certain position. Of course, the liquid discharge angle β at this time may be substantially constant (for example, 34 degrees), or may be raised while changing in the range of 25 degrees to 55 degrees.
 次に、サイド離反流形成用のオーバーフロー槽82、意匠面離反流形成用のオーバーフロー槽92、サイフォン式排出部98で回収した転写液Lの浄化手法について説明する。これらによって回収された転写液Lは、例えば図2に示すように、水位調整槽を経て浄化装置に送られ、ここで夾雑物が除去された後、温調槽を経て新水(浄化水)として再利用されるものである。もちろん浄化装置で捕捉された夾雑物は廃棄される。
 なおオーバーフロー槽82で回収した転写液L(夾雑物を含む)を水位調整槽に送る管路の途中や、水位調整槽の底部には、ここに溜まる夾雑物(スラッジ)を排出する廃棄管が接続されるものである。また液面残留フィルム回収機構7としてのオーバーフロー槽75は、上述したように夾雑物の混入割合が高いため、そのまま廃棄されるのが一般的である。
 因みに水位調整槽や浄化装置(沈殿槽)等で転写液中から夾雑物を取り除くには、板(堰板)等によって調整槽や沈殿槽内の液体を一旦せきとめるように貯留し、貯留水の比較的綺麗な上澄みを後段に送るようにすることで浄化を図ることができるものである。
Next, a method for purifying the transfer liquid L collected in the overflow tank 82 for forming the side separation flow, the overflow tank 92 for forming the design surface separation flow, and the siphon discharge unit 98 will be described. For example, as shown in FIG. 2, the transfer liquid L collected by these is sent to a purification device through a water level adjustment tank, and after impurities are removed, fresh water (purified water) is passed through a temperature control tank. Are reused. Of course, the foreign matter captured by the purification device is discarded.
In addition, a waste pipe for discharging contaminants (sludge) accumulated here is provided in the middle of the pipe for sending the transfer liquid L (including impurities) collected in the overflow tank 82 to the water level adjusting tank or at the bottom of the water level adjusting tank. To be connected. Further, the overflow tank 75 serving as the liquid level residual film recovery mechanism 7 is generally discarded as it is because of the high mixing ratio of impurities as described above.
In order to remove contaminants from the transfer liquid using a water level adjustment tank or purification device (precipitation tank), etc., the liquid in the adjustment tank or precipitation tank is temporarily stored with a plate (damage plate), etc. Purification can be achieved by sending a relatively clean supernatant to the subsequent stage.
 また、上記のようにして浄化された新水は、例えば図2に示すようにフィルム供給側(上流側)の案内コンベヤ33の下方や、転写槽2の中流域部分の傾斜部24から供給される他、例えば新水供給口97(意匠面離反流形成用のオーバーフロー槽92の下方から出液エリアP2に向けて上向き及び下向き、そして平行(水平)に供給される。ここで「出液エリアP2に向けて上向きに供給される新水PU」は、上述したように意匠面離反流LRやサイド離反流LSを形成するための新水であり、「出液エリアP2に向けて下向きに供給される新水PD」は、上記サイフォン式排出部98による吸い込み流LVを形成するための新水である。
 また転写槽2に新水を供給する際の吐出口、具体的には転写槽中流域部分の傾斜部24や、新水供給口97には、パンチングメタル等を設け、供給される新水が比較的広い範囲から均一に吐出されることが好ましい(部分的に新水が直進することの防止)。
Further, the fresh water purified as described above is supplied, for example, from below the guide conveyor 33 on the film supply side (upstream side) as shown in FIG. In addition, for example, it is supplied from the new water supply port 97 (below the overflow tank 92 for forming the design surface separation flow ) upward, downward, and parallel (horizontal) toward the liquid discharge area P2. Here, “new water PU supplied upward toward the liquid discharge area P2” is new water for forming the design surface separation flow LR and the side separation flow LS as described above. The “new water PD supplied downward” is the new water for forming the suction flow LV by the siphon discharge unit 98.
Further, a punching metal or the like is provided at the discharge port for supplying fresh water to the transfer tank 2, specifically, the inclined portion 24 in the middle of the transfer tank and the new water supply port 97, and the supplied fresh water It is preferable that the water is uniformly discharged from a relatively wide range (preventing the fresh water from partially going straight).
 なお、液圧転写では上述したように、様々な種類や状態の転写フィルムF(転写パターン)や活性剤を適用し、また種々異なる大きさの被転写体Wを処理することから、没入エリアP1については例えば800mmほど前後させることがあり、このため出液エリアP2も、これに準じて800mm~1200mmほど前後させることがある。このため、没入エリアP1、フィルム保持機構6の終端プーリ62B、液面残留フィルム回収機構7の分割手段71(送風機73・73a)やオーバーフロー槽75、出液エリア浄化機構8のオーバーフロー槽82や送風機85、更には意匠面浄化機構9のオーバーフロー槽92(離反流形成手段91)等は、互いに密接な位置関係にある。従って、没入エリアP1の移動に伴い、上記各構成部材も同時に、あるいは独立して移動させることが好ましく、このため本実施例では、例えば図2に示すように、フィルム保持機構6の終端プーリ62B、送風機73・73a・85、オーバーフロー槽75・82を、転写槽2の長手方向に(前後方向に)移動可能な架台29に搭載し、またオーバーフロー槽92を独立して前後に移動可能な架台30に搭載する構成とし、これらを没入エリアP1と出液エリアP2の移動に応じて、適宜移動できるようにしている。
 因みに、各架台29・30の移動方法は、手動あるいはリニアモータ等を用いて自動制御することが可能である(実際には被転写体Wの引き上げプログラム等に合わせ、架台29・30の位置を自動的に動かすプログラムが現実的である)。
In the hydraulic transfer, as described above, various types and states of the transfer film F (transfer pattern) and the activator are applied, and the transfer target W having various sizes is processed, so that the immersion area P1 is used. For example, the liquid discharge area P2 may be moved back and forth by about 800 mm to 1200 mm. Therefore, the immersion area P1, the terminal pulley 62B of the film holding mechanism 6, the dividing means 71 ( blowers 73 and 73a) and the overflow tank 75 of the liquid level residual film recovery mechanism 7, the overflow tank 82 and the blower of the liquid discharge area purification mechanism 8 are used. 85, and the overflow tank 92 (separation flow forming means 91) of the design surface purification mechanism 9 are in a close positional relationship with each other. Therefore, it is preferable to move each of the above components simultaneously or independently with the movement of the immersion area P1. For this reason, in this embodiment, as shown in FIG. 2, for example, the end pulley 62B of the film holding mechanism 6 is used. The blowers 73, 73a, and 85 and the overflow tanks 75 and 82 are mounted on a gantry 29 that can move in the longitudinal direction of the transfer tank 2 (in the front-and-rear direction), and the basin that can independently move the overflow tank 92 back and forth. 30 is configured so that these can be appropriately moved in accordance with the movement of the immersion area P1 and the liquid discharge area P2.
Incidentally, the movement method of each gantry 29 and 30 can be automatically controlled manually or using a linear motor or the like (actually, the positions of the gantry 29 and 30 are adjusted according to the lifting program of the transfer target W). A program that runs automatically is realistic).
 また、本実施例では、転写槽2に転写フィルムFを供給するにあたり、転写フィルムFの伸展低下を抑える伸展低下防止機構10を具えるものであり、以下この機構について説明する。伸展低下防止機構10は、着液に伴いフィルム表面から転写液面上に遊離・滲出する活性剤成分Kが液面上で滞留し、膜を張って転写フィルムFの伸展を阻害することを防止するものであり、これにより転写液面上に供給された転写フィルムFの両サイドを、転写槽2の側壁22近傍に設けられたコンベヤ61(ベルト63)に確実に付着させるものである。なお、以下の説明にあたっては、着液した転写フィルムFから流出する活性剤成分Kによって転写フィルムFの伸展が阻害される理由(経緯)からまず説明する。 Further, in this embodiment, when the transfer film F is supplied to the transfer tank 2, an extension reduction preventing mechanism 10 that suppresses the extension reduction of the transfer film F is provided. This mechanism will be described below. The extension reduction prevention mechanism 10 prevents the active agent component K, which is liberated and exuded from the film surface on the transfer liquid surface upon adhering to the liquid surface, from staying on the liquid surface and stretching the film to inhibit the extension of the transfer film F. Thus, both sides of the transfer film F supplied onto the transfer liquid surface are reliably attached to the conveyor 61 (belt 63) provided in the vicinity of the side wall 22 of the transfer tank 2. In the following description, first, the reason (background) for inhibiting the extension of the transfer film F by the activator component K flowing out from the transferred transfer film F will be described.
  転写にあたり、転写フィルムFには、転写パターンを活性化するために活性剤が塗布されるが、フィルムに塗布された活性剤の一部は、着液(転写液Lとの接触)によって転写フィルムFの表面から離れ(遊離し)、転写液面上に流出(滲出)して行くものである(これを本明細書では主に活性剤成分Kと称している)。この活性剤成分Kの液面上への流出は、必ずしも転写フィルムFの供給方向(液流方向)に限定されるものではなく種々の方向に流出し得るが、液流が生じていることやフィルム供給が行われていること等からフィルム供給方向への流出(先行)が比較的大きいと考えられる。また、このようなことから、液圧転写を繰り返し行っていると、活性剤成分Kは、転写液面上でわずかずつ増えて行き、例えば液流の弱い転写槽2の側壁22付近に滞留する。そして側壁22付近に滞留した活性剤成分Kは、液表面で高濃度化し、あたかも油分が水面上で膜(油膜)を張るような状態となり(これを便宜上、液膜とする)、これが転写フィルムFの伸展(広がり)を拒むように作用する。つまり、液圧転写を続けていると活性剤成分Kによって形成された液膜によりフィルムの伸展(広がり)が阻害されてしまうのである。 In the transfer, an activator is applied to the transfer film F in order to activate the transfer pattern. A part of the activator applied to the film is transferred to the transfer film (contact with the transfer liquid L). It separates (releases) from the surface of F and flows out (exudes) on the surface of the transfer liquid (this is mainly referred to as the activator component K in this specification). The outflow of the activator component K onto the liquid surface is not necessarily limited to the supply direction (liquid flow direction) of the transfer film F, and may flow out in various directions. It is considered that the outflow (preceding) in the film supply direction is relatively large because the film is being supplied. In addition, for this reason, when the hydraulic transfer is repeated, the activator component K gradually increases on the transfer liquid surface and stays, for example, near the side wall 22 of the transfer tank 2 having a weak liquid flow. . The activator component K staying in the vicinity of the side wall 22 becomes highly concentrated on the liquid surface, and it becomes as if the oil component forms a film (oil film) on the water surface (this is referred to as a liquid film for convenience), which is a transfer film. It acts to refuse the extension (spreading) of F. That is, if the hydraulic transfer is continued, the liquid film formed by the activator component K hinders the extension (spreading) of the film.
 また、転写液面上に供給された転写フィルムFの伸展が阻害される要因は他にもあり、例えば転写槽2内の転写液Lは、環境保護や資源の有効利用(リサイクル)等の観点から、そのほとんどが循環使用される。このため転写液面上に放出された活性剤成分K(液膜)は、単に液面上に溜まる(漂う)だけでなく、一部は転写液L中にも溶け込むものである。そのため、液圧転写を繰り返し行っていれば、次第に転写液L中の活性剤濃度も高まって行き、転写液Lの粘性が増すこととなり、これも転写フィルムFの伸展を阻害する要因となる。
 更に、紫外線硬化型樹脂の活性剤は、屋内とはいえ、光でわずかながらも活性剤成分Kが硬化するため、転写液Lの粘度は、更に高められる傾向となる。また上述したように、転写液Lのほとんどが再使用され、廃棄液量を抑制しようとする社会環境にあるため、これが転写液Lの粘度をより一層高める要因となっている。ただし、液圧転写では、高いレベルで安定して転写を行うことが求められるため、必然的に波立ちを抑える等、転写液面の安定化が図られ、これが活性剤(樹脂成分)の転写液L中への混入を防ぐように作用することも事実である。
In addition, there are other factors that hinder the extension of the transfer film F supplied onto the transfer liquid surface. For example, the transfer liquid L in the transfer tank 2 is used for environmental protection and effective use (recycling) of resources. Most of them are recycled. For this reason, the activator component K (liquid film) released on the transfer liquid surface does not simply accumulate (float) on the liquid surface but also partially dissolves in the transfer liquid L. Therefore, if the hydraulic transfer is repeated, the concentration of the activator in the transfer liquid L gradually increases, and the viscosity of the transfer liquid L increases, which also becomes a factor that hinders the extension of the transfer film F.
Further, although the activator of the ultraviolet curable resin is indoors, the activator component K is slightly cured by light, so that the viscosity of the transfer liquid L tends to be further increased. Further, as described above, since most of the transfer liquid L is reused and there is a social environment in which the amount of waste liquid is to be suppressed, this is a factor that further increases the viscosity of the transfer liquid L. However, since hydraulic transfer requires stable transfer at a high level, the surface of the transfer liquid is inevitably stabilized by suppressing ripples, and this is a transfer liquid of an activator (resin component). It is also a fact that it acts to prevent mixing into L.
 なお、転写液面上の活性剤成分Kによって転写フィルムFの伸展が阻まれる現象は、表面保護機能も有する転写パターンを形成する液圧転写(トップコート不要の液圧転写)に用いられる活性剤で顕著であり、これは当該活性剤が、通常の溶剤系のものに比べて粘性が高く、そのために転写フィルムFの伸びを抑制する傾向が大きいと考えられる。
 加えて、転写液面上に供給された転写フィルムFは、一般に図28に示すように、転写液面上で上側に位置する転写パターンと、下側に位置する水溶性フィルムとの伸び差により(水溶性フィルムの方が伸び率が高い)、次第に上にカールして行くものである。このため転写槽2に供給された転写フィルムFは、ますます側壁22付近に設けられたフィルム保持機構6と接触しにくくなるものであった。
 このようなことから伸展低下防止機構10がない場合には、液圧転写を繰り返し行っていると、当初は着液後コンベヤ61まで伸展していた転写フィルムFが付着しなくなるものであり、そのため本実施例では当該機構によって、このような伸展低下を防止するものである。
Note that the phenomenon in which the extension of the transfer film F is hindered by the activator component K on the transfer liquid surface is an activator used for hydraulic transfer (hydraulic transfer that does not require a top coat) to form a transfer pattern having a surface protection function. This is conspicuous, and it is considered that the activator has a higher viscosity than ordinary solvent-based ones, and therefore tends to suppress the elongation of the transfer film F.
In addition, as shown in FIG. 28, the transfer film F supplied on the transfer liquid surface generally has a difference in elongation between the transfer pattern located on the upper side of the transfer liquid surface and the water-soluble film located on the lower side. (The water-soluble film has a higher elongation rate) and gradually curls upward. For this reason, the transfer film F supplied to the transfer tank 2 becomes more difficult to come into contact with the film holding mechanism 6 provided near the side wall 22.
For this reason, when there is no extension lowering prevention mechanism 10, if the hydraulic transfer is repeated, the transfer film F that has been initially extended to the conveyor 61 after landing is not attached. In this embodiment, this mechanism prevents such a decrease in extension.
 ここで本実施例では、伸展低下防止機構10としてブロー手法を採用するものであり、フィルム保持機構6(コンベヤ61)と転写フィルムFとの間の転写液面上に液膜となって広がり、転写フィルムFの伸展を阻害する活性剤成分Kを送風によって除去するものである。すなわち、当該機構は、一例として図1に示すように、転写液Lの流れ(液流)が弱まり活性剤成分Kが停滞し易いと考えられる側壁22近傍、とりわけ送風機26の左右両側に送風し、当該部位に位置する(浮遊する)活性剤成分Kをフィルム保持機構6と側壁22との間に押しやる(送る)ことが好ましい。因みに、このフィルム保持機構6と側壁22との間は、ベルト63の上端縁が転写液面より高い位置に設定されていること等から、実質的に転写位置に影響を及ぼさない、もしくは転写位置に与える影響が極めて少ない部位であり、このため本実施例では当該部位に活性剤成分Kを押しやるものである。なお、本実施例では上述したように、前記送風機26が転写フィルムFを周囲に延展させる作用を担うため、ここでは送風機26との作用を明確に区別すべく、当該機構を伸展低下防止機構10としたものである。
 また、本実施例では、既に述べたようにフィルム保持機構6としてのコンベヤ61の外側に、転写槽2の両側壁22に沿ってオーバーフロー槽75を設けるため、ここで上記フィルム保持機構6と側壁22との間に送った活性剤成分Kを回収するものである。もちろん、この場合には、例えば図4に併せ示すように、オーバーフロー槽75の前縁側(上流側)にも活性剤成分Kを導入・回収する排出口76aが形成されるものである。
Here, in this embodiment, a blow method is adopted as the extension reduction preventing mechanism 10 and spreads as a liquid film on the transfer liquid surface between the film holding mechanism 6 (conveyor 61) and the transfer film F, The activator component K that inhibits the extension of the transfer film F is removed by blowing air. That is, as shown in FIG. 1 as an example, the mechanism sends air to the vicinity of the side wall 22 where the flow of the transfer liquid L (liquid flow) is weakened and the activator component K is likely to stagnate, particularly to the left and right sides of the blower 26. It is preferable to push (send) the active agent component K located (floating) in the region between the film holding mechanism 6 and the side wall 22. Incidentally, since the upper edge of the belt 63 is set at a position higher than the transfer liquid surface between the film holding mechanism 6 and the side wall 22, it does not substantially affect the transfer position, or the transfer position. Therefore, in this embodiment, the activator component K is pushed to the site. In the present embodiment, as described above, since the blower 26 has an action of extending the transfer film F to the periphery, the extension lowering prevention mechanism 10 is here used to clearly distinguish the action from the blower 26. It is what.
In the present embodiment, as already described, the overflow tank 75 is provided along the both side walls 22 of the transfer tank 2 outside the conveyor 61 as the film holding mechanism 6. The activator component K sent between the two is recovered. Of course, in this case, for example, as shown in FIG. 4, a discharge port 76a for introducing and collecting the activator component K is also formed on the front edge side (upstream side) of the overflow tank 75.
 更に、図1に示す実施例では、伸展低下防止機構10(除去手段101)として二基の圧縮空気吹き出しノズル102を適用するものである。より詳細には、転写槽2に供給された転写フィルムFは、本来、転写液Lを含んで膨潤・軟化し、徐々に四方に伸展して行くため、図1では、二基の圧縮空気吹出ノズル102から、転写フィルムFの広がりエッジに臨む液面に作用するように(当てるように)エアを吹き付けて、主にエッジ付近に浮遊する活性剤成分Kをここから除去し、転写フィルムFのエッジ付近での両サイド方向への伸展を図る(伸展低下の防止を図る)ものである。ここで上記圧縮空気吹出ノズル102としては、図示したように多関節ジョイントタイプのフレキシブルホースを具えることが好まく、これはノズルの位置や送風方向等の微調整が行い易いためである。 Further, in the embodiment shown in FIG. 1, two compressed air blowing nozzles 102 are applied as the extension reduction preventing mechanism 10 (removing means 101). More specifically, since the transfer film F supplied to the transfer tank 2 inherently swells and softens including the transfer liquid L and gradually expands in all directions, in FIG. Air is blown from the nozzle 102 so as to act on the liquid surface facing the spreading edge of the transfer film F, so that the activator component K mainly floating near the edge is removed from the air, and the transfer film F is removed. It is intended to extend in both directions near the edge (to prevent reduction in extension). Here, the compressed air blowing nozzle 102 is preferably provided with an articulated joint type flexible hose as shown in the figure, because it is easy to finely adjust the position of the nozzle and the blowing direction.
 因みに、活性剤成分Kを除去するための送風は、転写フィルムFに風を作用させる(当てる)のではなく、フィルムが存在しない転写液面のみに風を作用させることが好ましく、これは転写液面を安定的に保持し、転写フィルムFを極力波立ちのない状態で転写位置(没入エリアP1)まで移送するためである。また、その点では、例えば図1の拡大図に示すように、吐出口に向かって先窄まり状に形成されるノズルを用い、狙った液面(フィルムの広がりエッジに臨む液面など)にピンポイントでエアを作用させることが望ましい。一方、送風機73・85等については、吐出口が比較的幅広状のものを適用することが好ましい。
 また、図1では、送風の際、転写フィルムFが着液によって伸展する上流側(前方側)の液面、より具体的にはフィルム保持機構6の作用開始端(始端プーリ62A)よりも上流側の液面にエアを作用させるように送風しており、これは転写フィルムFが伸展しようとする前に、その阻害要因となる活性剤成分Kを除去することで、転写フィルムFの伸展をより効果的に行わせるためである。このような送風により転写液面上に浮遊する活性剤成分Kは、フィルム保持機構6の作用開始端(始端プーリ62A)を迂回しながら、側壁22とフィルム保持機構6との間に送り込まれるものである。
Incidentally, it is preferable that the air blow for removing the activator component K does not act on the transfer film F but applies air only to the surface of the transfer liquid where no film is present. This is because the surface is stably held and the transfer film F is transferred to the transfer position (immersion area P1) with as little ripple as possible. Moreover, in that respect, for example, as shown in the enlarged view of FIG. 1, a nozzle formed in a tapered shape toward the discharge port is used, and the target liquid level (such as a liquid level facing the spreading edge of the film) is set. It is desirable to let air act at a pinpoint. On the other hand, for the blowers 73 and 85 and the like, it is preferable to use a fan having a relatively wide discharge port.
Further, in FIG. 1, when air is blown, the upstream (front side) liquid surface on which the transfer film F extends by liquid landing, more specifically, upstream of the operation start end (start pulley 62 </ b> A) of the film holding mechanism 6. The air is blown so that air acts on the liquid surface on the side, and before the transfer film F tries to extend, the activator component K that becomes an obstruction factor is removed, thereby extending the transfer film F. This is to make it more effective. The activator component K floating on the transfer liquid surface by such air blowing is sent between the side wall 22 and the film holding mechanism 6 while bypassing the action start end (starting pulley 62A) of the film holding mechanism 6. It is.
 また、図1の実施例では二基の圧縮空気吹出ノズル102からの送風が、多少、転写液流に逆行するような送風形態であるが、二基の圧縮空気吹出ノズル102は、液面上の活性剤成分K(液膜)を側壁22に追いやる程度の小さい能力(送風力)を持てばよいため、圧縮空気吹出ノズル102による送風が転写液Lの液流そのものを阻害する心配はない。因みに、転写液流に対し逆行するような送風では、液流方向(下流方向)に対し90度~120度程度が好ましいものである。
 もちろん、圧縮空気吹出ノズル102による送風は、図2に併せ示すように転写液Lの液流に沿うような下流向きで行うことも可能である。ただし、この場合でも、転写液面上の活性剤成分Kを両側壁22に追いやるように送風することが好ましい。より詳細には、フィルム供給側の側壁22近傍に浮遊する液面上の活性剤成分Kを、フィルム保持機構6(コンベヤ61)の始端プーリ62Aの手前から、フィルム保持機構6(コンベヤ61)と側壁22との間に押しやるように送風することが好ましい。因みに、このような下流向きの送風形態では、液流方向(下流方向)に対し50度~90度程度が好ましいものである。
 以上述べたように、伸展低下防止機構10(除去手段101)としての送風は、転写フィルムFに直接、エアを作用させないことが好ましい点や、送風方向に幅がある点で、上記送風機26とは大きく相違するものである。逆に言えば、上記送風機26は、転写フィルムF表面に直接エアを作用させるものであり、なお且つ送風方向もフィルムの移送を考慮して、上流から下流へと向かう一方向に設定されるものである。
In the embodiment shown in FIG. 1, the air is blown from the two compressed air blowing nozzles 102 slightly reverse to the transfer liquid flow. However, the two compressed air blowing nozzles 102 are arranged on the liquid surface. Therefore, there is no concern that the air flow by the compressed air blowing nozzle 102 hinders the liquid flow itself of the transfer liquid L because it is sufficient that the activator component K (liquid film) is driven to the side wall 22. Incidentally, in the case of air flow reverse to the transfer liquid flow, about 90 to 120 degrees with respect to the liquid flow direction (downstream direction) is preferable.
Of course, the air blowing by the compressed air blowing nozzle 102 can be performed in the downstream direction along the flow of the transfer liquid L as shown in FIG. However, even in this case, it is preferable to blow the activator component K on the transfer liquid surface so as to repel the both side walls 22. More specifically, the activator component K on the liquid surface floating in the vicinity of the side wall 22 on the film supply side is transferred from the front end 62A of the film holding mechanism 6 (conveyor 61) to the film holding mechanism 6 (conveyor 61). It is preferable to blow air so as to push between the side walls 22. Incidentally, in such a downstream blowing mode, about 50 to 90 degrees with respect to the liquid flow direction (downstream direction) is preferable.
As described above, the blowing as the extension reduction preventing mechanism 10 (removing means 101) is preferably the same as the blower 26 in that the air is not directly applied to the transfer film F and the blowing direction is wide. Are very different. In other words, the blower 26 directly applies air to the surface of the transfer film F, and the air blowing direction is set in one direction from upstream to downstream in consideration of film transfer. It is.
 次に、圧縮空気吹出ノズル102により伸展低下防止用の送風を行う際、その送風量の調整の目安について説明する。
 本出願人は、伸展低下防止機構10の送風効果を確認すべく、以下のような試験を行った。この試験は、転写槽2に4000リットルの転写液L(水)を入れて循環させておき、従来の液圧転写フィルムに従来の活性剤を塗布しつつ連続運転を行い、転写フィルムがフィルム保持機構6に付着しなくなった(離れた)時点で終了とし、活性剤の使用量を確認するものである。ここで1回目(試行1)は、伸展低下防止用の送風を行わず、2回目(試行2)にだけ該送風を行った。その結果、試行1は約5時間後、約4kgの活性剤を使用した時点で、転写フィルムがフィルム保持機構6に付着しなくなった。また、試行2は、転写槽2の水を交換し、上述したように伸展低下防止機構10の送風を行ったこと以外は同じ条件で行ったが、試行2では、全く変化が見られず、転写フィルムが常に安定してフィルム保持機構6に到達し続けたため、10時間の連続運転を経過した段階(約8kgの活性剤を使用)で、確認(試験)を終了した。
Next, a guideline for adjusting the amount of air flow when the compressed air blowing nozzle 102 blows air to prevent the reduction in extension will be described.
The present applicant conducted the following test in order to confirm the blowing effect of the extension reduction preventing mechanism 10. In this test, 4000 liters of the transfer liquid L (water) was put in the transfer tank 2 and circulated, and the continuous operation was performed while applying the conventional activator to the conventional hydraulic transfer film. The process is terminated when the mechanism 6 is no longer attached (separated) and the amount of the active agent used is confirmed. Here, in the first time (trial 1), the blowing was not performed to prevent the extension from being lowered, and the blowing was performed only in the second time (trial 2). As a result, in trial 1, after about 5 hours, when about 4 kg of the activator was used, the transfer film did not adhere to the film holding mechanism 6. Trial 2 was carried out under the same conditions except that the water in the transfer tank 2 was replaced and the extension reduction prevention mechanism 10 was blown as described above. In Trial 2, no change was observed. Since the transfer film always reached the film holding mechanism 6 stably, the confirmation (test) was completed after 10 hours of continuous operation (using about 8 kg of activator).
 この試験から判断すると、試行1は伸展低下防止用の送風を行わなかったために、次第に転写フィルムFの伸展力が負けて伸展低下が生じ、フィルム保持機構6に付着しなくなったものと考えられる。また試行2は、常に伸展低下防止用の送風が行われたことにより、液面上の活性剤成分Kが除去され(液表面の濃度が低下し)、フィルム伸展力の方が強い関係が保たれて、常に転写フィルムFの伸展(フィルム保持機構6への到着)が維持できたと考えられる。
 このようなことから、伸展低下防止用の送風を行う際には、送風量を調整する目安として、
 (転写液中の活性剤濃度+転写液面上の活性剤濃度に伴う液膜や液粘度によるフィルム  伸展を阻害しようとする抵抗力)<フィルム伸展力
という関係が成り立つように送風すれば良いと結論付けられる。
 ここで、転写フィルムFの伸展を阻害する要因(条件)として、液面上の活性剤濃度(割合)のみならず、転写液中の濃度も考慮に入れたのは、上述したように転写を繰り返し行うことで、転写液中に溶け込んだ活性剤の濃度が次第に高まって行くためである。その点では、新水供給によって転写液中の活性剤濃度を低下もしくは低い状態で維持することが可能であるため、新水供給によっても転写フィルムFの伸展低下防止を図ることが考えられる。因みに、本実施例では、この点も考慮して新水供給を併せて行ったものである。
Judging from this test, it can be considered that trial 1 did not perform blowing for preventing the reduction in stretching, and therefore the stretching force of the transfer film F was gradually lost, causing a reduction in stretching and no longer adhering to the film holding mechanism 6. Also, in trial 2, since the blowing for preventing the decrease in stretch is always performed, the activator component K on the liquid surface is removed (concentration on the liquid surface is reduced), and the film stretch force has a stronger relationship. Therefore, it is considered that the extension of the transfer film F (arrival at the film holding mechanism 6) was always maintained.
Because of this, as a guideline for adjusting the air flow,
(The activator concentration in the transfer liquid + the liquid film accompanying the activator concentration on the transfer liquid surface and the resistance force to inhibit film extension due to the liquid viscosity) It can be concluded.
Here, as a factor (condition) that hinders the extension of the transfer film F, not only the concentration (ratio) of the activator on the liquid surface but also the concentration in the transfer liquid is taken into account. This is because the concentration of the active agent dissolved in the transfer solution is gradually increased by repeating the process. In that respect, since it is possible to reduce or maintain the concentration of the activator in the transfer liquid by supplying new water, it is conceivable to prevent the transfer film F from being lowered by supplying new water. Incidentally, in this embodiment, new water supply is also performed in consideration of this point.
 なお、伸展低下防止機構10における除去手段101としては、必ずしも送風で活性剤成分Kを側壁22に追いやるだけでなく、他の除去手法も採り得るものであり、例えば液面上の活性剤成分Kを転写液Lとともに吸い込むバキューム手法が挙げられる。すなわち、この場合には、除去手段101として吸い込みノズルが適用される。
 また、本実施例では伸展低下防止機構10の圧縮空気吹出ノズル102を送風機26とともに設けたが、伸展低下防止機構10は、必ずしも送風機26とともに設ける必要はなく、伸展低下防止機構10による送風(活性剤成分Kの除去)や液流あるいはフィルム保持機構6による移送作用(保持作用)によって転写フィルムFの周囲への延展が行える場合には、液圧転写装置1の全体構成から送風機26を削除することが可能である。
In addition, as the removal means 101 in the extension reduction preventing mechanism 10, not only the activator component K is driven to the side wall 22 by blowing air, but also other removal methods can be adopted. For example, the activator component K on the liquid surface is used. And a vacuum method for sucking in together with the transfer liquid L. That is, in this case, a suction nozzle is applied as the removing unit 101.
In the present embodiment, the compressed air blowing nozzle 102 of the extension reduction preventing mechanism 10 is provided together with the blower 26. However, the extension reduction preventing mechanism 10 is not necessarily provided together with the blower 26. In the case where the transfer film F can be extended to the periphery by removal of the agent component K), liquid flow, or transfer action (holding action) by the film holding mechanism 6, the blower 26 is deleted from the entire configuration of the hydraulic transfer apparatus 1. It is possible.
 次に、転写フィルム供給装置3について説明する。転写フィルム供給装置3は、一例として図1に示すように、ロール巻きされた転写フィルムFから成るフィルムロール31と、このフィルムロール31から引き出された転写フィルムFを加熱するヒートローラ32と、転写フィルムFを転写槽2に供給するための案内コンベヤ33とを具えて成り、転写フィルムFはガイドローラ34によってこれらの部材間を経由しながら転写槽2に供給される。
 ここで上記説明では、ロール巻きしたフィルムロール31から順次、転写フィルムFを転写槽2に繰り出すように説明したが、例えば最初から矩形状にカットされた転写フィルムFを一枚ごと転写槽2に供給し、この上方から被転写体Wを押し付ける、いわゆるバッチ式の液圧転写も可能である。因みに、バッチ式の場合には通常、転写槽2に液流が形成されないため、転写後の被転写体Wを転写液L中から引き上げる際には、意匠面に沿った引き上げとなり、図13(a)に示すように、斜めに引き上げられる。
Next, the transfer film supply device 3 will be described. As an example, as shown in FIG. 1, the transfer film supply device 3 includes a film roll 31 formed of a rolled transfer film F, a heat roller 32 that heats the transfer film F drawn from the film roll 31, and a transfer film A guide conveyor 33 for supplying the film F to the transfer tank 2 is provided. The transfer film F is supplied to the transfer tank 2 by a guide roller 34 while passing between these members.
Here, in the above description, the transfer film F is fed out to the transfer tank 2 sequentially from the roll film roll 31. For example, the transfer film F cut into a rectangular shape from the beginning is transferred to the transfer tank 2 one by one. A so-called batch-type hydraulic pressure transfer is also possible in which the transfer target W is pressed from above. Incidentally, in the case of the batch type, since a liquid flow is not normally formed in the transfer tank 2, when the transferred object W after transfer is pulled up from the transfer liquid L, it is pulled up along the design surface, and FIG. As shown to a), it is pulled up diagonally.
 次に、活性剤塗布装置4について説明する。活性剤塗布装置4は、一例として転写フィルム供給装置3のヒートローラ32の後段に設けられ、転写フィルムFに所要の活性剤を塗布するロールコータ41を具えて成るものである。ここで図1に示す実施例では、転写フィルムFに活性剤を塗布してから、これを転写槽2に供給するものであるが、当該装置の構造等を変更して、転写槽2に供給・着液した状態の転写フィルムFに、上方から活性剤を塗布することも可能である。 Next, the activator coating device 4 will be described. The activator coating device 4 is provided, for example, at a stage subsequent to the heat roller 32 of the transfer film supply device 3 and includes a roll coater 41 that coats the transfer film F with a required activator. Here, in the embodiment shown in FIG. 1, the activator is applied to the transfer film F and then supplied to the transfer tank 2, but the structure and the like of the apparatus are changed and supplied to the transfer tank 2. -It is also possible to apply the activator from above onto the transfer film F in the liquid landing state.
 次に、被転写体搬送装置5について説明する。被転写体搬送装置5は、被転写体Wを適宜の姿勢で転写液L中に没入させ、また転写液L中から引き上げるものであり、本発明では上述したように意匠面上の出液位置POをほぼ一定の位置に維持しながら被転写体Wを引き上げることが大きな特徴である。このような引き上げを行うには、通常、被転写体Wの意匠面S1がシンプルな平面であることは稀であるため、被転写体搬送装置5としても様々な意匠面形状に対応できるように、マニピュレータ(ロボット)を適用することが好ましいと考えられる。しかしながら、被転写体搬送装置5としては、コンベヤを適用することも可能であることから、以下の説明では、コンベヤを適用した被転写体搬送装置5についてまず説明する。特に液流ナシの場合には、被転写体Wを意匠面に沿って引き上げる形態となり(出液位置POをほぼ一定の位置に維持するため)、意匠面S1が複雑でなければ、コンベヤでも充分に適用し得るものである。
 また、通常、被転写体Wは、転写用治具(単に治具Jとする)を介してコンベヤに取り付けられるため、本実施例においても、被転写体搬送装置5は、搬送作用を担うコンベヤ51と治具ホルダ52とを具えて成る構造を基本とする。すなわち、液圧転写の際には、予め被転写体Wを治具Jに取り付けておき、この治具Jを治具ホルダ52に着脱してコンベヤ51へのセッティング(被転写体Wのセッティング)を行うものである。以下、コンベヤ51について更に説明する。
 コンベヤ51は、一例として図12、20に示すように、平行に配置された一対のリンクチェーン53にリンクバー54を横架するともに、このリンクバー54に所定の間隔で治具ホルダ52を配設して成り、被転写体Wを治具Jとともに連続的に転写液L中に没入・出液させるものである。なお、没入側における被転写体W(治具J)のコンベヤ51への取り付けや、転写後の出液側における被転写体W(治具J)のコンベヤ51からの取り外しは、ロボットにより自動で行うことも可能であるし、作業者による手作業で行うことも可能である。また、液流アリの場合、没入時のコンベヤ51による被転写体Wの搬送速度は、転写フィルムFの液面上の移送速度(すなわち転写液Lの液流速度)とほぼ同調するように設定されるのが一般的である。
Next, the transferred object transport device 5 will be described. The transferred object conveyance device 5 immerses the transferred object W into the transfer liquid L in an appropriate posture and pulls it up from the transfer liquid L. In the present invention, as described above, the liquid discharge position on the design surface The main feature is that the transfer target W is pulled up while maintaining PO at a substantially constant position. In order to perform such pulling up, it is rare that the design surface S1 of the transfer target W is a simple plane. Therefore, the transfer target conveying device 5 can cope with various design surface shapes. It is considered preferable to apply a manipulator (robot). However, since it is also possible to apply a conveyor as the transferred object transport apparatus 5, in the following description, the transferred object transport apparatus 5 to which the conveyor is applied will be described first. In particular, in the case of liquid flow, the transfer target W is pulled up along the design surface (to maintain the liquid discharge position PO at a substantially constant position), and if the design surface S1 is not complicated, a conveyor is sufficient. It can be applied to.
In addition, since the transfer target W is usually attached to the conveyor via a transfer jig (simply referred to as a jig J), the transfer target transporting device 5 is also a conveyor responsible for transporting in this embodiment. A structure including 51 and a jig holder 52 is basically used. That is, at the time of hydraulic transfer, the transfer target W is attached to the jig J in advance, and the jig J is attached to and detached from the jig holder 52 and set on the conveyor 51 (setting of the transfer target W). Is to do. Hereinafter, the conveyor 51 will be further described.
As shown in FIGS. 12 and 20, for example, the conveyor 51 lays a link bar 54 on a pair of link chains 53 arranged in parallel, and a jig holder 52 is arranged on the link bar 54 at a predetermined interval. The transfer target W is continuously immersed in and discharged from the transfer liquid L together with the jig J. Note that the robot automatically attaches the transferred object W (jig J) to the conveyor 51 on the immersion side and removes the transferred object W (jig J) from the conveyor 51 on the liquid discharge side after transfer. It can also be performed, or can be performed manually by an operator. In the case of a liquid flow ant, the conveyance speed of the transfer target W by the conveyor 51 at the time of immersion is set to be substantially synchronized with the transfer speed on the liquid surface of the transfer film F (that is, the liquid flow speed of the transfer liquid L). It is common to be done.
 コンベヤ51の具体的構成について説明すると、このものは一例として図20に示すように、側面から視て逆三角形の搬送軌道を描く通常の三角コンベヤ部55に対し(逆三角形の下方に位置する頂点部分を没入側ホイール56とする)、出液側ホイール57を追加した構造を採り、概ね没入側ホイール56から出液側ホイール57までの区間で被転写体Wを没入させ、且つ出液エリアP2を没入エリアP1とは異なる位置に設定するものである。より詳細には、平面から視た出液エリアP2が、没入エリアP1に対して明確に下流側に位置するように設定されるものである。
 因みに、従来の三角コンベヤ部55のみによる搬送態様では、被転写体Wの没入が、下方の頂点部分(没入側ホイール56)のみで行われ、言わば短時間または瞬間的な没入であるのに対し、本実施例における被転写体Wの没入は直線的と言え、没入時間を長く確保したものと言える。このように本実施例では、没入エリアP1から出液エリアP2までの距離が比較的長く確保でき、被転写体Wを没入させている間に液面残留フィルムF′を分断し、且つ両側壁22部分で回収するのに好適な搬送態様である。また、没入エリアP1から出液エリアP2までの距離が比較的長いため(被転写体Wの没入が瞬間的でないため)、転写液中での被転写体Wの動きが、大きな回転作動を伴わず、これによりタダレ不良・カス不良の防止につながるものである。もちろん、このような不良を極力生じさせないためには、被転写体Wの転写液L中での移動速度や出液速度にも考慮する必要があり、できる限り遅い方が好ましいが、ここでは生産性も考慮して2m/分を上限とするものである。
 更に、本実施例では、没入側ホイール56から出液側ホイール57までの区間は、液中における被転写体Wの移動軌跡をほぼ水平に設定するものである。またコンベヤ51は、このような構造上、従来の三角コンベヤ部55と直線コンベヤ58部とを出液側ホイール57によって接続した構成を採るものであり、以下これらの構成部材について説明する。
A specific configuration of the conveyor 51 will be described. As shown in FIG. 20 as an example, this is for a normal triangular conveyor section 55 that draws a conveyance path of an inverted triangle when viewed from the side (the apex located below the inverted triangle). The portion is defined as an immersion side wheel 56), and a liquid discharge side wheel 57 is added. The transferred object W is substantially immersed in a section from the immersion side wheel 56 to the liquid discharge side wheel 57, and the liquid discharge area P2 Is set at a position different from the immersion area P1. More specifically, the liquid discharge area P2 viewed from the plane is set so as to be clearly located downstream of the immersion area P1.
Incidentally, in the conventional transport mode using only the triangular conveyor section 55, the transferred object W is immersed only at the lower apex portion (immersion side wheel 56), which is, for example, a short time or instantaneous immersion. In this example, the immersion of the transfer target W is linear, and it can be said that the immersion time is secured long. As described above, in this embodiment, a relatively long distance from the immersion area P1 to the liquid discharge area P2 can be secured, the liquid level residual film F ′ is divided while the transfer target W is immersed, and both side walls are separated. This is a transport mode suitable for collecting in 22 parts. Further, since the distance from the immersion area P1 to the liquid discharge area P2 is relatively long (since the immersion of the transfer target W is not instantaneous), the movement of the transfer target W in the transfer liquid is accompanied by a large rotation operation. Therefore, this leads to prevention of sagging failure and residue defects. Of course, in order not to cause such a defect as much as possible, it is necessary to consider the moving speed and the liquid discharging speed of the transfer target W in the transfer liquid L, and it is preferable that the speed is as low as possible. In consideration of the properties, the upper limit is 2 m / min.
Further, in this embodiment, the section from the immersion side wheel 56 to the liquid output side wheel 57 sets the movement locus of the transfer target W in the liquid substantially horizontally. Moreover, the conveyor 51 takes the structure which connected the conventional triangular conveyor part 55 and the linear conveyor 58 part by the liquid discharge side wheel 57 on such a structure, and these structural members are demonstrated below.
 三角コンベヤ部55は、従来と同様に、下方頂点に当たる没入側ホイール56を回動中心として全体的に傾倒自在に構成され、これにより被転写体Wの没入角αが適宜変更できるように構成されている。因みに、ここでの没入角αとは、図20に示すように、意匠面S1の転写液面(上流側)に対する角度であり、一例として15度~35度程度での設定範囲を想定している。
 また、直線コンベヤ部58も、下方のチェーンホイール59を中心として回動自在に構成され、いわゆるパンタグラフ状の構造を採るものである。これは(直線コンベヤ部58を回動自在としたのは)、三角コンベヤ部55の回動によって被転写体Wの没入角を変更しても、コンベヤ51全体の移送長(リンクチェーン53の全長)は変えられず、またコンベヤ51に掛けるテンションも維持する必要があるためである。言い換えれば、直線コンベヤ部58を回動させることで、このものの回動自由端側をいわゆるテンションプーリとして機能させたものである。
 ここで図20(a)中の実線部分が、没入角αが比較的小さい場合の搬送軌道であり(一例として15度程度)、図20(b)中の実線部分が、没入角αが比較的大きい場合の搬送軌道である(一例として30度程度)。因みに、本実施例では、出液側ホイール57~直線コンベヤ部58の回動中心側(チェーンホイール59)までの間が固定軌道として設定されているため、出液角βは変更できないものである(固定設定されている)。つまり図20に示した実施例では、被転写体Wは常に意匠面S1と同じ傾斜角度で引き上げられるものであり(意匠面に沿った引き上げ)、これは液流ナシの場合に適した(出液位置POをほぼ一定にするのに適した)引き上げ方と言える。
As in the conventional case, the triangular conveyor section 55 is configured to be tiltable as a whole with the immersing side wheel 56 that hits the lower apex being the center of rotation, and is configured so that the immersing angle α of the transfer target W can be appropriately changed. ing. Incidentally, the immersion angle α here is an angle with respect to the transfer liquid surface (upstream side) of the design surface S1, as shown in FIG. 20, and as an example, a set range of about 15 to 35 degrees is assumed. Yes.
The linear conveyor 58 is also configured to be rotatable about the lower chain wheel 59 and has a so-called pantograph-like structure. This is because (the linear conveyor unit 58 is rotatable), even if the immersion angle of the transfer target W is changed by the rotation of the triangular conveyor unit 55, the transfer length of the entire conveyor 51 (the total length of the link chain 53). This is because the tension applied to the conveyor 51 needs to be maintained. In other words, by rotating the straight conveyor 58, the rotation free end side of this is functioned as a so-called tension pulley.
Here, the solid line portion in FIG. 20 (a) is a conveyance trajectory when the immersion angle α is relatively small (about 15 degrees as an example), and the solid line portion in FIG. 20 (b) is compared with the immersion angle α. This is a transport trajectory when the target is large (as an example, about 30 degrees). Incidentally, in this embodiment, since the portion from the liquid discharge side wheel 57 to the rotation center side (chain wheel 59) of the straight conveyor 58 is set as a fixed track, the liquid discharge angle β cannot be changed. (Fixed setting). In other words, in the embodiment shown in FIG. 20, the transfer target W is always pulled up at the same inclination angle as the design surface S1 (pull-up along the design surface), which is suitable for the case of liquid flow pear. This can be said to be a method of pulling up (suitable for making the liquid position PO substantially constant).
 なお、出液側ホイール57には、「ホイール」という名称を付したものの、必ずしもリンクチェーン53の走行とともに回転する部材である必要はなく、例えば上記図20に示したように、チェーンに当接しながら円滑にこれを案内するガイド部材であっても構わない(いわゆる滑り接触)。
 また、出液側ホイール57の径寸法は、没入側ホイール56と同じ大きさか、これより大きいものが好ましく、これは出液側ホイール57が小さいと、被転写体Wが出液する際に出液側ホイール57の外側を回る周速度(回転速度)や角度変化が大きくなるためである(転写液Lに対する速度差が過大となる)。すなわち、本コンベヤ51にあっては、リンクバー54が取り付けられるリンクチェーン53部分での移送速度(チェーン走行速度)が一定に維持されるため、出液側ホイール57の径寸法(回転半径)が小さくなると当該ホイール外側を回る被転写体Wの周速度(回転速度)や角度変化が大きくなるものである。
Although the liquid discharge side wheel 57 is given the name “wheel”, it is not necessarily a member that rotates as the link chain 53 travels. For example, as shown in FIG. However, it may be a guide member that smoothly guides this (so-called sliding contact).
The diameter of the liquid discharge side wheel 57 is preferably the same as or larger than that of the immersion wheel 56. If the liquid discharge side wheel 57 is small, the liquid discharge side wheel 57 is discharged when the transfer target W is discharged. This is because the peripheral speed (rotational speed) and the angle change around the outside of the liquid side wheel 57 become large (the speed difference with respect to the transfer liquid L becomes excessive). That is, in this conveyor 51, since the transfer speed (chain running speed) in the link chain 53 portion to which the link bar 54 is attached is maintained constant, the diameter dimension (rotation radius) of the liquid discharge side wheel 57 is When it becomes smaller, the peripheral speed (rotational speed) and the angle change of the transferred object W that goes around the outside of the wheel become larger.
 また、上記図20に示した実施例は、上述したように出液角βは固定され、変更できないものであるが、出液角βを可変とすることも可能である。すなわち、これは例えば図21に示すように、コンベヤ51(リンクチェーン53)を側面から視た状態で、搬送軌道が全体的に四角形状(特に台形状)になるように形成した場合である。ここで没入側ホイール56と出液側ホイール57とは固定状態に設定され(定位置での回転のみ可能)、残る二つのチェーンホイール59A、59Bが各々没入側ホイール56と出液側ホイール57とに対して回動自在に形成される。つまり、没入側ホイール56と出液側ホイール57とに連接される没入側及び出液側の直線コンベヤ部58A、58Bを没入側ホイール56及び出液側ホイール57を中心に回動自在に形成するものである。
 もちろん本実施例においても、やはりコンベヤ51全体の移送長(リンクチェーン53の全長)は変えられないため、被転写体Wの没入角αを変更させた場合には、テンションプーリーのように出液側の直線コンベヤ部58Bも振って、出液角βを変更させるものである。従って、本実施例では、出液角βが変更可能ではあるものの、これは没入角αと関連する変更であり、何の制限もなく出液角βを自由に変更できるものではない。因みに、図21中の実線部分が、没入角αが大きく且つ出液角βが小さい場合の搬送態様であり、図中の二点鎖線部分が、没入角αが小さく且つ出液角βが大きい場合の搬送態様である。また、具体的な角度としては、一例として没入角αが15度~35度程度で変更可能であり、出液角βが25度~55度程度で変更可能である。
In the embodiment shown in FIG. 20, the liquid discharge angle β is fixed and cannot be changed as described above, but the liquid discharge angle β can be made variable. That is, for example, as shown in FIG. 21, the conveyor track (link chain 53) is viewed from the side, and the conveyance track is formed to have a rectangular shape (particularly trapezoidal shape) as a whole. Here, the immersion side wheel 56 and the liquid discharge side wheel 57 are set in a fixed state (only rotation at a fixed position is possible), and the remaining two chain wheels 59A and 59B are respectively connected to the immersion side wheel 56 and the liquid discharge side wheel 57. It is formed so as to be rotatable with respect to. That is, the linear conveyor portions 58A and 58B on the immersing side and the liquid discharging side connected to the immersing side wheel 56 and the liquid discharging side wheel 57 are formed to be rotatable around the immersing side wheel 56 and the liquid discharging side wheel 57. Is.
Of course, also in this embodiment, since the transfer length of the entire conveyor 51 (the total length of the link chain 53) cannot be changed, when the immersion angle α of the transfer target W is changed, the liquid is discharged like a tension pulley. The straight conveyor section 58B on the side is also shaken to change the liquid discharge angle β. Therefore, in the present embodiment, although the liquid discharge angle β can be changed, this is a change related to the immersion angle α, and the liquid discharge angle β cannot be freely changed without any limitation. Incidentally, the solid line portion in FIG. 21 is a conveyance mode when the immersion angle α is large and the liquid discharge angle β is small, and the two-dot chain line portion in the figure is a small immersion angle α and a large liquid discharge angle β. It is a conveyance aspect in the case. Further, as a specific angle, for example, the immersion angle α can be changed when it is about 15 to 35 degrees, and the liquid discharge angle β can be changed when it is about 25 to 55 degrees.
 また上記図20・21の実施例では、没入側ホイール56から出液側ホイール57までの間で、被転写体Wを液中においてほぼ水平に移送するものであったが、被転写体Wの搬送態様は、必ずしもこれに限定されるものではなく、例えば図22に示すように、被転写体Wを上記の区間で徐々に上昇させて行く移送形態も可能である。この場合、被転写体Wは、両ホイール間の移送中において適宜の傾斜角(出液角β)を持って上昇移送される。このことから、被転写体Wの没入後、上記の区間で出液側ホイール57のみを徐々に上方に移動させて行けば、被転写体Wの出液角βを徐々に増加させて行くことが可能となる。従って、上記図21において出液側ホイール57を昇降自在とすれば、より高い自由度で出液角βを変更することができ、場合によっては没入角αに何ら依存することなく変更し得るものである。 20 and 21, the transferred object W is transferred substantially horizontally in the liquid between the immersion side wheel 56 and the liquid discharge side wheel 57. The transport mode is not necessarily limited to this, and for example, as shown in FIG. 22, a transfer mode in which the transfer target W is gradually raised in the above-described section is also possible. In this case, the transfer target W is lifted and transferred with an appropriate inclination angle (liquid discharge angle β) during transfer between both wheels. From this, after the immersion of the transfer target W, if only the liquid discharge side wheel 57 is gradually moved upward in the above section, the discharge angle β of the transfer target W is gradually increased. Is possible. Accordingly, if the liquid discharge side wheel 57 can be raised and lowered in FIG. 21, the liquid discharge angle β can be changed with a higher degree of freedom, and in some cases, the liquid discharge side wheel 57 can be changed without depending on the immersion angle α. It is.
 また、上述したコンベヤ51は、没入エリアP1と出液エリアP2との間で、ある程度の時間・距離を確保することが目的であるため、三角コンベヤ部55と直線コンベヤ部58とを組み合わせた構成を基本としたが、従来の三角コンベヤ部55のみでコンベヤ51を構成することも可能である。ただ、この場合には、図20に示す治具脚JLを幾らか長めに設定して、被転写体Wを比較的液中深くに沈み込ませ、没入エリアP1から出液エリアP2までの距離を長めに確保することが好ましい。もちろん単に治具脚JLを長くするだけでは、没入側ホイール56(三角コンベヤの下方頂点部分)の外側を回る被転写体Wの周速度や角度変化が大きくなるため、これを考慮して全体の移送態様等を決定する必要がある。
 なお、上述したように、このようなコンベヤ51は、通常、意匠面に沿った引き上げとなることから、液流ナシの場合に適するものであるが、液流アリの場合にもコンベヤ51を適用することは可能である。その場合(液流アリの場合)には、被転写体Wを意匠面に沿って引き上げながら、液流方向の水平移送成分も加えるように引き上げればよいため(液流を加味した引き上げ)、例えば被転写体Wを取り付ける治具Jに予めスライド機構を組み込んでおき、被転写体Wの出液に伴い、被転写体Wを液流速度分、水平方向にスライドさせることで、コンベヤ51でも液流を加味した引き上げが行えるものである。また、三角コンベヤ部55のみで構成したコンベヤ51を没入側と出液側とで分け(三角の各辺を不連続とする)、没入側と出液側とにおいて速度や角度の設定が別々に行えるようにすることでも液流を加味した引き上げが可能となる。
In addition, the conveyor 51 described above is intended to ensure a certain amount of time and distance between the immersion area P1 and the liquid discharge area P2, so that the triangular conveyor section 55 and the linear conveyor section 58 are combined. However, it is also possible to configure the conveyor 51 with only the conventional triangular conveyor section 55. In this case, however, the jig leg JL shown in FIG. 20 is set to be slightly longer so that the transfer target W is submerged deeply in the liquid, and the distance from the immersion area P1 to the liquid discharge area P2. It is preferable to ensure a longer length. Of course, simply increasing the length of the jig leg JL increases the peripheral speed and angle change of the transferred object W that rotates around the outside of the immersion wheel 56 (the lower vertex of the triangular conveyor). It is necessary to determine the transfer mode and the like.
In addition, as mentioned above, since such a conveyor 51 is usually pulled up along the design surface, it is suitable for the case of liquid flow pear, but the conveyor 51 is also applied to the case of liquid flow ant. It is possible to do. In that case (in the case of liquid flow ants), it is only necessary to pull up the transfer target W along the design surface while also adding a horizontal transfer component in the liquid flow direction (pickup taking into account the liquid flow). For example, by incorporating a slide mechanism in the jig J for attaching the transfer target W in advance, and sliding the transfer target W in the horizontal direction by the liquid flow rate as the transfer target W comes out, the conveyor 51 It can be lifted with a liquid flow. In addition, the conveyor 51 constituted only by the triangular conveyor section 55 is divided into the immersive side and the liquid discharge side (each side of the triangle is discontinuous), and the speed and angle are set separately on the immersive side and the liquid discharge side. By making it possible, it is possible to raise the liquid flow.
 また被転写体搬送装置5としては、コンベヤ51の他にも、上述したように例えば図1に示すようなロボット110(多関節形ロボットであり、いわゆるマニピュレータ)を適用することができ、被転写体Wの移動の自由度が高い点で好ましい形態である。この場合も、転写槽2は、上述した形態を踏襲するものであり、被転写体Wを没入させている間に液面残留フィルムF′を分断し、転写槽2から排出することがより好ましい。また意匠面浄化機構9はもちろん、出液エリア浄化機構8や伸展低下防止機構10等も具えることにより、転写液Lや出液エリアP2の清浄化を高いレベルで図ることが望ましい。
 なお、図1中、破線部を指す符号111は、被転写体Wを転写液L中に没入させるための転写ロボットのハンドであり、一般には被転写体Wを保持した治具Jを把持するものである。また図中、二点鎖線部を指す符号112は、転写後の被転写体Wを液中から引き上げ、UV照射工程用のコンベヤCに乗せるための移載ロボットのハンドであり、ここでも被転写体Wを保持した治具Jを把持するのが一般的である。
In addition to the conveyor 51, for example, the robot 110 (a multi-joint robot, so-called manipulator) as shown in FIG. This is a preferable form in that the degree of freedom of movement of the body W is high. Also in this case, the transfer tank 2 follows the above-described form, and it is more preferable that the liquid level residual film F ′ is divided and discharged from the transfer tank 2 while the transfer target W is immersed. . In addition to the design surface purification mechanism 9, it is desirable to provide the liquid discharge area purification mechanism 8, the extension reduction prevention mechanism 10, and the like so that the transfer liquid L and the liquid discharge area P 2 can be cleaned at a high level.
In FIG. 1, reference numeral 111 indicating a broken line portion is a transfer robot hand for immersing the transfer target W in the transfer liquid L, and generally holds a jig J holding the transfer target W. Is. Also, in the figure, reference numeral 112 indicating a two-dot chain line portion is a transfer robot hand for lifting the transferred object W from the liquid and placing it on the conveyor C for UV irradiation process. In general, the jig J holding the body W is gripped.
 また、このようなロボット110を適用した液圧転写(ロボット転写)の場合、上述したようにコンベヤ51よりも被転写体Wの角度・姿勢を自由に変更できるため、出液位置POをほぼ一定に維持しながら被転写体Wを引き上げることがより正確に行え、出液速度の制御等も行い易いものである。また、ロボット転写であれば、被転写体Wの没入角α、没入速度、液中での移動速度なども高い自由度で設定できるものである。
 また転写槽2の左右に複数のロボット110を配置して交互に没入から出液までを行うことも可能である。
Further, in the case of hydraulic pressure transfer (robot transfer) using such a robot 110, as described above, the angle / posture of the transfer target W can be changed more freely than the conveyor 51, so the liquid discharge position PO is substantially constant. The transfer target W can be pulled up more accurately while maintaining the same, and the liquid discharge speed can be easily controlled. In the case of robot transfer, the immersion angle α, the immersion speed, the moving speed in the liquid, and the like of the transfer target W can be set with a high degree of freedom.
It is also possible to arrange a plurality of robots 110 on the left and right of the transfer tank 2 to alternately perform from immersion to liquid discharge.
 なお、ロボット転写であっても、コンベヤ51による転写であっても、被転写体Wの出液中は、出液位置POと意匠面離反流形成用のオーバーフロー槽92との離反距離は、ほぼ一定に維持することが好ましく、特に、この距離が100mm以下で一定となるように被転写体Wを引き上げることが好ましい。これは、被転写体Wの意匠面S1に泡Aや夾雑物が付着するカス不良を防止するためであり、意匠面S1に付着した未硬化状態の表面保護機能も有する転写パターンを流動させないためである(タダレ不良の防止)。すなわちオーバーフロー槽92を出液位置PO(意匠面S1)から近接位置でほぼ一定の距離に保つことにより、出液中の意匠面S1に、常に同じ離反力を具えた流れ(意匠面離反流LR)を作用させるものであり、これにより液面上の泡Aや転写液中・液面上の夾雑物を意匠面S1から排除し、また意匠面S1そのものの浄化も図るものである。 It should be noted that, even in the case of robot transfer or transfer by the conveyor 51, the separation distance between the liquid discharge position PO and the overflow tank 92 for forming the design surface separation flow is approximately during the liquid discharge of the transfer target W. It is preferable to keep it constant. In particular, it is preferable to pull up the transfer target W so that this distance is constant at 100 mm or less. This is for the purpose of preventing the defect that the bubbles A and impurities adhere to the design surface S1 of the transfer target W, and the transfer pattern having an uncured surface protection function attached to the design surface S1 is not flowed. (Preventing sagging defects). That is, by maintaining the overflow tank 92 at a substantially constant distance in the proximity position from the liquid discharge position PO (design surface S1), a flow (design surface separation flow LR) always having the same separation force on the design surface S1 during liquid discharge. In this way, the bubbles A on the liquid surface and the contaminants in the transfer liquid and on the liquid surface are excluded from the design surface S1, and the design surface S1 itself is also purified.
 液圧転写装置1は、以上のような構成を基本とするものであり、以下、この液圧転写装置1による転写態様について説明しながら、液圧転写方法について説明する。
(1)転写フィルムの供給
 液圧転写を行うにあたっては、まず転写液Lを貯留した転写槽2に転写フィルムFを供給する。ここでは上述したように、液圧転写の際に表面保護機能も有する転写パターンを形成することが好ましいため(転写後のトップコートが不要となる)、転写フィルムFとしても水溶性フィルムの上に転写インクによる転写パターンのみが形成されたものを使用するか、あるいは水溶性フィルムと転写パターンとの間に硬化性樹脂層が形成されたものを使用するものであり、とりわけ水溶性フィルム上に転写パターンのみが形成された転写フィルムFを使用する場合には、活性剤として液体状の硬化樹脂組成物を適用することが好ましい。
The hydraulic transfer device 1 is based on the above-described configuration, and hereinafter, a hydraulic transfer method will be described while explaining a transfer mode by the hydraulic transfer device 1.
(1) Supply of transfer film In performing the hydraulic transfer, first, the transfer film F is supplied to the transfer tank 2 in which the transfer liquid L is stored. Here, as described above, since it is preferable to form a transfer pattern that also has a surface protection function during hydraulic transfer (no need for a topcoat after transfer), the transfer film F is also formed on a water-soluble film. Use a transfer ink with a transfer pattern only, or use a curable resin layer formed between a water-soluble film and a transfer pattern, especially on a water-soluble film. When using the transfer film F in which only the pattern is formed, it is preferable to apply a liquid cured resin composition as the activator.
 また、本実施例では、転写槽2に転写フィルムFを供給するにあたり、フィルム保持機構6(コンベヤ61)と転写フィルムFとの間の転写液面上で液膜状となり、転写フィルムFの伸展を低下させる活性剤成分Kを除去するものである。これには例えば図1に示すように、圧縮空気吹出ノズル102によって、転写フィルムFの広がりエッジに臨む液面に送風して、ここに溜まる(浮遊する)活性剤成分Kを、フィルム保持機構6の作用開始端(始端プーリ62A)を回り込ませながら、フィルム保持機構6と側壁22との間に追いやるものである。これにより転写フィルムFの広がりエッジに臨む液面では、常時、活性剤成分Kが除去されるため、転写フィルムFの両サイド部分(両側縁部分)がフィルム保持機構6としてのコンベヤ61に確実に到達し続け、ほぼ一定の伸び率を保った状態で没入エリアP1(転写位置)まで移送されるものである。
 なお、フィルム保持機構6と側壁22との間に追いやった活性剤成分Kは、その後、オーバーフロー槽75(排出口76a)に導入して回収することが好ましく、これは活性剤成分Kを転写槽2から連続的に回収(排出)し、転写フィルムFの伸展ひいては精緻な液圧転写を連続して行うためである。
In this embodiment, when the transfer film F is supplied to the transfer tank 2, the transfer film F becomes a liquid film on the transfer liquid surface between the film holding mechanism 6 (conveyor 61) and the transfer film F, and the transfer film F extends. Is to remove the activator component K that lowers. For example, as shown in FIG. 1, the compressed air blowing nozzle 102 blows air to the liquid surface facing the spreading edge of the transfer film F, and the activator component K that accumulates (floats) there is supplied to the film holding mechanism 6. This is driven between the film holding mechanism 6 and the side wall 22 while turning around the action start end (starting pulley 62A). As a result, since the activator component K is always removed at the liquid level facing the spreading edge of the transfer film F, both side parts (both side edge parts) of the transfer film F are reliably transferred to the conveyor 61 as the film holding mechanism 6. It continues to reach and is transferred to the immersion area P1 (transfer position) while maintaining a substantially constant elongation rate.
The activator component K driven between the film holding mechanism 6 and the side wall 22 is preferably introduced into the overflow tank 75 (discharge port 76a) and then recovered. This is because the transfer film F is continuously collected (discharged) from 2 and the transfer film F is extended, and fine fluid pressure transfer is continuously performed.
(2)被転写体の没入
 このようにして転写フィルムFが転写液面上で転写可能な状態となった後、例えばロボット110に保持された被転写体Wが、順次適宜の姿勢・没入角αで転写液Lに投入される。もちろん、この没入角αは被転写体W(意匠面S1)の形状や凹凸などによって適宜変更可能である。
 ここで、本実施例では、没入エリアP1が、その後に液中から引き上げられる出液エリアP2とは幾らか離れており、被転写体Wを転写液L中に没入させている時間が比較的長いものである。
 また、液面上の転写フィルムFは、上記図1のように被転写体Wの没入によって突き破られて孔が開いた状態となり、この液面に残されたフィルムが、転写に用いられなかった液面残留フィルムF′である。そのため本実施例では、この液面残留フィルムF′を、下流の出液エリアP2まで到達させないように、転写後できるだけ早期に且つ確実に回収するものであり、以下この回収態様について説明する。
(2) Immersion of transferred object After the transfer film F is ready to be transferred on the transfer liquid surface in this way, for example, the transferred object W held by the robot 110 is sequentially placed in an appropriate posture / immersion angle. It is introduced into the transfer liquid L at α. Of course, the immersion angle α can be changed as appropriate depending on the shape and unevenness of the transfer target W (design surface S1).
Here, in this embodiment, the immersion area P1 is somewhat separated from the liquid discharge area P2 that is subsequently pulled up from the liquid, and the time during which the transfer target W is immersed in the transfer liquid L is relatively long. It's long.
Further, the transfer film F on the liquid level is pierced by the immersion of the transfer target W as shown in FIG. 1 and a hole is opened, and the film remaining on the liquid level is not used for transfer. The liquid level residual film F ′. Therefore, in this embodiment, the liquid level residual film F ′ is recovered as soon as possible after transfer so as not to reach the downstream liquid discharge area P2, and this recovery mode will be described below.
(3)液面残留フィルムの分断
 液面残留フィルムF′を回収するにあたっては、まず液面残留フィルムF′を没入エリアP1の下流側で、なお且つ出液エリアP2の上流側において、液流方向に分断するものであり、これには図1に示すように、転写後の液面残留フィルムF′にエアを吹き付けて分断する。その後、エアによって分断された液面残留フィルムF′は、送風や液流等によって次第に両側壁22に寄るように送られ、ここで図4に示すように、両側壁22に設けたオーバーフロー槽75等によって回収される。
(3) Dividing the liquid level residual film In collecting the liquid level residual film F ′, first, the liquid level residual film F ′ is flowed downstream of the immersion area P1 and upstream of the liquid discharge area P2. In this case, as shown in FIG. 1, air is blown onto the liquid level residual film F ′ after the transfer to divide the film. Thereafter, the liquid level residual film F ′ divided by the air is gradually sent to the both side walls 22 by air blowing, liquid flow or the like, and here, as shown in FIG. 4, overflow tanks 75 provided on the both side walls 22. It is collected by etc.
(4)液面残留フィルムの回収
 そして本実施例では、液面残留フィルムF′の回収を妨げることがないように、オーバーフロー槽75(排出口76)では、フィルム保持機構6(コンベヤ61)によるフィルムの保持作用を解除するが、オーバーフロー槽75の手前(排出口76の上流側)で解除するのではなく、例えば図9(a)に示すように、フィルムの保持作用が幾らか排出口76に及ぶように構成されることが好ましい(オーバーラップ状態)。これは、オーバーフロー槽75に至るまで液面残留フィルムF′を確実にコンベヤ61に保持させるためであり、これにより液面残留フィルムF′は、転写位置にある転写フィルムFを引っ張ってしまうことなく、オーバーフロー槽75部分で、コンベヤ61の終端プーリ62Bを回り込むように流れ、オーバーフロー槽75に落下、回収されるものである。
(4) Recovery of Liquid Level Residual Film In this embodiment, the overflow tank 75 (discharge port 76) uses the film holding mechanism 6 (conveyor 61) so as not to prevent recovery of the liquid level residual film F ′. Although the film holding action is released, it is not released before the overflow tank 75 (on the upstream side of the discharge port 76). For example, as shown in FIG. (Overlapping state). This is to ensure that the liquid level residual film F ′ is held on the conveyor 61 until the overflow tank 75 is reached, so that the liquid level residual film F ′ does not pull the transfer film F at the transfer position. The overflow tank 75 flows around the terminal pulley 62B of the conveyor 61 and falls into the overflow tank 75 and is collected.
 なお、分断ラインFLのエッジ付近は、上述したように次第に少しずつ溶解、ばらけながら送風や液流によって両側壁22に寄って行くものである。このため、液面残留フィルムF′を回収する際には、分断ラインFLの塊全体部分と、分断ラインFLのばらけた夾雑物とを二段階で分けて回収することが好ましく、これに適した構成がオーバーフロー槽75の排出口76の途中部分に設けられた遮断手段77である。すなわち、遮断手段77の存在によって、一基のオーバーフロー槽75でも、遮断手段77の前後二段階に分けて液面残留フィルムF′を回収するものである。具体的には、図9(a)に示すように、分断ラインFLの塊全体を遮断手段77(堰板78または収容式遮蔽体79)より上流手前側に誘導し前方の一段階目で回収する一方、分断ラインFLのばらけた夾雑物については、遮断手段77より後方の二段階目で回収するものである。 In addition, the vicinity of the edge of the dividing line FL gradually approaches the side walls 22 by blowing or liquid flow while gradually dissolving and spreading as described above. For this reason, when recovering the liquid level residual film F ′, it is preferable to collect the entire lump portion of the dividing line FL and the scattered impurities of the dividing line FL in two stages, which is suitable for this. The structure is blocking means 77 provided in the middle of the discharge port 76 of the overflow tank 75. In other words, due to the presence of the blocking means 77, even in one overflow tank 75, the liquid level residual film F ′ is recovered in two stages before and after the blocking means 77. Specifically, as shown in FIG. 9A, the entire lump of the dividing line FL is guided upstream from the blocking means 77 (the dam plate 78 or the accommodating shield 79) and recovered at the first stage in front. On the other hand, the scattered impurities on the dividing line FL are collected in the second stage behind the blocking means 77.
 また、遮断手段77は、排出口76の流速誘導範囲を狭めるものでもあり、このため遮断手段77はフィルムの保持作用解除後の流速を弱める制御も行っている。
 このようにして、エアで分断された液面残留フィルムF′は、オーバーフロー槽75によって、確実に且つ転写位置(没入エリアP1)に悪影響を及ぼすことなく回収されるものである。
 ここで遮断手段77としては、図4・10に示したように堰板78や収容式遮蔽体79を適用することが可能であるが、収容式遮蔽体79であれば、オーバーフロー槽75に落とし込むだけでこのものを固定でき、また収容式遮蔽体79を前後にスライドさせることで排出口76に対する位置設定や、前後二段階で行う回収割合の調節も容易に行え、好ましいものである。
 なお、このような液面残留フィルムF′の回収は、当然、出液エリアP2よりも上流側で完了させるものである。
Further, the blocking means 77 also narrows the flow velocity induction range of the discharge port 76. For this reason, the blocking means 77 also performs control to weaken the flow rate after the release of the film holding action.
In this way, the liquid level residual film F ′ divided by the air is reliably recovered by the overflow tank 75 without adversely affecting the transfer position (immersion area P1).
Here, as the blocking means 77, as shown in FIGS. 4 and 10, it is possible to apply a dam plate 78 or a housing shield 79, but if it is a housing shield 79, it is dropped into the overflow tank 75. This is preferable because it can be fixed alone, and the accommodation type shield 79 can be slid back and forth to easily set the position with respect to the discharge port 76 and easily adjust the recovery rate performed in two stages.
In addition, such collection | recovery of the liquid level residual film F 'is naturally completed upstream from the liquid discharge area P2.
(5)出液エリア浄化(装飾不要面側)
 また、このような液面残留フィルムF′の回収に伴い、本実施例では出液エリア浄化機構8によって出液エリアP2、特に装飾不要面S2側を浄化するものであり、以下これについて説明する。出液エリア浄化機構8は、出液エリアP2における転写液中・液面上の夾雑物や液面上の泡Aを出液エリアP2から遠ざけ、槽外に排出するものである。これには、例えば図4に示すように、出液エリアP2の左右両側壁22にオーバーフロー槽82を設け、出液エリアP2からオーバーフロー槽82に向かうサイド離反流LSを形成するものであり、これにより主にフィルムカス等の液中の夾雑物を出液エリアP2に寄せ付けないようにし、且つその回収を図っている。更に、本実施例では図1・2・4に示すように、転写槽2の一方の側壁22(オーバーフロー槽82の上方)上に送風機85を設け、ここから出液エリアP2を通って反対側のオーバーフロー槽82に至るように送風を行っている。これにより出液エリアP2(装飾不要面S2側)の液面上に発生する泡Aや夾雑物をオーバーフロー槽82に送り込み、回収するものである。また、このためオーバーフロー槽82には、流速増強用ツバ84を形成し、液面付近での流速(導入速度)を速めることが好ましい。
 なお、上記サイド離反流LSを形成するには、一部新水を利用することが望ましい。
(5) Liquid discharge area purification (decoration unnecessary surface side)
Further, along with the recovery of the liquid level residual film F ′, in this embodiment, the liquid discharge area purification mechanism 8 purifies the liquid discharge area P2, particularly the decoration unnecessary surface S2 side, which will be described below. . The liquid discharge area purification mechanism 8 is configured to keep the impurities in the transfer liquid and on the liquid surface in the liquid discharge area P2 and the bubbles A on the liquid surface away from the liquid discharge area P2 and discharged outside the tank. For example, as shown in FIG. 4, overflow tanks 82 are provided on the left and right side walls 22 of the liquid discharge area P2, and a side separation flow LS from the liquid discharge area P2 toward the overflow tank 82 is formed. Thus, mainly contaminants in the liquid such as film residue are kept away from the liquid discharge area P2 and are collected. Further, in this embodiment, as shown in FIGS. 1, 2, and 4, a blower 85 is provided on one side wall 22 (above the overflow tank 82) of the transfer tank 2, and from there through the liquid discharge area P2, the opposite side The air is blown so as to reach the overflow tank 82. As a result, the bubbles A and impurities generated on the liquid surface in the liquid discharge area P2 (decoration unnecessary surface S2 side) are sent to the overflow tank 82 and collected. For this reason, it is preferable that the overflow tank 82 is provided with a flange 84 for increasing the flow velocity to increase the flow velocity (introduction speed) near the liquid surface.
In order to form the side separation flow LS, it is desirable to partially use fresh water.
(6)出液エリア浄化(意匠面側)
 また、本実施例では意匠面浄化機構9によって、出液エリアP2の意匠面S1側を浄化するものである。すなわち、当該機構は、被転写体Wを引き上げるにあたり、出液中の被転写体Wの意匠面S1を浄化し、更に先行して引き上げられた被転写体W(治具J)から落下した雫によって生じた液面上の泡Aや、転写液中・液面上の夾雑物を意匠面S1から遠ざけ出液エリアP2から排除するものであり、以下これについて説明する。
 出液中、被転写体Wには、下流側または進行方向を向く意匠面S1に回り込む流れが発生し易いものであり、意匠面浄化機構9は、このような回り込み流を極力解消し、意匠面S1に夾雑物や泡Aを寄せ付けないようにするものである。具体的には、図1・2に示すように、出液エリアP2にオーバーフロー槽92を設けて成り、これにより出液中の被転写体W(意匠面S1)に、新水による意匠面離反流LRを形成する。ここで上記オーバーフロー槽92には、流速増強用ツバ94を形成し、液面付近での流速(導入速度)を速めることが好ましい(図4・12参照)。
 なお、カス不良やタダレ不良を一層防止するには、被転写体Wの出液中、出液位置POから意匠面離反流形成用のオーバーフロー槽92までの離反距離を、ほぼ一定に維持することが好ましく(例えば100mm以下の一定距離)、これは意匠面離反流LRを常に同じ強さで意匠面S1に作用させるためである。すなわち液流ナシの場合には、オーバーフロー槽92は転写槽2に対し不動状態(固定状態)に設定し、液流アリの場合には、液流と同速で液流方向に移動させて行くものである。
(6) Liquid discharge area purification (design side)
In this embodiment, the design surface purification mechanism 9 purifies the design surface S1 side of the liquid discharge area P2. That is, when the mechanism pulls up the transfer target W, the design surface S1 of the transfer target W in the discharged liquid is purified, and the mechanism drops further from the transfer target W (jig J) pulled up earlier. The bubbles A on the liquid surface and the impurities on the liquid surface and on the liquid surface generated by the above are removed from the design surface S1 and removed from the liquid discharge area P2, and this will be described below.
During the discharge, the transferred object W is likely to generate a flow that wraps around the design surface S1 facing the downstream side or the traveling direction, and the design surface purification mechanism 9 eliminates such a wraparound flow as much as possible. This prevents dust and bubbles A from coming into contact with the surface S1. Specifically, as shown in FIGS. 1 and 2, an overflow tank 92 is provided in the liquid discharge area P <b> 2, so that the transferred surface W (design surface S <b> 1) in the liquid discharge is separated from the design surface by new water. A flow LR is formed. Here, the overflow tank 92 is preferably provided with a flange 94 for increasing the flow velocity, and the flow velocity (introduction speed) near the liquid surface is preferably increased (see FIGS. 4 and 12).
In order to further prevent dregs and sagging defects, the separation distance from the discharge position PO to the overflow tank 92 for forming the design surface separation flow is maintained substantially constant during the discharge of the transfer target W. Is preferable (for example, a constant distance of 100 mm or less), which is to cause the design surface separation flow LR to always act on the design surface S1 with the same strength. That is, in the case of liquid flow, the overflow tank 92 is set in a stationary state (fixed state) with respect to the transfer tank 2, and in the case of a liquid flow ant, it is moved in the liquid flow direction at the same speed as the liquid flow. Is.
 因みに、液圧転写後にトップコートを行い、転写パターンの表面保護を図る従来の液圧転写では、液圧転写後に水洗浄等を行い、被転写体W(意匠面S1)に付着した水溶性フィルムを除去し、その後にトップコートを行っていたため、転写時に意匠面S1にフィルムカス等の夾雑物が付着すること自体が即、不良になるものではない。しかしながら、このような従来の液圧転写においても、出液エリアP2のクリーン化や転写液Lの清浄度を高いレベルで維持することは、精緻な液圧転写が行える点で好適であり、従来の液圧転写においても好ましいものである。 By the way, in the conventional hydraulic transfer that performs the top coat after the hydraulic transfer and protects the surface of the transfer pattern, the water-soluble film adhered to the transfer target W (design surface S1) by performing water washing after the hydraulic transfer. Since the top coat was performed after the removal, the adhering of foreign matters such as film residue to the design surface S1 at the time of transfer does not immediately become defective. However, even in such conventional hydraulic pressure transfer, it is preferable to clean the liquid discharge area P2 and maintain the cleanliness of the transfer liquid L at a high level in terms of performing precise hydraulic pressure transfer. This is also preferable for the hydraulic transfer.
(7)被転写体の出液
 被転写体Wは、上記のように高いレベルでクリーン化が達成された出液エリアP2から引き上げられるものであり、このため意匠面S1への夾雑物や泡Aの付着はほとんどないものである(不良率の低減)。
 なお、本発明では、意匠面S1における出液位置POをほぼ一定に維持しながら被転写体Wを傾斜状態で転写液L中から引き上げるものであり、そのため基本的には意匠面S1の形状に沿って被転写体Wを出液させるものである。ただし、意匠面S1の形状に沿ってというだけでは、意匠面S1の形状等によって、例えば一旦引き上げられた被転写体W(意匠面S1)の一部が再没入することや、転写液L中で被転写体Wが回転動作主体となること、あるいは被転写体Wの没入から出液という一連の動作がスムーズに行えないこと等がある。このため、これらを生じさせないように意匠面S1を滑らかに結ぶ出液仮想ラインCVを想定し、これに沿って引き上げるようにしたり、また意匠面S1上または出液仮想ラインCV上における出液角βを25度~55度で設定して、被転写体Wの出液姿勢を制御したりするものである。もちろん、この出液角βは、出液中、上記範囲内で徐々に変更して行くことも可能であるし、例えば34度などの一定値に維持しながら出液させることも可能である。
 また、カス不良やタダレ不良をより効果的に防止するには、被転写体Wの出液速度や転写液L中での移動速度は、極力遅い方が好ましいが、ここでは生産性も考慮して2m/分を上限とするものである。
(7) Liquid discharge of transferred body The transferred body W is pulled up from the liquid discharge area P2 where the cleaning has been achieved at a high level as described above. There is almost no adhesion of A (reduction of defect rate).
In the present invention, the transfer target W is lifted from the transfer liquid L in an inclined state while maintaining the liquid discharge position PO on the design surface S1 substantially constant, and therefore basically the shape of the design surface S1 is obtained. The transferred object W is discharged along the line. However, only along the shape of the design surface S1, for example, a part of the to-be-transferred body W (design surface S1) that has been pulled up again may be re-immersed in the transfer liquid L due to the shape of the design surface S1 or the like. Thus, the transfer target W may be a main rotating operation, or a series of operations from immersion to discharge of the transfer target W may not be performed smoothly. For this reason, a liquid discharge virtual line CV that smoothly connects the design surfaces S1 is assumed so as not to cause these, and the liquid discharge angle on the design surface S1 or the liquid discharge virtual line CV may be pulled up along the design surface S1. β is set in the range of 25 to 55 degrees, and the liquid discharge posture of the transfer target W is controlled. Of course, the liquid discharge angle β can be gradually changed within the above range during the liquid discharge, or the liquid can be discharged while maintaining a constant value such as 34 degrees.
Further, in order to more effectively prevent defects and sagging defects, it is preferable that the liquid discharge speed of the transfer target W and the movement speed in the transfer liquid L be as slow as possible, but here also consider productivity. The upper limit is 2 m / min.
(8)装飾層の硬化処理
 転写液Lから引き上げた被転写体Wには、その後、転写パターン(装飾層)を硬化させる処理が施される。ここでは被転写体Wに紫外線等の活性エネルギー線を照射するものであり(図23(c)参照)、この際、被転写体Wは、意匠面S1に半溶解状のPVAが付着したままの状態である。なお、転写パターン(装飾層)を硬化させる他の手法としては、上記活性エネルギー線照射の他に加熱も挙げられるが、これらを両方行って硬化させることも可能である。因みに、特許請求の範囲に記載した「活性エネルギー線照射または/および加熱」という記述は、これらの硬化処理のうちどちらか一方または双方を行うことを意味している。
 その後、被転写体Wは、水洗浄等によってPVAが除去され(脱膜)、乾燥を経て、一連の作業が終了となる。なお、本実施例では既に転写パターン(装飾層)を硬化させているため、乾燥後のトップコートは不要であるが、この後、更にトップコートを行うこと自体は何ら差し支えない。
(8) Curing process of decoration layer The transferred body W pulled up from the transfer liquid L is then subjected to a process of curing the transfer pattern (decoration layer). Here, the transfer target W is irradiated with active energy rays such as ultraviolet rays (see FIG. 23C). At this time, the transfer target W is left with the semi-dissolved PVA attached to the design surface S1. It is a state. In addition, as another method for curing the transfer pattern (decoration layer), heating may be mentioned in addition to the above-mentioned active energy ray irradiation, but it is also possible to cure by both of them. Incidentally, the description “active energy ray irradiation and / or heating” described in the claims means that one or both of these curing processes are performed.
Thereafter, the PVA is removed from the transfer target W by water washing or the like (defilming), and after drying, a series of operations is completed. In this embodiment, since the transfer pattern (decoration layer) has already been cured, a top coat after drying is unnecessary. However, after that, further top coating can be performed.
(9)被転写体が意匠面に開口部を有する場合の転写について
 次に、被転写体Wが意匠面S1に開口部Waを有している場合の好ましい転写態様について説明する。このような被転写体Wについては、例えば図23(a)に示すように、開口部Waの裏面(装飾不要面S2)側に適宜の間隙CLをあけて薄膜誘導体120を設けて転写を行う(転写液Lに没入させる)ことが好ましい。これは、そのままでは表側の意匠面S1に張る薄膜Mを、薄膜誘導体120によって図23(b)に示すように、開口部Waと薄膜誘導体120との間(間隙CL)に張らせるためである。
(9) Transfer when the object to be transferred has an opening on the design surface Next, a preferable transfer mode when the object to be transferred W has the opening Wa on the design surface S1 will be described. For such a transfer target W, for example, as shown in FIG. 23A, transfer is performed by providing a thin film derivative 120 with an appropriate gap CL on the back surface (decoration unnecessary surface S2) side of the opening Wa. It is preferable to be immersed in the transfer liquid L. This is because, as it is, the thin film M stretched on the design surface S1 on the front side is stretched between the opening Wa and the thin film derivative 120 (gap CL) by the thin film derivative 120 as shown in FIG. .
 ここで、通常では意匠面S1側に張ってしまう薄膜Mを、薄膜誘導体120によって、間隙CLに張らせることができる経緯(理由)について説明する。薄膜Mは、一般にシャボン玉と同様であり、そのため面積(表面積)を小さくするように膜を張るという性質がある(フェルマーの法則)。このため開口部Waの面積(開口部面積)に対して、間隙CLの全周囲面積(これを離開全周面積とする)を小さくするように薄膜誘導体120を設けることで、薄膜Mを間隙CL側(装飾不要面S2側)に誘導することができるものである。
 このようなことから、薄膜誘導体120は、一例として図23(a)に併せ示すように、開口部Waを正面から視た状態で、開口部Waとほぼ同等の大きさか、それよりも一回り大きめに形成するものであり、これは開口部Waの全周において間隙CLを確実に形成するための構成である。
 また、薄膜誘導体120を開口部Waの裏側に位置させるにあたっては、治具Jに薄膜誘導体120を取り付けてもよいし、被転写体Wの裏面(アッセンブリとしての組付構造)を利用して薄膜誘導体120を直接、被転写体Wに取り付けても構わない。
Here, the reason (reason) that the thin film M that is normally stretched to the design surface S1 side can be stretched to the gap CL by the thin film derivative 120 will be described. The thin film M is generally similar to a soap bubble, and therefore has a property of stretching the film so as to reduce the area (surface area) (Fermer's law). For this reason, by providing the thin film derivative 120 so as to reduce the entire peripheral area of the gap CL (this is referred to as the separation total circumferential area) with respect to the area of the opening Wa (opening area), the thin film M is formed in the gap CL. It can be guided to the side (decoration unnecessary surface S2 side).
For this reason, as shown in FIG. 23A as an example, the thin film derivative 120 is substantially the same size as the opening Wa when viewed from the front, or slightly more than that. It is formed to be large, and this is a configuration for reliably forming the gap CL around the entire circumference of the opening Wa.
Further, when the thin film derivative 120 is positioned on the back side of the opening Wa, the thin film derivative 120 may be attached to the jig J, or the thin film derivative 120 is assembled using the back surface (assembled structure as an assembly). The derivative 120 may be directly attached to the transfer target W.
 因みに、薄膜誘導体120は、一例として図23(c)に示すように、装飾層の硬化処理を終えるまで、装飾不要面S2側に位置させておくことが好ましい。また、薄膜Mが出液中や本硬化処理中において破裂することについては格別支障がなく、これは薄膜Mが被転写体Wの装飾不要面S2側に形成され、破裂しても意匠面S1側にまで破裂残滓による泡Aが発生し難いためである。 Incidentally, as an example, as shown in FIG. 23C, the thin film derivative 120 is preferably placed on the decoration unnecessary surface S2 side until the decoration layer is cured. Further, there is no particular problem with the thin film M being ruptured during liquid discharge or during the main curing process. This is because the thin film M is formed on the surface S2 of the transfer object W that does not require decoration, and the design surface S1 even if it ruptures. This is because it is difficult for the bubbles A due to the burst residue to be generated to the side.
 更に、上述した間隙CLは、必ずしも開口部Waの全周に対して一定に形成する必要はなく、例えば図24に示すように、漸減させることも可能であり(ここでは出液下方側に向かって間隙CLが徐々に広がるように薄膜誘導体120を設置)、この場合には転写没入時に被転写体Wと薄膜誘導体120との間に空気の抜けを誘導し易く、精緻な液圧転写ができ、また出液後の素早い排水と乾燥が期待できるものである。 Furthermore, the gap CL described above does not necessarily have to be formed constant with respect to the entire circumference of the opening Wa, and can be gradually decreased, for example, as shown in FIG. In this case, it is easy to induce air evacuation between the transfer target W and the thin film derivative 120 when the transfer is immersed, and precise fluid pressure transfer is possible. Moreover, quick drainage and drying after liquid discharge can be expected.
 本発明は、転写時に表面保護機能も有した転写パターンを形成する液圧転写(トップコート不要の液圧転写)に好適であるが、転写時に転写パターンを形成し、転写後のトップコートにより、その表面保護を図る従来の液圧転写においても適用できるものである。 The present invention is suitable for the hydraulic transfer (hydraulic transfer that does not require a top coat) that forms a transfer pattern that also has a surface protection function at the time of transfer, but the transfer pattern is formed at the time of transfer, The present invention can also be applied to conventional hydraulic transfer for protecting the surface.

Claims (15)

  1.  水溶性フィルムに少なくとも転写パターンを乾燥状態で形成して成る転写フィルムを、転写槽内の液面上に浮遊支持し、その上方から被転写体を押し付け、これによって生じる液圧によって、主に被転写体の意匠面側に転写パターンを転写する方法において、
     前記被転写体を転写液中から引き上げるにあたっては、被転写体の意匠面が、転写液面から出液する出液位置をほぼ一定の位置に維持しながら、意匠面を転写液面に対し傾斜させた状態で被転写体を出液させるようにしたことを特徴とする液圧転写方法。
    A transfer film formed by forming at least a transfer pattern on a water-soluble film in a dry state is supported by floating on the liquid surface in the transfer tank, and the transfer target is pressed from above, and the liquid pressure generated thereby mainly causes the transfer to occur. In the method of transferring the transfer pattern to the design surface side of the transfer body,
    When pulling up the transfer medium from the transfer liquid, the design surface of the transfer object is inclined with respect to the transfer liquid surface while maintaining the liquid discharge position from the transfer liquid surface at a substantially constant position. A hydraulic transfer method, wherein the transferred object is discharged in a state of being allowed to flow.
  2.  前記被転写体を転写液中から出液させるにあたり、
     転写槽の液面付近に液流が形成されていない場合には、意匠面に沿って被転写体を引き上げることにより出液位置をほぼ一定の位置に維持するものであり、
     また、転写槽の液面付近に液流が形成されている場合には、被転写体を液流と同じ速度で液流方向に移動させながら、意匠面に沿って被転写体を引き上げることにより出液位置をほぼ一定の位置に維持するものであり、
     被転写体を引き上げる際、一旦、出液した意匠面が転写液中に再没入する場合、または没入から出液までの動作において意匠面にタダレ不良やカス不良が生じる場合、または出液動作がスムーズに行えない場合には、
     意匠面を滑らかにつなぐ出液仮想ラインを想定し、この出液仮想ラインに沿って被転写体を出液させることにより、再没入の防止、またはタダレ不良・カス不良の防止、またはスムーズな出液動作を図るようにしたことを特徴とする請求項1記載の液圧転写方法。
    In discharging the transferred material from the transfer solution,
    When the liquid flow is not formed near the liquid surface of the transfer tank, the liquid discharge position is maintained at a substantially constant position by pulling up the transferred body along the design surface.
    In addition, when a liquid flow is formed near the liquid surface of the transfer tank, the transfer target is lifted along the design surface while moving the transfer target in the liquid flow direction at the same speed as the liquid flow. The liquid discharge position is maintained at a substantially constant position,
    When pulling up the transferred material, if the design surface that has once drained is re-immersed in the transfer solution, or if the design surface is dull or dull in the operation from immersion to liquid discharge, or the liquid discharge operation If you can't do it smoothly,
    Assuming a liquid discharge imaginary line that smoothly connects the design surfaces, the transferred material is discharged along the liquid discharge imaginary line to prevent re-immersion, prevention of sagging defects and residue defects, or smooth discharge. 2. The hydraulic transfer method according to claim 1, wherein the liquid operation is achieved.
  3.  前記被転写体を転写液中から出液させるにあたり、
     転写槽の液面付近に液流が形成されていない場合には、意匠面または出液仮想ラインに沿って被転写体を引き上げることにより出液位置をほぼ一定の位置に維持するものであり、
     また、転写槽の液面付近に液流が形成されている場合には、被転写体を液流と同じ速度で液流方向に移動させながら、意匠面または出液仮想ラインに沿って被転写体を引き上げることにより出液位置をほぼ一定の位置に維持するものであり、
     被転写体を引き上げる際、一旦、出液した意匠面が転写液中に再没入する場合、または没入から出液までの動作において意匠面にタダレ不良やカス不良が生じる場合、または出液動作がスムーズに行えない場合には、
     意匠面または出液仮想ラインの出液位置における被転写体の出液角を25度~55度の範囲で設定することにより、再没入の防止、またはタダレ不良・カス不良の防止、またはスムーズな出液動作を図るようにしたことを特徴とする請求項1または2記載の液圧転写方法。
    In discharging the transferred material from the transfer solution,
    When the liquid flow is not formed near the liquid surface of the transfer tank, the liquid discharge position is maintained at a substantially constant position by pulling up the transferred body along the design surface or the liquid discharge virtual line.
    In addition, when a liquid flow is formed near the liquid surface of the transfer tank, the object to be transferred is transferred along the design surface or the liquid discharge virtual line while moving the transfer target in the liquid flow direction at the same speed as the liquid flow. The liquid discharge position is maintained at a substantially constant position by pulling up the body,
    When pulling up the transferred material, if the design surface that has once drained is re-immersed in the transfer solution, or if the design surface is dull or dull in the operation from immersion to liquid discharge, or the liquid discharge operation If you can't do it smoothly,
    By setting the liquid discharge angle of the transfer target at the liquid discharge position of the design surface or liquid discharge virtual line in the range of 25 to 55 degrees, it prevents re-immersion, or prevents sagging defects and sludge defects, or smooth 3. The hydraulic transfer method according to claim 1, wherein the liquid discharge operation is performed.
  4.  前記転写槽には、被転写体を転写液中から出液させる出液エリアに、
     出液中の被転写体の意匠面から離れる意匠面離反流を形成し、転写液面上の泡や液中に滞留する夾雑物を、出液中の被転写体の意匠面から遠ざけ、転写槽外に排出するようにしたことを特徴とする請求項1、2または3記載の液圧転写方法。
    In the transfer tank, in the liquid discharge area for discharging the transferred material from the transfer liquid,
    Forms a design surface separation flow that separates from the design surface of the transferred material during liquid discharge, and keeps bubbles on the surface of the transfer liquid and contaminants staying in the liquid away from the design surface of the transferred material during liquid transfer. The hydraulic transfer method according to claim 1, 2 or 3, wherein the liquid is discharged out of the tank.
  5.  前記被転写体を転写液中から出液させるにあたっては、出液動作中、意匠面上の出液位置と、前記意匠面離反流を形成するために転写液を回収する排出口との距離をほぼ一定に維持するようにしたことを特徴とする請求項4記載の液圧転写方法。
    In discharging the transferred material from the transfer liquid, during the liquid discharge operation, the distance between the liquid discharge position on the design surface and the discharge port for collecting the transfer liquid to form the design surface separation flow is set. 5. The hydraulic transfer method according to claim 4, wherein the pressure is kept substantially constant.
  6.  前記意匠面離反流は、出液中の被転写体の意匠面に臨むように設けられたオーバーフロー槽によって形成されることを特徴とする請求項4または5記載の液圧転写方法。
    The hydraulic transfer method according to claim 4 or 5, wherein the design surface separation flow is formed by an overflow tank provided so as to face the design surface of the transferred object in the liquid discharge.
  7.  前記意匠面離反流形成用のオーバーフロー槽の下方には、夾雑物を含まない綺麗な水、あるいは転写槽より回収した転写液から夾雑物を除去した後の浄化水などの新水を槽内に供給する新水供給口が設けられ、
     前記意匠面離反流は、この新水供給口から出液エリアに向けて上向きに供給される新水を利用して形成されることを特徴とする請求項6記載の液圧転写方法。
    Below the overflow tank for forming the design surface separation flow, clean water that does not contain contaminants, or new water such as purified water after removing contaminants from the transfer liquid collected from the transfer tank is put into the tank. There is a new water supply port to supply,
    The hydraulic transfer method according to claim 6, wherein the design surface separation flow is formed by using fresh water supplied upward from the fresh water supply port toward the liquid discharge area.
  8.  前記新水供給口からは、出液エリアに向けて下向きの新水も供給されるものであり、
     且つ、この新水供給口の背面側には、フィルムカス等の夾雑物を含む転写液を、下方から吸い上げて槽外に排出するサイフォン式排出部が設けられるものであり、
     前記サイフォン式排出部による吸い込み流は、前記出液エリアに向けて下向きに供給される新水を利用して形成されることを特徴とする請求項7記載の液圧転写方法。
    From the new water supply port, downward fresh water is also supplied toward the liquid discharge area,
    In addition, on the back side of the new water supply port, a siphon type discharge unit that sucks up the transfer liquid containing impurities such as film residue from below and discharges it outside the tank is provided.
    The hydraulic transfer method according to claim 7, wherein the suction flow by the siphon discharger is formed by using fresh water supplied downward toward the liquid discharge area.
  9.  前記転写槽は、新水供給口の下方にテーパ状の傾斜板が設けられ、槽末端部に向かうにしたがい徐々に槽深さが浅くなるように形成されるものであり、
     前記サイフォン式排出部の吸い込み口は、この傾斜板の最上端部に臨むように設けられることを特徴とする請求項8記載の液圧転写方法。
    The transfer tank is provided with a tapered inclined plate below the fresh water supply port, and is formed so that the tank depth gradually becomes smaller toward the end of the tank.
    9. The hydraulic transfer method according to claim 8, wherein the suction port of the siphon discharger is provided so as to face an uppermost end portion of the inclined plate.
  10.  前記新水供給口からは、出液エリアに対しほぼ平行に向かう新水も供給されるものであり、
     この新水は、前記出液エリアに向けて上向きおよび下向きに供給される双方の新水の間において新水供給口から供給されることを特徴とする請求項8または9記載の液圧転写方法。
    From the fresh water supply port, fresh water that is almost parallel to the liquid discharge area is also supplied.
    10. The hydraulic transfer method according to claim 8, wherein the fresh water is supplied from a fresh water supply port between both fresh waters supplied upward and downward toward the liquid discharge area. .
  11.  前記新水供給口には、新水を供給する吐出口部分にパンチングメタルが設けられ、ここから転写槽に供給される新水が比較的広い範囲から均一に吐出されるようにしたことを特徴とする請求項7、8、9または10記載の液圧転写方法。
    The fresh water supply port is provided with a punching metal at a discharge port portion for supplying fresh water, from which fresh water supplied to the transfer tank is uniformly discharged from a relatively wide range. The hydraulic transfer method according to claim 7, 8, 9, or 10.
  12.  前記意匠面離反流を形成するオーバーフロー槽には、液回収口となる排出口に、オーバーフロー槽に導入する転写液の流速を速めるための流速増強用ツバが形成されることを特徴とする請求項6、7、8、9、10または11記載の液圧転写方法。
    The overflow tank for forming the design surface separation flow is formed with a flange for increasing the flow rate for increasing the flow rate of the transfer liquid introduced into the overflow tank at a discharge port serving as a liquid recovery port. The hydraulic transfer method according to 6, 7, 8, 9, 10 or 11.
  13.  前記被転写体はマニピュレータによって保持され、少なくとも被転写体の転写液中への没入から出液までの動作がマニピュレータの作動によって行われることを特徴とする請求項1、2、3、4、5、6、7、8、9、10、11または12記載の液圧転写方法。
    The transfer object is held by a manipulator, and at least the operation from the immersion of the transfer object into the transfer liquid to the liquid discharge is performed by the operation of the manipulator. , 6, 7, 8, 9, 10, 11 or 12.
  14.  前記転写槽には、液面付近に上流側から下流側に向かう液流が形成され、転写槽の上流側から転写フィルムを供給しながら液圧転写を連続的に行うものであることを特徴とする請求項1、2、3、4、5、6、7、8、9、10、11、12または13記載の液圧転写方法。
    In the transfer tank, a liquid flow from the upstream side to the downstream side is formed in the vicinity of the liquid surface, and hydraulic transfer is continuously performed while supplying a transfer film from the upstream side of the transfer tank. The hydraulic transfer method according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13.
  15.  前記転写フィルムとしては、水溶性フィルム上に転写パターンのみを乾燥状態に形成したものを適用するか、水溶性フィルムと転写パターンの間に硬化性樹脂層を具えたものを適用するかのいずれかであり、更に水溶性フィルム上に転写パターンのみを乾燥状態に形成したフィルムを適用した場合には、活性剤として液体状の硬化性樹脂組成物を用いるものであり、
     これにより液圧転写の際には被転写体に表面保護機能も有した転写パターンを形成し、これを転写後の活性エネルギー線照射または/および加熱によって硬化させるようにしたことを特徴とする請求項1、2、3、4、5、6、7、8、9、10、11、12、13または14記載の液圧転写方法。
    As the transfer film, either a water-soluble film formed with a transfer pattern only in a dry state is applied, or a film having a curable resin layer between the water-soluble film and the transfer pattern is applied. In addition, when a film in which only a transfer pattern is formed on a water-soluble film is applied in a dry state, a liquid curable resin composition is used as an active agent.
    Accordingly, a transfer pattern having a surface protection function is formed on the transfer target during the hydraulic transfer, and this is cured by irradiation with active energy rays after transfer and / or heating. Item 15. The hydraulic transfer method according to Item 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14.
PCT/JP2012/060028 2011-04-27 2012-04-12 Fluid pressure transfer method WO2012147530A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013512007A JPWO2012147530A1 (en) 2011-04-27 2012-04-12 Hydraulic transfer method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-099576 2011-04-27
JP2011099576 2011-04-27

Publications (1)

Publication Number Publication Date
WO2012147530A1 true WO2012147530A1 (en) 2012-11-01

Family

ID=47072052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060028 WO2012147530A1 (en) 2011-04-27 2012-04-12 Fluid pressure transfer method

Country Status (2)

Country Link
JP (1) JPWO2012147530A1 (en)
WO (1) WO2012147530A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213310A1 (en) * 2019-04-18 2020-10-22 株式会社タイカ Fluid pressure transfer device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027057A (en) * 2004-07-15 2006-02-02 Trinity Ind Corp Hydraulic transfer device
JP2009148903A (en) * 2007-12-18 2009-07-09 Dic Corp Method for manufacturing hydraulic pressure transferring body and jig for transferring used for this
JP2010155453A (en) * 2008-12-02 2010-07-15 Nippon Synthetic Chem Ind Co Ltd:The Base film for hydraulic transfer printing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3806737B2 (en) * 2003-12-09 2006-08-09 株式会社キュービック Water pressure transfer method and water pressure transfer product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027057A (en) * 2004-07-15 2006-02-02 Trinity Ind Corp Hydraulic transfer device
JP2009148903A (en) * 2007-12-18 2009-07-09 Dic Corp Method for manufacturing hydraulic pressure transferring body and jig for transferring used for this
JP2010155453A (en) * 2008-12-02 2010-07-15 Nippon Synthetic Chem Ind Co Ltd:The Base film for hydraulic transfer printing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213310A1 (en) * 2019-04-18 2020-10-22 株式会社タイカ Fluid pressure transfer device
JPWO2020213310A1 (en) * 2019-04-18 2021-12-09 株式会社タイカ Hydraulic transfer device

Also Published As

Publication number Publication date
JPWO2012147530A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
JP5049380B2 (en) Hydraulic pressure transfer method and hydraulic pressure transfer apparatus having a design surface purification mechanism
WO2011052636A1 (en) Method for collecting liquid surface residual film, liquid pressure transfer method using same, collection device therefor, and liquid pressure transfer device using same
JP5027348B1 (en) Liquid surface activation method of transfer film, hydraulic transfer method and hydraulic transfer apparatus using the same
JP4805391B2 (en) Hydraulic transfer method and hydraulic transfer device
JPH09237770A (en) Wafer processing system
WO2012147530A1 (en) Fluid pressure transfer method
JP4818421B2 (en) Liquid level residual film recovery method, hydraulic transfer method applying the same, recovery device therefor, and hydraulic transfer device applying the same
US20060162583A1 (en) Liquid pressure transfer printing apparatus
JP2012045718A (en) Liquid surface activation method of transfer film; and liquid pressure transfer method and liquid pressure transfer device applying the same
US20060060291A1 (en) Hydraulic decalcomania transfering apparatus and residue discharging mechanism used therefor
TWI529071B (en) A liquid surface activation method of a transfer film, and a hydraulic transfer method and a hydraulic transfer apparatus
JP2010264387A (en) Solid-liquid separator and solid-liquid separation method
JP2021154655A (en) Film residue discharging device in hydraulic transfer and hydraulic transfer apparatus applying this
JP2004291266A (en) Hydraulic transfer apparatus
JPH0369591B2 (en)
JP2006123441A (en) Hydraulic transfer method and hydraulic transfer apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12777510

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013512007

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12777510

Country of ref document: EP

Kind code of ref document: A1