WO2012147250A1 - Plasma display panel - Google Patents

Plasma display panel Download PDF

Info

Publication number
WO2012147250A1
WO2012147250A1 PCT/JP2012/001090 JP2012001090W WO2012147250A1 WO 2012147250 A1 WO2012147250 A1 WO 2012147250A1 JP 2012001090 W JP2012001090 W JP 2012001090W WO 2012147250 A1 WO2012147250 A1 WO 2012147250A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
silica particles
layer
dielectric layer
glass
Prior art date
Application number
PCT/JP2012/001090
Other languages
French (fr)
Japanese (ja)
Inventor
覚 河瀬
由士行 太田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012147250A1 publication Critical patent/WO2012147250A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/38Dielectric or insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates

Definitions

  • the technology disclosed herein relates to a plasma display panel used for a display device or the like.
  • Silver (Ag) is used for bus electrodes constituting display electrodes of a plasma display panel (hereinafter referred to as PDP) in order to obtain good conductivity.
  • PDP plasma display panel
  • the dielectric layer covering the bus electrodes low melting point glass mainly composed of lead oxide is used.
  • a dielectric layer not containing a lead component has been used in consideration of the environment (for example, see Patent Document 1).
  • the PDP includes a front plate and a back plate disposed to face the front plate.
  • the front plate has a display electrode and a dielectric layer covering the display electrode.
  • the dielectric layer includes silica particles and a glass layer.
  • the thermal expansion coefficient of the glass layer is 79 ⁇ 10 ⁇ 7 / ° C. or higher and 95 ⁇ 10 ⁇ 7 / ° C. or lower.
  • Content of the silica particle in a dielectric material layer is 5 volume% or more and 30 volume% or less.
  • the relative dielectric constant of the dielectric layer is 5.5 or less.
  • FIG. 1 is a perspective view showing the structure of the PDP according to the embodiment.
  • FIG. 2 is a schematic view showing a cross section of the front plate according to the embodiment.
  • FIG. 3 is a diagram showing the relationship between the particle size of silica particles and the haze value.
  • the PDP 1 of the present embodiment is an AC surface discharge type PDP. As shown in FIG. 1, the PDP 1 is provided with a front plate 2 made of a front glass substrate 3 and a back plate 10 made of a back glass substrate 11 facing each other. The outer peripheral portions of the front plate 2 and the back plate 10 are hermetically sealed with a sealing material made of glass frit or the like. A discharge gas containing xenon (Xe) is sealed in the sealed discharge space inside the PDP 1 at a pressure of 55 kPa to 80 kPa.
  • Xe xenon
  • a pair of strip-shaped display electrodes 6 each composed of the scanning electrodes 4 and the sustaining electrodes 5 and a plurality of light shielding layers 7 are arranged in parallel to each other.
  • the scanning electrode 4 is composed of a black electrode 4a and a white electrode 4b stacked on the black electrode 4a.
  • the sustain electrode 5 includes a black electrode 5a and a white electrode 5b laminated on the black electrode 5a.
  • a dielectric layer 8 that covers the display electrode 6 and the light shielding layer 7 is provided on the front glass substrate 3.
  • the dielectric layer 8 will be described in detail later.
  • a protective layer 9 made of magnesium oxide (MgO) or the like is formed on the surface of the dielectric layer 8.
  • a plurality of strip-like address electrodes 12 are arranged in parallel to each other in a direction orthogonal to the display electrodes 6. Further, a base dielectric layer 13 that covers the address electrodes 12 is formed. Further, on the base dielectric layer 13 formed between the address electrodes 12, barrier ribs 14 having a predetermined height are formed to divide the discharge space 16. Between the barrier ribs 14, a phosphor layer 15 that emits red light by ultraviolet rays, a phosphor layer 15 that emits blue light, and a phosphor layer 15 that emits green light are sequentially formed.
  • a discharge cell is formed at a position where the display electrode 6 and the address electrode 12 intersect.
  • a discharge cell having a phosphor layer 15 that emits red light, a discharge cell that has a phosphor layer 15 that emits blue light, and a discharge cell that has a phosphor layer 15 that emits green light form a pixel for color display.
  • Scan electrode 4 and sustain electrode 5 have white electrodes 4b and 5b containing silver (Ag) for ensuring conductivity.
  • Scan electrode 4 and sustain electrode 5 have black electrodes 4a and 5a containing a black pigment in order to improve the contrast of the image display surface.
  • the white electrode 4b is laminated on the black electrode 4a.
  • the white electrode 5b is laminated on the black electrode 5a.
  • a black paste containing a black pigment is applied to the front glass substrate 3 by a screen printing method or the like. Next, the applied black paste is exposed through a predetermined mask. Next, a white paste containing Ag is applied onto the black paste by a screen printing method or the like. Next, the white paste and the black paste are exposed through a predetermined mask. Then, a predetermined pattern is formed by developing the white paste and the black paste. Then, the black electrodes 4a and 5a, the light shielding layer 7, and the white electrodes 4b and 5b are formed by baking.
  • a dielectric layer 8 that covers the display electrode 6 and the light shielding layer 7 is provided.
  • a dielectric paste is used as the material of the dielectric layer 8.
  • the dielectric paste is applied on the front glass substrate 3. Further, the applied dielectric paste is baked.
  • the dielectric layer 8 will be described in detail later.
  • a protective layer 9 made of magnesium oxide (MgO) or the like is formed on the dielectric layer 8 by a vacuum deposition method.
  • the front plate 2 having the scan electrode 4, the sustain electrode 5, the light shielding layer 7, the dielectric layer 8, and the protective layer 9 on the front glass substrate 3 is completed through the above steps.
  • address electrodes 12 are formed on the rear glass substrate 11. Specifically, a paste containing silver (Ag) is applied onto the rear glass substrate 11 by a screen printing method. Next, the address electrode paste is patterned by photolithography. Next, the address electrode 12 is formed by baking the patterned address electrode paste.
  • a method of forming a metal film on the rear glass substrate 11 by a sputtering method, a vapor deposition method, or the like can be used.
  • the base dielectric paste is a paint containing a base dielectric material such as glass powder, a binder, and a solvent.
  • barrier rib paste containing barrier rib material is applied on the underlying dielectric layer 13.
  • the partition wall paste is patterned by photolithography.
  • the partition wall 14 is formed by baking the patterned partition wall paste.
  • a sand blast method or the like can be used.
  • a phosphor paste containing a phosphor material is applied on the underlying dielectric layer 13 between the adjacent barrier ribs 14 and on the side surfaces of the barrier ribs 14.
  • the phosphor layer 15 is formed by firing the phosphor paste.
  • the back plate 10 having the address electrodes 12, the base dielectric layer 13, the partition walls 14, and the phosphor layer 15 on the back glass substrate 11 is completed.
  • Dielectric Layer 8 In order to reduce the power consumption of the PDP, it is effective to reduce the amount of current at the start of discharge. When the capacity of the discharge cell is large, the amount of current flowing through the discharge cell in one light emission increases. Therefore, the power consumption of the PDP increases.
  • the relative dielectric constant of the dielectric layer may be lowered.
  • a low-melting-point dielectric glass mainly composed of dibismuth trioxide (Bi 2 O 3 ) or zinc oxide (ZnO) that has been conventionally used.
  • dielectric glass mainly composed of silicon dioxide (SiO 2 ) or diboron trioxide (B 2 O 3 ) has a relative dielectric constant of about 5 to 7.
  • the relative dielectric constant is made 5.5 or less, the melting point becomes high. As the melting point increases, it is required to increase the firing temperature. That is, sufficient heat treatment becomes difficult at the firing temperature of the firing step in a general PDP manufacturing method.
  • the relative dielectric constant of the silica particles is about 4. Therefore, the relative dielectric constant can be reduced as compared with the conventional dielectric layer.
  • simply mixing silica particles in the dielectric layer deteriorates the optical properties (particularly the haze value) of the dielectric layer.
  • the dielectric strength of the dielectric layer is lowered.
  • the haze value is an index indicating the degree of cloudiness of a substance. The smaller the haze value, the higher the transparency. The greater the haze value, the greater the degree of haze. The haze value is calculated by the ratio of transmitted light and scattered light.
  • the inventors examined the cause of the above-mentioned adverse effects.
  • the cause was a gap formed at the interface between the agglomerated silica particles and the dielectric glass. That is, the silica particles are not uniformly dispersed in the dielectric paste during the production of the dielectric paste, and the silica particles aggregate during firing.
  • the dielectric layer is fired at around 600 ° C.
  • the dielectric glass material powder is very reactive. Therefore, the dielectric glass material shrinks while being bonded one after another.
  • silica particles have low reactivity. Therefore, it is difficult to bond not only to the silica particles but also to the powder of the dielectric glass material. Therefore, it is considered that the voids between the powders of the dielectric glass material that already existed at the stage before firing expand after firing.
  • the optical characteristics deteriorate due to scattering of the transmitted light in the gaps described above.
  • the withstand voltage decreases due to the presence of the air gap.
  • the dielectric layer 8 includes silica particles 20 and a dielectric glass layer 21 that is a glass layer.
  • the dielectric constant of the dielectric layer 8 is 5.5 or less.
  • the particle size of the silica particles 20 is preferably 100 nm or more and 1000 nm or less.
  • the relative dielectric constant is a value when the frequency is 1 kHz.
  • the silica particles 20 are uniformly dispersed in the dielectric paste during the production of the dielectric paste. Therefore, voids are unlikely to occur at the interface between the dielectric glass layer 21 and the silica particles 20 during firing. Therefore, deterioration of the optical characteristics is suppressed. In addition, a decrease in withstand voltage is suppressed.
  • the particle size of the silica particles 20 is set to 1000 nm or less. Therefore, deterioration of the haze value due to the refractive index difference is suppressed.
  • the particle size of the silica particles 20 is more preferably 400 nm or more and 700 nm or less. This is because the deterioration of the optical characteristics, the lowering of the withstand voltage, and the haze value are further suppressed.
  • silica particles have low reactivity during firing. That is, it is considered that the activity of the surface of the silica particles is low, so that it is not compatible with other glass materials. Therefore, by adding an additive having a composition different from that of the silica particles around the silica particles, a part of the tetrahedral structure of the silica particles is destroyed. Therefore, the activity of the surface of the silica particles is increased. Therefore, generation
  • the dielectric glass layer 21 is made of B 2 O 3 , ZnO, MgO, CaO, potassium oxide (K 2 O), lithium oxide (Li 2 O), and sodium oxide (Na 2 O). At least one selected from the above is added.
  • the addition amount is preferably 0.1 mol% or more and less than 20 mol% with respect to the dielectric glass layer 21. If it is less than 0.1 mol%, the effect is extremely small. On the other hand, at 20 mol% or more, other adverse effects such as coloring of the dielectric layer occur.
  • the dielectric layer 8 includes silica particles 20 and a dielectric glass layer 21 that is a glass layer. Silica particles 20 are dispersed in the dielectric layer 8. For convenience of explanation, the size and number of silica particles 20 shown in FIG. 2 are different from the actual product.
  • the dielectric glass in order to enable firing at about 450 ° C. to about 600 ° C., the dielectric glass contains 20% by weight or more of lead oxide. However, in this embodiment, the dielectric glass does not contain lead oxide for environmental consideration. That is, the dielectric layer 8 does not contain lead oxide.
  • the dielectric paste includes a dielectric glass slurry in which dielectric glass particles are dispersed, a silica particle slurry in which silica particles 20 are dispersed, and a vehicle.
  • the main component of the dielectric glass fine particles is Bi 2 O 3 .
  • At least one or more of the group consisting of B 2 O 3 , ZnO, MgO, CaO, K 2 O, Li 2 O and Na 2 O may be added to the dielectric glass fine particles.
  • the addition amount is 0.1 mol% or more and 20 mol% or less with respect to the dielectric glass layer 21.
  • a dielectric glass material composed of the exemplified composition components is pulverized by a wet jet mill or a ball mill so as to have an average particle diameter of 0.5 ⁇ m to 3.0 ⁇ m to produce dielectric glass fine particles.
  • the softening point of the dielectric glass fine particles is 600 ° C. or less.
  • the dielectric glass slurry contains 10% to 65% by weight of dielectric glass particles and 35% to 90% by weight of solvent.
  • solvent for example, an alcohol type, a glycol type, or an aqueous type is used.
  • a lubricant or a dispersant may be added to the dielectric glass slurry.
  • the dielectric glass slurry having such a configuration improves dispersibility.
  • silica particle slurry In the silica particle slurry, 1 to 20% by weight of silica particles 20 are dispersed in a solvent of 80 to 99% by weight.
  • the main component of the silica particles 20 is SiO 2 .
  • aluminum oxide (Al 2 O 3 ), ZnO, gallium oxide (Ga 2 O 3 ), or a composite oxide thereof can also be used.
  • the softening point of the silica particles 20 is 700 ° C. or higher.
  • the solvent for example, an alcohol type, a glycol type, or an aqueous type is used.
  • the particle size of the silica particles is preferably 100 nm or more and 1000 nm or less. More preferably, it is 400 nm or more and 700 nm or less.
  • a particle size means a volume accumulation average diameter (D50).
  • D50 volume accumulation average diameter
  • a laser diffraction particle size distribution analyzer MT-3300 manufactured by Nikkiso Co., Ltd. was used. A lubricant or a dispersant may be added to the silica particle slurry. Dispersibility of the silica particle slurry having such a configuration is improved.
  • the dielectric glass slurry and the silica particle slurry are produced separately.
  • the dielectric paste according to the present embodiment is obtained by mixing and dispersing a dielectric glass slurry and a silica particle slurry. Before applying the dielectric paste to the front glass substrate 3, the dielectric glass slurry and the silica particle slurry are mixed and dispersed. Furthermore, a binder component such as a vehicle is mixed and dispersed as necessary.
  • the binder component is terpineol or butyl carbitol acetate containing 1% to 20% by weight of ethyl cellulose or acrylic resin.
  • dioctyl phthalate, dibutyl phthalate, triphenyl phosphate, and tributyl phosphate may be added to the dielectric paste as a plasticizer.
  • Printability may be improved by adding glycerol monooleate, sorbitan sesquioleate, homogenol (product name of Kao Corporation), phosphate ester of alkylallyl group or the like as a dispersant.
  • the timing of mixing and dispersing the binder component is not limited to when the dielectric glass slurry and the silica particle slurry are mixed and dispersed. That is, the dielectric glass slurry or the silica particle slurry may be produced at the time.
  • the dielectric glass fine particles and the silica particles 20 are more uniformly dispersed in the dielectric paste.
  • the content of the silica particles 20 in the dielectric layer 8 is preferably 5% by volume or more and 30% by volume or less.
  • the content of the silica particles 20 is less than 5% by volume, it is difficult to reduce the relative dielectric constant of the dielectric layer 8.
  • the content of the silica particles 20 exceeds 30% by volume, the haze value of the dielectric layer 8 is deteriorated.
  • the content and particle size of the silica particles 20 are appropriately defined within the above ranges so that the dielectric constant of the dielectric layer 8 is 5.5 or less. Thereby, the reduction effect of the power consumption of PDP1 is acquired.
  • the dielectric glass slurry and the silica particle slurry may be mixed and dispersed according to the specified ratio.
  • the content of the silica particles 20 in the silica particle slurry may fall within a predetermined range at the production stage of the silica particle slurry.
  • a dielectric glass material having a thermal expansion coefficient close to that of the front glass substrate is selected so that the front glass substrate does not greatly warp after firing.
  • a front glass substrate having a thickness of 2 mm or less is often selected. When the thickness of the front glass substrate is reduced, the impact strength of the PDP is significantly reduced. For this reason, a dielectric glass material having a thermal expansion coefficient smaller than that of the front glass substrate is selected. That is, the impact strength is increased by making the dielectric layer have a compressive stress.
  • a dielectric glass material having a thermal expansion coefficient smaller than that of the substrate may be appropriately selected as described above. That is, there is no big problem about ensuring sufficient impact strength.
  • a dielectric glass material having a thermal expansion coefficient smaller than that of the substrate may be appropriately selected as described above. That is, there is no big problem about ensuring sufficient impact strength.
  • the dielectric layer is formed only from a low melting point dielectric glass material, an appropriate compressive stress is generated in the dielectric layer by adjusting the thermal expansion coefficient to about 75 ⁇ 10 ⁇ 7 / ° C. This is because the coefficient of thermal expansion of a general front glass substrate is smaller than 83 ⁇ 10 ⁇ 7 / ° C. Therefore, sufficient impact strength can be ensured.
  • the thermal expansion coefficient of silica particles is 24 ⁇ 10 ⁇ 7 / ° C. Therefore, a dielectric layer in which silica particles are added to a conventionally used dielectric glass layer has a low thermal expansion coefficient.
  • the thermal expansion coefficient of the entire dielectric layer is about 65 ⁇ 10 ⁇ 7 / ° C. Become. In this case, the thermal expansion coefficient of the entire dielectric layer is smaller than that of the front glass substrate. Therefore, compressive stress can be generated in the dielectric layer.
  • the front glass substrate after firing the dielectric layer is greatly warped.
  • the thermal expansion coefficient of the entire dielectric layer is 65 ⁇ 10 ⁇ 7 / ° C.
  • warpage of about 2.0 mm occurs on the front glass substrate in the 42-inch diagonal PDP.
  • warpage of about 2.0 mm occurs on the front glass substrate, it becomes difficult to bond the front plate and the back plate with high accuracy.
  • the image quality of the PDP deteriorates.
  • the warp of the front glass substrate is preferably 1 mm or less.
  • dielectric layer 8 in the present embodiment includes silica particles 20 and dielectric glass layer 21.
  • the dielectric constant of the dielectric layer 8 is 5.5 or less.
  • the dielectric glass layer 21 has a thermal expansion coefficient of 79 ⁇ 10 ⁇ 7 / ° C. or higher and 95 ⁇ 10 ⁇ 7 / ° C. or lower.
  • Content of the silica particle 20 is 5 volume% or more and 30 volume% or less.
  • the dielectric layer 8 has a compressive stress. Moreover, the curvature of the front glass substrate 3 will be 1 mm or less. Therefore, the impact strength of the PDP 1 can be improved. Further, image quality deterioration of the PDP 1 is suppressed. More preferably, the dielectric glass layer 21 has a thermal expansion coefficient of 79 ⁇ 10 ⁇ 7 / ° C. or more and 90 ⁇ 10 ⁇ 7 / ° C. or less, and the content of the silica particles 20 is 5 volume% or more and 20 volume. % Or less.
  • the thermal expansion coefficient of the dielectric glass layer 21 should be 79 ⁇ 10 ⁇ 7 / ° C. or more in order to set the warpage of the front glass substrate 3 to 1 mm or less. preferable.
  • the thermal expansion coefficient of the dielectric glass layer 21 exceeds 95 ⁇ 10 ⁇ 7 / ° C., the front glass substrate 3 warps in the reverse direction.
  • a screen printing method, a die coating method, or the like is used as a method for forming the dielectric layer 8.
  • a dielectric paste is applied on the front glass substrate 3.
  • the applied dielectric paste constitutes a dielectric paste film.
  • the coating thickness of the dielectric paste film is appropriately set in consideration of the rate of shrinkage due to firing.
  • the dielectric paste film is dried in a temperature range of 100 ° C. to 200 ° C.
  • the dielectric paste film is baked.
  • the firing temperature is preferably in the range of 450 ° C to 600 ° C. A more preferable firing temperature range is 550 ° C to 590 ° C.
  • the dielectric layer 8 having the silica particles 20 and the dielectric glass layer 21 is formed by firing.
  • the firing temperature is higher than the softening point of the dielectric glass fine particles and lower than the softening point of the silica particles 20. Therefore, the dielectric glass fine particles are softened by firing and bonded to the surrounding fine particles. Furthermore, the dielectric glass layer 21 is formed by hardening after baking.
  • the softening point of the dielectric glass layer 21 is equal to the softening point of the dielectric glass fine particles. That is, the softening point of the dielectric glass layer 21 is 600 ° C. or lower which is lower than the firing temperature.
  • the softening point of the dielectric glass particles is preferably 300 ° C. or higher. This is because if it is less than 300 ° C., it lacks stability. Therefore, the softening point of the dielectric glass layer 21 is preferably 300 ° C. or higher.
  • the silica particles 20 are not softened. That is, the initial shape of the silica particles 20 is maintained.
  • the following method is also used. First, a sheet obtained by applying and drying a dielectric paste on a film is used. Next, the dielectric paste formed on the sheet is transferred to the front glass substrate 3. Next, the dielectric layer 8 composed of the silica particles 20 and the dielectric glass layer 21 is formed by firing in a temperature range of 450 ° C. to 600 ° C., more preferably 550 ° C. to 590 ° C.
  • the luminance of the PDP 1 is improved as the thickness of the dielectric layer 8 is reduced. Further, the discharge voltage of the PDP 1 decreases as the thickness of the dielectric layer 8 decreases. Therefore, it is preferable that the thickness of the dielectric layer 8 is as small as possible within a range where the withstand voltage does not decrease.
  • the film thickness of the dielectric layer 8 is not less than 10 ⁇ m and not more than 30 ⁇ m from both the viewpoint of dielectric strength and the viewpoint of visible light transmittance.
  • a PDP 1 according to the present embodiment was prototyped. It is suitable for 42-inch diagonal high-definition televisions.
  • the height of the partition walls is 0.15 mm, the distance between the partition walls is 0.15 mm, and the distance between the display electrodes 6 is 0.06 mm.
  • a Ne—Xe-based mixed gas having a Xe content of 10% by volume was sealed to a pressure of 60 kPa.
  • the thickness of the glass substrate is 1.8 mm.
  • the film thickness of the dielectric layer 8 is 30 ⁇ m.
  • Table 1 shows the characteristics of the dielectric glass layer 21.
  • the dielectric glass layer 21 is a SiO 2 —B 2 O 3 —R 2 O system (R is Na, K).
  • the silica particles 20 have a softening point of 820 ° C., a thermal expansion coefficient of 24 ⁇ 10 ⁇ 7 / ° C., and a relative dielectric constant of 4.1.
  • Samples 1 to 6 have a softening point of 650 ° C. or lower. Samples 1 to 3 have a thermal expansion coefficient of less than 79 ⁇ 10 ⁇ 7 / ° C. Samples 4 to 6 have a thermal expansion coefficient of 79 ⁇ 10 ⁇ 7 / ° C. or higher.
  • the warpage of the front glass substrate 3 and the stress of the dielectric layer 8 were measured. Regarding the warp of the front glass substrate 3, a positive value is a warp in which the dielectric layer 8 side is convex. About the stress of the dielectric layer 8, what is shown by the negative value is a compressive stress.
  • the dielectric layer 8 composed only of the dielectric glass layers 21 of Samples 1 to 3 and not including the silica particles 20 had a stress of ⁇ 0.5 MPa to ⁇ 1.8 MPa.
  • the amount of warpage of the front glass substrate 3 was 0.5 mm to 1.4 mm.
  • the relative dielectric constant of the dielectric layer 8 was 5.7 to 6.0. Therefore, the power consumption reduction of the PDP 1 is not sufficient.
  • the dielectric layer 8 containing 5 to 30% by volume of silica particles 20 in the dielectric glass layers 21 of Samples 1 to 3 had a stress of ⁇ 1.6 MPa to ⁇ 4.8 MPa. The stress showed a good value. However, the amount of warpage of the front glass substrate 3 was 1.3 mm to 3.5 mm. Therefore, PDP1 did not satisfy the standards for non-defective products.
  • the dielectric layer 8 containing 5 to 30% by volume of silica particles 20 in the dielectric glass layers 21 of Samples 4 to 6 had a stress of ⁇ 0.4 MPa to ⁇ 3.3 MPa.
  • the amount of warpage of the front glass substrate 3 was -0.9 mm to 1.0 mm.
  • the relative dielectric constant of the dielectric layer 8 was 5.2 to 5.5. Therefore, PDP1 satisfied the standard for non-defective products. Moreover, the power consumption of PDP1 was able to be reduced.
  • the haze value is greatly reduced. Furthermore, when the particle size of the silica particles 20 is 400 nm or more and 700 nm or less, the haze value is stably low, which is more preferable. Moreover, the effect that a haze value falls by the content rate of the silica particle 20 in the dielectric material layer 8 being 20 volume% or less appears.
  • the haze value of each sample is a relative value when the haze value in the dielectric layer 8 containing 50% by volume of the silica particles 20 having a particle size of 5000 nm is 1.
  • a haze / transmittance meter “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd.
  • the light transmittance visible light transmittance
  • the light transmittance when light having a single wavelength of 550 nm is incident on the front glass substrate 3 on which the dielectric layer 8 is formed from a direction orthogonal to the front glass substrate 3.
  • haze values were measured.
  • the thermal expansion coefficient is an average value from 100 ° C. to 300 ° C.
  • the thermal expansion coefficient is measured by, for example, a differential thermal dilatometer.
  • the PDP 1 includes a front plate 2 and a back plate 10 provided to face the front plate 2.
  • the front plate 2 includes a display electrode 6 and a dielectric layer 8 that covers the display electrode 6.
  • the dielectric layer 8 includes silica particles 20 and a dielectric glass layer 21.
  • the thermal expansion coefficient of the dielectric glass layer 21 is 79 ⁇ 10 ⁇ 7 / ° C. or higher and 95 ⁇ 10 ⁇ 7 / ° C. or lower.
  • Content of the silica particle 20 in the dielectric material layer 8 is 5 volume% or more and 30 volume% or less.
  • the dielectric constant of the dielectric layer 8 is 5.5 or less.
  • the PDP 1 according to the present embodiment can suppress impact strength deterioration and image quality deterioration, and can realize low power consumption.
  • the thermal expansion coefficient of the dielectric glass layer 21 is 79 ⁇ 10 ⁇ 7 / ° C. or more and 90 ⁇ 10 ⁇ 7 / ° C. or less, and the content of the silica particles 20 in the dielectric layer 8 is 5% by volume or more and 20% or less. It is preferable that it is below volume%.
  • the particle diameter of the silica particles 20 is preferably 100 nm or more and 1000 nm or less. This is because good optical characteristics can be obtained.
  • the particle size of the silica particles 20 is more preferably 400 nm or more and 700 nm or less. Further, good optical characteristics can be obtained.
  • the technology disclosed in the present embodiment realizes a low power consumption PDP and is useful for a large screen display device.

Abstract

This plasma display panel comprises a front surface plate, and a back surface plate disposed facing the front surface plate. The front surface plate has a display electrode and a dielectric layer covering the display electrode. The dielectric layer includes silica particles and a glass layer. The dielectric constant is 5.5 or less. The thermal expansion coefficient of the glass layer is from 79×10-7/°C to 95×10-7/°C. The silica particle content is from 5 vol% to 30 vol%.

Description

プラズマディスプレイパネルPlasma display panel
 ここに開示された技術は、表示デバイスなどに用いられるプラズマディスプレイパネルに関する。 The technology disclosed herein relates to a plasma display panel used for a display device or the like.
 プラズマディスプレイパネル(以下、PDPと称する)の表示電極を構成するバス電極には、良好な導電性を得るために銀(Ag)が用いられている。バス電極を覆う誘電体層には、酸化鉛を主成分とする低融点のガラスが用いられている。近年、環境への配慮から、鉛成分を含まない誘電体層が用いられている(例えば、特許文献1参照)。 Silver (Ag) is used for bus electrodes constituting display electrodes of a plasma display panel (hereinafter referred to as PDP) in order to obtain good conductivity. For the dielectric layer covering the bus electrodes, low melting point glass mainly composed of lead oxide is used. In recent years, a dielectric layer not containing a lead component has been used in consideration of the environment (for example, see Patent Document 1).
特開2003-128430号公報JP 2003-128430 A
 PDPは、前面板と、前面板と対向配置される背面板とを備える。前面板は、表示電極と表示電極を覆う誘電体層とを有する。誘電体層は、シリカ粒子とガラス層とを含む。ガラス層の熱膨張係数は、79×10-7/℃以上95×10-7/℃以下である。誘電体層におけるシリカ粒子の含有量は、5体積%以上30体積%以下である。誘電体層の比誘電率は、5.5以下である。 The PDP includes a front plate and a back plate disposed to face the front plate. The front plate has a display electrode and a dielectric layer covering the display electrode. The dielectric layer includes silica particles and a glass layer. The thermal expansion coefficient of the glass layer is 79 × 10 −7 / ° C. or higher and 95 × 10 −7 / ° C. or lower. Content of the silica particle in a dielectric material layer is 5 volume% or more and 30 volume% or less. The relative dielectric constant of the dielectric layer is 5.5 or less.
図1は実施の形態にかかるPDPの構造を示す斜視図である。FIG. 1 is a perspective view showing the structure of the PDP according to the embodiment. 図2は実施の形態にかかる前面板の断面を示す概略図である。FIG. 2 is a schematic view showing a cross section of the front plate according to the embodiment. 図3はシリカ粒子の粒径とヘイズ値との関係を示す図である。FIG. 3 is a diagram showing the relationship between the particle size of silica particles and the haze value.
 [1.PDP1の構成]
 本実施の形態のPDP1は、交流面放電型PDPである。図1に示されるように、PDP1は前面ガラス基板3などよりなる前面板2と、背面ガラス基板11などよりなる背面板10とが対向して設けられる。前面板2と背面板10の外周部がガラスフリットなどからなる封着材によって気密封着されている。封着されたPDP1内部の放電空間には、キセノン(Xe)を含む放電ガスが55kPa~80kPaの圧力で封入される。
[1. Configuration of PDP1]
The PDP 1 of the present embodiment is an AC surface discharge type PDP. As shown in FIG. 1, the PDP 1 is provided with a front plate 2 made of a front glass substrate 3 and a back plate 10 made of a back glass substrate 11 facing each other. The outer peripheral portions of the front plate 2 and the back plate 10 are hermetically sealed with a sealing material made of glass frit or the like. A discharge gas containing xenon (Xe) is sealed in the sealed discharge space inside the PDP 1 at a pressure of 55 kPa to 80 kPa.
 前面ガラス基板3上には、走査電極4および維持電極5よりなる一対の帯状の表示電極6と遮光層7が互いに平行にそれぞれ複数列配置される。走査電極4は、黒色電極4aと、黒色電極4a上に積層された白色電極4bとから構成されている。維持電極5は、黒色電極5aと、黒色電極5a上に積層された白色電極5bとから構成されている。さらに、前面ガラス基板3上には、表示電極6と遮光層7とを被覆する誘電体層8が設けられている。誘電体層8については、後に詳しく述べられる。さらに、誘電体層8の表面に酸化マグネシウム(MgO)などからなる保護層9が形成されている。 On the front glass substrate 3, a pair of strip-shaped display electrodes 6 each composed of the scanning electrodes 4 and the sustaining electrodes 5 and a plurality of light shielding layers 7 are arranged in parallel to each other. The scanning electrode 4 is composed of a black electrode 4a and a white electrode 4b stacked on the black electrode 4a. The sustain electrode 5 includes a black electrode 5a and a white electrode 5b laminated on the black electrode 5a. Furthermore, a dielectric layer 8 that covers the display electrode 6 and the light shielding layer 7 is provided on the front glass substrate 3. The dielectric layer 8 will be described in detail later. Further, a protective layer 9 made of magnesium oxide (MgO) or the like is formed on the surface of the dielectric layer 8.
 背面ガラス基板11上には、表示電極6と直交する方向に、複数の帯状のアドレス電極12が互いに平行に配置される。さらに、アドレス電極12を被覆する下地誘電体層13が形成されている。さらに、アドレス電極12の間に形成された下地誘電体層13上には放電空間16を区切る所定の高さの隔壁14が形成されている。隔壁14の間には、紫外線によって赤色に発光する蛍光体層15と、青色に発光する蛍光体層15および緑色に発光する蛍光体層15が順番に形成される。 On the rear glass substrate 11, a plurality of strip-like address electrodes 12 are arranged in parallel to each other in a direction orthogonal to the display electrodes 6. Further, a base dielectric layer 13 that covers the address electrodes 12 is formed. Further, on the base dielectric layer 13 formed between the address electrodes 12, barrier ribs 14 having a predetermined height are formed to divide the discharge space 16. Between the barrier ribs 14, a phosphor layer 15 that emits red light by ultraviolet rays, a phosphor layer 15 that emits blue light, and a phosphor layer 15 that emits green light are sequentially formed.
 表示電極6とアドレス電極12とが交差する位置に放電セルが形成される。赤色に発光する蛍光体層15を有する放電セルと、青色に発光する蛍光体層15を有する放電セルと、緑色に発光する蛍光体層15を有する放電セルとによりカラー表示をする画素が形成される。 A discharge cell is formed at a position where the display electrode 6 and the address electrode 12 intersect. A discharge cell having a phosphor layer 15 that emits red light, a discharge cell that has a phosphor layer 15 that emits blue light, and a discharge cell that has a phosphor layer 15 that emits green light form a pixel for color display. The
 [2.PDP1の製造方法]
 [2-1.前面板2の製造方法]
 図2に示されるように、前面ガラス基板3上に、走査電極4および維持電極5と遮光層7とが形成される。表示電極6は、走査電極4および維持電極5を有する。走査電極4および維持電極5は、導電性を確保するための銀(Ag)を含む白色電極4b、5bを有する。また、走査電極4および維持電極5は、画像表示面のコントラストを向上するため黒色顔料を含む黒色電極4a、5aを有する。白色電極4bは、黒色電極4aに積層される。白色電極5bは、黒色電極5aに積層される。
[2. Manufacturing method of PDP1]
[2-1. Manufacturing method of front plate 2]
As shown in FIG. 2, scan electrode 4, sustain electrode 5, and light shielding layer 7 are formed on front glass substrate 3. The display electrode 6 has a scan electrode 4 and a sustain electrode 5. Scan electrode 4 and sustain electrode 5 have white electrodes 4b and 5b containing silver (Ag) for ensuring conductivity. Scan electrode 4 and sustain electrode 5 have black electrodes 4a and 5a containing a black pigment in order to improve the contrast of the image display surface. The white electrode 4b is laminated on the black electrode 4a. The white electrode 5b is laminated on the black electrode 5a.
 具体的には、黒色顔料を含む黒色ペーストが、スクリーン印刷法などによって前面ガラス基板3に塗布される。次に、塗布された黒色ペーストが、所定のマスクを介して露光される。次に、Agを含む白色ペーストが、スクリーン印刷法などによって、黒色ペースト上に塗布される。次に、白色ペーストと黒色ペーストが、所定のマスクを介して露光される。その後、白色ペーストと黒色ペーストとが現像されることによって、所定のパターンが形成される。その後、焼成されることによって、黒色電極4a、5a、遮光層7および白色電極4b、5bが形成される。 Specifically, a black paste containing a black pigment is applied to the front glass substrate 3 by a screen printing method or the like. Next, the applied black paste is exposed through a predetermined mask. Next, a white paste containing Ag is applied onto the black paste by a screen printing method or the like. Next, the white paste and the black paste are exposed through a predetermined mask. Then, a predetermined pattern is formed by developing the white paste and the black paste. Then, the black electrodes 4a and 5a, the light shielding layer 7, and the white electrodes 4b and 5b are formed by baking.
 次に、表示電極6および遮光層7を覆う誘電体層8が設けられる。誘電体層8の材料として、誘電体ペーストが用いられる。誘電体ペーストは、前面ガラス基板3上に塗布される。さらに、塗布された誘電体ペーストは、焼成される。なお、誘電体層8については、後に詳しく述べられる。 Next, a dielectric layer 8 that covers the display electrode 6 and the light shielding layer 7 is provided. A dielectric paste is used as the material of the dielectric layer 8. The dielectric paste is applied on the front glass substrate 3. Further, the applied dielectric paste is baked. The dielectric layer 8 will be described in detail later.
 次に、誘電体層8上に酸化マグネシウム(MgO)などからなる保護層9が真空蒸着法により形成される。 Next, a protective layer 9 made of magnesium oxide (MgO) or the like is formed on the dielectric layer 8 by a vacuum deposition method.
 以上の工程により前面ガラス基板3上に走査電極4、維持電極5、遮光層7、誘電体層8、保護層9を有する前面板2が完成する。 The front plate 2 having the scan electrode 4, the sustain electrode 5, the light shielding layer 7, the dielectric layer 8, and the protective layer 9 on the front glass substrate 3 is completed through the above steps.
 [2-2.背面板10の製造方法]
 図1に示されるように、背面ガラス基板11上に、アドレス電極12、下地誘電体層13、隔壁14および蛍光体層15が形成される。
[2-2. Manufacturing method of back plate 10]
As shown in FIG. 1, the address electrode 12, the base dielectric layer 13, the barrier ribs 14, and the phosphor layer 15 are formed on the rear glass substrate 11.
 まず、背面ガラス基板11上に、アドレス電極12が形成される。具体的には、銀(Ag)を含むペーストがスクリーン印刷法により、背面ガラス基板11上に塗布される。次に、アドレス電極ペーストが、フォトリソグラフィ法により、パターニングされる。次にパターニングされたアドレス電極ペーストが焼成されることにより、アドレス電極12が形成される。ここで、アドレス電極ペーストをスクリーン印刷する方法以外にも、スパッタ法、蒸着法などにより、金属膜を背面ガラス基板11上に形成する方法が用いられ得る。 First, address electrodes 12 are formed on the rear glass substrate 11. Specifically, a paste containing silver (Ag) is applied onto the rear glass substrate 11 by a screen printing method. Next, the address electrode paste is patterned by photolithography. Next, the address electrode 12 is formed by baking the patterned address electrode paste. Here, besides the method of screen printing the address electrode paste, a method of forming a metal film on the rear glass substrate 11 by a sputtering method, a vapor deposition method, or the like can be used.
 次に、アドレス電極12が形成された背面ガラス基板11上にダイコート法などによりアドレス電極12を覆うように下地誘電体ペーストが塗布される。その後、下地誘電体ペーストが焼成されることにより、下地誘電体層13が形成される。なお、下地誘電体ペーストはガラス粉末などの下地誘電体材料とバインダおよび溶剤を含んだ塗料である。 Next, a base dielectric paste is applied on the rear glass substrate 11 on which the address electrodes 12 are formed so as to cover the address electrodes 12 by a die coating method or the like. Thereafter, the base dielectric layer 13 is formed by firing the base dielectric paste. The base dielectric paste is a paint containing a base dielectric material such as glass powder, a binder, and a solvent.
 次に、下地誘電体層13上に隔壁材料を含む隔壁ペーストが塗布される。隔壁ペーストが、フォトリソグラフィ法により、パターニングされる。次に、パターニングされた隔壁ペーストが焼成されることにより隔壁14が形成される。なお、フォトリソグラフィ法の他に、サンドブラスト法などが用いられ得る。 Next, barrier rib paste containing barrier rib material is applied on the underlying dielectric layer 13. The partition wall paste is patterned by photolithography. Next, the partition wall 14 is formed by baking the patterned partition wall paste. In addition to the photolithography method, a sand blast method or the like can be used.
 次に、隣接する隔壁14間の下地誘電体層13上および隔壁14の側面に蛍光体材料を含む蛍光体ペーストが塗布される。次に、蛍光体ペーストが焼成されることにより蛍光体層15が形成される。 Next, a phosphor paste containing a phosphor material is applied on the underlying dielectric layer 13 between the adjacent barrier ribs 14 and on the side surfaces of the barrier ribs 14. Next, the phosphor layer 15 is formed by firing the phosphor paste.
 以上の工程により、背面ガラス基板11上に、アドレス電極12、下地誘電体層13、隔壁14および蛍光体層15を有する背面板10が完成する。 Through the above steps, the back plate 10 having the address electrodes 12, the base dielectric layer 13, the partition walls 14, and the phosphor layer 15 on the back glass substrate 11 is completed.
 [2-3.前面板2と背面板10との組立方法]
 表示電極6とアドレス電極12とが直交するように、前面板2と背面板10とが対向して設けられる。次に、前面板2と背面板10の周囲がガラスフリットで封着される。次に、放電空間16にNe、Xeなどを含む放電ガスが封入されることによりPDP1が完成する。
[2-3. Assembly method of front plate 2 and rear plate 10]
The front plate 2 and the back plate 10 are provided facing each other so that the display electrodes 6 and the address electrodes 12 are orthogonal to each other. Next, the periphery of the front plate 2 and the back plate 10 is sealed with glass frit. Next, a discharge gas containing Ne, Xe or the like is sealed in the discharge space 16 to complete the PDP 1.
 [3.誘電体層8の詳細]
 PDPの消費電力を低減するためには、放電開始時の電流量を低減させることが有効である。放電セルの容量が大きいと、1回の発光において放電セルに流れる電流量が増大する。よって、PDPの消費電力が大きくなる。
[3. Details of Dielectric Layer 8]
In order to reduce the power consumption of the PDP, it is effective to reduce the amount of current at the start of discharge. When the capacity of the discharge cell is large, the amount of current flowing through the discharge cell in one light emission increases. Therefore, the power consumption of the PDP increases.
 放電セルの容量を小さくするためには、一例として、誘電体層の比誘電率を低くすることがある。しかしながら、従来使用されていた三酸化二ビスマス(Bi)や酸化亜鉛(ZnO)が主成分である低融点の誘電体ガラスでは、比誘電率を下げることが難しかった。 In order to reduce the capacity of the discharge cell, for example, the relative dielectric constant of the dielectric layer may be lowered. However, it has been difficult to lower the dielectric constant of a low-melting-point dielectric glass mainly composed of dibismuth trioxide (Bi 2 O 3 ) or zinc oxide (ZnO) that has been conventionally used.
 一方、二酸化ケイ素(SiO)や三酸化二ホウ素(B)が主成分の誘電体ガラスは、比誘電率が5~7程度のものもある。しかし、比誘電率を5.5以下にしようとすると融点が高くなる。融点が高くなると、焼成温度を上げることが求められる。つまり、一般的なPDPの製造方法における焼成工程の焼成温度では、十分な熱処理が困難になる。 On the other hand, dielectric glass mainly composed of silicon dioxide (SiO 2 ) or diboron trioxide (B 2 O 3 ) has a relative dielectric constant of about 5 to 7. However, if the relative dielectric constant is made 5.5 or less, the melting point becomes high. As the melting point increases, it is required to increase the firing temperature. That is, sufficient heat treatment becomes difficult at the firing temperature of the firing step in a general PDP manufacturing method.
 誘電体層の比誘電率を下げる試みとして、誘電体ガラス材料とSiOフィラー粒子(シリカ粒子)を混合することが考えられる。シリカ粒子の比誘電率は、4程度である。よって、従来の誘電体層より比誘電率を低下させることができる。しかしながら、単に誘電体層にシリカ粒子を混合しただけでは、誘電体層の光学特性(特にヘイズ値)が悪化する。さらには、誘電体層の絶縁耐圧が低下するという弊害が発生する。ヘイズ値とは、物質の曇り度合いを示す指標である。ヘイズ値が小さいほど、透明性が高い。ヘイズ値が大きいほど、曇り度合いが大きい。ヘイズ値は、透過光と散乱光の比率で算出される。 As an attempt to lower the dielectric constant of the dielectric layer, it is conceivable to mix a dielectric glass material and SiO 2 filler particles (silica particles). The relative dielectric constant of the silica particles is about 4. Therefore, the relative dielectric constant can be reduced as compared with the conventional dielectric layer. However, simply mixing silica particles in the dielectric layer deteriorates the optical properties (particularly the haze value) of the dielectric layer. Furthermore, there is a problem that the dielectric strength of the dielectric layer is lowered. The haze value is an index indicating the degree of cloudiness of a substance. The smaller the haze value, the higher the transparency. The greater the haze value, the greater the degree of haze. The haze value is calculated by the ratio of transmitted light and scattered light.
 発明者らは、上述の弊害が生じる原因を検討した。原因は、凝集したシリカ粒子と誘電体ガラスとの界面に隙間が生じていることであった。つまり、誘電体ペースト作製時にシリカ粒子が誘電体ペースト中に均一に分散せず、焼成時にシリカ粒子が凝集するためである。 The inventors examined the cause of the above-mentioned adverse effects. The cause was a gap formed at the interface between the agglomerated silica particles and the dielectric glass. That is, the silica particles are not uniformly dispersed in the dielectric paste during the production of the dielectric paste, and the silica particles aggregate during firing.
 誘電体層は、600℃前後で焼成される。600℃前後では誘電体ガラス材料の粉末は非常に反応性が高い。よって、誘電体ガラス材料は、次々に結合しながら収縮していく。一方、シリカ粒子は反応性が低い。よって、シリカ粒子同士だけでなく誘電体ガラス材料の粉末とも結合しにくい。したがって、焼成前の段階で既に存在していた誘電体ガラス材料の粉末同士の空隙が、焼成後に拡大すると考えられる。 The dielectric layer is fired at around 600 ° C. At around 600 ° C., the dielectric glass material powder is very reactive. Therefore, the dielectric glass material shrinks while being bonded one after another. On the other hand, silica particles have low reactivity. Therefore, it is difficult to bond not only to the silica particles but also to the powder of the dielectric glass material. Therefore, it is considered that the voids between the powders of the dielectric glass material that already existed at the stage before firing expand after firing.
 上述の空隙において透過光が散乱することによって、光学特性が悪化する。また、空隙の存在によって絶縁耐圧が低下する。 The optical characteristics deteriorate due to scattering of the transmitted light in the gaps described above. In addition, the withstand voltage decreases due to the presence of the air gap.
 これに対し本実施の形態では、一例として、誘電体層8は、シリカ粒子20とガラス層である誘電体ガラス層21とを含む。誘電体層8の比誘電率は、5.5以下である。シリカ粒子20の粒径は、100nm以上1000nm以下であることが好ましい。 In contrast, in the present embodiment, as an example, the dielectric layer 8 includes silica particles 20 and a dielectric glass layer 21 that is a glass layer. The dielectric constant of the dielectric layer 8 is 5.5 or less. The particle size of the silica particles 20 is preferably 100 nm or more and 1000 nm or less.
 なお、比誘電率の測定にはLCRメーターが用いられた。比誘電率は、周波数が1kHzのときの値である。 Note that an LCR meter was used to measure the relative permittivity. The relative dielectric constant is a value when the frequency is 1 kHz.
 シリカ粒子20の粒径を100nm以上とすることにより、誘電体ペースト作製時にシリカ粒子20が誘電体ペースト中に均一に分散する。したがって、焼成時に、誘電体ガラス層21と、シリカ粒子20の界面に空隙が生じにくい。よって、光学特性の悪化が抑制される。また、絶縁耐圧の低下が抑制される。 By setting the particle size of the silica particles 20 to 100 nm or more, the silica particles 20 are uniformly dispersed in the dielectric paste during the production of the dielectric paste. Therefore, voids are unlikely to occur at the interface between the dielectric glass layer 21 and the silica particles 20 during firing. Therefore, deterioration of the optical characteristics is suppressed. In addition, a decrease in withstand voltage is suppressed.
 また、シリカ粒子20の粒径を1000nm以下とすることにより、シリカ粒子20と誘電体ガラス層21との屈折率差を最小限にとどめることができる。よって、屈折率差に起因したヘイズ値の悪化が抑制される。 In addition, by setting the particle size of the silica particles 20 to 1000 nm or less, the refractive index difference between the silica particles 20 and the dielectric glass layer 21 can be minimized. Therefore, deterioration of the haze value due to the refractive index difference is suppressed.
 なお、シリカ粒子20の粒径は、400nm以上700nm以下がより好ましい。光学特性の悪化、絶縁耐圧の低下およびヘイズ値の悪化が、より抑制されるからである。 The particle size of the silica particles 20 is more preferably 400 nm or more and 700 nm or less. This is because the deterioration of the optical characteristics, the lowering of the withstand voltage, and the haze value are further suppressed.
 なお、本実施の形態の変形例として、上述の空隙発生を抑制する別の手段が示される。具体的には、誘電体ガラス層21にシリカ粒子20とは異なる組成の添加物が添加される。 Note that, as a modification of the present embodiment, another means for suppressing the above-described generation of voids is shown. Specifically, an additive having a composition different from that of the silica particles 20 is added to the dielectric glass layer 21.
 上述のように、焼成時においてシリカ粒子は反応性が低い。つまり、シリカ粒子の表面の活性が低いために他のガラス材料となじまない、と考えられる。そこでシリカ粒子の周囲にシリカ粒子とは異なる組成の添加物を存在させることによって、シリカ粒子の正四面体構造の一部を破壊する。したがって、シリカ粒子の表面の活性が高くなる。よって、空隙の発生を抑制することができる。 As described above, silica particles have low reactivity during firing. That is, it is considered that the activity of the surface of the silica particles is low, so that it is not compatible with other glass materials. Therefore, by adding an additive having a composition different from that of the silica particles around the silica particles, a part of the tetrahedral structure of the silica particles is destroyed. Therefore, the activity of the surface of the silica particles is increased. Therefore, generation | occurrence | production of a space | gap can be suppressed.
 このため変形例では、誘電体ガラス層21に、B、ZnO、MgO、CaO、酸化カリウム(KO)、酸化リチウム(LiO)および酸化ナトリウム(NaO)の群から選ばれる少なくとも1種以上が添加されている。添加量は、誘電体ガラス層21に対して、0.1モル%以上20モル%未満が好ましい。0.1モル%未満であれば、効果は極めて小さい。一方、20モル%以上では、誘電体層が着色されるなどの他の弊害が発生する。 For this reason, in the modification, the dielectric glass layer 21 is made of B 2 O 3 , ZnO, MgO, CaO, potassium oxide (K 2 O), lithium oxide (Li 2 O), and sodium oxide (Na 2 O). At least one selected from the above is added. The addition amount is preferably 0.1 mol% or more and less than 20 mol% with respect to the dielectric glass layer 21. If it is less than 0.1 mol%, the effect is extremely small. On the other hand, at 20 mol% or more, other adverse effects such as coloring of the dielectric layer occur.
 図2に示されるように、本実施の形態にかかる誘電体層8は、シリカ粒子20とガラス層である誘電体ガラス層21とを含む。シリカ粒子20は、誘電体層8中に分散している。なお、説明の便宜のため、図2に示されるシリカ粒子20の大きさおよび数は、実際の製品とは異なる。 As shown in FIG. 2, the dielectric layer 8 according to the present embodiment includes silica particles 20 and a dielectric glass layer 21 that is a glass layer. Silica particles 20 are dispersed in the dielectric layer 8. For convenience of explanation, the size and number of silica particles 20 shown in FIG. 2 are different from the actual product.
 なお、従来、450℃から600℃程度での焼成を可能にするために、誘電体ガラスは、20重量%以上の酸化鉛を含有していた。しかし、本実施の形態においては、環境への配慮のため、誘電体ガラスは、酸化鉛を含有しない。すなわち、誘電体層8は、酸化鉛を含有しない。 Conventionally, in order to enable firing at about 450 ° C. to about 600 ° C., the dielectric glass contains 20% by weight or more of lead oxide. However, in this embodiment, the dielectric glass does not contain lead oxide for environmental consideration. That is, the dielectric layer 8 does not contain lead oxide.
 [3-1.誘電体ペーストの製造]
 誘電体ペーストは、誘電体ガラス微粒子が分散した誘電体ガラススラリーとシリカ粒子20が分散したシリカ粒子スラリーとビヒクルから構成される。
[3-1. Production of dielectric paste]
The dielectric paste includes a dielectric glass slurry in which dielectric glass particles are dispersed, a silica particle slurry in which silica particles 20 are dispersed, and a vehicle.
 [3-1-1.誘電体ガラススラリー]
 誘電体ガラス微粒子の主成分は、一例としてBiである。誘電体ガラス微粒子に、B、ZnO、MgO、CaO、KO、LiOおよびNaOからなる群のうち少なくとも1種以上が添加されてもよい。添加量は、誘電体ガラス層21に対して、0.1モル%以上20モル%以下である。
[3-1-1. Dielectric glass slurry]
As an example, the main component of the dielectric glass fine particles is Bi 2 O 3 . At least one or more of the group consisting of B 2 O 3 , ZnO, MgO, CaO, K 2 O, Li 2 O and Na 2 O may be added to the dielectric glass fine particles. The addition amount is 0.1 mol% or more and 20 mol% or less with respect to the dielectric glass layer 21.
 まず、例示された組成成分からなる誘電体ガラス材料が、湿式ジェットミルやボールミルにより平均粒径が0.5μm~3.0μmとなるように粉砕されて誘電体ガラス微粒子が作製される。誘電体ガラス微粒子の軟化点は600℃以下である。 First, a dielectric glass material composed of the exemplified composition components is pulverized by a wet jet mill or a ball mill so as to have an average particle diameter of 0.5 μm to 3.0 μm to produce dielectric glass fine particles. The softening point of the dielectric glass fine particles is 600 ° C. or less.
 誘電体ガラススラリーは、10重量%以上65重量%以下の誘電体ガラス微粒子と35重量%以上90重量%以下の溶媒とを含む。溶媒は、一例として、アルコール系またはグリコール系または水系などが用いられる。 The dielectric glass slurry contains 10% to 65% by weight of dielectric glass particles and 35% to 90% by weight of solvent. As the solvent, for example, an alcohol type, a glycol type, or an aqueous type is used.
 誘電体ガラススラリーには、滑剤や分散剤などが添加されてもよい。このような構成の誘電体ガラススラリーは分散性が向上する。 A lubricant or a dispersant may be added to the dielectric glass slurry. The dielectric glass slurry having such a configuration improves dispersibility.
 [3-1-2.シリカ粒子スラリー]
 シリカ粒子スラリーは、1重量%以上20重量%以下のシリカ粒子20が、80重量%以上99重量%以下の溶媒中に分散している。シリカ粒子20の主成分は、SiOである。しかしながら、シリカ粒子の他に、酸化アルミニウム(Al)、ZnO、酸化ガリウム(Ga)、または、これらの複合酸化物なども用いることができる。シリカ粒子20の軟化点は700℃以上である。溶媒は、一例として、アルコール系またはグリコール系または水系などが用いられる。
[3-1-2. Silica particle slurry]
In the silica particle slurry, 1 to 20% by weight of silica particles 20 are dispersed in a solvent of 80 to 99% by weight. The main component of the silica particles 20 is SiO 2 . However, in addition to silica particles, aluminum oxide (Al 2 O 3 ), ZnO, gallium oxide (Ga 2 O 3 ), or a composite oxide thereof can also be used. The softening point of the silica particles 20 is 700 ° C. or higher. As the solvent, for example, an alcohol type, a glycol type, or an aqueous type is used.
 シリカ粒子の粒径は、100nm以上1000nm以下であることが好ましい。より好ましくは400nm以上700nm以下である。なお、粒径とは、体積累積平均径(D50)を意味する。粒径の測定には、レーザ回折式粒度分布測定装置MT-3300(日機装株式会社製)が用いられた。シリカ粒子スラリーには滑剤や分散剤などが添加されてもよい。このような構成のシリカ粒子スラリーは分散性が向上する。 The particle size of the silica particles is preferably 100 nm or more and 1000 nm or less. More preferably, it is 400 nm or more and 700 nm or less. In addition, a particle size means a volume accumulation average diameter (D50). For the measurement of the particle size, a laser diffraction particle size distribution analyzer MT-3300 (manufactured by Nikkiso Co., Ltd.) was used. A lubricant or a dispersant may be added to the silica particle slurry. Dispersibility of the silica particle slurry having such a configuration is improved.
 [3-1-3.誘電体ペースト]
 誘電体ガラススラリーとシリカ粒子スラリーは、それぞれ別々に製造される。本実施の形態にかかる誘電体ペーストは、誘電体ガラススラリーとシリカ粒子スラリーとが混合分散されたものである。誘電体ペーストを前面ガラス基板3に塗布する前に、誘電体ガラススラリーとシリカ粒子スラリーとが混合分散される。さらに、必要に応じてビヒクルなどのバインダ成分が混合分散される。
[3-1-3. Dielectric paste]
The dielectric glass slurry and the silica particle slurry are produced separately. The dielectric paste according to the present embodiment is obtained by mixing and dispersing a dielectric glass slurry and a silica particle slurry. Before applying the dielectric paste to the front glass substrate 3, the dielectric glass slurry and the silica particle slurry are mixed and dispersed. Furthermore, a binder component such as a vehicle is mixed and dispersed as necessary.
 バインダ成分は、エチルセルロースあるいはアクリル樹脂を1重量%~20重量%含むターピネオールあるいはブチルカルビトールアセテートである。また、誘電体ペーストには、可塑剤としてフタル酸ジオクチル、フタル酸ジブチル、リン酸トリフェニル、リン酸トリブチルが添加されてもよい。分散剤としてグリセロールモノオレート、ソルビタンセスキオレヘート、ホモゲノール(Kaoコーポレーション社製品名)、アルキルアリル基のリン酸エステルなどを添加して印刷性を向上させてもよい。なお、バインダ成分は、ガラス粒子粉砕時に用いられる溶媒と合わせてもよい。なお、バインダ成分を混合分散するタイミングは、誘電体ガラススラリーとシリカ粒子スラリーとが混合分散されるときに限られない。つまり、誘電体ガラススラリーあるいはシリカ粒子スラリーそれぞれの製造時でもよい。 The binder component is terpineol or butyl carbitol acetate containing 1% to 20% by weight of ethyl cellulose or acrylic resin. In addition, dioctyl phthalate, dibutyl phthalate, triphenyl phosphate, and tributyl phosphate may be added to the dielectric paste as a plasticizer. Printability may be improved by adding glycerol monooleate, sorbitan sesquioleate, homogenol (product name of Kao Corporation), phosphate ester of alkylallyl group or the like as a dispersant. In addition, you may match | combine a binder component with the solvent used at the time of glass particle grinding | pulverization. The timing of mixing and dispersing the binder component is not limited to when the dielectric glass slurry and the silica particle slurry are mixed and dispersed. That is, the dielectric glass slurry or the silica particle slurry may be produced at the time.
 本実施の形態にかかる誘電体ペーストの製造方法によれば、誘電体ペースト中に誘電体ガラス微粒子とシリカ粒子20とがより均一に分散する。 According to the method of manufacturing a dielectric paste according to the present embodiment, the dielectric glass fine particles and the silica particles 20 are more uniformly dispersed in the dielectric paste.
 誘電体層8におけるシリカ粒子20の含有量は、5体積%以上30体積%以下であることが好ましい。シリカ粒子20の含有量が5体積%未満では、誘電体層8の比誘電率を小さくすることが難しい。一方、シリカ粒子20の含有量が30体積%を超えると、誘電体層8のヘイズ値が悪化する。また、本実施の形態においては、誘電体層8の比誘電率が5.5以下となるように、シリカ粒子20の含有量、粒径とが上記範囲内で適宜規定される。これによりPDP1の消費電力の低減効果が得られる。 The content of the silica particles 20 in the dielectric layer 8 is preferably 5% by volume or more and 30% by volume or less. When the content of the silica particles 20 is less than 5% by volume, it is difficult to reduce the relative dielectric constant of the dielectric layer 8. On the other hand, when the content of the silica particles 20 exceeds 30% by volume, the haze value of the dielectric layer 8 is deteriorated. Further, in the present embodiment, the content and particle size of the silica particles 20 are appropriately defined within the above ranges so that the dielectric constant of the dielectric layer 8 is 5.5 or less. Thereby, the reduction effect of the power consumption of PDP1 is acquired.
 誘電体層8におけるシリカ粒子20の含有量を所定の範囲に収めるためには、誘電体ペースト中のシリカ粒子20の含有量を所定の範囲に収めることが好ましい。つまり、規定された比率にしたがって、誘電体ガラススラリーとシリカ粒子スラリーとが混合分散されればよい。あるいは、シリカ粒子スラリーの製造段階で、シリカ粒子スラリーにおけるシリカ粒子20の含有量を所定の範囲に収めてもよい。 In order to keep the content of the silica particles 20 in the dielectric layer 8 within a predetermined range, it is preferable to keep the content of the silica particles 20 in the dielectric paste within a predetermined range. That is, the dielectric glass slurry and the silica particle slurry may be mixed and dispersed according to the specified ratio. Alternatively, the content of the silica particles 20 in the silica particle slurry may fall within a predetermined range at the production stage of the silica particle slurry.
 [3-2.誘電体層8の熱膨張係数について]
 一方、発明者等の検討により、シリカ粒子を含有する誘電体層を有するPDPでは、誘電体層を焼成した後に、前面ガラス基板が大きく反ることが判明した。大きく反った前面ガラス基板を有する前面板と背面板を組立てることは容易ではない。また、組立てたとしても、PDPの画質が劣化する。かつ、PDPの衝撃強度は大幅に低下する。
[3-2. Regarding Thermal Expansion Coefficient of Dielectric Layer 8]
On the other hand, the inventors' investigations have revealed that in a PDP having a dielectric layer containing silica particles, the front glass substrate is greatly warped after the dielectric layer is baked. It is not easy to assemble a front plate and a back plate having a front glass substrate that is greatly warped. Even if assembled, the image quality of the PDP deteriorates. In addition, the impact strength of the PDP is greatly reduced.
 一般的には、焼成後に前面ガラス基板が大きく反らないように、前面ガラス基板の熱膨張係数に近い熱膨張係数を有する誘電体ガラス材料が選択される。さらに、近年ではPDPの軽量化のため、前面ガラス基板の厚みが2mm以下のものが選択されることが多い。前面ガラス基板の厚みが薄くなると、PDPの衝撃強度が著しく低下する。そのため誘電体ガラス材料の熱膨張係数は前面ガラス基板の熱膨張係数より小さいものが選択される。つまり、誘電体層が圧縮応力を有するようにして、衝撃強度を上げることがなされている。 Generally, a dielectric glass material having a thermal expansion coefficient close to that of the front glass substrate is selected so that the front glass substrate does not greatly warp after firing. Furthermore, in recent years, in order to reduce the weight of the PDP, a front glass substrate having a thickness of 2 mm or less is often selected. When the thickness of the front glass substrate is reduced, the impact strength of the PDP is significantly reduced. For this reason, a dielectric glass material having a thermal expansion coefficient smaller than that of the front glass substrate is selected. That is, the impact strength is increased by making the dielectric layer have a compressive stress.
 シリカ粒子などの低比誘電率材料を混合しない場合は、上記のように誘電体ガラス材料の熱膨張係数は基板の熱膨張係数より小さいものを適宜選択すればよい。つまり、十分な衝撃強度を確保することについて、大きな課題はない。例えば、低融点の誘電体ガラス材料のみで誘電体層を形成する場合は、熱膨張係数を75×10-7/℃程度に調整することによって、誘電体層に適当な圧縮応力が発生する。一般的な前面ガラス基板の熱膨張係数83×10-7/℃より小さいからである。よって、十分な衝撃強度を確保することができる。 When a low relative dielectric constant material such as silica particles is not mixed, a dielectric glass material having a thermal expansion coefficient smaller than that of the substrate may be appropriately selected as described above. That is, there is no big problem about ensuring sufficient impact strength. For example, when the dielectric layer is formed only from a low melting point dielectric glass material, an appropriate compressive stress is generated in the dielectric layer by adjusting the thermal expansion coefficient to about 75 × 10 −7 / ° C. This is because the coefficient of thermal expansion of a general front glass substrate is smaller than 83 × 10 −7 / ° C. Therefore, sufficient impact strength can be ensured.
 しかしながら、シリカ粒子などの低比誘電率材料を混合する場合は、課題が発生する。例えば、シリカ粒子の熱膨張係数は24×10-7/℃である。よって、従来用いられていた誘電体ガラス層にシリカ粒子が添加された誘電体層は、熱膨張係数が低下する。例えば、誘電体層におけるシリカ粒子の含有量が20体積%、誘電体ガラス層の含有量が80体積%である場合、誘電体層全体の熱膨張係数は、65×10-7/℃程度となる。この場合、誘電体層全体の熱膨張係数は、前面ガラス基板の熱膨張係数より小さい。よって、誘電体層に圧縮応力を発生させることはできる。 However, problems arise when mixing low dielectric constant materials such as silica particles. For example, the thermal expansion coefficient of silica particles is 24 × 10 −7 / ° C. Therefore, a dielectric layer in which silica particles are added to a conventionally used dielectric glass layer has a low thermal expansion coefficient. For example, when the content of silica particles in the dielectric layer is 20% by volume and the content of the dielectric glass layer is 80% by volume, the thermal expansion coefficient of the entire dielectric layer is about 65 × 10 −7 / ° C. Become. In this case, the thermal expansion coefficient of the entire dielectric layer is smaller than that of the front glass substrate. Therefore, compressive stress can be generated in the dielectric layer.
 しかし、前面ガラス基板と誘電体層の熱膨張係数に大きな差がある。よって、誘電体層焼成後の前面ガラス基板が大きく反る。誘電体層全体の熱膨張係数が65×10-7/℃では、対角42インチクラスのPDPにおいて前面ガラス基板には2.0mm程度の反りが発生する。前面ガラス基板に2.0mm程度の反りが発生した場合、前面板と背面板とを精度よく張り合わせることが困難になる。結果として、PDPの画質が劣化する。PDPの画質を維持するためには前面ガラス基板の反りを1mm以下とすることが好ましい。 However, there is a large difference in the thermal expansion coefficient between the front glass substrate and the dielectric layer. Therefore, the front glass substrate after firing the dielectric layer is greatly warped. When the thermal expansion coefficient of the entire dielectric layer is 65 × 10 −7 / ° C., warpage of about 2.0 mm occurs on the front glass substrate in the 42-inch diagonal PDP. When warpage of about 2.0 mm occurs on the front glass substrate, it becomes difficult to bond the front plate and the back plate with high accuracy. As a result, the image quality of the PDP deteriorates. In order to maintain the image quality of the PDP, the warp of the front glass substrate is preferably 1 mm or less.
 これに対し、本実施の形態における誘電体層8は、シリカ粒子20と誘電体ガラス層21とを含む。誘電体層8の比誘電率は、5.5以下である。誘電体ガラス層21の熱膨張係数は、79×10-7/℃以上、95×10-7/℃以下である。シリカ粒子20の含有量は、5体積%以上30体積%以下である。 In contrast, dielectric layer 8 in the present embodiment includes silica particles 20 and dielectric glass layer 21. The dielectric constant of the dielectric layer 8 is 5.5 or less. The dielectric glass layer 21 has a thermal expansion coefficient of 79 × 10 −7 / ° C. or higher and 95 × 10 −7 / ° C. or lower. Content of the silica particle 20 is 5 volume% or more and 30 volume% or less.
 この構成によって、誘電体層8は圧縮応力を有する。また、前面ガラス基板3の反りが1mm以下になる。よって、PDP1の衝撃強度を向上させることができる。また、PDP1の画質劣化が抑制される。さらに好ましくは、誘電体ガラス層21の熱膨張係数は、79×10-7/℃以上、90×10-7/℃以下であって、シリカ粒子20の含有量は、5体積%以上20体積%以下である。 With this configuration, the dielectric layer 8 has a compressive stress. Moreover, the curvature of the front glass substrate 3 will be 1 mm or less. Therefore, the impact strength of the PDP 1 can be improved. Further, image quality deterioration of the PDP 1 is suppressed. More preferably, the dielectric glass layer 21 has a thermal expansion coefficient of 79 × 10 −7 / ° C. or more and 90 × 10 −7 / ° C. or less, and the content of the silica particles 20 is 5 volume% or more and 20 volume. % Or less.
 シリカ粒子20の含有量が5体積%の場合、前面ガラス基板3の反りを1mm以下とするためには、誘電体ガラス層21の熱膨張係数を79×10-7/℃以上とすることが好ましい。一方、誘電体ガラス層21の熱膨張係数が95×10-7/℃を超えると、前面ガラス基板3が逆方向に反る。 When the content of the silica particles 20 is 5% by volume, the thermal expansion coefficient of the dielectric glass layer 21 should be 79 × 10 −7 / ° C. or more in order to set the warpage of the front glass substrate 3 to 1 mm or less. preferable. On the other hand, when the thermal expansion coefficient of the dielectric glass layer 21 exceeds 95 × 10 −7 / ° C., the front glass substrate 3 warps in the reverse direction.
 [3-2.誘電体層8の形成方法]
 誘電体層8を形成する方法として、スクリーン印刷法やダイコート法などが用いられる。まず、誘電体ペーストが、前面ガラス基板3上に塗布される。塗布された誘電体ペーストは、誘電体ペースト膜を構成する。誘電体ペースト膜の塗布膜厚は、焼成によって収縮する割合が考慮された上で、適宜設定される。次に、100℃から200℃の温度範囲で誘電体ペースト膜が乾燥される。次に、誘電体ペースト膜が焼成される。焼成温度は、450℃から600℃の範囲が好ましい。より好ましい焼成温度の範囲は、550℃から590℃である。焼成によって、シリカ粒子20と誘電体ガラス層21とを有する誘電体層8が形成される。
[3-2. Method for Forming Dielectric Layer 8]
As a method for forming the dielectric layer 8, a screen printing method, a die coating method, or the like is used. First, a dielectric paste is applied on the front glass substrate 3. The applied dielectric paste constitutes a dielectric paste film. The coating thickness of the dielectric paste film is appropriately set in consideration of the rate of shrinkage due to firing. Next, the dielectric paste film is dried in a temperature range of 100 ° C. to 200 ° C. Next, the dielectric paste film is baked. The firing temperature is preferably in the range of 450 ° C to 600 ° C. A more preferable firing temperature range is 550 ° C to 590 ° C. The dielectric layer 8 having the silica particles 20 and the dielectric glass layer 21 is formed by firing.
 つまり、焼成温度は、誘電体ガラス微粒子の軟化点より高く、シリカ粒子20の軟化点より低い。よって、誘電体ガラス微粒子は、焼成によって軟化し、周囲の微粒子と結合する。さらに、焼成後に硬化することによって、誘電体ガラス層21が形成される。誘電体ガラス層21の軟化点は、誘電体ガラス微粒子の軟化点に等しい。つまり、誘電体ガラス層21の軟化点は、焼成温度より低い600℃以下である。誘電体ガラス微粒子の軟化点は、300℃以上が好ましい。300℃未満では、安定性に欠けるからである。したがって、誘電体ガラス層21の軟化点は、300℃以上が好ましい。 That is, the firing temperature is higher than the softening point of the dielectric glass fine particles and lower than the softening point of the silica particles 20. Therefore, the dielectric glass fine particles are softened by firing and bonded to the surrounding fine particles. Furthermore, the dielectric glass layer 21 is formed by hardening after baking. The softening point of the dielectric glass layer 21 is equal to the softening point of the dielectric glass fine particles. That is, the softening point of the dielectric glass layer 21 is 600 ° C. or lower which is lower than the firing temperature. The softening point of the dielectric glass particles is preferably 300 ° C. or higher. This is because if it is less than 300 ° C., it lacks stability. Therefore, the softening point of the dielectric glass layer 21 is preferably 300 ° C. or higher.
 一方、シリカ粒子20は、軟化しない。つまり、シリカ粒子20は、当初の形状が保たれている。 On the other hand, the silica particles 20 are not softened. That is, the initial shape of the silica particles 20 is maintained.
 また、誘電体層8を形成する方法として、以下の方法も用いられる。まず、誘電体ペーストをフィルム上に塗布、乾燥させたシートが用いられる。次に、シートに形成された誘電体ペーストが前面ガラス基板3に転写される。次に、450℃から600℃、より好ましくは550℃から590℃の温度範囲で焼成されることにより、シリカ粒子20と誘電体ガラス層21とからなる誘電体層8が形成される。 Further, as a method of forming the dielectric layer 8, the following method is also used. First, a sheet obtained by applying and drying a dielectric paste on a film is used. Next, the dielectric paste formed on the sheet is transferred to the front glass substrate 3. Next, the dielectric layer 8 composed of the silica particles 20 and the dielectric glass layer 21 is formed by firing in a temperature range of 450 ° C. to 600 ° C., more preferably 550 ° C. to 590 ° C.
 なお、誘電体層8の膜厚が小さいほどPDP1の輝度が向上する。また、誘電体層8の膜厚が小さいほどPDP1の放電電圧が低減する。よって、絶縁耐圧が低下しない範囲で、できるだけ誘電体層8の膜厚が小さいことが好ましい。絶縁耐圧の観点と、可視光透過率の観点との両方から、本実施の形態では、一例として、誘電体層8の膜厚は10μm以上30μm以下である。 Note that the luminance of the PDP 1 is improved as the thickness of the dielectric layer 8 is reduced. Further, the discharge voltage of the PDP 1 decreases as the thickness of the dielectric layer 8 decreases. Therefore, it is preferable that the thickness of the dielectric layer 8 is as small as possible within a range where the withstand voltage does not decrease. In the present embodiment, as an example, the film thickness of the dielectric layer 8 is not less than 10 μm and not more than 30 μm from both the viewpoint of dielectric strength and the viewpoint of visible light transmittance.
 [4.実施例]
 本実施の形態にかかるPDP1が試作された。対角42インチクラスのハイビジョンテレビに適合するものである。隔壁の高さは0.15mm、隔壁の間隔は0.15mm、表示電極6の電極間距離は0.06mmである。Xeの含有量が10体積%のNe-Xe系の混合ガスが、60kPaの圧力になるように封入された。ガラス基板の厚みは1.8mmである。誘電体層8の膜厚は30μmである。
[4. Example]
A PDP 1 according to the present embodiment was prototyped. It is suitable for 42-inch diagonal high-definition televisions. The height of the partition walls is 0.15 mm, the distance between the partition walls is 0.15 mm, and the distance between the display electrodes 6 is 0.06 mm. A Ne—Xe-based mixed gas having a Xe content of 10% by volume was sealed to a pressure of 60 kPa. The thickness of the glass substrate is 1.8 mm. The film thickness of the dielectric layer 8 is 30 μm.
 表1に誘電体ガラス層21の特性が示される。誘電体ガラス層21は、SiO-B-RO系(RはNa、K)である。シリカ粒子20は、軟化点820℃、熱膨張係数24×10-7/℃、比誘電率4.1のものである。 Table 1 shows the characteristics of the dielectric glass layer 21. The dielectric glass layer 21 is a SiO 2 —B 2 O 3 —R 2 O system (R is Na, K). The silica particles 20 have a softening point of 820 ° C., a thermal expansion coefficient of 24 × 10 −7 / ° C., and a relative dielectric constant of 4.1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 試料1~試料6の軟化点は、650℃以下である。試料1~試料3の熱膨張係数は、79×10-7/℃未満である。試料4~試料6の熱膨張係数は、79×10-7/℃以上である。試料1~試料6の誘電体ガラス層21を有するPDP1について、前面ガラス基板3の反りおよび誘電体層8が有する応力が測定された。前面ガラス基板3の反りについて、正の値で示されているものは誘電体層8側が凸になる反りである。誘電体層8の応力について、負の値で示されているものが圧縮応力である。 Samples 1 to 6 have a softening point of 650 ° C. or lower. Samples 1 to 3 have a thermal expansion coefficient of less than 79 × 10 −7 / ° C. Samples 4 to 6 have a thermal expansion coefficient of 79 × 10 −7 / ° C. or higher. For the PDP 1 having the dielectric glass layer 21 of Samples 1 to 6, the warpage of the front glass substrate 3 and the stress of the dielectric layer 8 were measured. Regarding the warp of the front glass substrate 3, a positive value is a warp in which the dielectric layer 8 side is convex. About the stress of the dielectric layer 8, what is shown by the negative value is a compressive stress.
 試料1~試料3の誘電体ガラス層21のみで構成され、シリカ粒子20を含まない誘電体層8は、応力が-0.5MPa~-1.8MPaであった。前面ガラス基板3の反り量は、0.5mm~1.4mmであった。また、誘電体層8の比誘電率は5.7~6.0であった。よって、PDP1の消費電力低減が十分ではない。 The dielectric layer 8 composed only of the dielectric glass layers 21 of Samples 1 to 3 and not including the silica particles 20 had a stress of −0.5 MPa to −1.8 MPa. The amount of warpage of the front glass substrate 3 was 0.5 mm to 1.4 mm. The relative dielectric constant of the dielectric layer 8 was 5.7 to 6.0. Therefore, the power consumption reduction of the PDP 1 is not sufficient.
 一方、試料1~試料3の誘電体ガラス層21に、シリカ粒子20を5体積%~30体積%含む誘電体層8は、応力が-1.6MPa~-4.8MPaであった。応力は、良好な値を示した。しかし、前面ガラス基板3の反り量は、1.3mm~3.5mmであった。よって、PDP1は、良品の基準を満たさなかった。 On the other hand, the dielectric layer 8 containing 5 to 30% by volume of silica particles 20 in the dielectric glass layers 21 of Samples 1 to 3 had a stress of −1.6 MPa to −4.8 MPa. The stress showed a good value. However, the amount of warpage of the front glass substrate 3 was 1.3 mm to 3.5 mm. Therefore, PDP1 did not satisfy the standards for non-defective products.
 しかし、試料4~試料6の誘電体ガラス層21に、シリカ粒子20を5体積%~30体積%含む誘電体層8は、応力が-0.4MPa~-3.3MPaであった。前面ガラス基板3の反り量は、-0.9mm~1.0mmであった。また、誘電体層8の比誘電率は5.2~5.5であった。よって、PDP1は良品の基準を満たした。また、PDP1の消費電力を低減することができた。 However, the dielectric layer 8 containing 5 to 30% by volume of silica particles 20 in the dielectric glass layers 21 of Samples 4 to 6 had a stress of −0.4 MPa to −3.3 MPa. The amount of warpage of the front glass substrate 3 was -0.9 mm to 1.0 mm. The relative dielectric constant of the dielectric layer 8 was 5.2 to 5.5. Therefore, PDP1 satisfied the standard for non-defective products. Moreover, the power consumption of PDP1 was able to be reduced.
 また、図3に示されるように、シリカ粒子20の粒径が100nm以上1000nm以下のとき、ヘイズ値は大幅に低下している。さらに、シリカ粒子20の粒径が400nm以上700nm以下のときヘイズ値は安定して低いのでより好ましい。また、誘電体層8におけるシリカ粒子20の含有率を20体積%以下とすることで、ヘイズ値が低下する効果が現れる。なお、それぞれの試料のヘイズ値は、粒径が5000nmのシリカ粒子20を50体積%含む誘電体層8におけるヘイズ値を1としたときの相対値である。 Further, as shown in FIG. 3, when the particle size of the silica particles 20 is 100 nm or more and 1000 nm or less, the haze value is greatly reduced. Furthermore, when the particle size of the silica particles 20 is 400 nm or more and 700 nm or less, the haze value is stably low, which is more preferable. Moreover, the effect that a haze value falls by the content rate of the silica particle 20 in the dielectric material layer 8 being 20 volume% or less appears. The haze value of each sample is a relative value when the haze value in the dielectric layer 8 containing 50% by volume of the silica particles 20 having a particle size of 5000 nm is 1.
 なお、ヘイズ値の測定には、ヘイズ・透過率計「HM-150」(株式会社 村上色彩研究所製)が用いられた。実施例において、誘電体層8が形成された前面ガラス基板3に対して、波長550nmの単波長の光を前面ガラス基板3と直交する方向から入射させた時の光線透過率(可視光線透過率)およびヘイズ値が測定された。 For the measurement of the haze value, a haze / transmittance meter “HM-150” (manufactured by Murakami Color Research Laboratory Co., Ltd.) was used. In the embodiment, the light transmittance (visible light transmittance) when light having a single wavelength of 550 nm is incident on the front glass substrate 3 on which the dielectric layer 8 is formed from a direction orthogonal to the front glass substrate 3. ) And haze values were measured.
 また、本実施の形態において、熱膨張係数は、100℃から300℃における平均値である。熱膨張係数は、例えば示差熱膨張計などによって測定される。 In the present embodiment, the thermal expansion coefficient is an average value from 100 ° C. to 300 ° C. The thermal expansion coefficient is measured by, for example, a differential thermal dilatometer.
 [5.まとめ]
 本実施の形態にかかるPDP1は、前面板2と、前面板2と対向して設けられる背面板10とを備える。前面板2は、表示電極6と表示電極6を覆う誘電体層8とを有する。誘電体層8は、シリカ粒子20と誘電体ガラス層21とを含む。誘電体ガラス層21の熱膨張係数は、79×10-7/℃以上95×10-7/℃以下である。誘電体層8におけるシリカ粒子20の含有量は、5体積%以上30体積%以下である。誘電体層8の比誘電率は、5.5以下である。
[5. Summary]
The PDP 1 according to the present embodiment includes a front plate 2 and a back plate 10 provided to face the front plate 2. The front plate 2 includes a display electrode 6 and a dielectric layer 8 that covers the display electrode 6. The dielectric layer 8 includes silica particles 20 and a dielectric glass layer 21. The thermal expansion coefficient of the dielectric glass layer 21 is 79 × 10 −7 / ° C. or higher and 95 × 10 −7 / ° C. or lower. Content of the silica particle 20 in the dielectric material layer 8 is 5 volume% or more and 30 volume% or less. The dielectric constant of the dielectric layer 8 is 5.5 or less.
 本実施の形態にかかるPDP1は、衝撃強度の劣化および画質劣化が抑制され、かつ、低消費電力を実現できる。 The PDP 1 according to the present embodiment can suppress impact strength deterioration and image quality deterioration, and can realize low power consumption.
 なお、誘電体ガラス層21の熱膨張係数は、79×10-7/℃以上90×10-7/℃以下であり、誘電体層8におけるシリカ粒子20の含有量は、5体積%以上20体積%以下であることが好ましい。 The thermal expansion coefficient of the dielectric glass layer 21 is 79 × 10 −7 / ° C. or more and 90 × 10 −7 / ° C. or less, and the content of the silica particles 20 in the dielectric layer 8 is 5% by volume or more and 20% or less. It is preferable that it is below volume%.
 また、シリカ粒子20の粒径は、100nm以上1000nm以下であることが好ましい。良好な光学特性が得られるからである。 Further, the particle diameter of the silica particles 20 is preferably 100 nm or more and 1000 nm or less. This is because good optical characteristics can be obtained.
 さらに、シリカ粒子20の粒径は、400nm以上700nm以下であることが、より好ましい。さらに、良好な光学特性が得られるからである。 Furthermore, the particle size of the silica particles 20 is more preferably 400 nm or more and 700 nm or less. Further, good optical characteristics can be obtained.
 以上のように本実施の形態に開示された技術は、低消費電力のPDPを実現して、大画面の表示デバイスなどに有用である。 As described above, the technology disclosed in the present embodiment realizes a low power consumption PDP and is useful for a large screen display device.
 1  PDP
 2  前面板
 3  前面ガラス基板
 4  走査電極
 4a,5a  黒色電極
 4b,5b  白色電極
 5  維持電極
 6  表示電極
 7  ブラックストライプ(遮光層)
 8  誘電体層
 9  保護層
 10  背面板
 11  背面ガラス基板
 12  アドレス電極
 13  下地誘電体層
 14  隔壁
 15  蛍光体層
 16  放電空間
 20  シリカ粒子
 21  誘電体ガラス層
1 PDP
2 Front plate 3 Front glass substrate 4 Scan electrode 4a, 5a Black electrode 4b, 5b White electrode 5 Maintenance electrode 6 Display electrode 7 Black stripe (light shielding layer)
8 Dielectric layer 9 Protective layer 10 Back plate 11 Back glass substrate 12 Address electrode 13 Base dielectric layer 14 Partition 15 Phosphor layer 16 Discharge space 20 Silica particles 21 Dielectric glass layer

Claims (5)

  1. 前面板と、前記前面板と対向して設けられる背面板とを備え、
     前記前面板は、表示電極と前記表示電極を覆う誘電体層とを有し、
      前記誘電体層は、シリカ粒子とガラス層とを含み、
       前記ガラス層の熱膨張係数は、79×10-7/℃以上95×10-7/℃以下であり、
       前記誘電体層における前記シリカ粒子の含有量は、5体積%以上30体積%以下であり、
      前記誘電体層の比誘電率は、5.5以下である、
    プラズマディスプレイパネル。
    A front plate and a back plate provided to face the front plate;
    The front plate has a display electrode and a dielectric layer covering the display electrode,
    The dielectric layer includes silica particles and a glass layer,
    The thermal expansion coefficient of the glass layer is 79 × 10 −7 / ° C. or more and 95 × 10 −7 / ° C. or less.
    The content of the silica particles in the dielectric layer is 5 vol% or more and 30 vol% or less,
    The dielectric constant of the dielectric layer is 5.5 or less.
    Plasma display panel.
  2. 前記ガラス層の熱膨張係数は、79×10-7/℃以上90×10-7/℃以下であり、
    前記誘電体層における前記シリカ粒子の含有量は、5体積%以上20体積%以下である、
    請求項1に記載のプラズマディスプレイパネル。
    The thermal expansion coefficient of the glass layer is 79 × 10 −7 / ° C. or higher and 90 × 10 −7 / ° C. or lower.
    The content of the silica particles in the dielectric layer is 5% by volume or more and 20% by volume or less.
    The plasma display panel according to claim 1.
  3. 前記シリカ粒子の粒径は、100nm以上1000nm以下である、
    請求項1に記載のプラズマディスプレイパネル。
    The silica particles have a particle size of 100 nm to 1000 nm.
    The plasma display panel according to claim 1.
  4. 前記シリカ粒子の粒径は、400nm以上700nm以下である、
    請求項1に記載のプラズマディスプレイパネル。
    The silica particles have a particle size of 400 nm to 700 nm.
    The plasma display panel according to claim 1.
  5. 前記誘電体層は、圧縮方向の応力を有する、
    請求項1に記載のプラズマディスプレイパネル。
    The dielectric layer has a compressive stress;
    The plasma display panel according to claim 1.
PCT/JP2012/001090 2011-04-27 2012-02-20 Plasma display panel WO2012147250A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-099181 2011-04-27
JP2011099181 2011-04-27

Publications (1)

Publication Number Publication Date
WO2012147250A1 true WO2012147250A1 (en) 2012-11-01

Family

ID=47071786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001090 WO2012147250A1 (en) 2011-04-27 2012-02-20 Plasma display panel

Country Status (1)

Country Link
WO (1) WO2012147250A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083544A (en) * 2000-09-08 2002-03-22 Fujitsu Hitachi Plasma Display Ltd Ac-type plasma display panel
JP2003128430A (en) * 2001-10-22 2003-05-08 Asahi Techno Glass Corp Lead-free glass composition
JP2006269261A (en) * 2005-03-24 2006-10-05 Lintec Corp Composition for forming dielectric layer or insulator layer, green sheet, and flat panel display substrate
JP2007299642A (en) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd Plasma display panel and manufacturing method thereof
JP2009037890A (en) * 2007-08-02 2009-02-19 Toray Ind Inc Method for manufacturing plasma display member
JP2009143729A (en) * 2006-03-31 2009-07-02 Panasonic Corp Glass composition and display panel using the same
WO2009099141A1 (en) * 2008-02-05 2009-08-13 Jsr Corporation Material for formation of flat panel display member
JP2010232017A (en) * 2009-03-27 2010-10-14 Panasonic Corp Manufacturing method of plasma display panel
WO2012017631A1 (en) * 2010-08-05 2012-02-09 パナソニック株式会社 Plasma display panel

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083544A (en) * 2000-09-08 2002-03-22 Fujitsu Hitachi Plasma Display Ltd Ac-type plasma display panel
JP2003128430A (en) * 2001-10-22 2003-05-08 Asahi Techno Glass Corp Lead-free glass composition
JP2006269261A (en) * 2005-03-24 2006-10-05 Lintec Corp Composition for forming dielectric layer or insulator layer, green sheet, and flat panel display substrate
JP2009143729A (en) * 2006-03-31 2009-07-02 Panasonic Corp Glass composition and display panel using the same
JP2007299642A (en) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd Plasma display panel and manufacturing method thereof
JP2009037890A (en) * 2007-08-02 2009-02-19 Toray Ind Inc Method for manufacturing plasma display member
WO2009099141A1 (en) * 2008-02-05 2009-08-13 Jsr Corporation Material for formation of flat panel display member
JP2010232017A (en) * 2009-03-27 2010-10-14 Panasonic Corp Manufacturing method of plasma display panel
WO2012017631A1 (en) * 2010-08-05 2012-02-09 パナソニック株式会社 Plasma display panel

Similar Documents

Publication Publication Date Title
WO2012011232A1 (en) Glass paste for plasma display panel, and plasma display panel
WO2012147250A1 (en) Plasma display panel
WO2012017631A1 (en) Plasma display panel
WO2012017630A1 (en) Plasma display panel and manufacturing method therefor
KR101309328B1 (en) Plasma display panel
WO2012176356A1 (en) Plasma display panel
JP5233488B2 (en) Plasma display panel
WO2010150533A1 (en) Plasma display panel
JP5228821B2 (en) Plasma display panel
JP2012028104A (en) Method of manufacturing dielectric paste, and plasma display panel using the dielectric paste
JP2012038485A (en) Plasma display panel
WO2012081219A1 (en) Plasma display panel and method for manufacturing same
WO2013021590A1 (en) Dielectric paste and plasma display panel
JP2012018825A (en) Plasma display panel
JP2012033303A (en) Plasma display panel
JP2012028102A (en) Plasma display panel
JP2012212557A (en) Plasma display panel
JP2012028103A (en) Plasma display panel
JP2008052962A (en) Plasma display panel and its manufacturing method
JP2012033304A (en) Plasma display panel
KR101065109B1 (en) Plasma display panel
JP2013080579A (en) Dielectric paste for plasma display panel, and plasma display panel
JP2013080580A (en) Dielectric paste for plasma display panel, and plasma display panel
JP2012033302A (en) Plasma display panel
JP2013080582A (en) Dielectric paste for plasma display panel, and plasma display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12777682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12777682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP