WO2012081219A1 - Plasma display panel and method for manufacturing same - Google Patents

Plasma display panel and method for manufacturing same Download PDF

Info

Publication number
WO2012081219A1
WO2012081219A1 PCT/JP2011/006916 JP2011006916W WO2012081219A1 WO 2012081219 A1 WO2012081219 A1 WO 2012081219A1 JP 2011006916 W JP2011006916 W JP 2011006916W WO 2012081219 A1 WO2012081219 A1 WO 2012081219A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
component
dielectric
display panel
plasma display
Prior art date
Application number
PCT/JP2011/006916
Other languages
French (fr)
Japanese (ja)
Inventor
豊田 誠司
博之 安喰
泰彦 中田
土居 由佳子
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012081219A1 publication Critical patent/WO2012081219A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/14Manufacture of electrodes or electrode systems of non-emitting electrodes
    • H01J9/142Manufacture of electrodes or electrode systems of non-emitting electrodes of shadow-masks for colour television tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/38Dielectric or insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/38Dielectric or insulating layers

Definitions

  • the technology disclosed herein relates to a plasma display panel used for a display device or the like and a manufacturing method thereof.
  • Silver electrodes for ensuring conductivity are used for bus electrodes constituting display electrodes of a plasma display panel (hereinafter referred to as PDP).
  • PDP plasma display panel
  • For the dielectric layer covering the bus electrode low melting point glass mainly composed of lead oxide is used.
  • a dielectric layer not containing a lead component has been used in consideration of the environment (for example, see Patent Document 1).
  • the PDP according to the first disclosure includes a front plate and a back plate provided to face the front plate.
  • the front plate has a display electrode and a dielectric layer covering the display electrode.
  • the dielectric layer includes a plurality of fine particles mainly composed of an inorganic oxide. At least some of the plurality of fine particles are at least one selected from the group consisting of B, Al, Mg, Ca, Sr, Ba and Zn, and are different from the inorganic component constituting the inorganic oxide. Multi-component fine particles containing components.
  • a method of manufacturing a PDP according to the first disclosure includes forming a dielectric paste layer by applying a dielectric paste to a substrate, and then forming the dielectric layer by firing the dielectric paste layer.
  • the dielectric paste includes a plurality of fine particles mainly composed of an inorganic oxide. At least some of the plurality of fine particles are at least one selected from the group consisting of B, Al, Mg, Ca, Sr, Ba and Zn, and are different from the inorganic component constituting the inorganic oxide. Multi-component fine particles containing components.
  • the PDP according to the second disclosure includes a front plate and a back plate provided to face the front plate.
  • the front plate has a display electrode and a dielectric layer covering the display electrode.
  • the dielectric layer includes a plurality of fine particles mainly composed of an inorganic oxide. At least some of the plurality of fine particles are at least one selected from the group consisting of B, Al, Mg, Ca, Sr, Ba and Zn, and are different from the inorganic component constituting the inorganic oxide. Multi-component coated fine particles coated with a film containing components.
  • a method of manufacturing a PDP according to the second disclosure is to form a dielectric paste layer by applying a dielectric paste to a substrate, and then form the dielectric layer by firing the dielectric paste layer.
  • the dielectric paste includes a plurality of fine particles mainly composed of an inorganic oxide. At least some of the plurality of fine particles are at least one selected from the group consisting of B, Al, Mg, Ca, Sr, Ba and Zn, and are different from the inorganic component constituting the inorganic oxide. Multi-component coated fine particles coated with a film containing components.
  • FIG. 1 is a perspective view illustrating a schematic structure of a PDP according to an embodiment.
  • FIG. 2 is a cross-sectional view illustrating the structure of the front plate according to the embodiment.
  • FIG. 3 is a diagram illustrating a dielectric layer according to the first example.
  • FIG. 4 is a diagram illustrating a dielectric layer according to the second embodiment.
  • the PDP 1 of the present embodiment is an AC surface discharge type PDP.
  • a front plate 2 made of a front glass substrate 3 and the like and a back plate 10 made of a back glass substrate 11 and the like are arranged to face each other.
  • the outer peripheral portions of the front plate 2 and the back plate 10 are hermetically sealed with a sealing material made of glass frit or the like.
  • the discharge space 16 inside the sealed PDP 1 is filled with a discharge gas such as Ne and Xe at a pressure of 55 kPa to 80 kPa.
  • a pair of strip-shaped display electrodes 6 composed of scanning electrodes 4 and sustaining electrodes 5 and black stripes (light shielding layers) 7 are arranged in a plurality of rows in parallel with each other.
  • a dielectric layer 8 serving as a capacitor is provided on the front glass substrate 3 so as to cover the display electrode 6 and the light shielding layer 7. Further, a protective layer 9 made of magnesium oxide (MgO) or the like is provided on the surface of the dielectric layer 8.
  • MgO magnesium oxide
  • a plurality of strip-like address electrodes 12 are arranged in parallel to each other in a direction orthogonal to the display electrodes 6 of the front plate 2.
  • a base dielectric layer 13 is provided so as to cover the address electrodes 12.
  • a partition wall 14 having a predetermined height is provided on the base dielectric layer 13 formed between the address electrodes 12 to divide the discharge space 16. Between the partition walls 14, a phosphor layer 15 that emits red light by ultraviolet rays, a phosphor layer 15 that emits blue light, and a phosphor layer 15 that emits green light are sequentially provided.
  • a discharge cell is provided at a position where the display electrode 6 and the address electrode 12 intersect.
  • the pixel for color display includes a discharge cell having a phosphor layer 15 that emits red light, a discharge cell having a phosphor layer 15 that emits blue light, and a discharge cell having a phosphor layer 15 that emits green light. .
  • FIG. 2 is referred to for the front plate 2.
  • the scan electrode 4, the sustain electrode 5, and the light shielding layer 7 are formed on the front glass substrate 3.
  • the display electrode 6 has a scan electrode 4 and a sustain electrode 5.
  • Scan electrode 4 and sustain electrode 5 have white electrodes 4b and 5b containing silver (Ag) for ensuring conductivity.
  • Scan electrode 4 and sustain electrode 5 have black electrodes 4a and 5a containing a black pigment in order to improve the contrast of the image display surface.
  • the white electrode 4b is laminated on the black electrode 4a.
  • the white electrode 5b is laminated on the black electrode 5a.
  • a black paste layer (not shown) is formed by applying a black paste containing a black pigment to the front glass substrate 3 by a screen printing method or the like.
  • a black paste layer (not shown) is patterned by photolithography.
  • a white paste containing silver (Ag) is applied onto a black paste layer (not shown) by screen printing or the like, thereby forming a white paste layer (not shown).
  • a white paste layer (not shown) and a black paste layer (not shown) are patterned by photolithography.
  • a black paste layer (not shown) and a white paste layer (not shown) are baked through a development step, whereby the white electrodes 4b and 5b, the black electrodes 4a and 5a, which are the display electrodes 6, and the light shielding. Layer 7 is formed.
  • a dielectric layer 8 that covers the scan electrode 4, the sustain electrode 5, and the light shielding layer 7 is formed.
  • the dielectric layer 8 will be described in detail later.
  • a protective layer 9 made of magnesium oxide (MgO) or the like is formed on the dielectric layer 8 by a vacuum deposition method or the like.
  • the front plate 2 having the scanning electrode 4, the sustaining electrode 5, the light shielding layer 7, the dielectric layer 8, and the protective layer 9 on the front glass substrate 3 is completed through the above steps.
  • the front plate 2 may not have the light shielding layer 7.
  • the address electrode 12 is formed on the rear glass substrate 11. Specifically, an address electrode paste layer (not shown) is formed by applying a paste containing silver (Ag) onto the rear glass substrate 11 by screen printing. Next, an address electrode paste layer (not shown) is patterned by a photolithography method to form a material layer (not shown) to be a component for the address electrode 12. Thereafter, the address layer 12 is formed by firing a material layer (not shown) at a predetermined temperature.
  • a method of forming a metal film on the rear glass substrate 11 by a sputtering method, a vapor deposition method or the like is employed.
  • a base dielectric paste layer (not shown) is formed by applying a base dielectric paste on the back glass substrate 11 on which the address electrodes 12 have been formed so as to cover the address electrodes 12 by a die coating method or the like. Is done. Thereafter, the base dielectric paste layer (not shown) is fired to form the base dielectric layer 13.
  • the base dielectric paste is a paint containing a base dielectric material such as glass powder, a binder, and a solvent.
  • a partition wall paste (not shown) is formed by applying a partition wall forming paste including a partition wall material on the base dielectric layer 13.
  • a partition wall paste layer (not shown) is patterned by photolithography to form a structure (not shown) that becomes a material layer of the partition wall 14.
  • the partition 14 is formed by baking a structure (not shown).
  • a sandblast method or the like is adopted in addition to the photolithography method.
  • a phosphor paste containing a phosphor material is applied on the underlying dielectric layer 13 between the adjacent barrier ribs 14 and on the side surfaces of the barrier ribs 14.
  • the phosphor layer 15 is formed by firing the phosphor paste.
  • the back plate 10 having the address electrodes 12, the base dielectric layer 13, the partition walls 14 and the phosphor layer 15 on the back glass substrate 11 is completed.
  • Dielectric Layer 8 To reduce the dielectric constant of the dielectric layer 8, nanometer-sized fine particles made of silicon dioxide (hereinafter, referred to as SiO 2 fine particles) is a technique for forming a dielectric layer 8 using. Specifically, a dielectric paste in which a plurality of SiO 2 fine particles are dispersed is used. The dielectric paste is applied on the substrate. The applied dielectric paste is appropriately heat treated.
  • the bonding force between the SiO 2 fine particles may be reduced. That is, there is a problem that the mechanical strength of the dielectric layer 8 is lowered and cracks are generated in the dielectric layer 8.
  • the dielectric layer 8 is required to have a low relative dielectric constant, a high withstand voltage, and a high light transmittance. These characteristics greatly depend on the structure of the dielectric layer 8. Furthermore, cracks are likely to occur on the surface of the dielectric layer 8 due to the difference in thermal expansion coefficient between the dielectric layer 8 and the glass substrate due to dense SiO 2 fine particles. Further, when heat treatment is performed using SiO 2 fine particles at the firing temperature in the conventional manufacturing process, the bonding force between the SiO 2 fine particles may be reduced. That is, many gaps are formed in the dielectric layer 8. Therefore, dielectric breakdown is likely to occur in the dielectric layer 8 when a voltage is applied to display an image of the PDP.
  • the dielectric layer 8 according to the example 1 is composed of multi-component fine particles 20 and inorganic fine particles 21 made of a single component such as SiO 2 fine particles.
  • the dielectric layer 8 has a gap 23.
  • the dielectric layer 8 may include only the multi-component fine particles 20 without including the inorganic fine particles 21.
  • the dielectric layer is composed only of inorganic fine particles 21 made of a single component such as SiO 2 fine particles.
  • the multicomponent fine particles 20 are multicomponent fine particles mainly composed of an inorganic oxide.
  • the multi-component fine particles 20 are selected from the group consisting of silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO), and gallium oxide (Ga 2 O 3 ). And at least one selected from the group consisting of boron (B), aluminum (Al), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba) and zinc (Zn)
  • a multi-component alkoxide solution is prepared and produced by the addition of an alkaline catalyst.
  • the dielectric layer 8 according to the example 1 is not composed of only the inorganic fine particles 21 made of a single component such as SiO 2 fine particles.
  • the dielectric layer 8 according to the example 1 includes multi-component fine particles 20. Therefore, in the manufacturing process of the PDP 1, the surfaces of the multicomponent fine particles 20 are fused to the adjacent multicomponent fine particles 20. Further, the surface of the multi-component fine particle 20 is fused with the adjacent inorganic fine particle 21. Therefore, the dielectric layer 8 having higher mechanical strength and higher withstand voltage can be obtained.
  • the average particle size of the multi-component fine particles 20 and the inorganic fine particles 21 (hereinafter collectively referred to as dielectric glass fine particles) is preferably 10 nm or more and 150 nm or less. This is based on the following reason.
  • the air gap 23 in the dielectric layer 8 is an important factor that determines the relative permittivity and light transmittance.
  • the size of the gap 23 is determined by the particle size of the dielectric glass fine particles constituting the dielectric layer 8.
  • the size of the gap 23 is preferably 100 nm or less, which corresponds to about a quarter of the shortest wavelength of visible light. This is because by suppressing the light scattering in the gap 23, a visible light transmittance of 75% or more can be obtained in the dielectric layer 8.
  • the size of the gap 23 is more preferably 50 nm or less. Further, light scattering is suppressed.
  • the average particle size of the dielectric glass particles is preferably about 1.5 times the size of the gap 23. That is, the average particle size of the dielectric glass fine particles is preferably 150 nm or less. When the size of the void 23 is 50 nm or less, the average particle size of the dielectric glass fine particles is preferably 75 nm or less.
  • the average particle size of the dielectric glass particles is preferably 10 nm or more.
  • the average particle diameter is the volume cumulative average diameter (D50).
  • a laser diffraction particle size distribution measuring device MT-3300 manufactured by Nikkiso Co., Ltd. was used for measuring the average particle size.
  • the size of the void 23 was measured by observing the cross section of the dielectric layer 8 with a scanning electron microscope. In the cross section of the dielectric layer 8, if the gap 23 is substantially circular, the diameter is the size of the gap 23. If the gap 23 is not circular, a circle inscribed in the gap 23 is assumed, and the diameter of the inscribed circle is the size of the gap 23.
  • the dielectric glass used to form the dielectric layer 8 contained 20% by weight or more of lead oxide in order to enable firing at about 450 ° C. to 600 ° C.
  • the dielectric glass particles do not contain lead oxide for environmental consideration. That is, the dielectric layer 8 according to Example 1 does not contain lead oxide.
  • the dielectric paste according to Example 1 is composed of a dielectric glass slurry in which multicomponent fine particles 20 and inorganic fine particles 21 are dispersed and a vehicle.
  • the multi-component fine particle 20 includes one inorganic oxide selected from the group of SiO 2 , Al 2 O 3 , ZnO, and Ga 2 O 3 , and B, Al, Mg, Ca, Sr, Ba, and Zn.
  • a multi-component alkoxide solution containing at least one selected from the group is prepared and produced by adding an alkaline catalyst.
  • the concentration of the component in the multi-component alkoxide solution as an additive is 10 mol% or more and 20 mol% or less.
  • the additive is preferably 10 mol% or more.
  • it is preferably 20 mol% or less in order to suppress the deterioration of the dielectric glass fine particles due to the aggregation of the dielectric glass fine particles or the decrease in water resistance in the dielectric paste or before the dielectric baking step.
  • the element of the component used as an additive needs to be a component different from said inorganic oxide. Further, the mixing ratio of the inorganic oxide and the multi-component alkoxide solution is appropriately blended so as to have the above-mentioned concentration.
  • a diluted alkaline aqueous solution such as an aqueous sodium hydroxide solution or an aqueous ammonia solution is used.
  • the addition amount of the alkaline catalyst is preferably 0.1 to 6% by weight of the whole solution.
  • the above-mentioned concentration range of inorganic oxide, multi-component alkoxide solution and alkaline catalyst are mixed and further stirred for a predetermined time. This creates a suspension. Fine particles are collected by filtering the suspension. By firing the fine particles, the multicomponent fine particles 20 are obtained.
  • the firing temperature of the fine particles is preferably 600 ° C. or higher as a temperature at which organic components around the fine particles can be removed by combustion and the fine particles do not fuse with each other. Furthermore, it is preferably below the softening point of the glass forming the multicomponent fine particles 20.
  • the range of the firing temperature is approximately 600 ° C. to 1000 ° C.
  • the inorganic fine particles 21 are preferably SiO 2 , Al 2 O 3 , ZnO, Ga 2 O 3 and the like as inorganic materials. SiO 2 is particularly preferred.
  • the dielectric glass slurry is composed of 10% to 65% by weight of the dielectric glass fine particles and 35% to 90% by weight of the solvent.
  • the solvent include alcohols, glycols, and water.
  • a lubricant or a dispersant may be added to the dielectric glass slurry.
  • the dielectric glass slurry having such a configuration improves dispersibility.
  • the dielectric paste includes a dielectric glass slurry manufactured as described above.
  • a binder component such as a vehicle is mixed and dispersed in the dielectric paste as necessary.
  • the binder component is terpineol or butyl carbitol acetate containing 1% to 20% by weight of ethyl cellulose or acrylic resin.
  • dioctyl phthalate, dibutyl phthalate, triphenyl phosphate, and tributyl phosphate may be added to the dielectric paste as a plasticizer.
  • the multi-component fine particles 20 and the inorganic fine particles 21 are uniformly dispersed in the dielectric paste.
  • a screen printing method, a die coating method, or the like is used as a method for forming the dielectric layer 8.
  • a dielectric paste is applied on the front glass substrate 3 on which the display electrodes 6 are provided.
  • the applied dielectric paste constitutes a dielectric paste layer.
  • the film thickness of the dielectric paste layer is appropriately set in consideration of the rate of shrinkage due to firing.
  • the dielectric paste layer is dried in a temperature range of 100 ° C. to 200 ° C.
  • the dielectric paste layer is fired at a temperature range of 450 ° C. to 600 ° C. As a result, as shown in FIG.
  • the surfaces of the multi-component fine particles 20 are fused to the adjacent multi-component fine particles 20. Further, the surface of the multi-component fine particle 20 is fused with the adjacent inorganic fine particle 21. That is, the dielectric layer 8 according to the example 1 is composed of the multi-component fine particles 20 and the inorganic fine particles 21 made of a single component such as SiO 2 fine particles. The dielectric layer 8 has a gap 23.
  • a sheet obtained by applying a dielectric paste on a film and drying it can be used. Specifically, the dielectric paste formed on the sheet is transferred to the front glass substrate 3. Also with this method, the dielectric layer 8 having the above-described configuration can be formed.
  • the luminance of the PDP 1 is improved as the thickness of the dielectric layer 8 is reduced. Further, the discharge voltage of the PDP 1 decreases as the thickness of the dielectric layer 8 decreases. Therefore, it is preferable that the thickness of the dielectric layer 8 is as small as possible within a range where the withstand voltage does not decrease.
  • the film thickness of the dielectric layer 8 is not less than 10 ⁇ m and not more than 20 ⁇ m from both the viewpoint of dielectric strength and the viewpoint of visible light transmittance.
  • the dielectric layer 8 according to the example 2 is composed of multi-component coated fine particles 22 and inorganic fine particles 21 made of a single component such as SiO 2 fine particles.
  • the dielectric layer 8 has a gap 23.
  • the dielectric layer 8 may include only the multi-component coated fine particles 22 without including the inorganic fine particles 21.
  • the dielectric layer is composed only of inorganic fine particles composed of a single component such as SiO 2 fine particles.
  • the multi-component coated fine particle 22 is selected from the group consisting of silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO), and gallium oxide (Ga 2 O 3 ) 1
  • the dielectric layer 8 according to the example 2 is not composed of only the inorganic fine particles 21 made of a single component such as SiO 2 fine particles.
  • the dielectric layer 8 according to the example 2 includes multi-component coated fine particles 22. Therefore, in the manufacturing process of the PDP 1, the surfaces of the multi-component coated fine particles 22 are fused with the adjacent multi-component coated fine particles 22. The multi-component coated fine particles 22 are fused to the adjacent inorganic fine particles 21 on the surfaces. Therefore, the dielectric layer 8 having higher mechanical strength and higher withstand voltage can be obtained.
  • the air gap 23 in the dielectric layer 8 is an important factor that determines the relative permittivity and light transmittance.
  • the size of the gap 23 is determined by the particle size of the dielectric glass fine particles constituting the dielectric layer 8.
  • the size of the gap 23 is preferably 100 nm or less, which corresponds to about a quarter of the shortest wavelength of visible light. This is because by suppressing the light scattering in the gap 23, a visible light transmittance of 75% or more can be obtained in the dielectric layer 8.
  • the size of the gap 23 is more preferably 50 nm or less. Further, light scattering is suppressed.
  • the average particle size of the dielectric glass particles is preferably about 1.5 times the size of the gap 23. That is, the average particle size of the dielectric glass fine particles is preferably 150 nm or less. When the size of the void 23 is 50 nm or less, the average particle size of the dielectric glass fine particles is preferably 75 nm or less.
  • the average particle size of the dielectric glass particles is preferably 10 nm or more.
  • the average particle diameter is the volume cumulative average diameter (D50).
  • a laser diffraction particle size distribution measuring device MT-3300 manufactured by Nikkiso Co., Ltd. was used for measuring the average particle size.
  • the size of the void 23 was measured by observing the cross section of the dielectric layer 8 with a scanning electron microscope. In the cross section of the dielectric layer 8, if the gap 23 is substantially circular, the diameter is the size of the gap 23. If the gap 23 is not circular, a circle inscribed in the gap 23 is assumed, and the diameter of the inscribed circle is the size of the gap 23.
  • the dielectric glass used to form the dielectric layer 8 contained 20% by weight or more of lead oxide in order to enable firing at about 450 ° C. to 600 ° C.
  • the dielectric glass particles do not contain lead oxide for environmental consideration. That is, the dielectric layer 8 according to Example 2 does not contain lead oxide.
  • the dielectric paste according to Example 2 is composed of a dielectric glass slurry in which multi-component coated fine particles 22 and inorganic fine particles 21 are dispersed, and a vehicle.
  • the multi-component coated fine particles 22 are generated by the following procedure as an example.
  • a multi-component alkoxide solution containing at least one selected from the group consisting of B, Al, Mg, Ca, Sr, Ba and Zn is prepared.
  • fine particles of one kind of inorganic oxide selected from the group of SiO 2 , Al 2 O 3 , ZnO and Ga 2 O 3 are added to the multicomponent alkoxide solution.
  • the multi-component alkoxide solution is stirred for a predetermined time. By the stirring, a coating layer having components contained in the multi-component alkoxide solution is formed on the surface of the fine particles.
  • the fine particles dispersed in the multi-component alkoxide solution are filtered to collect the fine particles with the coating layer formed. Thereafter, the multi-component coated fine particles 22 are obtained by firing the fine particles on which the coating layer is formed.
  • the firing temperature of the fine particles on which the coat layer is formed is 600 ° C. or higher as the temperature at which the organic components contained in the coat layer and moisture can be removed and the fine particles on which the coat layer is formed are not fused together. Is preferred. Furthermore, it is preferable that it is below the softening point of the glass which forms a coating layer.
  • the range of the firing temperature is approximately 600 ° C. to 1000 ° C.
  • the thickness of the coating layer formed on the surface of the fine particles is preferably 5 nm or more so that the multi-component coated fine particles 22 can be fused at a temperature of 600 ° C. or lower when forming the dielectric layer. Furthermore, in order not to increase the relative dielectric constant of the dielectric layer 8, it is preferably 100 nm or less.
  • the inorganic fine particles 21 are preferably SiO 2 , Al 2 O 3 , ZnO, Ga 2 O 3 and the like as inorganic materials. SiO 2 is particularly preferred.
  • the dielectric glass slurry is composed of 10% to 65% by weight of the dielectric glass fine particles and 35% to 90% by weight of the solvent.
  • the solvent include alcohols, glycols, and water.
  • a lubricant or a dispersant may be added to the dielectric glass slurry.
  • the dielectric glass slurry having such a configuration improves dispersibility.
  • the dielectric paste includes a dielectric glass slurry manufactured as described above.
  • a binder component such as a vehicle is mixed and dispersed in the dielectric paste as necessary.
  • the binder component is terpineol or butyl carbitol acetate containing 1% to 20% by weight of ethyl cellulose or acrylic resin.
  • dioctyl phthalate, dibutyl phthalate, triphenyl phosphate, and tributyl phosphate may be added to the dielectric paste as a plasticizer.
  • the multi-component coated fine particles 22 and the inorganic fine particles 21 are uniformly dispersed in the dielectric paste.
  • a screen printing method, a die coating method, or the like is used as a method for forming the dielectric layer 8.
  • a dielectric paste is applied on the front glass substrate 3 on which the display electrodes 6 are provided.
  • the applied dielectric paste constitutes a dielectric paste layer.
  • the film thickness of the dielectric paste layer is appropriately set in consideration of the rate of shrinkage due to firing.
  • the dielectric paste layer is dried in a temperature range of 100 ° C. to 200 ° C.
  • the dielectric paste layer is fired at a temperature range of 450 ° C. to 600 ° C. Thereby, as shown in FIG.
  • the surfaces of the multi-component coated fine particles 22 are fused to the adjacent multi-component coated fine particles 22.
  • the multi-component coated fine particles 22 are fused to the adjacent inorganic fine particles 21 on the surfaces. That is, the dielectric layer 8 according to the example 2 is composed of the multi-component coated fine particles 22 and the inorganic fine particles 21 made of a single component such as SiO 2 fine particles.
  • the dielectric layer 8 has a gap 23.
  • a sheet obtained by applying a dielectric paste on a film and drying it can be used. Specifically, the dielectric paste formed on the sheet is transferred to the front glass substrate 3. Also with this method, the dielectric layer 8 having the above-described configuration can be formed.
  • the luminance of the PDP 1 is improved as the thickness of the dielectric layer 8 is reduced. Further, the discharge voltage of the PDP 1 decreases as the thickness of the dielectric layer 8 decreases. Therefore, it is preferable that the thickness of the dielectric layer 8 is as small as possible within a range where the withstand voltage does not decrease.
  • the film thickness of the dielectric layer 8 is not less than 10 ⁇ m and not more than 20 ⁇ m from both the viewpoint of dielectric strength and the viewpoint of visible light transmittance.
  • the PDP 1 includes a front plate 2 and a back plate 10 provided to face the front plate 2.
  • the front plate 2 has a display electrode 6 and a dielectric layer 8 that covers the display electrode 6.
  • the dielectric layer 8 includes inorganic fine particles 21 and multi-component fine particles 20 which are a plurality of fine particles mainly composed of an oxide of an inorganic component.
  • the multi-component fine particle 20 is at least one selected from the group of B, Al, Mg, Ca, Sr, Ba, and Zn, and includes a component different from the inorganic component of the inorganic fine particle 21.
  • the surface of the multi-component fine particle 20 is fused with the adjacent multi-component fine particle 20. Further, the multi-component fine particles 20 are fused with the adjacent inorganic fine particles 21 on the surfaces. Furthermore, the dielectric layer 8 has a gap 23.
  • the bonding force between the fine particles is maintained.
  • the dielectric glass particles are not dissolved, and voids 23 remain between the fine particles. Therefore, the dielectric constant of the dielectric layer 8 can be reduced.
  • the PDP 1 of the present embodiment includes a front plate 2 and a back plate 10 provided to face the front plate 2.
  • the front plate 2 has a display electrode 6 and a dielectric layer 8 that covers the display electrode 6.
  • the dielectric layer 8 includes inorganic fine particles 21 and multi-component coated fine particles 22 which are a plurality of fine particles mainly composed of an oxide of an inorganic component.
  • the multi-component coated fine particles 22 are at least one selected from the group consisting of B, Al, Mg, Ca, Sr, Ba, and Zn, and are coated layers that are films containing components different from the inorganic components of the inorganic fine particles 21. It is covered.
  • the surfaces of the multi-component coated fine particles 22 are fused with the adjacent multi-component coated fine particles 22.
  • the multi-component fine particles 20 are fused with the adjacent inorganic fine particles 21 on the surface.
  • the dielectric layer 8 has a gap 23.
  • the bonding force between the fine particles is maintained.
  • the dielectric glass particles are not dissolved, and voids 23 remain between the fine particles. Therefore, the dielectric constant of the dielectric layer 8 can be reduced.
  • the technique disclosed here is useful for a display device with a large screen by realizing a PDP capable of suppressing the fluctuation of the discharge start voltage.

Abstract

A plasma display panel is provided with a front surface plate and a back surface plate provided on the opposite side to the front surface plate. The front surface plate has display electrodes and a dielectric layer that covers the display electrodes. The dielectric layer includes a plurality of microparticles the main component of which is an inorganic oxide. At least some of the microparticles of the plurality of microparticles are at least one species selected from the group of B, Al, Mg, Ca, Sr, Ba, and Zn and are multi-component microparticles containing components that differ from the inorganic components constituting the inorganic oxide.

Description

プラズマディスプレイパネルおよびその製造方法Plasma display panel and manufacturing method thereof
 ここに開示された技術は、表示デバイスなどに用いられるプラズマディスプレイパネルおよびその製造方法に関する。 The technology disclosed herein relates to a plasma display panel used for a display device or the like and a manufacturing method thereof.
 プラズマディスプレイパネル(以下、PDPと称する)の表示電極を構成するバス電極には、導電性を確保するための銀電極が用いられている。バス電極を覆う誘電体層には、酸化鉛を主成分とする低融点ガラスが用いられている。近年、環境への配慮から、鉛成分を含まない誘電体層が用いられている(例えば、特許文献1参照)。 Silver electrodes for ensuring conductivity are used for bus electrodes constituting display electrodes of a plasma display panel (hereinafter referred to as PDP). For the dielectric layer covering the bus electrode, low melting point glass mainly composed of lead oxide is used. In recent years, a dielectric layer not containing a lead component has been used in consideration of the environment (for example, see Patent Document 1).
 PDPの消費電力低減のため、誘電体層の静電容量を小さくし、無効電力を低減することが求められている。すなわち、誘電体層の比誘電率を小さくすることが求められている。酸化鉛や酸化ビスマスの代りにアルカリ金属の酸化物を含むホウ酸亜鉛系ガラスを用い、比誘電率ε=6~7の誘電体層を形成する提案がなされている(例えば、特許文献1参照)。また、比誘電率ε=2.8~3.0のシロキサン結合を有するシリコン樹脂を用い、前面パネルの誘電体層を形成するという提案もなされている(例えば、特許文献2参照)。 In order to reduce the power consumption of the PDP, it is required to reduce the capacitance of the dielectric layer and reduce the reactive power. That is, it is required to reduce the dielectric constant of the dielectric layer. A proposal has been made to form a dielectric layer having a relative dielectric constant ε = 6 to 7 using zinc borate glass containing an alkali metal oxide instead of lead oxide or bismuth oxide (see, for example, Patent Document 1). ). In addition, a proposal has been made to form a dielectric layer of a front panel using a silicon resin having a siloxane bond with a relative dielectric constant ε = 2.8 to 3.0 (see, for example, Patent Document 2).
特開平09-278482号公報JP 09-278482 A 国際公開第01/071761号International Publication No. 01/071761
 第一の開示にかかるPDPは、前面板と、前面板と対向して設けられた背面板と、を備える。前面板は、表示電極と表示電極を覆う誘電体層を有する。誘電体層は、無機酸化物を主成分とする複数の微粒子を含む。複数の微粒子のうち少なくとも一部の微粒子は、B、Al、Mg、Ca、Sr、BaおよびZnの群から選ばれる少なくとも1種であって、かつ、無機酸化物を構成する無機成分とは異なる成分を含む多成分微粒子である。 The PDP according to the first disclosure includes a front plate and a back plate provided to face the front plate. The front plate has a display electrode and a dielectric layer covering the display electrode. The dielectric layer includes a plurality of fine particles mainly composed of an inorganic oxide. At least some of the plurality of fine particles are at least one selected from the group consisting of B, Al, Mg, Ca, Sr, Ba and Zn, and are different from the inorganic component constituting the inorganic oxide. Multi-component fine particles containing components.
 第一の開示にかかるPDPの製造方法は、基板に誘電体ペーストを塗布することにより、誘電体ペースト層を形成すること、次に前記誘電体ペースト層を、焼成することにより誘電体層を形成すること、を備える。誘電体ペーストは、無機酸化物を主成分とする複数の微粒子を含む。複数の微粒子のうち少なくとも一部の微粒子は、B、Al、Mg、Ca、Sr、BaおよびZnの群から選ばれる少なくとも1種であって、かつ、無機酸化物を構成する無機成分とは異なる成分を含む多成分微粒子である。 A method of manufacturing a PDP according to the first disclosure includes forming a dielectric paste layer by applying a dielectric paste to a substrate, and then forming the dielectric layer by firing the dielectric paste layer. Providing. The dielectric paste includes a plurality of fine particles mainly composed of an inorganic oxide. At least some of the plurality of fine particles are at least one selected from the group consisting of B, Al, Mg, Ca, Sr, Ba and Zn, and are different from the inorganic component constituting the inorganic oxide. Multi-component fine particles containing components.
 第二の開示にかかるPDPは、前面板と、前面板と対向して設けられた背面板と、を備える。前面板は、表示電極と表示電極を覆う誘電体層を有する。誘電体層は、無機酸化物を主成分とする複数の微粒子を含む。複数の微粒子のうち少なくとも一部の微粒子は、B、Al、Mg、Ca、Sr、BaおよびZnの群から選ばれる少なくとも1種であって、かつ、無機酸化物を構成する無機成分とは異なる成分を含む膜で被覆された多成分コート微粒子である。 The PDP according to the second disclosure includes a front plate and a back plate provided to face the front plate. The front plate has a display electrode and a dielectric layer covering the display electrode. The dielectric layer includes a plurality of fine particles mainly composed of an inorganic oxide. At least some of the plurality of fine particles are at least one selected from the group consisting of B, Al, Mg, Ca, Sr, Ba and Zn, and are different from the inorganic component constituting the inorganic oxide. Multi-component coated fine particles coated with a film containing components.
 第二の開示にかかるPDPの製造方法は、基板に誘電体ペーストを塗布することにより、誘電体ペースト層を形成すること、次に前記誘電体ペースト層を、焼成することにより誘電体層を形成すること、を備える。誘電体ペーストは、無機酸化物を主成分とする複数の微粒子を含む。複数の微粒子のうち少なくとも一部の微粒子は、B、Al、Mg、Ca、Sr、BaおよびZnの群から選ばれる少なくとも1種であって、かつ、無機酸化物を構成する無機成分とは異なる成分を含む膜で被覆された多成分コート微粒子である。 A method of manufacturing a PDP according to the second disclosure is to form a dielectric paste layer by applying a dielectric paste to a substrate, and then form the dielectric layer by firing the dielectric paste layer. Providing. The dielectric paste includes a plurality of fine particles mainly composed of an inorganic oxide. At least some of the plurality of fine particles are at least one selected from the group consisting of B, Al, Mg, Ca, Sr, Ba and Zn, and are different from the inorganic component constituting the inorganic oxide. Multi-component coated fine particles coated with a film containing components.
図1は、実施の形態にかかるPDPの概略構造を示す斜視図である。FIG. 1 is a perspective view illustrating a schematic structure of a PDP according to an embodiment. 図2は、実施の形態にかかる前面板の構造を示す断面図である。FIG. 2 is a cross-sectional view illustrating the structure of the front plate according to the embodiment. 図3は、実施例1にかかる誘電体層を示す図である。FIG. 3 is a diagram illustrating a dielectric layer according to the first example. 図4は、実施例2にかかる誘電体層を示す図である。FIG. 4 is a diagram illustrating a dielectric layer according to the second embodiment.
 [1.PDP1の構成]
 本実施の形態のPDP1は、交流面放電型PDPである。図1に示すように、PDP1は前面ガラス基板3などよりなる前面板2と、背面ガラス基板11などよりなる背面板10とが対向して配置される。前面板2と背面板10の外周部がガラスフリットなどからなる封着材によって気密封着されている。封着されたPDP1内部の放電空間16には、NeおよびXeなどの放電ガスが55kPa~80kPaの圧力で封入されている。
[1. Configuration of PDP1]
The PDP 1 of the present embodiment is an AC surface discharge type PDP. As shown in FIG. 1, in the PDP 1, a front plate 2 made of a front glass substrate 3 and the like and a back plate 10 made of a back glass substrate 11 and the like are arranged to face each other. The outer peripheral portions of the front plate 2 and the back plate 10 are hermetically sealed with a sealing material made of glass frit or the like. The discharge space 16 inside the sealed PDP 1 is filled with a discharge gas such as Ne and Xe at a pressure of 55 kPa to 80 kPa.
 前面ガラス基板3上には、走査電極4および維持電極5よりなる一対の帯状の表示電極6とブラックストライプ(遮光層)7が互いに平行にそれぞれ複数列配置される。前面ガラス基板3上には、表示電極6と遮光層7とを覆うようにコンデンサとしての働きをする誘電体層8が設けられている。さらに、誘電体層8の表面に酸化マグネシウム(MgO)などからなる保護層9が設けられている。 On the front glass substrate 3, a pair of strip-shaped display electrodes 6 composed of scanning electrodes 4 and sustaining electrodes 5 and black stripes (light shielding layers) 7 are arranged in a plurality of rows in parallel with each other. A dielectric layer 8 serving as a capacitor is provided on the front glass substrate 3 so as to cover the display electrode 6 and the light shielding layer 7. Further, a protective layer 9 made of magnesium oxide (MgO) or the like is provided on the surface of the dielectric layer 8.
 また、背面ガラス基板11上には、前面板2の表示電極6と直交する方向に、複数の帯状のアドレス電極12が互いに平行に配置される。さらに、アドレス電極12を覆うように下地誘電体層13が設けられている。さらに、アドレス電極12の間に形成された下地誘電体層13上には放電空間16を区切る所定の高さの隔壁14が設けられている。隔壁14の間には、紫外線によって赤色に発光する蛍光体層15と、青色に発光する蛍光体層15および緑色に発光する蛍光体層15が順番に設けられている。 Further, on the rear glass substrate 11, a plurality of strip-like address electrodes 12 are arranged in parallel to each other in a direction orthogonal to the display electrodes 6 of the front plate 2. Further, a base dielectric layer 13 is provided so as to cover the address electrodes 12. Further, a partition wall 14 having a predetermined height is provided on the base dielectric layer 13 formed between the address electrodes 12 to divide the discharge space 16. Between the partition walls 14, a phosphor layer 15 that emits red light by ultraviolet rays, a phosphor layer 15 that emits blue light, and a phosphor layer 15 that emits green light are sequentially provided.
 表示電極6とアドレス電極12とが交差する位置に放電セルが設けられている。カラー表示をする画素は、赤色に発光する蛍光体層15を有する放電セルと、青色に発光する蛍光体層15を有する放電セルと、緑色に発光する蛍光体層15を有する放電セルとを有する。 A discharge cell is provided at a position where the display electrode 6 and the address electrode 12 intersect. The pixel for color display includes a discharge cell having a phosphor layer 15 that emits red light, a discharge cell having a phosphor layer 15 that emits blue light, and a discharge cell having a phosphor layer 15 that emits green light. .
 [2.PDP1の製造方法]
 [2-1.前面板2の製造方法]
 前面板2については、図2が参照される。まず、前面ガラス基板3上に、走査電極4および維持電極5と遮光層7とが形成される。表示電極6は、走査電極4および維持電極5を有する。走査電極4および維持電極5は、導電性を確保するための銀(Ag)を含む白色電極4b、5bを有する。また、走査電極4および維持電極5は、画像表示面のコントラストを向上するため黒色顔料を含む黒色電極4a、5aを有する。白色電極4bは、黒色電極4aに積層される。白色電極5bは、黒色電極5aに積層される。
[2. Manufacturing method of PDP1]
[2-1. Manufacturing method of front plate 2]
FIG. 2 is referred to for the front plate 2. First, the scan electrode 4, the sustain electrode 5, and the light shielding layer 7 are formed on the front glass substrate 3. The display electrode 6 has a scan electrode 4 and a sustain electrode 5. Scan electrode 4 and sustain electrode 5 have white electrodes 4b and 5b containing silver (Ag) for ensuring conductivity. Scan electrode 4 and sustain electrode 5 have black electrodes 4a and 5a containing a black pigment in order to improve the contrast of the image display surface. The white electrode 4b is laminated on the black electrode 4a. The white electrode 5b is laminated on the black electrode 5a.
 具体的には、黒色顔料を含む黒色ペーストが、スクリーン印刷法などによって前面ガラス基板3に塗布されることにより、黒色ペースト層(図示せず)が形成される。次に、黒色ペースト層(図示せず)が、フォトリソグラフィ法によりパターニングされる。次に、銀(Ag)を含む白色ペーストが、スクリーン印刷法などによって、黒色ペースト層(図示せず)上に塗布されることにより、白色ペースト層(図示せず)が形成される。次に、白色ペースト層(図示せず)と黒色ペースト層(図示せず)が、フォトリソグラフィ法によりパターニングされる。その後、現像ステップを経て、黒色ペースト層(図示せず)および白色ペースト層(図示せず)が焼成されることにより、表示電極6である白色電極4b、5b、黒色電極4a、5a、および遮光層7が形成される。 Specifically, a black paste layer (not shown) is formed by applying a black paste containing a black pigment to the front glass substrate 3 by a screen printing method or the like. Next, a black paste layer (not shown) is patterned by photolithography. Next, a white paste containing silver (Ag) is applied onto a black paste layer (not shown) by screen printing or the like, thereby forming a white paste layer (not shown). Next, a white paste layer (not shown) and a black paste layer (not shown) are patterned by photolithography. Thereafter, a black paste layer (not shown) and a white paste layer (not shown) are baked through a development step, whereby the white electrodes 4b and 5b, the black electrodes 4a and 5a, which are the display electrodes 6, and the light shielding. Layer 7 is formed.
 次に、走査電極4、維持電極5および遮光層7を覆う誘電体層8が形成される。誘電体層8については、後に詳しく述べられる。 Next, a dielectric layer 8 that covers the scan electrode 4, the sustain electrode 5, and the light shielding layer 7 is formed. The dielectric layer 8 will be described in detail later.
 次に、誘電体層8上に酸化マグネシウム(MgO)などからなる保護層9が真空蒸着法などにより形成される。 Next, a protective layer 9 made of magnesium oxide (MgO) or the like is formed on the dielectric layer 8 by a vacuum deposition method or the like.
 以上の工程により前面ガラス基板3上に走査電極4、維持電極5、遮光層7、誘電体層8および保護層9を有する前面板2が完成する。 The front plate 2 having the scanning electrode 4, the sustaining electrode 5, the light shielding layer 7, the dielectric layer 8, and the protective layer 9 on the front glass substrate 3 is completed through the above steps.
 なお、前面板2は、遮光層7を有さなくてもよい。 The front plate 2 may not have the light shielding layer 7.
 [2-2.背面板10の製造方法]
 背面板10については、図1が参照される。まず、背面ガラス基板11上に、アドレス電極12が形成される。具体的には、銀(Ag)を含むペーストがスクリーン印刷法により、背面ガラス基板11上に塗布されることにより、アドレス電極ペースト層(図示せず)が形成される。次に、アドレス電極ペースト層(図示せず)が、フォトリソグラフィ法により、パターニングされることにより、アドレス電極12用の構成物となる材料層(図示せず)が形成される。その後、材料層(図示せず)が所定の温度で焼成されることにより、アドレス電極12が形成される。ここで、ペーストをスクリーン印刷する方法以外にも、スパッタ法、蒸着法などにより、金属膜を背面ガラス基板11上に形成する方法が採用される。
[2-2. Manufacturing method of back plate 10]
For the back plate 10, reference is made to FIG. First, the address electrode 12 is formed on the rear glass substrate 11. Specifically, an address electrode paste layer (not shown) is formed by applying a paste containing silver (Ag) onto the rear glass substrate 11 by screen printing. Next, an address electrode paste layer (not shown) is patterned by a photolithography method to form a material layer (not shown) to be a component for the address electrode 12. Thereafter, the address layer 12 is formed by firing a material layer (not shown) at a predetermined temperature. Here, in addition to the method of screen printing the paste, a method of forming a metal film on the rear glass substrate 11 by a sputtering method, a vapor deposition method or the like is employed.
 次に、アドレス電極12が形成された背面ガラス基板11上にダイコート法などによりアドレス電極12を覆うように下地誘電体ペーストが塗布されることにより、下地誘電体ペースト層(図示せず)が形成される。その後、下地誘電体ペースト層(図示せず)が焼成されることにより、下地誘電体層13が形成される。なお、下地誘電体ペーストはガラス粉末などの下地誘電体材料とバインダおよび溶剤を含んだ塗料である。 Next, a base dielectric paste layer (not shown) is formed by applying a base dielectric paste on the back glass substrate 11 on which the address electrodes 12 have been formed so as to cover the address electrodes 12 by a die coating method or the like. Is done. Thereafter, the base dielectric paste layer (not shown) is fired to form the base dielectric layer 13. The base dielectric paste is a paint containing a base dielectric material such as glass powder, a binder, and a solvent.
 次に、下地誘電体層13上に隔壁材料を含む隔壁形成用ペーストが塗布されることにより、隔壁ペースト層(図示せず)が形成される。隔壁ペースト層(図示せず)がフォトリソグラフィ法により、パターニングされることにより、隔壁14の材料層となる構成物(図示せず)が形成される。次に、構成物(図示せず)が、焼成されることにより隔壁14が形成される。ここで、下地誘電体層13上に塗布された隔壁ペースト層をパターニングする方法としては、フォトリソグラフィ法の他に、サンドブラスト法などが採用される。 Next, a partition wall paste (not shown) is formed by applying a partition wall forming paste including a partition wall material on the base dielectric layer 13. A partition wall paste layer (not shown) is patterned by photolithography to form a structure (not shown) that becomes a material layer of the partition wall 14. Next, the partition 14 is formed by baking a structure (not shown). Here, as a method of patterning the barrier rib paste layer applied on the base dielectric layer 13, a sandblast method or the like is adopted in addition to the photolithography method.
 次に、隣接する隔壁14間の下地誘電体層13上および隔壁14の側面に蛍光体材料を含む蛍光体ペーストが塗布される。次に、蛍光体ペーストが焼成されることにより蛍光体層15が形成される。 Next, a phosphor paste containing a phosphor material is applied on the underlying dielectric layer 13 between the adjacent barrier ribs 14 and on the side surfaces of the barrier ribs 14. Next, the phosphor layer 15 is formed by firing the phosphor paste.
 以上の工程により、背面ガラス基板11上にアドレス電極12、下地誘電体層13、隔壁14および蛍光体層15を有する背面板10が完成する。 Through the above steps, the back plate 10 having the address electrodes 12, the base dielectric layer 13, the partition walls 14 and the phosphor layer 15 on the back glass substrate 11 is completed.
 [2-3.前面板2と背面板10との組立方法]
 まず、表示電極6とアドレス電極12とが直交するように、前面板2と背面板10とが対向配置される。次に、前面板2と背面板10の周囲がガラスフリットで封着される。次に、放電空間16にNe、Xeなどを含む放電ガスが封入されることによりPDP1が完成する。
[2-3. Assembly method of front plate 2 and rear plate 10]
First, the front plate 2 and the back plate 10 are arranged to face each other so that the display electrodes 6 and the address electrodes 12 are orthogonal to each other. Next, the periphery of the front plate 2 and the back plate 10 is sealed with glass frit. Next, a discharge gas containing Ne, Xe or the like is sealed in the discharge space 16 to complete the PDP 1.
 [3.誘電体層8の詳細]
 誘電体層8の比誘電率を低減するために、二酸化珪素からなるナノメーターサイズの微粒子(以下、SiO微粒子と称する)を用いて誘電体層8を形成する技術がある。具体的には、複数のSiO微粒子を分散させた誘電体ペーストが用いられる。誘電体ペーストは、基板上に塗布される。塗布された誘電体ペーストには、適宜熱処理が施される。
[3. Details of Dielectric Layer 8]
To reduce the dielectric constant of the dielectric layer 8, nanometer-sized fine particles made of silicon dioxide (hereinafter, referred to as SiO 2 fine particles) is a technique for forming a dielectric layer 8 using. Specifically, a dielectric paste in which a plurality of SiO 2 fine particles are dispersed is used. The dielectric paste is applied on the substrate. The applied dielectric paste is appropriately heat treated.
 しかしながら、このようなSiO微粒子で構成された誘電体層8においては、SiO微粒子間の結合力が低下する場合がある。すなわち、誘電体層8の機械的強度が低下して、誘電体層8にクラックが発生するといった課題があった。 However, in the dielectric layer 8 composed of such SiO 2 fine particles, the bonding force between the SiO 2 fine particles may be reduced. That is, there is a problem that the mechanical strength of the dielectric layer 8 is lowered and cracks are generated in the dielectric layer 8.
 また、誘電体層8は、低比誘電率、高耐電圧かつ高光透過率を要求される。これらの特性は、誘電体層8の構造に大きく依存する。さらに、緻密なSiO微粒子による誘電体層8とガラス基板との熱膨張係数の差に起因して誘電体層8の表面にクラックが発生しやすくなる。また、SiO微粒子を用いて、従来の製造プロセスにおける焼成温度で熱処理を行うと、SiO微粒子間の結合力が低下する場合がある。つまり、誘電体層8に多くの隙間が形成される。よって、PDPを画像表示するために電圧が印加された時に、誘電体層8に絶縁破壊が生じやすい。 The dielectric layer 8 is required to have a low relative dielectric constant, a high withstand voltage, and a high light transmittance. These characteristics greatly depend on the structure of the dielectric layer 8. Furthermore, cracks are likely to occur on the surface of the dielectric layer 8 due to the difference in thermal expansion coefficient between the dielectric layer 8 and the glass substrate due to dense SiO 2 fine particles. Further, when heat treatment is performed using SiO 2 fine particles at the firing temperature in the conventional manufacturing process, the bonding force between the SiO 2 fine particles may be reduced. That is, many gaps are formed in the dielectric layer 8. Therefore, dielectric breakdown is likely to occur in the dielectric layer 8 when a voltage is applied to display an image of the PDP.
 [3-1.実施例1]
 実施例1にかかる誘電体層8は、図3に示すように多成分微粒子20と、SiO微粒子など単一の成分からなる無機微粒子21によって構成されている。また、誘電体層8は、空隙23を有する。ここで、誘電体層8は無機微粒子21を含まず多成分微粒子20のみから構成されても良い。従来技術においては、誘電体層はSiO微粒子など単一の成分からなる無機微粒子21によってのみ構成されることになる。
[3-1. Example 1]
As shown in FIG. 3, the dielectric layer 8 according to the example 1 is composed of multi-component fine particles 20 and inorganic fine particles 21 made of a single component such as SiO 2 fine particles. The dielectric layer 8 has a gap 23. Here, the dielectric layer 8 may include only the multi-component fine particles 20 without including the inorganic fine particles 21. In the prior art, the dielectric layer is composed only of inorganic fine particles 21 made of a single component such as SiO 2 fine particles.
 多成分微粒子20は、無機酸化物を主成分とする多成分系微粒子である。多成分微粒子20は、一例として、珪素酸化物(SiO)、アルミニウム酸化物(Al)、亜鉛酸化物(ZnO)およびガリウム酸化物(Ga)の群から選ばれる1種の無機酸化物と、ホウ素(B)、アルミニウム(Al)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)および亜鉛(Zn)の群から選ばれる少なくとも1種を含む多成分系アルコキシド溶液とが調整され、アルカリ性触媒の添加により生成される。 The multicomponent fine particles 20 are multicomponent fine particles mainly composed of an inorganic oxide. As an example, the multi-component fine particles 20 are selected from the group consisting of silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO), and gallium oxide (Ga 2 O 3 ). And at least one selected from the group consisting of boron (B), aluminum (Al), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba) and zinc (Zn) A multi-component alkoxide solution is prepared and produced by the addition of an alkaline catalyst.
 実施例1にかかる誘電体層8は、SiO微粒子など単一の成分からなる無機微粒子21のみで構成されない。実施例1にかかる誘電体層8は、多成分微粒子20を含む。よって、PDP1の製造過程において、多成分微粒子20は、隣接する多成分微粒子20と表面同士が融着する。また、多成分微粒子20は、隣接する無機微粒子21と表面同士が融着する。したがって、より機械強度が高く、絶縁耐圧が高い誘電体層8を得ることができる。 The dielectric layer 8 according to the example 1 is not composed of only the inorganic fine particles 21 made of a single component such as SiO 2 fine particles. The dielectric layer 8 according to the example 1 includes multi-component fine particles 20. Therefore, in the manufacturing process of the PDP 1, the surfaces of the multicomponent fine particles 20 are fused to the adjacent multicomponent fine particles 20. Further, the surface of the multi-component fine particle 20 is fused with the adjacent inorganic fine particle 21. Therefore, the dielectric layer 8 having higher mechanical strength and higher withstand voltage can be obtained.
 また、多成分微粒子20および無機微粒子21(以下、両者をまとめて誘電体ガラス微粒子と称する)の平均粒径は、10nm以上、150nm以下が好ましい。これは以下の理由に基づく。 The average particle size of the multi-component fine particles 20 and the inorganic fine particles 21 (hereinafter collectively referred to as dielectric glass fine particles) is preferably 10 nm or more and 150 nm or less. This is based on the following reason.
 誘電体層8中の空隙23は、比誘電率および光透過性を決める重要な因子となる。一方、空隙23の大きさは、誘電体層8を構成する誘電体ガラス微粒子の粒径によって決まる。 The air gap 23 in the dielectric layer 8 is an important factor that determines the relative permittivity and light transmittance. On the other hand, the size of the gap 23 is determined by the particle size of the dielectric glass fine particles constituting the dielectric layer 8.
 本実施の形態では、空隙23の大きさは、可視光の最短波長のおよそ4分の1に相当する100nm以下が好ましい。空隙23での光散乱が抑制されることにより、誘電体層8において75%以上の可視光透過率が得られるからである。なお、空隙23の大きさは、50nm以下であるとより好ましい。さらに光散乱は抑制されるからである。 In the present embodiment, the size of the gap 23 is preferably 100 nm or less, which corresponds to about a quarter of the shortest wavelength of visible light. This is because by suppressing the light scattering in the gap 23, a visible light transmittance of 75% or more can be obtained in the dielectric layer 8. The size of the gap 23 is more preferably 50 nm or less. Further, light scattering is suppressed.
 発明者等が検討したところ、誘電体ガラス微粒子の平均粒径は、空隙23の大きさの1.5倍程度の粒径が好ましいことが解った。すなわち、誘電体ガラス微粒子の平均粒径は、150nm以下が好ましい。空隙23の大きさが50nm以下の場合、誘電体ガラス微粒子の平均粒径は、75nm以下が好ましい。 As a result of investigations by the inventors, it has been found that the average particle size of the dielectric glass particles is preferably about 1.5 times the size of the gap 23. That is, the average particle size of the dielectric glass fine particles is preferably 150 nm or less. When the size of the void 23 is 50 nm or less, the average particle size of the dielectric glass fine particles is preferably 75 nm or less.
 また、空隙23の大きさが小さくなりすぎると、誘電体層8の比誘電率を低く維持することが難しくなる。誘電体層8の密度が大きくなるからである。そこで本実施の形態では、誘電体層8の比誘電率εを2以上4以下とするために誘電体ガラス微粒子の平均粒径は、10nm以上が好ましい。 If the size of the gap 23 is too small, it is difficult to keep the relative dielectric constant of the dielectric layer 8 low. This is because the density of the dielectric layer 8 is increased. Therefore, in the present embodiment, in order to set the relative dielectric constant ε of the dielectric layer 8 to 2 or more and 4 or less, the average particle size of the dielectric glass particles is preferably 10 nm or more.
 なお、本実施の形態において、平均粒径とは、体積累積平均径(D50)のことである。また、平均粒径の測定には、レーザ回折式粒度分布測定装置MT-3300(日機装株式会社製)が用いられた。 In the present embodiment, the average particle diameter is the volume cumulative average diameter (D50). In addition, a laser diffraction particle size distribution measuring device MT-3300 (manufactured by Nikkiso Co., Ltd.) was used for measuring the average particle size.
 また、空隙23の大きさは、誘電体層8の断面を走査型電子顕微鏡で観察することにより測定された。誘電体層8の断面において、空隙23が概ね円形であれば、直径が空隙23の大きさである。また、空隙23が、円形でなければ、空隙23に内接する円が仮定され、内接する円の直径が空隙23の大きさである。 Further, the size of the void 23 was measured by observing the cross section of the dielectric layer 8 with a scanning electron microscope. In the cross section of the dielectric layer 8, if the gap 23 is substantially circular, the diameter is the size of the gap 23. If the gap 23 is not circular, a circle inscribed in the gap 23 is assumed, and the diameter of the inscribed circle is the size of the gap 23.
 従来、誘電体層8を構成するために用いられていた誘電体ガラスは、450℃から600℃程度での焼成を可能にするために、20重量%以上の酸化鉛を含有していた。しかし、実施例1においては、環境への配慮のため、誘電体ガラス微粒子は、酸化鉛を含有しない。すなわち、実施例1にかかる誘電体層8は、酸化鉛を含有しない。 Conventionally, the dielectric glass used to form the dielectric layer 8 contained 20% by weight or more of lead oxide in order to enable firing at about 450 ° C. to 600 ° C. However, in Example 1, the dielectric glass particles do not contain lead oxide for environmental consideration. That is, the dielectric layer 8 according to Example 1 does not contain lead oxide.
 [3-1-1.誘電体ペーストの製造]
 実施例1にかかる誘電体ペーストは、多成分微粒子20と無機微粒子21が分散した誘電体ガラススラリーとビヒクルから構成される。
[3-1-1. Production of dielectric paste]
The dielectric paste according to Example 1 is composed of a dielectric glass slurry in which multicomponent fine particles 20 and inorganic fine particles 21 are dispersed and a vehicle.
 [3-1-2.多成分微粒子20および無機微粒子21]
 多成分微粒子20は、一例として、SiO、Al、ZnOおよびGaの群から選ばれる1種の無機酸化物と、B、Al、Mg、Ca、Sr、BaおよびZnの群から選ばれる少なくとも1種を含む多成分系アルコキシド溶液とが調整され、アルカリ性触媒の添加により生成される。
[3-1-2. Multicomponent fine particles 20 and inorganic fine particles 21]
As an example, the multi-component fine particle 20 includes one inorganic oxide selected from the group of SiO 2 , Al 2 O 3 , ZnO, and Ga 2 O 3 , and B, Al, Mg, Ca, Sr, Ba, and Zn. A multi-component alkoxide solution containing at least one selected from the group is prepared and produced by adding an alkaline catalyst.
 添加物となる多成分系アルコキシド溶液中の成分の濃度としては、10mol%以上、20mol%以下であることが望ましい。600℃以下の誘電体焼成温度で誘電体ガラス微粒子の表面同士が融着するには添加物は10mol%以上が好ましい。一方、誘電体ペースト中あるいは誘電体焼成工程以前での誘電体ガラス微粒子の凝集や耐水性の低下による誘電体ガラス微粒子の変質を抑制するには20mol%以下であることが好ましい。そして添加物となる成分の元素は、上記の無機酸化物とは異なる成分であることが必要である。また、無機酸化物と多成分系アルコキシド溶液との混合比は、上記の濃度となるように適宜配合される。 It is desirable that the concentration of the component in the multi-component alkoxide solution as an additive is 10 mol% or more and 20 mol% or less. In order for the surfaces of the dielectric glass particles to be fused to each other at a dielectric firing temperature of 600 ° C. or less, the additive is preferably 10 mol% or more. On the other hand, it is preferably 20 mol% or less in order to suppress the deterioration of the dielectric glass fine particles due to the aggregation of the dielectric glass fine particles or the decrease in water resistance in the dielectric paste or before the dielectric baking step. And the element of the component used as an additive needs to be a component different from said inorganic oxide. Further, the mixing ratio of the inorganic oxide and the multi-component alkoxide solution is appropriately blended so as to have the above-mentioned concentration.
 アルカリ性触媒としては水酸化ナトリウム水溶液、アンモニア水溶液などアルカリ性の水溶液が希釈されたものが用いられる。アルカリ性触媒の添加量は、溶液全体の、0.1重量%~6重量%が好ましい。 As the alkaline catalyst, a diluted alkaline aqueous solution such as an aqueous sodium hydroxide solution or an aqueous ammonia solution is used. The addition amount of the alkaline catalyst is preferably 0.1 to 6% by weight of the whole solution.
 上述の濃度範囲の無機酸化物、多成分系アルコキシド溶液およびアルカリ性触媒が、混合され、さらに、所定の時間撹拌される。これにより懸濁液が生じる。懸濁液がろ過されることにより、微粒子が回収される。微粒子が焼成されることにより、多成分微粒子20が得られる。 The above-mentioned concentration range of inorganic oxide, multi-component alkoxide solution and alkaline catalyst are mixed and further stirred for a predetermined time. This creates a suspension. Fine particles are collected by filtering the suspension. By firing the fine particles, the multicomponent fine particles 20 are obtained.
 なお、微粒子の焼成温度は、微粒子周辺の有機成分を燃焼により除去することができ、かつ、微粒子同士が融着しない温度として、600℃以上が好ましい。さらに、多成分微粒子20を形成するガラスの軟化点以下であることが好ましい。焼成温度の範囲は、概ね600℃~1000℃である。 The firing temperature of the fine particles is preferably 600 ° C. or higher as a temperature at which organic components around the fine particles can be removed by combustion and the fine particles do not fuse with each other. Furthermore, it is preferably below the softening point of the glass forming the multicomponent fine particles 20. The range of the firing temperature is approximately 600 ° C. to 1000 ° C.
 無機微粒子21は、無機材料として、SiO、Al、ZnOおよびGaなどが好ましい。SiOが、特に好ましい。 The inorganic fine particles 21 are preferably SiO 2 , Al 2 O 3 , ZnO, Ga 2 O 3 and the like as inorganic materials. SiO 2 is particularly preferred.
 [3-1-3.誘電体ガラススラリー]
 誘電体ガラススラリーは、上記の誘電体ガラス微粒子10重量%~65重量%と溶媒35重量%~90重量%とから構成される。溶媒は、一例として、アルコール系やグリコール系や水系などを含む。また誘電体ガラススラリーには滑剤や分散剤などが添加されてもよい。このような構成の誘電体ガラススラリーは分散性が向上する。
[3-1-3. Dielectric glass slurry]
The dielectric glass slurry is composed of 10% to 65% by weight of the dielectric glass fine particles and 35% to 90% by weight of the solvent. Examples of the solvent include alcohols, glycols, and water. In addition, a lubricant or a dispersant may be added to the dielectric glass slurry. The dielectric glass slurry having such a configuration improves dispersibility.
 [3-1-4.誘電体ペースト]
 誘電体ペーストは、上述のように製造された誘電体ガラススラリーを含む。また、誘電体ペーストには、必要に応じてビヒクルなどのバインダ成分が混合分散される。バインダ成分は、エチルセルロースあるいはアクリル樹脂1重量%~20重量%を含むターピネオールあるいはブチルカルビトールアセテートである。また、誘電体ペーストには、可塑剤としてフタル酸ジオクチル、フタル酸ジブチル、リン酸トリフェニル、リン酸トリブチルが添加されてもよい。なお、バインダ成分はガラス粒子粉砕時溶媒に合わせて選定してもよい。また、バインダ成分を混合分散するタイミングはこの限りではない。
[3-1-4. Dielectric paste]
The dielectric paste includes a dielectric glass slurry manufactured as described above. In addition, a binder component such as a vehicle is mixed and dispersed in the dielectric paste as necessary. The binder component is terpineol or butyl carbitol acetate containing 1% to 20% by weight of ethyl cellulose or acrylic resin. In addition, dioctyl phthalate, dibutyl phthalate, triphenyl phosphate, and tributyl phosphate may be added to the dielectric paste as a plasticizer. In addition, you may select a binder component according to a solvent at the time of a glass particle grinding | pulverization. The timing for mixing and dispersing the binder component is not limited to this.
 このような誘電体ペーストの製造方法によれば、誘電体ペースト中に多成分微粒子20と無機微粒子21とが均一に分散する。 According to such a dielectric paste manufacturing method, the multi-component fine particles 20 and the inorganic fine particles 21 are uniformly dispersed in the dielectric paste.
 [3-1-5.誘電体層8の形成方法]
 誘電体層8を形成する方法として、スクリーン印刷法やダイコート法などが用いられる。まず、誘電体ペーストが、表示電極6が設けられた前面ガラス基板3上に塗布される。塗布された誘電体ペーストは、誘電体ペースト層を構成する。誘電体ペースト層の膜厚は、焼成によって収縮する割合が考慮された上で、適宜設定される。次に、誘電体ペースト層が、100℃から200℃の温度範囲で乾燥される。次に、誘電体ペースト層が、450℃から600℃の温度範囲で焼成される。これにより、図3に示すように、多成分微粒子20は、隣接する多成分微粒子20と表面同士が融着する。また、多成分微粒子20は、隣接する無機微粒子21と表面同士が融着する。つまり、実施例1にかかる誘電体層8は、多成分微粒子20と、SiO微粒子など単一の成分からなる無機微粒子21によって構成されている。また、誘電体層8は、空隙23を有する。
[3-1-5. Method for Forming Dielectric Layer 8]
As a method for forming the dielectric layer 8, a screen printing method, a die coating method, or the like is used. First, a dielectric paste is applied on the front glass substrate 3 on which the display electrodes 6 are provided. The applied dielectric paste constitutes a dielectric paste layer. The film thickness of the dielectric paste layer is appropriately set in consideration of the rate of shrinkage due to firing. Next, the dielectric paste layer is dried in a temperature range of 100 ° C. to 200 ° C. Next, the dielectric paste layer is fired at a temperature range of 450 ° C. to 600 ° C. As a result, as shown in FIG. 3, the surfaces of the multi-component fine particles 20 are fused to the adjacent multi-component fine particles 20. Further, the surface of the multi-component fine particle 20 is fused with the adjacent inorganic fine particle 21. That is, the dielectric layer 8 according to the example 1 is composed of the multi-component fine particles 20 and the inorganic fine particles 21 made of a single component such as SiO 2 fine particles. The dielectric layer 8 has a gap 23.
 なお、上記の方法の他にも、誘電体ペーストをフィルム上に塗布、乾燥させたシートを用いることができる。具体的には、当該シートに形成された誘電体ペーストが前面ガラス基板3に転写される。この方法でも、上述の構成を有する誘電体層8を形成することができる。 In addition to the above method, a sheet obtained by applying a dielectric paste on a film and drying it can be used. Specifically, the dielectric paste formed on the sheet is transferred to the front glass substrate 3. Also with this method, the dielectric layer 8 having the above-described configuration can be formed.
 なお、誘電体層8の膜厚が小さいほどPDP1の輝度が向上する。また、誘電体層8の膜厚が小さいほどPDP1の放電電圧が低減する。よって、絶縁耐圧が低下しない範囲で、できるだけ誘電体層8の膜厚が小さいことが好ましい。絶縁耐圧の観点と、可視光透過率の観点との両方から、本実施の形態では、一例として、誘電体層8の膜厚は10μm以上、20μm以下である。 Note that the luminance of the PDP 1 is improved as the thickness of the dielectric layer 8 is reduced. Further, the discharge voltage of the PDP 1 decreases as the thickness of the dielectric layer 8 decreases. Therefore, it is preferable that the thickness of the dielectric layer 8 is as small as possible within a range where the withstand voltage does not decrease. In the present embodiment, as an example, the film thickness of the dielectric layer 8 is not less than 10 μm and not more than 20 μm from both the viewpoint of dielectric strength and the viewpoint of visible light transmittance.
 [3-2.実施例2]
 実施例2にかかる誘電体層8は、図4に示すように多成分コート微粒子22と、SiO微粒子など単一の成分からなる無機微粒子21によって構成されている。また、誘電体層8は、空隙23を有する。ここで、誘電体層8は無機微粒子21を含まず多成分コート微粒子22のみから構成されても良い。従来技術においては、誘電体層はSiO微粒子など単一の成分からなる無機微粒子によってのみ構成されることになる。
[3-2. Example 2]
As shown in FIG. 4, the dielectric layer 8 according to the example 2 is composed of multi-component coated fine particles 22 and inorganic fine particles 21 made of a single component such as SiO 2 fine particles. The dielectric layer 8 has a gap 23. Here, the dielectric layer 8 may include only the multi-component coated fine particles 22 without including the inorganic fine particles 21. In the prior art, the dielectric layer is composed only of inorganic fine particles composed of a single component such as SiO 2 fine particles.
 多成分コート微粒子22は、一例として、珪素酸化物(SiO)、アルミニウム酸化物(Al)、亜鉛酸化物(ZnO)およびガリウム酸化物(Ga)の群から選ばれる1種の無機酸化物微粒子と、ホウ素(B)、アルミニウム(Al)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)および亜鉛(Zn)の群から選ばれる少なくとも1種を含む多成分系アルコキシド溶液とにより生成された、無機酸化物を主成分とする多成分系微粒子である。 As an example, the multi-component coated fine particle 22 is selected from the group consisting of silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO), and gallium oxide (Ga 2 O 3 ) 1 At least one selected from the group consisting of inorganic inorganic fine particles and boron (B), aluminum (Al), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba) and zinc (Zn) Multicomponent fine particles mainly composed of an inorganic oxide produced by a multicomponent alkoxide solution containing
 実施例2にかかる誘電体層8は、SiO微粒子など単一の成分からなる無機微粒子21のみで構成されない。実施例2にかかる誘電体層8は、多成分コート微粒子22を含む。よって、PDP1の製造過程において、多成分コート微粒子22は、隣接する多成分コート微粒子22と表面同士が融着する。また、多成分コート微粒子22は、隣接する無機微粒子21と表面同士が融着する。したがって、より機械強度が高く、絶縁耐圧が高い誘電体層8を得ることができる。 The dielectric layer 8 according to the example 2 is not composed of only the inorganic fine particles 21 made of a single component such as SiO 2 fine particles. The dielectric layer 8 according to the example 2 includes multi-component coated fine particles 22. Therefore, in the manufacturing process of the PDP 1, the surfaces of the multi-component coated fine particles 22 are fused with the adjacent multi-component coated fine particles 22. The multi-component coated fine particles 22 are fused to the adjacent inorganic fine particles 21 on the surfaces. Therefore, the dielectric layer 8 having higher mechanical strength and higher withstand voltage can be obtained.
 誘電体層8中の空隙23は、比誘電率および光透過性を決める重要な因子となる。一方、空隙23の大きさは、誘電体層8を構成する誘電体ガラス微粒子の粒径によって決まる。 The air gap 23 in the dielectric layer 8 is an important factor that determines the relative permittivity and light transmittance. On the other hand, the size of the gap 23 is determined by the particle size of the dielectric glass fine particles constituting the dielectric layer 8.
 本実施の形態では、空隙23の大きさは、可視光の最短波長のおよそ4分の1に相当する100nm以下が好ましい。空隙23での光散乱が抑制されることにより、誘電体層8において75%以上の可視光透過率が得られるからである。なお、空隙23の大きさは、50nm以下であるとより好ましい。さらに光散乱は抑制されるからである。 In the present embodiment, the size of the gap 23 is preferably 100 nm or less, which corresponds to about a quarter of the shortest wavelength of visible light. This is because by suppressing the light scattering in the gap 23, a visible light transmittance of 75% or more can be obtained in the dielectric layer 8. The size of the gap 23 is more preferably 50 nm or less. Further, light scattering is suppressed.
 発明者等が検討したところ、誘電体ガラス微粒子の平均粒径は、空隙23の大きさの1.5倍程度の粒径が好ましいことが解った。すなわち、誘電体ガラス微粒子の平均粒径は、150nm以下が好ましい。空隙23の大きさが50nm以下の場合、誘電体ガラス微粒子の平均粒径は、75nm以下が好ましい。 As a result of investigations by the inventors, it has been found that the average particle size of the dielectric glass particles is preferably about 1.5 times the size of the gap 23. That is, the average particle size of the dielectric glass fine particles is preferably 150 nm or less. When the size of the void 23 is 50 nm or less, the average particle size of the dielectric glass fine particles is preferably 75 nm or less.
 また、空隙23の大きさが小さくなりすぎると、誘電体層8の比誘電率を低く維持することが難しくなる。誘電体層8の密度が大きくなるからである。そこで本実施の形態では、誘電体層8の比誘電率εを2以上4以下とするために誘電体ガラス微粒子の平均粒径は、10nm以上が好ましい。 If the size of the gap 23 is too small, it is difficult to keep the relative dielectric constant of the dielectric layer 8 low. This is because the density of the dielectric layer 8 is increased. Therefore, in the present embodiment, in order to set the relative dielectric constant ε of the dielectric layer 8 to 2 or more and 4 or less, the average particle size of the dielectric glass particles is preferably 10 nm or more.
 なお、本実施の形態において、平均粒径とは、体積累積平均径(D50)のことである。また、平均粒径の測定には、レーザ回折式粒度分布測定装置MT-3300(日機装株式会社製)が用いられた。 In the present embodiment, the average particle diameter is the volume cumulative average diameter (D50). In addition, a laser diffraction particle size distribution measuring device MT-3300 (manufactured by Nikkiso Co., Ltd.) was used for measuring the average particle size.
 また、空隙23の大きさは、誘電体層8の断面を走査型電子顕微鏡で観察することにより測定された。誘電体層8の断面において、空隙23が概ね円形であれば、直径が空隙23の大きさである。また、空隙23が、円形でなければ、空隙23に内接する円が仮定され、内接する円の直径が空隙23の大きさである。 Further, the size of the void 23 was measured by observing the cross section of the dielectric layer 8 with a scanning electron microscope. In the cross section of the dielectric layer 8, if the gap 23 is substantially circular, the diameter is the size of the gap 23. If the gap 23 is not circular, a circle inscribed in the gap 23 is assumed, and the diameter of the inscribed circle is the size of the gap 23.
 従来、誘電体層8を構成するために用いられていた誘電体ガラスは、450℃から600℃程度での焼成を可能にするために、20重量%以上の酸化鉛を含有していた。しかし、実施例1においては、環境への配慮のため、誘電体ガラス微粒子は、酸化鉛を含有しない。すなわち、実施例2にかかる誘電体層8は、酸化鉛を含有しない。 Conventionally, the dielectric glass used to form the dielectric layer 8 contained 20% by weight or more of lead oxide in order to enable firing at about 450 ° C. to 600 ° C. However, in Example 1, the dielectric glass particles do not contain lead oxide for environmental consideration. That is, the dielectric layer 8 according to Example 2 does not contain lead oxide.
 [3-2-1.誘電体ペーストの製造]
 実施例2にかかる誘電体ペーストは、多成分コート微粒子22と無機微粒子21が分散した誘電体ガラススラリーとビヒクルから構成される。
[3-2-1. Production of dielectric paste]
The dielectric paste according to Example 2 is composed of a dielectric glass slurry in which multi-component coated fine particles 22 and inorganic fine particles 21 are dispersed, and a vehicle.
 [3-2-2.多成分コート微粒子22および無機微粒子21]
 多成分コート微粒子22は、一例として、以下の手順により生成される。B、Al、Mg、Ca、Sr、BaおよびZnの群から選ばれる少なくとも1種を含む多成分系アルコキシド溶液が準備される。多成分系アルコキシド溶液中に、一例として、SiO、Al、ZnOおよびGaの群から選ばれる1種の無機酸化物の微粒子が添加される。その後、多成分系アルコキシド溶液は、所定の時間撹拌される。攪拌によって、微粒子の表面には、多成分系アルコキシド溶液に含まれていた成分を有するコート層が形成される。
[3-2-2. Multi-component coated fine particles 22 and inorganic fine particles 21]
The multi-component coated fine particles 22 are generated by the following procedure as an example. A multi-component alkoxide solution containing at least one selected from the group consisting of B, Al, Mg, Ca, Sr, Ba and Zn is prepared. As an example, fine particles of one kind of inorganic oxide selected from the group of SiO 2 , Al 2 O 3 , ZnO and Ga 2 O 3 are added to the multicomponent alkoxide solution. Thereafter, the multi-component alkoxide solution is stirred for a predetermined time. By the stirring, a coating layer having components contained in the multi-component alkoxide solution is formed on the surface of the fine particles.
 撹拌終了後、多成分系アルコキシド溶液中に分散している微粒子がろ過されることによって、コート層が形成された微粒子が回収される。その後、コート層が形成された微粒子が焼成されることにより、多成分コート微粒子22が得られる。 After completion of stirring, the fine particles dispersed in the multi-component alkoxide solution are filtered to collect the fine particles with the coating layer formed. Thereafter, the multi-component coated fine particles 22 are obtained by firing the fine particles on which the coating layer is formed.
 なお、コート層が形成された微粒子の焼成温度は、コート層に含まれる有機成分の除去および水分の除去ができ、かつ、コート層が形成された微粒子同士が融着しない温度として、600℃以上が好ましい。さらに、コート層を形成するガラスの軟化点以下であることが好ましい。焼成温度の範囲は、概ね600℃~1000℃である。 The firing temperature of the fine particles on which the coat layer is formed is 600 ° C. or higher as the temperature at which the organic components contained in the coat layer and moisture can be removed and the fine particles on which the coat layer is formed are not fused together. Is preferred. Furthermore, it is preferable that it is below the softening point of the glass which forms a coating layer. The range of the firing temperature is approximately 600 ° C. to 1000 ° C.
 また、微粒子の表面に形成されたコート層の厚さは、誘電体層形成時に600℃以下の温度で多成分コート微粒子22同士の融着が可能になるように5nm以上でることが好ましい。さらに、誘電体層8の比誘電率を高くしないために100nm以下であることが好ましい。 Also, the thickness of the coating layer formed on the surface of the fine particles is preferably 5 nm or more so that the multi-component coated fine particles 22 can be fused at a temperature of 600 ° C. or lower when forming the dielectric layer. Furthermore, in order not to increase the relative dielectric constant of the dielectric layer 8, it is preferably 100 nm or less.
 無機微粒子21は、無機材料として、SiO、Al、ZnOおよびGaなどが好ましい。SiOが、特に好ましい。 The inorganic fine particles 21 are preferably SiO 2 , Al 2 O 3 , ZnO, Ga 2 O 3 and the like as inorganic materials. SiO 2 is particularly preferred.
 [3-2-3.誘電体ガラススラリー]
 誘電体ガラススラリーは、上記の誘電体ガラス微粒子10重量%~65重量%と溶媒35重量%~90重量%とから構成される。溶媒は、一例として、アルコール系やグリコール系や水系などを含む。また誘電体ガラススラリーには滑剤や分散剤などが添加されてもよい。このような構成の誘電体ガラススラリーは分散性が向上する。
[3-2-3. Dielectric glass slurry]
The dielectric glass slurry is composed of 10% to 65% by weight of the dielectric glass fine particles and 35% to 90% by weight of the solvent. Examples of the solvent include alcohols, glycols, and water. In addition, a lubricant or a dispersant may be added to the dielectric glass slurry. The dielectric glass slurry having such a configuration improves dispersibility.
 [3-2-4.誘電体ペースト]
 誘電体ペーストは、上述のように製造された誘電体ガラススラリーを含む。また、誘電体ペーストには、必要に応じてビヒクルなどのバインダ成分が混合分散される。バインダ成分は、エチルセルロースあるいはアクリル樹脂1重量%~20重量%を含むターピネオールあるいはブチルカルビトールアセテートである。また、誘電体ペーストには、可塑剤としてフタル酸ジオクチル、フタル酸ジブチル、リン酸トリフェニル、リン酸トリブチルが添加されてもよい。なお、バインダ成分はガラス粒子粉砕時溶媒に合わせて選定してもよい。また、バインダ成分を混合分散するタイミングはこの限りではない。
[3-2-4. Dielectric paste]
The dielectric paste includes a dielectric glass slurry manufactured as described above. In addition, a binder component such as a vehicle is mixed and dispersed in the dielectric paste as necessary. The binder component is terpineol or butyl carbitol acetate containing 1% to 20% by weight of ethyl cellulose or acrylic resin. In addition, dioctyl phthalate, dibutyl phthalate, triphenyl phosphate, and tributyl phosphate may be added to the dielectric paste as a plasticizer. In addition, you may select a binder component according to a solvent at the time of a glass particle grinding | pulverization. The timing for mixing and dispersing the binder component is not limited to this.
 このような誘電体ペーストの製造方法によれば、誘電体ペースト中に多成分コート微粒子22と無機微粒子21とが均一に分散する。 According to such a dielectric paste manufacturing method, the multi-component coated fine particles 22 and the inorganic fine particles 21 are uniformly dispersed in the dielectric paste.
 [3-2-5.誘電体層8の形成方法]
 誘電体層8を形成する方法として、スクリーン印刷法やダイコート法などが用いられる。まず、誘電体ペーストが、表示電極6が設けられた前面ガラス基板3上に塗布される。塗布された誘電体ペーストは、誘電体ペースト層を構成する。誘電体ペースト層の膜厚は、焼成によって収縮する割合が考慮された上で、適宜設定される。次に、誘電体ペースト層が、100℃から200℃の温度範囲で乾燥される。次に、誘電体ペースト層が、450℃から600℃の温度範囲で焼成される。これにより、図4に示すように、多成分コート微粒子22は、隣接する多成分コート微粒子22と表面同士が融着する。また、多成分コート微粒子22は、隣接する無機微粒子21と表面同士が融着する。つまり、実施例2にかかる誘電体層8は、多成分コート微粒子22と、SiO微粒子など単一の成分からなる無機微粒子21によって構成されている。また、誘電体層8は、空隙23を有する。
[3-2-5. Method for Forming Dielectric Layer 8]
As a method for forming the dielectric layer 8, a screen printing method, a die coating method, or the like is used. First, a dielectric paste is applied on the front glass substrate 3 on which the display electrodes 6 are provided. The applied dielectric paste constitutes a dielectric paste layer. The film thickness of the dielectric paste layer is appropriately set in consideration of the rate of shrinkage due to firing. Next, the dielectric paste layer is dried in a temperature range of 100 ° C. to 200 ° C. Next, the dielectric paste layer is fired at a temperature range of 450 ° C. to 600 ° C. Thereby, as shown in FIG. 4, the surfaces of the multi-component coated fine particles 22 are fused to the adjacent multi-component coated fine particles 22. The multi-component coated fine particles 22 are fused to the adjacent inorganic fine particles 21 on the surfaces. That is, the dielectric layer 8 according to the example 2 is composed of the multi-component coated fine particles 22 and the inorganic fine particles 21 made of a single component such as SiO 2 fine particles. The dielectric layer 8 has a gap 23.
 なお、上記の方法の他にも、誘電体ペーストをフィルム上に塗布、乾燥させたシートを用いることができる。具体的には、当該シートに形成された誘電体ペーストが前面ガラス基板3に転写される。この方法でも、上述の構成を有する誘電体層8を形成することができる。 In addition to the above method, a sheet obtained by applying a dielectric paste on a film and drying it can be used. Specifically, the dielectric paste formed on the sheet is transferred to the front glass substrate 3. Also with this method, the dielectric layer 8 having the above-described configuration can be formed.
 なお、誘電体層8の膜厚が小さいほどPDP1の輝度が向上する。また、誘電体層8の膜厚が小さいほどPDP1の放電電圧が低減する。よって、絶縁耐圧が低下しない範囲で、できるだけ誘電体層8の膜厚が小さいことが好ましい。絶縁耐圧の観点と、可視光透過率の観点との両方から、本実施の形態では、一例として、誘電体層8の膜厚は10μm以上、20μm以下である。 Note that the luminance of the PDP 1 is improved as the thickness of the dielectric layer 8 is reduced. Further, the discharge voltage of the PDP 1 decreases as the thickness of the dielectric layer 8 decreases. Therefore, it is preferable that the thickness of the dielectric layer 8 is as small as possible within a range where the withstand voltage does not decrease. In the present embodiment, as an example, the film thickness of the dielectric layer 8 is not less than 10 μm and not more than 20 μm from both the viewpoint of dielectric strength and the viewpoint of visible light transmittance.
 [4.まとめ]
 本実施の形態のPDP1は、前面板2と、前面板2と対向して設けられた背面板10と、を備える。前面板2は、表示電極6と表示電極6を覆う誘電体層8を有する。誘電体層8は、無機成分の酸化物を主成分とする複数の微粒子である無機微粒子21と多成分微粒子20とを含む。多成分微粒子20は、B、Al、Mg、Ca、Sr、BaおよびZnの群から選ばれる少なくとも1種であって、無機微粒子21の無機成分とは異なる成分を含む。
[4. Summary]
The PDP 1 according to the present embodiment includes a front plate 2 and a back plate 10 provided to face the front plate 2. The front plate 2 has a display electrode 6 and a dielectric layer 8 that covers the display electrode 6. The dielectric layer 8 includes inorganic fine particles 21 and multi-component fine particles 20 which are a plurality of fine particles mainly composed of an oxide of an inorganic component. The multi-component fine particle 20 is at least one selected from the group of B, Al, Mg, Ca, Sr, Ba, and Zn, and includes a component different from the inorganic component of the inorganic fine particle 21.
 多成分微粒子20は、隣接する多成分微粒子20と表面同士が融着している。また、多成分微粒子20は、隣接する無機微粒子21と表面同士が融着している。さらに、誘電体層8は、空隙23を有する。 The surface of the multi-component fine particle 20 is fused with the adjacent multi-component fine particle 20. Further, the multi-component fine particles 20 are fused with the adjacent inorganic fine particles 21 on the surfaces. Furthermore, the dielectric layer 8 has a gap 23.
 このような構成によれば、微粒子相互の結合力が保たれる。また、誘電体ガラス粒子は溶解せず、微粒子間に空隙23が残る。よって、誘電体層8の比誘電率を小さくできる。 According to such a configuration, the bonding force between the fine particles is maintained. In addition, the dielectric glass particles are not dissolved, and voids 23 remain between the fine particles. Therefore, the dielectric constant of the dielectric layer 8 can be reduced.
 また、本実施の形態のPDP1は、前面板2と、前面板2と対向して設けられた背面板10と、を備える。前面板2は、表示電極6と表示電極6を覆う誘電体層8を有する。誘電体層8は、無機成分の酸化物を主成分とする複数の微粒子である無機微粒子21と多成分コート微粒子22とを含む。多成分コート微粒子22は、B、Al、Mg、Ca、Sr、BaおよびZnの群から選ばれる少なくとも1種であって、無機微粒子21の無機成分とは異なる成分を含む膜であるコート層で被覆されている。 Further, the PDP 1 of the present embodiment includes a front plate 2 and a back plate 10 provided to face the front plate 2. The front plate 2 has a display electrode 6 and a dielectric layer 8 that covers the display electrode 6. The dielectric layer 8 includes inorganic fine particles 21 and multi-component coated fine particles 22 which are a plurality of fine particles mainly composed of an oxide of an inorganic component. The multi-component coated fine particles 22 are at least one selected from the group consisting of B, Al, Mg, Ca, Sr, Ba, and Zn, and are coated layers that are films containing components different from the inorganic components of the inorganic fine particles 21. It is covered.
 多成分コート微粒子22は、隣接する多成分コート微粒子22と表面同士が融着している。多成分微粒子20は、隣接する無機微粒子21と表面同士が融着している。また、誘電体層8は、空隙23を有する。 The surfaces of the multi-component coated fine particles 22 are fused with the adjacent multi-component coated fine particles 22. The multi-component fine particles 20 are fused with the adjacent inorganic fine particles 21 on the surface. The dielectric layer 8 has a gap 23.
 このような構成によれば、微粒子相互の結合力が保たれる。また、誘電体ガラス粒子は溶解せず、微粒子間に空隙23が残る。よって、誘電体層8の比誘電率を小さくできる。 According to such a configuration, the bonding force between the fine particles is maintained. In addition, the dielectric glass particles are not dissolved, and voids 23 remain between the fine particles. Therefore, the dielectric constant of the dielectric layer 8 can be reduced.
 ここに開示された技術は、放電開始電圧の変動を抑制可能なPDPを実現して、大画面の表示デバイスなどに有用である。 The technique disclosed here is useful for a display device with a large screen by realizing a PDP capable of suppressing the fluctuation of the discharge start voltage.
 1  PDP
 2  前面板
 3  前面ガラス基板
 4  走査電極
 4a,5a  黒色電極
 4b,5b  白色電極
 5  維持電極
 6  表示電極
 7  ブラックストライプ(遮光層)
 8  誘電体層
 9  保護層
 10  背面板
 11  背面ガラス基板
 12  アドレス電極
 13  下地誘電体層
 14  隔壁
 15  蛍光体層
 16  放電空間
 20  多成分微粒子
 21  無機微粒子
 22  多成分コート微粒子
1 PDP
2 Front plate 3 Front glass substrate 4 Scan electrode 4a, 5a Black electrode 4b, 5b White electrode 5 Maintenance electrode 6 Display electrode 7 Black stripe (light shielding layer)
8 Dielectric layer 9 Protective layer 10 Back plate 11 Back glass substrate 12 Address electrode 13 Base dielectric layer 14 Partition 15 Phosphor layer 16 Discharge space 20 Multicomponent fine particles 21 Inorganic fine particles 22 Multicomponent coated fine particles

Claims (11)

  1. 前面板と、
    前記前面板と対向して設けられた背面板と、を備え、
     前記前面板は、表示電極と前記表示電極を覆う誘電体層を有し、
      前記誘電体層は、無機酸化物を主成分とする複数の微粒子を含み、
      前記複数の微粒子のうち少なくとも一部の微粒子は、B、Al、Mg、Ca、Sr、BaおよびZnの群から選ばれる少なくとも1種であって、かつ、前記無機酸化物を構成する無機成分とは異なる成分を含む多成分微粒子である、
    プラズマディスプレイパネル。
    A front plate,
    A back plate provided opposite to the front plate,
    The front plate has a display electrode and a dielectric layer covering the display electrode,
    The dielectric layer includes a plurality of fine particles mainly composed of an inorganic oxide,
    At least some of the plurality of fine particles are at least one selected from the group of B, Al, Mg, Ca, Sr, Ba and Zn, and an inorganic component constituting the inorganic oxide; Are multi-component microparticles containing different components,
    Plasma display panel.
  2. 請求項1に記載のプラズマディスプレイパネルであって、
    前記多成分微粒子は、平均粒径が10nm以上、150nm以下である、
    プラズマディスプレイパネル。
    The plasma display panel according to claim 1,
    The multi-component fine particles have an average particle size of 10 nm or more and 150 nm or less.
    Plasma display panel.
  3. 請求項1または2のいずれか一項に記載のプラズマディスプレイパネルであって、
    前記多成分微粒子は、前記無機酸化物と、B、Al、Mg、Ca、Sr、BaおよびZnの群から選ばれる少なくとも1種であって、かつ、前記無機成分とは異なる成分を含むアルコキシド溶液により形成されたものである、
    プラズマディスプレイパネル。
    The plasma display panel according to any one of claims 1 and 2,
    The multi-component fine particle is an alkoxide solution containing the inorganic oxide and at least one selected from the group of B, Al, Mg, Ca, Sr, Ba and Zn, and a component different from the inorganic component Formed by the
    Plasma display panel.
  4. 基板に誘電体ペーストを塗布することにより、誘電体ペースト層を形成すること、
    次に前記誘電体ペースト層を、焼成することにより誘電体層を形成すること、を備え、
     前記誘電体ペーストは、無機酸化物を主成分とする複数の微粒子を含み、前記複数の微粒子のうち少なくとも一部の微粒子は、B、Al、Mg、Ca、Sr、BaおよびZnの群から選ばれる少なくとも1種であって、かつ、前記無機酸化物を構成する無機成分とは異なる成分を含む多成分微粒子である、
    プラズマディスプレイパネルの製造方法。
    Forming a dielectric paste layer by applying a dielectric paste to a substrate;
    Next, forming the dielectric layer by firing the dielectric paste layer,
    The dielectric paste includes a plurality of fine particles mainly composed of an inorganic oxide, and at least some of the plurality of fine particles are selected from the group of B, Al, Mg, Ca, Sr, Ba, and Zn. Multi-component fine particles containing at least one kind of component and a component different from the inorganic component constituting the inorganic oxide,
    A method for manufacturing a plasma display panel.
  5. 請求項4に記載のプラズマディスプレイパネルの製造方法であって、
    前記多成分微粒子は、前記無機酸化物と、B、Al、Mg、Ca、Sr、BaおよびZnの群から選ばれる少なくとも1種であって、かつ、前記無機成分とは異なる成分を含むアルコキシド溶液により形成すること、を含む、
    プラズマディスプレイパネルの製造方法。
    It is a manufacturing method of the plasma display panel of Claim 4, Comprising:
    The multi-component fine particle is an alkoxide solution containing the inorganic oxide and at least one selected from the group of B, Al, Mg, Ca, Sr, Ba and Zn, and a component different from the inorganic component Forming, including,
    A method for manufacturing a plasma display panel.
  6. 前面板と、
    前記前面板と対向して設けられた背面板と、を備え、
     前記前面板は、表示電極と前記表示電極を覆う誘電体層を有し、
      前記誘電体層は、無機酸化物を主成分とする複数の微粒子を含み、
      前記複数の微粒子のうち少なくとも一部の微粒子は、B、Al、Mg、Ca、Sr、BaおよびZnの群から選ばれる少なくとも1種であって、かつ、前記無機酸化物を構成する無機成分とは異なる成分を含む膜で被覆された多成分コート微粒子である、
    プラズマディスプレイパネル。
    A front plate,
    A back plate provided opposite to the front plate,
    The front plate has a display electrode and a dielectric layer covering the display electrode,
    The dielectric layer includes a plurality of fine particles mainly composed of an inorganic oxide,
    At least some of the plurality of fine particles are at least one selected from the group of B, Al, Mg, Ca, Sr, Ba and Zn, and an inorganic component constituting the inorganic oxide; Are multi-component coated microparticles coated with films containing different components,
    Plasma display panel.
  7. 請求項6に記載のプラズマディスプレイパネルであって、
    前記多成分コート微粒子は、平均粒径が10nm以上、150nm以下である、
    プラズマディスプレイパネル。
    The plasma display panel according to claim 6,
    The multi-component coated fine particles have an average particle size of 10 nm or more and 150 nm or less.
    Plasma display panel.
  8. 請求項6に記載のプラズマディスプレイパネルであって、
    前記膜の厚みは、5nm以上、100nm以下である、
    プラズマディスプレイパネル。
    The plasma display panel according to claim 6,
    The thickness of the film is 5 nm or more and 100 nm or less.
    Plasma display panel.
  9. 請求項7または8のいずれか一項に記載のプラズマディスプレイパネルであって、
    前記多成分コート微粒子は、前記無機酸化物の微粒子と、B、Al、Mg、Ca、Sr、BaおよびZnの群から選ばれる少なくとも1種であって、かつ、前記無機成分とは異なる成分を含むアルコキシド溶液により形成されたものである、
    プラズマディスプレイパネル。
    A plasma display panel according to any one of claims 7 and 8,
    The multi-component coated fine particle is at least one selected from the group consisting of the inorganic oxide fine particles, B, Al, Mg, Ca, Sr, Ba and Zn, and a component different from the inorganic component. Formed by an alkoxide solution containing,
    Plasma display panel.
  10. 基板に誘電体ペーストを塗布することにより、誘電体ペースト層を形成すること、
    次に前記誘電体ペースト層を、焼成することにより誘電体層を形成すること、を備え、
     前記誘電体ペーストは、無機酸化物を主成分とする複数の微粒子を含み、前記複数の微粒子のうち少なくとも一部の微粒子は、B、Al、Mg、Ca、Sr、BaおよびZnの群から選ばれる少なくとも1種であって、かつ、前記無機酸化物を構成する無機成分とは異なる成分を含む膜で被覆された多成分コート微粒子である、
    プラズマディスプレイパネルの製造方法。
    Forming a dielectric paste layer by applying a dielectric paste to a substrate;
    Next, forming the dielectric layer by firing the dielectric paste layer,
    The dielectric paste includes a plurality of fine particles mainly composed of an inorganic oxide, and at least some of the plurality of fine particles are selected from the group of B, Al, Mg, Ca, Sr, Ba, and Zn. Multi-component coated fine particles coated with a film containing at least one kind and a component different from the inorganic component constituting the inorganic oxide,
    A method for manufacturing a plasma display panel.
  11. 請求項10に記載のプラズマディスプレイパネルの製造方法であって、
    前記多成分コート微粒子は、前記無機酸化物の微粒子と、B、Al、Mg、Ca、Sr、BaおよびZnの群から選ばれる少なくとも1種であって、かつ、前記無機成分とは異なる成分を含むアルコキシド溶液により形成すること、を含む、
    プラズマディスプレイパネルの製造方法。
    It is a manufacturing method of the plasma display panel according to claim 10,
    The multi-component coated fine particle is at least one selected from the group consisting of the inorganic oxide fine particles, B, Al, Mg, Ca, Sr, Ba and Zn, and a component different from the inorganic component. Forming with an alkoxide solution containing
    A method for manufacturing a plasma display panel.
PCT/JP2011/006916 2010-12-16 2011-12-12 Plasma display panel and method for manufacturing same WO2012081219A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-280147 2010-12-16
JP2010280147 2010-12-16
JP2010281597 2010-12-17
JP2010-281597 2010-12-17

Publications (1)

Publication Number Publication Date
WO2012081219A1 true WO2012081219A1 (en) 2012-06-21

Family

ID=46244338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006916 WO2012081219A1 (en) 2010-12-16 2011-12-12 Plasma display panel and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2012081219A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518318A (en) * 1999-12-22 2003-06-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Plasma display panel or PALC display panel and method of manufacturing such a panel comprising a dielectric layer
JP2004318116A (en) * 2003-03-28 2004-11-11 Toray Ind Inc Photosensitive paste, plasma display member, and method for manufacturing plasma display
JP2005290104A (en) * 2004-03-31 2005-10-20 Central Glass Co Ltd Glassy substance for low dielectric material and glass plate used for display
JP2007087636A (en) * 2005-09-20 2007-04-05 Asahi Kasei Electronics Co Ltd Coating composition for forming dielectric layer
JP2007287559A (en) * 2006-04-19 2007-11-01 Sony Corp Plasma display panel and method of manufacturing the same
JP2007299642A (en) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd Plasma display panel and manufacturing method thereof
JP2008024582A (en) * 2006-06-19 2008-02-07 Nihon Yamamura Glass Co Ltd Spherical multicomponent glass fine particle
JP2010135084A (en) * 2008-12-02 2010-06-17 Panasonic Corp Plasma display panel, and manufacturing method thereof
JP2010254574A (en) * 2006-06-19 2010-11-11 Nihon Yamamura Glass Co Ltd Spherical multicomponent glass fine particle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518318A (en) * 1999-12-22 2003-06-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Plasma display panel or PALC display panel and method of manufacturing such a panel comprising a dielectric layer
JP2004318116A (en) * 2003-03-28 2004-11-11 Toray Ind Inc Photosensitive paste, plasma display member, and method for manufacturing plasma display
JP2005290104A (en) * 2004-03-31 2005-10-20 Central Glass Co Ltd Glassy substance for low dielectric material and glass plate used for display
JP2007087636A (en) * 2005-09-20 2007-04-05 Asahi Kasei Electronics Co Ltd Coating composition for forming dielectric layer
JP2007287559A (en) * 2006-04-19 2007-11-01 Sony Corp Plasma display panel and method of manufacturing the same
JP2007299642A (en) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd Plasma display panel and manufacturing method thereof
JP2008024582A (en) * 2006-06-19 2008-02-07 Nihon Yamamura Glass Co Ltd Spherical multicomponent glass fine particle
JP2010254574A (en) * 2006-06-19 2010-11-11 Nihon Yamamura Glass Co Ltd Spherical multicomponent glass fine particle
JP2010135084A (en) * 2008-12-02 2010-06-17 Panasonic Corp Plasma display panel, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR101143656B1 (en) Plasma display panel
KR101137594B1 (en) Plasma display panel
KR101143733B1 (en) Plasma display panel
WO2012011232A1 (en) Glass paste for plasma display panel, and plasma display panel
KR101143756B1 (en) Plasma display panel
WO2012081219A1 (en) Plasma display panel and method for manufacturing same
KR101135763B1 (en) Plasma display panel
KR101152529B1 (en) Method for manufacturing plasma display panel
WO2012017631A1 (en) Plasma display panel
WO2012017630A1 (en) Plasma display panel and manufacturing method therefor
KR101137568B1 (en) Plasma display panel
KR101100544B1 (en) Method for manufacturing plasma display panel
KR101151135B1 (en) Plasma display panel
US8164261B2 (en) Plasma display panel
KR101137605B1 (en) Method for manufacturing plasma display panel
JP2012028104A (en) Method of manufacturing dielectric paste, and plasma display panel using the dielectric paste
WO2012176356A1 (en) Plasma display panel
JP2012038485A (en) Plasma display panel
WO2012147250A1 (en) Plasma display panel
JP2012033304A (en) Plasma display panel
KR101095821B1 (en) Plasma display panel
JP2012028102A (en) Plasma display panel
JP2012212557A (en) Plasma display panel
JP2012018825A (en) Plasma display panel
JP2012028103A (en) Plasma display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11849541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP