WO2012147184A1 - Internal combustion engine control system - Google Patents

Internal combustion engine control system Download PDF

Info

Publication number
WO2012147184A1
WO2012147184A1 PCT/JP2011/060304 JP2011060304W WO2012147184A1 WO 2012147184 A1 WO2012147184 A1 WO 2012147184A1 JP 2011060304 W JP2011060304 W JP 2011060304W WO 2012147184 A1 WO2012147184 A1 WO 2012147184A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
amount
combustion engine
internal combustion
way catalyst
Prior art date
Application number
PCT/JP2011/060304
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 中山
徹 木所
櫻井 健治
裕 澤田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/060304 priority Critical patent/WO2012147184A1/en
Publication of WO2012147184A1 publication Critical patent/WO2012147184A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0607Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/061Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0692Arrangement of multiple injectors per combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/36Control for minimising NOx emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a control technique for an internal combustion engine that can use a plurality of types of fuel.
  • the invention and purpose in the control system of the available internal combustion engine a plurality of types of fuel, that reduced exhaust emissions by effectively using the NO X adsorbing capacity of the three-way catalyst disposed in an exhaust system To do.
  • the present invention provides a control system for an internal combustion engine that can use liquid fuel and gaseous fuel, in which a three-way catalyst disposed in an exhaust system can adsorb nitrogen oxides in the exhaust.
  • the three-way catalyst has focused on matters of varying the amount of NO X that can be adsorbed in accordance with the air-fuel ratio of the exhaust gas flowing into the three-way catalyst.
  • the nitrogen oxide (NO x ) in the exhaust gas is more easily adsorbed by the three-way catalyst than when the internal combustion engine is operated with liquid fuel. Further, when the air-fuel ratio of the exhaust gas flowing into the three-way catalyst is made lean when the internal combustion engine is operated by the gaseous fuel, compared to the case where the air-fuel ratio of the exhaust gas flowing into the three-way catalyst is stoichiometric, the amount of NO X adsorbed in the three-way catalyst increases.
  • control system of the internal combustion engine of the present invention is A supply device for supplying one of liquid fuel and gaseous fuel to the internal combustion engine; An adjustment unit for adjusting the air-fuel ratio of the exhaust gas flowing into the three-way catalyst disposed in the exhaust system of the internal combustion engine; A control unit that controls the adjustment unit so that the air-fuel ratio of the exhaust gas flowing into the three-way catalyst becomes lean when the supply device supplies gaseous fuel to the internal combustion engine; I was prepared to.
  • the amount of NO x adsorbed on the three-way catalyst can be increased. That is, it is possible to effectively utilize the NO X adsorbing capacity of the three-way catalyst. As a result, it is possible to reduce the amount of NO X discharged into the atmosphere.
  • the control system for an internal combustion engine of the present invention makes the air-fuel ratio of the exhaust gas flowing into the three-way catalyst lean even when the three-way catalyst is in an inactive state and the internal combustion engine is operated with gaseous fuel. Good.
  • control system for an internal combustion engine of the present invention may further include a temperature acquisition unit that acquires the temperature of the three-way catalyst.
  • the control unit supplies the empty exhaust gas flowing into the three-way catalyst when the supply device supplies the gaseous fuel to the internal combustion engine and the temperature acquired by the temperature acquisition unit is lower than the activation temperature of the three-way catalyst.
  • the adjustment unit may be controlled so that the fuel ratio becomes lean. According to such a configuration, when the three-way catalyst is in a non-activated state, it is possible to reduce the amount of the NO X discharged into the atmosphere.
  • the adjustment unit may adjust the amount of gaseous fuel supplied from the supply device to the internal combustion engine so that the air-fuel ratio of the air-fuel mixture becomes lean.
  • the air-fuel ratio of the mixture is made lean, the air-fuel ratio of the exhaust flowing into the three-way catalyst becomes lean, and the amount of hydrocarbon (HC) and carbon monoxide (CO) discharged from the internal combustion engine decreases. To do.
  • HC hydrocarbon
  • CO carbon monoxide
  • NO X emission amount the amount of NO X discharged from the internal combustion engine
  • NO X emission amount the amount of NO X discharged from the internal combustion engine
  • the air-fuel ratio of the mixture lean may be to enhance the air-fuel ratio of the mixture within the range increment of the NO X emissions relative increase of the NO X adsorbing capacity does not exceed.
  • control system of an internal combustion engine may further comprise a amount of NO X acquisition unit that acquires the amount of NO X flowing out from the three-way catalyst.
  • the control unit the air-fuel ratio of the mixture is continuously or stepwise increased, is acquired by the amount of NO X acquisition unit when the amount of NO X acquired by the amount of NO X acquisition unit indicates decreasing trend
  • the adjustment unit may be controlled so that the air-fuel ratio of the air-fuel mixture decreases to a specified air-fuel ratio.
  • the “specified air-fuel ratio” referred to here is an air-fuel ratio suitable for achieving early activation of the three-way catalyst, for example, stoichiometry.
  • the air-fuel ratio of the air-fuel mixture is gradually increased (leanized) in a range in which the amount of NO X flowing out from the three-way catalyst decreases.
  • the amount of NO X flowing out from the three-way catalyst can be reduced as much as possible.
  • the air-fuel ratio of the air-fuel mixture is increased as much as possible within a range in which the amount of NO X flowing out from the three-way catalyst is reduced, the amount of gaseous fuel consumed can be further reduced and exhausted from the internal combustion engine. Hydrocarbon (HC) and carbon monoxide (CO) can be further reduced.
  • the temperature of the internal combustion engine may be lowered. If the air-fuel mixture is made lean when the temperature of the internal combustion engine is low, there is a concern that the combustion stability of the internal combustion engine is impaired and torque fluctuations increase. However, when the internal combustion engine is operated with gaseous fuel, the deterioration in combustion stability due to lean air-fuel mixture is less than when the internal combustion engine is operated with liquid fuel. Therefore, it is possible to reduce exhaust emissions and gas fuel consumption while suppressing torque fluctuations of the internal combustion engine.
  • the three-way catalyst according to the present invention may include a first three-way catalyst and a second three-way catalyst arranged in series in the exhaust flow direction.
  • the adjustment unit may include a secondary air supply device that supplies secondary air to the exhaust passage downstream from the first three-way catalyst and upstream from the second three-way catalyst.
  • the control unit supplies secondary air to the exhaust passage downstream from the first three-way catalyst and upstream from the second three-way catalyst.
  • the adjustment unit may be controlled as described above.
  • the air-fuel ratio of the mixture is changed to an air-fuel ratio suitable for early activation of the first three-way catalyst (for example, The air-fuel ratio of the exhaust gas flowing into the second three-way catalyst can be made lean while maintaining the stoichiometry.
  • the air-fuel ratio of the exhaust gas flowing into the second three-way catalyst can be made lean while maintaining the stoichiometry.
  • the temperature increase rate of the second three-way catalyst decreases.
  • the activation time of the second three-way catalyst may be excessively delayed.
  • the activation time of the second three-way catalyst is delayed, there is a possibility that the amount of NO X that is not adsorbed or purified by the second three-way catalyst increases.
  • control system for an internal combustion engine of the present invention increases the amount of secondary air (exhaust gas flowing into the second three-way catalyst) within a range in which the NO X amount flowing out from the second three-way catalyst shows a decreasing tendency. May be made lean).
  • control system of an internal combustion engine may further comprise a amount of NO X acquisition unit that acquires the amount of NO X flowing out from the second three-way catalyst.
  • control unit NO when the amount of NO X obtained by X amount obtaining section indicates decreasing trend increased secondary air is continuously or stepwise, NO is obtained by the amount of NO X acquisition unit X
  • the adjustment unit may be controlled so that the supply of secondary air is stopped.
  • the amount of secondary air is gradually increased in a range in which the amount of NO X flowing out from the second three-way catalyst decreases. Therefore, it is possible to reduce the NO X amount flowing out from the second three-way catalyst as much as possible while avoiding a situation where the activation timing of the second three-way catalyst is excessively delayed.
  • the control system for an internal combustion engine that can use liquid and gaseous fuels, by effectively using the NO X adsorbing capacity of the three-way catalyst, it is possible to reduce exhaust emission.
  • FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which the present invention is applied in a first embodiment. It is a diagram showing a relationship between the NO X adsorbing capacity of the air-fuel ratio and a three-way catalyst of the exhaust gas flowing into the three-way catalyst. It is a figure which shows the relationship between the air fuel ratio of an air-fuel
  • FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which the present invention is applied.
  • An internal combustion engine 1 shown in FIG. 1 is a spark ignition internal combustion engine that can use liquid fuel and gaseous fuel.
  • the “liquid fuel” used herein may be a non-methane hydrocarbon fuel such as a petroleum liquid fuel such as gasoline or a mixed liquid fuel in which ethanol or methanol is mixed with a petroleum liquid fuel.
  • gaseous fuel compressed natural gas (CNG) can be used as the “gaseous fuel”.
  • the piston 3 is slidably loaded in the cylinder 2 of the internal combustion engine 1.
  • the piston 3 is connected to an engine output shaft (crankshaft) via a connecting rod (not shown).
  • the internal combustion engine 1 includes an intake port 4 for introducing fresh air (air) into the cylinder 2 and an exhaust port 5 for discharging burned gas from the cylinder 2.
  • the internal combustion engine 1 includes an intake valve 6 for opening and closing the opening end of the intake port 4 and an exhaust valve 7 for opening and closing the opening end of the exhaust port 5.
  • the intake valve 6 and the exhaust valve 7 are driven to open and close by an intake cam shaft and an exhaust cam shaft (not shown), respectively.
  • the internal combustion engine 1 includes a spark plug 8 for generating a spark as a fire type in the cylinder 2.
  • An intake passage 9 is connected to the intake port 4.
  • the intake passage 9 is a passage for guiding fresh air (air) taken from the atmosphere to the intake port 4.
  • an exhaust passage 10 is connected to the exhaust port 5.
  • the exhaust passage 10 is a passage for discharging burned gas (exhaust gas) flowing out from the exhaust port 5 to the atmosphere after passing through exhaust purification devices 15 and 16 described later.
  • the internal combustion engine 1 is provided with a supply device for selectively supplying liquid fuel and gaseous fuel to the internal combustion engine 1.
  • the supply device includes a first fuel injection valve 11, a first fuel passage 110, a first fuel tank 111, a fuel pump 112, a first cutoff valve 113, a second fuel injection valve 12, and a second fuel passage. 120, a second fuel tank (CNG cylinder) 121, a regulator 122, and a second shut-off valve 123.
  • the first fuel injection valve 11 and the second fuel injection valve 12 are provided for each cylinder.
  • the first fuel injection valve 11 is attached in the vicinity of the intake port 4 in the internal combustion engine 1 and injects liquid fuel into the intake port 4.
  • the first fuel injection valve 11 communicates with the first fuel tank 111 via the first fuel passage 110.
  • a fuel pump 112 and a first shut-off valve 113 are disposed in the middle of the first fuel passage 110.
  • the fuel pump 112 supplies the liquid fuel stored in the first fuel tank 111 to the first fuel injection valve 11.
  • the first cutoff valve 113 is a device that switches between cutoff and conduction of the first fuel passage 110.
  • the second fuel injection valve 12 is attached to the intake passage 9 in the vicinity of the intake port 4 and injects gaseous fuel into the intake passage 9.
  • the second fuel injection valve 12 communicates with the second fuel tank 121 via the second fuel passage 120.
  • a regulator 122 and a second shut-off valve 123 are disposed in the middle of the second fuel passage 120.
  • the regulator 122 is a device that depressurizes compressed natural gas (CNG) to a predetermined pressure.
  • the second shutoff valve 123 is a device that switches between shutoff and conduction of the second fuel passage 120.
  • the second fuel tank 121 is provided with a remaining amount sensor 124 that outputs an electrical signal correlated with the amount of gaseous fuel stored in the second fuel tank 121.
  • a throttle valve 13 is disposed in the intake passage 9 upstream of the second fuel injection valve 12.
  • the throttle valve 13 is a device that adjusts the amount of air introduced into the cylinder 2 by changing the passage cross-sectional area of the intake passage 9.
  • An air flow meter 14 is attached to the intake passage 9 upstream of the throttle valve 13.
  • the air flow meter 14 is a sensor that outputs an electrical signal correlated with the amount of air (mass) flowing through the intake passage 9.
  • a first exhaust purification device 15 is disposed in the exhaust passage 10.
  • the first exhaust purification device 15 contains a three-way catalyst capable of adsorbing nitrogen oxide (NO x ) in the exhaust when in a low temperature state.
  • the first exhaust purification device 15 corresponds to a first three-way catalyst according to the present invention.
  • a second exhaust purification device 16 is disposed in the exhaust passage 10 downstream of the first exhaust purification device 15. Similar to the first exhaust purification device 15, the second exhaust purification device 16 contains a three-way catalyst capable of adsorbing nitrogen oxide (NO X ) in the exhaust. The second exhaust purification device 16 corresponds to a second three-way catalyst according to the present invention.
  • An air-fuel ratio sensor 17 is disposed in the exhaust passage 10 upstream of the first exhaust purification device 15.
  • the air-fuel ratio sensor 17 is a sensor that outputs an electrical signal correlated with the air-fuel ratio of the exhaust gas flowing through the exhaust passage 10.
  • the first downstream exhaust gas purification device 15, and the second exhaust gas purification unit upstream exhaust passage 10 than 16, NO X sensor 21 is arranged.
  • the NO X sensor 21 is a sensor that outputs an electrical signal correlated with the concentration of nitrogen oxide (NO X ) contained in the exhaust gas flowing out from the first exhaust purification device 15.
  • the NO X sensor 21 corresponds to the NO X amount acquisition unit according to the present invention.
  • An O 2 sensor 18 and an exhaust temperature sensor 19 are disposed in the exhaust passage 10 downstream from the second exhaust purification device 16.
  • the O 2 sensor 18 is a sensor that outputs an electrical signal correlated with the concentration of oxygen (O 2 ) contained in the exhaust gas.
  • the exhaust temperature sensor 19 is a sensor that outputs an electrical signal correlated with the
  • the internal combustion engine 1 configured as described above is provided with an electronic control unit (ECU) 20.
  • the ECU 20 is electrically connected to various sensors such as the air flow meter 14, the air-fuel ratio sensor 17, the O 2 sensor 18, the exhaust temperature sensor 19, the NO X sensor 21, and the remaining amount sensor 124, and output signals from the various sensors. Is configured to allow input.
  • the ECU 20 is electrically connected to various devices such as the ignition plug 8, the first fuel injection valve 11, the second fuel injection valve 12, the throttle valve 13, the fuel pump 112, the first cutoff valve 113, and the second cutoff valve 123. Connected to each other, and various devices can be controlled in accordance with the output signals of the various sensors described above.
  • NO X adsorption process A process for causing the first exhaust purification device 15 to perform adsorption (hereinafter referred to as “NO X adsorption process”) is executed.
  • NO X adsorption process we describe how to perform of the NO X adsorption process in this embodiment.
  • the non-methane hydrocarbons are adsorbed to the first exhaust gas purification device 15 in preference to NO X. Therefore, when the amount of non-methane hydrocarbons contained in the exhaust gas increases when the first exhaust gas purification device 15 is in a low temperature state, the amount of NO x adsorbed by the first exhaust gas purification device 15 decreases. As a result, the greater the amount of NO X discharged into the atmosphere.
  • the burned gas of the liquid fuel contains a larger amount of non-methane hydrocarbon than the burned gas of the gaseous fuel (compressed natural gas (CNG)). Therefore, when the internal combustion engine 1 is operated with liquid fuel while the first exhaust purification device 15 is in an inactive state, the amount of NO X that can be adsorbed by the first exhaust purification device 15 (NO X adsorption capacity) decreases. . As a result, there is a possibility that it is impossible to sufficiently reduce the amount of NO X discharged into the atmosphere.
  • the internal combustion engine 1 when the first exhaust gas purification device 15 is in the deactivated state is operated by a gaseous fuel
  • the NO X adsorbing capacity of the three-way catalyst when the internal combustion engine 1 is being operated by a gaseous fuel as shown in FIG. 2, when the air-fuel ratio of the exhaust gas flowing into the first exhaust gas purification device 15 is stoichiometric More when you are leaner.
  • NO X adsorbing capacity of the three-way catalyst there are many tends towards is higher than when low degree of leanness of the exhaust.
  • the ECU 20 operates the internal combustion engine 1 with the gaseous fuel when the temperature of the first exhaust purification device 15 is low, and the air-fuel mixture burned in the internal combustion engine 1 is empty.
  • the fuel ratio was made leaner than stoichiometric.
  • the ECU 20 gradually increases the air-fuel ratio of the air-fuel mixture, and the first exhaust purification.
  • the air-fuel ratio of the air-fuel mixture is reduced to a specified air-fuel ratio.
  • the air-fuel ratio of the air-fuel mixture is lowered to the specified air-fuel ratio.
  • the “specified air-fuel ratio” here is an air-fuel ratio suitable for early activation of the first exhaust purification device 15, for example, stoichiometric (theoretical air-fuel ratio).
  • the air-fuel ratio of the air-fuel mixture is increased as much as possible within the range in which the amount of NO X discharged from the first exhaust purification device 15 decreases, the consumption of gaseous fuel can be reduced and the internal combustion engine 1 It is also possible to reduce the amount of hydrocarbon (HC) and carbon monoxide (CO) discharged from the plant.
  • HC hydrocarbon
  • CO carbon monoxide
  • FIG. 4 is a flowchart showing a NO X adsorption processing routine.
  • the NO X adsorption processing routine is a routine stored in advance in the ROM of the ECU 20 or the like, and is periodically executed by the ECU 20.
  • the ECU 20 first determines whether or not the NO X adsorption condition of the first exhaust purification device 15 is satisfied in S101. For example, the ECU 20 determines whether or not the temperature of the first exhaust purification device 15 is lower than the activation temperature.
  • the measured value of the exhaust temperature sensor 19 can be used as an alternative value. In that case, the exhaust temperature sensor 19 corresponds to a temperature acquisition unit according to the present invention. When a temperature sensor is attached to the first exhaust purification device 15, the measured value of the temperature sensor may be used as the temperature of the first exhaust purification device 15.
  • the ECU 20 determines whether or not the value of the NO X adsorption flag Fnox is “0”.
  • the NO X adsorption flag Fnox is set to “1” when the NO X adsorption process is started (for example, when the processes of S103 and S104 described later are executed), and when the NO X adsorption process is completed ( For example, the flag is reset to “0” when the process of S112 described later is executed).
  • the ECU 20 first controls the supply device so that the gaseous fuel is supplied to the internal combustion engine 1 in S103. Specifically, the ECU 20 stops the fuel pump 112 and stops the supply of liquid fuel by keeping the first shut-off valve 113 and the first fuel injection valve 11 closed. Furthermore, the ECU 20 supplies the gaseous fuel by keeping the second shut-off valve 123 open and opening / closing the second fuel injection valve 12 at an appropriate timing. In this case, the internal combustion engine 1 is operated using gaseous fuel.
  • the ECU 20 sets the target air-fuel ratio A / Ftrg of the air-fuel mixture to a default value A / Fl that is leaner than the stoichiometric value.
  • Check default value A / Fl represents an air-fuel ratio is considered to NO X emissions increase compared to increase of the NO X adsorbing capacity is sufficiently small, determined by adaptation processing using an advance experiment The fuel ratio.
  • the S103 Processing may be omitted.
  • the ECU 20 proceeds to S105 after executing the processes of S103 and S104.
  • the ECU 20 sets “1” to the above-described NO X adsorption flag Fnox.
  • ECU 20 includes, as the amount of NO X discharged from the first exhaust gas purification device 15, reads the detection value Dnox of the NO X sensor 21.
  • the ECU 20 determines whether or not the change amount ⁇ D calculated in S107 is smaller than zero. That, ECU 20 is, NO X amount exhausted from the first exhaust gas purification device 15, it is determined whether or not tended to decrease.
  • the ECU 20 proceeds to S109.
  • the ECU 20 returns to S101 after executing the process of S109. At that time, if the NO X adsorption condition is satisfied, the ECU 20 makes a negative determination in S102 and executes the processing subsequent to S106 again. If an affirmative determination is made in S108, the ECU 20 will further make the air-fuel mixture leaner in S109. That, NO X amount exhausted from the first exhaust gas purification device 15 so long as they exhibit the decreasing tendency, the target air-fuel ratio A / Ftrg of the mixture will be increased stepwise.
  • S110 the ECU 20 determines whether or not the change amount ⁇ D calculated in S107 is zero.
  • the ECU 20 proceeds to S112.
  • the change amount ⁇ D is greater than zero, the NO X adsorption capacity of the first exhaust purification device 15 is saturated due to factors such as an increase in the NO X emission amount exceeding an increase in the NO X adsorption capacity. Will be. Therefore, the ECU 20 ends the NO X adsorption process in S112. Specifically, the ECU 20 sets the target air-fuel ratio A / Ftrg to the stoichiometric air-fuel ratio A / Fs so as to activate the first exhaust purification device 15 at an early stage. Note that the ECU 20 may execute a process of gradually reducing the target air-fuel ratio A / Ftrg instead of executing the process of S112.
  • ECU20 proceeds S113 f after executing the processing of S112, is reset to "0" to the NO X adsorption flag Fnox.
  • the ECU 20 executes the NO X adsorption processing routine of FIG. 4, thereby realizing the adjustment unit and the control unit according to the present invention.
  • NO X adsorption processing routine of FIG. 4 executes the NO X adsorption processing routine of FIG. 4, thereby realizing the adjustment unit and the control unit according to the present invention.
  • the detected value of the NO X sensor 21 is used as a method for acquiring the NO X amount discharged from the first exhaust purification device 15 has been described.
  • the temperature of the first exhaust purification device 15 The estimation calculation may be performed using a calculation model using parameters such as the detection value of the exhaust temperature sensor 19) and the flow rate of the exhaust gas flowing into the first exhaust purification device 15 (the detection value of the air flow meter 14).
  • FIG. 5 is a diagram showing a schematic configuration of the internal combustion engine in the present embodiment.
  • the same components as those in FIG. 1 of the first embodiment are denoted by the same reference numerals.
  • a secondary air supply device 23 is disposed in the exhaust passage 10 downstream from the first exhaust purification device 15 and upstream from the second exhaust purification device 16.
  • the secondary air supply device 23 is a device that injects secondary air into the exhaust passage 10 and corresponds to an adjusting unit according to the present invention.
  • the NO X sensor 21 is disposed in the exhaust passage 10 downstream of the second exhaust purification device 16.
  • the ECU 20 executes the NO X adsorption process for the second exhaust purification device 16 when the second exhaust purification device 16 is in an inactive state. Specifically, the ECU 20 causes the secondary air to be supplied from the secondary air supply device 23 to the exhaust passage upstream of the second exhaust purification device 16. At this time, the amount of secondary air supplied from the secondary air supply device 23 is determined so that the air-fuel ratio of the exhaust gas flowing into the second exhaust purification device 16 becomes lean.
  • NO X adsorption treatment is performed by the above method, it is possible to make only the air-fuel ratio of the exhaust gas flowing into the second exhaust gas purification unit 16 lean. Therefore, even if the first exhaust gas purification device 15 is NO X adsorption treatment is executed when in the unactivated state, the air-fuel ratio of the prescribed air-fuel ratio of the exhaust gas flowing into the first exhaust gas purification device 15 (first exhaust gas purification device The air / fuel ratio can be 15).
  • the temperature increase rate of the first exhaust purification device 15 is higher than when the air-fuel ratio is made lean.
  • the NO X adsorption capacity of the three-way catalyst is larger when the temperature of the three-way catalyst is lower than when the temperature is higher. Therefore, when the air-fuel ratio of the exhaust gas flowing into the first exhaust purification device 15 is set to the specified air-fuel ratio, the NO X amount adsorbed by the first exhaust purification device 15 is increased until the first exhaust purification device 15 is activated. May be less.
  • the amount of heat received by the second exhaust purification device 16 from the exhaust is less than that of the first exhaust purification device 15. Therefore, the temperature increase rate of the second exhaust purification device 16 is lower than that of the first exhaust purification device 15. Further, when the secondary air is supplied from the secondary air supply device 23 to the exhaust passage 10 downstream from the first exhaust purification device 15 and upstream from the second exhaust purification device 16, it flows into the second exhaust purification device 16. The temperature of the gas (mixed gas of exhaust and secondary air) decreases. When the temperature of the exhaust gas flowing into the second exhaust purification device 16 is lowered, the temperature increase rate of the second exhaust purification device 16 is further reduced. Therefore, the period during which the second exhaust purification device 16 is exposed to a lean and low-temperature atmosphere becomes longer.
  • the amount of NO x that can be adsorbed by the second exhaust purification device 16 increases during the period until the first exhaust purification device 15 is activated. That is, NO X that is not adsorbed and purified by the first exhaust purification device 15 is adsorbed by the second exhaust purification device 16.
  • the first exhaust purification device 15 can be activated early, and the amount of NO X discharged into the atmosphere can be reduced. As a result, it is possible to reduce exhaust emission during the period until the second exhaust purification device 16 is activated.
  • the temperature increase rate of the second exhaust purification device 16 may become excessively low.
  • NO X adsorbing capacity of the second exhaust gas purification device 16 before the second exhaust gas purification device 16 becomes active is easily saturated, NO X adsorbing capacity of the second exhaust gas purification unit 16 is the from saturated There is a possibility that the time until the second exhaust purification device 16 is activated becomes longer.
  • the ECU 20 gradually increases the supply amount of the secondary air in a range in which the NO X amount discharged from the second exhaust purification device 16 (the output value of the NO X sensor 21) decreases, and the second exhaust purification.
  • the amount of NO X discharged from the apparatus 16 is shown an increasing trend is so as to stop the supply of secondary air.
  • the ECU 20 increases the supply amount of the secondary air by a predetermined amount, and the output value of the NO X sensor 21 per unit time is increased. When showing an increasing trend, the supply of secondary air was stopped.
  • the amount of the secondary air supply is controlled so that the supply amount of the secondary air is to be increased as much as possible to the extent that the amount of NO X discharged from the second exhaust gas purification unit 16 decreases .
  • the air-fuel ratio of the exhaust gas flowing into the second exhaust gas purification device 16 is increased as much as possible within a range where the amount of NO X flowing out from the second exhaust gas purification device 16 decreases.
  • the amount of NO x discharged from the second exhaust purification device 16 can be reduced as much as possible.
  • the temperature rise rate of the second exhaust purification device 16 increases, so that the second It is possible to avoid a situation where the activation timing of the exhaust purification device 16 becomes excessively late. As a result, it is possible to avoid a situation in which the time until the second exhaust purification device 16 is activated after the NO X adsorption ability of the second exhaust purification device 16 is saturated can be avoided.
  • FIG. 7 is a flowchart showing a NO X adsorption processing routine.
  • the NO X adsorption processing routine is a routine stored in advance in the ROM of the ECU 20 or the like, and is periodically executed by the ECU 20.
  • the ECU 20 first determines whether or not the NO X adsorption condition of the second exhaust purification device 16 is satisfied in S201. For example, the ECU 20 determines whether or not the temperature of the second exhaust purification device 16 is lower than the activation temperature.
  • the measured value of the exhaust temperature sensor 19 can be used as an alternative value.
  • the ECU 20 determines whether or not the value of the NO X adsorption flag Fnox2 is “0”.
  • the NO X adsorption flag Fnox2 is set to “1” when the NO X adsorption process is started (for example, when the processes of S203 and S204 described later are executed), and when the NO X adsorption process is completed ( For example, the flag is reset to “0” when the process of S212 described later is executed).
  • the ECU 20 first controls the supply device so that the gaseous fuel is supplied to the internal combustion engine 1 in S203. Subsequently, in S204, the ECU 20 sets a default value Qair0 as the target supply amount Qair of the secondary air.
  • the default value Qair0 is an amount that is sufficiently smaller than the supply amount of secondary air that significantly delays the activation timing of the second exhaust purification device 16, and the supply amount obtained in advance by an adaptation process using experiments or the like. It is.
  • the ECU 20 proceeds to S205 after executing the processes of S203 and S204.
  • the ECU 20 sets “1” to the aforementioned NO X adsorption flag Fnox.
  • ECU 20 includes, as the amount of NO X discharged from the second exhaust gas purification unit 16 reads the detection value Dnox2 of the NO X sensor 21.
  • the ECU 20 determines whether or not the change amount ⁇ D2 calculated in 2107 is smaller than zero. That is, the ECU 20 determines whether or not the NO X amount discharged from the second exhaust purification device 16 shows a decreasing tendency.
  • the ECU 20 proceeds to S209.
  • the ECU 20 returns to S201 after executing the process of S209. At this time, if the NO X adsorption condition is satisfied, the ECU 20 makes a negative determination in S202 and executes the processes subsequent to S206 again. If an affirmative determination is made in S208, the ECU 20 will further increase the target supply amount Qair in S209. That, NO X amount exhausted from the second exhaust gas purification unit 16 so long as they exhibit the decreasing trend, so that the target supply amount of the secondary air Qair is increased stepwise.
  • S210 the ECU 20 determines whether or not the change amount ⁇ D2 calculated in S207 is zero.
  • the ECU 20 proceeds to S212.
  • the variation ⁇ D2 is when greater than zero, NO X adsorbing capacity of the second exhaust gas purification device 16 is saturated, or NO X adsorbed in the second exhaust gas purification unit 16 is starting to desorb It will be. Therefore, the ECU 20 ends the NO X adsorption process in S212. Specifically, the ECU 20 sets “0” as the target supply amount Qair. When the target supply amount Qair becomes “0”, the secondary air is not supplied from the secondary air supply device 23 to the exhaust passage 10.
  • the temperature of the exhaust gas flowing into the second exhaust gas purification device 16 becomes higher, and the air-fuel ratio of the exhaust gas flowing into the second exhaust gas purification device 16 becomes equal to the specified air-fuel ratio.
  • the temperature increase rate of the second exhaust purification device 16 increases.
  • the ECU 20 advances the operation timing (ignition timing) of the spark plug 8 and increases the opening of the throttle valve 13 (increases the intake air amount) when executing the process of S212.
  • the activity of the exhaust emission control device 16 may be promoted.
  • ECU 20 when executing the processing of the S212, by the air-fuel ratio of the mixture rich, be made to reduce the amount of NO X discharged from the internal combustion engine 1 (NO X emissions) Good.
  • the ECU 20 proceeds to S213 after executing the process of S212, and resets the NO X adsorption flag Fnox2 to “0”.
  • the ECU 20 executes the NO X adsorption processing routine of FIG. 7 to reduce NO X discharged into the atmosphere when the second exhaust purification device 16 is in an inactive state. Early activation of the first exhaust purification device 15 can be achieved.
  • the present embodiment has described the example of executing the NO X adsorption treatment the second exhaust gas purification unit 16 as a target, the period until the first exhaust gas purification device 15 is active in the first embodiment described above run the NO X adsorption treatment of the first exhaust gas purification device 15 as described as a target, the period from when the first exhaust gas purification device 15 is activated until the second exhaust gas purification unit 16 is activated is described in the example As described above, the NO X adsorption processing for the second exhaust purification device 16 may be executed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

In a control system for an internal combustion engine capable of using multiple types of fuel, this invention purports to reduce exhaust gas emissions by effectively utilizing the NOX adsorption capacity of a three-way catalyst arranged in the exhaust gas system. To that end, when the temperature of the three-way catalyst arranged in the exhaust gas system is below the activation temperature and the internal combustion engine is operating on a gas fuel, this internal combustion engine control system raises the air-fuel ratio of the exhaust gas as much as possible within the range in which the amount of NOX flowing from the three-way catalyst decreases.

Description

内燃機関の制御システムInternal combustion engine control system
 本発明は、複数種の燃料を使用可能な内燃機関の制御技術に関する。 The present invention relates to a control technique for an internal combustion engine that can use a plurality of types of fuel.
 近年、複数種の燃料により運転可能な内燃機関が提案されている。このような内燃機関において、該内燃機関の排気系に配置された吸蔵還元型NO触媒のNO還元処理を行うときに、液体燃料を使用する技術についても提案されている(たとえば、特許文献1を参照)。 In recent years, an internal combustion engine that can be operated with a plurality of types of fuels has been proposed. In such an internal combustion engine, when performing NO X reduction process storage reduction NO X catalyst arranged in an exhaust system of the internal combustion engine has also been proposed a technique of using a liquid fuel (for example, Patent Documents 1).
特開2004-239132号公報JP 2004-239132 A
 ところで、内燃機関の排気系に三元触媒を配置し、内燃機関の冷間時などに排気中に含まれるNOを三元触媒に吸着させることにより、排気エミッションの低減を図る場合がある。 By the way, there is a case where exhaust gas emission is reduced by arranging a three-way catalyst in the exhaust system of the internal combustion engine and adsorbing NO X contained in the exhaust gas to the three-way catalyst when the internal combustion engine is cold.
 本発明は、複数種の燃料を使用可能な内燃機関の制御システムにおいて、排気系に配置される三元触媒のNO吸着能を有効に活用することにより排気エミッションの低減を図ることを目的とする。 The invention, and purpose in the control system of the available internal combustion engine a plurality of types of fuel, that reduced exhaust emissions by effectively using the NO X adsorbing capacity of the three-way catalyst disposed in an exhaust system To do.
 本発明は、上記した課題を解決するために、液体燃料と気体燃料を使用可能な内燃機関の制御システムにおいて、排気系に配置された三元触媒が排気中の窒素酸化物を吸着可能な状態にあるときに、三元触媒へ流入する排気の空燃比に応じて該三元触媒が吸着可能なNO量が変化する事項に着目した。 In order to solve the above-described problems, the present invention provides a control system for an internal combustion engine that can use liquid fuel and gaseous fuel, in which a three-way catalyst disposed in an exhaust system can adsorb nitrogen oxides in the exhaust. when in, the three-way catalyst has focused on matters of varying the amount of NO X that can be adsorbed in accordance with the air-fuel ratio of the exhaust gas flowing into the three-way catalyst.
 内燃機関が気体燃料により運転されている場合は内燃機関が液体燃料により運転される場合に比べ、排気中の窒素酸化物(NO)が三元触媒に吸着され易い。また、内燃機関が気体燃料により運転されているときに三元触媒へ流入する排気の空燃比がリーンにされると、三元触媒へ流入する排気の空燃比がストイキにされる場合に比べ、三元触媒に吸着されるNO量が多くなる。 When the internal combustion engine is operated with gaseous fuel, the nitrogen oxide (NO x ) in the exhaust gas is more easily adsorbed by the three-way catalyst than when the internal combustion engine is operated with liquid fuel. Further, when the air-fuel ratio of the exhaust gas flowing into the three-way catalyst is made lean when the internal combustion engine is operated by the gaseous fuel, compared to the case where the air-fuel ratio of the exhaust gas flowing into the three-way catalyst is stoichiometric, the amount of NO X adsorbed in the three-way catalyst increases.
 そこで、本発明の内燃機関の制御システムは、
 内燃機関へ液体燃料と気体燃料の何れか一方を供給する供給装置と、
 内燃機関の排気系に配置された三元触媒へ流入する排気の空燃比を調整する調整部と、
 前記供給装置が気体燃料を内燃機関へ供給しているときに、前記三元触媒へ流入する排気の空燃比がリーンとなるように前記調整部を制御する制御部と、
を備えるようにした。
Then, the control system of the internal combustion engine of the present invention is
A supply device for supplying one of liquid fuel and gaseous fuel to the internal combustion engine;
An adjustment unit for adjusting the air-fuel ratio of the exhaust gas flowing into the three-way catalyst disposed in the exhaust system of the internal combustion engine;
A control unit that controls the adjustment unit so that the air-fuel ratio of the exhaust gas flowing into the three-way catalyst becomes lean when the supply device supplies gaseous fuel to the internal combustion engine;
I was prepared to.
 このように構成された内燃機関の制御システムによれば、三元触媒に吸着されるNO量を増加させることができる。すなわち、三元触媒のNO吸着能を有効に活用することができる。その結果、大気中へ排出されるNO量を少なく抑えることができる。 According to the control system for an internal combustion engine configured as described above, the amount of NO x adsorbed on the three-way catalyst can be increased. That is, it is possible to effectively utilize the NO X adsorbing capacity of the three-way catalyst. As a result, it is possible to reduce the amount of NO X discharged into the atmosphere.
 ここで、三元触媒が吸着可能なNO量(以下、「NO吸着容量」と称する)は、三元触媒の温度が活性温度より低い温度域にあるときに多くなる。よって、本発明の内燃機関の制御システムは、三元触媒が未活性状態にあり且つ内燃機関が気体燃料により運転されているときに、三元触媒へ流入する排気の空燃比をリーンにしてもよい。 Here, the amount of NO X that can be adsorbed by the three-way catalyst (hereinafter referred to as “NO X adsorption capacity”) increases when the temperature of the three-way catalyst is in a temperature range lower than the activation temperature. Therefore, the control system for an internal combustion engine of the present invention makes the air-fuel ratio of the exhaust gas flowing into the three-way catalyst lean even when the three-way catalyst is in an inactive state and the internal combustion engine is operated with gaseous fuel. Good.
 たとえば、本発明の内燃機関の制御システムは、三元触媒の温度を取得する温度取得部を更に備えるようにしてもよい。その場合、制御部は、供給装置が気体燃料を内燃機関へ供給しており且つ温度取得部により取得された温度が三元触媒の活性温度より低いときに、三元触媒へ流入する排気の空燃比がリーンとなるように調整部を制御すればよい。このような構成によれば、三元触媒が未活性状態にあるときに、大気中へ排出されるNOの量を低減することができる。 For example, the control system for an internal combustion engine of the present invention may further include a temperature acquisition unit that acquires the temperature of the three-way catalyst. In this case, the control unit supplies the empty exhaust gas flowing into the three-way catalyst when the supply device supplies the gaseous fuel to the internal combustion engine and the temperature acquired by the temperature acquisition unit is lower than the activation temperature of the three-way catalyst. The adjustment unit may be controlled so that the fuel ratio becomes lean. According to such a configuration, when the three-way catalyst is in a non-activated state, it is possible to reduce the amount of the NO X discharged into the atmosphere.
 三元触媒へ流入する排気の空燃比をリーンにする方法としては、内燃機関で燃焼される混合気の空燃比をリーンにする方法を用いてもよい。つまり、調整部は、混合気の空燃比がリーンとなるように供給装置から内燃機関へ供給される気体燃料量を調整してもよい。混合気の空燃比がリーンにされると、三元触媒へ流入する排気の空燃比がリーンになるとともに、内燃機関から排出される炭化水素(HC)や一酸化炭素(CO)の量が減少する。その結果、大気中へ排出されるNO量の低減に加え、大気中へ排出される炭化水素(HC)及び一酸化炭素(CO)の低減も図ることができる。 As a method for making the air-fuel ratio of the exhaust gas flowing into the three-way catalyst lean, a method for making the air-fuel ratio of the air-fuel mixture burned in the internal combustion engine lean may be used. That is, the adjustment unit may adjust the amount of gaseous fuel supplied from the supply device to the internal combustion engine so that the air-fuel ratio of the air-fuel mixture becomes lean. When the air-fuel ratio of the mixture is made lean, the air-fuel ratio of the exhaust flowing into the three-way catalyst becomes lean, and the amount of hydrocarbon (HC) and carbon monoxide (CO) discharged from the internal combustion engine decreases. To do. As a result, in addition to the reduction of the NO X amount exhausted to the atmosphere, it is possible to also reduce the hydrocarbons discharged into the atmosphere (HC) and carbon monoxide (CO).
 なお、混合気の空燃比がリーンとなる場合は混合気の空燃比がストイキとなる場合に比べ、内燃機関から排出されるNOの量(以下、「NO排出量」と称する)が多くなる。そのため、混合気のリーン度合いが不用意に高められると、三元触媒のNO吸着容量の増加分に比して、NO排出量の増加分が大きくなる可能性もある。 When the air-fuel ratio of the air-fuel mixture becomes lean, the amount of NO X discharged from the internal combustion engine (hereinafter referred to as “NO X emission amount”) is larger than when the air-fuel ratio of the air-fuel mixture becomes stoichiometric. Become. Therefore, when the lean degree of the air-fuel mixture is inadvertently increased, as compared with the increase of the NO X adsorbing capacity of the three-way catalyst, increase of the NO X emissions is also possible to increase.
 よって、混合気の空燃比をリーンにする場合は、NO吸着容量の増加分に対してNO排出量の増加分が上回らない範囲内で混合気の空燃比を高めるようにしてもよい。 Therefore, when the air-fuel ratio of the mixture lean may be to enhance the air-fuel ratio of the mixture within the range increment of the NO X emissions relative increase of the NO X adsorbing capacity does not exceed.
 たとえば、本発明に係わる内燃機関の制御システムは、三元触媒から流出するNO量を取得するNO量取得部を更に備えるようにしてもよい。その場合、制御部は、NO量取得部により取得されるNO量が減少傾向を示すときは混合気の空燃比が連続的又は段階的に高くなり、NO量取得部により取得されるNO量が増加傾向を示すときは混合気の空燃比が規定の空燃比まで低下するように調整部を制御すればよい。ここでいう「規定の空燃比」は、三元触媒の早期活性を図る際に適した空燃比であり、たとえば、ストイキである。 For example, the control system of an internal combustion engine according to the present invention may further comprise a amount of NO X acquisition unit that acquires the amount of NO X flowing out from the three-way catalyst. In that case, the control unit, the air-fuel ratio of the mixture is continuously or stepwise increased, is acquired by the amount of NO X acquisition unit when the amount of NO X acquired by the amount of NO X acquisition unit indicates decreasing trend When the NO X amount shows an increasing tendency, the adjustment unit may be controlled so that the air-fuel ratio of the air-fuel mixture decreases to a specified air-fuel ratio. The “specified air-fuel ratio” referred to here is an air-fuel ratio suitable for achieving early activation of the three-way catalyst, for example, stoichiometry.
 このような構成によれば、混合気の空燃比は、三元触媒から流出するNO量が減少する範囲において徐々に高められる(リーン化される)ことになる。その結果、三元触媒から流出するNO量を可及的に少なくすることができる。また、三元触媒から流出するNO量が少なくなる範囲において混合気の空燃比が可及的に高められると、気体燃料の消費量を一層低減させることができるとともに、内燃機関から排出される炭化水素(HC)及び一酸化炭素(CO)を一層低減させることもできる。 According to such a configuration, the air-fuel ratio of the air-fuel mixture is gradually increased (leanized) in a range in which the amount of NO X flowing out from the three-way catalyst decreases. As a result, the amount of NO X flowing out from the three-way catalyst can be reduced as much as possible. Further, when the air-fuel ratio of the air-fuel mixture is increased as much as possible within a range in which the amount of NO X flowing out from the three-way catalyst is reduced, the amount of gaseous fuel consumed can be further reduced and exhausted from the internal combustion engine. Hydrocarbon (HC) and carbon monoxide (CO) can be further reduced.
 なお、三元触媒が未活性状態にあるときは、内燃機関の温度が低くなる可能性がある。内燃機関の温度が低いときに混合気のリーン化が図られると、内燃機関の燃焼安定性が損なわれてトルク変動が大きくなることが懸念される。しかしながら、内燃機関が気体燃料により運転される場合は、内燃機関が液体燃料により運転される場合に比べ、混合気のリーン化による燃焼安定性の低下は少ない。よって、内燃機関のトルク変動を抑えつつ、排気エミッションの低減や気体燃料の消費量の低減を図ることが可能となる。 In addition, when the three-way catalyst is in an inactive state, the temperature of the internal combustion engine may be lowered. If the air-fuel mixture is made lean when the temperature of the internal combustion engine is low, there is a concern that the combustion stability of the internal combustion engine is impaired and torque fluctuations increase. However, when the internal combustion engine is operated with gaseous fuel, the deterioration in combustion stability due to lean air-fuel mixture is less than when the internal combustion engine is operated with liquid fuel. Therefore, it is possible to reduce exhaust emissions and gas fuel consumption while suppressing torque fluctuations of the internal combustion engine.
 本発明に係わる三元触媒は、排気の流れ方向に直列に配置される第1三元触媒及び第2三元触媒を含むようにしてもよい。その場合、調整部は、第1三元触媒より下流且つ第2三元触媒より上流の排気通路へ2次空気を供給する2次空気供給装置を含むようにしてもよい。このような構成において、制御部は、内燃機関が気体燃料を使用して運転されているときに、第1三元触媒より下流且つ第2三元触媒より上流の排気通路へ2次空気が供給されるように調整部を制御してもよい。 The three-way catalyst according to the present invention may include a first three-way catalyst and a second three-way catalyst arranged in series in the exhaust flow direction. In this case, the adjustment unit may include a secondary air supply device that supplies secondary air to the exhaust passage downstream from the first three-way catalyst and upstream from the second three-way catalyst. In such a configuration, when the internal combustion engine is operated using gaseous fuel, the control unit supplies secondary air to the exhaust passage downstream from the first three-way catalyst and upstream from the second three-way catalyst. The adjustment unit may be controlled as described above.
 第1三元触媒より下流かつ第2三元触媒より上流の排気通路へ2次空気が供給されると、混合気の空燃比を第1三元触媒の早期活性に適した空燃比(たとえば、ストイキ)に維持しつつ、第2三元触媒へ流入する排気の空燃比をリーンにすることができる。その結果、第1三元触媒の早期活性を図りつつ、第2三元触媒のNO吸着能を高めることができる。よって、排気エミッションを一層低減させることが可能となる。 When secondary air is supplied to the exhaust passage downstream from the first three-way catalyst and upstream from the second three-way catalyst, the air-fuel ratio of the mixture is changed to an air-fuel ratio suitable for early activation of the first three-way catalyst (for example, The air-fuel ratio of the exhaust gas flowing into the second three-way catalyst can be made lean while maintaining the stoichiometry. As a result, while achieving early activation of the first three-way catalyst, it is possible to increase the NO X adsorbing capacity of the second three-way catalyst. Therefore, exhaust emission can be further reduced.
 なお、2次空気の温度は排気より低いため、2次空気の供給量が不用意に増加されると、第2三元触媒の温度上昇速度が低下する。その結果、第2三元触媒の活性時期が過剰に遅くなる可能性がある。第2三元触媒の活性時期が遅くなると、該第2三元触媒により吸着又は浄化されないNOの量が増加する可能性がある。 Since the temperature of the secondary air is lower than that of the exhaust, if the supply amount of the secondary air is inadvertently increased, the temperature increase rate of the second three-way catalyst decreases. As a result, the activation time of the second three-way catalyst may be excessively delayed. When the activation time of the second three-way catalyst is delayed, there is a possibility that the amount of NO X that is not adsorbed or purified by the second three-way catalyst increases.
 これに対し、本発明の内燃機関の制御システムは、第2三元触媒から流出するNO量が減少傾向を示す範囲において、2次空気の量を増加(第2三元触媒へ流入する排気をリーン化)させてもよい。 In contrast, the control system for an internal combustion engine of the present invention increases the amount of secondary air (exhaust gas flowing into the second three-way catalyst) within a range in which the NO X amount flowing out from the second three-way catalyst shows a decreasing tendency. May be made lean).
 たとえば、本発明に係わる内燃機関の制御システムは、第2三元触媒から流出するNO量を取得するNO量取得部を更に備えるようにしてもよい。その場合、制御部は、NO量取得部により取得されるNO量が減少傾向を示すときは2次空気が連続的又は段階的に増加し、NO量取得部により取得されるNO量が増加傾向を示すときは2次空気の供給が停止されるように調整部を制御すればよい。 For example, the control system of an internal combustion engine according to the present invention may further comprise a amount of NO X acquisition unit that acquires the amount of NO X flowing out from the second three-way catalyst. In that case, the control unit, NO when the amount of NO X obtained by X amount obtaining section indicates decreasing trend increased secondary air is continuously or stepwise, NO is obtained by the amount of NO X acquisition unit X When the amount shows an increasing tendency, the adjustment unit may be controlled so that the supply of secondary air is stopped.
 このような構成によれば、2次空気の量は、第2三元触媒から流出するNO量が減少する範囲において徐々に増加されることになる。よって、第2三元触媒の活性時期が過剰に遅くなる事態を回避しつつ、第2三元触媒から流出するNO量を可及的に減少させることができる。 According to such a configuration, the amount of secondary air is gradually increased in a range in which the amount of NO X flowing out from the second three-way catalyst decreases. Therefore, it is possible to reduce the NO X amount flowing out from the second three-way catalyst as much as possible while avoiding a situation where the activation timing of the second three-way catalyst is excessively delayed.
 本発明によれば、液体燃料と気体燃料を使用可能な内燃機関の制御システムにおいて、三元触媒のNO吸着能を有効に活用することにより、排気エミッションの低減を図ることができる。 According to the present invention, in the control system for an internal combustion engine that can use liquid and gaseous fuels, by effectively using the NO X adsorbing capacity of the three-way catalyst, it is possible to reduce exhaust emission.
第1の実施例において本発明を適用する内燃機関の概略構成を示す図である。1 is a diagram showing a schematic configuration of an internal combustion engine to which the present invention is applied in a first embodiment. 三元触媒へ流入する排気の空燃比と三元触媒のNO吸着容量との関係を示す図である。It is a diagram showing a relationship between the NO X adsorbing capacity of the air-fuel ratio and a three-way catalyst of the exhaust gas flowing into the three-way catalyst. 混合気の空燃比とトルク変動の大きさとの関係を示す図である。It is a figure which shows the relationship between the air fuel ratio of an air-fuel | gaseous mixture, and the magnitude | size of a torque fluctuation. 第1の実施例におけるNO吸着処理ルーチンを示すフローチャートである。Is a flowchart illustrating the NO X adsorption treatment routine in the first embodiment. 第2の実施例において本発明を適用する内燃機関の概略構成を示す図である。It is a figure which shows schematic structure of the internal combustion engine to which this invention is applied in a 2nd Example. 三元触媒の温度と三元触媒のNO吸着容量との関係を示す図である。It is a diagram showing a relationship between the NO X adsorbing capacity of the temperature and the three-way catalyst of the three-way catalyst. 第2の実施例におけるNO吸着処理ルーチンを示すフローチャートである。Is a flowchart illustrating the NO X adsorption treatment routine in the second embodiment.
 以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施形態に記載される構成部品の寸法、材質、形状、相対配置等は、特に記載がない限り発明の技術的範囲をそれらのみに限定する趣旨のものではない。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the present embodiment are not intended to limit the technical scope of the invention to those unless otherwise specified.
<実施例1>
 先ず、本発明の第1の実施例について図1乃至図4に基づいて説明する。図1は、本発明を適用する内燃機関の概略構成を示す図である。図1に示す内燃機関1は、液体燃料と気体燃料を使用可能な火花点火式内燃機関である。なお、ここでいう「液体燃料」としては、ガソリン等の石油系液体燃料、またはエタノールやメタノール等が石油系液体燃料に混合された混合液体燃料などの非メタン炭化水素燃料を用いることができる。また、「気体燃料」としては、圧縮天然ガス(CNG)を用いることができる。
<Example 1>
First, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which the present invention is applied. An internal combustion engine 1 shown in FIG. 1 is a spark ignition internal combustion engine that can use liquid fuel and gaseous fuel. The “liquid fuel” used herein may be a non-methane hydrocarbon fuel such as a petroleum liquid fuel such as gasoline or a mixed liquid fuel in which ethanol or methanol is mixed with a petroleum liquid fuel. Further, as the “gaseous fuel”, compressed natural gas (CNG) can be used.
 内燃機関1の気筒2には、ピストン3が摺動自在に装填されている。ピストン3は、図示しないコネクティングロッドを介して機関出力軸(クランクシャフト)に連結されている。内燃機関1は、気筒2内へ新気(空気)を導入するための吸気ポート4と、気筒2内から既燃ガスを排出するための排気ポート5と、を備えている。内燃機関1は、吸気ポート4の開口端を開閉するための吸気バルブ6と、排気ポート5の開口端を開閉するための排気バルブ7と、を備えている。吸気バルブ6と排気バルブ7は、図示しないインテークカムシャフトとエキゾーストカムシャフトによりそれぞれ開閉駆動される。また、内燃機関1は、気筒2内に火種としての火花を発生させるための点火プラグ8を備えている。 The piston 3 is slidably loaded in the cylinder 2 of the internal combustion engine 1. The piston 3 is connected to an engine output shaft (crankshaft) via a connecting rod (not shown). The internal combustion engine 1 includes an intake port 4 for introducing fresh air (air) into the cylinder 2 and an exhaust port 5 for discharging burned gas from the cylinder 2. The internal combustion engine 1 includes an intake valve 6 for opening and closing the opening end of the intake port 4 and an exhaust valve 7 for opening and closing the opening end of the exhaust port 5. The intake valve 6 and the exhaust valve 7 are driven to open and close by an intake cam shaft and an exhaust cam shaft (not shown), respectively. Further, the internal combustion engine 1 includes a spark plug 8 for generating a spark as a fire type in the cylinder 2.
 前記吸気ポート4には、吸気通路9が接続されている。吸気通路9は、大気中から取り込んだ新気(空気)を吸気ポート4へ導くための通路である。一方、前記排気ポート5には、排気通路10が接続されている。排気通路10は、排気ポート5から流出する既燃ガス(排気)を後述する排気浄化装置15,16などを経由させた後に大気中へ排出させるための通路である。 An intake passage 9 is connected to the intake port 4. The intake passage 9 is a passage for guiding fresh air (air) taken from the atmosphere to the intake port 4. On the other hand, an exhaust passage 10 is connected to the exhaust port 5. The exhaust passage 10 is a passage for discharging burned gas (exhaust gas) flowing out from the exhaust port 5 to the atmosphere after passing through exhaust purification devices 15 and 16 described later.
 ここで、内燃機関1には、液体燃料と気体燃料を選択的に内燃機関1へ供給するための供給装置が設けられている。供給装置は、第1燃料噴射弁11と、第1燃料通路110と、第1燃料タンク111と、燃料ポンプ112と、第1遮断弁113と、第2燃料噴射弁12と、第2燃料通路120と、第2燃料タンク(CNGボンベ)121と、レギュレータ122と、第2遮断弁123と、を備えている。なお、第1燃料噴射弁11と第2燃料噴射弁12は、それぞれ気筒毎に設けられるものとする。 Here, the internal combustion engine 1 is provided with a supply device for selectively supplying liquid fuel and gaseous fuel to the internal combustion engine 1. The supply device includes a first fuel injection valve 11, a first fuel passage 110, a first fuel tank 111, a fuel pump 112, a first cutoff valve 113, a second fuel injection valve 12, and a second fuel passage. 120, a second fuel tank (CNG cylinder) 121, a regulator 122, and a second shut-off valve 123. The first fuel injection valve 11 and the second fuel injection valve 12 are provided for each cylinder.
 第1燃料噴射弁11は、前記内燃機関1における吸気ポート4の近傍に取り付けられ、吸気ポート4内へ液体燃料を噴射する。第1燃料噴射弁11は、第1燃料通路110を介して第1燃料タンク111に連通している。第1燃料通路110の途中には、燃料ポンプ112と第1遮断弁113が配置されている。燃料ポンプ112は、第1燃料タンク111に貯留されている液体燃料を第1燃料噴射弁11へ供給する。第1遮断弁113は、第1燃料通路110の遮断と導通を切り替える機器である。 The first fuel injection valve 11 is attached in the vicinity of the intake port 4 in the internal combustion engine 1 and injects liquid fuel into the intake port 4. The first fuel injection valve 11 communicates with the first fuel tank 111 via the first fuel passage 110. A fuel pump 112 and a first shut-off valve 113 are disposed in the middle of the first fuel passage 110. The fuel pump 112 supplies the liquid fuel stored in the first fuel tank 111 to the first fuel injection valve 11. The first cutoff valve 113 is a device that switches between cutoff and conduction of the first fuel passage 110.
 第2燃料噴射弁12は、前記吸気通路9における前記吸気ポート4の近傍に取り付けられ、吸気通路9内へ気体燃料を噴射する。第2燃料噴射弁12は、第2燃料通路120を介して第2燃料タンク121に連通している。第2燃料通路120の途中には、レギュレータ122と第2遮断弁123が配置されている。レギュレータ122は、圧縮天然ガス(CNG)を所定の圧力まで減圧する機器である。第2遮断弁123は、第2燃料通路120の遮断と導通を切り替える機器である。また、第2燃料タンク121には、該第2燃料タンク121に貯蔵されている気体燃料の量に相関した電気信号を出力する残量センサ124が取り付けられている。 The second fuel injection valve 12 is attached to the intake passage 9 in the vicinity of the intake port 4 and injects gaseous fuel into the intake passage 9. The second fuel injection valve 12 communicates with the second fuel tank 121 via the second fuel passage 120. A regulator 122 and a second shut-off valve 123 are disposed in the middle of the second fuel passage 120. The regulator 122 is a device that depressurizes compressed natural gas (CNG) to a predetermined pressure. The second shutoff valve 123 is a device that switches between shutoff and conduction of the second fuel passage 120. The second fuel tank 121 is provided with a remaining amount sensor 124 that outputs an electrical signal correlated with the amount of gaseous fuel stored in the second fuel tank 121.
 次に、前記第2燃料噴射弁12より上流の吸気通路9には、スロットル弁13が配置されている。スロットル弁13は、吸気通路9の通路断面積を変更することにより、気筒2内へ導入される空気量を調整する機器である。スロットル弁13より上流の吸気通路9には、エアフローメータ14が取り付けられている。エアフローメータ14は、吸気通路9内を流れる空気量(質量)に相関した電気信号を出力するセンサである。 Next, a throttle valve 13 is disposed in the intake passage 9 upstream of the second fuel injection valve 12. The throttle valve 13 is a device that adjusts the amount of air introduced into the cylinder 2 by changing the passage cross-sectional area of the intake passage 9. An air flow meter 14 is attached to the intake passage 9 upstream of the throttle valve 13. The air flow meter 14 is a sensor that outputs an electrical signal correlated with the amount of air (mass) flowing through the intake passage 9.
 前記排気通路10には、第1排気浄化装置15が配置されている。第1排気浄化装置15は、低温状態にあるときに排気中の窒素酸化物(NO)を吸着可能な三元触媒を含有している。第1排気浄化装置15は、本発明にかかる第1三元触媒に相当する。 A first exhaust purification device 15 is disposed in the exhaust passage 10. The first exhaust purification device 15 contains a three-way catalyst capable of adsorbing nitrogen oxide (NO x ) in the exhaust when in a low temperature state. The first exhaust purification device 15 corresponds to a first three-way catalyst according to the present invention.
 前記第1排気浄化装置15より下流の排気通路10には、第2排気浄化装置16が配置されている。第2排気浄化装置16は、第1排気浄化装置15と同様に、排気中の窒素酸化物(NO)を吸着可能な三元触媒を含有している。第2排気浄化装置16は、本発明に係わる第2三元触媒に相当する。 A second exhaust purification device 16 is disposed in the exhaust passage 10 downstream of the first exhaust purification device 15. Similar to the first exhaust purification device 15, the second exhaust purification device 16 contains a three-way catalyst capable of adsorbing nitrogen oxide (NO X ) in the exhaust. The second exhaust purification device 16 corresponds to a second three-way catalyst according to the present invention.
 前記第1排気浄化装置15より上流の排気通路10には、空燃比センサ17が配置されている。空燃比センサ17は、排気通路10を流れる排気の空燃比と相関する電気信号を出力するセンサである。前記第1排気浄化装置15より下流、且つ前記第2排気浄化装置16より上流の排気通路10には、NOセンサ21が配置されている。NOセンサ21は、第1排気浄化装置15から流出する排気に含まれる窒素酸化物(NO)の濃度と相関する電気信号を出力するセンサである。NOセンサ21は、本発明に係わるNO量取得部に相当する。また、前記第2排気浄化装置16より下流の排気通路10には、Oセンサ18と排気温度センサ19が配置されている。Oセンサ18は、排気に含まれる酸素(O)の濃度と相関する電気信号を出力するセンサである。排気温度センサ19は、排気の温度と相関する電気信号を出力するセンサである。 An air-fuel ratio sensor 17 is disposed in the exhaust passage 10 upstream of the first exhaust purification device 15. The air-fuel ratio sensor 17 is a sensor that outputs an electrical signal correlated with the air-fuel ratio of the exhaust gas flowing through the exhaust passage 10. The first downstream exhaust gas purification device 15, and the second exhaust gas purification unit upstream exhaust passage 10 than 16, NO X sensor 21 is arranged. The NO X sensor 21 is a sensor that outputs an electrical signal correlated with the concentration of nitrogen oxide (NO X ) contained in the exhaust gas flowing out from the first exhaust purification device 15. The NO X sensor 21 corresponds to the NO X amount acquisition unit according to the present invention. An O 2 sensor 18 and an exhaust temperature sensor 19 are disposed in the exhaust passage 10 downstream from the second exhaust purification device 16. The O 2 sensor 18 is a sensor that outputs an electrical signal correlated with the concentration of oxygen (O 2 ) contained in the exhaust gas. The exhaust temperature sensor 19 is a sensor that outputs an electrical signal correlated with the exhaust temperature.
 このように構成された内燃機関1には、電子制御ユニット(ECU)20が併設されている。ECU20は、上記したエアフローメータ14、空燃比センサ17、Oセンサ18、排気温度センサ19、NOセンサ21、および残量センサ124などの各種センサと電気的に接続され、各種センサの出力信号を入力可能に構成されている。 The internal combustion engine 1 configured as described above is provided with an electronic control unit (ECU) 20. The ECU 20 is electrically connected to various sensors such as the air flow meter 14, the air-fuel ratio sensor 17, the O 2 sensor 18, the exhaust temperature sensor 19, the NO X sensor 21, and the remaining amount sensor 124, and output signals from the various sensors. Is configured to allow input.
 また、ECU20は、上記した点火プラグ8、第1燃料噴射弁11、第2燃料噴射弁12、スロットル弁13、燃料ポンプ112、第1遮断弁113、第2遮断弁123などの各種機器と電気的に接続され、上記した各種センサの出力信号に応じて各種機器を制御可能に構成されている。 Further, the ECU 20 is electrically connected to various devices such as the ignition plug 8, the first fuel injection valve 11, the second fuel injection valve 12, the throttle valve 13, the fuel pump 112, the first cutoff valve 113, and the second cutoff valve 123. Connected to each other, and various devices can be controlled in accordance with the output signals of the various sensors described above.
 たとえば、ECU20は、第1排気浄化装置15が排気中のNOを十分に浄化することができないとき(たとえば、第1排気浄化装置15が活性していないとき)に、排気中のNOを第1排気浄化装置15に吸着させるための処理(以下、「NO吸着処理」と称する)を実行する。以下、本実施例におけるNO吸着処理の実行方法について述べる。 For example, ECU 20, when the first exhaust gas purification device 15 can not sufficiently purify the NO X in the exhaust gas (for example, when the first exhaust gas purification device 15 is not active), the NO X in the exhaust gas A process for causing the first exhaust purification device 15 to perform adsorption (hereinafter referred to as “NO X adsorption process”) is executed. Hereinafter, we describe how to perform of the NO X adsorption process in this embodiment.
 第1排気浄化装置15に含有される三元触媒は、活性温度より低い低温状態にあるときに、排気中のNOを吸着する。そのため、内燃機関1が冷間始動された場合のように、第1排気浄化装置15が未活性状態にある場合に、排気中のNOを第1排気浄化装置15に吸着させることにより、大気中に排出されるNO量を少なく抑えることができる。 Three-way catalyst contained in the first exhaust gas purification device 15, when it is lower than the activation temperature cold state, adsorbs NO X in the exhaust gas. Therefore, as in the case where the internal combustion engine 1 is cold-started, when the first exhaust gas purification device 15 is in the deactivated state, by adsorbing the NO X in the exhaust gas to the first exhaust gas purification device 15, air it can be suppressed to reduce the NO X amount exhausted during.
 ただし、排気中に非メタン炭化水素が含まれている場合は、非メタン炭化水素がNOに優先して第1排気浄化装置15に吸着される。そのため、第1排気浄化装置15が低温状態にあるときに排気中に含まれる非メタン炭化水素の量が多くなると、第1排気浄化装置15に吸着されるNO量が少なくなる。その結果、大気中に排出されるNO量が多くなる。 However, if it contains a non-methane hydrocarbon in the exhaust gas, the non-methane hydrocarbons are adsorbed to the first exhaust gas purification device 15 in preference to NO X. Therefore, when the amount of non-methane hydrocarbons contained in the exhaust gas increases when the first exhaust gas purification device 15 is in a low temperature state, the amount of NO x adsorbed by the first exhaust gas purification device 15 decreases. As a result, the greater the amount of NO X discharged into the atmosphere.
 ここで、液体燃料(非メタン炭化水素燃料)の既燃ガスは、気体燃料(圧縮天然ガス(CNG))の既燃ガスに比べ、多量の非メタン炭化水素を含有する。よって、第1排気浄化装置15が未活性状態にあるときに内燃機関1が液体燃料により運転されると、第1排気浄化装置15が吸着可能なNO量(NO吸着容量)が減少する。その結果、大気中へ排出されるNO量を十分に低減することができない可能性がある。 Here, the burned gas of the liquid fuel (non-methane hydrocarbon fuel) contains a larger amount of non-methane hydrocarbon than the burned gas of the gaseous fuel (compressed natural gas (CNG)). Therefore, when the internal combustion engine 1 is operated with liquid fuel while the first exhaust purification device 15 is in an inactive state, the amount of NO X that can be adsorbed by the first exhaust purification device 15 (NO X adsorption capacity) decreases. . As a result, there is a possibility that it is impossible to sufficiently reduce the amount of NO X discharged into the atmosphere.
 これに対し、第1排気浄化装置15が未活性状態にあるときに内燃機関1が気体燃料により運転されると、第1排気浄化装置15のNO吸着容量を増加させることができる。そのため、大気中へ排出されるNO量を少なく抑えることが可能となる。さらに、内燃機関1が気体燃料により運転されているときの三元触媒のNO吸着容量は、図2に示すように、第1排気浄化装置15へ流入する排気の空燃比がストイキである場合よりリーンである場合の方が多くなる。さらに、三元触媒のNO吸着容量は、排気のリーン度合いが低いときより高いときの方が多くなる傾向がある。 In contrast, when the internal combustion engine 1 when the first exhaust gas purification device 15 is in the deactivated state is operated by a gaseous fuel, it is possible to increase the NO X adsorbing capacity of the first exhaust gas purification device 15. Therefore, it is possible to suppress decrease the amount of NO X discharged into the atmosphere. Further, the NO X adsorbing capacity of the three-way catalyst when the internal combustion engine 1 is being operated by a gaseous fuel, as shown in FIG. 2, when the air-fuel ratio of the exhaust gas flowing into the first exhaust gas purification device 15 is stoichiometric More when you are leaner. Furthermore, NO X adsorbing capacity of the three-way catalyst, there are many tends towards is higher than when low degree of leanness of the exhaust.
 そこで、本実施例におけるNO吸着処理では、ECU20は、第1排気浄化装置15の温度が低いときに、内燃機関1を気体燃料により運転させるとともに、内燃機関1で燃焼される混合気の空燃比をストイキよりリーンにするようにした。 Therefore, in the NO X adsorption process in the present embodiment, the ECU 20 operates the internal combustion engine 1 with the gaseous fuel when the temperature of the first exhaust purification device 15 is low, and the air-fuel mixture burned in the internal combustion engine 1 is empty. The fuel ratio was made leaner than stoichiometric.
 ところで、混合気の空燃比がリーンにされた場合は、混合気の空燃比がストイキにされた場合に比べ、内燃機関1から排出されるNO量(NO排出量)が多くなる。よって、混合気の空燃比が過剰に高くされると(混合気のリーン度合いが過剰に高くされると)、NO吸着容量の増加分に比してNO排出量の増加分が大きくなる可能性もある。その場合、第1排気浄化装置15のNO吸着能が飽和し、大気中へ排出されるNOの量が却って増加する可能性がある。 Meanwhile, if the air-fuel ratio of the mixture is lean as compared with the case where the air-fuel ratio of the mixture is in stoichiometric, NO X amount exhausted from the internal combustion engine 1 (NO X emissions) is increased. Therefore, when the air-fuel ratio of the mixture is excessively high (the degree of leanness of the mixture is excessively high), the possibility of NO X emissions increase compared to increase of the NO X adsorbing capacity increases There is also. In that case, the NO X adsorption ability of the first exhaust purification device 15 is saturated, and the amount of NO X discharged into the atmosphere may increase instead.
 これに対し、ECU20は、第1排気浄化装置15から排出されるNO量(NOセンサ21の出力値)が減少傾向を示すときは混合気の空燃比を徐々に高め、第1排気浄化装置15から排出されるNO量が増加傾向を示すときは混合気の空燃比を規定の空燃比まで低下させるようにした。 On the other hand, when the NO X amount (output value of the NO X sensor 21) discharged from the first exhaust purification device 15 shows a decreasing tendency, the ECU 20 gradually increases the air-fuel ratio of the air-fuel mixture, and the first exhaust purification. When the amount of NO X discharged from the device 15 shows an increasing tendency, the air-fuel ratio of the air-fuel mixture is reduced to a specified air-fuel ratio.
 詳細には、ECU20は、単位時間あたりにおけるNOセンサ21の出力値が減少傾向を示すときは混合気の空燃比を所定量に高め、単位時間あたりにおけるNOセンサ21の出力値が増加傾向を示すときは混合気の空燃比を規定の空燃比まで低下させるようにした。ここでいう「規定の空燃比」は、第1排気浄化装置15の早期活性を図る際に適した空燃比であり、たとえばストイキ(理論空燃比)である。 Specifically, ECU 20 when the output value of the NO X sensor 21 per unit time indicates the decreasing tendency enhances the air-fuel ratio of the mixture to a predetermined amount, output value increase of the NO X sensor 21 per unit time When the air-fuel ratio is indicated, the air-fuel ratio of the air-fuel mixture is lowered to the specified air-fuel ratio. The “specified air-fuel ratio” here is an air-fuel ratio suitable for early activation of the first exhaust purification device 15, for example, stoichiometric (theoretical air-fuel ratio).
 このように混合気の空燃比が制御されると、第1排気浄化装置15から排出されるNO量が減少する範囲において混合気の空燃比が可及的に高められることになる。つまり、NO吸着容量の増加分がNO排出量の増加分より大きくなり、且つ両者の差が拡大傾向を示す範囲において混合気の空燃比が可及的に高められることになる。その結果、第1排気浄化装置15から排出されるNO量を可及的に少なくすることができる。 When the air-fuel ratio of the mixture is controlled such, so that the air-fuel ratio of the mixture to the extent that the amount of NO X discharged from the first exhaust gas purification device 15 is decreased it is increased as much as possible. That is, increase of the NO X adsorbing capacity is larger than the increase of the NO X emissions, and the difference air-fuel ratio of the mixture to the extent that an enlarged tendency of both is as much as possible increased is that. As a result, it is possible to reduce the amount of NO X discharged from the first exhaust gas purification device 15 as much as possible.
 また、第1排気浄化装置15から排出されるNO量が減少する範囲において混合気の空燃比が可及的に高められると、気体燃料の消費量を低減させることができるとともに、内燃機関1から排出される炭化水素(HC)や一酸化炭素(CO)の量を低減させることもできる。 Further, when the air-fuel ratio of the air-fuel mixture is increased as much as possible within the range in which the amount of NO X discharged from the first exhaust purification device 15 decreases, the consumption of gaseous fuel can be reduced and the internal combustion engine 1 It is also possible to reduce the amount of hydrocarbon (HC) and carbon monoxide (CO) discharged from the plant.
 なお、内燃機関1が冷間状態にあるときに混合気の空燃比が高められると、内燃機関1の燃焼安定性が損なわれてトルク変動が増大することが懸念される。しかしながら、図3に示すように、内燃機関1が気体燃料により運転されている場合(図3中の実線)は、内燃機関1が液体燃料により運転されている場合(図3中の破線)に比べ、混合気のリーン化によるトルク変動の増加分が小さくなる。したがって、内燃機関1が気体燃料により運転されているときに混合気のリーン化が図られても、トルク変動の増大を少なく抑えることができる。 If the air-fuel ratio of the air-fuel mixture is increased when the internal combustion engine 1 is in a cold state, there is a concern that the combustion stability of the internal combustion engine 1 is impaired and torque fluctuations increase. However, as shown in FIG. 3, when the internal combustion engine 1 is operated with gaseous fuel (solid line in FIG. 3), the internal combustion engine 1 is operated with liquid fuel (broken line in FIG. 3). In comparison, the increase in torque fluctuation due to lean air-fuel mixture becomes smaller. Therefore, even if the air-fuel mixture is made lean when the internal combustion engine 1 is operated with gaseous fuel, an increase in torque fluctuation can be suppressed to a low level.
 以下、本実施例におけるNO吸着処理の実行手順について図4に沿って説明する。図4は、NO吸着処理ルーチンを示すフローチャートである。NO吸着処理ルーチンは、予めECU20のROMなどに記憶されているルーチンであり、ECU20によって周期的に実行される。 Hereinafter, the execution procedure of the NO X adsorption process in the present embodiment will be described with reference to FIG. FIG. 4 is a flowchart showing a NO X adsorption processing routine. The NO X adsorption processing routine is a routine stored in advance in the ROM of the ECU 20 or the like, and is periodically executed by the ECU 20.
 図4のNO吸着処理ルーチンでは、ECU20は、先ずS101において第1排気浄化装置15のNO吸着条件が成立しているか否かを判別する。たとえば、ECU20は、第1排気浄化装置15の温度が活性温度未満であるか否かを判別する。ここで、第1排気浄化装置15の温度としては、排気温度センサ19の測定値を代替値として用いることができる。その場合、排気温度センサ19は、本発明に係わる温度取得部に相当する。なお、第1排気浄化装置15に温度センサが取り付けられている場合は、該温度センサの測定値が第1排気浄化装置15の温度として用いられてもよい。 In the NO X adsorption processing routine of FIG. 4, the ECU 20 first determines whether or not the NO X adsorption condition of the first exhaust purification device 15 is satisfied in S101. For example, the ECU 20 determines whether or not the temperature of the first exhaust purification device 15 is lower than the activation temperature. Here, as the temperature of the first exhaust purification device 15, the measured value of the exhaust temperature sensor 19 can be used as an alternative value. In that case, the exhaust temperature sensor 19 corresponds to a temperature acquisition unit according to the present invention. When a temperature sensor is attached to the first exhaust purification device 15, the measured value of the temperature sensor may be used as the temperature of the first exhaust purification device 15.
 前記S101において否定判定された場合は、ECU20は、本ルーチンの実行を一旦終了する。その場合、NO吸着処理は実行されないことになる。一方、前記S101において肯定判定された場合は、ECU20は、S102へ進む。 If a negative determination is made in S101, the ECU 20 once ends the execution of this routine. In that case, the NO X adsorption process is not executed. On the other hand, if an affirmative determination is made in S101, the ECU 20 proceeds to S102.
 S102では、ECU20は、NO吸着フラグFnoxの値が“0”であるか否かを判別する。NO吸着フラグFnoxは、NO吸着処理が開始されたとき(たとえば、後述するS103,S104の処理が実行されたとき)に“1”がセットされ、NO吸着処理が終了されたとき(たとえば、後述するS112の処理が実行されたとき)に“0”にリセットされるフラグである。 In S102, the ECU 20 determines whether or not the value of the NO X adsorption flag Fnox is “0”. The NO X adsorption flag Fnox is set to “1” when the NO X adsorption process is started (for example, when the processes of S103 and S104 described later are executed), and when the NO X adsorption process is completed ( For example, the flag is reset to “0” when the process of S112 described later is executed).
 前記NO吸着フラグFnoxの値が“0”であるときは、NO吸着処理が未だ開始されていないことになる。そのため、ECU20は、前記S102において肯定判定された場合(Fnox=0)は、S103及びS104においてNO吸着処理を開始する。 When the value of the NO X adsorption flag Fnox is “0”, the NO X adsorption process has not yet started. For this reason, when an affirmative determination is made in S102 (Fnox = 0), the ECU 20 starts NO X adsorption processing in S103 and S104.
 すなわち、ECU20は、先ずS103において、気体燃料が内燃機関1へ供給されるように供給装置を制御する。具体的には、ECU20は、燃料ポンプ112を停止させるとともに、第1遮断弁113および第1燃料噴射弁11を閉弁状態に保つことにより、液体燃料の供給を停止させる。さらに、ECU20は、第2遮断弁123を開弁状態に保つとともに、第2燃料噴射弁12を適当なタイミングで開閉動作させることにより、気体燃料の供給を行う。この場合、内燃機関1は、気体燃料を使用して運転されることになる。 That is, the ECU 20 first controls the supply device so that the gaseous fuel is supplied to the internal combustion engine 1 in S103. Specifically, the ECU 20 stops the fuel pump 112 and stops the supply of liquid fuel by keeping the first shut-off valve 113 and the first fuel injection valve 11 closed. Furthermore, the ECU 20 supplies the gaseous fuel by keeping the second shut-off valve 123 open and opening / closing the second fuel injection valve 12 at an appropriate timing. In this case, the internal combustion engine 1 is operated using gaseous fuel.
 続いて、ECU20は、S104において、混合気の目標空燃比A/Ftrgをストイキよりリーンなデフォルト値A/Flに設定する。デフォルト値A/Flは、NO吸着容量の増加分に比してNO排出量の増加分が十分に小さくなると考えられる空燃比であり、予め実験などを用いた適合処理により求められた空燃比である。このように目標空燃比A/Ftrgがリーンにされると、第1排気浄化装置15へ流入する排気の空燃比がリーンになるため、第1排気浄化装置15のNO吸着容量が増加する。 Subsequently, in S104, the ECU 20 sets the target air-fuel ratio A / Ftrg of the air-fuel mixture to a default value A / Fl that is leaner than the stoichiometric value. Check default value A / Fl represents an air-fuel ratio is considered to NO X emissions increase compared to increase of the NO X adsorbing capacity is sufficiently small, determined by adaptation processing using an advance experiment The fuel ratio. When the target air-fuel ratio A / Ftrg is lean as the air-fuel ratio of the exhaust gas flowing into the first exhaust gas purification device 15 to become lean, NO X adsorbing capacity of the first exhaust gas purification device 15 increases.
 なお、前記S101のNO吸着条件として、第1排気浄化装置15が活性温度未満であり、且つ内燃機関1が気体燃料を使用して運転されていることを条件とする場合は、前記S103の処理は省略されてもよい。 As NO X adsorption conditions of the S101, when the first exhaust gas purification device 15 is less than the activation temperature, that and the internal combustion engine 1 is provided that is operated using a gaseous fuel, the S103 Processing may be omitted.
 ECU20は、S103及びS104の処理を実行した後に、S105へ進む。S105では、ECU20は、前述したNO吸着フラグFnoxに“1”をセットする。 The ECU 20 proceeds to S105 after executing the processes of S103 and S104. In S105, the ECU 20 sets “1” to the above-described NO X adsorption flag Fnox.
 また、ECU20が前記S102の処理を実行する際に、前記NO吸着フラグFnoxの値が“1”であれば、NO吸着処理が既に開始されていることになる。すなわち、本ルーチンの前回以前の実行時にNO吸着処理が開始されていることになる。よって、ECU20は、前記S102において否定判定された場合(Fnox=1)は、S103乃至S105の処理をスキップしてS106へ進む。 Further, when the ECU20 executes the processing of the S102, if the NO X adsorption flag value of Fnox is "1", so that the NO X adsorbing process has already started. That is, the NO X adsorption treatment is initiated during the last previous execution of the routine. Therefore, if the negative determination is made in S102 (Fnox = 1), the ECU 20 skips the processes of S103 to S105 and proceeds to S106.
 S106では、ECU20は、第1排気浄化装置15から排出されるNO量として、NOセンサ21の検出値Dnoxを読み込む。 In S106, ECU 20 includes, as the amount of NO X discharged from the first exhaust gas purification device 15, reads the detection value Dnox of the NO X sensor 21.
 S107では、ECU20は、単位時間あたりにおけるNOセンサ21の検出値の変化量を取得する。具体的には、ECU20は、前記S106で読み込まれた検出値Dnoxから前回の検出値Dnoxold(本ルーチンの前回の実行時にS106で読み込まれた検出値)を減算することにより、第1排気浄化装置15から排出されるNO量の変化量ΔD(=Dnox-Dnoxold)を演算する。 In S107, ECU 20 obtains a change amount of the detection value of the NO X sensor 21 per unit time. Specifically, the ECU 20 subtracts the previous detection value Dnoxold (the detection value read in S106 during the previous execution of this routine) from the detection value Dnox read in S106, so that the first exhaust purification device. A change amount ΔD (= Dnox−Dnoxold) of the NO X amount discharged from 15 is calculated.
 S108では、ECU20は、前記S107で算出された変化量ΔDが零より小さいか否かを判別する。すなわち、ECU20は、第1排気浄化装置15から排出されるNO量が減少傾向を示しているか否かを判別する。 In S108, the ECU 20 determines whether or not the change amount ΔD calculated in S107 is smaller than zero. That, ECU 20 is, NO X amount exhausted from the first exhaust gas purification device 15, it is determined whether or not tended to decrease.
 前記S108において肯定判定された場合(ΔD<0)は、ECU20は、S109へ進む。S109では、ECU20は、現時点の目標空燃比A/Ftrgに所定量ΔAを加算することにより、新たな目標空燃比A/Ftrg(=A/Ftrg+ΔA)を算出する。つまり、ECU20は、S109において、目標空燃比A/Ftrgを更に高く(リーンに)する。 If an affirmative determination is made in S108 (ΔD <0), the ECU 20 proceeds to S109. In S109, the ECU 20 calculates a new target air-fuel ratio A / Ftrg (= A / Ftrg + ΔA) by adding a predetermined amount ΔA to the current target air-fuel ratio A / Ftrg. That is, the ECU 20 further increases (leanes) the target air-fuel ratio A / Ftrg in S109.
 ECU20は、S109の処理を実行した後にS101へ戻る。その際、NO吸着条件が成立していれば、ECU20は、S102において否定判定してS106以降の処理を再度実行することになる。そして、S108において肯定判定されると、ECU20は、S109において混合気の更なるリーン化を図ることになる。つまり、第1排気浄化装置15から排出されるNO量が減少傾向を示す限り、混合気の目標空燃比A/Ftrgが段階的に高められることになる。 The ECU 20 returns to S101 after executing the process of S109. At that time, if the NO X adsorption condition is satisfied, the ECU 20 makes a negative determination in S102 and executes the processing subsequent to S106 again. If an affirmative determination is made in S108, the ECU 20 will further make the air-fuel mixture leaner in S109. That, NO X amount exhausted from the first exhaust gas purification device 15 so long as they exhibit the decreasing tendency, the target air-fuel ratio A / Ftrg of the mixture will be increased stepwise.
 また、前記S108において否定判定された場合(ΔD≧0)は、ECU20は、S110へ進む。S110では、ECU20は、前記S107で算出された変化量ΔDが零であるか否かを判別する。ここで、前記変化量ΔDが零を示すときは、第1排気浄化装置15から排出されるNO量が最小量まで低下していることになる。すなわち、前記変化量ΔDが零を示すときは、NO吸着容量の増加分がNO排出量の増加分より大きく、且つ両者の差が最大値まで増加していることになる。よって、ECU20は、S110において肯定判定された場合(ΔD=0)は、現時点の目標空燃比A/Ftrgを継続して使用する。 If a negative determination is made in S108 (ΔD ≧ 0), the ECU 20 proceeds to S110. In S110, the ECU 20 determines whether or not the change amount ΔD calculated in S107 is zero. Here, when the amount of change ΔD indicates zero would the amount of NO X discharged from the first exhaust gas purification device 15 is decreased to a minimum amount. That is, when the change amount ΔD indicates zero, the increase in the NO X adsorption capacity is larger than the increase in the NO X discharge amount, and the difference between the two increases to the maximum value. Therefore, when an affirmative determination is made in S110 (ΔD = 0), the ECU 20 continues to use the current target air-fuel ratio A / Ftrg.
 一方、前記S110において否定判定された場合(ΔD>0)は、ECU20は、S112へ進む。ここで、前記変化量ΔDが零より大きくなるときは、NO排出量の増加分がNO吸着容量の増加分を上回るなどの要因により、第1排気浄化装置15のNO吸着能が飽和していることになる。よって、ECU20は、S112においてNO吸着処理を終了させる。詳細には、ECU20は、目標空燃比A/Ftrgを理論空燃比A/Fsに設定することにより、第1排気浄化装置15の早期活性を図る。なお、ECU20は、前記S112の処理を実行する変わりに、目標空燃比A/Ftrgを段階的に低下させる処理を実行してもよい。 On the other hand, if a negative determination is made in S110 (ΔD> 0), the ECU 20 proceeds to S112. Here, when the change amount ΔD is greater than zero, the NO X adsorption capacity of the first exhaust purification device 15 is saturated due to factors such as an increase in the NO X emission amount exceeding an increase in the NO X adsorption capacity. Will be. Therefore, the ECU 20 ends the NO X adsorption process in S112. Specifically, the ECU 20 sets the target air-fuel ratio A / Ftrg to the stoichiometric air-fuel ratio A / Fs so as to activate the first exhaust purification device 15 at an early stage. Note that the ECU 20 may execute a process of gradually reducing the target air-fuel ratio A / Ftrg instead of executing the process of S112.
 ECU20は、S112の処理を実行した後にS113ヘ進み、前記NO吸着フラグFnoxを“0”にリセットする。 ECU20 proceeds S113 f after executing the processing of S112, is reset to "0" to the NO X adsorption flag Fnox.
 このようにECU20が図4のNO吸着処理ルーチンを実行することにより、本発明に係わる調整部及び制御部が実現される。その結果、第1排気浄化装置15が未活性状態にあるときに、内燃機関1のトルク変動を増大させることなく、大気中へ排出されるNO、HC、及びCOを低減させることができる。さらに、気体燃料の消費量を低減させることもできる。 As described above, the ECU 20 executes the NO X adsorption processing routine of FIG. 4, thereby realizing the adjustment unit and the control unit according to the present invention. As a result, when the first exhaust purification device 15 is in an inactive state, NO x , HC, and CO discharged to the atmosphere can be reduced without increasing torque fluctuations of the internal combustion engine 1. Furthermore, the consumption of gaseous fuel can also be reduced.
 なお、本実施例では、第1排気浄化装置15から排出されるNO量を取得する方法として、NOセンサ21の検出値を用いる例について述べたが、第1排気浄化装置15の温度(排気温度センサ19の検出値)や第1排気浄化装置15へ流入する排気の流量(エアフローメータ14の検出値)などをパラメータとする演算モデルを用いて推定演算するようにしてもよい。 In the present embodiment, the example in which the detected value of the NO X sensor 21 is used as a method for acquiring the NO X amount discharged from the first exhaust purification device 15 has been described. However, the temperature of the first exhaust purification device 15 ( The estimation calculation may be performed using a calculation model using parameters such as the detection value of the exhaust temperature sensor 19) and the flow rate of the exhaust gas flowing into the first exhaust purification device 15 (the detection value of the air flow meter 14).
<実施例2>
 次に、本発明の第2の実施例について図5乃至図7基づいて説明する。ここでは、前述した第1の実施例と異なる構成について説明し、同様の構成については説明を省略する。
<Example 2>
Next, a second embodiment of the present invention will be described with reference to FIGS. Here, a configuration different from that of the first embodiment will be described, and description of the same configuration will be omitted.
 前述した第1の実施例では、第1排気浄化装置15のNO吸着能を高める例について述べたが、本実施例では、第2排気浄化装置16のNO吸着能を高める例について述べる。 In the first embodiment described above, an example in which the NO X adsorption capability of the first exhaust purification device 15 is increased has been described. In this embodiment, an example in which the NO X adsorption capability of the second exhaust purification device 16 is increased will be described.
 図5は、本実施例における内燃機関の概略構成を示す図である。図5において、前述した第1の実施例の図1と同様の構成要素には、同一の符号が付されている。 FIG. 5 is a diagram showing a schematic configuration of the internal combustion engine in the present embodiment. In FIG. 5, the same components as those in FIG. 1 of the first embodiment are denoted by the same reference numerals.
 第1排気浄化装置15より下流、且つ第2排気浄化装置16より上流の排気通路10には、2次空気供給装置23が配置されている。2次空気供給装置23は、排気通路10内へ2次空気を噴射する装置であり、本発明に係わる調整部に相当する。また、図5に示す例では、NOセンサ21は、第2排気浄化装置16より下流の排気通路10に配置される。 A secondary air supply device 23 is disposed in the exhaust passage 10 downstream from the first exhaust purification device 15 and upstream from the second exhaust purification device 16. The secondary air supply device 23 is a device that injects secondary air into the exhaust passage 10 and corresponds to an adjusting unit according to the present invention. In the example shown in FIG. 5, the NO X sensor 21 is disposed in the exhaust passage 10 downstream of the second exhaust purification device 16.
 このように構成された内燃機関の制御システムにおいて、ECU20は、第2排気浄化装置16が未活性状態にあるときに、該第2排気浄化装置16を対象としたNO吸着処理を実行する。具体的には、ECU20は、2次空気供給装置23から第2排気浄化装置16より上流の排気通路へ2次空気を供給させる。その際、2次空気供給装置23から供給される2次空気の量は、第2排気浄化装置16へ流入する排気の空燃比がリーンとなるように定められる。 In the control system for an internal combustion engine configured as described above, the ECU 20 executes the NO X adsorption process for the second exhaust purification device 16 when the second exhaust purification device 16 is in an inactive state. Specifically, the ECU 20 causes the secondary air to be supplied from the secondary air supply device 23 to the exhaust passage upstream of the second exhaust purification device 16. At this time, the amount of secondary air supplied from the secondary air supply device 23 is determined so that the air-fuel ratio of the exhaust gas flowing into the second exhaust purification device 16 becomes lean.
 このような方法によりNO吸着処理が実行されると、第2排気浄化装置16へ流入する排気の空燃比のみをリーンにすることができる。そのため、第1排気浄化装置15が未活性状態にあるときにNO吸着処理が実行されても、第1排気浄化装置15へ流入する排気の空燃比を規定の空燃比(第1排気浄化装置15の早期活性に適した空燃比)にすることができる。 If NO X adsorption treatment is performed by the above method, it is possible to make only the air-fuel ratio of the exhaust gas flowing into the second exhaust gas purification unit 16 lean. Therefore, even if the first exhaust gas purification device 15 is NO X adsorption treatment is executed when in the unactivated state, the air-fuel ratio of the prescribed air-fuel ratio of the exhaust gas flowing into the first exhaust gas purification device 15 (first exhaust gas purification device The air / fuel ratio can be 15).
 なお、第1排気浄化装置15へ流入する排気の空燃比が規定の空燃比にされた場合はリーン空燃比にされた場合に比して、第1排気浄化装置15の温度上昇速度が高くなる。ここで、三元触媒のNO吸着容量は、図5に示すように、三元触媒の温度が高いときより低いときの方が多くなる。よって、第1排気浄化装置15へ流入する排気の空燃比が規定空燃比にされると、第1排気浄化装置15が活性するまでに該第1排気浄化装置15に吸着されるNO量が少なくなる可能性がある。 Note that when the air-fuel ratio of the exhaust gas flowing into the first exhaust purification device 15 is set to a specified air-fuel ratio, the temperature increase rate of the first exhaust purification device 15 is higher than when the air-fuel ratio is made lean. . Here, as shown in FIG. 5, the NO X adsorption capacity of the three-way catalyst is larger when the temperature of the three-way catalyst is lower than when the temperature is higher. Therefore, when the air-fuel ratio of the exhaust gas flowing into the first exhaust purification device 15 is set to the specified air-fuel ratio, the NO X amount adsorbed by the first exhaust purification device 15 is increased until the first exhaust purification device 15 is activated. May be less.
 ところで、第2排気浄化装置16が排気から受ける熱量は、第1排気浄化装置15より少なくなる。そのため、第2排気浄化装置16の温度上昇速度は、第1排気浄化装置15より低くなる。さらに、2次空気供給装置23から第1排気浄化装置15より下流且つ第2排気浄化装置16より上流の排気通路10へ2次空気が供給された場合は、第2排気浄化装置16へ流入するガス(排気と2次空気の混合ガス)の温度が低下する。第2排気浄化装置16へ流入する排気の温度が低くなると、第2排気浄化装置16の温度上昇速度が一層低下する。よって、第2排気浄化装置16がリーン且つ低温な雰囲気に曝される期間が長くなる。その結果、第1排気浄化装置15が活性するまでの期間において、第2排気浄化装置16が吸着可能なNO量が増加する。つまり、第1排気浄化装置15により吸着及び浄化されないNOは、第2排気浄化装置16により吸着されるようになる。 Incidentally, the amount of heat received by the second exhaust purification device 16 from the exhaust is less than that of the first exhaust purification device 15. Therefore, the temperature increase rate of the second exhaust purification device 16 is lower than that of the first exhaust purification device 15. Further, when the secondary air is supplied from the secondary air supply device 23 to the exhaust passage 10 downstream from the first exhaust purification device 15 and upstream from the second exhaust purification device 16, it flows into the second exhaust purification device 16. The temperature of the gas (mixed gas of exhaust and secondary air) decreases. When the temperature of the exhaust gas flowing into the second exhaust purification device 16 is lowered, the temperature increase rate of the second exhaust purification device 16 is further reduced. Therefore, the period during which the second exhaust purification device 16 is exposed to a lean and low-temperature atmosphere becomes longer. As a result, the amount of NO x that can be adsorbed by the second exhaust purification device 16 increases during the period until the first exhaust purification device 15 is activated. That is, NO X that is not adsorbed and purified by the first exhaust purification device 15 is adsorbed by the second exhaust purification device 16.
 したがって、本実施例のNO吸着処理によれば、第1排気浄化装置15の早期活性を図ることができるとともに、大気中へ排出されるNO量の低減を図ることができる。その結果、第2排気浄化装置16が活性するまでの期間における排気エミッションを低減することが可能になる。 Therefore, according to the NO X adsorption process of the present embodiment, the first exhaust purification device 15 can be activated early, and the amount of NO X discharged into the atmosphere can be reduced. As a result, it is possible to reduce exhaust emission during the period until the second exhaust purification device 16 is activated.
 なお、2次空気の供給量が不要に多くされると、第2排気浄化装置16の温度上昇速度が過剰に低くなる可能性がある。その場合、第2排気浄化装置16が活性する前に該第2排気浄化装置16のNO吸着能が飽和し易くなるとともに、第2排気浄化装置16のNO吸着能が飽和してから該第2排気浄化装置16が活性するまでの時間が長くなる可能性がある。第2排気浄化装置16のNO吸着能が飽和してから該第2排気浄化装置16が活性するまでの時間が長くなると、第2排気浄化装置16から流出するNOの量(大気中へ排出されるNOの量)が多くなる可能性もある。 Note that if the supply amount of the secondary air is increased unnecessarily, the temperature increase rate of the second exhaust purification device 16 may become excessively low. In that case, together with the NO X adsorbing capacity of the second exhaust gas purification device 16 before the second exhaust gas purification device 16 becomes active is easily saturated, NO X adsorbing capacity of the second exhaust gas purification unit 16 is the from saturated There is a possibility that the time until the second exhaust purification device 16 is activated becomes longer. If the time until the second exhaust purification device 16 is activated after the NO X adsorption ability of the second exhaust purification device 16 is saturated becomes longer, the amount of NO X flowing out from the second exhaust purification device 16 (to the atmosphere) the amount of the discharged is NO X) there is a possibility that increases.
 これに対し、ECU20は、第2排気浄化装置16から排出されるNO量(NOセンサ21の出力値)が減少する範囲において2次空気の供給量を徐々に増加させ、第2排気浄化装置16から排出されるNO量が増加傾向を示すときは2次空気の供給を停止させるようにした。 On the other hand, the ECU 20 gradually increases the supply amount of the secondary air in a range in which the NO X amount discharged from the second exhaust purification device 16 (the output value of the NO X sensor 21) decreases, and the second exhaust purification. when the amount of NO X discharged from the apparatus 16 is shown an increasing trend is so as to stop the supply of secondary air.
 詳細には、ECU20は、単位時間あたりにおけるNOセンサ21の出力値が減少傾向を示すときは2次空気の供給量を所定量ずつ増加させ、単位時間あたりにおけるNOセンサ21の出力値が増加傾向を示すときは2次空気の供給を停止させるようにした。 Specifically, when the output value of the NO X sensor 21 per unit time shows a decreasing tendency, the ECU 20 increases the supply amount of the secondary air by a predetermined amount, and the output value of the NO X sensor 21 per unit time is increased. When showing an increasing trend, the supply of secondary air was stopped.
 このように2次空気の供給量が制御されると、第2排気浄化装置16から排出されるNO量が減少する範囲において2次空気の供給量が可及的に増加されることになる。言い換えれば、第2排気浄化装置16へ流入する排気の空燃比は、第2排気浄化装置16から流出するNO量が減少する範囲において可及的に高められることになる。その結果、第2排気浄化装置16から排出されるNO量を可及的に少なくすることができる。 When the amount of the secondary air supply is controlled so that the supply amount of the secondary air is to be increased as much as possible to the extent that the amount of NO X discharged from the second exhaust gas purification unit 16 decreases . In other words, the air-fuel ratio of the exhaust gas flowing into the second exhaust gas purification device 16 is increased as much as possible within a range where the amount of NO X flowing out from the second exhaust gas purification device 16 decreases. As a result, the amount of NO x discharged from the second exhaust purification device 16 can be reduced as much as possible.
 また、第2排気浄化装置16から排出されるNO量が増加傾向を示したときに2次空気の供給が停止されると、第2排気浄化装置16の温度上昇速度が高まるため、第2排気浄化装置16の活性時期が過剰に遅くなる事態を回避することができる。その結果、第2排気浄化装置16のNO吸着能が飽和してから該第2排気浄化装置16が活性するまでの時間が長くなる事態を回避することができる。 Further, if the supply of secondary air is stopped when the amount of NO X discharged from the second exhaust purification device 16 shows an increasing tendency, the temperature rise rate of the second exhaust purification device 16 increases, so that the second It is possible to avoid a situation where the activation timing of the exhaust purification device 16 becomes excessively late. As a result, it is possible to avoid a situation in which the time until the second exhaust purification device 16 is activated after the NO X adsorption ability of the second exhaust purification device 16 is saturated can be avoided.
 以下、本実施例におけるNO吸着処理の実行手順について図7に沿って説明する。図7は、NO吸着処理ルーチンを示すフローチャートである。NO吸着処理ルーチンは、予めECU20のROMなどに記憶されているルーチンであり、ECU20によって周期的に実行される。 Hereinafter, the execution procedure of the NO X adsorption process in the present embodiment will be described with reference to FIG. FIG. 7 is a flowchart showing a NO X adsorption processing routine. The NO X adsorption processing routine is a routine stored in advance in the ROM of the ECU 20 or the like, and is periodically executed by the ECU 20.
 図7のNO吸着処理ルーチンでは、ECU20は、先ずS201において第2排気浄化装置16のNO吸着条件が成立しているか否かを判別する。たとえば、ECU20は、第2排気浄化装置16の温度が活性温度未満であるか否かを判別する。ここで、第2排気浄化装置16の温度としては、排気温度センサ19の測定値を代替値として用いることができる。なお、第2排気浄化装置16に温度センサが取り付けられている場合は、該温度センサの測定値を第2排気浄化装置16の温度として用いてもよい。 In the NO X adsorption processing routine of FIG. 7, the ECU 20 first determines whether or not the NO X adsorption condition of the second exhaust purification device 16 is satisfied in S201. For example, the ECU 20 determines whether or not the temperature of the second exhaust purification device 16 is lower than the activation temperature. Here, as the temperature of the second exhaust purification device 16, the measured value of the exhaust temperature sensor 19 can be used as an alternative value. In addition, when the temperature sensor is attached to the 2nd exhaust purification apparatus 16, you may use the measured value of this temperature sensor as the temperature of the 2nd exhaust purification apparatus 16.
 前記S201において否定判定された場合は、ECU20は、本ルーチンの実行を一旦終了する。この場合、第2排気浄化装置16を対象としたNO吸着処理は実行されないことになる。一方、前記S201において肯定判定された場合は、ECU20は、S202へ進む。 If a negative determination is made in S201, the ECU 20 once ends the execution of this routine. In this case, the NO X adsorption process for the second exhaust purification device 16 is not executed. On the other hand, when a positive determination is made in S201, the ECU 20 proceeds to S202.
 S202では、ECU20は、NO吸着フラグFnox2の値が“0”であるか否かを判別する。NO吸着フラグFnox2は、NO吸着処理が開始されたとき(たとえば、後述するS203,S204の処理が実行されたとき)に“1”がセットされ、NO吸着処理が終了されたとき(たとえば、後述するS212の処理が実行されたとき)に“0”にリセットされるフラグである。 In S202, the ECU 20 determines whether or not the value of the NO X adsorption flag Fnox2 is “0”. The NO X adsorption flag Fnox2 is set to “1” when the NO X adsorption process is started (for example, when the processes of S203 and S204 described later are executed), and when the NO X adsorption process is completed ( For example, the flag is reset to “0” when the process of S212 described later is executed).
 前記NO吸着フラグFnox2の値が“0”であるときは、NO吸着処理が未だ開始されていないことになる。そのため、ECU20は、前記S202において肯定判定された場合(Fnox2=0)は、S203及びS204においてNO吸着処理を開始する。 When the value of the NO X adsorption flag Fnox2 is “0”, the NO X adsorption process has not yet started. For this reason, when an affirmative determination is made in S202 (Fnox2 = 0), the ECU 20 starts the NO X adsorption process in S203 and S204.
 すなわち、ECU20は、先ずS203において、気体燃料が内燃機関1へ供給されるように供給装置を制御する。続いて、ECU20は、S204において、2次空気の目標供給量Qairとしてデフォルト値Qair0を設定する。デフォルト値Qair0は、第2排気浄化装置16の活性時期を大幅に遅延させる2次空気の供給量に比して十分に少ない量であり、予め実験などを用いた適合処理により求められた供給量である。 That is, the ECU 20 first controls the supply device so that the gaseous fuel is supplied to the internal combustion engine 1 in S203. Subsequently, in S204, the ECU 20 sets a default value Qair0 as the target supply amount Qair of the secondary air. The default value Qair0 is an amount that is sufficiently smaller than the supply amount of secondary air that significantly delays the activation timing of the second exhaust purification device 16, and the supply amount obtained in advance by an adaptation process using experiments or the like. It is.
 なお、前記S201のNO吸着条件として、第2排気浄化装置16が活性温度未満であり、且つ内燃機関1が気体燃料を使用して運転されていることを条件とする場合は、前記S203の処理は省略されてもよい。 When the second exhaust purification device 16 is less than the activation temperature and the internal combustion engine 1 is operated using gaseous fuel as the NO X adsorption condition of S201, Processing may be omitted.
 ECU20は、S203及びS204の処理を実行した後に、S205へ進む。S205では、ECU20は、前述したNO吸着フラグFnoxに“1”をセットする。 The ECU 20 proceeds to S205 after executing the processes of S203 and S204. In S205, the ECU 20 sets “1” to the aforementioned NO X adsorption flag Fnox.
 また、ECU20が前記S202の処理を実行する際に、前記NO吸着フラグFnox2の値が“1”であれば、NO吸着処理が既に開始されていることになる。すなわち、本ルーチンの前回以前の実行時にNO吸着処理が開始されていることになる。よって、ECU20は、前記S202において否定判定された場合(Fnox2=1)は、S203乃至S205の処理をスキップしてS206へ進む。 If the value of the NO X adsorption flag Fnox2 is “1” when the ECU 20 executes the process of S202, the NO X adsorption process has already been started. That is, the NO X adsorption treatment is initiated during the last previous execution of the routine. Therefore, if the negative determination is made in S202 (Fnox2 = 1), the ECU 20 skips the processing of S203 to S205 and proceeds to S206.
 S206では、ECU20は、第2排気浄化装置16から排出されるNO量として、NOセンサ21の検出値Dnox2を読み込む。 In S206, ECU 20 includes, as the amount of NO X discharged from the second exhaust gas purification unit 16 reads the detection value Dnox2 of the NO X sensor 21.
 S207では、ECU20は、単位時間あたりにおけるNOセンサ21の検出値の変化量を取得する。具体的には、ECU20は、前記S206で読み込まれた検出値Dnox2から前回の検出値Dnox2old(本ルーチンの前回の実行時にS206で読み込まれた検出値)を減算することにより、第2排気浄化装置16から排出されるNO量の変化量ΔD2(=Dnox2-Dnox2old)を演算する。 In S207, ECU 20 obtains a change amount of the detection value of the NO X sensor 21 per unit time. Specifically, the ECU 20 subtracts the previous detection value Dnox2old (the detection value read in S206 at the previous execution of this routine) from the detection value Dnox2 read in S206, whereby the second exhaust purification device. A change amount ΔD2 (= Dnox2−Dnox2old) of the NO X amount discharged from 16 is calculated.
 S208では、ECU20は、前記2107で算出された変化量ΔD2が零より小さいか否かを判別する。すなわち、ECU20は、第2排気浄化装置16から排出されるNO量が減少傾向を示しているか否かを判別する。 In S208, the ECU 20 determines whether or not the change amount ΔD2 calculated in 2107 is smaller than zero. That is, the ECU 20 determines whether or not the NO X amount discharged from the second exhaust purification device 16 shows a decreasing tendency.
 前記S206において肯定判定された場合(ΔD2<0)は、ECU20は、S209へ進む。S209では、ECU20は、現時点の目標供給量Qairに所定量ΔQを加算することにより、新たな目標供給量Qair(=Qair+ΔQ)を算出する。つまり、ECU20は、S209において、目標供給量Qairを更に増加させる。 If an affirmative determination is made in S206 (ΔD2 <0), the ECU 20 proceeds to S209. In S209, the ECU 20 calculates a new target supply amount Qair (= Qair + ΔQ) by adding a predetermined amount ΔQ to the current target supply amount Qair. That is, the ECU 20 further increases the target supply amount Qair in S209.
 ECU20は、S209の処理を実行した後にS201へ戻る。その際、NO吸着条件が成立していれば、ECU20は、S202において否定判定してS206以降の処理を再度実行することになる。そして、S208において肯定判定されると、ECU20は、S209において目標供給量Qairの更なる増量を図ることになる。つまり、第2排気浄化装置16から排出されるNO量が減少傾向を示す限り、2次空気の目標供給量Qairが段階的に増量されることになる。 The ECU 20 returns to S201 after executing the process of S209. At this time, if the NO X adsorption condition is satisfied, the ECU 20 makes a negative determination in S202 and executes the processes subsequent to S206 again. If an affirmative determination is made in S208, the ECU 20 will further increase the target supply amount Qair in S209. That, NO X amount exhausted from the second exhaust gas purification unit 16 so long as they exhibit the decreasing trend, so that the target supply amount of the secondary air Qair is increased stepwise.
 また、前記S208において否定判定された場合(ΔD2≧0)は、ECU20は、S210へ進む。S210では、ECU20は、前記S207で算出された変化量ΔD2が零であるか否かを判別する。ここで、前記変化量ΔD2が零を示すときは、第2排気浄化装置15から排出されるNO量が最小量まで低下していることになる。よって、ECU20は、S210において肯定判定された場合(ΔD2=0)は、現時点の目標供給量Qairを継続して使用する。 If a negative determination is made in S208 (ΔD2 ≧ 0), the ECU 20 proceeds to S210. In S210, the ECU 20 determines whether or not the change amount ΔD2 calculated in S207 is zero. Here, when the amount of change ΔD2 indicates zero, the amount of NO x discharged from the second exhaust purification device 15 has decreased to the minimum amount. Therefore, when an affirmative determination is made in S210 (ΔD2 = 0), the ECU 20 continues to use the current target supply amount Qair.
 一方、前記S210において否定判定された場合(ΔD2>0)は、ECU20は、S212へ進む。ここで、前記変化量ΔD2が零より大きくなるときは、第2排気浄化装置16のNO吸着能が飽和している、或いは第2排気浄化装置16に吸着されたNOが脱離し始めていることになる。よって、ECU20は、S212においてNO吸着処理を終了させる。詳細には、ECU20は、目標供給量Qairとして“0”を設定する。目標供給量Qairが“0”になると、2次空気供給装置23から排気通路10へ2次空気が供給されなくなる。その場合、第2排気浄化装置16へ流入する排気の温度が高くなるとともに、第2排気浄化装置16へ流入する排気の空燃比が規定の空燃比と同等になる。その結果、第2排気浄化装置16の温度上昇速度が高まる。 On the other hand, if a negative determination is made in S210 (ΔD2> 0), the ECU 20 proceeds to S212. Here, the variation ΔD2 is when greater than zero, NO X adsorbing capacity of the second exhaust gas purification device 16 is saturated, or NO X adsorbed in the second exhaust gas purification unit 16 is starting to desorb It will be. Therefore, the ECU 20 ends the NO X adsorption process in S212. Specifically, the ECU 20 sets “0” as the target supply amount Qair. When the target supply amount Qair becomes “0”, the secondary air is not supplied from the secondary air supply device 23 to the exhaust passage 10. In that case, the temperature of the exhaust gas flowing into the second exhaust gas purification device 16 becomes higher, and the air-fuel ratio of the exhaust gas flowing into the second exhaust gas purification device 16 becomes equal to the specified air-fuel ratio. As a result, the temperature increase rate of the second exhaust purification device 16 increases.
 なお、ECU20は、前記S212の処理を実行する際に、点火プラグ8の作動時期(点火時期)を進角させるとともにスロットル弁13の開度を増加(吸入空気量を増加)させることにより、第2排気浄化装置16の活性を促進させるようにしてもよい。また、ECU20は、前記S212の処理を実行する際に、混合気の空燃比をリッチにすることにより、内燃機関1から排出されるNO量(NO排出量)を低減させるようにしてもよい。 The ECU 20 advances the operation timing (ignition timing) of the spark plug 8 and increases the opening of the throttle valve 13 (increases the intake air amount) when executing the process of S212. (2) The activity of the exhaust emission control device 16 may be promoted. Further, ECU 20, when executing the processing of the S212, by the air-fuel ratio of the mixture rich, be made to reduce the amount of NO X discharged from the internal combustion engine 1 (NO X emissions) Good.
 ECU20は、S212の処理を実行した後にS213へ進み、前記NO吸着フラグFnox2を“0”にリセットする。 The ECU 20 proceeds to S213 after executing the process of S212, and resets the NO X adsorption flag Fnox2 to “0”.
 このようにECU20が図7のNO吸着処理ルーチンを実行することにより、第2排気浄化装置16が未活性状態にあるときに、大気中へ排出されるNOを低減させることができるとともに、第1排気浄化装置15の早期活性を図ることができる。 As described above, the ECU 20 executes the NO X adsorption processing routine of FIG. 7 to reduce NO X discharged into the atmosphere when the second exhaust purification device 16 is in an inactive state. Early activation of the first exhaust purification device 15 can be achieved.
 なお、本実施例では、第2排気浄化装置16を対象としてNO吸着処理を実行する例について述べたが、第1排気浄化装置15が活性するまでの期間は前述した第1の実施例で述べたように第1排気浄化装置15を対象としてNO吸着処理を実行し、第1排気浄化装置15が活性してから第2排気浄化装置16が活性するまでの期間は当該実施例で述べたように第2排気浄化装置16を対象としたNO吸着処理を実行するようにしてもよい。 In the present embodiment has described the example of executing the NO X adsorption treatment the second exhaust gas purification unit 16 as a target, the period until the first exhaust gas purification device 15 is active in the first embodiment described above run the NO X adsorption treatment of the first exhaust gas purification device 15 as described as a target, the period from when the first exhaust gas purification device 15 is activated until the second exhaust gas purification unit 16 is activated is described in the example As described above, the NO X adsorption processing for the second exhaust purification device 16 may be executed.
1    内燃機関
2    気筒
3    ピストン
4    吸気ポート
5    排気ポート
6    吸気バルブ
7    排気バルブ
8    点火プラグ
9    吸気通路
10  排気通路
11  第1燃料噴射弁
12  第2燃料噴射弁
13  スロットル弁
14  エアフローメータ
15  第1排気浄化装置
16  第2排気浄化装置
17  空燃比センサ
18  Oセンサ
19  排気温度センサ
20  ECU
21  NOセンサ
23  2次空気供給装置
1 Internal combustion engine 2 Cylinder 3 Piston 4 Intake port 5 Exhaust port 6 Intake valve 7 Exhaust valve 8 Spark plug 9 Intake passage 10 Exhaust passage 11 First fuel injection valve 12 Second fuel injection valve 13 Throttle valve 14 Air flow meter 15 First exhaust Purification device 16 Second exhaust purification device 17 Air-fuel ratio sensor 18 O 2 sensor 19 Exhaust temperature sensor 20 ECU
21 NO X sensor 23 Secondary air supply device

Claims (6)

  1.  内燃機関へ液体燃料と気体燃料の何れか一方を供給する供給装置と、
     内燃機関の排気通路に配置された三元触媒へ流入する排気の空燃比を調整する調整部と、
     前記供給装置が気体燃料を内燃機関へ供給しているときに、前記三元触媒へ流入する排気の空燃比がリーンとなるように前記調整部を制御する制御部と、
    を備える内燃機関の制御システム。
    A supply device for supplying one of liquid fuel and gaseous fuel to the internal combustion engine;
    An adjustment unit for adjusting the air-fuel ratio of the exhaust gas flowing into the three-way catalyst disposed in the exhaust passage of the internal combustion engine;
    A control unit that controls the adjustment unit so that the air-fuel ratio of the exhaust gas flowing into the three-way catalyst becomes lean when the supply device supplies gaseous fuel to the internal combustion engine;
    An internal combustion engine control system comprising:
  2.  請求項1において、前記三元触媒の温度を取得する温度取得部を更に備え、
     前記制御部は、前記供給装置が気体燃料を内燃機関へ供給しており、且つ前記温度取得部により取得された温度が該三元触媒の活性温度より低いときに、前記三元触媒へ流入する排気の空燃比がリーンとなるように前記調整部を制御する内燃機関の制御システム。
    In Claim 1, further comprising a temperature acquisition unit for acquiring the temperature of the three-way catalyst,
    The control unit flows into the three-way catalyst when the supply device supplies gaseous fuel to the internal combustion engine and the temperature acquired by the temperature acquisition unit is lower than the activation temperature of the three-way catalyst. A control system for an internal combustion engine that controls the adjusting unit so that an air-fuel ratio of exhaust gas becomes lean.
  3.  請求項1又は2において、前記三元触媒から流出するNO量を取得するNO量取得部を更に備え、
     前記制御部は、前記NO量取得部により取得されるNO量が減少傾向を示すときは排気の空燃比が連続的又は段階的に高くなり、前記NO量取得部により取得されるNO量が増加傾向を示すときは排気の空燃比が規定の空燃比へ低下するように前記調整部を制御する内燃機関の制御システム。
    In Claim 1 or 2, it further has a NO X amount acquisition part which acquires the amount of NO X which flows out from the three-way catalyst,
    Wherein the control unit, the NO amount of NO X which is obtained by X amount obtaining unit air-fuel ratio of the exhaust gas is continuously or stepwise increased when showing a decreasing tendency, NO acquired by the amount of NO X acquisition unit A control system for an internal combustion engine that controls the adjustment unit so that the air-fuel ratio of the exhaust gas decreases to a specified air-fuel ratio when the X amount shows an increasing tendency.
  4.  請求項1乃至3の何れか1項において、前記調整部は、前記三元触媒へ流入する排気の空燃比をリーンにするときに、前記内燃機関で燃焼に供される混合気の空燃比がリーンとなるように前記供給部から内燃機関へ供給される気体燃料量を調整する内燃機関の制御システム。 4. The air-fuel ratio of the air-fuel mixture used for combustion in the internal combustion engine when the adjustment unit makes the air-fuel ratio of the exhaust gas flowing into the three-way catalyst lean. A control system for an internal combustion engine that adjusts an amount of gaseous fuel supplied from the supply unit to the internal combustion engine so as to be lean.
  5.  請求項1又は2において、前記三元触媒は、排気の流れ方向に直列に配置される第1三元触媒及び第2三元触媒を含み、
     前記調整部は、前記第1三元触媒より下流且つ前記第2三元触媒より上流の排気通路へ2次空気を供給する2次空気供給装置を含み、
     前記制御部は、前記供給装置が気体燃料を内燃機関へ供給しているときに、前記第1三元触媒より下流且つ前記第2三元触媒より上流の排気通路へ2次空気が供給されるように前記調整部を制御する内燃機関の制御システム。
    3. The three-way catalyst according to claim 1, wherein the three-way catalyst includes a first three-way catalyst and a second three-way catalyst arranged in series in a flow direction of the exhaust gas,
    The adjustment unit includes a secondary air supply device that supplies secondary air to an exhaust passage downstream from the first three-way catalyst and upstream from the second three-way catalyst;
    The control unit supplies secondary air to an exhaust passage downstream from the first three-way catalyst and upstream from the second three-way catalyst when the supply device is supplying gaseous fuel to the internal combustion engine. An internal combustion engine control system for controlling the adjustment unit as described above.
  6.  請求項5において、前記第2三元触媒から流出するNO量を取得するNO量取得部を更に備え、
     前記制御部は、前記NO量取得部により取得されるNO量が減少傾向を示すときは2次空気の量が連続的又は段階的に増加し、前記NO取得部により取得されるNO量が増加傾向を示すときは2次空気の供給が停止されるように前記調整部を制御する内燃機関の制御システム。
    The method of claim 5, further comprising a amount of NO X acquisition unit that acquires the amount of NO X flowing out from the second three-way catalyst,
    Wherein, said NO when NO X amount acquired by X amount obtaining section indicates decreasing trend the amount of secondary air is increased continuously or stepwise, NO acquired by the NO X acquisition unit A control system for an internal combustion engine that controls the adjusting section so that the supply of secondary air is stopped when the X amount shows an increasing tendency.
PCT/JP2011/060304 2011-04-27 2011-04-27 Internal combustion engine control system WO2012147184A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/060304 WO2012147184A1 (en) 2011-04-27 2011-04-27 Internal combustion engine control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/060304 WO2012147184A1 (en) 2011-04-27 2011-04-27 Internal combustion engine control system

Publications (1)

Publication Number Publication Date
WO2012147184A1 true WO2012147184A1 (en) 2012-11-01

Family

ID=47071725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060304 WO2012147184A1 (en) 2011-04-27 2011-04-27 Internal combustion engine control system

Country Status (1)

Country Link
WO (1) WO2012147184A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318017A (en) * 1997-05-22 1998-12-02 Toyota Central Res & Dev Lab Inc Exhaust emission control method for spark ignition type internal combustion engine
JPH11294212A (en) * 1998-04-03 1999-10-26 Toyota Motor Corp Fuel supply controller for by-fuel internal combustion engine
JP2000213394A (en) * 1999-01-26 2000-08-02 Fuji Heavy Ind Ltd Engine start controller
JP2005163747A (en) * 2003-12-05 2005-06-23 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JP2006077740A (en) * 2004-09-13 2006-03-23 Toyota Motor Corp Multi-fuel engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318017A (en) * 1997-05-22 1998-12-02 Toyota Central Res & Dev Lab Inc Exhaust emission control method for spark ignition type internal combustion engine
JPH11294212A (en) * 1998-04-03 1999-10-26 Toyota Motor Corp Fuel supply controller for by-fuel internal combustion engine
JP2000213394A (en) * 1999-01-26 2000-08-02 Fuji Heavy Ind Ltd Engine start controller
JP2005163747A (en) * 2003-12-05 2005-06-23 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JP2006077740A (en) * 2004-09-13 2006-03-23 Toyota Motor Corp Multi-fuel engine

Similar Documents

Publication Publication Date Title
US8370049B1 (en) Control system of internal combustion engine
WO2011145435A1 (en) Internal combustion engine control device
WO2012066645A1 (en) Control device for internal combustion engine
JPWO2012157076A1 (en) Multifuel internal combustion engine control system
WO2011158353A1 (en) Fuel control device for an internal combustion system
WO2011111224A1 (en) Control device for internal combustion engine
EP2682589B1 (en) Control device for internal combustion engine
JP2010168949A (en) Control device for internal combustion engine, and flexible fuel vehicle
JP5067510B2 (en) Fuel injection system for internal combustion engine
JP4470838B2 (en) Control device for hydrogen engine
US9097167B2 (en) Exhaust gas purification device of internal combustion engine
EP2613032B1 (en) Catalyst deterioration detection apparatus and method
US6732503B2 (en) Air/fuel ratio controller for internal combustion engine
JP2012225308A (en) Internal combustion engine control apparatus
EP2580453A2 (en) Method to reduce emissions of nitrogen oxides from combustion engines and/or to increase the performance of combustion engines while keeping the emissions of nitrogen oxides from combustion engines at the same level and/or to increase the overall performance of an engine, and a device to perform this method
WO2012147184A1 (en) Internal combustion engine control system
CN110857645B (en) Exhaust gas purification device and exhaust gas purification method for internal combustion engine
JP5582249B2 (en) Fuel injection control system for internal combustion engine
WO2012147183A1 (en) Internal combustion engine control system
JP2009047068A (en) Control device of internal combustion engine
WO2012153423A1 (en) System for controlling multi-fuel internal combustion engine
JP2014001682A (en) Exhaust gas purifier of internal combustion engine
JP2006046144A (en) Control device for internal combustion engine
JP2016125478A (en) Air-fuel ratio control device of internal combustion engine
WO2012153424A1 (en) System for controlling multi-fuel internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP