WO2012147129A1 - Optical disk apparatus, optical disk recording and playback method, and optical disk - Google Patents

Optical disk apparatus, optical disk recording and playback method, and optical disk Download PDF

Info

Publication number
WO2012147129A1
WO2012147129A1 PCT/JP2011/002463 JP2011002463W WO2012147129A1 WO 2012147129 A1 WO2012147129 A1 WO 2012147129A1 JP 2011002463 W JP2011002463 W JP 2011002463W WO 2012147129 A1 WO2012147129 A1 WO 2012147129A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical disc
recording
crosstalk amount
data
Prior art date
Application number
PCT/JP2011/002463
Other languages
French (fr)
Japanese (ja)
Inventor
無津呂 靖雄
鈴木 基之
石飛 竜哉
Original Assignee
日立コンシューマエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立コンシューマエレクトロニクス株式会社 filed Critical 日立コンシューマエレクトロニクス株式会社
Priority to PCT/JP2011/002463 priority Critical patent/WO2012147129A1/en
Publication of WO2012147129A1 publication Critical patent/WO2012147129A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0945Methods for initialising servos, start-up sequences
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • G11B7/1267Power calibration
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00745Sectoring or header formats within a track
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24047Substrates
    • G11B7/2405Substrates being also used as track layers of pre-formatted layers

Definitions

  • the present invention relates to an optical disc apparatus for reproducing information from an optical disc using a laser or recording information on the optical disc.
  • Non-Patent Document 1 a layer having a physical groove structure (hereinafter referred to as a guide layer) for performing tracking servo control is provided, and a layer for recording / reproducing (recording layer) does not have a land / groove structure.
  • An optical disc (grooveless disc) is shown, which is easy to manufacture even when a large number of recording layers are stacked.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to measure crosstalk from adjacent tracks in an optical disc having a guide layer, and to easily perform adjustment in reproduction.
  • An information recording / reproducing apparatus and method thereof are provided.
  • the present invention uses the configuration described in the claims as an example.
  • crosstalk from an adjacent track or an adjacent layer can be measured, and adjustment in reproduction can be easily performed.
  • FIG. 1 is a diagram showing a configuration example of an optical disc apparatus according to Embodiments 1 to 3 of the present invention.
  • FIG. 2 is a diagram showing a structure example of a grooveless disk according to the first to third embodiments of the present invention.
  • FIG. 3A is a diagram showing an example in which different fixed-period patterns are recorded on adjacent tracks of the fixed-period pattern in the crosstalk measurement area according to the first embodiment of the present invention.
  • FIG. 3B is a diagram illustrating an example in which a mark having a fixed period is recorded on a track adjacent to an unrecorded portion in the crosstalk measurement area according to the first embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration example of an optical disc apparatus according to Embodiments 1 to 3 of the present invention.
  • FIG. 2 is a diagram showing a structure example of a grooveless disk according to the first to third embodiments of the present invention.
  • FIG. 3A is a diagram showing an example in which different fixed-
  • FIG. 3C is a diagram illustrating an example in which a mark having a fixed period is recorded on an adjacent track of the user data portion in the crosstalk measurement area according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing the frequency characteristics of the crosstalk measurement region in the first to third embodiments of the present invention.
  • FIG. 5 is a diagram showing an example of focus adjustment in the first to third embodiments of the present invention.
  • FIG. 6 is a diagram showing an example of tilt adjustment in the first and third embodiments of the present invention.
  • FIG. 7 is a diagram showing a configuration example of the decoding circuit in the first to third embodiments of the present invention.
  • FIG. 8 is a diagram showing an example of spherical aberration adjustment in the first to third embodiments of the present invention.
  • FIG. 9A is a diagram showing an example in which different fixed-period patterns are recorded in adjacent layers of the fixed-period pattern in the crosstalk measurement area according to the second embodiment of the present invention.
  • FIG. 9B is a diagram illustrating an example in which marks having a fixed period are recorded in an adjacent layer of an unrecorded portion in the crosstalk measurement area according to the second embodiment of the present invention.
  • FIG. 9C is a diagram illustrating an example in which a fixed-cycle mark is recorded in an adjacent layer of the user data portion in the crosstalk measurement area according to the second embodiment of the present invention.
  • FIG. 9A is a diagram showing an example in which different fixed-period patterns are recorded in adjacent layers of the fixed-period pattern in the crosstalk measurement area according to the second embodiment of the present invention.
  • FIG. 9B is a diagram illustrating an example in which marks having a fixed period are recorded in an adjacent layer of an unrecorded portion in the crosstalk measurement area according to the second embodiment of the present invention.
  • FIG. 10A is a diagram showing an example in which different fixed-period patterns are recorded on adjacent tracks and adjacent layers of the fixed-period pattern in the crosstalk measurement area according to the third embodiment of the present invention.
  • FIG. 10B is a diagram illustrating an example in which marks having a fixed period are recorded on the adjacent track and the adjacent layer of the unrecorded portion in the crosstalk measurement area according to the third embodiment of the present invention.
  • FIG. 10C is a diagram showing an example in which marks having a fixed period are recorded on the adjacent track and the adjacent layer of the non-user data portion in the crosstalk measurement area according to the third embodiment of the present invention.
  • FIG. 11 is a diagram showing an example of the area configuration of the optical disc in the first to third embodiments of the present invention.
  • FIG. 1 shows a configuration example of an optical disc apparatus as an embodiment of the present invention.
  • An optical disk device 100 is a device that performs recording or reproduction on a removable optical disk 1 in response to a recording or reproduction request from a host PC 200, and includes an optical pickup 2, a spindle motor 3, a microcomputer 4, an address detection circuit 5, and a cross.
  • the apparatus includes a talk (hereinafter referred to as CT) amount measuring circuit 6, a decoding circuit 7, a memory 8, an encoding circuit 9, and an interface circuit 10.
  • CT talk
  • the optical disc 1 has a guide layer and a recording layer.
  • FIG. 2 schematically shows an example of the structure of the optical disc 1.
  • the optical disc 1 has a guide layer 11 and a recording layer 12, and has four recording layers 12.
  • the optical disk apparatus 100 can generate laser spots on the recording layer and the guide layer by the objective lens 21.
  • four recording layers are used.
  • the number of recording layers is not limited as long as the number of recording layers is one or more. 21, 211, and 212 will be described later.
  • the optical pickup 2 receives the optical pickup control signal S02 from the microcomputer 4, moves in the radial direction of the optical disc 1 and moves to a recording or reproducing position, and the position of the laser beam focused by the optical pickup control signal S02. Accordingly, the optical disk 1 is irradiated with two laser beams (for example, 405 nm and 650 nm) having different wavelengths for recording or reproduction via the objective lens 21 shown in FIG.
  • the irradiated first laser beam with a wavelength of 650 nm (211 in FIG. 2) is reflected by the guide layer 11 of the optical disc 1 and is not shown in the drawing, which is included in the optical pickup 2 via the objective lens in FIG. Receives the reflected light.
  • the first light receiving unit converts the reflected light into a tracking signal S04 and outputs it to the address detection circuit 5.
  • the irradiated second laser beam having a wavelength of 405 nm (212 in FIG. 2) is reflected by the recording layer 12 of the optical disc 1 during reproduction, and is shown in the optical pickup 2 via the objective lens 21 in FIG.
  • a second light receiving unit not receiving the reflected light.
  • the second light receiving unit converts the reflected light into a reproduction signal S03 and outputs it to the CT amount measuring circuit 6 and the decoding circuit 7.
  • the optical pickup 2 receives the optical pickup control signal S02 from the microcomputer 4 and drives a spherical aberration correction element (not shown) provided in the optical pickup 2 in accordance with the instructed spherical aberration correction amount, thereby converging the laser beam. Control divergence.
  • the spindle motor 3 receives the motor rotation control from the microcomputer 4 by the motor control signal S01 and rotates the optical disc 1.
  • the microcomputer 4 controls each circuit of the optical disc device 100.
  • the microcomputer 4 is controlled by software.
  • the microcomputer 4 outputs an optical pickup control signal S02 to the optical pickup 2 at the time of recording / reproduction, and controls the optical pickup 2 to move to the recording / reproducing position by moving in the radial direction of the optical disc 1, thereby adjusting the focus of the laser beam. Control is performed so that the optical disc 1 is irradiated with laser light for recording or reproduction.
  • the motor control signal S01 is output to the spindle motor 3 to perform motor rotation control and control to rotate the optical disc 1.
  • the microcomputer 4 reads / writes data from / to the memory 8 as appropriate.
  • the number of the microcomputers 4 is not limited to one.
  • a circuit for performing servo control such as the motor control signal S01 and the optical pickup control signal S02 may be provided, and the servo control processing may be separated from the microcomputer 4. Further, the microcomputer 4 controls each circuit of the optical disc apparatus, receives notification of an interrupt signal, a flag signal, etc. from each circuit, and starts processing.
  • the address detection circuit 5 reads the address information from the tracking signal S04 and outputs a CT amount measurement control signal S05 to the CT amount measurement circuit 6.
  • the CT amount measurement circuit 6 is controlled by the CT amount measurement control signal S05 to start and end CT amount measurement, calculates a CT amount from the reproduction signal S03, and uses the calculated result as a CT amount calculation result S06. Output to.
  • the decoding circuit 7 stores the decoding result S07 in the memory 8 by performing analog signal processing such as amplification of the reproduction signal S03 output from the optical pickup 2, digitization, binary data generation and decoding.
  • the memory 8 is a storage means such as SDRAM (Synchronous Dynamic Random Access Memory) or flash memory, and stores data related to processing in the microcomputer 4.
  • SDRAM Serial Dynamic Random Access Memory
  • flash memory stores data related to processing in the microcomputer 4.
  • the encoding circuit 9 performs modulation processing on the recording data S08 in the memory 8 and converts it into binary data stored in the optical disc 1.
  • the interface circuit 10 communicates with the host PC 200 according to various interface standards such as ATAPI, USB, and IEEE1394, and reads the transmission data S09 from the memory 8 and transmits it to the host PC 200, or receives it from the host PC 200 as reception data S10 in the memory 8. Store.
  • various interface standards such as ATAPI, USB, and IEEE1394
  • the recording command and recording data are transmitted from the host PC 200 to the optical disc apparatus 100 and received by the interface circuit 10.
  • the recording data received by the interface circuit 10 is stored in the memory 8 as reception data S10.
  • the reception data S10 stored in the memory 8 is subjected to modulation processing by the encoder circuit 9 and converted into recording data S08.
  • the microcomputer 4 After receiving the recording command reception notification from the interface circuit 10, the microcomputer 4 reads the address information and recording double speed information included in the recording command so that recording can be performed at the recording double speed indicated by the recording double speed information from the position indicated by the address information.
  • a motor control signal S01 and an optical pickup control signal S02 are output to perform recording position control. In the recording position control, the optical pickup 2 emits the first laser light 211 in response to the optical pickup control signal S02.
  • the laser beam 211 is applied to the guide layer 11 of the optical disc 1 through the objective lens 21 and is reflected by the guide layer 11.
  • the reflected light is received by the first light receiving portion of the optical pickup 2 (not shown) via the objective lens 21.
  • the first light receiving section converts the reflected light from the guide layer 11 into a tracking signal S04 and outputs it to the address detection circuit 5.
  • the address detection circuit 5 reads the address from the tracking signal S04 and outputs it to the microcomputer 4.
  • the address is read when the first laser beam is applied to an address area partially provided in the guide layer 11.
  • the microcomputer 4 outputs the optical pickup control signal S02 based on the address and performs recording position control. In the recording position control, the second laser beam 212 may or may not be emitted from the optical pickup 2.
  • the microcomputer 4 controls the optical pickup 2 so as to record the binary data on the optical disc 1 by the optical pickup control signal S02.
  • the optical pickup 2 In response to the optical pickup control signal S02, the optical pickup 2 emits two types of laser beams having different focal points to the optical disc 1.
  • the first laser beam 211 is applied to the guide layer 11 of the optical disc 1 through the objective lens 21 and is reflected by the guide layer 11.
  • the reflected light is received by the first light receiving portion of the optical pickup 2 (not shown) via the objective lens 21.
  • the first light receiving portion converts the reflected light from the guide layer 11 into a tracking signal S04 and outputs the tracking signal S04.
  • the microcomputer 4 performs the tracking control by outputting the optical pickup control signal S02 based on the tracking signal S04.
  • the tracking signal S04 is also output to the address detection circuit 5.
  • the address detection circuit 5 reads the address from the tracking signal S04 and outputs it to the microcomputer 4.
  • the microcomputer 4 performs address management in the recording operation based on the address and is used for management of the recording data amount.
  • the second laser beam 212 is irradiated onto the recording layer 12 of the optical disc 1 through the objective lens 21 and recorded.
  • FIG. 3A schematically shows the recorded data.
  • the same components as those in FIG. Reference numeral 121 in FIG. 3 denotes an area of the recording layer 12 (hereinafter referred to as a CT amount measurement area) corresponding to the position of the address area of the guide layer 11.
  • Reference numeral 1211 denotes periodic data marks recorded in the CT amount measurement area 121. As shown in FIG. 3A, recording is performed such that the period 1211 is different from that of the adjacent track.
  • FIG. 11 shows a configuration example of the area of the optical disc 1.
  • FIG. 11 shows an example having one guide layer 11 and four recording layers 12.
  • the guide layer 11 includes a guide layer lead-in area 111, a guide layer lead-out area 112, an address area 113, and a guide layer data area 114.
  • the recording layer 12 includes a CT amount measurement region 121, a recording layer lead-in region 122, a recording layer outer region 123, a recording layer inner region 124, a recording layer lead-out region 125, and a recording layer data region 126.
  • the address area 113 of the guide layer and the CT amount measurement area 121 are located at substantially the same address position.
  • the guide layer data area 114 and the recording layer data area 126 are areas for recording user data.
  • the guide layer lead-in area 111, the guide layer lead-out area 112, the recording layer lead-in area 122, the recording layer outer area 123, the recording layer inner area 124, and the recording layer lead-out area 125 are included in the optical disc 1.
  • This is an area for performing test recording and test reproduction for making adjustments for recording and reproduction of control information related to recording and reproduction, and recording and reproduction of user data.
  • the CT amount can be calculated for each divided area, and various adjustments can be made in units of areas.
  • the decoding circuit 7 such as user data or management information of the optical disc 1 is used.
  • Decryptable data may be recorded.
  • the area of the recording layer 12 corresponding to the position of the address area can be effectively used for other purposes.
  • the playback command is transmitted from the host PC 200 to the optical disc apparatus 100 and received by the interface circuit 10.
  • the microcomputer 4 After receiving the notification of reception of the reproduction command from the interface circuit 10, the microcomputer 4 reads the address information and reproduction double speed information included in the reproduction command so that reproduction can be performed at the reproduction double speed indicated by the reproduction double speed information from the position indicated by the address information.
  • a motor control signal S01 and an optical pickup control signal S02 are output to perform reproduction position control. Since the operation of the reproduction position control is the same as that of the recording position control, the description is omitted.
  • the second laser beam 212 may or may not be emitted from the optical pickup 2 as in the recording position control.
  • the microcomputer 4 controls the optical pickup 2 so as to reproduce the optical disc 1 by the optical pickup control signal S02 when the microcomputer 4 controls the predetermined reproduction position.
  • the optical pickup 2 emits two types of laser beams having different focal points to the optical disc 1. Since the operation related to the first laser beam 211 is the same as the operation related to the first laser beam 211 in the recording operation, a description thereof will be omitted.
  • the second laser beam 212 is applied to the recording layer 12 of the optical disc 1 through the objective lens 21 and reflected by the recording layer 12. The reflected light is received by the second light receiving portion of the optical pickup 2 (not shown) via the objective lens 21.
  • the second light receiving unit converts the reflected light from the recording layer 12 into a reproduction signal S03 and outputs it to the decoding circuit 7 and the CT amount measuring circuit 6.
  • the decoding circuit 7 performs analog signal processing such as amplification of the reproduction signal S03, digitization, binary data generation, and decoding to generate a decoding result S07 and stores it in the memory 8.
  • the decoding result S07 stored in the memory 8 is read by the interface circuit 10 and output to the host PC 200.
  • the optical pickup position control at the time of reproduction may be performed by a signal based on the reflected light from the recording layer 12 by the second laser beam 212. In this case, for example, only the second laser beam needs to be emitted in the read-only optical disc apparatus, and it is not necessary to emit the first laser beam, so that the configuration of the optical pickup 2 can be simplified.
  • CT amount measurement is performed during the time during which the CT amount measurement region 121 shown in FIG. 3 is being reproduced.
  • periodic data is recorded as described above, and data having a period different from that of adjacent tracks is recorded.
  • the CT amount is calculated based on the frequency characteristics of the reproduction signal S03 obtained when the CT amount measurement region 121 is reproduced.
  • An example of the frequency characteristic of the reproduction signal S03 in the CT amount measurement region 121 is shown in FIG.
  • the ideal frequency characteristic is a characteristic having a peak in the frequency (ftarget) of the periodic data on the track being reproduced and the frequency (fside) of the periodic data on the adjacent track. Become.
  • the signal intensity Pside at fside is the CT amount.
  • the characteristic shown in FIG. 4 is an example of an ideal frequency characteristic, and the signal intensity can actually take a non-zero (not zero) value at other frequencies.
  • the signal intensity at fside is used as the CT amount.
  • the signal intensity that is maximal at the frequency near fside may be used as the CT amount, or the amount obtained by integrating the signal intensity at the frequency near fside is the CT amount. It is also good.
  • the CT amount calculated in this way is output to the microcomputer 4 as a CT amount calculation result S06.
  • the microcomputer 4 performs various adjustment processes based on the CT amount calculation result S06.
  • the frequency characteristics in the CT amount measurement region 121 on the same track are calculated, and the focus position where the calculated CT amount is minimized is used as the focus adjustment result.
  • the focus position shifts, the spot of the laser beam 212 is blurred and widens in diameter, and the CT amount tends to increase. For this reason, when the CT amount characteristic with respect to the focus position is taken, it becomes a characteristic having a minimum point.
  • the CT amount measurement area 121 on the same track is used, as long as the data frequency of the CT amount measurement area 121 is the same, the track may not be the same, or the same CT amount measurement area 121 may be used.
  • FIG. 5 shows an example of focus adjustment in this case.
  • the CT amounts measured by regenerating the CT amount measurement region 121 by changing the focus position at four positions Fa, Fb, Fc, and Fd are Pa, Pb, Pc, and Pd, respectively.
  • a focus position Fbest that takes the value of Pmini in the approximate expression is taken as a focus adjustment result.
  • FIG. 6 shows an example of tilt adjustment in this case.
  • the CT amounts measured by reproducing the CT amount measurement region 121 by changing the tilt position at four locations of Ta, Tb, Tc, and Td are defined as Pa, Pb, Pc, and Pd, respectively.
  • the tilt position Tbest at which the value of Pmini is obtained in the approximate expression is defined as a tilt adjustment result.
  • the power adjustment (hereinafter referred to as read power) of the second laser beam 212 at the time of reproduction reproduction is performed by changing the read power by several stages, and the frequency characteristics in the CT amount measurement region 121 on the same track are calculated, The read power determined based on the calculated CT amount is taken as a read power adjustment result. Since the signal amplitude also changes when the read power is changed, the ratio of Ptarget to Pside in FIG. 4 (hereinafter referred to as CT ratio) is used as an index for adjusting the read power. When the read power changes, the spot of the second laser beam 212 may increase or change its shape, and the CT ratio may change.
  • the characteristic of the CT ratio with respect to the read power when taken, there may be a characteristic having a minimum point.
  • the CT amount measurement area 121 on the same track is used, as long as the data frequency of the CT amount measurement area 121 is the same, the track may not be the same, or the same CT amount measurement area 121 may be used. Further, when obtaining the read power at which the CT ratio is minimized, the characteristics of the CT ratio with respect to the read power may be obtained, and the read power adjustment result may be calculated by an approximate method.
  • FIG. 7 shows an example of the configuration of the decoding circuit 7.
  • the analog signal processing circuit 71 that performs analog signal processing such as amplification of the reproduction signal S03 and digitization of the processing result signal of the analog signal processing circuit 71 are shown.
  • a maximum likelihood decoding algorithm for example, a Viterbi algorithm
  • the coefficient of each tap of the FIR (Finite Impulse Response) filter is the convolution signal obtained from the target signal of the binarized bit string and the RMS of the equalization signal output from the adaptive equalization circuit 73 ( Root Mean Square)
  • the learning process is performed so as to minimize the error.
  • the tap coefficient convergence speed in the learning process is variably controlled based on the magnitude of the CT amount. For example, when the CT amount is large, the error becomes large and there is a concern that the influence on the learning process will be large. Therefore, the convergence speed of the tap coefficient is slowed down. Conversely, when the CT amount is small, the influence on the learning process is small, so the tap coefficient convergence speed is increased.
  • the RMS error is used, an error obtained by another calculation such as an absolute value may be used.
  • the adaptive maximum likelihood decoding circuit 74 generates binary data from the equalized signal using a maximum likelihood decoding algorithm such as a Viterbi algorithm.
  • a maximum likelihood decoding algorithm such as a Viterbi algorithm.
  • the distance between the target level which is an amplitude value that can be taken by the target waveform obtained by convolving the target binary signal sequence, and the amplitude value of the equalized signal is sequentially integrated, and the distance 2 is the smallest.
  • Binary data for generating a value code pattern is used.
  • the adaptive maximum likelihood decoding circuit 74 variably controls the target level to follow the target level according to the characteristics of the input equalized signal, and variably changes the follow-up speed based on the CT amount.
  • the spherical aberration correction amount is reproduced by changing several stages, the frequency characteristics in the CT amount measurement region 121 on the same track are calculated, and the spherical aberration correction amount at which the calculated CT amount is minimized is obtained.
  • the result is a spherical aberration adjustment result.
  • the spherical aberration correction amount is not optimal, the spot of the laser beam 212 is blurred and widened in diameter, and the CT amount tends to increase. For this reason, when the CT amount characteristic with respect to the spherical aberration correction amount is taken, the characteristic has a minimum point.
  • FIG. 8 shows an example of spherical aberration adjustment in this case.
  • the CT amounts measured by reproducing the CT amount measurement region 121 by changing the spherical aberration correction amount at four locations ABa, ABb, ABc, and ABd are Pa, Pb, Pc, and Pd, respectively.
  • the spherical aberration correction amount ABbest that takes the value of Pmini in the approximate expression is taken as the spherical aberration correction result.
  • the data recorded in the CT amount measurement area 121 has a period of periodic data marks different from that of the adjacent track as shown in FIG. 3A, but as shown in FIG. Alternatively, periodic data marks may be recorded on adjacent tracks of the unrecorded portion.
  • the CT amount is measured during the time when the unrecorded part is reproduced.
  • the ideal frequency characteristic has a peak at the frequency of the periodic data on the adjacent track, and the signal intensity of the peak value is the CT amount.
  • FIG. 3B an unrecorded portion and a periodic data recording portion are provided in the same track in the CT amount measurement region 121, but an unrecorded portion is present in the same track in the CT amount measurement region 121.
  • a periodic data mark recording unit may be provided in another CT amount measurement region 121 on the same track.
  • the data recorded in the CT amount measurement area 121 has a period of periodic data marks different from that of the adjacent track as shown in FIG. 3A, but as shown in FIG.
  • periodic data marks may be recorded on adjacent tracks in the user data portion.
  • the CT amount measurement is performed during the time when the user recording unit is being reproduced.
  • the ideal frequency characteristic has a peak at the frequency of the periodic data on the adjacent track, and the signal intensity is small at other frequencies. Let the signal intensity of the peak value be the CT amount.
  • the user data portion and the periodic data recording portion are provided in the same track in the CT amount measurement region 121, but the user data portion is provided in the same track in the CT amount measurement region 121.
  • a periodic data mark recording unit may be provided in another CT amount measurement region 121 on the same track.
  • Example 2 when recording is performed, in the area of the recording layer 12 corresponding to the position of the address area of the guide layer 11, data to be recorded is not the binary data but periodic data.
  • FIG. 9A schematically shows the recorded data.
  • recording is performed such that the period of the periodic data mark 1211 is different from the CT amount measurement area 121 of the track at the radial position of the optical disc 1 in which the adjacent layer is substantially equal.
  • the playback command is transmitted from the host PC 200 to the optical disc device 100 and the optical disc device 100 performs playback from the optical disc 1 is the same as in the first embodiment except for the playback of the CT amount measurement region, description thereof is omitted.
  • Example 2 during reproduction, CT amount measurement is performed during the time during which the CT amount measurement region 121 shown in FIG. 9 is being reproduced.
  • the CT amount measurement region 121 periodic data is recorded as described above, and data having a period different from the periodic data of the track at the radial position of the optical disc 1 in the adjacent layer that is substantially equal is recorded.
  • the CT amount is calculated based on the frequency characteristics of the reproduction signal S03 obtained when the CT amount measurement region 121 is reproduced.
  • An example of the frequency characteristic of the reproduction signal S03 in the CT amount measurement region 121 can be shown as in FIG. As shown in FIG.
  • the ideal frequency characteristic is that the periodic data on the track at the radial position of the optical disc 1 in the adjacent layer is substantially equal to the frequency (ftarget) of the periodic data on the track being reproduced. It has a characteristic having a peak at the frequency (fside).
  • the signal intensity Pside at fside is the CT amount.
  • the characteristic shown in FIG. 4 is an example in the case of an ideal frequency characteristic, and the signal intensity can actually take a non-zero value at other frequencies.
  • the signal intensity at fside is used as the CT amount.
  • the signal intensity that is maximal at the frequency near fside may be used as the CT amount, or the amount obtained by integrating the signal intensity at the frequency near fside is the CT amount. It is also good.
  • the CT amount calculated in this way is output to the microcomputer 4 as a CT amount calculation result S06.
  • the microcomputer 4 performs various adjustment processes based on the CT amount calculation result S06.
  • the characteristic of the CT amount with respect to the focus position may be obtained, and the focus adjustment result may be calculated by an approximate method. Since the example in this case can be described using FIG. 5 similarly to the first embodiment, the description is omitted.
  • the CT amount is used in the processing in the decoding circuit 7.
  • a configuration example of the decoding circuit 7 in the second embodiment can be shown in FIG. 7 as in the first embodiment.
  • the adaptive equalization circuit 73 variably controls the tap coefficient convergence speed in the learning process based on the CT amount.
  • the target level is variably controlled in the same manner as in the first embodiment so as to follow the target level according to the characteristics of the input equalized signal, and is variable based on the CT amount. Change the following speed.
  • the spherical aberration correction amount is reproduced by changing several stages, the frequency characteristics in the CT amount measurement region 121 on the same track are calculated, and the spherical aberration correction amount at which the calculated CT amount is minimized is obtained.
  • the result is a spherical aberration adjustment result. If the spherical aberration correction amount is not optimal, the focal point of the laser beam 212 moves to the adjacent layer side, and the CT amount tends to increase. For this reason, when the CT amount characteristic with respect to the spherical aberration correction amount is taken, the characteristic has a minimum point.
  • the CT amount measurement area 121 on the same track is used, as in the first embodiment, if the frequency of data in the CT amount measurement area 121 is the same track, the CT track may not be the same track.
  • the region 121 may be used.
  • the characteristic of the CT amount with respect to the spherical aberration correction amount may be obtained, and the spherical aberration adjustment result may be calculated by an approximate method. Since the example in this case can be described using FIG. 8 similarly to the first embodiment, the description is omitted.
  • the data recorded in the CT amount measurement area 121 is different from the track of the radial position of the optical disc 1 in which the adjacent layer has substantially the same period as shown in FIG. 9A.
  • periodic data marks may be recorded on the track at the radial position of the optical disc 1 that is substantially the same in the adjacent layer of the unrecorded portion.
  • the CT amount is measured during the time when the unrecorded part is reproduced.
  • the ideal frequency characteristic is a characteristic having a peak at the frequency of the periodic data on the track at the radial position of the optical disc 1 in the adjacent layer which is substantially equal, and the signal intensity of the peak value is the CT amount.
  • an unrecorded portion and a periodic data recording portion are provided in the same track in the CT amount measurement region 121, but an unrecorded portion is present in the same track in the CT amount measurement region 121.
  • a periodic data mark recording unit may be provided in another CT amount measurement region 121 on the same track.
  • the data recorded in the CT amount measurement area 121 is different from the track of the radial position of the optical disc 1 in which the adjacent layer has substantially the same period as shown in FIG. 9A.
  • periodic data marks may be recorded on the track at the radial position of the optical disk 1 that is substantially equal in the adjacent layer of the user data portion.
  • the CT amount measurement is performed during the time when the user recording unit is being reproduced.
  • the ideal frequency characteristic has a peak at the frequency of the periodic data on the track at the radial position of the optical disc 1 in the adjacent layer which is substantially equal, and the signal intensity is small at other frequencies. Let the signal intensity of the peak value be the CT amount.
  • FIG. 9C periodic data marks may be recorded on the track at the radial position of the optical disk 1 that is substantially equal in the adjacent layer of the user data portion.
  • the user data portion and the periodic data recording portion are provided in the same track in the CT amount measurement region 121, but the user data portion is provided in the same track in the CT amount measurement region 121.
  • a periodic data mark recording unit may be provided in another CT amount measurement region 121 on the same track.
  • Example 3 when recording is performed, in the area of the recording layer 12 corresponding to the position of the address area of the guide layer 11, the data to be recorded is not the binary data but periodic data.
  • FIG. 10A schematically shows the recorded data. 10, the same numbers are assigned to the same components as those in FIG. As shown in FIG. 10A, the period of the periodic data mark 1211 is recorded so as to be different from the CT amount measurement region 121 of the adjacent track and the track at the radial position of the optical disk 1 that is substantially the same in the adjacent layer. I do.
  • the playback command is transmitted from the host PC 200 to the optical disc device 100 and the optical disc device 100 performs playback from the optical disc 1 is the same as in the first embodiment except for the playback of the CT amount measurement region, description thereof is omitted.
  • Example 3 during reproduction, CT amount measurement is performed during the time during which the CT amount measurement region 121 shown in FIG. 10 is being reproduced.
  • periodic data is recorded as described above, and data having a period different from the periodic data of the adjacent track and the track at the radial position of the optical disc 1 that is substantially the same in the adjacent layer is recorded.
  • the CT amount is calculated based on the frequency characteristics of the reproduction signal S03 obtained when the CT amount measurement region 121 is reproduced.
  • An example of the frequency characteristic of the reproduction signal S03 in the CT amount measurement region 121 can be shown as in FIG. As shown in FIG.
  • the ideal frequency characteristic is such that the frequency (ftarget) of the periodic data on the track being reproduced and the track on the radial position of the optical disc 1 which is substantially equal to the adjacent track and the adjacent layer. It has a characteristic having a peak at the frequency (fside) of the periodic data.
  • the signal intensity Pside at fside is the CT amount.
  • the characteristic shown in FIG. 4 is an example in the case of an ideal frequency characteristic, and the signal intensity can actually take a non-zero value at other frequencies. In calculating the CT amount, the signal intensity at fside is used as the CT amount.
  • the signal intensity that is maximal at the frequency near fside may be used as the CT amount, or the amount obtained by integrating the signal intensity at the frequency near fside is the CT amount. It is also good.
  • the CT amount calculated in this way is output to the microcomputer 4 as a CT amount calculation result S06.
  • the microcomputer 4 performs various adjustment processes based on the CT amount calculation result S06.
  • the frequency characteristics in the CT amount measurement region 121 on the same track are calculated, and the focus position where the calculated CT amount is minimized is used as the focus adjustment result.
  • the focus position shifts the spot of the laser beam 212 blurs and increases in diameter in the layer, and the focal point moves toward the adjacent layer, and the amount of CT from the adjacent track or adjacent layer tends to increase. For this reason, when the CT amount characteristic with respect to the focus position is taken, it becomes a characteristic having a minimum point.
  • the CT amount measurement area 121 on the same track is used, as long as the data frequency of the CT amount measurement area 121 is the same, the track may not be the same, or the same CT amount measurement area 121 may be used.
  • the characteristic of the CT amount with respect to the focus position may be obtained, and the focus adjustment result may be calculated by an approximate method. Since the example in this case can be described using FIG. 5 similarly to the first embodiment, the description is omitted.
  • tilt adjustment reproduction is performed by changing the tilt position at several places, the frequency characteristics in the CT amount measurement region 121 on the same track are calculated, and the tilt position where the calculated CT amount is minimized is used as the tilt adjustment result. . Since the tilt adjustment method is the same as that of the first embodiment, description thereof is omitted.
  • the power adjustment (hereinafter referred to as read power) of the second laser beam 212 at the time of reproduction reproduction is performed by changing the read power by several stages, and the frequency characteristics in the CT amount measurement region 121 on the same track are calculated, The read power determined based on the calculated CT amount is taken as a read power adjustment result. Since the read power adjustment method is the same as that of the first embodiment, the description thereof is omitted.
  • the CT amount is used in the processing in the decoding circuit 7.
  • a configuration example of the decoding circuit 7 in the third embodiment can be shown in FIG. 7 as in the first embodiment.
  • the adaptive equalization circuit 73 variably controls the tap coefficient convergence speed in the learning process based on the CT amount.
  • the target level is variably controlled in the same manner as in the first embodiment so as to follow the target level according to the characteristics of the input equalized signal, and is variable based on the CT amount. Change the following speed.
  • the spherical aberration correction amount is reproduced by changing several stages, the frequency characteristics in the CT amount measurement region 121 on the same track are calculated, and the spherical aberration correction amount at which the calculated CT amount is minimized is obtained.
  • the result is a spherical aberration adjustment result.
  • the spherical aberration correction amount is not optimal, the spot of the laser beam 212 is blurred and the diameter is widened, and the focal point moves to the adjacent layer side, and the CT amount from the adjacent track and the adjacent layer tends to increase. For this reason, when the CT amount characteristic with respect to the spherical aberration correction amount is taken, the characteristic has a minimum point.
  • the CT amount measurement area 121 on the same track is used, as in the first embodiment, if the frequency of data in the CT amount measurement area 121 is the same track, the CT track may not be the same track.
  • the region 121 may be used.
  • the characteristic of the CT amount with respect to the spherical aberration correction amount may be obtained, and the spherical aberration adjustment result may be calculated by an approximate method. Since the example in this case can be described using FIG. 8 similarly to the first embodiment, the description is omitted.
  • the data to be recorded in the CT amount measurement area 121 is the track of the radial position of the optical disc 1 in which the period of the periodic data mark is substantially equal between the adjacent track and the adjacent layer as shown in FIG.
  • periodic data marks may be recorded on the adjacent track of the unrecorded portion and the track at the radial position of the optical disc 1 that is substantially the same in the adjacent layer.
  • the CT amount is measured during the time when the unrecorded part is reproduced.
  • the ideal frequency characteristic is a characteristic having a peak at the frequency of the periodic data on the track at the radial position of the optical disc 1 in which the adjacent track and the adjacent layer are substantially equal, and the signal intensity of the peak value is the CT amount.
  • the CT amount measurement region 121 an unrecorded portion and a periodic data recording portion are provided in the same track.
  • an unrecorded portion is provided in the same track.
  • a periodic data mark recording unit may be provided in another CT amount measurement region 121 on the same track.
  • the data to be recorded in the CT amount measurement area 121 is the track of the radial position of the optical disc 1 in which the period of the periodic data mark is substantially equal between the adjacent track and the adjacent layer as shown in FIG.
  • periodic data marks may be recorded on the adjacent tracks in the user data portion and the tracks at the radial positions of the optical disc 1 that are substantially equal in the adjacent layers.
  • the CT amount measurement is performed during the time when the user recording unit is being reproduced.
  • the ideal frequency characteristic has a peak at the frequency of the periodic data on the track at the radial position of the optical disc 1 in which the adjacent track and the adjacent layer are substantially equal, and the signal intensity is low at other frequencies.
  • the signal intensity of the peak value be the CT amount.
  • the user data portion and the periodic data recording portion are provided in the same track in the CT amount measurement region 121, but the user data portion is provided in the same track in the CT amount measurement region 121.
  • a periodic data mark recording unit may be provided in another CT amount measurement region 121 on the same track.
  • the configuration of the optical disc device 100 is realized by a circuit, but a part may be realized by software. In this case, the same effect as that realized by a circuit can be obtained.
  • At least a part of the operation of the software that operates on the microcomputer may be realized by a circuit.
  • the same effect as that realized by software can be obtained.
  • the optical disc apparatus 100 performs the recording operation and the reproducing operation.
  • the optical disc apparatus 100 may be an apparatus dedicated to recording or reproduction. If it is a recording-only device, the CT amount measuring circuit 6 and the decoding circuit 7 may be omitted in the configuration of the optical disk device 100 of FIG. Further, the encoding circuit 9 may be omitted if it is a reproduction-only device.
  • the adjustment is performed based on the minimum value of the CT amount and the CT ratio in various adjustments such as focus adjustment and tilt adjustment. Adjustments may be made based on being below or below the threshold.
  • adjustment processing such as focus adjustment in the first to third embodiments may be performed, for example, at the time of setting up the optical disc apparatus, or may be performed in other cases.
  • Microcomputer 5 ... Address detection circuit 6 ... Crosstalk amount measurement circuit 7 ... Decoding circuit 8 ... Memory 9 ... Encoding circuit 10 ... Interface circuit S01 ... Motor control signal S02 ... Optical pick-up control signal S03 ... Reproduction signal S04 ... Tracking signal S05 CT amount measurement control signal S06 ... CT value calculation result S07 ... decoding result S08 ... recording data S09 ... transmission data S10 ... Receive Data

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

Provided are an optical disk apparatus and optical disk recording and playback method that enable crosstalk from adjacent tracks to be measured and playback adjustments to be easily made for optical disks having a guide layer. At the time of recording, cyclical data is recorded in a portion of a recording layer region (crosstalk amount measurement region) at a position which has nearly the same radial direction and rotational direction as a guide layer address region. At the time of playback, playback is adjusted on the basis of the amount of crosstalk calculated at the crosstalk amount measurement region.

Description

光ディスク装置、光ディスク記録再生方法、光ディスクOptical disc apparatus, optical disc recording / reproducing method, optical disc
 本発明は、レーザを用いて光ディスクから情報を再生、または光ディスクに情報を記録する光ディスク装置に関する。 The present invention relates to an optical disc apparatus for reproducing information from an optical disc using a laser or recording information on the optical disc.
 近年、記録容量を増加させるために3層や4層の記録層を有する光ディスクが開発された。今後更なる大容量化を目的として、より多数の記録層を有する光ディスクの開発が行われると予想されている。例えば非特許文献1では、トラッキングサーボ制御を行うための物理的な溝構造を持つ層(以下、ガイド層)をもうけ、記録再生を行う層(記録層)にはランド/グルーブ構造を有さない光ディスク(グルーブレスディスク)が示されており、記録層を多数積層する場合でも製造が容易であるとされている。 Recently, an optical disc having three or four recording layers has been developed in order to increase the recording capacity. In the future, it is expected that an optical disc having a larger number of recording layers will be developed for the purpose of further increasing the capacity. For example, in Non-Patent Document 1, a layer having a physical groove structure (hereinafter referred to as a guide layer) for performing tracking servo control is provided, and a layer for recording / reproducing (recording layer) does not have a land / groove structure. An optical disc (grooveless disc) is shown, which is easy to manufacture even when a large number of recording layers are stacked.
 上記のようなグルーブレスディスクを記録再生する際の課題のひとつとして、隣接トラックや隣接層からのクロストークが大きくなり、再生調整が困難となることが挙げられる。 One of the problems in recording and reproducing the grooveless disk as described above is that crosstalk from adjacent tracks and adjacent layers becomes large, and reproduction adjustment becomes difficult.
 本発明は上記のような課題を鑑みてなされたものであり、その目的は、ガイド層を有する光ディスクにおいて、隣接トラックからのクロストークを測定可能であり、再生における調整を容易に行うことができる情報記録再生装置及びその方法を提供することである。 The present invention has been made in view of the above-described problems, and an object of the present invention is to measure crosstalk from adjacent tracks in an optical disc having a guide layer, and to easily perform adjustment in reproduction. An information recording / reproducing apparatus and method thereof are provided.
 上述の課題を解決するため、本発明では一例として特許請求の範囲記載の構成を用いる。 In order to solve the above-described problems, the present invention uses the configuration described in the claims as an example.
 本発明によれば、ガイド層を有する光ディスクにおいて、隣接トラックや隣接層からのクロストークを測定可能であり、再生における調整を容易に行うことができる。 According to the present invention, in an optical disc having a guide layer, crosstalk from an adjacent track or an adjacent layer can be measured, and adjustment in reproduction can be easily performed.
図1は、本発明の実施例1乃至3における光ディスク装置の構成例を示した図である。FIG. 1 is a diagram showing a configuration example of an optical disc apparatus according to Embodiments 1 to 3 of the present invention. 図2は、本発明の実施例1乃至3におけるグルーブレスディスクの構造例を示した図である。FIG. 2 is a diagram showing a structure example of a grooveless disk according to the first to third embodiments of the present invention. 図3(a)は、本発明の実施例1におけるクロストーク測定領域において固定周期パターンの隣接トラックに異なる固定周期のパターンを記録した例を示した図である。FIG. 3A is a diagram showing an example in which different fixed-period patterns are recorded on adjacent tracks of the fixed-period pattern in the crosstalk measurement area according to the first embodiment of the present invention. 図3(b)は、本発明の実施例1におけるクロストーク測定領域において未記録部の隣接トラックに固定周期のマークを記録した例を示した図である。FIG. 3B is a diagram illustrating an example in which a mark having a fixed period is recorded on a track adjacent to an unrecorded portion in the crosstalk measurement area according to the first embodiment of the present invention. 図3(c)は、本発明の実施例1におけるクロストーク測定領域においてユーザデータ部の隣接トラックに固定周期のマークを記録した例を示した図である。FIG. 3C is a diagram illustrating an example in which a mark having a fixed period is recorded on an adjacent track of the user data portion in the crosstalk measurement area according to the first embodiment of the present invention. 図4は、本発明の実施例1乃至3におけるクロストーク測定領域の周波数特性を示した図である。FIG. 4 is a diagram showing the frequency characteristics of the crosstalk measurement region in the first to third embodiments of the present invention. 図5は、本発明の実施例1乃至3におけるフォーカス調整の例を示した図である。FIG. 5 is a diagram showing an example of focus adjustment in the first to third embodiments of the present invention. 図6は、本発明の実施例1及び3におけるチルト調整の例を示した図である。FIG. 6 is a diagram showing an example of tilt adjustment in the first and third embodiments of the present invention. 図7は、本発明の実施例1乃至3におけるデコード回路の構成例を示した図である。FIG. 7 is a diagram showing a configuration example of the decoding circuit in the first to third embodiments of the present invention. 図8は、本発明の実施例1乃至3における球面収差調整の例を示した図である。FIG. 8 is a diagram showing an example of spherical aberration adjustment in the first to third embodiments of the present invention. 図9(a)は、本発明の実施例2におけるクロストーク測定領域において固定周期パターンの隣接層に異なる固定周期のパターンを記録した例を示した図である。FIG. 9A is a diagram showing an example in which different fixed-period patterns are recorded in adjacent layers of the fixed-period pattern in the crosstalk measurement area according to the second embodiment of the present invention. 図9(b)は、本発明の実施例2におけるクロストーク測定領域において未記録部の隣接層に固定周期のマークを記録した例を示した図である。FIG. 9B is a diagram illustrating an example in which marks having a fixed period are recorded in an adjacent layer of an unrecorded portion in the crosstalk measurement area according to the second embodiment of the present invention. 図9(c)は、本発明の実施例2におけるクロストーク測定領域においてユーザデータ部の隣接層に固定周期のマークを記録した例を示した図である。FIG. 9C is a diagram illustrating an example in which a fixed-cycle mark is recorded in an adjacent layer of the user data portion in the crosstalk measurement area according to the second embodiment of the present invention. 図10(a)は、本発明の実施例3におけるクロストーク測定領域において固定周期パターンの隣接トラックと隣接層に異なる固定周期のパターンを記録した例を示した図である。FIG. 10A is a diagram showing an example in which different fixed-period patterns are recorded on adjacent tracks and adjacent layers of the fixed-period pattern in the crosstalk measurement area according to the third embodiment of the present invention. 図10(b)は、本発明の実施例3におけるクロストーク測定領域において未記録部の隣接トラックと隣接層に固定周期のマークを記録した例を示した図である。FIG. 10B is a diagram illustrating an example in which marks having a fixed period are recorded on the adjacent track and the adjacent layer of the unrecorded portion in the crosstalk measurement area according to the third embodiment of the present invention. 図10(c)は、本発明の実施例3におけるクロストーク測定領域において未ユーザデータ部の隣接トラックと隣接層に固定周期のマークを記録した例を示した図である。FIG. 10C is a diagram showing an example in which marks having a fixed period are recorded on the adjacent track and the adjacent layer of the non-user data portion in the crosstalk measurement area according to the third embodiment of the present invention. 図11は、本発明の実施例1乃至3における光ディスクの領域構成例を示した図である。FIG. 11 is a diagram showing an example of the area configuration of the optical disc in the first to third embodiments of the present invention.
 図1は本発明の実施形態としての光ディスク装置の構成例である。 FIG. 1 shows a configuration example of an optical disc apparatus as an embodiment of the present invention.
 本発明に従う光ディスク装置100は、ホストPC200から記録または再生要求を受けて着脱可能な光ディスク1に記録または再生を行う装置であり、光ピックアップ2、スピンドルモータ3、マイコン4、アドレス検出回路5、クロストーク(以下、CT)量測定回路6、デコード回路7、メモリ8、エンコード回路9、インタフェース回路10を有する。 An optical disk device 100 according to the present invention is a device that performs recording or reproduction on a removable optical disk 1 in response to a recording or reproduction request from a host PC 200, and includes an optical pickup 2, a spindle motor 3, a microcomputer 4, an address detection circuit 5, and a cross. The apparatus includes a talk (hereinafter referred to as CT) amount measuring circuit 6, a decoding circuit 7, a memory 8, an encoding circuit 9, and an interface circuit 10.
 光ディスク1はガイド層と記録層を有する。図2は光ディスク1の構造の一例を模式的に示したものである。図2の例では光ディスク1はガイド層11と記録層12を有し、記録層12を4層有している。光ディスク装置100は対物レンズ21によって、記録層とガイド層にレーザスポットを生じることができる。なお、図2では記録層を4層としているが、1層以上であればこの限りではない。21、211、及び212については後述する。 The optical disc 1 has a guide layer and a recording layer. FIG. 2 schematically shows an example of the structure of the optical disc 1. In the example of FIG. 2, the optical disc 1 has a guide layer 11 and a recording layer 12, and has four recording layers 12. The optical disk apparatus 100 can generate laser spots on the recording layer and the guide layer by the objective lens 21. In FIG. 2, four recording layers are used. However, the number of recording layers is not limited as long as the number of recording layers is one or more. 21, 211, and 212 will be described later.
 光ピックアップ2は、マイコン4から光ピックアップ制御信号S02を受け、光ディスク1の径方向に移動して記録または再生する位置に移動し、レーザ光のフォーカスを前記光ピックアップ制御信号S02で指示された位置に合わせ、記録または再生のために波長が異なる2つのレーザ光(例えば405nmと650nm)を図2の対物レンズ21を介して光ディスク1に照射する。照射された波長650nmの第1のレーザ光(図2の211)は光ディスク1のガイド層11で反射し、図2の対物レンズを介して光ピックアップ2が有する図示していない第1の受光部が該反射光を受光する。第1の受光部は該反射光をトラッキング信号S04に変換し、アドレス検出回路5に出力する。一方、照射された波長405nmの第2のレーザ光(図2の212)は、再生においては光ディスク1の記録層12で反射し、図2の対物レンズ21を介して光ピックアップ2が有する図示していない第2の受光部が該反射光を受光する。第2の受光部は該反射光を再生信号S03に変換し、CT量測定回路6及びデコード回路7に出力する。また、光ピックアップ2はマイコン4から光ピックアップ制御信号S02を受け、指示された球面収差補正量に応じて、光ピックアップ2が備える図示していない球面収差補正素子を駆動し、レーザ光の収束・発散を制御する。 The optical pickup 2 receives the optical pickup control signal S02 from the microcomputer 4, moves in the radial direction of the optical disc 1 and moves to a recording or reproducing position, and the position of the laser beam focused by the optical pickup control signal S02. Accordingly, the optical disk 1 is irradiated with two laser beams (for example, 405 nm and 650 nm) having different wavelengths for recording or reproduction via the objective lens 21 shown in FIG. The irradiated first laser beam with a wavelength of 650 nm (211 in FIG. 2) is reflected by the guide layer 11 of the optical disc 1 and is not shown in the drawing, which is included in the optical pickup 2 via the objective lens in FIG. Receives the reflected light. The first light receiving unit converts the reflected light into a tracking signal S04 and outputs it to the address detection circuit 5. On the other hand, the irradiated second laser beam having a wavelength of 405 nm (212 in FIG. 2) is reflected by the recording layer 12 of the optical disc 1 during reproduction, and is shown in the optical pickup 2 via the objective lens 21 in FIG. A second light receiving unit not receiving the reflected light. The second light receiving unit converts the reflected light into a reproduction signal S03 and outputs it to the CT amount measuring circuit 6 and the decoding circuit 7. Further, the optical pickup 2 receives the optical pickup control signal S02 from the microcomputer 4 and drives a spherical aberration correction element (not shown) provided in the optical pickup 2 in accordance with the instructed spherical aberration correction amount, thereby converging the laser beam. Control divergence.
 スピンドルモータ3は、マイコン4からモータ制御信号S01によりモータ回転制御を受け、光ディスク1を回転させる。 The spindle motor 3 receives the motor rotation control from the microcomputer 4 by the motor control signal S01 and rotates the optical disc 1.
 マイコン4は光ディスク装置100の各回路の制御を行う。マイコン4はソフトウェアで制御される。マイコン4は記録再生時には光ピックアップ2へ光ピックアップ制御信号S02を出力し、光ピックアップ2を光ディスク1の径方向に移動させて記録または再生する位置に移動するよう制御し、レーザ光のフォーカスを合わせるよう制御し、記録または再生のためにレーザ光を光ディスク1に照射するよう制御する。また、スピンドルモータ3にモータ制御信号S01を出力してモータ回転制御を行い、光ディスク1を回転させるよう制御する。またマイコン4は適宜メモリ8とデータの読み書きを行う。マイコン4は1つであるとは限らないし、例えば、モータ制御信号S01や光ピックアップ制御信号S02などのサーボ制御を行う回路を設け、サーボ制御処理をマイコン4から分離させても良い。またマイコン4は光ディスク装置の各回路の制御を行い、また各回路から割り込み信号やフラグ信号などの通知を受け、処理を開始する。 The microcomputer 4 controls each circuit of the optical disc device 100. The microcomputer 4 is controlled by software. The microcomputer 4 outputs an optical pickup control signal S02 to the optical pickup 2 at the time of recording / reproduction, and controls the optical pickup 2 to move to the recording / reproducing position by moving in the radial direction of the optical disc 1, thereby adjusting the focus of the laser beam. Control is performed so that the optical disc 1 is irradiated with laser light for recording or reproduction. In addition, the motor control signal S01 is output to the spindle motor 3 to perform motor rotation control and control to rotate the optical disc 1. The microcomputer 4 reads / writes data from / to the memory 8 as appropriate. The number of the microcomputers 4 is not limited to one. For example, a circuit for performing servo control such as the motor control signal S01 and the optical pickup control signal S02 may be provided, and the servo control processing may be separated from the microcomputer 4. Further, the microcomputer 4 controls each circuit of the optical disc apparatus, receives notification of an interrupt signal, a flag signal, etc. from each circuit, and starts processing.
 アドレス検出回路5は、前記トラッキング信号S04からアドレス情報を読み取り、CT量測定回路6にCT量測定制御信号S05を出力する。 The address detection circuit 5 reads the address information from the tracking signal S04 and outputs a CT amount measurement control signal S05 to the CT amount measurement circuit 6.
 CT量測定回路6は、前記CT量測定制御信号S05により、CT量測定の開始と終了を制御され、前記再生信号S03からCT量を算出し、その算出結果をCT量算出結果S06としてマイコン4に出力する。 The CT amount measurement circuit 6 is controlled by the CT amount measurement control signal S05 to start and end CT amount measurement, calculates a CT amount from the reproduction signal S03, and uses the calculated result as a CT amount calculation result S06. Output to.
 デコード回路7は光ピックアップ2が出力した前記再生信号S03を増幅するなどのアナログ信号処理、デジタル化、2値データの生成、及び復号を行って復号結果S07をメモリ8に格納する。 The decoding circuit 7 stores the decoding result S07 in the memory 8 by performing analog signal processing such as amplification of the reproduction signal S03 output from the optical pickup 2, digitization, binary data generation and decoding.
 メモリ8はSDRAM(Synchronous Dynamic Random Access Memory)やフラッシュメモリなどの記憶手段であり、マイコン4での処理に関わるデータを格納する。 The memory 8 is a storage means such as SDRAM (Synchronous Dynamic Random Access Memory) or flash memory, and stores data related to processing in the microcomputer 4.
 エンコード回路9はメモリ8内の記録データS08の変調処理を行い、光ディスク1に格納する形式の2値データに変換する。 The encoding circuit 9 performs modulation processing on the recording data S08 in the memory 8 and converts it into binary data stored in the optical disc 1.
 インタフェース回路10はATAPIやUSB、IEEE1394などの各種インタフェース規格に準じてホストPC200と通信し、送信データS09をメモリ8から読み出してホストPC200に送信、またはホストPC200から受信した受信データS10としてメモリ8に格納する。 The interface circuit 10 communicates with the host PC 200 according to various interface standards such as ATAPI, USB, and IEEE1394, and reads the transmission data S09 from the memory 8 and transmits it to the host PC 200, or receives it from the host PC 200 as reception data S10 in the memory 8. Store.
 実施例1における光ディスク装置の記録動作を図1乃至8を用いて説明する。 The recording operation of the optical disc apparatus according to the first embodiment will be described with reference to FIGS.
 ホストPC200から記録コマンド及び記録データが光ディスク装置100へ送信され、インタフェース回路10で受信する。インタフェース回路10で受信した記録データは受信データS10としてメモリ8に格納される。メモリ8に格納された受信データS10はエンコーダ回路9が変調処理を行い記録データS08に変換する。マイコン4はインタフェース回路10より記録コマンド受信の通知を受け取った後、記録コマンドが有するアドレス情報、記録倍速情報を読み出し、該アドレス情報が示す位置から該記録倍速情報が示す記録倍速で記録を行えるようモータ制御信号S01及び光ピックアップ制御信号S02を出力して記録位置制御を行う。該記録位置制御においては、光ピックアップ2が前記光ピックアップ制御信号S02に応答し、前記第1のレーザ光211を出射する。レーザ光211は対物レンズ21を介して光ディスク1の前記ガイド層11に照射され、ガイド層11で反射する。該反射光は対物レンズ21を介して図示していない光ピックアップ2の第1の受光部で受光する。該第1の受光部は前記ガイド層11での前記反射光をトラッキング信号S04に変換し、アドレス検出回路5に出力する。アドレス検出回路5はトラッキング信号S04よりアドレスを読み出し、マイコン4に出力する。前記アドレスは、ガイド層11に部分的に設けたアドレス領域に第1のレーザ光が照射されたときに読み出される。マイコン4は該アドレスに基づいて前記光ピックアップ制御信号S02を出力して、記録位置制御を行う。なお、記録位置制御の際、前記第2のレーザ光212は光ピックアップ2から出射しても良いし、しなくても良い。 The recording command and recording data are transmitted from the host PC 200 to the optical disc apparatus 100 and received by the interface circuit 10. The recording data received by the interface circuit 10 is stored in the memory 8 as reception data S10. The reception data S10 stored in the memory 8 is subjected to modulation processing by the encoder circuit 9 and converted into recording data S08. After receiving the recording command reception notification from the interface circuit 10, the microcomputer 4 reads the address information and recording double speed information included in the recording command so that recording can be performed at the recording double speed indicated by the recording double speed information from the position indicated by the address information. A motor control signal S01 and an optical pickup control signal S02 are output to perform recording position control. In the recording position control, the optical pickup 2 emits the first laser light 211 in response to the optical pickup control signal S02. The laser beam 211 is applied to the guide layer 11 of the optical disc 1 through the objective lens 21 and is reflected by the guide layer 11. The reflected light is received by the first light receiving portion of the optical pickup 2 (not shown) via the objective lens 21. The first light receiving section converts the reflected light from the guide layer 11 into a tracking signal S04 and outputs it to the address detection circuit 5. The address detection circuit 5 reads the address from the tracking signal S04 and outputs it to the microcomputer 4. The address is read when the first laser beam is applied to an address area partially provided in the guide layer 11. The microcomputer 4 outputs the optical pickup control signal S02 based on the address and performs recording position control. In the recording position control, the second laser beam 212 may or may not be emitted from the optical pickup 2.
 マイコン4は所定の記録位置に制御を行ったところで、光ピックアップ制御信号S02により前記2値データを光ディスク1に記録するよう光ピックアップ2を制御する。光ピックアップ2は前記光ピックアップ制御信号S02に応答し、光ディスク1に焦点が異なる2種のレーザ光を出射する。第1のレーザ光211は対物レンズ21を介して光ディスク1の前記ガイド層11に照射され、ガイド層11で反射する。該反射光は対物レンズ21を介して図示していない光ピックアップ2の第1の受光部で受光する。該第1の受光部は前記ガイド層11での前記反射光をトラッキング信号S04に変換し、マイコン4に出力する。マイコン4は該トラッキング信号S04に基づいて前記光ピックアップ制御信号S02を出力してトラッキング制御を行う。また、トラッキング信号S04はアドレス検出回路5にも出力される。アドレス検出回路5はトラッキング信号S04よりアドレスを読み出し、マイコン4に出力する。マイコン4は該アドレスに基づいて記録動作におけるアドレス管理を行い、記録データ量の管理に使用する。一方、第2のレーザ光212は対物レンズ21を介して光ディスク1の前記記録層12に照射され、記録される。 When the microcomputer 4 controls the predetermined recording position, the microcomputer 4 controls the optical pickup 2 so as to record the binary data on the optical disc 1 by the optical pickup control signal S02. In response to the optical pickup control signal S02, the optical pickup 2 emits two types of laser beams having different focal points to the optical disc 1. The first laser beam 211 is applied to the guide layer 11 of the optical disc 1 through the objective lens 21 and is reflected by the guide layer 11. The reflected light is received by the first light receiving portion of the optical pickup 2 (not shown) via the objective lens 21. The first light receiving portion converts the reflected light from the guide layer 11 into a tracking signal S04 and outputs the tracking signal S04. The microcomputer 4 performs the tracking control by outputting the optical pickup control signal S02 based on the tracking signal S04. The tracking signal S04 is also output to the address detection circuit 5. The address detection circuit 5 reads the address from the tracking signal S04 and outputs it to the microcomputer 4. The microcomputer 4 performs address management in the recording operation based on the address and is used for management of the recording data amount. On the other hand, the second laser beam 212 is irradiated onto the recording layer 12 of the optical disc 1 through the objective lens 21 and recorded.
 ここで、記録を行っている際、ガイド層11の前記アドレス領域の位置に相当する記録層12の領域では、記録するデータは前記2値データではなく、周期的なデータを記録する。図3(a)はその記録データを模式的に示したものである。図3において、図2と同様のものについては同じ番号を付している。図3の121は前記ガイド層11の前記アドレス領域の位置に相当する記録層12の領域(以下、CT量測定領域と言う)である。また、1211はCT量測定領域121に記録した周期的なデータのマークである。図3(a)に示している通り、1211の周期は隣接トラックと異ならせるようにして記録を行う。 Here, when recording, in the area of the recording layer 12 corresponding to the position of the address area of the guide layer 11, the data to be recorded is not the binary data but the periodic data. FIG. 3A schematically shows the recorded data. In FIG. 3, the same components as those in FIG. Reference numeral 121 in FIG. 3 denotes an area of the recording layer 12 (hereinafter referred to as a CT amount measurement area) corresponding to the position of the address area of the guide layer 11. Reference numeral 1211 denotes periodic data marks recorded in the CT amount measurement area 121. As shown in FIG. 3A, recording is performed such that the period 1211 is different from that of the adjacent track.
 図11は光ディスク1の領域の構成例を示したものである。図11では、1層のガイド層11及び4層の記録層12を有する例を示している。ガイド層11はガイド層Lead-in領域111、ガイド層Lead-out領域112、アドレス領域113、ガイド層データ領域114を有する。また、記録層12はCT量測定領域121、記録層Lead-in領域122、記録層Outer領域123、記録層Inner領域124、記録層Lead-out領域125、及び記録層データ領域126を有する。ガイド層のアドレス領域113とCT量測定領域121は略等しいアドレス位置に位置している。ガイド層データ領域114及び記録層データ領域126はユーザデータを記録するための領域である。また、ガイド層Lead-in領域111、ガイド層Lead-out領域112、記録層Lead-in領域122、記録層Outer領域123、記録層Inner領域124、及び記録層Lead-out領域125は光ディスク1の記録及び再生に関する制御情報の記録及び再生や、ユーザデータの記録や再生のための調整を行うためのテスト記録及びテスト再生を行う領域である。このような光ディスクの構成とすることで、区切られた領域毎にCT量を算出することができ、領域単位で各種調整が可能となる。 FIG. 11 shows a configuration example of the area of the optical disc 1. FIG. 11 shows an example having one guide layer 11 and four recording layers 12. The guide layer 11 includes a guide layer lead-in area 111, a guide layer lead-out area 112, an address area 113, and a guide layer data area 114. Further, the recording layer 12 includes a CT amount measurement region 121, a recording layer lead-in region 122, a recording layer outer region 123, a recording layer inner region 124, a recording layer lead-out region 125, and a recording layer data region 126. The address area 113 of the guide layer and the CT amount measurement area 121 are located at substantially the same address position. The guide layer data area 114 and the recording layer data area 126 are areas for recording user data. The guide layer lead-in area 111, the guide layer lead-out area 112, the recording layer lead-in area 122, the recording layer outer area 123, the recording layer inner area 124, and the recording layer lead-out area 125 are included in the optical disc 1. This is an area for performing test recording and test reproduction for making adjustments for recording and reproduction of control information related to recording and reproduction, and recording and reproduction of user data. With such an optical disc configuration, the CT amount can be calculated for each divided area, and various adjustments can be made in units of areas.
 なお、ガイド層11の全ての前記アドレス領域の位置に相当する記録層12の領域に周期的なデータを記録しなくても良く、その代わりにユーザデータや光ディスク1の管理情報などデコード回路7で復号可能なデータを記録しても良い。この場合には、前記アドレス領域の位置に相当する記録層12の領域を他の目的にも有効に使用することができる。 Note that it is not necessary to record periodic data in the area of the recording layer 12 corresponding to the position of all the address areas of the guide layer 11. Instead, the decoding circuit 7 such as user data or management information of the optical disc 1 is used. Decryptable data may be recorded. In this case, the area of the recording layer 12 corresponding to the position of the address area can be effectively used for other purposes.
 次に、実施例1における光ディスク装置の再生動作を図1乃至3を用いて説明する。 Next, the reproducing operation of the optical disc apparatus in the first embodiment will be described with reference to FIGS.
 ホストPC200から再生コマンドが光ディスク装置100へ送信され、インタフェース回路10で受信する。マイコン4はインタフェース回路10より再生コマンド受信の通知を受け取った後、再生コマンドが有するアドレス情報、再生倍速情報を読み出し、該アドレス情報が示す位置から該再生倍速情報が示す再生倍速で再生を行えるようモータ制御信号S01及び光ピックアップ制御信号S02を出力して再生位置制御を行う。再生位置制御の動作は前記記録位置制御と同様であるので、説明を省略する。なお、再生位置制御の際、前記記録位置制御と同様に、前記第2のレーザ光212は光ピックアップ2から出射しても良いし、しなくても良い。 The playback command is transmitted from the host PC 200 to the optical disc apparatus 100 and received by the interface circuit 10. After receiving the notification of reception of the reproduction command from the interface circuit 10, the microcomputer 4 reads the address information and reproduction double speed information included in the reproduction command so that reproduction can be performed at the reproduction double speed indicated by the reproduction double speed information from the position indicated by the address information. A motor control signal S01 and an optical pickup control signal S02 are output to perform reproduction position control. Since the operation of the reproduction position control is the same as that of the recording position control, the description is omitted. In the reproduction position control, the second laser beam 212 may or may not be emitted from the optical pickup 2 as in the recording position control.
 マイコン4は所定の再生位置に制御を行ったところで、光ピックアップ制御信号S02により光ディスク1を再生するよう光ピックアップ2を制御する。光ピックアップ2は前記光ピックアップ制御信号S02に応答し、光ディスク1に焦点が異なる2種のレーザ光を出射する。第1のレーザ光211に関する動作は記録動作における第1のレーザ光211に関する動作と同様であるので、説明を省略する。一方、第2のレーザ光212は対物レンズ21を介して光ディスク1の前記記録層12に照射され、記録層12で反射する。該反射光は対物レンズ21を介して図示していない光ピックアップ2の第2の受光部で受光する。該第2の受光部は前記記録層12での前記反射光を再生信号S03に変換し、デコード回路7及びCT量測定回路6に出力する。デコード回路7は該再生信号S03を増幅するなどのアナログ信号処理、デジタル化、2値データの生成、及び復号を行って復号結果S07を生成し、メモリ8に格納する。メモリ8に格納された復号結果S07はインタフェース回路10が読み出し、ホストPC200へ出力する。なお、再生時における光ピックアップ位置制御は第2のレーザ光212による記録層12での反射光に基づく信号で制御を行っても良い。この場合には、例えば再生専用光ディスク装置において第2のレーザ光のみ出射すれば良く、第1のレーザ光を出射する必要が無いので、光ピックアップ2の構成を簡素化できる。 The microcomputer 4 controls the optical pickup 2 so as to reproduce the optical disc 1 by the optical pickup control signal S02 when the microcomputer 4 controls the predetermined reproduction position. In response to the optical pickup control signal S02, the optical pickup 2 emits two types of laser beams having different focal points to the optical disc 1. Since the operation related to the first laser beam 211 is the same as the operation related to the first laser beam 211 in the recording operation, a description thereof will be omitted. On the other hand, the second laser beam 212 is applied to the recording layer 12 of the optical disc 1 through the objective lens 21 and reflected by the recording layer 12. The reflected light is received by the second light receiving portion of the optical pickup 2 (not shown) via the objective lens 21. The second light receiving unit converts the reflected light from the recording layer 12 into a reproduction signal S03 and outputs it to the decoding circuit 7 and the CT amount measuring circuit 6. The decoding circuit 7 performs analog signal processing such as amplification of the reproduction signal S03, digitization, binary data generation, and decoding to generate a decoding result S07 and stores it in the memory 8. The decoding result S07 stored in the memory 8 is read by the interface circuit 10 and output to the host PC 200. Note that the optical pickup position control at the time of reproduction may be performed by a signal based on the reflected light from the recording layer 12 by the second laser beam 212. In this case, for example, only the second laser beam needs to be emitted in the read-only optical disc apparatus, and it is not necessary to emit the first laser beam, so that the configuration of the optical pickup 2 can be simplified.
 ここで、再生を行っている際、図3に示すCT量測定領域121を再生している時間では、CT量測定を行う。CT量測定領域121には、前述の通り周期的なデータが記録してあり、隣接トラックの周期的なデータとは異なる周期のデータが記録されている。CT量の算出は、CT量測定領域121を再生したときに得られる再生信号S03の周波数特性に基づいて行う。CT量測定領域121での再生信号S03の周波数特性の例を図4に示す。理想的な周波数特性は、図4に示すように再生しているトラック上の周期的なデータの周波数(ftarget)と、隣接トラック上の周期的なデータの周波数(fside)においてピークを持つ特性となる。このとき、fsideにおける信号強度PsideがCT量であるとする。なお、図4に示す特性は、理想的な周波数特性の場合の例であり、実際には他の周波数においても信号強度が非0(0でない)の値をとり得る。また、CT量算出において、fsideにおける信号強度をCT量としたが、fside付近の周波数において極大となる信号強度をCT量としても良いし、fside付近の周波数における信号強度を積分した量をCT量としても良い。このようにして算出したCT量はCT量算出結果S06としてマイコン4に出力する。 Here, during reproduction, CT amount measurement is performed during the time during which the CT amount measurement region 121 shown in FIG. 3 is being reproduced. In the CT amount measurement area 121, periodic data is recorded as described above, and data having a period different from that of adjacent tracks is recorded. The CT amount is calculated based on the frequency characteristics of the reproduction signal S03 obtained when the CT amount measurement region 121 is reproduced. An example of the frequency characteristic of the reproduction signal S03 in the CT amount measurement region 121 is shown in FIG. As shown in FIG. 4, the ideal frequency characteristic is a characteristic having a peak in the frequency (ftarget) of the periodic data on the track being reproduced and the frequency (fside) of the periodic data on the adjacent track. Become. At this time, it is assumed that the signal intensity Pside at fside is the CT amount. The characteristic shown in FIG. 4 is an example of an ideal frequency characteristic, and the signal intensity can actually take a non-zero (not zero) value at other frequencies. In calculating the CT amount, the signal intensity at fside is used as the CT amount. However, the signal intensity that is maximal at the frequency near fside may be used as the CT amount, or the amount obtained by integrating the signal intensity at the frequency near fside is the CT amount. It is also good. The CT amount calculated in this way is output to the microcomputer 4 as a CT amount calculation result S06.
 マイコン4は前記CT量算出結果S06に基づき、各種調整処理を行う。 The microcomputer 4 performs various adjustment processes based on the CT amount calculation result S06.
 例えば、フォーカス調整においては、フォーカス位置を数箇所変えて再生させ、同じトラック上のCT量測定領域121における周波数特性をそれぞれ算出し、算出したCT量が極小となるフォーカス位置をフォーカス調整結果とする。フォーカス位置がずれていくと、レーザ光212のスポットはぼやけて径が広がり、CT量が増加する傾向がある。このため、フォーカス位置に対するCT量の特性をとると、極小となる点をもつ特性になる。なお、同じトラック上のCT量測定領域121としたが、CT量測定領域121のデータの周波数が同じトラックであれば、同じトラックでなくても良いし、同じCT量測定領域121でも良い。また、CT量が極小となるフォーカス位置を求める際、フォーカス位置に対するCT量の特性を求め、近似の手法によりフォーカス調整結果を算出しても良い。図5はこの場合のフォーカス調整の例を示したものである。フォーカス位置をFa、Fb、Fc、及びFdの4箇所変えてCT量測定領域121を再生させて測定したCT量をそれぞれPa、Pb、Pc、及びPdとする。これら4点から曲線近似を行い、得られる極小値をPminiとしたとき、近似式においてPminiの値をとるフォーカス位置Fbestをフォーカス調整結果とする。 For example, in focus adjustment, reproduction is performed by changing several focus positions, the frequency characteristics in the CT amount measurement region 121 on the same track are calculated, and the focus position where the calculated CT amount is minimized is used as the focus adjustment result. . As the focus position shifts, the spot of the laser beam 212 is blurred and widens in diameter, and the CT amount tends to increase. For this reason, when the CT amount characteristic with respect to the focus position is taken, it becomes a characteristic having a minimum point. Although the CT amount measurement area 121 on the same track is used, as long as the data frequency of the CT amount measurement area 121 is the same, the track may not be the same, or the same CT amount measurement area 121 may be used. Further, when obtaining the focus position at which the CT amount is minimized, the characteristic of the CT amount with respect to the focus position may be obtained, and the focus adjustment result may be calculated by an approximate method. FIG. 5 shows an example of focus adjustment in this case. The CT amounts measured by regenerating the CT amount measurement region 121 by changing the focus position at four positions Fa, Fb, Fc, and Fd are Pa, Pb, Pc, and Pd, respectively. When curve approximation is performed from these four points and the obtained minimum value is Pmini, a focus position Fbest that takes the value of Pmini in the approximate expression is taken as a focus adjustment result.
 また、チルト調整においては、チルト位置を数箇所変えて再生させ、同じトラック上のCT量測定領域121における周波数特性をそれぞれ算出し、算出したCT量が極小となるチルト位置をチルト調整結果とする。チルト位置がずれていくと、第2のレーザ光212のスポットはトラックからずれて、CT量が増加する傾向がある。このため、チルト位置に対するCT量の特性をとると、極小となる点をもつ特性になる。なお、同じトラック上のCT量測定領域121としたが、CT量測定領域121のデータの周波数が同じトラックであれば、同じトラックでなくても良いし、同じCT量測定領域121でも良い。また、CT量が極小となるチルト位置を求める際、チルト位置に対するCT量の特性を求め、近似の手法によりチルト調整結果を算出しても良い。図6はこの場合のチルト調整の例を示したものである。チルト位置をTa、Tb、Tc、及びTdの4箇所変えてCT量測定領域121を再生させて測定したCT量をそれぞれPa、Pb、Pc、及びPdとする。これら4点から曲線近似を行い、得られる極小値をPminiとしたとき、近似式においてPminiの値をとるチルト位置Tbestをチルト調整結果とする。 In tilt adjustment, reproduction is performed by changing the tilt position at several places, the frequency characteristics in the CT amount measurement region 121 on the same track are calculated, and the tilt position where the calculated CT amount is minimized is used as the tilt adjustment result. . When the tilt position is shifted, the spot of the second laser beam 212 is shifted from the track, and the CT amount tends to increase. For this reason, when the CT amount characteristic with respect to the tilt position is taken, it becomes a characteristic having a minimum point. Although the CT amount measurement area 121 on the same track is used, as long as the data frequency of the CT amount measurement area 121 is the same, the track may not be the same, or the same CT amount measurement area 121 may be used. Further, when obtaining the tilt position at which the CT amount is minimized, the characteristic of the CT amount with respect to the tilt position may be obtained, and the tilt adjustment result may be calculated by an approximate method. FIG. 6 shows an example of tilt adjustment in this case. The CT amounts measured by reproducing the CT amount measurement region 121 by changing the tilt position at four locations of Ta, Tb, Tc, and Td are defined as Pa, Pb, Pc, and Pd, respectively. When curve approximation is performed from these four points and the obtained minimum value is Pmini, the tilt position Tbest at which the value of Pmini is obtained in the approximate expression is defined as a tilt adjustment result.
 また、再生時の第2のレーザ光212のパワー(以下、リードパワー)調整においては、リードパワーを数段階変えて再生させ、同じトラック上のCT量測定領域121における周波数特性をそれぞれ算出し、算出したCT量に基づいて決定したリードパワーをリードパワー調整結果とする。なお、リードパワーを変えると信号振幅も変化するので、図4におけるPtargetとPsideの比(以下、CT比)をリードパワー調整の指標とする。リードパワーが変化すると、第2のレーザ光212のスポットは大きくなったり形状が変わったりして、CT比が変化する場合がある。このため、リードパワーに対するCT比の特性をとると、極小となる点をもつ特性になる場合がある。なお、同じトラック上のCT量測定領域121としたが、CT量測定領域121のデータの周波数が同じトラックであれば、同じトラックでなくても良いし、同じCT量測定領域121でも良い。また、CT比が極小となるリードパワーを求める際、リードパワーに対するCT比の特性を求め、近似の手法によりリードパワー調整結果を算出しても良い。 Further, in the power adjustment (hereinafter referred to as read power) of the second laser beam 212 at the time of reproduction, reproduction is performed by changing the read power by several stages, and the frequency characteristics in the CT amount measurement region 121 on the same track are calculated, The read power determined based on the calculated CT amount is taken as a read power adjustment result. Since the signal amplitude also changes when the read power is changed, the ratio of Ptarget to Pside in FIG. 4 (hereinafter referred to as CT ratio) is used as an index for adjusting the read power. When the read power changes, the spot of the second laser beam 212 may increase or change its shape, and the CT ratio may change. For this reason, when the characteristic of the CT ratio with respect to the read power is taken, there may be a characteristic having a minimum point. Although the CT amount measurement area 121 on the same track is used, as long as the data frequency of the CT amount measurement area 121 is the same, the track may not be the same, or the same CT amount measurement area 121 may be used. Further, when obtaining the read power at which the CT ratio is minimized, the characteristics of the CT ratio with respect to the read power may be obtained, and the read power adjustment result may be calculated by an approximate method.
 また、デコード回路7における処理においてCT量を使用する。図7はデコード回路7の構成の一例を示したものであり、前記再生信号S03を増幅するなどのアナログ信号処理を行うアナログ信号処理回路71、アナログ信号処理回路71の処理結果信号のデジタル化を行うA/D(Analog to Digital)変換回路72、A/D変換回路72が出力するデジタル信号の等化を適応的に行う適応等化回路73、適応等化回路73が出力する等化信号から、最尤復号アルゴリズム(例えばビタビアルゴリズム)を適応的に行い2値データを生成する適応最尤復号回路74、及び該2値データの復調処理を行う復調回路75を有する。 Also, the CT amount is used in the processing in the decoding circuit 7. FIG. 7 shows an example of the configuration of the decoding circuit 7. The analog signal processing circuit 71 that performs analog signal processing such as amplification of the reproduction signal S03 and digitization of the processing result signal of the analog signal processing circuit 71 are shown. An A / D (Analog to Digital) conversion circuit 72 to perform, an adaptive equalization circuit 73 that adaptively equalizes a digital signal output from the A / D conversion circuit 72, and an equalization signal output from the adaptive equalization circuit 73 And an adaptive maximum likelihood decoding circuit 74 that adaptively performs a maximum likelihood decoding algorithm (for example, a Viterbi algorithm) and generates binary data, and a demodulation circuit 75 that performs a demodulation process of the binary data.
 ここで、適応等化回路73では、FIR(Finite Impulse Response)フィルタの各タップの係数は2値化ビット列の目標信号から得られる畳み込み信号と適応等化回路73が出力する等化信号のRMS(Root Mean Square)誤差が最小になるように学習処理が実施される。該学習処理におけるタップ係数の収束速度を前記CT量の大きさに基づいて可変的に制御する。例えば、CT量が大きい場合には誤差が大きくなるため学習処理への影響が大きくなることが懸念されるため、タップ係数の収束速度を遅くする。逆にCT量が小さい場合には学習処理への影響が小さいので、タップ係数の収束速度を速くする。なお、RMS誤差を用いるとしたが、絶対値など他の演算によって得られる誤差を用いても良い。 Here, in the adaptive equalization circuit 73, the coefficient of each tap of the FIR (Finite Impulse Response) filter is the convolution signal obtained from the target signal of the binarized bit string and the RMS of the equalization signal output from the adaptive equalization circuit 73 ( Root Mean Square) The learning process is performed so as to minimize the error. The tap coefficient convergence speed in the learning process is variably controlled based on the magnitude of the CT amount. For example, when the CT amount is large, the error becomes large and there is a concern that the influence on the learning process will be large. Therefore, the convergence speed of the tap coefficient is slowed down. Conversely, when the CT amount is small, the influence on the learning process is small, so the tap coefficient convergence speed is increased. Although the RMS error is used, an error obtained by another calculation such as an absolute value may be used.
 また、適応最尤復号回路74では、ビタビアルゴリズムなどの最尤復号アルゴリズムを用いて前記等化信号から2値データを生成する。ビタビアルゴリズムでは、目標とする2値信号列を畳み込んで得られる目標波形が取りうる振幅値であるターゲットレベルと、前記等化信号の振幅値との距離を逐次積算し、最も距離が小さい2値符号パターンを生成する2値データとする。適応最尤復号回路74では前記ターゲットレベルを可変的に制御し、入力される等化信号の特性に応じたターゲットレベルに追従させ、CT量に基づいて可変的に追従速度を変える。つまり、CT量が大きい場合には前記等化信号の振幅値との距離が大きくなり、ターゲットレベルの制御処理への影響が大きくなることが懸念されるため、ターゲットレベルの追従速度を遅くする。逆にCT量が小さい場合には前記制御処理への影響が小さいので、前記追従速度を速くする。 In addition, the adaptive maximum likelihood decoding circuit 74 generates binary data from the equalized signal using a maximum likelihood decoding algorithm such as a Viterbi algorithm. In the Viterbi algorithm, the distance between the target level, which is an amplitude value that can be taken by the target waveform obtained by convolving the target binary signal sequence, and the amplitude value of the equalized signal is sequentially integrated, and the distance 2 is the smallest. Binary data for generating a value code pattern is used. The adaptive maximum likelihood decoding circuit 74 variably controls the target level to follow the target level according to the characteristics of the input equalized signal, and variably changes the follow-up speed based on the CT amount. That is, when the CT amount is large, the distance to the amplitude value of the equalized signal is increased, and there is a concern that the influence on the control processing of the target level is increased. Conversely, when the CT amount is small, the effect on the control process is small, and therefore the follow-up speed is increased.
 また、球面収差調整においては、球面収差補正量を数段階変えて再生させ、同じトラック上のCT量測定領域121における周波数特性をそれぞれ算出し、算出したCT量が極小となる球面収差補正量を球面収差調整結果とする。球面収差補正量が最適でなくなると、レーザ光212のスポットはぼやけて径が広がり、CT量が増加する傾向がある。このため、球面収差補正量に対するCT量の特性をとると、極小となる点をもつ特性になる。なお、同じトラック上のCT量測定領域121としたが、CT量測定領域121のデータの周波数が同じトラックであれば、同じトラックでなくても良いし、同じCT量測定領域121でも良い。また、CT量が極小となる球面収差補正量を求める際、球面収差補正量に対するCT量の特性を求め、近似の手法によりフォーカス調整結果を算出しても良い。図8はこの場合の球面収差調整の例を示したものである。球面収差補正量をABa、ABb、ABc、及びABdの4箇所変えてCT量測定領域121を再生させて測定したCT量をそれぞれPa、Pb、Pc、及びPdとする。これら4点から曲線近似を行い、得られる極小値をPminiとしたとき、近似式においてPminiの値をとる球面収差補正量ABbestを球面収差補正結果とする。 In the spherical aberration adjustment, the spherical aberration correction amount is reproduced by changing several stages, the frequency characteristics in the CT amount measurement region 121 on the same track are calculated, and the spherical aberration correction amount at which the calculated CT amount is minimized is obtained. The result is a spherical aberration adjustment result. When the spherical aberration correction amount is not optimal, the spot of the laser beam 212 is blurred and widened in diameter, and the CT amount tends to increase. For this reason, when the CT amount characteristic with respect to the spherical aberration correction amount is taken, the characteristic has a minimum point. Although the CT amount measurement area 121 on the same track is used, as long as the data frequency of the CT amount measurement area 121 is the same, the track may not be the same, or the same CT amount measurement area 121 may be used. Further, when obtaining the spherical aberration correction amount that minimizes the CT amount, the characteristic of the CT amount with respect to the spherical aberration correction amount may be obtained, and the focus adjustment result may be calculated by an approximate method. FIG. 8 shows an example of spherical aberration adjustment in this case. The CT amounts measured by reproducing the CT amount measurement region 121 by changing the spherical aberration correction amount at four locations ABa, ABb, ABc, and ABd are Pa, Pb, Pc, and Pd, respectively. When curve approximation is performed from these four points and the obtained minimum value is Pmini, the spherical aberration correction amount ABbest that takes the value of Pmini in the approximate expression is taken as the spherical aberration correction result.
 なお、本実施例において、CT量測定領域121に記録するデータは図3(a)のように周期的なデータのマークの周期を隣接トラックと異ならせるとしたが、図3(b)のように未記録部の隣接トラックに周期的なデータのマークを記録しても良い。この場合には、未記録部を再生している時間でCT量測定を行う。このとき、理想的な周波数特性は隣接トラック上の周期的なデータの周波数においてピークを持つ特性となり、該ピーク値の信号強度をCT量とする。図3(b)では、CT量測定領域121のうち、同じトラック内で未記録部と周期的なデータの記録部を設けているが、CT量測定領域121のうち同じトラック内では未記録部のみとし、同じトラック上の別のCT量測定領域121で周期的なデータのマークの記録部を設けても良い。 In the present embodiment, the data recorded in the CT amount measurement area 121 has a period of periodic data marks different from that of the adjacent track as shown in FIG. 3A, but as shown in FIG. Alternatively, periodic data marks may be recorded on adjacent tracks of the unrecorded portion. In this case, the CT amount is measured during the time when the unrecorded part is reproduced. At this time, the ideal frequency characteristic has a peak at the frequency of the periodic data on the adjacent track, and the signal intensity of the peak value is the CT amount. In FIG. 3B, an unrecorded portion and a periodic data recording portion are provided in the same track in the CT amount measurement region 121, but an unrecorded portion is present in the same track in the CT amount measurement region 121. However, a periodic data mark recording unit may be provided in another CT amount measurement region 121 on the same track.
 なお、本実施例において、CT量測定領域121に記録するデータは図3(a)のように周期的なデータのマークの周期を隣接トラックと異ならせるとしたが、図3(c)のようにユーザデータ部の隣接トラックに周期的なデータのマークを記録しても良い。この場合には、ユーザ記録部を再生している時間でCT量測定を行う。このとき、理想的な周波数特性は隣接トラック上の周期的なデータの周波数においてピークを持ち、他の周波数において信号強度が小さい特性となる。前記ピーク値の信号強度をCT量とする。図3(c)では、CT量測定領域121のうち、同じトラック内でユーザデータ部と周期的なデータの記録部を設けているが、CT量測定領域121のうち同じトラック内ではユーザデータ部のみとし、同じトラック上の別のCT量測定領域121で周期的なデータのマークの記録部を設けても良い。 In the present embodiment, the data recorded in the CT amount measurement area 121 has a period of periodic data marks different from that of the adjacent track as shown in FIG. 3A, but as shown in FIG. In addition, periodic data marks may be recorded on adjacent tracks in the user data portion. In this case, the CT amount measurement is performed during the time when the user recording unit is being reproduced. At this time, the ideal frequency characteristic has a peak at the frequency of the periodic data on the adjacent track, and the signal intensity is small at other frequencies. Let the signal intensity of the peak value be the CT amount. In FIG. 3C, the user data portion and the periodic data recording portion are provided in the same track in the CT amount measurement region 121, but the user data portion is provided in the same track in the CT amount measurement region 121. However, a periodic data mark recording unit may be provided in another CT amount measurement region 121 on the same track.
 実施例2における光ディスク装置の記録動作を図1及び図9を用いて説明する。 The recording operation of the optical disk apparatus in the second embodiment will be described with reference to FIGS.
 ホストPC200から記録コマンド及び記録データが光ディスク装置100へ送信され、光ディスク装置100が光ディスク1に記録を行う動作は、実施例1とCT量測定領域への記録を除いて同様であるので、説明を省略する。 Since the recording command and the recording data are transmitted from the host PC 200 to the optical disc apparatus 100 and the operation of the optical disc apparatus 100 recording on the optical disc 1 is the same as in the first embodiment except for the recording in the CT amount measurement area, the explanation will be given. Omitted.
 実施例2において、記録を行っている際、ガイド層11の前記アドレス領域の位置に相当する記録層12の領域では、記録するデータは前記2値データではなく、周期的なデータを記録する。図9(a)はその記録データを模式的に示したものである。図9において、図3と同様のものについては同じ番号を付している。図9(a)に示している通り、周期的なデータのマーク1211の周期は隣接層の略等しい光ディスク1の半径位置のトラックのCT量測定領域121と異ならせるようにして記録を行う。 In Example 2, when recording is performed, in the area of the recording layer 12 corresponding to the position of the address area of the guide layer 11, data to be recorded is not the binary data but periodic data. FIG. 9A schematically shows the recorded data. In FIG. 9, the same components as those in FIG. As shown in FIG. 9A, recording is performed such that the period of the periodic data mark 1211 is different from the CT amount measurement area 121 of the track at the radial position of the optical disc 1 in which the adjacent layer is substantially equal.
 次に、実施例2における光ディスク装置の再生動作を図1、2、4、5及び図7乃至9を用いて説明する。 Next, the reproducing operation of the optical disk apparatus according to the second embodiment will be described with reference to FIGS. 1, 2, 4, 5 and FIGS.
 ホストPC200から再生コマンドが光ディスク装置100へ送信され、光ディスク装置100が光ディスク1から再生を行う動作は、実施例1とCT量測定領域の再生を除いて同様であるので、説明を省略する。 Since the playback command is transmitted from the host PC 200 to the optical disc device 100 and the optical disc device 100 performs playback from the optical disc 1 is the same as in the first embodiment except for the playback of the CT amount measurement region, description thereof is omitted.
 実施例2において、再生を行っている際、図9に示すCT量測定領域121を再生している時間では、CT量測定を行う。CT量測定領域121には、前述の通り周期的なデータが記録してあり、隣接層の略等しい光ディスク1の半径位置のトラックの周期的なデータとは異なる周期のデータが記録されている。CT量の算出は、CT量測定領域121を再生したときに得られる再生信号S03の周波数特性に基づいて行う。CT量測定領域121での再生信号S03の周波数特性の例は、実施例1と同様、図4のように示すことができる。理想的な周波数特性は、図4に示すように再生しているトラック上の周期的なデータの周波数(ftarget)と、隣接層の略等しい光ディスク1の半径位置のトラックの上の周期的なデータの周波数(fside)においてピークを持つ特性となる。このとき、fsideにおける信号強度PsideがCT量であるとする。なお、図4に示す特性は、理想的な周波数特性の場合の例であり、実際には他の周波数においても信号強度が非0の値をとり得る。また、CT量算出において、fsideにおける信号強度をCT量としたが、fside付近の周波数において極大となる信号強度をCT量としても良いし、fside付近の周波数における信号強度を積分した量をCT量としても良い。このようにして算出したCT量はCT量算出結果S06としてマイコン4に出力する。 In Example 2, during reproduction, CT amount measurement is performed during the time during which the CT amount measurement region 121 shown in FIG. 9 is being reproduced. In the CT amount measurement region 121, periodic data is recorded as described above, and data having a period different from the periodic data of the track at the radial position of the optical disc 1 in the adjacent layer that is substantially equal is recorded. The CT amount is calculated based on the frequency characteristics of the reproduction signal S03 obtained when the CT amount measurement region 121 is reproduced. An example of the frequency characteristic of the reproduction signal S03 in the CT amount measurement region 121 can be shown as in FIG. As shown in FIG. 4, the ideal frequency characteristic is that the periodic data on the track at the radial position of the optical disc 1 in the adjacent layer is substantially equal to the frequency (ftarget) of the periodic data on the track being reproduced. It has a characteristic having a peak at the frequency (fside). At this time, it is assumed that the signal intensity Pside at fside is the CT amount. The characteristic shown in FIG. 4 is an example in the case of an ideal frequency characteristic, and the signal intensity can actually take a non-zero value at other frequencies. In calculating the CT amount, the signal intensity at fside is used as the CT amount. However, the signal intensity that is maximal at the frequency near fside may be used as the CT amount, or the amount obtained by integrating the signal intensity at the frequency near fside is the CT amount. It is also good. The CT amount calculated in this way is output to the microcomputer 4 as a CT amount calculation result S06.
 マイコン4は前記CT量算出結果S06に基づき、各種調整処理を行う。 The microcomputer 4 performs various adjustment processes based on the CT amount calculation result S06.
 例えば、フォーカス調整においては、フォーカス位置を数箇所変えて再生させ、同じトラック上のCT量測定領域121における周波数特性をそれぞれ算出し、算出したCT量が極小となるフォーカス位置をフォーカス調整結果とする。フォーカス位置がずれていくと、レーザ光212の焦点は隣接層側へ移動し、CT量が増加する傾向がある。このため、フォーカス位置に対するCT量の特性をとると、極小となる点をもつ特性になる。なお、同じトラック上のCT量測定領域121としたが、CT量測定領域121のデータの周波数が同じトラックであれば、同じトラックでなくても良いし、同じCT量測定領域121でも良い。また、CT量が極小となるフォーカス位置を求める際、フォーカス位置に対するCT量の特性を求め、近似の手法によりフォーカス調整結果を算出しても良い。この場合の例は実施例1と同様に図5を用いて説明できるので、説明を省略する。 For example, in focus adjustment, reproduction is performed by changing several focus positions, the frequency characteristics in the CT amount measurement region 121 on the same track are calculated, and the focus position where the calculated CT amount is minimized is used as the focus adjustment result. . As the focus position shifts, the focal point of the laser beam 212 moves to the adjacent layer side, and the CT amount tends to increase. For this reason, when the CT amount characteristic with respect to the focus position is taken, it becomes a characteristic having a minimum point. Although the CT amount measurement area 121 on the same track is used, as long as the data frequency of the CT amount measurement area 121 is the same, the track may not be the same, or the same CT amount measurement area 121 may be used. Further, when obtaining the focus position at which the CT amount is minimized, the characteristic of the CT amount with respect to the focus position may be obtained, and the focus adjustment result may be calculated by an approximate method. Since the example in this case can be described using FIG. 5 similarly to the first embodiment, the description is omitted.
 また、デコード回路7における処理においてCT量を使用する。実施例2におけるデコード回路7の構成例は実施例1と同様に図7で示すことができる。適応等化回路73では、実施例1と同様に前記学習処理におけるタップ係数の収束速度を前記CT量の大きさに基づいて可変的に制御する。また、適応最尤復号回路74では、実施例1と同様に前記ターゲットレベルを可変的に制御し、入力される等化信号の特性に応じたターゲットレベルに追従させ、CT量に基づいて可変的に追従速度を変える。 Also, the CT amount is used in the processing in the decoding circuit 7. A configuration example of the decoding circuit 7 in the second embodiment can be shown in FIG. 7 as in the first embodiment. As in the first embodiment, the adaptive equalization circuit 73 variably controls the tap coefficient convergence speed in the learning process based on the CT amount. In the adaptive maximum likelihood decoding circuit 74, the target level is variably controlled in the same manner as in the first embodiment so as to follow the target level according to the characteristics of the input equalized signal, and is variable based on the CT amount. Change the following speed.
 また、球面収差調整においては、球面収差補正量を数段階変えて再生させ、同じトラック上のCT量測定領域121における周波数特性をそれぞれ算出し、算出したCT量が極小となる球面収差補正量を球面収差調整結果とする。球面収差補正量が最適でなくなると、レーザ光212の焦点は隣接層側へ移動し、CT量が増加する傾向がある。このため、球面収差補正量に対するCT量の特性をとると、極小となる点をもつ特性になる。なお、同じトラック上のCT量測定領域121としたが、実施例1と同様、CT量測定領域121のデータの周波数が同じトラックであれば、同じトラックでなくても良いし、同じCT量測定領域121でも良い。また、CT量が極小となる球面収差補正量を求める際、球面収差補正量に対するCT量の特性を求め、近似の手法により球面収差調整結果を算出しても良い。この場合の例は実施例1と同様に図8を用いて説明できるので、説明を省略する。 In the spherical aberration adjustment, the spherical aberration correction amount is reproduced by changing several stages, the frequency characteristics in the CT amount measurement region 121 on the same track are calculated, and the spherical aberration correction amount at which the calculated CT amount is minimized is obtained. The result is a spherical aberration adjustment result. If the spherical aberration correction amount is not optimal, the focal point of the laser beam 212 moves to the adjacent layer side, and the CT amount tends to increase. For this reason, when the CT amount characteristic with respect to the spherical aberration correction amount is taken, the characteristic has a minimum point. Although the CT amount measurement area 121 on the same track is used, as in the first embodiment, if the frequency of data in the CT amount measurement area 121 is the same track, the CT track may not be the same track. The region 121 may be used. Further, when obtaining the spherical aberration correction amount that minimizes the CT amount, the characteristic of the CT amount with respect to the spherical aberration correction amount may be obtained, and the spherical aberration adjustment result may be calculated by an approximate method. Since the example in this case can be described using FIG. 8 similarly to the first embodiment, the description is omitted.
 なお、本実施例において、CT量測定領域121に記録するデータは図9(a)のように周期的なデータのマークの周期を隣接層の略等しい光ディスク1の半径位置のトラックと異ならせるとしたが、図9(b)のように未記録部の隣接層の略等しい光ディスク1の半径位置のトラックに周期的なデータのマークを記録しても良い。この場合には、未記録部を再生している時間でCT量測定を行う。このとき、理想的な周波数特性は隣接層の略等しい光ディスク1の半径位置のトラック上の周期的なデータの周波数においてピークを持つ特性となり、該ピーク値の信号強度をCT量とする。図9(b)では、CT量測定領域121のうち、同じトラック内で未記録部と周期的なデータの記録部を設けているが、CT量測定領域121のうち同じトラック内では未記録部のみとし、同じトラック上の別のCT量測定領域121で周期的なデータのマークの記録部を設けても良い。また、未記録部を再生する際、第2のレーザ光212による記録層12での反射光に基づく信号でピックアップ位置制御を行っていた場合には、該位置制御が不安定になるので制御用パラメータを記録部を再生する際のパラメータ値に固定したり、未記録部のみ第1のレーザ光211によるガイド層21での反射光に基づく信号で前記位置制御を行うように動作を切り替えても良い。 In this embodiment, the data recorded in the CT amount measurement area 121 is different from the track of the radial position of the optical disc 1 in which the adjacent layer has substantially the same period as shown in FIG. 9A. However, as shown in FIG. 9B, periodic data marks may be recorded on the track at the radial position of the optical disc 1 that is substantially the same in the adjacent layer of the unrecorded portion. In this case, the CT amount is measured during the time when the unrecorded part is reproduced. At this time, the ideal frequency characteristic is a characteristic having a peak at the frequency of the periodic data on the track at the radial position of the optical disc 1 in the adjacent layer which is substantially equal, and the signal intensity of the peak value is the CT amount. In FIG. 9B, an unrecorded portion and a periodic data recording portion are provided in the same track in the CT amount measurement region 121, but an unrecorded portion is present in the same track in the CT amount measurement region 121. However, a periodic data mark recording unit may be provided in another CT amount measurement region 121 on the same track. Further, when reproducing the unrecorded portion, if the pickup position control is performed with a signal based on the reflected light from the recording layer 12 by the second laser beam 212, the position control becomes unstable, so that the control is performed. Even if the operation is switched so that the parameter is fixed to the parameter value at the time of reproducing the recording part, or only the unrecorded part is controlled by the signal based on the reflected light from the guide layer 21 by the first laser beam 211. good.
 なお、本実施例において、CT量測定領域121に記録するデータは図9(a)のように周期的なデータのマークの周期を隣接層の略等しい光ディスク1の半径位置のトラックと異ならせるとしたが、図9(c)のようにユーザデータ部の隣接層の略等しい光ディスク1の半径位置のトラックに周期的なデータのマークを記録しても良い。この場合には、ユーザ記録部を再生している時間でCT量測定を行う。このとき、理想的な周波数特性は隣接層の略等しい光ディスク1の半径位置のトラック上の周期的なデータの周波数においてピークを持ち、他の周波数において信号強度が小さい特性となる。前記ピーク値の信号強度をCT量とする。図9(c)では、CT量測定領域121のうち、同じトラック内でユーザデータ部と周期的なデータの記録部を設けているが、CT量測定領域121のうち同じトラック内ではユーザデータ部のみとし、同じトラック上の別のCT量測定領域121で周期的なデータのマークの記録部を設けても良い。 In this embodiment, the data recorded in the CT amount measurement area 121 is different from the track of the radial position of the optical disc 1 in which the adjacent layer has substantially the same period as shown in FIG. 9A. However, as shown in FIG. 9C, periodic data marks may be recorded on the track at the radial position of the optical disk 1 that is substantially equal in the adjacent layer of the user data portion. In this case, the CT amount measurement is performed during the time when the user recording unit is being reproduced. At this time, the ideal frequency characteristic has a peak at the frequency of the periodic data on the track at the radial position of the optical disc 1 in the adjacent layer which is substantially equal, and the signal intensity is small at other frequencies. Let the signal intensity of the peak value be the CT amount. In FIG. 9C, the user data portion and the periodic data recording portion are provided in the same track in the CT amount measurement region 121, but the user data portion is provided in the same track in the CT amount measurement region 121. However, a periodic data mark recording unit may be provided in another CT amount measurement region 121 on the same track.
 実施例3における光ディスク装置の記録動作を図1及び図10を用いて説明する。 The recording operation of the optical disc apparatus in the third embodiment will be described with reference to FIGS.
 ホストPC200から記録コマンド及び記録データが光ディスク装置100へ送信され、光ディスク装置100が光ディスク1に記録を行う動作は、実施例1とCT量測定領域への記録を除いて同様であるので、説明を省略する。 Since the recording command and the recording data are transmitted from the host PC 200 to the optical disc apparatus 100 and the operation of the optical disc apparatus 100 recording on the optical disc 1 is the same as in the first embodiment except for the recording in the CT amount measurement area, the explanation will be given. Omitted.
 実施例3において、記録を行っている際、ガイド層11の前記アドレス領域の位置に相当する記録層12の領域では、記録するデータは前記2値データではなく、周期的なデータを記録する。図10(a)はその記録データを模式的に示したものである。図10において、図3と同様のものについては同じ番号を付している。図10(a)に示している通り、周期的なデータのマーク1211の周期は隣接トラック、及び隣接層の略等しい光ディスク1の半径位置のトラックのCT量測定領域121と異ならせるようにして記録を行う。 In Example 3, when recording is performed, in the area of the recording layer 12 corresponding to the position of the address area of the guide layer 11, the data to be recorded is not the binary data but periodic data. FIG. 10A schematically shows the recorded data. 10, the same numbers are assigned to the same components as those in FIG. As shown in FIG. 10A, the period of the periodic data mark 1211 is recorded so as to be different from the CT amount measurement region 121 of the adjacent track and the track at the radial position of the optical disk 1 that is substantially the same in the adjacent layer. I do.
 次に、実施例3における光ディスク装置の再生動作を図1、2、図4乃至図10を用いて説明する。 Next, the reproducing operation of the optical disk apparatus according to the third embodiment will be described with reference to FIGS.
 ホストPC200から再生コマンドが光ディスク装置100へ送信され、光ディスク装置100が光ディスク1から再生を行う動作は、実施例1とCT量測定領域の再生を除いて同様であるので、説明を省略する。 Since the playback command is transmitted from the host PC 200 to the optical disc device 100 and the optical disc device 100 performs playback from the optical disc 1 is the same as in the first embodiment except for the playback of the CT amount measurement region, description thereof is omitted.
 実施例3において、再生を行っている際、図10に示すCT量測定領域121を再生している時間では、CT量測定を行う。CT量測定領域121には、前述の通り周期的なデータが記録してあり、隣接トラック、及び隣接層の略等しい光ディスク1の半径位置のトラックの周期的なデータとは異なる周期のデータが記録されている。CT量の算出は、CT量測定領域121を再生したときに得られる再生信号S03の周波数特性に基づいて行う。CT量測定領域121での再生信号S03の周波数特性の例は、実施例1と同様、図4のように示すことができる。理想的な周波数特性は、図4に示すように再生しているトラック上の周期的なデータの周波数(ftarget)と、隣接トラック、及び隣接層の略等しい光ディスク1の半径位置のトラックの上の周期的なデータの周波数(fside)においてピークを持つ特性となる。このとき、fsideにおける信号強度PsideがCT量であるとする。なお、図4に示す特性は、理想的な周波数特性の場合の例であり、実際には他の周波数においても信号強度が非0の値をとり得る。また、CT量算出において、fsideにおける信号強度をCT量としたが、fside付近の周波数において極大となる信号強度をCT量としても良いし、fside付近の周波数における信号強度を積分した量をCT量としても良い。このようにして算出したCT量はCT量算出結果S06としてマイコン4に出力する。 In Example 3, during reproduction, CT amount measurement is performed during the time during which the CT amount measurement region 121 shown in FIG. 10 is being reproduced. In the CT amount measurement area 121, periodic data is recorded as described above, and data having a period different from the periodic data of the adjacent track and the track at the radial position of the optical disc 1 that is substantially the same in the adjacent layer is recorded. Has been. The CT amount is calculated based on the frequency characteristics of the reproduction signal S03 obtained when the CT amount measurement region 121 is reproduced. An example of the frequency characteristic of the reproduction signal S03 in the CT amount measurement region 121 can be shown as in FIG. As shown in FIG. 4, the ideal frequency characteristic is such that the frequency (ftarget) of the periodic data on the track being reproduced and the track on the radial position of the optical disc 1 which is substantially equal to the adjacent track and the adjacent layer. It has a characteristic having a peak at the frequency (fside) of the periodic data. At this time, it is assumed that the signal intensity Pside at fside is the CT amount. The characteristic shown in FIG. 4 is an example in the case of an ideal frequency characteristic, and the signal intensity can actually take a non-zero value at other frequencies. In calculating the CT amount, the signal intensity at fside is used as the CT amount. However, the signal intensity that is maximal at the frequency near fside may be used as the CT amount, or the amount obtained by integrating the signal intensity at the frequency near fside is the CT amount. It is also good. The CT amount calculated in this way is output to the microcomputer 4 as a CT amount calculation result S06.
 マイコン4は前記CT量算出結果S06に基づき、各種調整処理を行う。 The microcomputer 4 performs various adjustment processes based on the CT amount calculation result S06.
 例えば、フォーカス調整においては、フォーカス位置を数箇所変えて再生させ、同じトラック上のCT量測定領域121における周波数特性をそれぞれ算出し、算出したCT量が極小となるフォーカス位置をフォーカス調整結果とする。フォーカス位置がずれていくと、レーザ光212のスポットは当該層においてはぼやけて径が広がると共に、焦点は隣接層側へ移動し、隣接トラックや隣接層からのCT量が増加する傾向がある。このため、フォーカス位置に対するCT量の特性をとると、極小となる点をもつ特性になる。なお、同じトラック上のCT量測定領域121としたが、CT量測定領域121のデータの周波数が同じトラックであれば、同じトラックでなくても良いし、同じCT量測定領域121でも良い。また、CT量が極小となるフォーカス位置を求める際、フォーカス位置に対するCT量の特性を求め、近似の手法によりフォーカス調整結果を算出しても良い。この場合の例は実施例1と同様に図5を用いて説明できるので、説明を省略する。 For example, in focus adjustment, reproduction is performed by changing several focus positions, the frequency characteristics in the CT amount measurement region 121 on the same track are calculated, and the focus position where the calculated CT amount is minimized is used as the focus adjustment result. . As the focus position shifts, the spot of the laser beam 212 blurs and increases in diameter in the layer, and the focal point moves toward the adjacent layer, and the amount of CT from the adjacent track or adjacent layer tends to increase. For this reason, when the CT amount characteristic with respect to the focus position is taken, it becomes a characteristic having a minimum point. Although the CT amount measurement area 121 on the same track is used, as long as the data frequency of the CT amount measurement area 121 is the same, the track may not be the same, or the same CT amount measurement area 121 may be used. Further, when obtaining the focus position at which the CT amount is minimized, the characteristic of the CT amount with respect to the focus position may be obtained, and the focus adjustment result may be calculated by an approximate method. Since the example in this case can be described using FIG. 5 similarly to the first embodiment, the description is omitted.
 また、チルト調整においては、チルト位置を数箇所変えて再生させ、同じトラック上のCT量測定領域121における周波数特性をそれぞれ算出し、算出したCT量が極小となるチルト位置をチルト調整結果とする。チルト調整の方法は実施例1と同様であるので、説明を省略する。 In tilt adjustment, reproduction is performed by changing the tilt position at several places, the frequency characteristics in the CT amount measurement region 121 on the same track are calculated, and the tilt position where the calculated CT amount is minimized is used as the tilt adjustment result. . Since the tilt adjustment method is the same as that of the first embodiment, description thereof is omitted.
 また、再生時の第2のレーザ光212のパワー(以下、リードパワー)調整においては、リードパワーを数段階変えて再生させ、同じトラック上のCT量測定領域121における周波数特性をそれぞれ算出し、算出したCT量に基づいて決定したリードパワーをリードパワー調整結果とする。リードパワー調整の方法は実施例1と同様であるので、説明を省略する。 Further, in the power adjustment (hereinafter referred to as read power) of the second laser beam 212 at the time of reproduction, reproduction is performed by changing the read power by several stages, and the frequency characteristics in the CT amount measurement region 121 on the same track are calculated, The read power determined based on the calculated CT amount is taken as a read power adjustment result. Since the read power adjustment method is the same as that of the first embodiment, the description thereof is omitted.
 また、デコード回路7における処理においてCT量を使用する。実施例3におけるデコード回路7の構成例は実施例1と同様に図7で示すことができる。適応等化回路73では、実施例1と同様に前記学習処理におけるタップ係数の収束速度を前記CT量の大きさに基づいて可変的に制御する。また、適応最尤復号回路74では、実施例1と同様に前記ターゲットレベルを可変的に制御し、入力される等化信号の特性に応じたターゲットレベルに追従させ、CT量に基づいて可変的に追従速度を変える。 Also, the CT amount is used in the processing in the decoding circuit 7. A configuration example of the decoding circuit 7 in the third embodiment can be shown in FIG. 7 as in the first embodiment. As in the first embodiment, the adaptive equalization circuit 73 variably controls the tap coefficient convergence speed in the learning process based on the CT amount. In the adaptive maximum likelihood decoding circuit 74, the target level is variably controlled in the same manner as in the first embodiment so as to follow the target level according to the characteristics of the input equalized signal, and is variable based on the CT amount. Change the following speed.
 また、球面収差調整においては、球面収差補正量を数段階変えて再生させ、同じトラック上のCT量測定領域121における周波数特性をそれぞれ算出し、算出したCT量が極小となる球面収差補正量を球面収差調整結果とする。球面収差補正量が最適でなくなると、レーザ光212のスポットはぼやけて径が広がると共に、焦点は隣接層側へ移動し、隣接トラックや隣接層からのCT量が増加する傾向がある。このため、球面収差補正量に対するCT量の特性をとると、極小となる点をもつ特性になる。なお、同じトラック上のCT量測定領域121としたが、実施例1と同様、CT量測定領域121のデータの周波数が同じトラックであれば、同じトラックでなくても良いし、同じCT量測定領域121でも良い。また、CT量が極小となる球面収差補正量を求める際、球面収差補正量に対するCT量の特性を求め、近似の手法により球面収差調整結果を算出しても良い。この場合の例は実施例1と同様に図8を用いて説明できるので、説明を省略する。 In the spherical aberration adjustment, the spherical aberration correction amount is reproduced by changing several stages, the frequency characteristics in the CT amount measurement region 121 on the same track are calculated, and the spherical aberration correction amount at which the calculated CT amount is minimized is obtained. The result is a spherical aberration adjustment result. When the spherical aberration correction amount is not optimal, the spot of the laser beam 212 is blurred and the diameter is widened, and the focal point moves to the adjacent layer side, and the CT amount from the adjacent track and the adjacent layer tends to increase. For this reason, when the CT amount characteristic with respect to the spherical aberration correction amount is taken, the characteristic has a minimum point. Although the CT amount measurement area 121 on the same track is used, as in the first embodiment, if the frequency of data in the CT amount measurement area 121 is the same track, the CT track may not be the same track. The region 121 may be used. Further, when obtaining the spherical aberration correction amount that minimizes the CT amount, the characteristic of the CT amount with respect to the spherical aberration correction amount may be obtained, and the spherical aberration adjustment result may be calculated by an approximate method. Since the example in this case can be described using FIG. 8 similarly to the first embodiment, the description is omitted.
 なお、本実施例において、CT量測定領域121に記録するデータは図10(a)のように周期的なデータのマークの周期を隣接トラック及び隣接層の略等しい光ディスク1の半径位置のトラックと異ならせるとしたが、図10(b)のように未記録部の隣接トラック及び隣接層の略等しい光ディスク1の半径位置のトラックに周期的なデータのマークを記録しても良い。この場合には、未記録部を再生している時間でCT量測定を行う。このとき、理想的な周波数特性は隣接トラック及び隣接層の略等しい光ディスク1の半径位置のトラック上の周期的なデータの周波数においてピークを持つ特性となり、該ピーク値の信号強度をCT量とする。図10(b)では、CT量測定領域121のうち、同じトラック内で未記録部と周期的なデータの記録部を設けているが、CT量測定領域121のうち同じトラック内では未記録部のみとし、同じトラック上の別のCT量測定領域121で周期的なデータのマークの記録部を設けても良い。 In this embodiment, the data to be recorded in the CT amount measurement area 121 is the track of the radial position of the optical disc 1 in which the period of the periodic data mark is substantially equal between the adjacent track and the adjacent layer as shown in FIG. However, as shown in FIG. 10B, periodic data marks may be recorded on the adjacent track of the unrecorded portion and the track at the radial position of the optical disc 1 that is substantially the same in the adjacent layer. In this case, the CT amount is measured during the time when the unrecorded part is reproduced. At this time, the ideal frequency characteristic is a characteristic having a peak at the frequency of the periodic data on the track at the radial position of the optical disc 1 in which the adjacent track and the adjacent layer are substantially equal, and the signal intensity of the peak value is the CT amount. . In FIG. 10B, in the CT amount measurement region 121, an unrecorded portion and a periodic data recording portion are provided in the same track. However, in the CT amount measurement region 121, an unrecorded portion is provided in the same track. However, a periodic data mark recording unit may be provided in another CT amount measurement region 121 on the same track.
 なお、本実施例において、CT量測定領域121に記録するデータは図10(a)のように周期的なデータのマークの周期を隣接トラック及び隣接層の略等しい光ディスク1の半径位置のトラックと異ならせるとしたが、図10(c)のようにユーザデータ部の隣接トラック及び隣接層の略等しい光ディスク1の半径位置のトラックに周期的なデータのマークを記録しても良い。この場合には、ユーザ記録部を再生している時間でCT量測定を行う。このとき、理想的な周波数特性は隣接トラック及び隣接層の略等しい光ディスク1の半径位置のトラック上の周期的なデータの周波数においてピークを持ち、他の周波数において信号強度が小さい特性となる。前記ピーク値の信号強度をCT量とする。図10(c)では、CT量測定領域121のうち、同じトラック内でユーザデータ部と周期的なデータの記録部を設けているが、CT量測定領域121のうち同じトラック内ではユーザデータ部のみとし、同じトラック上の別のCT量測定領域121で周期的なデータのマークの記録部を設けても良い。 In this embodiment, the data to be recorded in the CT amount measurement area 121 is the track of the radial position of the optical disc 1 in which the period of the periodic data mark is substantially equal between the adjacent track and the adjacent layer as shown in FIG. Although different, as shown in FIG. 10C, periodic data marks may be recorded on the adjacent tracks in the user data portion and the tracks at the radial positions of the optical disc 1 that are substantially equal in the adjacent layers. In this case, the CT amount measurement is performed during the time when the user recording unit is being reproduced. At this time, the ideal frequency characteristic has a peak at the frequency of the periodic data on the track at the radial position of the optical disc 1 in which the adjacent track and the adjacent layer are substantially equal, and the signal intensity is low at other frequencies. Let the signal intensity of the peak value be the CT amount. In FIG. 10C, the user data portion and the periodic data recording portion are provided in the same track in the CT amount measurement region 121, but the user data portion is provided in the same track in the CT amount measurement region 121. However, a periodic data mark recording unit may be provided in another CT amount measurement region 121 on the same track.
 実施例1乃至3において光ディスク装置100の構成を回路で実現しているが、一部をソフトウェアで実現しても良い。この場合にも回路で実現した場合と同様の効果を得ることができる。 In the first to third embodiments, the configuration of the optical disc device 100 is realized by a circuit, but a part may be realized by software. In this case, the same effect as that realized by a circuit can be obtained.
 また、実施例1乃至3においてマイコン上で動作するソフトウェアの動作の少なくとも一部を回路で実現しても良い。この場合にもソフトウェアで実現した場合と同様の効果を得ることができる。 Further, in the first to third embodiments, at least a part of the operation of the software that operates on the microcomputer may be realized by a circuit. In this case, the same effect as that realized by software can be obtained.
 また、実施例1乃至3において、光ディスク装置100は記録動作と再生動作を行うとしているが、記録または再生専用の装置であっても良い。記録専用装置であれば、図1の光ディスク装置100の構成において、CT量測定回路6及びデコード回路7は省いても良い。また、再生専用装置であれば、エンコード回路9は省いても良い。 In the first to third embodiments, the optical disc apparatus 100 performs the recording operation and the reproducing operation. However, the optical disc apparatus 100 may be an apparatus dedicated to recording or reproduction. If it is a recording-only device, the CT amount measuring circuit 6 and the decoding circuit 7 may be omitted in the configuration of the optical disk device 100 of FIG. Further, the encoding circuit 9 may be omitted if it is a reproduction-only device.
 また、実施例1乃至3において、フォーカス調整やチルト調整などの各種調整においてCT量やCT比の極小値に基づいて調整を行うとしたが、予め閾値を定めておき、CT量やCT比が閾値以下または未満となることに基づいて調整を行っても良い。 In the first to third embodiments, the adjustment is performed based on the minimum value of the CT amount and the CT ratio in various adjustments such as focus adjustment and tilt adjustment. Adjustments may be made based on being below or below the threshold.
 また、実施例1乃至3におけるフォーカス調整などの調整処理は例えば光ディスク装置のセットアップの際に行なえばよいし、これ以外の場合であっても構わない。 Further, adjustment processing such as focus adjustment in the first to third embodiments may be performed, for example, at the time of setting up the optical disc apparatus, or may be performed in other cases.
 100…光ディスク装置
 200…ホストPC
 1…光ディスク
 11…ガイド層
 111…ガイド層Lead-in領域
 112…ガイド層Lead-out領域
 113…アドレス領域
 114…ガイド層データ領域
 12…記録層
 121…CT量測定領域
 122…記録層Lead-in領域
 123…記録層Outer領域
 124…記録層Inner領域
 125…記録層Lead-out領域
 126…記録層データ領域
 2…光ピックアップ
 21…対物レンズ
 211…第1のレーザ光
 212…第2のレーザ光
 3…スピンドルモータ
 4…マイコン
 5…アドレス検出回路
 6…クロストーク量測定回路
 7…デコード回路
 8…メモリ
 9…エンコード回路
 10…インタフェース回路
 S01…モータ制御信号
 S02…光ピックアップ制御信号
 S03…再生信号
 S04…トラッキング信号
 S05…CT量測定制御信号
 S06…CT量算出結果
 S07…復号結果
 S08…記録データ
 S09…送信データ
 S10…受信データ
DESCRIPTION OF SYMBOLS 100 ... Optical disk apparatus 200 ... Host PC
DESCRIPTION OF SYMBOLS 1 ... Optical disk 11 ... Guide layer 111 ... Guide layer Lead-in area 112 ... Guide layer Lead-out area 113 ... Address area 114 ... Guide layer data area 12 ... Recording layer 121 ... CT amount measurement area 122 ... Recording layer Lead-in Area 123 ... Recording layer Outer area 124 ... Recording layer Inner area 125 ... Recording layer Lead-out area 126 ... Recording layer data area 2 ... Optical pickup 21 ... Objective lens 211 ... First laser beam 212 ... Second laser beam 3 DESCRIPTION OF SYMBOLS ... Spindle motor 4 ... Microcomputer 5 ... Address detection circuit 6 ... Crosstalk amount measurement circuit 7 ... Decoding circuit 8 ... Memory 9 ... Encoding circuit 10 ... Interface circuit S01 ... Motor control signal S02 ... Optical pick-up control signal S03 ... Reproduction signal S04 ... Tracking signal S05 CT amount measurement control signal S06 ... CT value calculation result S07 ... decoding result S08 ... recording data S09 ... transmission data S10 ... Receive Data

Claims (19)

  1.  ガイド層とn層の記録層(n≧1の自然数)を有する光ディスク媒体を再生する光ディスク装置において、
     前記光ディスク媒体の前記記録層に照射するレーザ光を出射し、該レーザ光が前記記録層で反射した反射光を電気信号に変換し出力する光ピックアップと、
     前記光ピックアップが出力した前記電気信号または前記電気信号を信号処理して得られた信号に基づいてデコード処理を行い、2値データを生成するデコード回路と、
     前記光ピックアップが出力した前記電気信号または前記電気信号を信号処理して得られた信号に基づいてクロストーク量を算出するクロストーク量測定回路と、
     前記クロストーク量測定回路が算出した前記クロストーク量に基づいて、前記光ディスク媒体の再生を行うための再生調整処理を制御する制御回路を有し、
     前記クロストーク量測定回路は、前記電気信号または前記電気信号を信号処理して得られた電気信号の周波数特性に基づいてクロストーク量を算出することを特徴とする光ディスク装置。
    In an optical disc apparatus for reproducing an optical disc medium having a guide layer and n recording layers (n ≧ 1 natural number),
    An optical pickup that emits laser light that irradiates the recording layer of the optical disc medium, converts the reflected light reflected by the recording layer into an electrical signal, and outputs the electrical signal;
    A decoding circuit that generates a binary data by performing a decoding process based on the electric signal output from the optical pickup or a signal obtained by performing a signal process on the electric signal;
    A crosstalk amount measuring circuit for calculating a crosstalk amount based on the electrical signal output from the optical pickup or a signal obtained by performing signal processing on the electrical signal;
    A control circuit for controlling reproduction adjustment processing for reproducing the optical disk medium based on the crosstalk amount calculated by the crosstalk amount measuring circuit;
    The optical disk apparatus, wherein the crosstalk amount measuring circuit calculates a crosstalk amount based on a frequency characteristic of the electrical signal or an electrical signal obtained by performing signal processing on the electrical signal.
  2.  前記クロストーク量測定回路は、前記電気信号または前記電気信号を信号処理して得られた電気信号の周波数スペクトルを算出し、該周波数スペクトルにおいて2番目に大きい信号強度値、または最も大きい信号強度値をクロストーク量とすることを特徴とする請求項1に記載の光ディスク装置。 The crosstalk amount measuring circuit calculates a frequency spectrum of the electrical signal or an electrical signal obtained by performing signal processing on the electrical signal, and the second largest signal strength value or the largest signal strength value in the frequency spectrum. 2. The optical disk apparatus according to claim 1, wherein a crosstalk amount is used.
  3.  前記クロストーク量測定回路は、前記電気信号または前記電気信号を信号処理して得られた電気信号の周波数スペクトルを算出し、該周波数スペクトルにおいて、再生しているトラックに記録している周期的データの周波数に略等しい周波数を除く周波数における信号強度の積分値を、または再生しているトラックに記録している周期的データの周波数に略等しい周波数における信号強度をクロストーク量とすることを特徴とする請求項1に記載の光ディスク装置。 The crosstalk amount measurement circuit calculates a frequency spectrum of the electrical signal or an electrical signal obtained by performing signal processing on the electrical signal, and the periodic data recorded on the track being reproduced in the frequency spectrum. The integrated value of the signal intensity at a frequency excluding the frequency substantially equal to the frequency of the signal, or the signal intensity at a frequency substantially equal to the frequency of the periodic data recorded on the track being reproduced is used as the crosstalk amount. The optical disc apparatus according to claim 1.
  4.  前記制御回路は、前記クロストーク量が略極小となるフォーカス位置をフォーカス調整結果とすることを特徴とする、あるいは前記クロストーク量が略極小となる球面収差補正位置を球面収差補正結果とすることを特徴とする、あるいは前記クロストーク量が略極小となるチルト位置をチルト調整結果とすることを特徴とする請求項1に記載の光ディスク装置。 The control circuit is characterized in that a focus position at which the crosstalk amount is substantially minimized is set as a focus adjustment result, or a spherical aberration correction position at which the crosstalk amount is substantially minimized is set as a spherical aberration correction result. The optical disk apparatus according to claim 1, wherein a tilt position where the crosstalk amount is substantially minimum is set as a tilt adjustment result.
  5.  前記デコード回路は前記光ピックアップが出力した前記電気信号または前記電気信号を信号処理して得られた信号の等化を適応的に行う適応等化回路を有し、適応等化回路のタップ係数の収束速度を前記クロストーク量に基づいて変えることを特徴とする、あるいは適応等化回路が出力した等化信号または該等化信号を信号処理して得られた信号から2値データを生成する適応最尤復号回路を有し、適応最尤復号回路におけるターゲットレベルを入力される等化信号の特性に応じたターゲットレベルに追従させる速度を前記クロストーク量に基づいて変えることを特徴とする請求項1に記載の光ディスク装置。 The decoding circuit includes an adaptive equalization circuit that adaptively performs equalization of the electric signal output from the optical pickup or a signal obtained by performing signal processing on the electric signal, and the tap coefficient of the adaptive equalization circuit An adaptive method for generating a binary data from an equalized signal output from an adaptive equalization circuit or a signal obtained by signal processing the equalized signal, wherein the convergence speed is changed based on the crosstalk amount A maximum likelihood decoding circuit is provided, and the speed at which the target level in the adaptive maximum likelihood decoding circuit is made to follow the target level according to the characteristics of the input equalized signal is changed based on the crosstalk amount. 1. An optical disc device according to 1.
  6.  ガイド層とn層の記録層(n≧1の自然数)を有する光ディスク媒体にデータを記録する光ディスク装置において、
    前記光ディスク媒体の前記ガイド層に照射するレーザ光と前記いずれかの記録層に照射するレーザ光を出射し、該レーザ光が前記ガイド層で反射した反射光を電気信号に変換し出力する光ピックアップと、
     前記ガイド層のアドレス領域での前記反射光による前記電気信号または前記電気信号を信号処理して得られた信号に基づいてアドレスを検出するアドレス検出回路と、
     前記光ピックアップが前記記録層にデータを記録するための前記レーザ光を出射するよう制御する制御回路を有し、
     前記制御回路は、前記アドレス検出回路が検出を行う前記アドレス領域と略等しい半径方向及び回転方向の位置の前記記録層の領域(クロストーク量測定領域)の一部に周期的なデータを記録するための前記レーザ光を出射するよう前記光ピックアップを制御することを特徴とする光ディスク装置。
    In an optical disc apparatus for recording data on an optical disc medium having a guide layer and n recording layers (n ≧ 1 natural number),
    An optical pickup that emits a laser beam that irradiates the guide layer of the optical disc medium and a laser beam that irradiates one of the recording layers, converts the reflected light reflected by the guide layer into an electrical signal, and outputs the electrical signal. When,
    An address detection circuit for detecting an address based on the signal obtained by performing signal processing on the electrical signal or the electrical signal by the reflected light in the address region of the guide layer;
    A control circuit for controlling the optical pickup to emit the laser beam for recording data on the recording layer;
    The control circuit records periodic data in a part of the area of the recording layer (crosstalk amount measurement area) at a position in the radial direction and rotation direction substantially equal to the address area detected by the address detection circuit. An optical disc apparatus for controlling the optical pickup so as to emit the laser beam for the purpose.
  7.  前記制御回路は、前記クロストーク量測定領域における一部の周期的なデータの隣接トラックに周期の異なるデータを記録することを特徴とする、もしくはm層の記録層(m≧2の自然数)をもつ前記光ディスク媒体において前記クロストーク量測定領域における一部の周期的なデータの隣接層のトラックに周期の異なるデータを記録することを特徴とする請求項6に記載の光ディスク装置。 The control circuit records data having different periods on adjacent tracks of a part of periodic data in the crosstalk amount measurement area, or has m recording layers (m ≧ 2 natural number). 7. The optical disc apparatus according to claim 6, wherein data having a different period is recorded on a track of an adjacent layer of a part of periodic data in the crosstalk amount measurement area in the optical disc medium having the optical disc medium.
  8.  前記制御回路は、前記クロストーク量測定領域において、周期的でないデータの隣接トラックに周期的なデータを記録することを特徴とする、もしくはm層の記録層(m≧2の自然数)をもつ前記光ディスク媒体において前記クロストーク量測定領域における周期的でないデータの隣接層のトラックに周期的なデータを記録することを特徴とする請求項6に記載の光ディスク装置。 The control circuit records periodic data on an adjacent track of non-periodic data in the crosstalk amount measurement region, or has m recording layers (m ≧ 2 natural number). 7. The optical disc apparatus according to claim 6, wherein periodic data is recorded on a track of an adjacent layer of non-periodic data in the crosstalk amount measurement area in the optical disc medium.
  9.  前記制御回路は、前記クロストーク量測定領域において、データを記録しないトラックの隣接トラックに周期的なデータを記録することを特徴とする、もしくはm層の記録層(m≧2の自然数)をもつ前記光ディスク媒体において前記クロストーク量測定領域におけるデータを記録しないトラックの隣接層のトラックに周期的なデータを記録することを特徴とする請求項6に記載の光ディスク装置。 The control circuit records periodic data on a track adjacent to a track on which no data is recorded in the crosstalk amount measurement area, or has m recording layers (m ≧ 2 natural number). 7. The optical disc apparatus according to claim 6, wherein periodic data is recorded on a track in a layer adjacent to a track on which no data is recorded in the crosstalk amount measurement area in the optical disc medium.
  10.  ガイド層とn層の記録層(n≧1の自然数)を有する光ディスク媒体を再生する光ディスク再生方法において、
     前記光ディスク媒体の前記記録層に照射するレーザ光を出射し、該レーザ光が前記記録層で反射した反射光を電気信号に変換し、
     前記電気信号または前記電気信号を信号処理して得られた信号に基づいてデコード処理を行い、2値データを生成し、前記電気信号または前記電気信号を信号処理して得られた信号の周波数特性に基づいてクロストーク量を算出し、
     該クロストーク量に基づいて、前記光ディスク媒体の再生を行うための再生調整処理を行う光ディスク再生方法。
    In an optical disc reproducing method for reproducing an optical disc medium having a guide layer and n recording layers (n ≧ 1 natural number),
    Emitting a laser beam that irradiates the recording layer of the optical disc medium, and converting the reflected light reflected by the recording layer into an electrical signal;
    Decoding processing is performed based on the electric signal or a signal obtained by signal processing of the electric signal, binary data is generated, and the frequency characteristics of the electric signal or the signal obtained by signal processing of the electric signal Calculate the amount of crosstalk based on
    An optical disc reproducing method for performing reproduction adjustment processing for reproducing the optical disc medium based on the crosstalk amount.
  11.  前記クロストーク量の測定において、前記電気信号または前記電気信号を信号処理して得られた電気信号の周波数スペクトルを算出し、該周波数スペクトルにおいて2番目に大きい信号強度値、または最も大きい信号強度値をクロストーク量とすることを特徴とする請求項10に記載の光ディスク再生方法。 In the measurement of the crosstalk amount, a frequency spectrum of the electric signal or an electric signal obtained by performing signal processing on the electric signal is calculated, and the second largest signal intensity value or the largest signal intensity value in the frequency spectrum 11. The method of reproducing an optical disk according to claim 10, wherein a crosstalk amount is used.
  12.  前記クロストーク量の測定において、前記電気信号または前記電気信号を信号処理して得られた電気信号の周波数スペクトルを算出し、該周波数スペクトルにおいて、再生しているトラックに記録している周期的データの周波数に略等しい周波数を除く周波数における信号強度の積分値を、または再生しているトラックに記録している周期的データの周波数に略等しい周波数における信号強度をクロストーク量とすることを特徴とする請求項10に記載の光ディスク再生方法。 In the measurement of the crosstalk amount, a frequency spectrum of the electrical signal or an electrical signal obtained by performing signal processing on the electrical signal is calculated, and periodic data recorded on the track being reproduced in the frequency spectrum. The integrated value of the signal intensity at a frequency excluding the frequency substantially equal to the frequency of the signal, or the signal intensity at a frequency substantially equal to the frequency of the periodic data recorded on the track being reproduced is used as the crosstalk amount. The optical disk reproducing method according to claim 10.
  13.  前記再生調整処理において、前記クロストーク量が略極小となるフォーカス位置をフォーカス調整結果とすることを特徴とする、あるいは前記クロストーク量が略極小となる球面収差補正位置を球面収差補正結果とすることを特徴とする、あるいは前記クロストーク量が略極小となるチルト位置をチルト調整結果とすることを特徴とする請求項10に記載の光ディスク再生方法。 In the reproduction adjustment processing, a focus position at which the crosstalk amount is substantially minimized is set as a focus adjustment result, or a spherical aberration correction position at which the crosstalk amount is substantially minimized is set as a spherical aberration correction result. 11. The optical disk reproducing method according to claim 10, wherein a tilt position at which the crosstalk amount is substantially minimized is set as a tilt adjustment result.
  14.  前記デコード処理において、前記光ピックアップが出力した前記電気信号または前記電気信号を信号処理して得られた信号の等化を適応的に行う適応等化処理を行い、適応等化処理でのタップ係数の収束速度を前記クロストーク量に基づいて変えることを特徴とする、あるいは適応等化処理結果である等化信号または該等化信号を信号処理して得られた信号から2値データを生成する適応最尤復号処理を行い、適応最尤復号処理におけるターゲットレベルを入力される等化信号の特性に応じたターゲットレベルに追従させる速度を前記クロストーク量に基づいて変えることを特徴とする請求項10に記載の光ディスク再生方法。 In the decoding process, an adaptive equalization process that adaptively performs equalization of the electric signal output from the optical pickup or a signal obtained by signal processing of the electric signal, and tap coefficients in the adaptive equalization process The convergence speed is changed based on the crosstalk amount, or binary data is generated from an equalized signal that is an adaptive equalization processing result or a signal obtained by signal processing the equalized signal The adaptive maximum likelihood decoding process is performed, and the speed at which the target level in the adaptive maximum likelihood decoding process follows the target level according to the characteristics of the input equalized signal is changed based on the crosstalk amount. The optical disc reproducing method according to 10.
  15.  ガイド層とn層の記録層(n≧1の自然数)を有する光ディスク媒体にデータを記録する光ディスク記録方法において、
     前記光ディスク媒体の前記ガイド層に照射するレーザ光と前記いずれかの記録層に照射するレーザ光を出射し、該レーザ光が前記ガイド層で反射した反射光を電気信号に変換し、
     前記ガイド層のアドレス領域での前記反射光による前記電気信号または前記電気信号を信号処理して得られた信号に基づいてアドレスを検出し、
     前記記録層にデータを記録するための前記レーザ光を出射し、
     前記アドレスを検出する前記アドレス領域と略等しい半径方向及び回転方向の位置の前記記録層の領域(クロストーク量測定領域)の一部に周期的なデータを記録するための前記レーザ光を出射することを特徴とする光ディスク記録方法。
    In an optical disc recording method for recording data on an optical disc medium having a guide layer and n recording layers (n ≧ 1 natural number),
    Emitting laser light applied to the guide layer of the optical disc medium and laser light applied to any one of the recording layers, and converting the reflected light reflected by the guide layer into an electrical signal;
    Detecting an address based on the signal obtained by signal processing the electrical signal or the electrical signal by the reflected light in the address region of the guide layer;
    Emitting the laser beam for recording data on the recording layer;
    The laser beam for recording periodic data is emitted to a part of the area of the recording layer (crosstalk amount measuring area) at a position in the radial direction and rotational direction substantially equal to the address area for detecting the address. An optical disc recording method.
  16.  前記クロストーク量測定領域における一部の周期的なデータの隣接トラックに周期の異なるデータを記録することを特徴とする、もしくはm層の記録層(m≧2の自然数)をもつ前記光ディスク媒体において前記クロストーク量測定領域における一部の周期的なデータの隣接層のトラックに周期の異なるデータを記録することを特徴とする請求項15に記載の光ディスク記録方法。 In the optical disk medium having m recording layers (m ≧ 2 natural number), data having different periods are recorded on adjacent tracks of some periodic data in the crosstalk amount measurement region 16. The optical disk recording method according to claim 15, wherein data having a different period is recorded on a track of an adjacent layer of a part of periodic data in the crosstalk amount measurement region.
  17.  前記クロストーク量測定領域において、周期的でないデータの隣接トラックに周期的なデータを記録することを特徴とする、もしくはm層の記録層(m≧2の自然数)をもつ前記光ディスク媒体において前記クロストーク量測定領域における周期的でないデータの隣接層のトラックに周期的なデータを記録することを特徴とする請求項15に記載の光ディスク記録方法。 In the crosstalk amount measurement area, periodic data is recorded on an adjacent track of non-periodic data, or the crossing in the optical disk medium having m recording layers (m ≧ 2 natural number) 16. The optical disk recording method according to claim 15, wherein the periodic data is recorded on the track of the adjacent layer of the non-periodic data in the talk amount measurement area.
  18.  前記クロストーク量測定領域において、データを記録しないトラックの隣接トラックに周期的なデータを記録することを特徴とする、もしくはm層の記録層(m≧2の自然数)をもつ前記光ディスク媒体において前記クロストーク量測定領域におけるデータを記録しないトラックの隣接層のトラックに周期的なデータを記録することを特徴とする請求項15に記載の光ディスク記録方法。
    In the crosstalk amount measurement region, periodic data is recorded on a track adjacent to a track on which no data is recorded, or in the optical disk medium having m recording layers (m ≧ 2 natural number) 16. The optical disk recording method according to claim 15, wherein periodic data is recorded on a track in a layer adjacent to a track on which no data is recorded in the crosstalk amount measurement region.
  19.  ガイド層とn層の記録層(n≧1の自然数)を有する光ディスク媒体で、ガイド層のアドレス領域と略等しい半径方向及び回転方向の位置の記録層の領域の一部に周期的なデータが記録された光ディスク媒体。 In an optical disc medium having a guide layer and n recording layers (n ≧ 1 natural number), periodic data is recorded in a part of the recording layer region at a position in the radial direction and the rotational direction substantially equal to the address region of the guide layer. Recorded optical disk medium.
PCT/JP2011/002463 2011-04-27 2011-04-27 Optical disk apparatus, optical disk recording and playback method, and optical disk WO2012147129A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/002463 WO2012147129A1 (en) 2011-04-27 2011-04-27 Optical disk apparatus, optical disk recording and playback method, and optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/002463 WO2012147129A1 (en) 2011-04-27 2011-04-27 Optical disk apparatus, optical disk recording and playback method, and optical disk

Publications (1)

Publication Number Publication Date
WO2012147129A1 true WO2012147129A1 (en) 2012-11-01

Family

ID=47071678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002463 WO2012147129A1 (en) 2011-04-27 2011-04-27 Optical disk apparatus, optical disk recording and playback method, and optical disk

Country Status (1)

Country Link
WO (1) WO2012147129A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845093A (en) * 1994-07-29 1996-02-16 Matsushita Electric Ind Co Ltd Tilt control circuit
JPH08329484A (en) * 1995-06-01 1996-12-13 Canon Inc Optical information recording and reproducing device
JPH09320200A (en) * 1996-05-30 1997-12-12 Pioneer Electron Corp Recording information reproducing device
JP2000011447A (en) * 1998-06-17 2000-01-14 Toshiba Corp Information memory medium and information memory medium recording and reproducing device
JP2001202627A (en) * 2000-01-20 2001-07-27 Toshiba Corp Optical disk device
JP2006024295A (en) * 2004-07-08 2006-01-26 Sanyo Electric Co Ltd Optical disk apparatus and offset adjusting method
JP2007004897A (en) * 2005-06-23 2007-01-11 Hitachi Ltd Information recording and reproducing method and information recording and reproducing apparatus
JP2009043320A (en) * 2007-08-08 2009-02-26 Hitachi Ltd Reproducing signal measuring method of optical recording medium, signal reproducing apparatus, and optical recording medium
JP2010129111A (en) * 2008-11-26 2010-06-10 Hitachi Ltd Optical disk, optical disk recording method, optical disk reproducing method, and optical disk device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845093A (en) * 1994-07-29 1996-02-16 Matsushita Electric Ind Co Ltd Tilt control circuit
JPH08329484A (en) * 1995-06-01 1996-12-13 Canon Inc Optical information recording and reproducing device
JPH09320200A (en) * 1996-05-30 1997-12-12 Pioneer Electron Corp Recording information reproducing device
JP2000011447A (en) * 1998-06-17 2000-01-14 Toshiba Corp Information memory medium and information memory medium recording and reproducing device
JP2001202627A (en) * 2000-01-20 2001-07-27 Toshiba Corp Optical disk device
JP2006024295A (en) * 2004-07-08 2006-01-26 Sanyo Electric Co Ltd Optical disk apparatus and offset adjusting method
JP2007004897A (en) * 2005-06-23 2007-01-11 Hitachi Ltd Information recording and reproducing method and information recording and reproducing apparatus
JP2009043320A (en) * 2007-08-08 2009-02-26 Hitachi Ltd Reproducing signal measuring method of optical recording medium, signal reproducing apparatus, and optical recording medium
JP2010129111A (en) * 2008-11-26 2010-06-10 Hitachi Ltd Optical disk, optical disk recording method, optical disk reproducing method, and optical disk device

Similar Documents

Publication Publication Date Title
JP2007128590A (en) Evaluation and adjustment method in optical disk device, and optical disk device
JP5057925B2 (en) Digital information playback method
JP2008287795A (en) Optical disk medium and tracking method
US8873358B2 (en) Skew detection method and optical disc device
EP1964119B1 (en) Method and apparatus to determine an optimum reproducing condition on an optical recording medium
JP2013200921A (en) Recording device and stray light signal component cancellation method
WO2012147129A1 (en) Optical disk apparatus, optical disk recording and playback method, and optical disk
JP4384239B2 (en) Optical disc apparatus and optical disc reproducing method
JP5507482B2 (en) Reproduction signal evaluation method, information recording / reproducing method, and information recording / reproducing apparatus
WO2007148669A1 (en) Optical recording/reproducing method and system, and program
JP2017162537A (en) Optical disk device
JP2011100514A (en) Optical disk device
JP4491754B2 (en) Optical information recording apparatus and recording correction amount calculation method
WO2011118070A1 (en) Optical disc and optical disc device
JP4068105B2 (en) Optical disk device
JP7316587B2 (en) optical disk drive
JP4234042B2 (en) Multi-value information recording medium, multi-value information waveform equalizer, multi-value information reproducing device
JP3838925B2 (en) Optical recording apparatus, optical recording control method using the same, optical reproducing apparatus, and optical reproduction control method using the same
JP4520906B2 (en) Tangential tilt detection device and optical disc device
JP2005346768A (en) Optical disk device and information reproduction method
JP4164533B2 (en) Optical disk device
JP5455819B2 (en) Optical recording apparatus and method
CN118038905A (en) High-density optical disk and recording and playing system
JP4529945B2 (en) Optical disc recording medium and reproducing method thereof
JP5191198B2 (en) Optical recording medium, optical recording / reproducing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP