WO2012146808A1 - Method for coating materials by means of the thermal spraying of compositions - Google Patents

Method for coating materials by means of the thermal spraying of compositions Download PDF

Info

Publication number
WO2012146808A1
WO2012146808A1 PCT/ES2012/070125 ES2012070125W WO2012146808A1 WO 2012146808 A1 WO2012146808 A1 WO 2012146808A1 ES 2012070125 W ES2012070125 W ES 2012070125W WO 2012146808 A1 WO2012146808 A1 WO 2012146808A1
Authority
WO
WIPO (PCT)
Prior art keywords
minutes
temperature
limits
time
maintain
Prior art date
Application number
PCT/ES2012/070125
Other languages
Spanish (es)
French (fr)
Inventor
Kudama Abdul RAZZAQ HABIB
Iván CERVERA GONZÁLEZ
Juan José SAURA BARREDA
Original Assignee
Universitat Jaume I De Castellón
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Jaume I De Castellón filed Critical Universitat Jaume I De Castellón
Publication of WO2012146808A1 publication Critical patent/WO2012146808A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material

Definitions

  • the method of coating materials by thermal projection on their surface of chemical compositions can be used in those industrial applications where it is necessary to protect materials against chemical deterioration, for example by oxidation at high temperature, and / or mechanical, by wear.
  • the field of application is very wide: furnaces for the ceramic industry, pump shafts for the chemical and petrochemical industry and blades for the aeronautical industry, etc. It also allows the recharge of worn parts, which can be coated by the procedure described.
  • compositions for coating materials against mechanical wear and high temperature corrosion are alumina and MCrAlY superalloy.
  • Thermal projection of alumina base coatings The thermal projection processes commonly used to project AI 2 O 3 base coatings are: flame spray (OF), air plasma (APS -Atmospheric Plasma Spray-) and high-speed oxifuel (HVOF).
  • the spray spray alumina base powder (OF) technique has disadvantages compared to the APS and HVOF techniques, in that the structures obtained are larger in size, have larger cracks and porosity.
  • this technique has the advantage of being more economical, easy to use and greater adaptability to manufacturing processes in short series or for the recovery of worn parts.
  • the thermal spray technique of alumina powders, as well as plasma superalloy has the advantage of the high temperature reached (10,000-15,000 ° C) which is suitable for melting all or part of the ceramic powder particles (> 2,000 ° C ).
  • the relatively high speed achieved by said particles produces a deformation thereof by impact, thereby achieving dense deposits with good substrate binding.
  • APS this technique
  • the projection technique of alumina-based powders, as well as super-alloy by HVOF, creates particle velocities between 300-1000 m / s, resulting in an increase in the impact force resulting in a higher density and adhesion of the coating. .
  • the temperature reached is approximately 3300 ° C.
  • alumina (corundum) particles are presented in the stable form CC (rhombohedral), which undergoes a total or partial transformation in metastable phases during thermal projection: ⁇ (cubic), ⁇ (tetragonal or orthorhombic), ⁇ (monoclinic) , among other.
  • cubic
  • tetragonal or orthorhombic
  • monoclinic
  • Thermally projected MCrAlY superalloy coatings are used as protective layers against high temperature oxidation of both Ni base superalloys and austenitic stainless steels.
  • MCrAlY coatings have excellent resistance to dry corrosion and oxidation at high temperatures. These coatings form an oxide layer on the outer surface, and immediately under this layer the material is impoverished in aluminum; also, an interdiffusion zone is formed in contact with the substrate.
  • EBPVD electron beam
  • PS plasma spray
  • the object of the present invention is the development of new methods of coating materials with chemical compositions projected by thermal projection, such that the material obtained has a coating layer that is capable of combining high corrosion resistance at high temperatures and to wear
  • the present invention emerges as a need to improve the methods of coating by thermal projection of currently existing compositions, which allows its use in more demanding conditions from the point of view of resistance to high temperature oxidation and abrasive wear. This allows to obtain a better performance of systems that operate at high temperature, by increasing it, or increasing the service life of the components.
  • Another of the applications is the recycling of parts that have suffered wear and that are no longer suitable for commissioning, since it allows them to be recharged by thermal projection of the chemical composition according to the described method.
  • the present invention relates to a method for coating materials by thermal projection of a chemical composition, characterized in that it comprises at least the following steps:
  • the second time the temperature is increased is made up to a range between 700 ° C and 800 ° C, including both limits.
  • the temperature decrease is performed up to a range between 60 ° C and 90 ° C, including both limits, and more preferably still up to room temperature (which can be considered as 25 ° C in the scope of the present invention) .
  • the gradual increase in temperature, in any of the steps described above that involve this action is carried out at a heating rate between 30 ° C / hour and 60 ° C / hour, including both limits.
  • the gradual decrease in temperature is carried out at a cooling rate between 20 ° C / hour and 50 ° C / hour, including both limits. The variation of these speeds in the process is determined based on the furnace conditions where the process is carried out and the structural dimensions and characteristics of the piece (of the material to be coated).
  • the composition is thermally projected onto the surface of the material by one of the techniques selected within the group consisting of: oxifuel, Plasma Spray, and high speed oxyfuel (HVOF), obtaining coatings of different thicknesses, preferably in the form of a layer.
  • the thickness of said coating layer depends on the thickness of the piece to be coated; however, said thickness is between 10% and 30% of the total thickness of the material to be coated. Preferably, the thickness does not exceed 25% of the total thickness of the material to be coated.
  • the projected composition is preferably in powder form.
  • the heat treatment after the projection of the composition on the surface of the material comprises the following steps:
  • the heat treatment described has as its main function the homogenization of the coating composition on the material and the compaction of the microstructure
  • the chemical coating composition used in the method described herein can be of any type known in the field, but preferably it is of metallic type or a cermet type coating, that is, a mixture of a metal based matrix (such as a superalloy of the M-CrAlY type, where M is a metal that can be nickel) and a ceramic charge (for example, alumina).
  • a metal based matrix such as a superalloy of the M-CrAlY type, where M is a metal that can be nickel
  • a ceramic charge for example, alumina
  • Another object of the present invention is any coated material obtainable by the method described.
  • Figure 1 Heating / cooling ramps for heat treatment of the coating composition according to the present method. The procedure begins at room temperature (25 ° C).
  • Figure 2 shows a SEM micrograph of a system formed by a piece of a material, of metallic type, and a coating according to Example 1 (of metallic type constituted by a NiCrAlY base and a reinforcement of AI 2 O3 ).
  • the material zone is represented as (A) and the coating as (B).
  • a method according to the example and non-limiting nature of the invention is detailed below by way of example according to what is described herein for coating a material, consisting of a metal part, with a chemical composition.
  • Example 1 Method of coating a metal part with a cermet type coating composition.
  • the coating material consists of a composition with a matrix of a NiCrAlY super alloy, where M represents a metal and is Ni, and with an additional charge of a ceramic material, which is alumina.
  • M represents a metal and is Ni
  • a ceramic material which is alumina.
  • the composition has a weight ratio between 10-50% ceramic and 50-90% metal matrix, and is in the form of a powder, in which the particles of the metal base are specifically spherical and alumina particles of polygonal type The particle size in both cases does not exceed 45 microns.
  • the coating composition is used in metal parts, to combat corrosion at high temperatures.
  • Said powder coating composition is projected onto the surface of the metal part by an oxyacetylene gun, and whose projection conditions are shown in Table I.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

The invention relates to a method for coating materials, comprising the thermal spraying of compositions on the surface thereof. The method consists in: spraying the composition onto the surface of the material, and subjecting the coated material to a step-based thermal treatment which gradually varies the temperature of the assembly in a stepped manner. Preferably, the composition is sprayed using one of the techniques selected from the group including oxy-fuel, plasma spray and high-velocity oxy-fuel (HVOF), thereby forming coatings of different thicknesses, preferably in the form of a layer. The invention also relates to any coated material that can be obtained using the aforementioned method.

Description

MÉTODO PARA RECUBRIR MATERIALES MEDIANTE PROYECCIÓN TÉRMICA  METHOD FOR COATING MATERIALS THROUGH THERMAL PROJECTION
DE COMPOSICIONES SECTOR DE LA TÉCNICA  OF COMPOSITIONS SECTOR OF THE TECHNIQUE
El método de recubrimiento de materiales mediante proyección térmica en su superficie de composiciones químicas se puede utilizar en aquellas aplicaciones industriales donde sea necesario proteger materiales frente a su deterioro químico, por ejemplo por oxidación a alta temperatura, y/o mecánico, por desgaste. El campo de aplicación es muy amplio: hornos para industria cerámica, ejes de bombas para industria química y petroquímica y álabes para industria aeronáutica, etc. Asimismo, permite el recargue de piezas desgastadas, que pueden recubrirse mediante el procedimiento descrito.  The method of coating materials by thermal projection on their surface of chemical compositions can be used in those industrial applications where it is necessary to protect materials against chemical deterioration, for example by oxidation at high temperature, and / or mechanical, by wear. The field of application is very wide: furnaces for the ceramic industry, pump shafts for the chemical and petrochemical industry and blades for the aeronautical industry, etc. It also allows the recharge of worn parts, which can be coated by the procedure described.
ESTADO DE LA TÉCNICA  STATE OF THE TECHNIQUE
La creciente demanda de productos de ingeniería para aplicaciones en elementos de maquinaria que tienen que trabajar en medios severos tanto tribólogicos como corrosivos, tales como manguitos protectores de ejes, fundas de termopares, aislantes eléctricos, ejes de bombas, rodillos de hornos de cocción en la industria cerámica, etc. requieren de diseños específicos de superficies. Mientras la textura superficial de dichos dispositivos es alcanzada mediante tratamientos mecánicos, la composición química superficial es usualmente controlada mediante modificación superficial en forma de revestimientos. Aunque hay diferentes técnicas disponibles para depositar materiales sobre cada tipo de substrato, los procesos de proyección térmica son ampliamente usados para depositar recubrimientos de diferentes espesores en varias aplicaciones industriales.  The growing demand for engineering products for applications in machinery elements that have to work in both severe tribological and corrosive media, such as shaft protection sleeves, thermocouple sheaths, electrical insulators, pump shafts, baking ovens in the ceramic industry, etc. require specific surface designs. While the surface texture of said devices is achieved by mechanical treatments, the surface chemical composition is usually controlled by surface modification in the form of coatings. Although there are different techniques available to deposit materials on each type of substrate, thermal spray processes are widely used to deposit coatings of different thicknesses in various industrial applications.
Algunas de las composiciones más conocidas para recubrir materiales frente al desgaste mecánico y la corrosión a alta temperatura son la alúmina y la superaleación MCrAlY.  Some of the best known compositions for coating materials against mechanical wear and high temperature corrosion are alumina and MCrAlY superalloy.
Proyección térmica de recubrimientos base alúmina Los procesos de proyección térmica comúnmente usados para proyectar recubrimientos base AI2O3 son: spray llama (OF) , plasma al aire (APS -Atmospheric Plasma Spray-) y oxifuel de alta velocidad (HVOF) . Thermal projection of alumina base coatings The thermal projection processes commonly used to project AI 2 O 3 base coatings are: flame spray (OF), air plasma (APS -Atmospheric Plasma Spray-) and high-speed oxifuel (HVOF).
La técnica de proyección de polvos base alúmina por spray llama (OF) tiene desventajas respecto a las técnicas APS y HVOF, en cuanto que las estructuras obtenidas son de mayor tamaño de grano, tienen mayor tamaño de grietas y porosidad. Por otro lado, esta técnica posee la ventaja de ser más económica, fácil manejo y mayor adaptabilidad a los procesos de fabricación en series cortas o de recuperación de piezas desgastadas.  The spray spray alumina base powder (OF) technique has disadvantages compared to the APS and HVOF techniques, in that the structures obtained are larger in size, have larger cracks and porosity. On the other hand, this technique has the advantage of being more economical, easy to use and greater adaptability to manufacturing processes in short series or for the recovery of worn parts.
La técnica de proyección térmica de polvos de alúmina, asi como de superaleación por plasma tiene la ventaja de la alta temperatura alcanzada (10.000-15.000°C) que es adecuada para fundir total o parcialmente las partículas de los polvos cerámicos (>2.000°C). Además la velocidad relativamente alta alcanzada por dichas partículas produce una deformación de las mismas por impacto, consiguiendo de esta forma depósitos densos con buena unión al substrato. Mediante esta técnica (APS) existe la posibilidad de que puedan formarse algunos óxidos cuando se trata de un material metálico, cosa que no ocurre con los recubrimientos cerámicos .  The thermal spray technique of alumina powders, as well as plasma superalloy has the advantage of the high temperature reached (10,000-15,000 ° C) which is suitable for melting all or part of the ceramic powder particles (> 2,000 ° C ). In addition, the relatively high speed achieved by said particles produces a deformation thereof by impact, thereby achieving dense deposits with good substrate binding. Through this technique (APS) there is the possibility that some oxides can be formed when it is a metallic material, something that does not occur with ceramic coatings.
La técnica de proyección de polvos base alúmina, así como de superaleación por HVOF crea velocidades en las partículas de entre 300-1000 m/s, lo que produce un incremento en la fuerza de impacto que se traduce en una mayor densidad y adhesión del revestimiento. En este proceso la temperatura alcanzada es de aproximadamente 3300 °C.  The projection technique of alumina-based powders, as well as super-alloy by HVOF, creates particle velocities between 300-1000 m / s, resulting in an increase in the impact force resulting in a higher density and adhesion of the coating. . In this process the temperature reached is approximately 3300 ° C.
Las partículas de alúmina comercial (corindón) se presentan en la forma estable CC (romboédrica) , que durante la proyección térmica sufre una transformación total o parcial en fases metaestables : γ (cúbica), δ (tetragonal u ortorrómbica) , Θ (monoclínica) , entre otras. La formación de estas fases está favorecida por la baja velocidad de enfriamiento de los recubrimientos ya que se trata de materiales cerámicos de baja conductividad térmica. Commercial alumina (corundum) particles are presented in the stable form CC (rhombohedral), which undergoes a total or partial transformation in metastable phases during thermal projection: γ (cubic), δ (tetragonal or orthorhombic), Θ (monoclinic) , among other. The formation of These phases are favored by the low cooling rate of the coatings since they are ceramic materials with low thermal conductivity.
Proyección térmica de superaleacion MCrAlY MCrAlY super alloy thermal projection
Los recubrimientos de superaleacion MCrAlY proyectados térmicamente son usados como capas protectoras contra la oxidación a altas temperaturas tanto de superaleaciones base Ni como de aceros inoxidables austeniticos .  Thermally projected MCrAlY superalloy coatings are used as protective layers against high temperature oxidation of both Ni base superalloys and austenitic stainless steels.
Los recubrimientos MCrAlY poseen excelente resistencia a corrosión seca y a oxidación a altas temperaturas. Estos recubrimientos forman una capa de óxido sobre la superficie exterior, e inmediatamente bajo esta capa el material se empobrece en aluminio; asimismo, se forma una zona de interdifusión en el contacto con el sustrato.  MCrAlY coatings have excellent resistance to dry corrosion and oxidation at high temperatures. These coatings form an oxide layer on the outer surface, and immediately under this layer the material is impoverished in aluminum; also, an interdiffusion zone is formed in contact with the substrate.
Los dos procesos más importantes para aplicar este recubrimiento son la deposición física de vapor por haz de electrones (EBPVD) y el plasma spray (PS) . El proceso EBPVD produce una estructura de cristales perpendiculares a la superficie del sustrato, y esta estructura puede mejorarse al cerrarse los defectos por tratamientos mediante shot peening y tratamientos con láser. Por su parte, el proceso PS es llevado a cabo en cámaras de baja presión para minimizar la formación de óxidos al depositar la aleación.  The two most important processes for applying this coating are physical vapor deposition by electron beam (EBPVD) and plasma spray (PS). The EBPVD process produces a structure of crystals perpendicular to the surface of the substrate, and this structure can be improved by closing the defects by shot peening treatments and laser treatments. For its part, the PS process is carried out in low pressure chambers to minimize the formation of oxides when depositing the alloy.
Durante el proceso de oxidación de los recubrimientos MCrAlY, los granos de fase β rica en aluminio se convierte en islas de fase γ' , dejando la fase matriz γ menos resistente a oxidación. During the oxidation process of MCrAlY coatings, the aluminum-rich β phase grains become γ ' phase islands, leaving the γ matrix phase less resistant to oxidation.
El objeto de la presente invención es el desarrollo de nuevos métodos de recubrimiento de materiales con composiciones químicas proyectadas mediante proyección térmica, de tal forma que el material obtenido presente una capa de recubrimiento que sea capaz de combinar alta resistencia a la corrosión a altas temperaturas y al desgaste .  The object of the present invention is the development of new methods of coating materials with chemical compositions projected by thermal projection, such that the material obtained has a coating layer that is capable of combining high corrosion resistance at high temperatures and to wear
En definitiva, la presente invención surge como una necesidad de mejorar los métodos de recubrimiento mediante proyección térmica de composiciones actualmente existentes, que permita su uso en condiciones más exigentes desde el punto de vista de resistencia a oxidación a alta temperatura y al desgaste abrasivo. Esto permite bien obtener un mayor rendimiento de sistemas que operan a alta temperatura, por incremento de ésta, bien aumentar la vida en servicio de los componentes . In short, the present invention emerges as a need to improve the methods of coating by thermal projection of currently existing compositions, which allows its use in more demanding conditions from the point of view of resistance to high temperature oxidation and abrasive wear. This allows to obtain a better performance of systems that operate at high temperature, by increasing it, or increasing the service life of the components.
Otra de las aplicaciones es el reciclaje de piezas que hayan sufrido desgaste y que dejan de ser aptas para su puesta en servicio, ya que permite el recargue de las mismas mediante la proyección térmica de la composición química según el método descrito.  Another of the applications is the recycling of parts that have suffered wear and that are no longer suitable for commissioning, since it allows them to be recharged by thermal projection of the chemical composition according to the described method.
BIBLIOGRAFÍA  BIBLIOGRAPHY
- J. Ramírez, A. Gutiérrez-Alejandre, Catal . Today 43 (1998) 123.  - J. Ramírez, A. Gutiérrez-Alejandre, Catal. Today 43 (1998) 123.
- V. Fervel, B. Normand, C. Coddet, Wear 230 (1999) 70.  - V. Fervel, B. Normand, C. Coddet, Wear 230 (1999) 70.
- L. Chen, L. Wang, Z, Zeng, T. Chu, Surface & Coating Technology, 201 (2006), 599-605.  - L. Chen, L. Wang, Z, Zeng, T. Chu, Surface & Coating Technology, 201 (2006), 599-605.
- R. Tomaszek, L Pawloski, J. Zdanowski, J. Grimblot, I. Laureyns, Surface-Coating Technology, 185 (2004) 225.  - R. Tomaszek, L Pawloski, J. Zdanowski, J. Grimblot, I. Laureyns, Surface-Coating Technology, 185 (2004) 225.
I. M. Kusoglu, E. Celik, H. Cetinel, I. Ozdemir, O. Demirkurt, K. Onel, Surface-Coating Technology, vol. 200, 1- 4, (2005) 1173-1177.  I. M. Kusoglu, E. Celik, H. Cetinel, I. Ozdemir, O. Demirkurt, K. Onel, Surface-Coating Technology, vol. 200, 1- 4, (2005) 1173-1177.
- K. A. Habib, J. J. Saura, C. Ferrer, M. S. Damra, E. Giménez, L. Cabedo, Surface-Coating Technology, 201 (2006), 1436-1443.  - K. A. Habib, J. J. Saura, C. Ferrer, M. S. Damra, E. Giménez, L. Cabedo, Surface-Coating Technology, 201 (2006), 1436-1443.
- Y. Liu, T. E. Fisher, A. Dent, Surface-Coating Technology, 167 (2003) 68-75.  - Y. Liu, T. E. Fisher, A. Dent, Surface-Coating Technology, 167 (2003) 68-75.
R. Venkataraman, Gantam Das, B. Venkataraman, G.V Narashima, R. Krishnamurthy, Surface-Coating Technology, vol. 201, 6 (2006) p. 3691-37.  R. Venkataraman, Gantam Das, B. Venkataraman, G.V Narashima, R. Krishnamurthy, Surface-Coating Technology, vol. 201, 6 (2006) p. 3691-37.
- R. Venkataraman, B. Ravikumar, R. Krishnamurthy, D.K. Das, Sur. & Coat. Tech., Vol. 201, 6,4 3087-3095 (2006). - T. Narita, F. Lang, K. Zaini, T. Yoshioka, T. Izumi, H. Yakuma, S. Hayashi, Oxid. Of Metals, Vol 68, (2007) 343-363.- R. Venkataraman, B. Ravikumar, R. Krishnamurthy, DK Das, South. & Coat. Tech., Vol. 201, 6.4 3087-3095 (2006). - T. Narita, F. Lang, K. Zaini, T. Yoshioka, T. Izumi, H. Yakuma, S. Hayashi, Oxid. Of Metals, Vol 68, (2007) 343-363.
- T.J. Najidam, W.G. Sloof, Oxid of metáis, Vol. 69, (2008), 1-18. - T.J. Najidam, W.G. Sloof, Oxid of metais, Vol. 69, (2008), 1-18.
- S. Wang, Y. Wu, F. Gesmuudo, Y. Niu, Oxid. Of Metals, Vol. 69, (2008), 299-315.  - S. Wang, Y. Wu, F. Gesmuudo, Y. Niu, Oxid. Of Metals, Vol. 69, (2008), 299-315.
- X. Liu, L. Huang, Z. B. Bao, H. Wei, X. F. Sun, Oxide. Of metáis, Vol. 71, (2009), 125-142.  - X. Liu, L. Huang, Z. B. Bao, H. Wei, X. F. Sun, Oxide. Of metais, Vol. 71, (2009), 125-142.
United States Patent n. 7,316,850. Modified MCrAlY coatings on turbine blade tips with improved durability.  United States Patent n. 7,316,850. Modified MCrAlY coatings on turbine blade tips with improved durability.
Patente Española n. 2131451 Bl . Recubrimientos cuasicristalinos tipo barrera térmica para la protección de componentes de las zonas calientes de turbinas.  Spanish patent n. 2131451 Bl. Quasicrystalline thermal barrier type coatings for the protection of components of hot turbine areas.
DESCRIPCIÓN DE LA INVENCIÓN  DESCRIPTION OF THE INVENTION
La presente invención se refiere a un método para recubrir materiales mediante proyección térmica de una composición química, caracterizado por que comprende al menos las siguientes etapas:  The present invention relates to a method for coating materials by thermal projection of a chemical composition, characterized in that it comprises at least the following steps:
- proyectar la composición química de recubrimiento sobre la superficie del material, y  - project the chemical coating composition on the surface of the material, and
- someter el material previamente recubierto a un tratamiento térmico por etapas que comprende: - subjecting the previously coated material to a stage heat treatment comprising:
incrementar gradualmente la temperatura durante un intervalo de tiempo comprendido entre 5 y 10 minutos, incluidos ambos limites, desde temperatura ambiente (que puede considerarse en la presente memoria que tiene un valor de 25°C) a un valor comprendido entre 500°C y 600°C, incluidos ambos limites ; gradually increase the temperature over a period of time between 5 and 10 minutes, including both limits, from room temperature (which can be considered herein having a value of 25 ° C) to a value between 500 ° C and 600 ° C, including both limits;
mantener la temperatura alcanzada en la etapa anterior durante un intervalo de tiempo comprendido entre 15 y 40 minutos, incluidos ambos limites; incrementar gradualmente la temperatura por segunda vez durante un intervalo de tiempo comprendido entre 5 y 10 minutos, incluidos ambos límites, a un valor comprendido entre 700°C y 900°C, incluidos ambos límites; maintain the temperature reached in the previous stage for a period of time between 15 and 40 minutes, including both limits; gradually increase the temperature a second time for a period of time between 5 and 10 minutes, including both limits, at a value between 700 ° C and 900 ° C, including both limits;
mantener la temperatura alcanzada durante un intervalo de tiempo comprendido entre 15 minutos y 40 minutos, incluidos ambos límites;  maintain the temperature reached during a time interval between 15 minutes and 40 minutes, including both limits;
incrementar gradualmente la temperatura por tercera vez durante un intervalo de tiempo comprendido entre 5 y 10 minutos, incluidos ambos límites, a un valor comprendido entre 1000°C y 1150°C, incluidos ambos límites;  gradually increase the temperature for the third time over a period of time between 5 and 10 minutes, including both limits, to a value between 1000 ° C and 1150 ° C, including both limits;
mantener la temperatura alcanzada durante un intervalo de tiempo comprendido entre 200 minutos y 250 minutos, incluidos ambos límites; y  maintain the temperature reached during a time interval between 200 minutes and 250 minutes, including both limits; Y
disminuir gradualmente la temperatura hasta un valor comprendido entre 20°C y 90°C, incluidos ambos límites .  gradually decrease the temperature to a value between 20 ° C and 90 ° C, including both limits.
De manera preferida, la segunda vez que se incrementa la temperatura se hace hasta un intervalo comprendido entre 700°C y 800°C, incluidos ambos límites. También preferentemente, la disminución de la temperatura se realiza hasta un intervalo comprendido entre 60°C y 90°C, incluidos ambos límites, y más preferentemente todavía hasta temperatura ambiente (que puede considerarse de 25°C en el ámbito de la presente invención) .  Preferably, the second time the temperature is increased is made up to a range between 700 ° C and 800 ° C, including both limits. Also preferably, the temperature decrease is performed up to a range between 60 ° C and 90 ° C, including both limits, and more preferably still up to room temperature (which can be considered as 25 ° C in the scope of the present invention) .
Preferentemente, el incremento gradual de la temperatura, en cualquiera de las etapas antes descritas que implican esta acción, se realiza a una velocidad de calentamiento comprendida entre 30°C/hora y 60°C/hora, incluidos ambos límites. También preferentemente la disminución gradual de la temperatura se realiza a una velocidad de enfriamiento comprendida entre 20°C/hora y 50°C/hora, incluidos ambos límites. La variación de estas velocidades en el procedimiento se determina en función de las condiciones del horno donde se lleva a cabo el proceso y de las dimensiones y características estructurales de la pieza (del material a recubrir) . Preferably, the gradual increase in temperature, in any of the steps described above that involve this action, is carried out at a heating rate between 30 ° C / hour and 60 ° C / hour, including both limits. Also preferably the gradual decrease in temperature is carried out at a cooling rate between 20 ° C / hour and 50 ° C / hour, including both limits. The variation of these speeds in the process is determined based on the furnace conditions where the process is carried out and the structural dimensions and characteristics of the piece (of the material to be coated).
Opcionalmente, la composición se proyecta térmicamente sobre la superficie del material mediante una de las técnicas seleccionadas dentro del grupo compuesto por: oxifuel, Plasma Spray, y oxifuel de alta velocidad (HVOF) , obteniéndose recubrimientos de distintos espesores, preferiblemente en forma de capa. El espesor de dicha capa de recubrimiento depende del espesor de la pieza a recubrir; no obstante, dicho espesor está comprendido entre un 10% y un 30% del espesor total del material a recubrir. Preferentemente, el espesor no excede el 25% del espesor total del material a recubrir. La composición proyectada se encuentra preferentemente en forma de polvo.  Optionally, the composition is thermally projected onto the surface of the material by one of the techniques selected within the group consisting of: oxifuel, Plasma Spray, and high speed oxyfuel (HVOF), obtaining coatings of different thicknesses, preferably in the form of a layer. The thickness of said coating layer depends on the thickness of the piece to be coated; however, said thickness is between 10% and 30% of the total thickness of the material to be coated. Preferably, the thickness does not exceed 25% of the total thickness of the material to be coated. The projected composition is preferably in powder form.
En otra realización más preferida, el tratamiento térmico tras la proyección de la composición sobre la superficie del material comprende las siguientes etapas:  In another more preferred embodiment, the heat treatment after the projection of the composition on the surface of the material comprises the following steps:
a) incrementar gradualmente la temperatura durante 7 minutos desde temperatura ambiente (se considera que son 25°C) hasta alcanzar 570°C,  a) gradually increase the temperature for 7 minutes from room temperature (it is considered to be 25 ° C) to reach 570 ° C,
b) mantener la temperatura alcanzada durante 20 minutos ,  b) maintain the temperature reached for 20 minutes,
c) incrementar gradualmente la temperatura por segunda vez durante 10 minutos hasta alcanzar 860°C,  c) gradually increase the temperature a second time for 10 minutes to reach 860 ° C,
d) mantener la temperatura alcanzada durante 20 minutos ,  d) maintain the temperature reached for 20 minutes,
e) incrementar gradualmente la temperatura por tercera vez durante 15 minutos hasta alcanzar 1100°C,  e) gradually increase the temperature for a third time for 15 minutes to reach 1100 ° C,
f) mantener la temperatura alcanzada durante 240 minutos, y  f) maintain the temperature reached for 240 minutes, and
g) disminuir gradualmente la temperatura hasta temperatura ambiente (25°C) , en un tiempo de 70 minutos .  g) gradually decrease the temperature to room temperature (25 ° C), in a time of 70 minutes.
El tratamiento térmico descrito tiene como función principal la homogenización de la composición de recubrimiento sobre el material y la compactación de la microestructura. The heat treatment described has as its main function the homogenization of the coating composition on the material and the compaction of the microstructure
La composición química de recubrimiento que se emplea en el método aquí descrito puede ser de cualquier tipo conocido en el campo, pero preferentemente es de tipo metálico o un recubrimiento tipo cermet, es decir, mezcla de una matriz de base metálica (como puede ser una superaleación del tipo M-CrAlY, donde M es un metal que puede ser níquel) y una carga cerámica (por ejemplo, alúmina) .  The chemical coating composition used in the method described herein can be of any type known in the field, but preferably it is of metallic type or a cermet type coating, that is, a mixture of a metal based matrix (such as a superalloy of the M-CrAlY type, where M is a metal that can be nickel) and a ceramic charge (for example, alumina).
Otro objeto de la presente invención es cualquier material recubierto obtenible mediante el método que se describe .  Another object of the present invention is any coated material obtainable by the method described.
DESCRIPCIÓN DE LAS FIGURAS  DESCRIPTION OF THE FIGURES
Figura 1: Rampas de calentamiento/enfriamiento para el tratamiento térmico de la composición de recubrimiento de acuerdo con el presente método. El procedimiento comienza a temperatura ambiente (25°C) . Figure 1: Heating / cooling ramps for heat treatment of the coating composition according to the present method. The procedure begins at room temperature (25 ° C).
Figura 2: La Figura 2 muestra una micrografía SEM de un sistema formado por una pieza de un material, de tipo metálico, y un recubrimiento de acuerdo con el Ejemplo 1 (de tipo metálico constituido por una base NiCrAlY y un refuerzo de AI2O3) . La zona del material se representa como (A) y el recubrimiento como (B) . Figure 2: Figure 2 shows a SEM micrograph of a system formed by a piece of a material, of metallic type, and a coating according to Example 1 (of metallic type constituted by a NiCrAlY base and a reinforcement of AI 2 O3 ). The material zone is represented as (A) and the coating as (B).
EJEMPLOS DE REALIZACIÓN  EXAMPLES OF REALIZATION
A continuación se detalla, a modo de ejemplo y con carácter ilustrativo y no limitante de la invención un método de acuerdo con lo descrito en la presente memoria para recubrir un material, que consiste en una pieza metálica, con una composición química.  A method according to the example and non-limiting nature of the invention is detailed below by way of example according to what is described herein for coating a material, consisting of a metal part, with a chemical composition.
Ejemplo 1. Método de recubrimiento de una pieza metálica con una composición de recubrimiento de tipo cermet.  Example 1. Method of coating a metal part with a cermet type coating composition.
El material de recubrimiento consiste en una composición con una matriz de una superaleación tipo NiCrAlY, donde M representa un metal y es Ni, y con una carga adicional de un material cerámico, que es alúmina. Dicha composición presenta una proporción en peso comprendida entre 10-50% de cerámica y 50-90% de matriz metálica, y se encuentra en forma de polvo, en la que concretamente las partículas de la base metálica son de tipo esférico y las de alúmina de tipo poligonal. El tamaño de partícula en ambos casos no supera las 45 mieras. The coating material consists of a composition with a matrix of a NiCrAlY super alloy, where M represents a metal and is Ni, and with an additional charge of a ceramic material, which is alumina. Bliss The composition has a weight ratio between 10-50% ceramic and 50-90% metal matrix, and is in the form of a powder, in which the particles of the metal base are specifically spherical and alumina particles of polygonal type The particle size in both cases does not exceed 45 microns.
La composición de recubrimiento se emplea en piezas metálicas, para combatir la corrosión a altas temperaturas.  The coating composition is used in metal parts, to combat corrosion at high temperatures.
Dicha composición de recubrimiento en polvo se proyecta sobre la superficie de la pieza metálica mediante una pistola de oxiacetileno, y cuyas condiciones de proyección se muestran en la Tabla I .  Said powder coating composition is projected onto the surface of the metal part by an oxyacetylene gun, and whose projection conditions are shown in Table I.
Tabla I . Parámetros de proyección térmica . Table I Parameters of thermal projection.
Figure imgf000011_0001
Figure imgf000011_0001
Tras la proyección de la composición, se procede al tratamiento térmico de la superficie ya cubierta del siguiente modo: After the projection of the composition, the heat treatment of the surface already covered is carried out as follows:
incrementar gradualmente la temperatura durante 7 minutos desde temperatura ambiente (se considera que son 25°C) hasta alcanzar 570°C;  gradually increase the temperature for 7 minutes from room temperature (it is considered to be 25 ° C) to reach 570 ° C;
- mantener la temperatura alcanzada durante 20 minutos, - maintain the temperature reached for 20 minutes,
- incrementar gradualmente la temperatura por segunda vez durante 10 minutos hasta alcanzar 860°C; - gradually increase the temperature a second time for 10 minutes to reach 860 ° C;
- mantener la temperatura alcanzada durante 20 minutos; - maintain the temperature reached for 20 minutes;
- incrementar gradualmente la temperatura por tercera vez durante 15 minutos hasta alcanzar 1100°C; - gradually increase the temperature for a third time for 15 minutes until reaching 1100 ° C;
mantener la temperatura alcanzada durante 240 minutos; y  keep the temperature reached for 240 minutes; Y
disminuir gradualmente la temperatura hasta temperatura ambiente (25°C) , en un tiempo de 70 minutos . gradually decrease the temperature until room temperature (25 ° C), in a time of 70 minutes.
En la Figura 2 se muestra una micrografia SEM de la pieza metálica recubierta obtenida mediante el método de la presente invención, donde es apreciable la alta calidad de la misma en base a la ausencia de porosidad y correcta adherencia en la interfase.  An SEM micrograph of the coated metal part obtained by the method of the present invention is shown in Figure 2, where the high quality thereof is appreciable based on the absence of porosity and correct adhesion at the interface.

Claims

REIVINDICACIONES
1. Método para recubrir materiales mediante proyección térmica de una composición química, caracterizado porque comprende las siguientes etapas:  1. Method for coating materials by thermal projection of a chemical composition, characterized in that it comprises the following steps:
- proyectar la composición química de recubrimiento sobre la superficie del material, y  - project the chemical coating composition on the surface of the material, and
- someter el material previamente recubierto a un tratamiento térmico por etapas que comprende:  - subjecting the previously coated material to a stage heat treatment comprising:
incrementar gradualmente la temperatura durante un intervalo de tiempo comprendido entre 5 y 10 minutos, incluidos ambos límites, desde temperatura ambiente a un valor comprendido entre 500°C y 600°C, incluidos ambos límites ;  gradually increase the temperature over a period of time between 5 and 10 minutes, including both limits, from room temperature to a value between 500 ° C and 600 ° C, including both limits;
mantener la temperatura alcanzada en la etapa anterior durante un intervalo de tiempo comprendido entre 15 y 40 minutos, incluidos ambos límites; maintain the temperature reached in the previous stage for a period of time between 15 and 40 minutes, including both limits;
incrementar gradualmente la temperatura por segunda vez durante un intervalo de tiempo comprendido entre 5 y 10 minutos, incluidos ambos límites, a un valor comprendido entre 700°C y 900°C, incluidos ambos límites ;  gradually increase the temperature a second time for a period of time between 5 and 10 minutes, including both limits, to a value between 700 ° C and 900 ° C, including both limits;
mantener la temperatura alcanzada durante un intervalo de tiempo comprendido entre 15 minutos y 40 minutos, incluidos ambos límites; maintain the temperature reached for a period of time between 15 minutes and 40 minutes, including both limits;
incrementar gradualmente la temperatura por tercera vez durante un intervalo de tiempo comprendido entre 5 y 10 minutos, incluidos ambos límites, a un valor comprendido entre 1000°C y 1150°C, incluidos ambos límites ;  gradually increase the temperature for the third time over a period of time between 5 and 10 minutes, including both limits, to a value between 1000 ° C and 1150 ° C, including both limits;
mantener la temperatura alcanzada durante un intervalo de tiempo comprendido entre 200 minutos y 250 minutos, incluidos ambos límites; y maintain the temperature reached during a time interval between 200 minutes and 250 minutes, including both limits; Y
disminuir gradualmente la temperatura hasta un valor comprendido entre 20°C y 90°C, incluidos ambos límites. gradually decrease the temperature to a value between 20 ° C and 90 ° C, including both limits.
2. Método de acuerdo con la reivindicación 1, caracterizado por que la composición química se proyecta sobre la superficie del material mediante una de las técnicas seleccionadas dentro del grupo compuesto por: oxifuel, Plasma Spray y oxifuel de alta velocidad (HVOF) . 2. Method according to claim 1, characterized in that the chemical composition is projected onto the surface of the material by one of the techniques selected from the group consisting of: oxifuel, Plasma Spray and high speed oxifuel (HVOF).
3. Método de acuerdo con una cualquiera de las reivindicaciones 1 o 2, caracterizado por que la composición forma una capa de recubrimiento sobre el material con un espesor comprendido entre un 10% y un 30% del espesor total del material a recubrir. 3. Method according to any one of claims 1 or 2, characterized in that the composition forms a coating layer on the material with a thickness between 10% and 30% of the total thickness of the material to be coated.
4. Método de acuerdo con la reivindicación anterior, caracterizado por que la capa de recubrimiento presenta un espesor igual o inferior al 25% del espesor total del material a recubrir. 4. Method according to the preceding claim, characterized in that the coating layer has a thickness equal to or less than 25% of the total thickness of the material to be coated.
5. Método de acuerdo con una cualquiera de las reivindicaciones anteriores, caracterizado por que el tratamiento térmico por etapas comprende: 5. Method according to any one of the preceding claims, characterized in that the stepwise heat treatment comprises:
incrementar gradualmente la temperatura durante 7 minutos desde temperatura ambiente hasta alcanzar 570°C; gradually increase the temperature for 7 minutes from room temperature to reach 570 ° C;
- mantener la temperatura alcanzada durante 20 minutos;- maintain the temperature reached for 20 minutes;
- incrementar gradualmente la temperatura por segunda vez durante 10 minutos hasta alcanzar 860°C; - gradually increase the temperature a second time for 10 minutes to reach 860 ° C;
- mantener la temperatura alcanzada durante 20 minutos; - maintain the temperature reached for 20 minutes;
- incrementar gradualmente la temperatura por tercera vez durante 15 minutos hasta alcanzar 1100°C; - gradually increase the temperature for a third time for 15 minutes until reaching 1100 ° C;
- mantener la temperatura alcanzada durante 240 minutos; Y  - maintain the temperature reached for 240 minutes; Y
- disminuir gradualmente la temperatura hasta temperatura ambiente, en un tiempo de 70 minutos.  - gradually lower the temperature to room temperature, in a time of 70 minutes.
6. Método de acuerdo con una cualquiera de las reivindicaciones anteriores, caracterizado por que la composición química de recubrimiento es de tipo metálico o una mezcla de metal y carga cerámica. 6. Method according to any one of the preceding claims, characterized in that the Chemical coating composition is metallic type or a mixture of metal and ceramic filler.
7. Material recubierto obtenible a partir del método descrito en una cualquiera de las reivindicaciones anteriores . 7. Coated material obtainable from the method described in any one of the preceding claims.
PCT/ES2012/070125 2011-04-29 2012-02-28 Method for coating materials by means of the thermal spraying of compositions WO2012146808A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201130688A ES2391321B1 (en) 2011-04-29 2011-04-29 METHOD FOR COATING MATERIALS THROUGH THERMAL COMPOSITION PROJECTION.
ESP201130688 2011-04-29

Publications (1)

Publication Number Publication Date
WO2012146808A1 true WO2012146808A1 (en) 2012-11-01

Family

ID=47071637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070125 WO2012146808A1 (en) 2011-04-29 2012-02-28 Method for coating materials by means of the thermal spraying of compositions

Country Status (2)

Country Link
ES (1) ES2391321B1 (en)
WO (1) WO2012146808A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2131451A1 (en) * 1996-10-04 1999-07-16 Inst Nacional De Tecnica Aeroe Quasicrystalline coatings of the thermal barrier type for the protection of components in the hot zones of turbines
US6793968B1 (en) * 1999-03-04 2004-09-21 Siemens Aktiengesellschaft Method and device for coating a product
EP1829984A1 (en) * 2006-03-01 2007-09-05 United Technologies Corporation High Density Thermal Barrier Coating
EP2270313A2 (en) * 2009-06-30 2011-01-05 Hitachi, Ltd. High-temperature resistant gas turbine component
EP2309019A2 (en) * 2009-10-07 2011-04-13 General Electric Company Method of deposition of metallic coatings using atomized spray

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2131451A1 (en) * 1996-10-04 1999-07-16 Inst Nacional De Tecnica Aeroe Quasicrystalline coatings of the thermal barrier type for the protection of components in the hot zones of turbines
US6793968B1 (en) * 1999-03-04 2004-09-21 Siemens Aktiengesellschaft Method and device for coating a product
EP1829984A1 (en) * 2006-03-01 2007-09-05 United Technologies Corporation High Density Thermal Barrier Coating
EP2270313A2 (en) * 2009-06-30 2011-01-05 Hitachi, Ltd. High-temperature resistant gas turbine component
EP2309019A2 (en) * 2009-10-07 2011-04-13 General Electric Company Method of deposition of metallic coatings using atomized spray

Also Published As

Publication number Publication date
ES2391321A1 (en) 2012-11-23
ES2391321B1 (en) 2013-10-21

Similar Documents

Publication Publication Date Title
Ghasemi et al. The influence of laser treatment on thermal shock resistance of plasma-sprayed nanostructured yttria stabilized zirconia thermal barrier coatings
Jordan et al. Superior thermal barrier coatings using solution precursor plasma spray
EP1908856B2 (en) Segmented abradable coatings and process(es) for applying the same
EP3107673B1 (en) Method of applying a thermal barrier coating
Chen et al. Microstructure and properties of HVOF-sprayed NiCrAlY coatings modified by rare earth
Hao et al. NiCoCrAlYTa coatings on nickel-base superalloy substrate: Deposition by high velocity oxy-fuel spraying as well as investigation of mechanical properties and wear resistance in relation to heat-treatment duration
JP2019533090A (en) Method for coating the surface of a solid substrate having a layer containing a ceramic compound, and coating substrate obtained by the method
JP2009161859A (en) Erosion and corrosion-resistant coating system and process therefor
UA61920C2 (en) A piece of super-alloy and a method for making thereof
CA2627885A1 (en) Ceramic powders and thermal barrier coatings
Kumar et al. Microstructure studies of air-plasma-spray-deposited CoNiCrAlY coatings before and after thermal cyclic loading for high-temperature application
CA2803728A1 (en) Method of applying a thermal barrier coating by means of plasma spray physical vapor deposition
US20140193760A1 (en) Coated article, process of coating an article, and method of using a coated article
Zeng et al. Lanthanum magnesium hexaluminate thermal barrier coatings with pre-implanted vertical microcracks: Thermal cycling lifetime and CMAS corrosion behaviour
JP2016540890A (en) Modified thermal barrier composite coating
US9850778B2 (en) Thermal barrier coating with controlled defect architecture
Daroonparvar et al. Effect of Y2O3 stabilized ZrO2 coating with tri-model structure on bi-layered thermally grown oxide evolution in nano thermal barrier coating systems at elevated temperatures
CN108118278A (en) One kind is used for the low guide vane method for preparing heat barrier coating of IC10 alloys
An et al. Microstructure and thermal cycle resistance of plasma sprayed mullite coatings made from secondary mullitized natural andalusite powder
CN108642435A (en) A kind of big thickness high-temperature protection coating of turbine outer ring inner wall and preparation method thereof
Jie et al. Microstructure and thermal cycling behavior of nanostructured yttria partially stabilized zirconia (YSZ) thermal barrier coatings
CN104846307A (en) High-temperature resistant ceramic coating for metal based hot spraying and spraying method of coating
Leng et al. Multilayer GZ/YSZ thermal barrier coating from suspension and solution precursor thermal spray
Li et al. Microstructure formed by suspension plasma spraying: From YSZ splat to coating
Komatsu et al. Deposition of metal oxide films from metal–EDTA complexes by flame spray technique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12776686

Country of ref document: EP

Kind code of ref document: A1