WO2012144644A1 - Crosslinked product of cyclic olefin resin, and process for producing same - Google Patents

Crosslinked product of cyclic olefin resin, and process for producing same Download PDF

Info

Publication number
WO2012144644A1
WO2012144644A1 PCT/JP2012/060849 JP2012060849W WO2012144644A1 WO 2012144644 A1 WO2012144644 A1 WO 2012144644A1 JP 2012060849 W JP2012060849 W JP 2012060849W WO 2012144644 A1 WO2012144644 A1 WO 2012144644A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclic olefin
olefin
crosslinked product
crosslinked
chain
Prior art date
Application number
PCT/JP2012/060849
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 梅本
市川 晴雄
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to JP2012549171A priority Critical patent/JP5155500B2/en
Priority to EP12774326.8A priority patent/EP2700668A1/en
Priority to US14/113,185 priority patent/US20140044950A1/en
Priority to KR1020137030455A priority patent/KR20130136589A/en
Priority to CN201280030648.2A priority patent/CN103619924A/en
Publication of WO2012144644A1 publication Critical patent/WO2012144644A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F32/00Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F32/02Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings
    • C08F32/04Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings having one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment

Definitions

  • the present invention relates to a crosslinked product of cyclic olefin resin which has transparency, heat resistance and flexibility and can be used in various fields such as electric and electronic devices or optical devices, and a method for producing the same.
  • cyclic olefin resins are excellent in transparency, chemical resistance, moisture resistance, mechanical properties, etc., optical parts such as lenses and optical recording materials, parts for electricity or electronics such as printed circuit boards and connectors, containers for medicines and the like It is used in various fields such as medical or medical equipment supplies such as syringes, experimental instruments such as beakers and optical cells, and automobile parts.
  • cyclic olefin resins have characteristics of low flexibility, insufficient moldability, high glass transition temperature, but low softening temperature, so various kinds of them depending on the application. The improvement of is being considered.
  • Patent Document 1 JP-A-2005-47991 discloses that an organic peroxide of 0.
  • a crosslinkable resin composition is disclosed in which 3 to 2.5 parts by weight, 7 to 30 parts by weight of a coagent, and 5 to 100 parts by weight of an inorganic filler are dispersed.
  • a crosslinked molded article having high plating adhesion and solder heat resistance can be obtained by heating the crosslinkable resin composition to crosslink it.
  • JP-A-2006-274164 discloses that a molded product made of a cyclic olefin polymer has an acceleration voltage of 50 kV or more and an irradiation dose of 50.
  • a method is disclosed in which radiation is irradiated at a surface temperature (Tg-50) to (Tg + 70) ° C. of an irradiated part of ⁇ 1000 kGy.
  • Tg-50 surface temperature
  • Tg + 70 ° C.
  • the cyclic olefin polymer is a polymer containing 10 mol% or more of cyclic olefin units, and is described as preferably having a glass transition temperature of 100 ° C. or more.
  • a cyclic olefin polymer having a glass transition temperature of 58 to 140 ° C. is irradiated with ⁇ -rays at a surface temperature of 75 to 180 ° C. of the irradiated portion to produce a molded body without deformation.
  • this document does not describe crosslinking.
  • Example 2 of Patent Document 2 a sheet is produced in which a cyclic olefin polymer (APEL 8008T) formed of a tetracyclic olefin and having a glass transition temperature of 58 ° C. is irradiated with ⁇ -rays, Even with this sheet, transparency, heat resistance and appropriate flexibility can not be simultaneously achieved.
  • a cyclic olefin polymer APEL 8008T
  • JP-A-11-340590 Patent Document 3
  • 5 to 400 parts by weight of a resin excellent in radiation crosslinkability with the norbornene-based resin and 100% by weight of a thermoplastic norbornene-based resin There is disclosed a laminate for a printed wiring board having a radiation cross-linked structure, having a conductive metal foil in a sheet formed of a resin composition containing 0.1 to 20 parts by weight of an auxiliary.
  • high solder heat resistance is imparted by crosslinking a thermoplastic norbornene resin with a radiation crosslinkable resin such as polybutadiene, and the resin is tightly integrated with a metal foil.
  • a radiation crosslinkable resin is essential, and the characteristics of the norbornene resin are degraded. Furthermore, the composition is deformed by the irradiation of radiation.
  • Japanese Patent No. 3274702 Japanese Patent No. 3274702 (patent document 4)
  • a multilayer material consisting of is proposed.
  • cyclic olefin copolymer films having a crystallinity of 1%, a glass transition temperature of 2 ° C. or 3 ° C., and a melting point of 81 ° C. or 73 ° C., LLDPE sheet, nylon 6 sheet, polyimide sheet or aluminum plate Is heat laminated.
  • cyclic olefin copolymers having a low glass transition temperature lack heat resistance and deform easily, for example, when exposed to high temperatures in the process of using the final product after film forming.
  • JP-A-6-345885 Patent Document 5
  • Tg glass transition temperature
  • the molar percentage of ⁇ -olefin and cyclic olefin is described as 80:20 to 99.9: 0.1.
  • the glass transition temperature is preferably ⁇ 30 to 45 ° C. (especially ⁇ 30 to 40 ° C.), and the degree of crystallinity is described as 0 to 40% (especially 0 to 25%).
  • An ethylene-norbornene copolymer having a crystallinity of 4.3% is irradiated with ⁇ -rays to produce a sheet.
  • this sheet has a large amount of ethylene chains and exhibits crystallinity, and has low transparency. Therefore, it is intended for use in medicine, packaging, food fields such as infusion bags, and the transparency is low, and in particular, it does not have the transparency required in the field of optical elements and the like. Furthermore, this sheet is intended to impart sufficient elasticity and flexibility in the above-mentioned field, and the elasticity is too high and does not have appropriate flexibility.
  • an object of the present invention is to provide a crosslinked product of cyclic olefin resin that can achieve both heat resistance and flexibility (especially low temperature softening property) while maintaining high transparency with low haze, and a method for producing the same. It is in.
  • Another object of the present invention is a crosslinked product of cyclic olefin resin having high transparency and excellent durability (stability) such as water resistance, weather resistance (especially light resistance) and chemical resistance, and a method for producing the same To provide.
  • Still another object of the present invention is to provide a crosslinked product of cyclic olefin resin excellent in moisture resistance and mechanical properties and a method for producing the same.
  • Another object of the present invention is to provide a method for easily producing a crosslinked product of a cyclic olefin resin excellent in transparency, heat resistance and flexibility (in particular, low temperature softening property).
  • the inventors of the present invention crosslink a specific linear olefin-cyclic olefin copolymer with an electron beam or the like, while maintaining high transparency with low haze.
  • the inventors have found that heat resistance and flexibility can be compatible and complete the present invention.
  • the crosslinked product of the present invention is a crosslinked product of a chain olefin-cyclic olefin copolymer containing a chain olefin and a cyclic olefin as a polymerization component, wherein the cyclic olefin contains a bicyclic olefin, and the cyclic
  • the proportion of the olefin is more than 15 mol% and 40 mol% or less based on the total of the chain olefin and the cyclic olefin, and the glass transition temperature of the chain olefin-cyclic olefin copolymer is 20 to 20 It is 80 ° C.
  • a crosslinked product of a chain olefin-cyclic olefin copolymer comprising a chain olefin and a cyclic olefin as a polymerization component, wherein the cyclic olefin contains a bicyclic olefin, and the proportion of the cyclic olefin is And a crosslink having a crystallinity of 15% or less and 40% or less with respect to the total of the chain olefin and the cyclic olefin and having a crystallinity of the chain olefin-cyclic olefin copolymer of 1% or less
  • the body is also included.
  • the crystallinity of the linear olefin-cyclic olefin copolymer may be 0.5% or less.
  • the crosslinked product of the present invention may have a haze of 2% or less (in particular, 0.1 to 1.5%) in accordance with JIS K7136.
  • the glass transition temperature of the linear olefin-cyclic olefin copolymer may be about 30 to 50.degree.
  • the crosslinked body of the present invention may have a breaking elongation of 10% or more (in particular, 100 to 400%) at a thickness of 100 ⁇ m in accordance with JIS K7127.
  • the gel fraction measured by a method of refluxing with toluene for 3 hours may be 5% by weight or more (particularly 70% by weight or more).
  • the crosslinked product of the present invention may have a storage modulus of 100 to 4000 MPa at a temperature of 25 ° C., a storage modulus of 0.01 to 10 MPa at a temperature of 80 ° C., and a molecular weight between crosslinking points of 8,000 to 30,000.
  • the crosslinked body of the present invention may be a crosslinked body substantially free of a resin having a crosslinkable group and a crosslinking agent.
  • the crosslinked body of the present invention may be an electron beam crosslinked body.
  • the crosslinked body of the present invention is in the form of a sheet and may be a sealing material for an optical element.
  • the present invention also includes a method for producing a crosslinked product by crosslinking a linear olefin-cyclic olefin copolymer with an electron beam or radiation.
  • crosslinking may be performed with an electron beam without heating, and in particular, may be performed with an accelerating voltage of 150 kV or more and an irradiation dose of 200 kGy or more.
  • “flexibility” or “moderate flexibility” does not mean softness or elasticity such as rubber or elastomer which can be expanded or deformed at normal temperature or around room temperature, but normal temperature or around room temperature In the above, it means that it is hard (non-elastic) but softens at a relatively low temperature (eg, about 30 to 80 ° C., preferably about 40 to 70 ° C., more preferably about 45 to 60 ° C.).
  • “low temperature softening property” means that the film softens at a temperature of about 30 to 80 ° C., and the elastic modulus after softening becomes 100% or less of that before the softening.
  • the specific linear olefin-cyclic olefin copolymer is crosslinked by an electron beam or the like, heat resistance and flexibility (especially low temperature softening) are maintained while maintaining high transparency with low haze. Can be compatible. Furthermore, this crosslinked body is high in transparency, excellent in water resistance, weather resistance (especially light resistance), and durability such as chemical resistance, and also excellent in moisture resistance and mechanical properties. Further, in the present invention, a crosslinked product of cyclic olefin resin excellent in transparency, heat resistance and flexibility can be easily produced.
  • the crosslinked product of the present invention is a crosslinked product of a cyclic olefin resin (a chain olefin-cyclic olefin copolymer) containing a chain olefin and a cyclic olefin as a polymerization component.
  • a cyclic olefin resin a chain olefin-cyclic olefin copolymer
  • the cyclic olefin resin (uncrosslinked cyclic olefin resin) in the present invention contains a chain olefin and a cyclic olefin as a polymerization component.
  • chain olefins examples include chain C such as ethylene, propylene, 1-butene, isobutene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene and the like. 2-10 olefins etc. are mentioned. These linear olefins can be used alone or in combination of two or more. Among these chain olefins, preferred are ⁇ -chain C 2-8 olefins, and more preferred are ⁇ -chain C 2-4 olefins (especially ethylene).
  • the cyclic olefin is a polymerizable cyclic olefin having an ethylenic double bond in the ring, and includes bicyclic olefins.
  • Examples of representative bicyclic olefins include norbornene (2-norbornene) which may have a substituent, octalin (octahydronaphthalene) which may have a substituent, and the like.
  • substituents examples include an alkyl group, an alkenyl group, an aryl group, a hydroxyl group, an alkoxy group, a carboxyl group, an alkoxycarbonyl group, an acyl group, a cyano group, an amide group and a halogen atom. These substituents may be used alone or in combination of two or more.
  • bicyclic olefins for example, 2-norbornene; 5-methyl-2-norbornene, 5,5-dimethyl-2-norbornene, 5-ethyl-2-norbornene, 5-butyl-2-norbornene
  • Norbornenes having an alkyl group such as; norbornenes having an alkenyl group such as 5-ethylidene-2-norbornene; 5-methoxycarbonyl-2-norbornene, 5-methyl-5-methoxycarbonyl Norbornenes having an alkoxycarbonyl group such as -2-norbornene; norbornenes having a cyano group such as 5-cyano-2-norbornene; 5-phenyl-2-norbornene, 5-phenyl-5-methyl-2-norbornene, etc.
  • Norbornenes having an aryl group of: octalin; 6-D Examples include octalin having an alkyl group such as chill
  • bicyclic olefins can be used alone or in combination of two or more.
  • norbornenes such as norbornene and norbornene having an alkyl group (C 1-4 alkyl group such as methyl group and ethyl group) are preferable.
  • the cyclic olefin may contain a bicyclic olefin, and may further contain a monocyclic olefin and / or a polycyclic olefin having three or more rings.
  • monocyclic olefins include cyclic C 4-12 cycloolefins such as cyclobutene, cyclopentene, cycloheptene and cyclooctene.
  • polycyclic olefins examples include dicyclopentadiene; 2,3-dihydrodicyclopentadiene, methanooctahydrofluorene, dimethanooctahydronaphthalene, dimethanocyclopentadienonaphthalene, methanooctahydrocyclopentadienonaphthalene and the like Derivatives of 6-ethyl-octahydronaphthalene etc .; adducts of cyclopentadiene with tetrahydroindene etc., 3- to 4-mer of cyclopentadiene etc.
  • bicyclic olefins are contained as cyclic olefins, it may be because bicyclic olefins (particularly, the above-mentioned norbornenes such as norbornene) have a suitable bulk, or in a specific ratio to chain olefins When combined and crosslinked, a novel polymer is obtained which has properties (i.e., properties compatible with low temperature softening, heat resistance and transparency) which can not be achieved by the conventional polymers.
  • the proportion of bicyclic olefin may be 10 mol% or more, for example, 30 mol% or more, preferably 50 mol% or more, and more preferably 80 mol% or more with respect to the whole cyclic olefin. In particular, it may be 90 mol% or more) and may be a bicyclic olefin alone (100 mol%).
  • the proportion of bicyclic olefins is small and the proportion of polycyclic olefins having three or more rings (particularly, polycyclic olefins having four or more rings) is large, the composition becomes rigid and the low temperature softening property and the heat resistance can not be compatible.
  • the proportion of the bicyclic olefin is small and the proportion of the monocyclic olefin is large, the low temperature softening property and the heat resistance can not be compatible.
  • a chain olefin (especially an ⁇ -chain C 2-4 olefin such as ethylene) and a cyclic olefin (especially norbornene etc.) from the viewpoint of achieving both transparency and flexibility in the chain olefin-cyclic olefin copolymer
  • the ratio (molar ratio) with respect to (polycyclic olefin) of (1) is that the ratio of cyclic olefin is more than 15 mol% and 40 mol% or less with respect to the total of the chain olefin and the cyclic olefin.
  • the balance between the flexibility and the heat resistance is excellent, and the generation of haze (particularly, internal haze) can be suppressed, and the transparency can be improved.
  • copolymerizable monomers include, for example, vinyl ester monomers (eg, vinyl acetate, vinyl propionate, etc.); diene monomers (eg, butadiene, isoprene, etc.); (meth) acrylics Monomers [for example, (meth) acrylic acid or derivatives thereof ((meth) acrylic acid ester etc.) and the like] can be exemplified. These other copolymerizable monomers may be used alone or in combination of two or more. The content of these other copolymerizable monomers is, for example, 5 mol% or less, preferably 1 mol% or less, relative to the copolymer.
  • the linear olefin-cyclic olefin copolymer may be a resin obtained by addition polymerization, or may be a resin obtained by ring opening polymerization (ring opening metathesis polymerization, etc.).
  • the polymer obtained by the ring-opening metathesis polymerization may be a hydrogenated resin.
  • the polymerization method of the linear olefin-cyclic olefin copolymer may be a conventional method, for example, ring-opening metathesis polymerization using a metathesis polymerization catalyst, addition polymerization using a Ziegler-type catalyst, addition polymerization using a metallocene-based catalyst (usually And ring opening metathesis polymerization) using a metathesis polymerization catalyst.
  • the linear olefin-cyclic olefin copolymer is amorphous, and the degree of crystallinity is 0 to 3%, preferably 0 to 1%, more preferably 0 to 0.5% (particularly 0 to 0.1%). It is an extent.
  • the copolymer since the copolymer is amorphous, it is excellent in transparency (light guiding property), and the generation of haze in the crosslinked product can be suppressed.
  • a crosslinked product in which cyclic olefins (particularly norbornenes) and linear olefins are combined in a predetermined ratio has a crystallinity of about 0% (eg, 0.5% or less, preferably 0.1% or less, and further, Preferably, it is amorphous at 0%) and exhibits excellent transparency since almost no internal haze is observed.
  • the cross-linked product of the present invention is non-crystalline having a crystallinity of approximately 0% as described above, when the crystallinity is measured by the following measurement method, crystalline portions are obtained by the method of setting the baseline. In some cases,
  • the crystallinity degree can be calculated by performing fitting of a crystalline portion (peak) and an amorphous portion (halo) using an X-ray diffraction method and substituting each integrated intensity into the following equation.
  • X represents the crystalline scattering integral intensity (scattering integral intensity derived from the crystalline portion)
  • Y represents the amorphous scattering integral intensity (scattering integral intensity derived from the amorphous portion).
  • the glass transition temperature (Tg) of the linear olefin-cyclic olefin copolymer (before crosslinking) can be selected from the range of about 10 to 100 ° C., but it is preferably 20 to 80 ° C. from the viewpoint of being able to impart appropriate flexibility.
  • the temperature is about 25 to 55 ° C., more preferably about 25 to 75 ° C. (particularly about 30 to 45 ° C.).
  • the glass transition temperature is, for example, 15 by combining cyclic olefins (especially norbornenes) and chain olefins in the above proportion, from the viewpoint of achieving a high degree of compatibility between flexibility (especially low temperature softening) and heat resistance.
  • the temperature is about 50 to 50 ° C.
  • the number average molecular weight of the linear olefin-cyclic olefin copolymer is, for example, about 1000 to 150000, preferably about 5000 to 120000, and more preferably about 10000 to 100000 (particularly about 20000 to 90000).
  • the glass transition temperature and the melting point can be controlled by adjusting the proportion of the monomer, the substituent of the monomer, the molecular weight of the polymer, and the like.
  • another olefin resin crosslinkable with the cyclic olefin resin may be contained.
  • the crosslinking density can be adjusted to control flexibility and heat resistance.
  • the other olefin resin is not particularly limited as long as it can be crosslinked with the cyclic olefin resin, and a chain olefin resin, a cyclic olefin resin other than the cyclic olefin resin (other cyclic olefin resins) Etc.
  • Examples of the chain olefin resin include polymers containing the chain olefin exemplified in the section of the cyclic olefin resin, in particular, an ⁇ -chain C 2-4 olefin such as ethylene and propylene (particularly ethylene). .
  • Examples of chain-like olefin resins include polyethylene resins, polypropylene resins, and poly (methylpentene-1) resins. These linear olefin resins can be used alone or in combination of two or more. Among these linear olefin resins, polyethylene resins such as low, medium or high density polyethylene and linear low density polyethylene are preferable.
  • the ratio of cyclic olefin can use cyclic olefin resin which exceeds 40 mol% with respect to the sum total of linear olefin and cyclic olefin.
  • the ratio (molar ratio) of the chain olefin to the cyclic olefin is, for example, about 50/50 to 0/100, preferably about 40/60 to 10/90.
  • Other cyclic olefin resins can also be used alone or in combination of two or more. Among these other cyclic olefin resins, a norbornene-ethylene copolymer having a ratio of norbornene to ethylene in the above range is preferable.
  • the glass transition temperature of the other olefin resin can be selected from the range of about -150 ° C. to 200 ° C. according to the type of the olefin resin, and in order to adjust the glass transition temperature of the cyclic olefin resin, cyclic olefin resin Other cyclic olefin resins having a glass transition temperature higher than that of the resin (for example, a glass transition temperature exceeding 100 ° C., about 120 to 200 ° C.), and polyethylene resins having a glass transition temperature lower than the cyclic olefin resin (for example, A glass transition temperature of less than 10 ° C., for example, about ⁇ 110 to 0 ° C., preferably about ⁇ 80 to ⁇ 5 ° C., and more preferably about ⁇ 50 to about ⁇ 10 ° C. may be used.
  • the number average molecular weight of the other olefin resin is, for example, about 5,000 to 300,000, preferably about 10,000 to 200,000, and more preferably about 15,000 to 150,000.
  • the crosslinked body of the present invention is obtained by crosslinking the cyclic olefin resin, and has moderate flexibility and high heat resistance.
  • a soft resin has a low glass transition temperature and is flexible but does not have sufficient heat resistance. That is, in the resin, flexibility (especially low temperature softening) and heat resistance are in a trade-off relationship, and it was extremely difficult to establish both simultaneously.
  • the present invention is characterized in that appropriate flexibility and heat resistance are made compatible by crosslinking a specific cyclic olefin resin having a cyclic olefin proportion appropriately adjusted with an electron beam or the like. Do.
  • the glass transition temperature of the crosslinked product can be selected from the range of about 10 to 100 ° C., for example, about 15 to 90 ° C., preferably 20 to 80 ° C., and more preferably about 25 to 75 ° C. (especially 25 to 50 ° C.).
  • the rise in the glass transition temperature is small even after crosslinking, and the temperature difference with the glass transition temperature before crosslinking may be 50 ° C. or less, for example, 0 to 40 ° C., preferably 0 to 30. C., more preferably 0 to 20.degree. C. (particularly 0 to 10.degree. C.) and maintaining high flexibility even after crosslinking.
  • the glass transition temperature at which low temperature softening property can be exhibited can be adjusted, and the glass transition temperature is 25 to 55 ° C., for example.
  • the temperature may preferably be about 30 to 50 ° C., more preferably about 30 to 45 ° C. (particularly about 30 to 40 ° C.).
  • the crosslinked product may have a breaking elongation of about 10% or more, for example, 50 to 1000%, preferably 80 to 500% (eg, 80 to 500%) in a tensile test (film with a thickness of 100 ⁇ m) according to JIS K7127. 100 to 500%), more preferably about 100 to 400% (especially 250 to 350%). Furthermore, since the crosslinked body of the present invention exhibits elastic deformability, it is preferable that the tensile test does not show a yield point.
  • the heat resistance of the crosslinked product can be indicated by the linear thermal expansion coefficient at 140 to 150.degree.
  • the linear thermal expansion coefficient at 140 to 150 ° C. may be 2000 ppm / ° C. or less (eg, 1 to 2000 ppm / ° C.), for example, 5 to 1000 ppm / ° C., preferably 10 to 800 ppm / ° C. More preferably, it is about 50 to 500 ppm / ° C. (particularly about 100 to 400 ppm / ° C.).
  • the crosslinked product does not melt even at a high temperature of 140 to 150 ° C., exhibits a suitable linear thermal expansion coefficient, and maintains excellent heat resistance.
  • the crosslinked product of the present invention is suitably crosslinked in order to achieve both heat resistance and flexibility (especially low temperature softening).
  • the degree of crosslinking in the crosslinked product can be indicated by the gel fraction measured by a method of refluxing with toluene for 3 hours.
  • the gel fraction of the crosslinked product may be, for example, 5% by weight or more, and for example, 10 to 99% by weight (eg, 30 to 98% by weight), preferably 50 to 97% by weight, more preferably 80 to It may be about 95% by weight (particularly 85 to 93% by weight).
  • the gel fraction can be measured by the measurement method described in the examples.
  • the crosslink density can be controlled to the irradiation conditions of electron beam and radiation, but by adjusting the proportion of the cyclic olefin to a specific range (in particular, the proportion of the cyclic olefin and the chain olefin is the above
  • the gel fraction can be adjusted to 70% by weight or more, preferably 80% by weight or more (particularly 85% by weight or more).
  • the crosslink density of the crosslinker is increased, and the heat resistance and the durability are improved, but the flexibility is maintained at an appropriate level probably because the proportion of the cyclic olefin is appropriately adjusted.
  • the crosslinked product of the present invention (in particular, a crosslinked product of a copolymer in which a cyclic olefin and a chain olefin are combined in the above ratio) has a storage elastic modulus of 100 to 4000 MPa, preferably 500 to 3000 MPa at a temperature of 25 ° C. And more preferably about 1000 to 2000 MPa (eg, about 1200 to 1800 MPa).
  • the storage elastic modulus at a temperature of 50 ° C. is about 5 to 500 MPa, preferably 10 to 300 MPa (eg, 20 to 280 MPa), and more preferably about 30 to 250 MPa (eg, 50 to 220 MPa).
  • the storage elastic modulus at 80 ° C. is “1”, the storage elastic modulus at 25 ° C. is, for example, 0.05 ⁇ 10 3 to 10 ⁇ 10 3 with respect to the storage elastic modulus at 80 ° C.
  • the storage modulus of the crosslinked product can be measured by the method described in the examples.
  • the crosslinked product of the present invention (in particular, a crosslinked product of a copolymer in which a cyclic olefin and a chain olefin are combined in the above ratio) has a large molecular weight between crosslinking points, for example, 8,000 to 30,000, preferably 9,000 to 25,000. (For example, 9500 to 20000), and more preferably about 10000 to 18000 (for example, 10000 to 16000).
  • a large inter-crosslink molecular weight indicates that the crosslinker has a loosely crosslinked structure with a low crosslink density.
  • the crosslinked body behaves like a thermoplastic resin and flows when heated, the flow and deformation of the crosslinked body are regulated by crosslinking when the temperature is higher than a predetermined temperature, and unlike the thermoplastic resin, it has heat resistance. Therefore, when the molecular weight between crosslinking points is too small, the flowability decreases, and when the molecular weight between crosslinking points is too large, the heat resistance to flow deformation decreases.
  • the molecular weight between crosslinking points of the crosslinked body can be determined by a conventional method, for example, a typical method using the rubber elasticity theory. In this method, the molecular weight between crosslinking points can be calculated by the following equation.
  • G ( ⁇ RT) / M X (Wherein G is shear modulus (unit Pa), ⁇ is density (g / m 3 ), R is gas constant (8.314 J / K / mol), T is absolute temperature (K), and M X is crosslinking Indicates point-to-point molecular weight (g / mol)
  • the shear modulus G can be measured by the storage modulus in a rubbery flat area (for example, 140 ° C., angular frequency 0.1 Hz) (the method of measuring the storage modulus is the same as above).
  • the density ⁇ can be measured by the Archimedes method, and the density of the polymer described in the book “Polymer Engineering and Science, MID-JULY, 1990, Vol. 30, No. 13, P753-761” can also be referred to.
  • the crosslinked product of the present invention is also excellent in transparency, and the haze (clouding value) may be, for example, 5% or less, preferably 2% or less (for example, 0) in a method according to JIS K7105. And more preferably about 0.1 to 1.5% (particularly 0.2 to 1%).
  • the proportion of the cyclic olefin in the cyclic olefin resin is appropriately adjusted, both the appropriate flexibility and high heat resistance can be achieved as described above, and the cyclic olefin resin is amorphous.
  • the transparency or the light guiding property is also high, and the generation of haze can be suppressed.
  • haze can be measured at a thickness of about 100 ⁇ m.
  • the haze includes external haze caused by asperities and the like on the surface of the measurement sample (film) and internal haze caused by microcrystals present in the film.
  • there is almost no internal haze and may show a haze of about 2% or less depending on the external haze of the film surface, but since there is almost no internal haze, the haze does not increase even when the thickness is increased.
  • the total light transmittance of the crosslinked product of the present invention is, for example, 80% or more, preferably 80 to 99%, more preferably 85 to 98% (particularly 90 to 95%) in a method (thickness 100 ⁇ m) according to JIS K7105. ) May be.
  • the ratio of light intensity at 454 nm to light intensity at 605 nm (454 nm / 605 nm) may be 3.0 or more, for example 3.0 to 3.7, preferably 3.1 to 3.7, More preferably, it is about 3.2 to 3.7.
  • the form of the crosslinked product of the present invention is not particularly limited, but when it is in the form of a film, the thickness of the film is about 20 to 400 ⁇ m, preferably 30 to 350 ⁇ m, more preferably 40 to 300 ⁇ m (eg 50 to 200 ⁇ m). It may be about 100 ⁇ m or more (eg, 100 to 400 ⁇ m), preferably about 150 ⁇ m or more (eg, 200 to 350 ⁇ m).
  • the cross-linked product of the present invention may be a conventional additive such as a cross-linking agent, a cross-linking accelerator, a cross-linking aid, an antioxidant, a heat stabilizer, a light stabilizer, a stabilizer such as a UV absorber, a plasticizer, You may contain the inhibitor, a flame retardant, etc.
  • a cross-linking agent such as a cross-linking agent, a cross-linking accelerator, a cross-linking aid, an antioxidant, a heat stabilizer, a light stabilizer, a stabilizer such as a UV absorber, a plasticizer, You may contain the inhibitor, a flame retardant, etc.
  • the crosslinked body of the present invention may be substantially free of a resin having a crosslinkable group (eg, a group having an ethylenically unsaturated bond, etc.). Furthermore, the crosslinker of the present invention may be substantially free of a crosslinker, a crosslinker, and a crosslinker in order to crosslink using an electron beam.
  • a crosslinkable group eg, a group having an ethylenically unsaturated bond, etc.
  • the crosslinked body of the present invention is obtained by crosslinking the cyclic olefin resin, and the method of crosslinking is not particularly limited, and active rays such as ultraviolet rays, beta ( ⁇ ) rays, gamma ( ⁇ ) rays, X rays, etc. Radiation (especially gamma rays) may be used, but it is easy to control and produced by crosslinking with high energy rays (electron beam or gamma rays) from the viewpoint of easy preparation of a novel crosslinked body having the above characteristics. It is also good.
  • the cyclic olefin resin can be crosslinked at normal temperature (for example, a temperature of about 10 to 30 ° C.) without heating, and the crosslinking density can also be improved.
  • a method of irradiating an electron beam for example, a method of irradiating an electron beam by an exposure source such as an electron beam irradiation device can be used.
  • the irradiation dose (dose) varies depending on the thickness of the cyclic olefin resin, but can be selected, for example, from the range of about 10 to 500 kGy (gray) (for example, 100 to 400 kGy), but the crosslink density is increased to improve heat resistance. From the point of view, it may be 200 kGy or more, for example, about 200 to 500 kGy, preferably about 220 to 450 kGy, and more preferably about 230 to 430 kGy (particularly about 250 to 400 kGy).
  • the acceleration voltage can be selected from the range of about 10 to 1000 kV (for example, 100 to 500 kV), but may be 150 kV or more from the viewpoint of improving heat resistance, for example, 160 to 400 kV, preferably 170 to 300 kV, More preferably, it may be about 180 to 250 kV.
  • a method of irradiating a gamma ray for example, a method of irradiating a gamma ray by an exposure source such as a gamma ray irradiation device can be used.
  • the irradiation dose (dose) varies depending on the thickness of the cyclic olefin resin, but can be selected, for example, from the range of about 10 to 500 kGy (gray) (for example, 100 to 400 kGy), but the crosslink density is increased to improve heat resistance.
  • it may be 200 kGy or more, for example, about 200 to 500 kGy, preferably about 220 to 450 kGy, and more preferably about 230 to 430 kGy (particularly about 250 to 400 kGy).
  • irradiation with an electron beam or radiation may be performed in air, and may be performed in an inert gas (for example, nitrogen gas, argon gas, helium gas, etc.) atmosphere if necessary.
  • an inert gas for example, nitrogen gas, argon gas, helium gas, etc.
  • the crosslinked product of the present invention can be obtained by using a conventional molding method for cyclic olefin resins, such as injection molding, extrusion molding, blow molding, vacuum molding, profile molding, injection pressing, press molding, gas injection molding
  • a molded product having a desired shape can be obtained by crosslinking after forming into a shape (film or sheet, various three-dimensional shapes, etc.) according to the application by a method, compression molding, transfer molding, etc. .
  • the test piece obtained in the example was cut into a strip having a thickness of 200 ⁇ m, a width of 2 cm, and a length of 8 cm.
  • White light is made incident from the cut-out end of the strip by a white LED (manufactured by Nichia Corporation, trade name: NSPB 500S), and the light is transmitted through the film (optical path length: 8 cm), and from the other end
  • the visible light spectrum of the emitted light was measured using a spectrophotometer (manufactured by Hamamatsu Photonics Co., Ltd., multi-channel spectrometer: PMA-11). Moreover, the hue of the emitted light was confirmed visually.
  • the white LED used this time had a peak derived from the blue LED at 454 nm, and a broad spectrum of the fluorescent material was observed at a long wavelength of 500 nm or later.
  • Light intensity ratio light intensity at 454 nm / light intensity at 605 nm.
  • Linear expansion coefficient The test pieces obtained in the examples were subjected to linear expansion at 140 ° C. to 150 ° C. using a thermomechanical analyzer (EXSTAR TMA / SS 7100 manufactured by SII Nano Technology Inc.) in accordance with JIS K7197. The coefficients were measured.
  • the density ⁇ (g / m 3 ) was 1.02.
  • the polymer solution was poured into 15 liters of methanol to precipitate a polymer.
  • the polymer was separated by filtration and dried to obtain cyclic olefin resin A (ethylene-norbornene copolymer A).
  • the yield was 3.12 kg and the polymerization activity was 46 kg / g Zr (yield per 1 g of zirconium).
  • EB irradiation apparatus Icon manufactured by Iwasaki Electric Co., Ltd. “TYPE
  • Example 1 Instead of cyclic olefin resin A, cyclic olefin resin (trade name “TOPAS9903”, manufactured by Topas Advanced Polymers GmbH, number average molecular weight 69000, glass transition temperature 33 ° C., norbornene content 20 mol%, crystallinity 0%)
  • a film-shaped test piece was produced in the same manner as in Comparative Example 1 except that the electron beam was irradiated at an accelerating voltage of 200 kV and a dose of 250 kGy. The light emitted from the test piece was white because it was an amorphous polymer.
  • the storage elastic modulus at 25 ° C. was 1480 MPa
  • the storage elastic modulus at 80 ° C. was 2.99 MPa
  • the molecular weight between crosslinking points was 13,000.
  • Example 2 A film-shaped test piece was produced in the same manner as in Example 1 except that the electron beam was irradiated under the conditions of an accelerating voltage of 200 kV and a dose of 350 kGy. The light emitted from the test piece was white because it was an amorphous polymer. Furthermore, the storage elastic modulus at a temperature of 25 ° C. was 1520 MPa, the storage elastic modulus at a temperature of 80 ° C. was 3.04 MPa, and the molecular weight between crosslinking points was 11,000.
  • Example 3 A film-shaped test piece was produced in the same manner as in Example 1 except that the electron beam was irradiated under the conditions of an accelerating voltage of 200 kV and a dose of 150 kGy. The light emitted from the test piece was white because it was an amorphous polymer. Furthermore, the storage elastic modulus at 25 ° C. was 1510 MPa, the storage elastic modulus at 80 ° C. was 2.98 MPa, and the molecular weight between crosslinking points was 15000.
  • Example 4 Instead of cyclic olefin resin A, cyclic olefin resin (trade name "TOPAS9506” manufactured by Topas Advanced Polymers GmbH, number average molecular weight 66000, glass transition temperature 70 ° C, norbornene content 32 mol%, crystallinity 0%) A film-like test piece was produced in the same manner as in Comparative Example 1 except for using. The light emitted from the test piece was white because it was an amorphous polymer.
  • TOPAS9506 manufactured by Topas Advanced Polymers GmbH
  • Example 5 The same as Example 1, except that irradiation is performed at a dose of 350 kGy using gamma ray irradiation apparatus (Nordion "JS10000HD", source cobalt -60, under atmosphere, normal temperature (in-chamber temperature 40 ° C) instead of electron beam irradiation.
  • gamma ray irradiation apparatus Nedion "JS10000HD", source cobalt -60, under atmosphere, normal temperature (in-chamber temperature 40 ° C) instead of electron beam irradiation.
  • JS10000HD gamma ray irradiation apparatus
  • Comparative example 2 Instead of cyclic olefin resin A, cyclic olefin resin (trade name "TOPAS 8007" manufactured by Topas Advanced Polymers GmbH, number average molecular weight 51000, glass transition temperature 80 ° C., norbornene content 42 mol%, crystallinity 0%) A film-like test piece was produced in the same manner as in Comparative Example 1 except for using. The light emitted from the test piece was white because it was an amorphous polymer.
  • TOPAS 8007 manufactured by Topas Advanced Polymers GmbH
  • Comparative example 3 Accelerated using cyclic olefin resin (trade name "TOPAS6013" manufactured by Topas Advanced Polymers GmbH, glass transition temperature 130 ° C, norbornene content 50 mol%, crystallinity 0%) instead of cyclic olefin resin
  • a film-shaped test piece was produced in the same manner as in Comparative Example 1 except that the electron beam was irradiated at a voltage of 200 kV and a dose of 250 kGy. The light emitted from the test piece was white because it was an amorphous polymer.
  • the crosslinked product of the present invention is high in transparency and excellent in mechanical properties.
  • the crosslinked product of the present invention can be used for molding materials in various fields, such as optical materials, electric and electronic materials, electric insulating materials, automobile parts materials, medical materials, construction and civil engineering materials and the like. Furthermore, since the crosslinked body of the present invention can simultaneously achieve both heat resistance and flexibility and is excellent in transparency, various electric / electronic devices or optical devices, for example, switch members such as portable devices, home appliances, and control devices It can be used as Specifically, members such as mobile phones, gaming machines, mobile devices, touch panels, car navigation systems, watches, calculators, televisions, personal computers (for example, key top sheets, key mat sheets, light guide sheets, reflective sheets, OCA It is also useful as a tape (such as high transparency adhesive transfer tape or coreless tape for optics).
  • switch members such as portable devices, home appliances, and control devices
  • members such as mobile phones, gaming machines, mobile devices, touch panels, car navigation systems, watches, calculators, televisions, personal computers (for example, key top sheets, key mat sheets, light guide sheets, reflective sheets, OCA
  • the cross-linked body of the present invention is a material having a novel property of achieving both high transparency, low temperature softening property and heat resistance, and an optical sealing material (for example, OCA tape, organic electroluminescence (EL) sealing) Especially suitable for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

A crosslinked product of a cyclic olefin resin can be prepared by crosslinking a copolymer of a linear olefin and a cyclic olefin with an electron beam or the like. The cyclic olefin comprises a bicyclic olefin. The content ratio of the cyclic olefin is more than 15 mol% and up to 40 mol% relative to the total amount of the linear olefin and the cyclic olefin. The copolymer of the linear olefin and the cyclic olefin has a glass transition temperature of 20-80ºC or has a degree of crystallinity of 1% or less. The crosslinked product may have a haze value of 2% or less. The crosslinked product according to the present invention has both heat resistance and flexibility while keeping a low haze value and high transparency.

Description

環状オレフィン系樹脂の架橋体及びその製造方法Crosslinked product of cyclic olefin resin and method for producing the same
 本発明は、透明性と耐熱性と柔軟性とを併せ持ち、電気・電子機器又は光学機器などの各種分野に利用できる環状オレフィン系樹脂の架橋体及びその製造方法に関する。 The present invention relates to a crosslinked product of cyclic olefin resin which has transparency, heat resistance and flexibility and can be used in various fields such as electric and electronic devices or optical devices, and a method for producing the same.
 環状オレフィン系樹脂は、透明性、耐薬品性、防湿性、機械的特性などに優れるため、レンズや光記録材料などの光学部品、プリント基板やコネクターなどの電気又は電子用部品、薬品用容器や注射器などの医薬又は医療機器用品、ビーカーや光学用セルなどの実験器具、自動車部品などの各種分野に利用されている。しかし、利用分野が拡がる一方で、環状オレフィン系樹脂は、柔軟性が低く、成形性が充分でない上に、ガラス転移温度は高いものの、軟化温度が低いという特徴も有するため、用途に応じて種々の改良が検討されている。 Since cyclic olefin resins are excellent in transparency, chemical resistance, moisture resistance, mechanical properties, etc., optical parts such as lenses and optical recording materials, parts for electricity or electronics such as printed circuit boards and connectors, containers for medicines and the like It is used in various fields such as medical or medical equipment supplies such as syringes, experimental instruments such as beakers and optical cells, and automobile parts. However, while the field of application is expanded, cyclic olefin resins have characteristics of low flexibility, insufficient moldability, high glass transition temperature, but low softening temperature, so various kinds of them depending on the application. The improvement of is being considered.
 例えば、プリント配線板の金属層と密着させるための樹脂組成物として、特開2005-47991号公報(特許文献1)には、環状オレフィン系樹脂100重量部に対して、有機過酸化物0.3~2.5重量部、架橋助剤7~30重量部及び無機フィラー5~100重量部を分散させた架橋性樹脂組成物が開示されている。この文献では、前記架橋性樹脂組成物を加熱処理して架橋することにより、めっき密着性及びはんだ耐熱性が高い架橋成形品が得られる。 For example, as a resin composition for adhering to a metal layer of a printed wiring board, JP-A-2005-47991 (Patent Document 1) discloses that an organic peroxide of 0. A crosslinkable resin composition is disclosed in which 3 to 2.5 parts by weight, 7 to 30 parts by weight of a coagent, and 5 to 100 parts by weight of an inorganic filler are dispersed. In this document, a crosslinked molded article having high plating adhesion and solder heat resistance can be obtained by heating the crosslinkable resin composition to crosslink it.
 また、光学レンズや光学フィルムなどの光学材料や医療材料として、特開2006-274164号公報(特許文献2)には、環状オレフィン系重合体からなる成形体に、加速電圧50kV以上、照射線量50~1000kGy、照射部の表面温度(Tg-50)~(Tg+70)℃で放射線を照射する方法が開示されている。この文献では、環状オレフィン系重合体に放射線を照射することにより分子量分布を拡げて成形性を向上させることが記載されている。また、前記環状オレフィン系重合体は、環状オレフィン単位を10モル%以上含む重合体であり、100℃以上のガラス転移温度を有することが好ましいと記載されている。実施例では、ガラス転移温度58~140℃の環状オレフィン系重合体に対して、照射部の表面温度75~180℃でβ線を照射して変形のない成形体を製造している。なお、この文献には、架橋については記載されていない。 Further, as an optical material or medical material such as an optical lens or an optical film, JP-A-2006-274164 (Patent Document 2) discloses that a molded product made of a cyclic olefin polymer has an acceleration voltage of 50 kV or more and an irradiation dose of 50. A method is disclosed in which radiation is irradiated at a surface temperature (Tg-50) to (Tg + 70) ° C. of an irradiated part of ̃1000 kGy. This document describes that the cyclic olefin polymer is irradiated with radiation to broaden the molecular weight distribution and improve the formability. The cyclic olefin polymer is a polymer containing 10 mol% or more of cyclic olefin units, and is described as preferably having a glass transition temperature of 100 ° C. or more. In the examples, a cyclic olefin polymer having a glass transition temperature of 58 to 140 ° C. is irradiated with β-rays at a surface temperature of 75 to 180 ° C. of the irradiated portion to produce a molded body without deformation. Incidentally, this document does not describe crosslinking.
 しかし、これらの成形体では、柔軟性が低いため、柔軟性を要求される用途には利用できない。さらに、この方法ではβ線などの放射線を高温下で照射しているが、通常の放射線照射装置には加温装置が付属していないため、生産性が低い。特に、架橋密度が高く、耐熱性や耐久性の高い架橋体の製造は困難である。また、特許文献2の実施例2では、四環式オレフィンで形成され、かつガラス転移温度が58℃である環状オレフィン系重合体(APEL8008T)をβ線で照射したシートが製造されているが、このシートでも、透明性と耐熱性と適度な柔軟性とを両立できない。特に、透明性を要求される光学素子(特に電子機器など)の封止材料などでは、光学素子保護の観点から高温での加熱が困難であるため、30~80℃程度で軟化可能な適度な柔軟性(低温溶融性又は軟化性)が要求されるが、このシートでも、このような柔軟性は充足していない。また、四環式オレフィンは、嵩高い構造であるため、低温での適度な柔軟性(低温溶融性又は軟化性)が要求される場合、エチレン含量を多くする必要があるが、エチレン含量を多くすると、不可避的にエチレン連鎖部が結晶性を示し、ヘーズが増加し、光学用途には適さなくなる。一方、ヘーズを低減するためにはガラス転移温度を高くする必要があるものの、低温での適度な柔軟性(低温溶融性又は軟化性)を失ってしまう。さらに、ガラス転移温度を低下させると、必然的に耐熱性も低下するため、両者はトレードオフの関係にあり、これらの特性の両立が困難であることが当業者の技術常識であった。 However, these molded articles can not be used for applications requiring flexibility because of their low flexibility. Furthermore, in this method, radiation such as beta rays is irradiated at high temperature, but since a heating device is not attached to a normal radiation irradiation device, productivity is low. In particular, it is difficult to produce a crosslinked product having a high crosslinking density and high heat resistance and durability. Further, in Example 2 of Patent Document 2, a sheet is produced in which a cyclic olefin polymer (APEL 8008T) formed of a tetracyclic olefin and having a glass transition temperature of 58 ° C. is irradiated with β-rays, Even with this sheet, transparency, heat resistance and appropriate flexibility can not be simultaneously achieved. In particular, since it is difficult to heat at a high temperature from the viewpoint of optical element protection in the case of a sealing material of an optical element (especially an electronic device etc.) which is required to be transparent, it is appropriate to soften at about 30 to 80 ° C. Although flexibility (low-temperature melting or softening) is required, even this sheet does not satisfy such flexibility. In addition, because tetracyclic olefins have a bulky structure, it is necessary to increase the ethylene content if appropriate flexibility (low-temperature melting or softening) at low temperatures is required, but the ethylene content is high As a result, ethylene chains are inevitably crystallized, haze is increased, and it is not suitable for optical applications. On the other hand, although it is necessary to increase the glass transition temperature in order to reduce haze, it loses moderate flexibility (low-temperature melting property or softening property) at low temperature. Furthermore, when the glass transition temperature is lowered, the heat resistance is also inevitably lowered, and thus both are in a trade-off relationship, and it has been common technical knowledge of those skilled in the art that coexistence of these characteristics is difficult.
 また、特開平11-340590号公報(特許文献3)には、熱可塑性ノルボルネン系樹脂100重量部に対して、このノルボルネン系樹脂との放射線架橋性に優れた樹脂5~400重量部及び放射線架橋助剤0.1~20重量部を含む樹脂組成物を成形したシートに導電性金属箔を有し、放射線架橋構造を有するプリント配線板用積層板が開示されている。この文献では、熱可塑性ノルボルネン系樹脂をポリブタジエンなどの放射線架橋性樹脂と架橋させることにより、高いはんだ耐熱性を付与し、金属箔と緊密に一体化させている。 Further, in JP-A-11-340590 (Patent Document 3), 5 to 400 parts by weight of a resin excellent in radiation crosslinkability with the norbornene-based resin and 100% by weight of a thermoplastic norbornene-based resin There is disclosed a laminate for a printed wiring board having a radiation cross-linked structure, having a conductive metal foil in a sheet formed of a resin composition containing 0.1 to 20 parts by weight of an auxiliary. In this document, high solder heat resistance is imparted by crosslinking a thermoplastic norbornene resin with a radiation crosslinkable resin such as polybutadiene, and the resin is tightly integrated with a metal foil.
 しかし、この樹脂組成物では、放射線架橋性樹脂が必須であり、ノルボルネン系樹脂の特性が低下する。さらに、放射線の照射により組成物が変形する。 However, in this resin composition, a radiation crosslinkable resin is essential, and the characteristics of the norbornene resin are degraded. Furthermore, the composition is deformed by the irradiation of radiation.
 一方、フィルム、シート、容器、包装材料、自動車部品、電気・電子部品、建築材料、土木材料などの様々な分野で使用できる材料として、特許第3274702号公報(特許文献4)には、ガラス転移温度が30℃以下である環状オレフィン系共重合体を含有する層と、合成高分子、天然高分子、金属、金属酸化物及びこれらの混合物から選ばれる少なくとも一種の材料からなる層又は成形体とからなる多層材料が提案されている。この文献の実施例では、結晶化度1%、ガラス転移温度2℃又は3℃、融点81℃又は73℃の環状オレフィン共重合体フィルムと、LLDPEシート、ナイロン6シート、ポリイミドシート又はアルミニウム板とが熱ラミネートされている。 On the other hand, as a material that can be used in various fields such as films, sheets, containers, packaging materials, automobile parts, electric and electronic parts, building materials, civil engineering materials, etc., Japanese Patent No. 3274702 (patent document 4) A layer containing a cyclic olefin-based copolymer having a temperature of 30 ° C. or less, a layer or a molded article comprising at least one material selected from synthetic polymers, natural polymers, metals, metal oxides and mixtures thereof A multilayer material consisting of is proposed. In the examples of this document, cyclic olefin copolymer films having a crystallinity of 1%, a glass transition temperature of 2 ° C. or 3 ° C., and a melting point of 81 ° C. or 73 ° C., LLDPE sheet, nylon 6 sheet, polyimide sheet or aluminum plate Is heat laminated.
 しかし、ガラス転移温度の低い環状オレフィン系共重合体は、耐熱性が不足し、例えば、フィルム成形後の最終製品の使用工程で高温に曝されれば、容易に変形が生じる。 However, cyclic olefin copolymers having a low glass transition temperature lack heat resistance and deform easily, for example, when exposed to high temperatures in the process of using the final product after film forming.
 さらに、特開平6-345885号公報(特許文献5)には、α-オレフィンと環状オレフィンとを付加重合してなる共重合体[a]、環状オレフィン類を開環重合してなる重合体[b]、その開環共重合体[c]、並びにこれらの水素添加物[a’]、[b’]及び[c’]からなる群から選ばれる、ガラス転移温度(Tg)が50℃以上である一以上の環状オレフィン系樹脂を、電子線又は放射線によって処理して得られる環状オレフィン系樹脂架橋体が開示されている。この文献には、α-オレフィンと環状オレフィンとのモル%は、80:20~99.9:0.1であると記載されている。また、ガラス転移温度は-30~45℃(特に-30~40℃)が好ましく、結晶化度は0~40%(特に0~25%)が好ましいと記載されている。さらに、実施例では、ノルボルネン含量10.1モル%、ガラス転移温度4℃、結晶化度2.0%のエチレン-ノルボルネン共重合体、又はノルボルネン含量5.6モル%、ガラス転移温度1℃、結晶化度4.3%のエチレン-ノルボルネン共重合体を、γ線で照射してシートを製造している。 Furthermore, in JP-A-6-345885 (Patent Document 5), a copolymer [a] formed by addition polymerization of an α-olefin and a cyclic olefin, and a polymer formed by ring-opening polymerization of cyclic olefins [ b), a ring-opened copolymer thereof [c], and a hydrogenated substance thereof [a '], [b'] and [c '] having a glass transition temperature (Tg) of 50 ° C. or higher The cyclic olefin resin crosslinked body obtained by processing the one or more cyclic olefin resin which is these by an electron beam or radiation is disclosed. In this document, the molar percentage of α-olefin and cyclic olefin is described as 80:20 to 99.9: 0.1. The glass transition temperature is preferably −30 to 45 ° C. (especially −30 to 40 ° C.), and the degree of crystallinity is described as 0 to 40% (especially 0 to 25%). Furthermore, in the examples, an ethylene-norbornene copolymer having a norbornene content of 10.1 mol%, a glass transition temperature of 4 ° C., a crystallinity of 2.0%, or a norbornene content of 5.6 mol%, a glass transition temperature of 1 ° C. An ethylene-norbornene copolymer having a crystallinity of 4.3% is irradiated with γ-rays to produce a sheet.
 しかし、このシートは、エチレン鎖が多く結晶性を発現し、透明性が低い。そのため、輸液バッグなどの医療、包装、食品分野での使用を目的としており、透明性は低く、特に、光学素子などの分野で要求される透明性は有していない。さらに、このシートは、前記分野における十分な弾性、柔軟性を付与することを目的としており、弾性が高すぎ、適度な柔軟性を有していない。 However, this sheet has a large amount of ethylene chains and exhibits crystallinity, and has low transparency. Therefore, it is intended for use in medicine, packaging, food fields such as infusion bags, and the transparency is low, and in particular, it does not have the transparency required in the field of optical elements and the like. Furthermore, this sheet is intended to impart sufficient elasticity and flexibility in the above-mentioned field, and the elasticity is too high and does not have appropriate flexibility.
特開2005-47991号公報(請求項1、段落[0066][0106])JP 2005-47991 A (claim 1, paragraph [0066] [0106]) 特開2006-274164号公報(請求項1、段落[0009][0022][0034]、実施例)JP, 2006-274164, A (claim 1, paragraph [0009] [0022] [0034], an example) 特開平11-340590号公報(請求項1、段落[0041])JP-A-11-340590 (claim 1, paragraph [0041]) 特許第3274702号公報(特許請求の範囲、段落[0019]、実施例)Patent No. 3274702 (Claims, paragraph [0019], Example) 特開平6-345885号公報(特許請求の範囲、段落[0001][0005][0066][0069][0086]、実施例)Japanese Patent Application Laid-Open No. 6-345885 (Claims, Paragraphs [0001] [0005] [0066] [0069] [0086], Examples)
 従って、本発明の目的は、ヘーズの低い高度な透明性を保持しながら、耐熱性と柔軟性(特に低温軟化性)とを両立できる環状オレフィン系樹脂の架橋体及びその製造方法を提供することにある。 Therefore, an object of the present invention is to provide a crosslinked product of cyclic olefin resin that can achieve both heat resistance and flexibility (especially low temperature softening property) while maintaining high transparency with low haze, and a method for producing the same. It is in.
 本発明の他の目的は、透明性が高く、耐水性や耐候性(特に耐光性)、耐薬品性などの耐久性(安定性)にも優れた環状オレフィン系樹脂の架橋体及びその製造方法を提供することにある。 Another object of the present invention is a crosslinked product of cyclic olefin resin having high transparency and excellent durability (stability) such as water resistance, weather resistance (especially light resistance) and chemical resistance, and a method for producing the same To provide.
 本発明のさらに他の目的は、防湿性や機械的特性にも優れた環状オレフィン系樹脂の架橋体及びその製造方法を提供することにある。 Still another object of the present invention is to provide a crosslinked product of cyclic olefin resin excellent in moisture resistance and mechanical properties and a method for producing the same.
 本発明の別の目的は、透明性、耐熱性及び柔軟性(特に低温軟化性)に優れた環状オレフィン系樹脂の架橋体を簡便に製造する方法を提供することにある。 Another object of the present invention is to provide a method for easily producing a crosslinked product of a cyclic olefin resin excellent in transparency, heat resistance and flexibility (in particular, low temperature softening property).
 本発明者らは、前記課題を達成するため鋭意検討した結果、特定の鎖状オレフィン-環状オレフィン共重合体を電子線などで架橋することにより、ヘーズの低い高度な透明性を保持しながら、耐熱性と柔軟性とを両立できることを見出し、本発明を完成した。 As a result of intensive studies to achieve the above-mentioned problems, the inventors of the present invention crosslink a specific linear olefin-cyclic olefin copolymer with an electron beam or the like, while maintaining high transparency with low haze. The inventors have found that heat resistance and flexibility can be compatible and complete the present invention.
 すなわち、本発明の架橋体は、鎖状オレフィンと環状オレフィンとを重合成分とする鎖状オレフィン-環状オレフィン共重合体の架橋体であって、前記環状オレフィンが二環式オレフィンを含み、前記環状オレフィンの割合が、前記鎖状オレフィンと前記環状オレフィンとの合計に対して15モル%を超え、40モル%以下であり、かつ前記鎖状オレフィン-環状オレフィン共重合体のガラス転移温度が20~80℃である。 That is, the crosslinked product of the present invention is a crosslinked product of a chain olefin-cyclic olefin copolymer containing a chain olefin and a cyclic olefin as a polymerization component, wherein the cyclic olefin contains a bicyclic olefin, and the cyclic The proportion of the olefin is more than 15 mol% and 40 mol% or less based on the total of the chain olefin and the cyclic olefin, and the glass transition temperature of the chain olefin-cyclic olefin copolymer is 20 to 20 It is 80 ° C.
 本発明には、鎖状オレフィンと環状オレフィンとを重合成分とする鎖状オレフィン-環状オレフィン共重合体の架橋体であって、前記環状オレフィンが二環式オレフィンを含み、前記環状オレフィンの割合が、前記鎖状オレフィンと前記環状オレフィンとの合計に対して15モル%を超え、40モル%以下であり、かつ前記鎖状オレフィン-環状オレフィン共重合体の結晶化度が1%以下である架橋体も含まれる。 In the present invention, a crosslinked product of a chain olefin-cyclic olefin copolymer comprising a chain olefin and a cyclic olefin as a polymerization component, wherein the cyclic olefin contains a bicyclic olefin, and the proportion of the cyclic olefin is And a crosslink having a crystallinity of 15% or less and 40% or less with respect to the total of the chain olefin and the cyclic olefin and having a crystallinity of the chain olefin-cyclic olefin copolymer of 1% or less The body is also included.
 これらの本発明の架橋体において、前記鎖状オレフィン-環状オレフィン共重合体の結晶化度は0.5%以下であってもよい。本発明の架橋体は、JIS K7136に準拠したヘーズが2%以下(特に0.1~1.5%)であってもよい。前記鎖状オレフィン-環状オレフィン共重合体のガラス転移温度は30~50℃程度であってもよい。本発明の架橋体において、前記環状オレフィンはノルボルネン類であり、かつ鎖状オレフィンと環状オレフィンとのモル比は、鎖状オレフィン/環状オレフィン=84/16~75/25程度であってもよい。また、本発明の架橋体は、JIS K7127に準拠した厚み100μmにおける破断伸度が10%以上(特に100~400%)であってもよい。さらに、トルエンを用いて3時間還流させる方法で測定したゲル分率が5重量%以上(特に70重量%以上)であってもよい。本発明の架橋体は、温度25℃での貯蔵弾性率が100~4000MPa、温度80℃での貯蔵弾性率が0.01~10MPa、架橋点間分子量が8000~30000であってもよい。本発明の架橋体は、架橋性基を有する樹脂及び架橋剤を実質的に含有しない架橋体であってもよい。本発明の架橋体は、電子線架橋体であってもよい。本発明の架橋体は、シート状であり、かつ光学素子の封止材料であってもよい。 In the crosslinked product of the present invention, the crystallinity of the linear olefin-cyclic olefin copolymer may be 0.5% or less. The crosslinked product of the present invention may have a haze of 2% or less (in particular, 0.1 to 1.5%) in accordance with JIS K7136. The glass transition temperature of the linear olefin-cyclic olefin copolymer may be about 30 to 50.degree. In the crosslinked product of the present invention, the cyclic olefin may be norbornenes, and the molar ratio of the chain olefin to the cyclic olefin may be about chain olefin / cyclic olefin = 84/16 to 75/25. Further, the crosslinked body of the present invention may have a breaking elongation of 10% or more (in particular, 100 to 400%) at a thickness of 100 μm in accordance with JIS K7127. Furthermore, the gel fraction measured by a method of refluxing with toluene for 3 hours may be 5% by weight or more (particularly 70% by weight or more). The crosslinked product of the present invention may have a storage modulus of 100 to 4000 MPa at a temperature of 25 ° C., a storage modulus of 0.01 to 10 MPa at a temperature of 80 ° C., and a molecular weight between crosslinking points of 8,000 to 30,000. The crosslinked body of the present invention may be a crosslinked body substantially free of a resin having a crosslinkable group and a crosslinking agent. The crosslinked body of the present invention may be an electron beam crosslinked body. The crosslinked body of the present invention is in the form of a sheet and may be a sealing material for an optical element.
 本発明には、鎖状オレフィン-環状オレフィン共重合体を電子線又は放射線で架橋して前記架橋体を製造する方法も含まれる。この方法において、加熱することなく、電子線で架橋してもよく、特に、加速電圧150kV以上及び照射線量200kGy以上の電子線で架橋してもよい。 The present invention also includes a method for producing a crosslinked product by crosslinking a linear olefin-cyclic olefin copolymer with an electron beam or radiation. In this method, crosslinking may be performed with an electron beam without heating, and in particular, may be performed with an accelerating voltage of 150 kV or more and an irradiation dose of 200 kGy or more.
 なお、本明細書において、「柔軟性」又は「適度な柔軟性」とは、ゴムやエラストマーなどの常温又は室温付近で伸張又は変形可能な軟性又は弾性を意味するのではなく、常温又は室温付近では硬質(非弾性)であるものの、比較的低温(例えば、30~80℃、好ましくは40~70℃、さらに好ましくは45~60℃程度)で軟化する特性を意味する。具体的に、「低温軟化性」とは、30~80℃程度の温度で軟化し、軟化後の弾性率が軟化前に比べて100分の1以下になることを意味する。 In the present specification, “flexibility” or “moderate flexibility” does not mean softness or elasticity such as rubber or elastomer which can be expanded or deformed at normal temperature or around room temperature, but normal temperature or around room temperature In the above, it means that it is hard (non-elastic) but softens at a relatively low temperature (eg, about 30 to 80 ° C., preferably about 40 to 70 ° C., more preferably about 45 to 60 ° C.). Specifically, “low temperature softening property” means that the film softens at a temperature of about 30 to 80 ° C., and the elastic modulus after softening becomes 100% or less of that before the softening.
 本発明では、特定の鎖状オレフィン-環状オレフィン共重合体が電子線などで架橋されているため、ヘーズの低い高度な透明性を保持しながら、耐熱性と柔軟性(特に低温軟化性)とを両立できる。さらに、この架橋体は、透明性が高く、耐水性や耐候性(特に耐光性)、耐薬品性などの耐久性にも優れている上に、防湿性や機械的特性にも優れている。また、本発明では、透明性、耐熱性及び柔軟性に優れた環状オレフィン系樹脂の架橋体を簡便に製造できる。 In the present invention, since the specific linear olefin-cyclic olefin copolymer is crosslinked by an electron beam or the like, heat resistance and flexibility (especially low temperature softening) are maintained while maintaining high transparency with low haze. Can be compatible. Furthermore, this crosslinked body is high in transparency, excellent in water resistance, weather resistance (especially light resistance), and durability such as chemical resistance, and also excellent in moisture resistance and mechanical properties. Further, in the present invention, a crosslinked product of cyclic olefin resin excellent in transparency, heat resistance and flexibility can be easily produced.
 本発明の架橋体は、鎖状オレフィンと環状オレフィンとを重合成分とする環状オレフィン系樹脂(鎖状オレフィン-環状オレフィン共重合体)の架橋体である。 The crosslinked product of the present invention is a crosslinked product of a cyclic olefin resin (a chain olefin-cyclic olefin copolymer) containing a chain olefin and a cyclic olefin as a polymerization component.
 (環状オレフィン系樹脂)
 本発明における環状オレフィン系樹脂(未架橋環状オレフィン系樹脂)は、鎖状オレフィンと環状オレフィンとを重合成分として含む。
(Cyclic olefin resin)
The cyclic olefin resin (uncrosslinked cyclic olefin resin) in the present invention contains a chain olefin and a cyclic olefin as a polymerization component.
 鎖状オレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、イソブテン、1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテンなどの鎖状C2-10オレフィン類などが挙げられる。これらの鎖状オレフィンは、単独で又は二種以上組み合わせて使用できる。これらの鎖状オレフィンのうち、好ましくはα-鎖状C2-8オレフィン類であり、さらに好ましくはα-鎖状C2-4オレフィン類(特に、エチレン)である。 Examples of chain olefins include chain C such as ethylene, propylene, 1-butene, isobutene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene and the like. 2-10 olefins etc. are mentioned. These linear olefins can be used alone or in combination of two or more. Among these chain olefins, preferred are α-chain C 2-8 olefins, and more preferred are α-chain C 2-4 olefins (especially ethylene).
 環状オレフィンは、環内にエチレン性二重結合を有する重合性の環状オレフィンであり、二環式オレフィンを含む。代表的な二環式オレフィンとしては、例えば、置換基を有していてもよいノルボルネン(2-ノルボルネン)、置換基を有していてもよいオクタリン(オクタヒドロナフタレン)などが例示できる。前記置換基としては、アルキル基、アルケニル基、アリール基、ヒドロキシル基、アルコキシ基、カルボキシル基、アルコキシカルボニル基、アシル基、シアノ基、アミド基、ハロゲン原子などが例示できる。これらの置換基は、単独で又は二種以上組み合わせてもよい。 The cyclic olefin is a polymerizable cyclic olefin having an ethylenic double bond in the ring, and includes bicyclic olefins. Examples of representative bicyclic olefins include norbornene (2-norbornene) which may have a substituent, octalin (octahydronaphthalene) which may have a substituent, and the like. Examples of the substituent include an alkyl group, an alkenyl group, an aryl group, a hydroxyl group, an alkoxy group, a carboxyl group, an alkoxycarbonyl group, an acyl group, a cyano group, an amide group and a halogen atom. These substituents may be used alone or in combination of two or more.
 具体的に、二環式オレフィンとしては、例えば、2-ノルボルネン;5-メチル-2-ノルボルネン、5,5-ジメチル-2-ノルボルネン、5-エチル-2-ノルボルネン、5-ブチル-2-ノルボルネンなどのアルキル基(C1―4アルキル基)を有するノルボルネン類;5-エチリデン-2-ノルボルネンなどのアルケニル基を有するノルボルネン類;5-メトキシカルボニル-2-ノルボルネン、5-メチル-5-メトキシカルボニル-2-ノルボルネンなどのアルコキシカルボニル基を有するノルボルネン類;5-シアノ-2-ノルボルネンなどのシアノ基を有するノルボルネン類;5-フェニル-2-ノルボルネン、5-フェニル-5-メチル-2-ノルボルネンなどのアリール基を有するノルボルネン類;オクタリン;6-エチル-オクタヒドロナフタレンなどのアルキル基を有するオクタリンなどが例示できる。 Specifically, as bicyclic olefins, for example, 2-norbornene; 5-methyl-2-norbornene, 5,5-dimethyl-2-norbornene, 5-ethyl-2-norbornene, 5-butyl-2-norbornene Norbornenes having an alkyl group (C 1-4 alkyl group) such as; norbornenes having an alkenyl group such as 5-ethylidene-2-norbornene; 5-methoxycarbonyl-2-norbornene, 5-methyl-5-methoxycarbonyl Norbornenes having an alkoxycarbonyl group such as -2-norbornene; norbornenes having a cyano group such as 5-cyano-2-norbornene; 5-phenyl-2-norbornene, 5-phenyl-5-methyl-2-norbornene, etc. Norbornenes having an aryl group of: octalin; 6-D Examples include octalin having an alkyl group such as chill-octahydronaphthalene.
 これらの二環式オレフィンは、単独で又は二種以上組み合わせて使用できる。これらの二環式オレフィンのうち、ノルボルネンやアルキル基(メチル基、エチル基などのC1-4アルキル基)を有するノルボルネンなどのノルボルネン類が好ましい。 These bicyclic olefins can be used alone or in combination of two or more. Among these bicyclic olefins, norbornenes such as norbornene and norbornene having an alkyl group (C 1-4 alkyl group such as methyl group and ethyl group) are preferable.
 環状オレフィンは、二環式オレフィンを含んでいればよく、さらに単環式オレフィン及び/又は三環以上の多環式オレフィンを含んでいてもよい。単環式オレフィンとしては、例えば、シクロブテン、シクロペンテン、シクロヘプテン、シクロオクテンなどの環状C4-12シクロオレフィン類などが挙げられる。多環式オレフィンとしては、例えば、ジシクロペンタジエン;2,3-ジヒドロジシクロペンタジエン、メタノオクタヒドロフルオレン、ジメタノオクタヒドロナフタレン、ジメタノシクロペンタジエノナフタレン、メタノオクタヒドロシクロペンタジエノナフタレンなどの誘導体;6-エチル-オクタヒドロナフタレンなどの置換基を有する誘導体;シクロペンタジエンとテトラヒドロインデン等との付加物、シクロペンタジエンの3~4量体などが挙げられる。 The cyclic olefin may contain a bicyclic olefin, and may further contain a monocyclic olefin and / or a polycyclic olefin having three or more rings. Examples of monocyclic olefins include cyclic C 4-12 cycloolefins such as cyclobutene, cyclopentene, cycloheptene and cyclooctene. Examples of polycyclic olefins include dicyclopentadiene; 2,3-dihydrodicyclopentadiene, methanooctahydrofluorene, dimethanooctahydronaphthalene, dimethanocyclopentadienonaphthalene, methanooctahydrocyclopentadienonaphthalene and the like Derivatives of 6-ethyl-octahydronaphthalene etc .; adducts of cyclopentadiene with tetrahydroindene etc., 3- to 4-mer of cyclopentadiene etc.
 本発明では、環状オレフィンとして二環式オレフィンを含むが、二環式オレフィン(特に、ノルボルネンなどの前記ノルボルネン類)が適度な嵩高さを有する構造であるためか、鎖状オレフィンと特定の割合で組み合わせて架橋すると、これまでのポリマーでは実現できなかった特性(すなわち、低温軟化性と耐熱性と透明性とを両立する特性)を有する新規なポリマーが得られる。環状オレフィン全体に対して二環式オレフィン(特にノルボルネン類)の割合は10モル%以上であってもよく、例えば、30モル%以上、好ましくは50モル%以上、さらに好ましくは80モル%以上(特に90モル%以上)であり、二環式オレフィン単独(100モル%)であってもよい。二環式オレフィンの割合が少なく、三環以上の多環式オレフィン(特に、四環以上の多環式オレフィン)の割合が多くなると、硬質となり、低温軟化性と耐熱性とを両立できない。また、二環式オレフィンの割合が少なく、単環式オレフィンの割合が多くなっても、低温軟化性と耐熱性とを両立できない。 In the present invention, although bicyclic olefins are contained as cyclic olefins, it may be because bicyclic olefins (particularly, the above-mentioned norbornenes such as norbornene) have a suitable bulk, or in a specific ratio to chain olefins When combined and crosslinked, a novel polymer is obtained which has properties (i.e., properties compatible with low temperature softening, heat resistance and transparency) which can not be achieved by the conventional polymers. The proportion of bicyclic olefin (particularly norbornene) may be 10 mol% or more, for example, 30 mol% or more, preferably 50 mol% or more, and more preferably 80 mol% or more with respect to the whole cyclic olefin. In particular, it may be 90 mol% or more) and may be a bicyclic olefin alone (100 mol%). When the proportion of bicyclic olefins is small and the proportion of polycyclic olefins having three or more rings (particularly, polycyclic olefins having four or more rings) is large, the composition becomes rigid and the low temperature softening property and the heat resistance can not be compatible. In addition, even if the proportion of the bicyclic olefin is small and the proportion of the monocyclic olefin is large, the low temperature softening property and the heat resistance can not be compatible.
 鎖状オレフィン-環状オレフィン共重合体において、透明性と柔軟性とを両立する点から、鎖状オレフィン(特に、エチレンなどのα-鎖状C2-4オレフィン)と環状オレフィン(特に、ノルボルネンなどの多環式オレフィン)との割合(モル比)は、環状オレフィンの割合が、鎖状オレフィンと環状オレフィンとの合計に対して15モル%を超え、かつ40モル%以下である。本発明では、環状オレフィンの割合を前記範囲とすることにより、柔軟性と耐熱性とのバランスに優れるとともに、ヘーズ(特に内部ヘーズ)の発生を抑制でき、透明性を向上できる。 A chain olefin (especially an α-chain C 2-4 olefin such as ethylene) and a cyclic olefin (especially norbornene etc.) from the viewpoint of achieving both transparency and flexibility in the chain olefin-cyclic olefin copolymer The ratio (molar ratio) with respect to (polycyclic olefin) of (1) is that the ratio of cyclic olefin is more than 15 mol% and 40 mol% or less with respect to the total of the chain olefin and the cyclic olefin. In the present invention, by setting the ratio of the cyclic olefin in the above range, the balance between the flexibility and the heat resistance is excellent, and the generation of haze (particularly, internal haze) can be suppressed, and the transparency can be improved.
 さらに、鎖状オレフィンと環状オレフィンとの割合(モル比)は、例えば、鎖状オレフィン/環状オレフィン=84/16~65/35(例えば、84/16~75/25)、好ましくは83/17~70/30、さらに好ましくは81/19~73/27(特に80/20~75/25)程度である。透明性や耐熱性が重要な場合、両者の割合は、例えば、鎖状オレフィン/環状オレフィン=80/20~62/38、好ましくは79/21~65/35、さらに好ましくは78/22~65/35(特に75/25~67/33)程度であってもよい。特に、透明性と耐熱性と低温軟化性とを両立できる点から、両者の割合は、鎖状オレフィン/環状オレフィン=84/16~75/25、好ましくは82/18~77/23、さらに好ましくは82/18~78/22(特に81/19~79/21)程度であってもよい。環状オレフィンの割合が少なすぎると、ヘーズが発生し、多すぎると、柔軟性が低下する。 Further, the ratio (molar ratio) of the linear olefin to the cyclic olefin is, for example, linear olefin / cyclic olefin = 84/16 to 65/35 (eg, 84/16 to 75/25), preferably 83/17. It is preferably about 70 to 30/30, more preferably about 81/19 to 73/27 (particularly about 80/20 to 75/25). When transparency and heat resistance are important, the ratio of both is, for example, linear olefin / cyclic olefin = 80/20 to 62/38, preferably 79/21 to 65/35, more preferably 78/22 to 65 It may be about / 35 (especially 75/25 to 67/33). In particular, from the viewpoint of achieving both transparency, heat resistance and low-temperature softening property, the ratio of the two is linear olefin / cyclic olefin = 84/16 to 75/25, preferably 82/18 to 77/23, more preferably May be on the order of 82/18 to 78/22 (especially 81/19 to 79/21). If the proportion of cyclic olefin is too low, haze will occur, and if it is too high, the flexibility will decrease.
 他の共重合性単量体としては、例えば、ビニルエステル系単量体(例えば、酢酸ビニル、プロピオン酸ビニルなど);ジエン系単量体(例えば、ブタジエン、イソプレンなど);(メタ)アクリル系単量体[例えば、(メタ)アクリル酸、又はこれらの誘導体((メタ)アクリル酸エステルなど)など]などが例示できる。これらの他の共重合性単量体は単独で又は二種以上組み合わせてもよい。これらの他の共重合性単量体の含有量は、共重合体に対して、例えば、5モル%以下、好ましくは1モル%以下である。 Other copolymerizable monomers include, for example, vinyl ester monomers (eg, vinyl acetate, vinyl propionate, etc.); diene monomers (eg, butadiene, isoprene, etc.); (meth) acrylics Monomers [for example, (meth) acrylic acid or derivatives thereof ((meth) acrylic acid ester etc.) and the like] can be exemplified. These other copolymerizable monomers may be used alone or in combination of two or more. The content of these other copolymerizable monomers is, for example, 5 mol% or less, preferably 1 mol% or less, relative to the copolymer.
 鎖状オレフィン-環状オレフィン共重合体は、付加重合により得られた樹脂であってもよく、開環重合(開環メタセシス重合など)により得られた樹脂であってもよい。また、開環メタセシス重合により得られた重合体は、水素添加された水添樹脂であってもよい。鎖状オレフィン-環状オレフィン共重合体の重合方法は、慣用の方法、例えば、メタセシス重合触媒を用いた開環メタセシス重合、チーグラー型触媒を用いた付加重合、メタロセン系触媒を用いた付加重合(通常、メタセシス重合触媒を用いた開環メタセシス重合)などを利用できる。 The linear olefin-cyclic olefin copolymer may be a resin obtained by addition polymerization, or may be a resin obtained by ring opening polymerization (ring opening metathesis polymerization, etc.). The polymer obtained by the ring-opening metathesis polymerization may be a hydrogenated resin. The polymerization method of the linear olefin-cyclic olefin copolymer may be a conventional method, for example, ring-opening metathesis polymerization using a metathesis polymerization catalyst, addition polymerization using a Ziegler-type catalyst, addition polymerization using a metallocene-based catalyst (usually And ring opening metathesis polymerization) using a metathesis polymerization catalyst.
 鎖状オレフィン-環状オレフィン共重合体は非晶性であり、結晶化度は0~3%、好ましくは0~1%、さらに好ましくは0~0.5%(特に0~0.1%)程度である。本発明では、共重合体が非晶性であるため、透明性(導光性)に優れており、架橋体におけるヘーズの発生を抑制できる。特に、環状オレフィン(特にノルボルネン類)と鎖状オレフィンとを所定の割合で組み合わせた架橋体は、結晶化度が略0%(例えば、0.5%以下、好ましくは0.1%以下、さらに好ましくは0%)の非晶性であり、内部ヘーズがほとんど認められないため、優れた透明性を示す。尚、このように本発明の架橋体は結晶化度が略0%の非晶性あるが、下記の測定方法で結晶化度を測定した場合には、ベースラインの取り方により、結晶質部分が僅かに認められる場合もある。 The linear olefin-cyclic olefin copolymer is amorphous, and the degree of crystallinity is 0 to 3%, preferably 0 to 1%, more preferably 0 to 0.5% (particularly 0 to 0.1%). It is an extent. In the present invention, since the copolymer is amorphous, it is excellent in transparency (light guiding property), and the generation of haze in the crosslinked product can be suppressed. In particular, a crosslinked product in which cyclic olefins (particularly norbornenes) and linear olefins are combined in a predetermined ratio has a crystallinity of about 0% (eg, 0.5% or less, preferably 0.1% or less, and further, Preferably, it is amorphous at 0%) and exhibits excellent transparency since almost no internal haze is observed. Although the cross-linked product of the present invention is non-crystalline having a crystallinity of approximately 0% as described above, when the crystallinity is measured by the following measurement method, crystalline portions are obtained by the method of setting the baseline. In some cases,
 結晶化度は、X線回折法を用い、結晶質部分(ピーク)と非晶質部分(ハロー)のフィッティングを行い、各積分強度を以下の式に代入して結晶化度を算出できる。なお、式中、Xは結晶性散乱積分強度(結晶質部分に由来する散乱積分強度)を示し、Yは非晶性散乱積分強度(非晶質部分に由来する散乱積分強度を示す。 The crystallinity degree can be calculated by performing fitting of a crystalline portion (peak) and an amorphous portion (halo) using an X-ray diffraction method and substituting each integrated intensity into the following equation. In the formulae, X represents the crystalline scattering integral intensity (scattering integral intensity derived from the crystalline portion), and Y represents the amorphous scattering integral intensity (scattering integral intensity derived from the amorphous portion).
   結晶化度(%)=[X/(X+Y)]×100。 Degree of crystallinity (%) = [X / (X + Y)] × 100.
 鎖状オレフィン-環状オレフィン共重合体(架橋前)のガラス転移温度(Tg)は10~100℃程度の範囲から選択できるが、適度な柔軟性を付与できる点から、好ましくは20~80℃(例えば、25~55℃)、さらに好ましくは25~75℃(特に30~45℃)程度である。さらに、柔軟性(特に低温軟化性)と耐熱性とを高度に両立する点から、環状オレフィン(特にノルボルネン類)と鎖状オレフィンとを前記割合で組み合わせることにより、ガラス転移温度は、例えば、15~50℃(例えば、30~50℃)、好ましくは20~40℃(例えば、30~40℃)、さらに好ましくは25~35℃(特に30~35℃)程度である。さらに、透明性の点から、30℃を超える範囲であってもよく、例えば、31~50℃、好ましくは32~45℃、さらに好ましくは33~40℃程度であってもよい。 The glass transition temperature (Tg) of the linear olefin-cyclic olefin copolymer (before crosslinking) can be selected from the range of about 10 to 100 ° C., but it is preferably 20 to 80 ° C. from the viewpoint of being able to impart appropriate flexibility. For example, the temperature is about 25 to 55 ° C., more preferably about 25 to 75 ° C. (particularly about 30 to 45 ° C.). Furthermore, the glass transition temperature is, for example, 15 by combining cyclic olefins (especially norbornenes) and chain olefins in the above proportion, from the viewpoint of achieving a high degree of compatibility between flexibility (especially low temperature softening) and heat resistance. The temperature is about 50 to 50 ° C. (eg, 30 to 50 ° C.), preferably 20 to 40 ° C. (eg, 30 to 40 ° C.), and more preferably about 25 to 35 ° C. (particularly 30 to 35 ° C.). Furthermore, from the viewpoint of transparency, it may be in a range exceeding 30 ° C., for example, 31 to 50 ° C., preferably 32 to 45 ° C., and more preferably about 33 to 40 ° C.
 鎖状オレフィン-環状オレフィン共重合体の数平均分子量は、例えば、1000~150000、好ましくは5000~120000、さらに好ましくは10000~100000(特に20000~90000)程度である。 The number average molecular weight of the linear olefin-cyclic olefin copolymer is, for example, about 1000 to 150000, preferably about 5000 to 120000, and more preferably about 10000 to 100000 (particularly about 20000 to 90000).
 なお、ガラス転移温度及び融点は、単量体の割合、単量体の置換基、重合体の分子量などを調整して制御することができる。 The glass transition temperature and the melting point can be controlled by adjusting the proportion of the monomer, the substituent of the monomer, the molecular weight of the polymer, and the like.
 (他のオレフィン系樹脂)
 前記環状オレフィン系樹脂に加えて、前記環状オレフィン系樹脂と架橋可能な他のオレフィン系樹脂が含まれていてもよい。本発明では、他のオレフィン系樹脂を用いることにより、架橋密度を調整して柔軟性や耐熱性を制御できる。他のオレフィン系樹脂としては、前記環状オレフィン系樹脂と架橋可能であれば、特に限定されず、鎖状オレフィン系樹脂、前記環状オレフィン系樹脂以外の環状オレフィン系樹脂(他の環状オレフィン系樹脂)などが挙げられる。
(Other olefin resin)
In addition to the cyclic olefin resin, another olefin resin crosslinkable with the cyclic olefin resin may be contained. In the present invention, by using another olefin resin, the crosslinking density can be adjusted to control flexibility and heat resistance. The other olefin resin is not particularly limited as long as it can be crosslinked with the cyclic olefin resin, and a chain olefin resin, a cyclic olefin resin other than the cyclic olefin resin (other cyclic olefin resins) Etc.
 鎖状オレフィン系樹脂としては、前記環状オレフィン系樹脂の項で例示された鎖状オレフィン、特に、エチレンやプロピレンなどのα-鎖状C2-4オレフィン(特にエチレン)を含む重合体が挙げられる。鎖状オレフィン系樹脂としては、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリ(メチルペンテン-1)樹脂などが挙げられる。これらの鎖状オレフィン系樹脂は、単独で又は二種以上組み合わせて使用できる。これらの鎖状オレフィン系樹脂のうち、低、中又は高密度ポリエチレン、直鎖状低密度ポリエチレンなどのポリエチレン系樹脂が好ましい。 Examples of the chain olefin resin include polymers containing the chain olefin exemplified in the section of the cyclic olefin resin, in particular, an α-chain C 2-4 olefin such as ethylene and propylene (particularly ethylene). . Examples of chain-like olefin resins include polyethylene resins, polypropylene resins, and poly (methylpentene-1) resins. These linear olefin resins can be used alone or in combination of two or more. Among these linear olefin resins, polyethylene resins such as low, medium or high density polyethylene and linear low density polyethylene are preferable.
 他の環状オレフィン系樹脂としては、前記環状オレフィン系樹脂において、環状オレフィンの割合が、鎖状オレフィンと環状オレフィンとの合計に対して40モル%を超える環状オレフィン系樹脂が使用できる。鎖状オレフィンと環状オレフィンとの割合(モル比)は、例えば、前者/後者=50/50~0/100、好ましくは40/60~10/90程度である。他の環状オレフィン系樹脂も、単独で又は二種以上組み合わせて使用できる。これらの他の環状オレフィン系樹脂のうち、ノルボルネンとエチレンとの割合が前記範囲であるノルボルネン-エチレン共重合体などが好ましい。 As said other cyclic olefin resin, the said cyclic olefin resin WHEREIN: The ratio of cyclic olefin can use cyclic olefin resin which exceeds 40 mol% with respect to the sum total of linear olefin and cyclic olefin. The ratio (molar ratio) of the chain olefin to the cyclic olefin is, for example, about 50/50 to 0/100, preferably about 40/60 to 10/90. Other cyclic olefin resins can also be used alone or in combination of two or more. Among these other cyclic olefin resins, a norbornene-ethylene copolymer having a ratio of norbornene to ethylene in the above range is preferable.
 他のオレフィン系樹脂のガラス転移温度は、オレフィン系樹脂の種類に応じて、-150℃~200℃程度の範囲から選択でき、環状オレフィン系樹脂のガラス転移温度を調整するために、環状オレフィン系樹脂よりもガラス転移温度の高い他の環状オレフィン系樹脂(例えば、100℃を超えるガラス転移温度、120~200℃程度)や、環状オレフィン系樹脂よりもガラス転移温度の低いポリエチレン系樹脂(例えば、10℃未満のガラス転移温度、例えば、-110~0℃、好ましくは-80~-5℃、さらに好ましくは-50~-10℃程度)などを用いてもよい。 The glass transition temperature of the other olefin resin can be selected from the range of about -150 ° C. to 200 ° C. according to the type of the olefin resin, and in order to adjust the glass transition temperature of the cyclic olefin resin, cyclic olefin resin Other cyclic olefin resins having a glass transition temperature higher than that of the resin (for example, a glass transition temperature exceeding 100 ° C., about 120 to 200 ° C.), and polyethylene resins having a glass transition temperature lower than the cyclic olefin resin (for example, A glass transition temperature of less than 10 ° C., for example, about −110 to 0 ° C., preferably about −80 to −5 ° C., and more preferably about −50 to about −10 ° C. may be used.
 他のオレフィン系樹脂の数平均分子量は、例えば、5000~300000、好ましくは10000~200000、さらに好ましくは15000~150000程度である。 The number average molecular weight of the other olefin resin is, for example, about 5,000 to 300,000, preferably about 10,000 to 200,000, and more preferably about 15,000 to 150,000.
 環状オレフィン系樹脂と他のオレフィン系樹脂との割合(重量比)は、環状オレフィン系樹脂/他のオレフィン系樹脂=100/0~50/50、好ましくは99/1~60/40、さらに好ましくは95/5~70/30程度であってもよく、透明性の点から、他のオレフィン系樹脂の割合は20重量%以下であってもよく、例えば、100/0~80/20(特に100/0~90/10)程度であってもよい。 The ratio (weight ratio) of the cyclic olefin resin to the other olefin resin is cyclic olefin resin / other olefin resin = 100/0 to 50/50, preferably 99/1 to 60/40, more preferably May be about 95/5 to 70/30, and from the viewpoint of transparency, the proportion of the other olefin resin may be 20% by weight or less, for example, 100/0 to 80/20 (in particular, It may be about 100/0 to 90/10).
 (架橋体)
 本発明の架橋体は、前記環状オレフィン系樹脂を架橋することにより得られ、適度な柔軟性を有するともに、高い耐熱性も有している。通常、軟質樹脂は、ガラス転移温度が低く、柔軟ではあるものの、耐熱性が充分でない。すなわち、樹脂において、柔軟性(特に低温軟化性)と耐熱性とはトレードオフの関係にあり、両者を同時に成立するのは極めて困難であった。これに対して、本発明では、環状オレフィンの割合を適度に調整した特定の環状オレフィン系樹脂を電子線などで架橋することにより、適度な柔軟性と耐熱性とを両立させたことを特徴とする。
(Crosslinked body)
The crosslinked body of the present invention is obtained by crosslinking the cyclic olefin resin, and has moderate flexibility and high heat resistance. In general, a soft resin has a low glass transition temperature and is flexible but does not have sufficient heat resistance. That is, in the resin, flexibility (especially low temperature softening) and heat resistance are in a trade-off relationship, and it was extremely difficult to establish both simultaneously. On the other hand, the present invention is characterized in that appropriate flexibility and heat resistance are made compatible by crosslinking a specific cyclic olefin resin having a cyclic olefin proportion appropriately adjusted with an electron beam or the like. Do.
 架橋体のガラス転移温度は10~100℃程度の範囲から選択でき、例えば、15~90℃、好ましくは20~80℃、さらに好ましくは25~75℃(特に25~50℃)程度である。このように、本発明では架橋後もガラス転移温度の上昇が少なく、架橋前のガラス転移温度との温度差は50℃以下であってもよく、例えば、0~40℃、好ましくは0~30℃、さらに好ましくは0~20℃(特に0~10℃)程度であり、架橋後も高い柔軟性を保持している。特に、本発明では、環状オレフィン(特にノルボルネン類)と鎖状オレフィンとを前記割合で組み合わせることにより、低温軟化性を発現できるガラス転移温度に調整でき、ガラス転移温度は、例えば、25~55℃、好ましくは30~50℃、さらに好ましくは30~45℃(特に30~40℃)程度であってもよい。 The glass transition temperature of the crosslinked product can be selected from the range of about 10 to 100 ° C., for example, about 15 to 90 ° C., preferably 20 to 80 ° C., and more preferably about 25 to 75 ° C. (especially 25 to 50 ° C.). Thus, in the present invention, the rise in the glass transition temperature is small even after crosslinking, and the temperature difference with the glass transition temperature before crosslinking may be 50 ° C. or less, for example, 0 to 40 ° C., preferably 0 to 30. C., more preferably 0 to 20.degree. C. (particularly 0 to 10.degree. C.) and maintaining high flexibility even after crosslinking. In particular, in the present invention, by combining cyclic olefins (particularly norbornenes) and linear olefins in the above proportion, the glass transition temperature at which low temperature softening property can be exhibited can be adjusted, and the glass transition temperature is 25 to 55 ° C., for example. The temperature may preferably be about 30 to 50 ° C., more preferably about 30 to 45 ° C. (particularly about 30 to 40 ° C.).
 さらに、架橋体は、JIS K7127に準拠した引張試験(厚み100μmのフィルム)において、破断伸度が10%以上程度であってもよく、例えば、50~1000%、好ましくは80~500%(例えば、100~500%)、さらに好ましくは100~400%(特に250~350%)程度であってもよい。さらに、本発明の架橋体は、弾性変形性を示すため、前記引張試験において、降伏点を示さないのが好ましい。 Furthermore, the crosslinked product may have a breaking elongation of about 10% or more, for example, 50 to 1000%, preferably 80 to 500% (eg, 80 to 500%) in a tensile test (film with a thickness of 100 μm) according to JIS K7127. 100 to 500%), more preferably about 100 to 400% (especially 250 to 350%). Furthermore, since the crosslinked body of the present invention exhibits elastic deformability, it is preferable that the tensile test does not show a yield point.
 本発明では、架橋体の耐熱性は、140~150℃における線熱膨張係数で示すことができる。具体的には、140~150℃における線熱膨張係数は2000ppm/℃以下(例えば、1~2000ppm/℃)であってもよく、例えば、5~1000ppm/℃、好ましくは10~800ppm/℃、さらに好ましくは50~500ppm/℃(特に100~400ppm/℃)程度である。本発明では、140~150℃の高温でも架橋体は溶融することなく、適度な線熱膨張係数を示しており、優れた耐熱性を保持している。 In the present invention, the heat resistance of the crosslinked product can be indicated by the linear thermal expansion coefficient at 140 to 150.degree. Specifically, the linear thermal expansion coefficient at 140 to 150 ° C. may be 2000 ppm / ° C. or less (eg, 1 to 2000 ppm / ° C.), for example, 5 to 1000 ppm / ° C., preferably 10 to 800 ppm / ° C. More preferably, it is about 50 to 500 ppm / ° C. (particularly about 100 to 400 ppm / ° C.). In the present invention, the crosslinked product does not melt even at a high temperature of 140 to 150 ° C., exhibits a suitable linear thermal expansion coefficient, and maintains excellent heat resistance.
 本発明の架橋体は、耐熱性と柔軟性(特に低温軟化性)とを両立させるために、適度に架橋されている。架橋体における架橋の度合いは、トルエンを用いて3時間還流させる方法で測定したゲル分率で示すことができる。架橋体のゲル分率は、例えば、5重量%以上であってもよく、例えば、10~99重量%(例えば、30~98重量%)、好ましくは50~97重量%、さらに好ましくは80~95重量%(特に85~93重量%)程度であってもよい。詳細には、ゲル分率は、実施例で記載の測定方法で測定できる。なお、本発明では、架橋密度は、電子線や放射線の照射条件などに制御できるが、環状オレフィンの割合を特定の範囲に調整することにより(特に、環状オレフィンと鎖状オレフィンとを前記割合に調整することにより)、ゲル分率を70重量%以上、好ましくは80重量%以上(特に85重量%以上)にも調整できる。その結果、架橋体の架橋密度は高くなり、耐熱性や耐久性は向上するが、環状オレフィンの割合が適度に調整されているためか、適度な柔軟性を保持している。 The crosslinked product of the present invention is suitably crosslinked in order to achieve both heat resistance and flexibility (especially low temperature softening). The degree of crosslinking in the crosslinked product can be indicated by the gel fraction measured by a method of refluxing with toluene for 3 hours. The gel fraction of the crosslinked product may be, for example, 5% by weight or more, and for example, 10 to 99% by weight (eg, 30 to 98% by weight), preferably 50 to 97% by weight, more preferably 80 to It may be about 95% by weight (particularly 85 to 93% by weight). In detail, the gel fraction can be measured by the measurement method described in the examples. In the present invention, the crosslink density can be controlled to the irradiation conditions of electron beam and radiation, but by adjusting the proportion of the cyclic olefin to a specific range (in particular, the proportion of the cyclic olefin and the chain olefin is the above By adjusting it, the gel fraction can be adjusted to 70% by weight or more, preferably 80% by weight or more (particularly 85% by weight or more). As a result, the crosslink density of the crosslinker is increased, and the heat resistance and the durability are improved, but the flexibility is maintained at an appropriate level probably because the proportion of the cyclic olefin is appropriately adjusted.
 本発明の架橋体(特に、環状オレフィンと鎖状オレフィンとを前記割合で組み合わせた共重合体の架橋体)は、温度25℃での貯蔵弾性率が100~4000MPa、好ましくは500~3000MPa(例えば、750~2500MPa)、さらに好ましくは1000~2000MPa(例えば、1200~1800MPa)程度である。また、温度50℃での貯蔵弾性率は、5~500MPa、好ましくは10~300MPa(例えば、20~280MPa)、さらに好ましくは30~250MPa(例えば、50~220MPa)程度である。さらに、温度80℃での貯蔵弾性率は、0.01~10MPa、好ましくは0.1~8MPa(例えば、0.5~7.5MPa)、さらに好ましくは1~7MPa(例えば、2~7MPa)程度である。このような特性を有する重合体は、室温付近(20~25℃程度)では、機械的強度が大きく、30~80℃程度では、流動性が高い。なお、上記80℃での貯蔵弾性率を「1」としたとき、80℃での貯蔵弾性率に対して25℃での貯蔵弾性率は、例えば、0.05×10~10×10(例えば、0.1×10~5×10、好ましくは0.2×10~1×10、さらに好ましくは0.3×10~0.7×10程度)である。架橋体の貯蔵弾性率は、実施例に記載の方法で測定できる。 The crosslinked product of the present invention (in particular, a crosslinked product of a copolymer in which a cyclic olefin and a chain olefin are combined in the above ratio) has a storage elastic modulus of 100 to 4000 MPa, preferably 500 to 3000 MPa at a temperature of 25 ° C. And more preferably about 1000 to 2000 MPa (eg, about 1200 to 1800 MPa). The storage elastic modulus at a temperature of 50 ° C. is about 5 to 500 MPa, preferably 10 to 300 MPa (eg, 20 to 280 MPa), and more preferably about 30 to 250 MPa (eg, 50 to 220 MPa). Furthermore, the storage elastic modulus at a temperature of 80 ° C. is 0.01 to 10 MPa, preferably 0.1 to 8 MPa (eg, 0.5 to 7.5 MPa), more preferably 1 to 7 MPa (eg, 2 to 7 MPa) It is an extent. The polymer having such characteristics has high mechanical strength at around room temperature (about 20 to 25 ° C.) and high fluidity at about 30 to 80 ° C. When the storage elastic modulus at 80 ° C. is “1”, the storage elastic modulus at 25 ° C. is, for example, 0.05 × 10 3 to 10 × 10 3 with respect to the storage elastic modulus at 80 ° C. (For example, about 0.1 × 10 3 to 5 × 10 3 , preferably about 0.2 × 10 3 to 1 × 10 3 , and more preferably about 0.3 × 10 3 to 0.7 × 10 3 ). The storage modulus of the crosslinked product can be measured by the method described in the examples.
 また、本発明の架橋体(特に、環状オレフィンと鎖状オレフィンとを前記割合で組み合わせた共重合体の架橋体)は、架橋点間分子量が大きく、例えば、8000~30000、好ましくは9000~25000(例えば、9500~20000)、さらに好ましくは10000~18000(例えば、10000~16000)程度である。このような大きな架橋点間分子量は、架橋体が低い架橋密度で緩く架橋した構造を有していることを示している。そのため、加熱すると架橋体は熱可塑性樹脂のように挙動して流動するものの、所定の温度以上になると架橋体の流動及び変形が架橋により規制され、熱可塑性樹脂と異なり耐熱性を有する。そのため、架橋点間分子量が小さすぎると、流動性が低下し、架橋点間分子量が大きすぎると、流動変形に対する耐熱性が低下する。なお、架橋体の架橋点間分子量は、慣用の方法、例えば、ゴム弾性理論を利用した代表的な方法により求めることができる。この方法では、下記式により架橋点間分子量を算出できる。 In addition, the crosslinked product of the present invention (in particular, a crosslinked product of a copolymer in which a cyclic olefin and a chain olefin are combined in the above ratio) has a large molecular weight between crosslinking points, for example, 8,000 to 30,000, preferably 9,000 to 25,000. (For example, 9500 to 20000), and more preferably about 10000 to 18000 (for example, 10000 to 16000). Such a large inter-crosslink molecular weight indicates that the crosslinker has a loosely crosslinked structure with a low crosslink density. Therefore, although the crosslinked body behaves like a thermoplastic resin and flows when heated, the flow and deformation of the crosslinked body are regulated by crosslinking when the temperature is higher than a predetermined temperature, and unlike the thermoplastic resin, it has heat resistance. Therefore, when the molecular weight between crosslinking points is too small, the flowability decreases, and when the molecular weight between crosslinking points is too large, the heat resistance to flow deformation decreases. In addition, the molecular weight between crosslinking points of the crosslinked body can be determined by a conventional method, for example, a typical method using the rubber elasticity theory. In this method, the molecular weight between crosslinking points can be calculated by the following equation.
   G=(ρRT)/M
(式中、Gは剪断弾性率(単位Pa)、ρは密度(g/m)、Rはガス定数(8.314J/K/モル)、Tは絶対温度(K)、Mは架橋点間分子量(g/モル)を示す)
 前記剪断弾性率Gはゴム状平坦域(例えば、140℃、角周波数0.1Hz)における貯蔵弾性率により測定できる(貯蔵弾性率の測定方法は上記と同様である)。また、密度ρはアルキメデス法で測定でき、成書「Polymer Engineering and Science, MID-JULY, 1990, Vol.30, No13, P753-761」に記載された重合体の密度を参照することもできる。
G = (ρRT) / M X
(Wherein G is shear modulus (unit Pa), ρ is density (g / m 3 ), R is gas constant (8.314 J / K / mol), T is absolute temperature (K), and M X is crosslinking Indicates point-to-point molecular weight (g / mol)
The shear modulus G can be measured by the storage modulus in a rubbery flat area (for example, 140 ° C., angular frequency 0.1 Hz) (the method of measuring the storage modulus is the same as above). Further, the density ρ can be measured by the Archimedes method, and the density of the polymer described in the book “Polymer Engineering and Science, MID-JULY, 1990, Vol. 30, No. 13, P753-761” can also be referred to.
 本発明の架橋体は、透明性にも優れており、ヘーズ(曇価)が、JIS K7105に準拠した方法において、例えば、5%以下であってもよく、好ましくは2%以下(例えば、0~2%)、さらに好ましくは0.1~1.5%(特に0.2~1%)程度である。本発明では、環状オレフィン系樹脂中における環状オレフィンの割合が適度に調整されているため、前述のように適度な柔軟性と高い耐熱性とを両立するとともに、環状オレフィン系樹脂が非晶性を示すためか、透明性又は導光性も高く、ヘーズの発生を抑制できる。 The crosslinked product of the present invention is also excellent in transparency, and the haze (clouding value) may be, for example, 5% or less, preferably 2% or less (for example, 0) in a method according to JIS K7105. And more preferably about 0.1 to 1.5% (particularly 0.2 to 1%). In the present invention, since the proportion of the cyclic olefin in the cyclic olefin resin is appropriately adjusted, both the appropriate flexibility and high heat resistance can be achieved as described above, and the cyclic olefin resin is amorphous. The transparency or the light guiding property is also high, and the generation of haze can be suppressed.
 本発明において、ヘーズは厚みは100μm程度で測定できる。なお、ヘーズは、測定試料(フィルム)の表面の凹凸などに起因する外部ヘーズとフィルム内に存在する微結晶に起因する内部ヘーズとがある。本発明の場合、内部ヘーズはほとんど無く、フィルム表面の外部ヘーズにより2%以下程度のヘーズを示す場合があるが、内部ヘーズがほとんど無いため、厚みを厚くした場合でもヘーズは大きくはならない。 In the present invention, haze can be measured at a thickness of about 100 μm. The haze includes external haze caused by asperities and the like on the surface of the measurement sample (film) and internal haze caused by microcrystals present in the film. In the case of the present invention, there is almost no internal haze and may show a haze of about 2% or less depending on the external haze of the film surface, but since there is almost no internal haze, the haze does not increase even when the thickness is increased.
 本発明の架橋体の全光線透過率は、JIS K7105に準拠した方法(厚み100μm)において、例えば、80%以上、好ましくは80~99%、さらに好ましくは85~98%(特に90~95%)程度であってもよい。 The total light transmittance of the crosslinked product of the present invention is, for example, 80% or more, preferably 80 to 99%, more preferably 85 to 98% (particularly 90 to 95%) in a method (thickness 100 μm) according to JIS K7105. ) May be.
 さらに、605nmにおける光強度に対する454nmにおける光強度の比(454nm/605nm)は、3.0以上であってもよく、例えば、3.0~3.7、好ましくは3.1~3.7、さらに好ましくは3.2~3.7程度である。 Furthermore, the ratio of light intensity at 454 nm to light intensity at 605 nm (454 nm / 605 nm) may be 3.0 or more, for example 3.0 to 3.7, preferably 3.1 to 3.7, More preferably, it is about 3.2 to 3.7.
 本発明の架橋体の形態は、特に制限されないが、フィルムの形態であるとき、フィルムの厚みは、20~400μm、好ましくは30~350μm、さらに好ましくは40~300μm(例えば、50~200μm)程度であってもよく、100μm以上(例えば、100~400μm)、好ましくは150μm以上(例えば、200~350μm)程度であってもよい。 The form of the crosslinked product of the present invention is not particularly limited, but when it is in the form of a film, the thickness of the film is about 20 to 400 μm, preferably 30 to 350 μm, more preferably 40 to 300 μm (eg 50 to 200 μm). It may be about 100 μm or more (eg, 100 to 400 μm), preferably about 150 μm or more (eg, 200 to 350 μm).
 本発明の架橋体は、慣用の添加剤、例えば、架橋剤、架橋促進剤、架橋助剤、酸化防止剤、熱安定剤、光安定材、紫外線吸収剤などの安定化剤、可塑剤、帯電防止剤、難燃剤などを含有していてもよい。これらの添加剤は、単独で又は二種以上組み合わせて使用できる。 The cross-linked product of the present invention may be a conventional additive such as a cross-linking agent, a cross-linking accelerator, a cross-linking aid, an antioxidant, a heat stabilizer, a light stabilizer, a stabilizer such as a UV absorber, a plasticizer, You may contain the inhibitor, a flame retardant, etc. These additives may be used alone or in combination of two or more.
 本発明の架橋体は、架橋性基(例えば、エチレン性不飽和結合を有する基など)を有する樹脂を実質的に含んでいなくてもよい。さらに、本発明の架橋体は、電子線を用いて架橋するため、架橋剤、架橋促進剤、架橋助剤を実質的に含んでいなくてもよい。 The crosslinked body of the present invention may be substantially free of a resin having a crosslinkable group (eg, a group having an ethylenically unsaturated bond, etc.). Furthermore, the crosslinker of the present invention may be substantially free of a crosslinker, a crosslinker, and a crosslinker in order to crosslink using an electron beam.
 (架橋体の製造方法)
 本発明の架橋体は、前記環状オレフィン系樹脂を架橋することにより得られ、架橋の方法は特に限定されず、紫外線などの活性光線やベータ(β)線やガンマ(γ)線、X線などの放射線(特にガンマ線)などであってもよいが、制御し易く、前記特性を有する新規な架橋体を調製し易い点から、高エネルギー線(電子線やガンマ線)で架橋することにより製造してもよい。特に、電子線で架橋すると、加熱による酸化を抑制できるためか、黄変などを防止でき、透明性に優れた架橋体が得られる。本発明では、高エネルギーである電子線を用いるため、架橋剤や架橋促進剤(助剤)が不要であり、安定性の高い架橋体を効率良く製造できる。特に、電子線の照射において、加熱することなく、常温(例えば、10~30℃程度の温度)で環状オレフィン系樹脂を架橋でき、架橋密度も向上できる。
(Method of producing a crosslinked product)
The crosslinked body of the present invention is obtained by crosslinking the cyclic olefin resin, and the method of crosslinking is not particularly limited, and active rays such as ultraviolet rays, beta (β) rays, gamma (γ) rays, X rays, etc. Radiation (especially gamma rays) may be used, but it is easy to control and produced by crosslinking with high energy rays (electron beam or gamma rays) from the viewpoint of easy preparation of a novel crosslinked body having the above characteristics. It is also good. In particular, when crosslinking is carried out with an electron beam, it is possible to suppress oxidation due to heating, or yellowing can be prevented, and a crosslinked product having excellent transparency can be obtained. In the present invention, since a high energy electron beam is used, a crosslinking agent and a crosslinking accelerator (auxiliary agent) are unnecessary, and a highly stable crosslinked product can be efficiently produced. In particular, in irradiation with an electron beam, the cyclic olefin resin can be crosslinked at normal temperature (for example, a temperature of about 10 to 30 ° C.) without heating, and the crosslinking density can also be improved.
 電子線の照射方法として、例えば、電子線照射装置などの露光源によって、電子線を照射する方法が利用できる。照射量(線量)は、環状オレフィン系樹脂の厚みにより異なるが、例えば、10~500kGy(グレイ)(例えば、100~400kGy)程度の範囲から選択できるが、架橋密度を高めて耐熱性を向上させる点から、200kGy以上であってもよく、例えば、200~500kGy、好ましくは220~450kGy、さらに好ましくは230~430kGy(特に250~400kGy)程度であってもよい。 As a method of irradiating an electron beam, for example, a method of irradiating an electron beam by an exposure source such as an electron beam irradiation device can be used. The irradiation dose (dose) varies depending on the thickness of the cyclic olefin resin, but can be selected, for example, from the range of about 10 to 500 kGy (gray) (for example, 100 to 400 kGy), but the crosslink density is increased to improve heat resistance. From the point of view, it may be 200 kGy or more, for example, about 200 to 500 kGy, preferably about 220 to 450 kGy, and more preferably about 230 to 430 kGy (particularly about 250 to 400 kGy).
 加速電圧は、10~1000kV(例えば、100~500kV)程度の範囲から選択できるが、耐熱性を向上させる点から、150kV以上であってもよく、例えば、160~400kV、好ましくは170~300kV、さらに好ましくは180~250kV程度であってもよい。 The acceleration voltage can be selected from the range of about 10 to 1000 kV (for example, 100 to 500 kV), but may be 150 kV or more from the viewpoint of improving heat resistance, for example, 160 to 400 kV, preferably 170 to 300 kV, More preferably, it may be about 180 to 250 kV.
 ガンマ線の照射方法として、例えば、ガンマ線照射装置などの露光源によって、ガンマ線を照射する方法が利用できる。照射量(線量)は、環状オレフィン系樹脂の厚みにより異なるが、例えば、10~500kGy(グレイ)(例えば、100~400kGy)程度の範囲から選択できるが、架橋密度を高めて耐熱性を向上させる点から、200kGy以上であってもよく、例えば、200~500kGy、好ましくは220~450kGy、さらに好ましくは230~430kGy(特に250~400kGy)程度であってもよい。 As a method of irradiating a gamma ray, for example, a method of irradiating a gamma ray by an exposure source such as a gamma ray irradiation device can be used. The irradiation dose (dose) varies depending on the thickness of the cyclic olefin resin, but can be selected, for example, from the range of about 10 to 500 kGy (gray) (for example, 100 to 400 kGy), but the crosslink density is increased to improve heat resistance. From the point of view, it may be 200 kGy or more, for example, about 200 to 500 kGy, preferably about 220 to 450 kGy, and more preferably about 230 to 430 kGy (particularly about 250 to 400 kGy).
 なお、電子線や放射線の照射は、空気中で行ってもよく、必要であれば、不活性ガス(例えば、窒素ガス、アルゴンガス、ヘリウムガスなど)雰囲気中で行ってもよい。なお、本発明では、電子線やガンマ線の照射後も環状オレフィン系樹脂の変形は抑制される。 Note that irradiation with an electron beam or radiation may be performed in air, and may be performed in an inert gas (for example, nitrogen gas, argon gas, helium gas, etc.) atmosphere if necessary. In the present invention, the deformation of the cyclic olefin resin is suppressed even after the irradiation of the electron beam and the gamma ray.
 本発明の架橋体は、環状オレフィン系樹脂を慣用の成形方法、例えば、射出成形法、押出成形法、ブロー成形法、真空成形法、異型成形法、インジェクションプレス法、プレス成形法、ガス注入成形法、圧縮成形法、トランスファー成形法などにより、用途に応じた形状(フィルム又はシート状、各種三次元形状など)に成形した後、架橋することにより所望の形状を有する成形体を得ることができる。 The crosslinked product of the present invention can be obtained by using a conventional molding method for cyclic olefin resins, such as injection molding, extrusion molding, blow molding, vacuum molding, profile molding, injection pressing, press molding, gas injection molding A molded product having a desired shape can be obtained by crosslinking after forming into a shape (film or sheet, various three-dimensional shapes, etc.) according to the application by a method, compression molding, transfer molding, etc. .
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、実施例で得られた環状オレフィン系樹脂や試験片の特性は、以下の方法で測定した。 The present invention will be described in more detail based on examples given below, but the present invention is not limited by these examples. In addition, the characteristic of the cyclic olefin resin obtained in the Example and the test piece was measured by the following method.
 (ガラス転移温度及び融点)
 示差走査熱量計(セイコー電子工業(株)製「DSC6200」)を用い、窒素気流下、昇温速度10℃/分で測定を行った。
(Glass transition temperature and melting point)
The measurement was performed using a differential scanning calorimeter (“DSC 6200” manufactured by Seiko Instruments Inc.) under a nitrogen stream at a temperature rising rate of 10 ° C./minute.
 (ゲル分率)
 500mgの試験片を秤り取って冷却管を備えた100mlのナス型フラスコに入れ、さらにトルエン50mlを加えて、還流温度にて3時間攪拌した。その後、混合液を濾過し、濾過残渣を減圧乾燥後、計量してゲル分率を求めた。
(Gel fraction)
A 500 mg test piece was weighed into a 100 ml eggplant-type flask equipped with a condenser, 50 ml of toluene was further added, and the mixture was stirred at reflux temperature for 3 hours. Thereafter, the mixture was filtered, and the filter residue was dried under reduced pressure and then weighed to determine the gel fraction.
 (結晶化度)
 得られたフィルムについて、X線回折装置(XRD、(株)リガク製「RINT1500」)を用いて広角X線測定を行った。詳しくは、CuKαを用いて2θ=0°~60°の範囲で回折ピーク測定を行った。
(Degree of crystallinity)
The obtained film was subjected to wide-angle X-ray measurement using an X-ray diffractometer (XRD, “RINT 1500” manufactured by Rigaku Corporation). Specifically, diffraction peak measurement was performed in the range of 2θ = 0 ° to 60 ° using CuKα.
 (ヘーズ)
 実施例で得られた試験片について、JIS K 7136に準拠して、ヘーズメーター(日本電色工業(株)製、NDH-500)を用いて、ヘーズを測定した。
(Haze)
The haze of the test pieces obtained in the examples was measured using a haze meter (NDH-500 manufactured by Nippon Denshoku Kogyo Co., Ltd.) in accordance with JIS K 7136.
 (引張試験)
 実施例で得られた試験片について、流れ(MD)方向にJIS2号ダンベル片(幅6mm)を打ち抜き、23℃/50%RH、引張速度500mm/分で引張試験を行った。
(Tensile test)
About the test piece obtained in the Example, a JIS No. 2 dumbbell piece (width 6 mm) was punched out in the flow (MD) direction, and a tensile test was performed at 23 ° C./50% RH and a tensile speed of 500 mm / min.
 (光強度比、出射光色相)
 実施例で得られた試験片を厚さ200μm、幅2cm、長さ8cmの短冊状に切り出した。その短冊の切り出した端部から白色LED(日亜化学工業(株)製、商品名:NSPB500S)により白色光を入射させ、フィルム中を透過(光路長:8cm)し、もう一方の端部から出射した光を分光光度計(浜松ホトニクス(株)製、マルチチャンネル分光器:PMA-11)を使用して可視光スペクトルを測定した。また、目視によって出射光の色相を確認した。今回使用した白色LEDは454nmに青色LEDに由来するピークを持ち、500nm以降の長波長に蛍光物質による幅広いスペクトルが見られた。白色LED単体の454nmと青色の補色である605nmとの光強度比は3.7であった。光強度比が3.7に近いものほどスペクトルの再現性が良い、優れた導光性能を有するといえる。
(Light intensity ratio, outgoing light hue)
The test piece obtained in the example was cut into a strip having a thickness of 200 μm, a width of 2 cm, and a length of 8 cm. White light is made incident from the cut-out end of the strip by a white LED (manufactured by Nichia Corporation, trade name: NSPB 500S), and the light is transmitted through the film (optical path length: 8 cm), and from the other end The visible light spectrum of the emitted light was measured using a spectrophotometer (manufactured by Hamamatsu Photonics Co., Ltd., multi-channel spectrometer: PMA-11). Moreover, the hue of the emitted light was confirmed visually. The white LED used this time had a peak derived from the blue LED at 454 nm, and a broad spectrum of the fluorescent material was observed at a long wavelength of 500 nm or later. The light intensity ratio of 454 nm of the white LED alone to 605 nm, which is the complementary color of blue, was 3.7. It can be said that the closer the light intensity ratio is to 3.7, the better the light guide performance that the spectrum reproducibility is good.
  光強度比=454nmにおける光強度/605nmにおける光強度。 Light intensity ratio = light intensity at 454 nm / light intensity at 605 nm.
 (線膨張係数)
 実施例で得られた試験片について、JIS K7197に準拠して、熱機械的分析装置(エスアイアイ・ナノテクノロジー(株)製、EXSTAR TMA/SS7100)を用いて、140℃から150℃の線膨張係数を測定した。
(Linear expansion coefficient)
The test pieces obtained in the examples were subjected to linear expansion at 140 ° C. to 150 ° C. using a thermomechanical analyzer (EXSTAR TMA / SS 7100 manufactured by SII Nano Technology Inc.) in accordance with JIS K7197. The coefficients were measured.
 (粘弾性測定)
 実施例及び比較例の試験片について、幅5mm、長さ50mmに切り出し、動的粘弾性測定装置(ティー・エイ・インスツルメント・ジャパン(株)製、RSA-III)を用い、チャック間距離20mm、昇温速度5℃/分及び角周波数10Hzの条件で、貯蔵弾性率(E’)を測定した。
(Viscoelastic measurement)
The test pieces of Examples and Comparative Examples were cut into a width of 5 mm and a length of 50 mm, and the distance between chucks was measured using a dynamic viscoelasticity measuring device (RSA-III manufactured by TA Instruments Japan Ltd.). The storage elastic modulus (E ′) was measured under the conditions of 20 mm, a temperature elevation rate of 5 ° C./min, and an angular frequency of 10 Hz.
 (架橋点間分子量)
 架橋点間分子量は、前記粘弾性測定で得られた温度140℃、角周波数0.1Hzでのデータを、前記架橋点間分子量の算出式(G=(ρRT)/M)に代入して算出した。なお、密度ρ(g/m)は1.02とした。
(Molecular weight between crosslinking points)
The inter-crosslinking point molecular weight is obtained by substituting the data at a temperature of 140 ° C. and an angular frequency of 0.1 Hz obtained by the viscoelasticity measurement into the equation for calculating the inter-crosslinking point (G = (ρRT) / M X ) Calculated. The density ρ (g / m 3 ) was 1.02.
 製造例1(環状オレフィン系樹脂A)
 窒素雰囲気下、室温において30リットルのオートクレーブに、トルエン15リットル、トリイソブチルアルミニウム(TIBA)15ミリモル、四塩化ジルコニウム0.75ミリモル、テトラキス(ペンタフルオロフェニル)硼酸アニリニウム0.75ミリモルをこの順番に投入し、続いてノルボルネンを70重量%含有するトルエン溶液1.8リットルを加えた。50℃に昇温した後、エチレン分圧が5kgf/cmになるように、連続的にエチレンを導入しつつ、60分間の反応を行った。反応終了後ポリマー溶液を15リットルのメタノール中に投入し、ポリマーを析出させた。このポリマーを濾別、乾燥し、環状オレフィン系樹脂A(エチレン-ノルボルネン共重合体A)を得た。収量は3.12kg、重合活性は46kg/gZr(ジルコニウム1g当りの収量)であった。
Production Example 1 (Cyclic Olefin Resin A)
15 liters of toluene, 15 millimoles of triisobutylaluminum (TIBA), 0.75 millimoles of zirconium tetrachloride, 0.75 millimoles of anilinium tetrakis (pentafluorophenyl) borate are sequentially added to a 30 liter autoclave at room temperature under a nitrogen atmosphere. Then, 1.8 liters of a toluene solution containing 70% by weight of norbornene was added. After raising the temperature to 50 ° C., the reaction was carried out for 60 minutes while introducing ethylene continuously so that the ethylene partial pressure was 5 kgf / cm 2 . After completion of the reaction, the polymer solution was poured into 15 liters of methanol to precipitate a polymer. The polymer was separated by filtration and dried to obtain cyclic olefin resin A (ethylene-norbornene copolymer A). The yield was 3.12 kg and the polymerization activity was 46 kg / g Zr (yield per 1 g of zirconium).
 13C-NMRにおいて、エチレン単位にもとづくピークとノルボルネン単位の5及び6位のメチレンにもとづくピークの和(30ppm付近)と、ノルボルネン単位の7位メチレン基にもとづくピーク(32.5ppm付近)との比から求めたノルボルネン含量は8.6モル%であった。ガラス転移温度は-1℃、融点は80℃、結晶化度は10%であった。 In 13 C-NMR, the sum of the peak based on ethylene unit and the peak based on methylene of 5 and 6 position of norbornene unit (around 30 ppm) and the peak based on methylene group of 7 position of norbornene unit (around 32.5 ppm) The norbornene content determined from the ratio was 8.6 mol%. The glass transition temperature was −1 ° C., the melting point was 80 ° C., and the crystallinity was 10%.
 比較例1
 製造例1で得られた環状オレフィン系樹脂Aを用いて、小型押出機((株)プラスチック工学研究所製、20mmφ、L/D=25)に巾150mmのTダイを取り付け、押出温度200℃、チルロール温度10℃、引取速度を調整し、厚み100μmのフィルム状試験片を作製した。得られた試験片に、窒素雰囲気中、常温で、EB照射装置(岩崎電気(株)製「TYPE;CB250/15/180L」)を用いて、加速電圧200kV、線量350kGyで電子線を照射して架橋した。白色LEDを導光させてみたが、結晶性ポリマーであるためレイリー散乱が起こり、試験片からの出射光は橙色に着色していた。
Comparative Example 1
Using cyclic olefin resin A obtained in Production Example 1, attach a T-die with a width of 150 mm to a small extruder (20 mmφ, L / D = 25 manufactured by Plastic Engineering Laboratory), and extrude temperature 200 ° C. The chill roll temperature was adjusted to 10 ° C., the take-up speed was adjusted, and a film-shaped test piece having a thickness of 100 μm was produced. The obtained test piece is irradiated with an electron beam at an acceleration voltage of 200 kV and a dose of 350 kGy using an EB irradiation apparatus (“Icon” manufactured by Iwasaki Electric Co., Ltd. “TYPE; CB 250/15/180 L”) at normal temperature in a nitrogen atmosphere. Cross-linked. The white LED was guided, but because of the crystalline polymer, Rayleigh scattering occurred, and the light emitted from the test piece was colored orange.
 実施例1
 環状オレフィン系樹脂Aの代わりに、環状オレフィン系樹脂(Topas Advanced Polymers GmbH社製、商品名「TOPAS9903」、数平均分子量69000、ガラス転移温度33℃、ノルボルネン含量20モル%、結晶化度0%)を用いて、加速電圧200kV、線量250kGyで電子線を照射する以外は比較例1と同様にして、フィルム状試験片を作製した。試験片からの出射光は非晶性ポリマーであるため白色であった。さらに、温度25℃での貯蔵弾性率は1480MPa、80℃での貯蔵弾性率2.99MPa、架橋点間分子量13000であった。
Example 1
Instead of cyclic olefin resin A, cyclic olefin resin (trade name “TOPAS9903”, manufactured by Topas Advanced Polymers GmbH, number average molecular weight 69000, glass transition temperature 33 ° C., norbornene content 20 mol%, crystallinity 0%) A film-shaped test piece was produced in the same manner as in Comparative Example 1 except that the electron beam was irradiated at an accelerating voltage of 200 kV and a dose of 250 kGy. The light emitted from the test piece was white because it was an amorphous polymer. Furthermore, the storage elastic modulus at 25 ° C. was 1480 MPa, the storage elastic modulus at 80 ° C. was 2.99 MPa, and the molecular weight between crosslinking points was 13,000.
 実施例2
 加速電圧200kV、線量350kGyの条件で電子線を照射する以外は、実施例1と同様にして、フィルム状試験片を作製した。試験片からの出射光は非晶性ポリマーであるため白色であった。さらに、温度25℃での貯蔵弾性率は1520MPa、80℃での貯蔵弾性率3.04MPa、架橋点間分子量11000であった。
Example 2
A film-shaped test piece was produced in the same manner as in Example 1 except that the electron beam was irradiated under the conditions of an accelerating voltage of 200 kV and a dose of 350 kGy. The light emitted from the test piece was white because it was an amorphous polymer. Furthermore, the storage elastic modulus at a temperature of 25 ° C. was 1520 MPa, the storage elastic modulus at a temperature of 80 ° C. was 3.04 MPa, and the molecular weight between crosslinking points was 11,000.
 実施例3
 加速電圧200kV、線量150kGyの条件で電子線を照射する以外は、実施例1と同様にして、フィルム状試験片を作製した。試験片からの出射光は非晶性ポリマーであるため白色であった。さらに、温度25℃での貯蔵弾性率は1510MPa、80℃での貯蔵弾性率2.98MPa、架橋点間分子量15000であった。
Example 3
A film-shaped test piece was produced in the same manner as in Example 1 except that the electron beam was irradiated under the conditions of an accelerating voltage of 200 kV and a dose of 150 kGy. The light emitted from the test piece was white because it was an amorphous polymer. Furthermore, the storage elastic modulus at 25 ° C. was 1510 MPa, the storage elastic modulus at 80 ° C. was 2.98 MPa, and the molecular weight between crosslinking points was 15000.
 実施例4
 環状オレフィン系樹脂Aの代わりに、環状オレフィン系樹脂(Topas Advanced Polymers GmbH社製、商品名「TOPAS9506」、数平均分子量66000、ガラス転移温度70℃、ノルボルネン含量32モル%、結晶化度0%)を用いる以外は比較例1と同様にして、フィルム状試験片を作製した。試験片からの出射光は非晶性ポリマーであるため白色であった。
Example 4
Instead of cyclic olefin resin A, cyclic olefin resin (trade name "TOPAS9506" manufactured by Topas Advanced Polymers GmbH, number average molecular weight 66000, glass transition temperature 70 ° C, norbornene content 32 mol%, crystallinity 0%) A film-like test piece was produced in the same manner as in Comparative Example 1 except for using. The light emitted from the test piece was white because it was an amorphous polymer.
 実施例5
 電子線照射の代わりに、ガンマ線照射装置(Nordion社「JS10000HD」、線源コバルト-60、大気下、常温(庫内温度40℃)を用いて線量350kGyで照射する以外は、実施例1と同様にして、フィルム状試験片を作製した。試験片からの出射光は非晶性ポリマーであるため白色であった。さらに、温度25℃での貯蔵弾性率は1500MPa、80℃での貯蔵弾性率3.06MPa、架橋点間分子量11000であった。
Example 5
The same as Example 1, except that irradiation is performed at a dose of 350 kGy using gamma ray irradiation apparatus (Nordion "JS10000HD", source cobalt -60, under atmosphere, normal temperature (in-chamber temperature 40 ° C) instead of electron beam irradiation. A film-like test piece was produced, and the light emitted from the test piece was white because it was an amorphous polymer, and the storage elastic modulus at a temperature of 25 ° C. was 1500 MPa and a storage elastic modulus at 80 ° C. It was 3.06 MPa and molecular weight between crosslinking points was 11,000.
 比較例2
 環状オレフィン系樹脂Aの代わりに、環状オレフィン系樹脂(Topas Advanced Polymers GmbH社製、商品名「TOPAS8007」、数平均分子量51000、ガラス転移温度80℃、ノルボルネン含量42モル%、結晶化度0%)を用いる以外は比較例1と同様にして、フィルム状試験片を作製した。試験片からの出射光は非晶性ポリマーであるため白色であった。
Comparative example 2
Instead of cyclic olefin resin A, cyclic olefin resin (trade name "TOPAS 8007" manufactured by Topas Advanced Polymers GmbH, number average molecular weight 51000, glass transition temperature 80 ° C., norbornene content 42 mol%, crystallinity 0%) A film-like test piece was produced in the same manner as in Comparative Example 1 except for using. The light emitted from the test piece was white because it was an amorphous polymer.
 比較例3
 環状オレフィン系樹脂Aの代わりに、環状オレフィン系樹脂(Topas Advanced Polymers GmbH社製、商品名「TOPAS6013」、ガラス転移温度130℃、ノルボルネン含量50モル%、結晶化度0%)を用いて、加速電圧200kV、線量250kGyで電子線を照射する以外は比較例1と同様にして、フィルム状試験片を作製した。試験片からの出射光は非晶性ポリマーであるため白色であった。
Comparative example 3
Accelerated using cyclic olefin resin (trade name "TOPAS6013" manufactured by Topas Advanced Polymers GmbH, glass transition temperature 130 ° C, norbornene content 50 mol%, crystallinity 0%) instead of cyclic olefin resin A A film-shaped test piece was produced in the same manner as in Comparative Example 1 except that the electron beam was irradiated at a voltage of 200 kV and a dose of 250 kGy. The light emitted from the test piece was white because it was an amorphous polymer.
 比較例及び実施例におけるモノマー組成比及び電子線照射条件を表1に示し、比較例及び実施例で得られた試験片の特性を評価した結果を表2及び表3に示す。 The monomer composition ratio and the electron beam irradiation conditions in Comparative Examples and Examples are shown in Table 1, and the results of evaluating the characteristics of the test pieces obtained in Comparative Examples and Examples are shown in Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2及び表3の結果から明らかなように、本発明の架橋体は、透明性が高く、機械的特性にも優れている。 As apparent from the results of Tables 2 and 3, the crosslinked product of the present invention is high in transparency and excellent in mechanical properties.
 本発明の架橋体は、各種分野の成形材料、例えば、光学材料、電気・電子材料、電気絶縁材料、自動車部品材料、医療材料、建築・土木材料などに利用できる。さらに、本発明の架橋体は、耐熱性と柔軟性とを両立でき、透明性にも優れるため、各種の電気・電子機器又は光学機器、例えば、携帯機器、家電機器、制御機器などのスイッチ部材として利用できる。具体的には、携帯電話、遊技機器、モバイル機器、タッチパネル、カーナビゲーションシステム、時計、電卓、テレビ、パーソナルコンピュータなどの部材(例えば、キートップシート、キーマットシート、導光シート、反射シート、OCAテープ(高透明性接着剤転写テープ又は光学用芯なしテープ)など)としても有用である。 The crosslinked product of the present invention can be used for molding materials in various fields, such as optical materials, electric and electronic materials, electric insulating materials, automobile parts materials, medical materials, construction and civil engineering materials and the like. Furthermore, since the crosslinked body of the present invention can simultaneously achieve both heat resistance and flexibility and is excellent in transparency, various electric / electronic devices or optical devices, for example, switch members such as portable devices, home appliances, and control devices It can be used as Specifically, members such as mobile phones, gaming machines, mobile devices, touch panels, car navigation systems, watches, calculators, televisions, personal computers (for example, key top sheets, key mat sheets, light guide sheets, reflective sheets, OCA It is also useful as a tape (such as high transparency adhesive transfer tape or coreless tape for optics).
 特に、本発明の架橋体は、高い透明性と低温軟化性と耐熱性とを両立する新規な特性を有する材料であり、光学封止材料(例えば、OCAテープ、有機エレクトロルミネッセンス(EL)封止剤など)に特に適している。 In particular, the cross-linked body of the present invention is a material having a novel property of achieving both high transparency, low temperature softening property and heat resistance, and an optical sealing material (for example, OCA tape, organic electroluminescence (EL) sealing) Especially suitable for

Claims (14)

  1.  鎖状オレフィンと環状オレフィンとを重合成分とする鎖状オレフィン-環状オレフィン共重合体の架橋体であって、
     前記環状オレフィンが二環式オレフィンを含み、
     前記環状オレフィンの割合が、前記鎖状オレフィンと前記環状オレフィンとの合計に対して15モル%を超え、40モル%以下であり、かつ
     前記鎖状オレフィン-環状オレフィン共重合体のガラス転移温度が20~80℃である架橋体。
    A crosslinked product of a chain olefin-cyclic olefin copolymer comprising a chain olefin and a cyclic olefin as a polymerization component,
    The cyclic olefin comprises a bicyclic olefin,
    The proportion of the cyclic olefin is more than 15 mol% and 40 mol% or less based on the total of the chain olefin and the cyclic olefin, and the glass transition temperature of the chain olefin-cyclic olefin copolymer is Crosslinked body at 20-80 ° C.
  2.  鎖状オレフィンと環状オレフィンとを重合成分とする鎖状オレフィン-環状オレフィン共重合体の架橋体であって、
     前記環状オレフィンが二環式オレフィンを含み、
     前記環状オレフィンの割合が、前記鎖状オレフィンと前記環状オレフィンとの合計に対して15モル%を超え、40モル%以下であり、かつ
     前記鎖状オレフィン-環状オレフィン共重合体の結晶化度が1%以下である架橋体。
    A crosslinked product of a chain olefin-cyclic olefin copolymer comprising a chain olefin and a cyclic olefin as a polymerization component,
    The cyclic olefin comprises a bicyclic olefin,
    The proportion of the cyclic olefin is more than 15 mol% and 40 mol% or less with respect to the total of the chain olefin and the cyclic olefin, and the crystallinity of the chain olefin-cyclic olefin copolymer is Crosslinked body having 1% or less.
  3.  鎖状オレフィン-環状オレフィン共重合体の結晶化度が0.5%以下である請求項1又は2記載の架橋体。 The crosslinked product according to claim 1 or 2, wherein the crystallinity of the linear olefin-cyclic olefin copolymer is 0.5% or less.
  4.  JIS K7136に準拠したヘーズが2%以下である請求項1~3のいずれかに記載の架橋体。 The crosslinked product according to any one of claims 1 to 3, which has a haze of 2% or less according to JIS K7136.
  5.  鎖状オレフィン-環状オレフィン共重合体のガラス転移温度が30~50℃である請求項1~4のいずれかに記載の架橋体。 The crosslinked product according to any one of claims 1 to 4, wherein the glass transition temperature of the linear olefin-cyclic olefin copolymer is 30 to 50 ° C.
  6.  環状オレフィンがノルボルネン類であり、かつ鎖状オレフィンと環状オレフィンとのモル比が、鎖状オレフィン/環状オレフィン=84/16~75/25である請求項1~5のいずれかに記載の架橋体。 The crosslinked product according to any one of claims 1 to 5, wherein the cyclic olefin is norbornene, and the molar ratio of the chain olefin to the cyclic olefin is chain olefin / cyclic olefin = 84/16 to 75/25. .
  7.  JIS K7127に準拠した厚み100μmにおける破断伸度が100~400%であり、かつトルエンを用いて3時間還流させる方法で測定したゲル分率が70重量%以上である請求項1~6のいずれかに記載の架橋体。 7. The gel composition according to any one of claims 1 to 6, which has a breaking elongation of 100 to 400% at a thickness of 100 μm according to JIS K 7127 and a gel fraction of at least 70% by weight measured by refluxing with toluene for 3 hours. The crosslinked body as described in.
  8.  温度25℃での貯蔵弾性率が100~4000MPa、温度80℃での貯蔵弾性率が0.01~10MPa、架橋点間分子量が8000~30000である請求項1~7のいずれかに記載の架橋体。 The crosslinking according to any one of claims 1 to 7, wherein the storage elastic modulus at a temperature of 25 ° C is 100 to 4000MPa, the storage elastic modulus at a temperature of 80 ° C is 0.01 to 10MPa, and the molecular weight between crosslinking points is 8000 to 30000. body.
  9.  架橋性基を有する樹脂及び架橋剤を実質的に含有しない請求項1~8のいずれかに記載の架橋体。 The crosslinked product according to any one of claims 1 to 8, which does not substantially contain a resin having a crosslinkable group and a crosslinking agent.
  10.  電子線架橋体である請求項1~9のいずれかに記載の架橋体。 The crosslinked body according to any one of claims 1 to 9, which is an electron beam crosslinked body.
  11.  シート状であり、かつ光学素子の封止材料である請求項1~10のいずれかに記載の架橋体。 The crosslinked product according to any one of claims 1 to 10, which is in the form of a sheet and is a sealing material for an optical element.
  12.  鎖状オレフィン-環状オレフィン共重合体を電子線又は放射線で架橋して請求項1記載の架橋体を製造する方法。 A method for producing a crosslinked product according to claim 1, wherein the linear olefin-cyclic olefin copolymer is crosslinked by electron beam or radiation.
  13.  加熱することなく、電子線で架橋する請求項12記載の方法。 The method according to claim 12, wherein the crosslinking is carried out by an electron beam without heating.
  14.  加速電圧150kV以上及び照射線量200kGy以上の電子線で架橋する請求項12又は13記載の方法。 The method according to claim 12 or 13, wherein the crosslinking is performed by an electron beam having an acceleration voltage of 150 kV or more and an irradiation dose of 200 kGy or more.
PCT/JP2012/060849 2011-04-21 2012-04-23 Crosslinked product of cyclic olefin resin, and process for producing same WO2012144644A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012549171A JP5155500B2 (en) 2011-04-21 2012-04-23 Cross-linked product of cyclic olefin resin and method for producing the same
EP12774326.8A EP2700668A1 (en) 2011-04-21 2012-04-23 Crosslinked product of cyclic olefin resin, and process for producing same
US14/113,185 US20140044950A1 (en) 2011-04-21 2012-04-23 Crosslinked product of cyclic olefinic polymer and process for producing the same
KR1020137030455A KR20130136589A (en) 2011-04-21 2012-04-23 Crosslinked product of cyclic olefin resin, and process for producing same
CN201280030648.2A CN103619924A (en) 2011-04-21 2012-04-23 Crosslinked product of cyclic olefin resin, and process for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011095174 2011-04-21
JP2011-095174 2011-04-21

Publications (1)

Publication Number Publication Date
WO2012144644A1 true WO2012144644A1 (en) 2012-10-26

Family

ID=47041739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060849 WO2012144644A1 (en) 2011-04-21 2012-04-23 Crosslinked product of cyclic olefin resin, and process for producing same

Country Status (7)

Country Link
US (1) US20140044950A1 (en)
EP (1) EP2700668A1 (en)
JP (1) JP5155500B2 (en)
KR (1) KR20130136589A (en)
CN (1) CN103619924A (en)
TW (1) TW201302821A (en)
WO (1) WO2012144644A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084836A1 (en) * 2011-12-06 2013-06-13 株式会社ダイセル Sheet-shaped coupling agent, coupling method, and manufacturing method for electronic device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7364672B2 (en) * 2004-12-06 2008-04-29 Arlon, Inc. Low loss prepregs, compositions useful for the preparation thereof and uses therefor
JP6062407B2 (en) * 2013-11-14 2017-01-18 株式会社ダイセル Release film, laminate, method for producing the same, and method for producing fuel cell
US10381177B2 (en) 2016-03-14 2019-08-13 Citizen Electronics Co., Ltd. Push switch, method of manufacturing push switch, and electronic device including push switch

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234924A (en) * 1985-08-08 1987-02-14 Mitsui Petrochem Ind Ltd Crosslinking of cyclic olefin copolymer
JPH06345885A (en) 1993-06-07 1994-12-20 Idemitsu Kosan Co Ltd Method for treating cyclic olefinic resin
JPH11340590A (en) 1998-05-22 1999-12-10 Ibiden Co Ltd Printed wiring board
JPH11340593A (en) * 1998-05-29 1999-12-10 Shin Etsu Polymer Co Ltd Laminate for printed wiring board and its manufacture
JP3274702B2 (en) 1992-03-18 2002-04-15 出光興産株式会社 Multilayer material
JP2002544344A (en) * 1999-05-14 2002-12-24 デュポン ダウ エラストマーズ エルエルシー Highly crystalline EAODM interpolymer
JP2005047991A (en) 2003-07-30 2005-02-24 Nof Corp Platable crosslinking resin composition, crosslinking resin molding and crosslinked resin molding
JP2006274165A (en) * 2005-03-30 2006-10-12 Sumitomo Chemical Co Ltd Cycloolefin-based polymer
JP2006274164A (en) 2005-03-30 2006-10-12 Sumitomo Chemical Co Ltd Method for irradiating moldings of cycloolefine type polymer with radioactive ray
JP2006313660A (en) * 2005-05-06 2006-11-16 Sumitomo Electric Fine Polymer Inc Low dielectric constant molding material
JP2007302871A (en) * 2006-04-10 2007-11-22 Sumitomo Electric Ind Ltd Resin composition, heat-shrinkable tube formed from the same resin composition and electric battery insulated and covered with the same heat-shrinkage tube
JP2008308609A (en) * 2007-06-15 2008-12-25 Achilles Corp Olefin-based resin film
WO2012063855A1 (en) * 2010-11-09 2012-05-18 株式会社ダイセル Crosslinked olefin elastomer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030097915A1 (en) * 2001-10-09 2003-05-29 Chen Paul N. Flexible cutting boards

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234924A (en) * 1985-08-08 1987-02-14 Mitsui Petrochem Ind Ltd Crosslinking of cyclic olefin copolymer
JP3274702B2 (en) 1992-03-18 2002-04-15 出光興産株式会社 Multilayer material
JPH06345885A (en) 1993-06-07 1994-12-20 Idemitsu Kosan Co Ltd Method for treating cyclic olefinic resin
JPH11340590A (en) 1998-05-22 1999-12-10 Ibiden Co Ltd Printed wiring board
JPH11340593A (en) * 1998-05-29 1999-12-10 Shin Etsu Polymer Co Ltd Laminate for printed wiring board and its manufacture
JP2002544344A (en) * 1999-05-14 2002-12-24 デュポン ダウ エラストマーズ エルエルシー Highly crystalline EAODM interpolymer
JP2005047991A (en) 2003-07-30 2005-02-24 Nof Corp Platable crosslinking resin composition, crosslinking resin molding and crosslinked resin molding
JP2006274165A (en) * 2005-03-30 2006-10-12 Sumitomo Chemical Co Ltd Cycloolefin-based polymer
JP2006274164A (en) 2005-03-30 2006-10-12 Sumitomo Chemical Co Ltd Method for irradiating moldings of cycloolefine type polymer with radioactive ray
JP2006313660A (en) * 2005-05-06 2006-11-16 Sumitomo Electric Fine Polymer Inc Low dielectric constant molding material
JP2007302871A (en) * 2006-04-10 2007-11-22 Sumitomo Electric Ind Ltd Resin composition, heat-shrinkable tube formed from the same resin composition and electric battery insulated and covered with the same heat-shrinkage tube
JP2008308609A (en) * 2007-06-15 2008-12-25 Achilles Corp Olefin-based resin film
WO2012063855A1 (en) * 2010-11-09 2012-05-18 株式会社ダイセル Crosslinked olefin elastomer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
POLYMER ENGINEERING AND SCIENCE, vol. 30, no. 13, 1990, pages 753 - 761
See also references of EP2700668A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084836A1 (en) * 2011-12-06 2013-06-13 株式会社ダイセル Sheet-shaped coupling agent, coupling method, and manufacturing method for electronic device

Also Published As

Publication number Publication date
KR20130136589A (en) 2013-12-12
JPWO2012144644A1 (en) 2014-07-28
EP2700668A4 (en) 2014-02-26
TW201302821A (en) 2013-01-16
EP2700668A1 (en) 2014-02-26
CN103619924A (en) 2014-03-05
JP5155500B2 (en) 2013-03-06
US20140044950A1 (en) 2014-02-13

Similar Documents

Publication Publication Date Title
EP2562821A1 (en) Optical semiconductor protective material, precursor for same, and method for manufacturing optical semiconductor protective material
JP5281584B2 (en) Propylene polymer composition
WO2013084836A1 (en) Sheet-shaped coupling agent, coupling method, and manufacturing method for electronic device
JP5155500B2 (en) Cross-linked product of cyclic olefin resin and method for producing the same
JP2009003439A (en) Optical film
KR101201387B1 (en) Cyclic olefin resins flexible substrates with low coefficient of thermal expansion
JP2013067737A (en) Transparent adhesive sheet
US10086588B2 (en) Resin material and resin film
JP5706668B2 (en) Cross-linked olefin elastomer
JPWO2017154718A1 (en) Bonded body, method for producing the same, and sheet comprising modified block copolymer hydride
JP5381939B2 (en) Film made of hydride of norbornene-based ring-opening copolymer
JP5041233B2 (en) Plastic molded product
KR101561939B1 (en) Film for packaging retort food having a gas barrier property
JP2012162668A (en) Vibration-proofing composition and crosslinked product, and method of manufacturing the same
JP2013014729A (en) Transparent film, method for manufacturing the same and method of using the same
JP2007084707A (en) Release film and its manufacturing method
EP1672022A1 (en) Elastomer films and process for production thereof
JP2020121539A (en) Transparent conductive film laminate
KR102006365B1 (en) Pressure-sensitive adhesive film or sheet, surface protecting film or sheet, and method for using pressure-sensitive adhesive film or sheet to protect surface of article
JP2014019858A (en) Resin film for adhesive sheet substrate and pressure sensitive adhesive sheet
WO2023199959A1 (en) Optical layered body, image display panel and image display device
JP7207313B2 (en) Thermoplastic Sheets and Laminates
JP2017178982A (en) Film or sheet
TW200927487A (en) Norbornene-based resin film with hard coating layer and manufacturing method of norbornene-based resin film with hard coating layer
JP2005305834A (en) Laminated body and method for manufacturing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012549171

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012774326

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14113185

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137030455

Country of ref document: KR

Kind code of ref document: A