WO2012144325A1 - Led lighting device and lens for led lighting device - Google Patents

Led lighting device and lens for led lighting device Download PDF

Info

Publication number
WO2012144325A1
WO2012144325A1 PCT/JP2012/059316 JP2012059316W WO2012144325A1 WO 2012144325 A1 WO2012144325 A1 WO 2012144325A1 JP 2012059316 W JP2012059316 W JP 2012059316W WO 2012144325 A1 WO2012144325 A1 WO 2012144325A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
lens
light
light source
lighting device
Prior art date
Application number
PCT/JP2012/059316
Other languages
French (fr)
Japanese (ja)
Inventor
小野雄樹
忍 菅
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Priority to JP2013510935A priority Critical patent/JPWO2012144325A1/en
Publication of WO2012144325A1 publication Critical patent/WO2012144325A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/002Refractors for light sources using microoptical elements for redirecting or diffusing light
    • F21V5/004Refractors for light sources using microoptical elements for redirecting or diffusing light using microlenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to an LED illumination device and a lens for the LED illumination device.
  • FIG. 15 of Patent Document 1 discloses a vehicle headlamp that is not an illumination device but can illuminate a narrow range by combining an LED chip and a microlens array. Therefore, it is conceivable to apply such a configuration to a lighting device.
  • Patent Document 2 discloses a technique for performing a light diffusion process on the entrance surface of a lens in order to alleviate color unevenness.
  • a yellow ring or an image of an LED chip is maintained with a narrow light distribution angle. No means for solving problems such as reflection are described.
  • the present invention has been made in view of such problems of the prior art, and in spite of the fact that the light distribution angle can be kept narrow, a yellow ring is generated in the emitted light or an image of the LED chip is reflected. It is an object of the present invention to provide a lens for an LED lighting device that can suppress the unevenness of illumination and further suppress uneven illuminance and an LED lighting device using the same.
  • the LED illumination device is provided with a plurality of LED light sources, an incident surface on which light emitted from the LED light sources is incident, and light incident from the incident surfaces.
  • the radius of curvature R of the microlens is large and the optical axis interval between the plurality of microlenses is wide, the light distribution angle can be kept narrow, but unevenness occurs in the periphery, and the yellow ring Further, it has been found that there is a problem that images of a plurality of LEDs are reflected. Therefore, by first satisfying the formulas (1) and (2), when a plurality of LED light sources are used, the light distribution angle is suppressed to be small. It is possible to suppress the occurrence or the reflection of the image of the LED chip, and to further suppress the illuminance unevenness. In addition, high efficiency can be maintained without significantly reducing light utilization efficiency.
  • the LED lighting device according to claim 2 is characterized in that, in the invention according to claim 1, the following expression is satisfied. 1.0 ⁇ R / D ⁇ 2.1 (4) However, D: Distance between optical axes of adjacent microlenses (mm)
  • the LED illumination device according to claim 3 is characterized in that, in the invention according to claim 1 or 2, the adjacent microlenses are connected by a curved surface having a radius r (mm).
  • the LED lighting device according to claim 4 is characterized in that, in the invention according to claim 3, the following expression is satisfied.
  • the crossing portion is close to the edge, so that the suppression effect such as scattering may be reduced.
  • the value exceeds the upper limit of the expression (5) the optical surface of the microlens becomes small, and there is a possibility that light rays emitted along the desired light distribution characteristics may be reduced. Therefore, it is preferable to satisfy the range of the formula (5).
  • the strength of the lens itself can be increased by suppressing the edge between the microlenses.
  • the LED illumination device is characterized in that, in the invention according to any one of claims 1 to 4, an outer shape of the microlens is a honeycomb shape.
  • an outer shape of the microlens is a honeycomb shape.
  • the LED illumination device is characterized in that, in the invention according to any one of claims 1 to 5, a light distribution angle of light emitted from the lens is 30 degrees or less.
  • a light distribution angle of light emitted from the lens is 30 degrees or less.
  • the LED illuminating device suitable for the illumination for downlights can be provided.
  • the yellow ring and the LEDs of a plurality of LEDs can be used even in a narrow light distribution angle of 30 degrees or less, which is likely to cause a problem of yellow ring and reflection of images of the LEDs. Since there is no reflection of an image, the effect of the present invention is particularly remarkable.
  • the LED illumination device lens according to claim 7 is used for the LED illumination device according to any one of claims 1 to 6.
  • the LED (Light Emitting Diode) illumination device has an LED light source and a lens.
  • LED light sources can be used, white LEDs are preferably used.
  • the white LED a combination of a blue LED chip and a phosphor such as a YAG phosphor that emits yellow light by blue light emitted from the blue LED chip is preferably used, but a blue LED chip, a green LED chip, and a red LED are used. It may be a white LED that forms white light in combination with a chip.
  • a white LED for example, one described in Japanese Patent Application Laid-Open No. 2008-231218 can be used, but is not limited thereto.
  • the white LED light source in the present invention is specifically composed of an LED chip and a phosphor layer formed on the LED chip so as to cover the LED chip.
  • the LED chip emits light having a first predetermined wavelength. In the present embodiment, the LED chip emits blue light.
  • the wavelength of the LED chip of the present invention and the wavelength of the emitted light from the phosphor are not limited, and the wavelength of the emitted light from the LED chip and the wavelength of the emitted light from the phosphor are in a complementary color relationship and the synthesized light is white. Any combination that provides light can be used.
  • an LED chip a known blue LED chip can be used.
  • the blue LED chip any existing one including InxGa1-xN can be used.
  • the emission peak wavelength of the blue LED chip is preferably 440 to 480 nm.
  • the LED chip is mounted on the substrate and directly radiated upward or sideward, or the blue LED chip is mounted on a transparent substrate such as a sapphire substrate, and bumps are formed on the surface thereof. Any form of LED chip, such as a so-called flip chip connection type, in which it is formed and turned over and connected to an electrode on a substrate, can be applied.
  • the phosphor layer has a phosphor that converts light having a first predetermined wavelength emitted from the LED chip into a second predetermined wavelength. In an embodiment described later, blue light emitted from the LED chip is converted into yellow light.
  • the phosphor used for such a phosphor layer uses an oxide or a compound that easily becomes an oxide at a high temperature as a raw material of Y, Gd, Ce, Sm, Al, La and Ga, and converts them into a stoichiometric amount.
  • the raw material is obtained by thoroughly mixing in a theoretical ratio.
  • a coprecipitated oxide obtained by calcining a solution obtained by coprecipitation of oxalic acid with a solution obtained by dissolving a rare earth element of Y, Gd, Ce, and Sm in an acid at a stoichiometric ratio, and aluminum oxide and gallium oxide. Mix to obtain a mixed raw material.
  • the compact can be packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body having the phosphor emission characteristics.
  • each of the plurality of LED chips may be arranged symmetrically with respect to the optical axis of the lens or may be arranged asymmetrically.
  • the diameter of the smallest circle C1 circumscribing the LED chip CP and as shown in FIG.
  • the larger one of the diameters of the yellow phosphor YEL when the yellow phosphor YEL is circular is defined as the diameter ⁇ 1 of the LED light source.
  • the diameter of the smallest circumscribed circle is the diameter ⁇ 1 of the LED light source.
  • the LED light source is preferably a high-power LED light source.
  • the high-power LED light source can be constituted by an LED having an output of 0.5 watts or more.
  • the lens is disposed on the light emission side of the LED light source, the incident surface on which the emitted light from the LED light source is incident, the reflective surface that reflects the light incident from the incident surface, and the emitted light from the LED light source to the outside It has an exit surface that emits light. Further, the incident surface of the lens and the LED light source are not in contact with each other. The space between the lens incident surface and the LED light source is preferably filled with air.
  • the incident surface of the lens is preferably a lens surface having a positive refractive power, but may be a flat surface.
  • the lens shape of the entrance surface of the lens is a convex shape. Furthermore, the shape of the incident surface may be an aspherical shape.
  • the exit surface of the lens consists of an inner region where a lens array in which a plurality of microlenses are arranged and an outer region consisting of a flat surface.
  • the reflecting surface of the lens is preferably disposed between the entrance surface and the exit surface, and has a shape that reflects the light incident from the entrance surface and emits it from the exit surface, for example, using total reflection.
  • a reflective film or the like may be formed on the reflective surface.
  • the lens is supported by the leg and may have a recess.
  • the concave portion preferably has an incident surface and a side incident surface, which are preferably smooth surfaces, but may be subjected to light diffusion treatment.
  • the incident surface is formed to face the LED light source with respect to the optical axis direction of the lens
  • the side surface incident surface is formed to face the LED light source with respect to the direction perpendicular to the optical axis of the lens. ing.
  • the incident surface and the side incident surface are not in contact with the LED light source.
  • the LED light source is enclosed by the recessed part, and, thereby, the light radiate
  • the lens may have a shape for positioning on the wiring board.
  • a shape for positioning the shape which provided the recessed part in the lens as mentioned above, and the shape which provided the convex part are mentioned.
  • a surface may be formed on a partial surface of the concave portion of the lens so that a part of the light incident on the lens is totally reflected to guide the light to the front end side of the lens.
  • the lens is preferably made of plastic.
  • plastic for example, polycarbonate or acrylic can be used as the plastic constituting the lens.
  • polycarbonate or acrylic By using polycarbonate or acrylic, it can be manufactured by injection molding, and the manufacturing cost can be greatly reduced.
  • a reflector may be disposed between the LED light source and the lens.
  • the reflector reflects light emitted from the LED light source, and the reflector preferably has a reflecting surface.
  • the angle with respect to the optical axis that is half the light intensity on the optical axis of the lens is called a half-value half-angle, and twice that angle. Is called full width at half maximum.
  • the light distribution angle means a full width at half maximum.
  • lighting fixtures equipped with LED lighting devices it is suitable for indoor and outdoor use, especially for downlights, but for other uses, general lighting fixtures (laser pointers, indicators, etc.), residential use Lighting fixtures, office lighting fixtures, store / exhibit lighting fixtures, street lamp lighting fixtures, guide lamp fixtures and signaling devices, advertising towers, lighting poles, underwater lighting lights, strobe lights, spotlights, flashlights , Electronic bulletin boards (sign boards), dimmers, automatic flashers, backlights for displays, moving picture devices, illuminated switches, optical sensors, medical lights, in-vehicle lights, and the like.
  • general lighting fixtures laser pointers, indicators, etc.
  • residential use Lighting fixtures office lighting fixtures, store / exhibit lighting fixtures, street lamp lighting fixtures, guide lamp fixtures and signaling devices, advertising towers, lighting poles, underwater lighting lights, strobe lights, spotlights, flashlights , Electronic bulletin boards (sign boards), dimmers, automatic flashers, backlights for displays, moving picture devices, illuminated switches, optical sensors, medical lights, in-vehicle lights,
  • the present invention despite the fact that the light distribution angle can be kept narrow, it is possible to suppress the occurrence of yellow ring in the emitted light or the image of the LED chip being reflected, and further to suppress illuminance unevenness, It is possible to provide a lens for a bright LED lighting device that can maintain high light utilization efficiency and an LED lighting device using the same.
  • FIG. 2 is a view of the LED illumination device according to the present embodiment as viewed from the exit surface side.
  • FIG. 3 is a view of the configuration of FIG. 2 taken along line III-III and viewed in the direction of the arrow.
  • FIG. 4 is an enlarged cross-sectional view of the microlens.
  • the LED lighting device according to the present embodiment includes a lens 1 and an LED light source 2.
  • the circuit board CB includes a substrate main body BS made of aluminum, an insulating layer IL stacked on the substrate main body BS, and a wiring pattern HP made of a conductor such as Cu formed on the insulating layer IL. It is roughly composed of A plurality of LED chips CP are connected in parallel to the wiring pattern HP.
  • the LED chip CP is completely covered with a plate-shaped molded phosphor-containing transparent resin body YEL (phosphor-containing transparent resin), and all the light emitted from the LED chip CP is phosphor-containing transparent. It is configured to pass through the resin body YEL.
  • a blue light emitting diode is used as the LED chip CP
  • a yellow phosphor is used as the phosphor contained in the phosphor-containing transparent resin, whereby white light can be emitted.
  • the plurality of LED chips CP are arranged as shown in FIG. 1A, for example, and constitute the LED light source 2 as described above.
  • the diameter of the LED light source 2 is ⁇ 1 (mm).
  • the lens 1 uses polycarbonate or acrylic as plastic. Further, the lens 1 is disposed on the light emission side of the LED light source 2 and has an incident surface 3 on which emitted light from the LED light source 2 is incident and a parabolic surface that reflects part of the light incident from the incident surface. Reflection surface 8 and an emission surface 5 for emitting emitted light to the outside.
  • the emission surface 5 includes a circular inner region 5a in which a lens array LA in which a plurality of microlenses MS are arranged is formed, and an annular outer region 5b having a flat surface.
  • the diameter of the inner region is ⁇ 3 (mm), and the diameter of the emission surface 5 is ⁇ 2 (mm). At this time, the following expression is satisfied. 3 ⁇ ⁇ 2 / ⁇ 1 ⁇ 5 (1) 0.6 ⁇ ⁇ 3 / ⁇ 2 ⁇ 0.9 (2)
  • adjacent microlenses MS are in contact with each other, and the outer shape thereof is a hexagonal shape.
  • FIG. 4 is an enlarged view showing a cross section of the lens array.
  • the microlenses MS have the same radius of curvature R (mm).
  • the distance between the optical axes of adjacent microlenses MS is D (mm).
  • the following expression is satisfied. 1.0 (mm) ⁇ R ⁇ 2.0 (mm) (3) 1 ⁇ 0 ⁇ R / D ⁇ 2.1 (4)
  • the lens 1 has a leg portion 7 having a recess 6 therein, and the recess 6 has an incident surface 3 and a side incident surface 4.
  • the incident surface 3, the side surface incident surface 4, and the LED light source 2 are not in contact with each other, and the periphery of the LED light source 2 is surrounded by the side surface incident surface 4.
  • the light emitted from the LED light source 2 is incident from the side incident surface 4 or the incident surface 3. Further, the light incident from the incident surface 3 is refracted and collected by the convex incident surface 3 and travels toward the output surface 5, and the light incident from the side surface incident surface 4 is reflected by the reflecting surface 8. Heading to the exit surface 5. After that, a part of the light is appropriately scattered by the lens array LA in the inner region 5a of the convex emission surface 5 and emitted to the outside, thereby suppressing the yellow ring and clearly displaying the image of the LED chip. In addition, illuminance unevenness is further suppressed.
  • the remaining light passes through the outer region 5b, is controlled to have a light distribution angle as narrow as within 30 degrees, and is emitted to the outside of the lens 1.
  • FIG. 5 is an enlarged view showing a processing state of a mold for molding a lens according to another embodiment.
  • the tool GT has a polished surface TP formed of a part of a spherical surface with a radius R that is rotationally symmetric with respect to the rotation axis X on the lower surface. While the tool GT is rotated about the rotation axis X, the polishing surface TP is brought close to the mold material M, and one molding surface RP that is a spherical surface having a radius R is formed. Thereafter, the tool T is moved in the direction intersecting the rotation axis X by a pitch D together with a drive source (not shown), and the adjacent forming surface RP is similarly processed and formed.
  • the boundary portion BD is stroked on the polishing surface TP so that the boundary portion BD of the molding surface RP becomes a curved surface having a radius r (moved in an arc shape as indicated by an arrow in the plane of FIG. 5). Then, the tool GT and a drive source (not shown) are moved. By repeating the above, a plurality of molding surfaces RP can be molded.
  • FIG. 6 is an enlarged cross-sectional view of a lens molded by the mold thus formed.
  • the microlens MS is transferred and formed by the molding surface RP of the mold, and the curved connecting surface is formed between the microlenses MS by the boundary portion BD.
  • CT is transferred and formed.
  • adjacent microlenses MS are connected to each other by a curved connecting surface CT having a radius r (mm), so that when such a lens is used for an LED illumination device, scattering of emitted light and the like are performed. It is possible to suppress illuminance and light utilization efficiency. Further, by eliminating the edge between the microlenses MS, the stress concentration can be relaxed and the strength of the lens itself can be increased. According to the examination results of the present inventors, it has been found that the strength is improved by about 6% with respect to a lens having an edge between the microlenses MS.
  • FIG. 7 is an enlarged view showing a processing state of a mold for molding a lens according to still another embodiment.
  • the tool GT approaches the mold material M perpendicularly, is processed by a predetermined amount, is separated, and is further moved at a constant pitch in a direction perpendicular to the rotation axis.
  • the molding surface RP arranged in a honeycomb shape is formed by making it approach perpendicularly again with respect to the material M of the mold again, similarly processing a predetermined amount, and then separating it.
  • the space between the adjacent molding surfaces RP remains as an edge.
  • the cutting tool BT is moved closer to the predetermined amount and further moved in the radial direction to cut the edge between the molding surfaces RP, and the flat boundary.
  • the surface BD can be formed.
  • FIG. 8 is an enlarged cross-sectional view of a lens molded by the mold thus formed.
  • the microlens MS is transferred and formed by the molding surface RP of the mold, and the planar connecting surface is formed between the microlenses MS by the boundary surface BD.
  • CT is transferred and formed. Thereby, scattering of emitted light and the like can be suppressed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

Provided are a lens for an LED lighting device that can suppress the arising of a yellow ring in output light and projecting of the image of the LED chip even though the angle of light distribution can be kept narrow and, further, suppress variations in brightness and an LED lighting device using the same. An output surface (5) of a lens (1) is formed from an inside region (5a), in which a lens array (LA) in which a plurality of microlenses (MS) is arranged, and an outside region (5b) formed from a flat surface and satisfies the following equations. 3 ≤ ø2/ø1 ≤ 5 (1) 0.6 ≤ ø3/ø2 ≤ 0.9 (2) 1.0 (mm) ≤ R ≤ 2.0 (mm) (3) Wherein, ø1: diameter (mm) of LED light source ø2: diameter (mm) of output surface ø3: diameter (mm) of an inside region R: radius (mm) of curvature of microlens

Description

LED照明装置及びLED照明装置用レンズLED lighting device and LED lighting device lens
 本発明は、LED照明装置及びLED照明装置用レンズに関する。 The present invention relates to an LED illumination device and a lens for the LED illumination device.
 近年、LEDを搭載したLED照明装置が注目されている。ところで、照明装置の一種に、ダウンビームを照射するダウンライトがあるが、ダウンライトの仕様として、配光角を例えば30度以内に狭くしなくてはならないので、複数個のLEDを光源として用いる場合には、どのようなレンズを用いるかが問題となる。ここで、特許文献1の図15には、照明装置ではないが、LEDチップとマイクロレンズアレイを組み合わせて、狭い範囲を照明できる車両の前照灯が開示されている。よって、かかる構成を照明装置に応用することも考えられる。 In recent years, LED lighting devices equipped with LEDs have attracted attention. By the way, there is a downlight that irradiates a down beam as a kind of lighting device. However, as a specification of the downlight, a light distribution angle must be narrowed within, for example, 30 degrees, so a plurality of LEDs are used as a light source. In some cases, what kind of lens is used becomes a problem. Here, FIG. 15 of Patent Document 1 discloses a vehicle headlamp that is not an illumination device but can illuminate a narrow range by combining an LED chip and a microlens array. Therefore, it is conceivable to apply such a configuration to a lighting device.
特開2008-305802号公報JP 2008-305802 A 特開2007-5218号公報JP 2007-5218 A
 しかしながら、本発明者の検討結果によれば、照明装置において、より強い出射光を得るために複数のLEDチップを光源として用いた場合、これとマイクロレンズアレイとを組み合わせることによって、一つの問題が生じることがわかった。より具体的には、レンズアレイを構成するマイクロレンズの曲率半径を大きく且つ、マイクロレンズアレイの間隔を広げた場合、つまりマイクロレンズアレイ1つ当たりの面積を大きくすると、配光角を狭く保ちやすくダウンライト用照明に好適になるが、出射光にイエローリングが生じ、またLEDチップの像が写り込み、照度ムラが生じやすくなるという問題である。一方、特許文献2には、色ムラを緩和するためにレンズの入射面に光拡散処理を施す技術が開示されているが、配光角を狭くしたまま、イエローリングや、LEDチップの像の写り込み等の課題について解決する手段は一切記載されていない。 However, according to the examination results of the present inventors, when a plurality of LED chips are used as the light source in the lighting device in order to obtain stronger emitted light, there is one problem by combining this with a microlens array. I found it to happen. More specifically, if the radius of curvature of the microlens constituting the lens array is increased and the interval between the microlens arrays is increased, that is, if the area per microlens array is increased, the light distribution angle can be easily kept narrow. Although it is suitable for illumination for downlights, there is a problem that yellow ring occurs in the emitted light, and an image of the LED chip is reflected, and uneven illuminance is likely to occur. On the other hand, Patent Document 2 discloses a technique for performing a light diffusion process on the entrance surface of a lens in order to alleviate color unevenness. However, a yellow ring or an image of an LED chip is maintained with a narrow light distribution angle. No means for solving problems such as reflection are described.
 本発明は、かかる従来技術の問題点に鑑みてなされたものであり、配光角を狭く抑えることができるにも関わらず、出射光にイエローリングが生じたり、LEDチップの像が写り込んだりすることを抑制でき、更に照度ムラを抑制できるLED照明装置用のレンズ及びそれを用いたLED照明装置を提供することを目的とする。 The present invention has been made in view of such problems of the prior art, and in spite of the fact that the light distribution angle can be kept narrow, a yellow ring is generated in the emitted light or an image of the LED chip is reflected. It is an object of the present invention to provide a lens for an LED lighting device that can suppress the unevenness of illumination and further suppress uneven illuminance and an LED lighting device using the same.
 請求項1に記載のLED照明装置は、複数のLED光源と、前記LED光源の光放出側に配置され、前記LED光源からの発光光が入射する入射面と、前記入射面から入射した光を反射する反射面と、前記発光光を外部に放出する出射面とを備えたレンズを有し、前記レンズの出射面は、複数のマイクロレンズを並べたレンズアレイを形成した内側領域と、平坦な面からなる外側領域とからなり、以下の式を満たすことを特徴とする。
 3≦φ2/φ1≦5   (1)
 0.6≦φ3/φ2≦0.9   (2)
 1.0(mm)≦R≦2.0(mm)   (3)
但し、
φ1:前記LED光源の直径(mm)
φ2:前記出射面の直径(mm)
φ3:前記内側領域の直径(mm)
R:前記マイクロレンズの曲率半径(mm)
The LED illumination device according to claim 1 is provided with a plurality of LED light sources, an incident surface on which light emitted from the LED light sources is incident, and light incident from the incident surfaces. A lens having a reflecting surface for reflecting and an emitting surface for emitting the emitted light to the outside, the emitting surface of the lens having an inner region where a lens array in which a plurality of microlenses are arranged is formed, and a flat surface It consists of the outer area | region which consists of a surface, and is characterized by satisfy | filling the following formula | equation.
3 ≦ φ2 / φ1 ≦ 5 (1)
0.6 ≦ φ3 / φ2 ≦ 0.9 (2)
1.0 (mm) ≦ R ≦ 2.0 (mm) (3)
However,
φ1: Diameter of the LED light source (mm)
φ2: Diameter of the exit surface (mm)
φ3: Diameter of the inner region (mm)
R: radius of curvature of the microlens (mm)
 本発明者の検討結果によれば、マイクロレンズの曲率半径Rが大きく、複数のマイクロレンズ間の光軸間隔が広いと配光角を狭く保てるが、周辺にムラが発生してしまい、イエローリングも発生し、更には複数のLEDの像が写り込んでしまうという課題が発生することがわかった。そこで、まず(1)式及び(2)式を満たすことで、複数のLED光源を用いた場合に、配光角を小さく抑え、更に(3)式を満たすことで、出射光にイエローリングが生じたり、LEDチップの像が写り込んだりすることを抑制でき、更に照度ムラを抑制できるようにしたのである。また、光利用効率も大きく低下させることなく、高効率を維持できる。 According to the results of the study by the present inventor, if the radius of curvature R of the microlens is large and the optical axis interval between the plurality of microlenses is wide, the light distribution angle can be kept narrow, but unevenness occurs in the periphery, and the yellow ring Further, it has been found that there is a problem that images of a plurality of LEDs are reflected. Therefore, by first satisfying the formulas (1) and (2), when a plurality of LED light sources are used, the light distribution angle is suppressed to be small. It is possible to suppress the occurrence or the reflection of the image of the LED chip, and to further suppress the illuminance unevenness. In addition, high efficiency can be maintained without significantly reducing light utilization efficiency.
 請求項2に記載のLED照明装置は、請求項1に記載の発明において、以下の式を満たすことを特徴とする。
 1.0≦R/D≦2.1   (4)
但し、
D:隣接する前記マイクロレンズの光軸間距離(mm)
The LED lighting device according to claim 2 is characterized in that, in the invention according to claim 1, the following expression is satisfied.
1.0 ≦ R / D ≦ 2.1 (4)
However,
D: Distance between optical axes of adjacent microlenses (mm)
 請求項3に記載のLED照明装置は、請求項1又は2に記載の発明において、隣接する前記マイクロレンズ同士は、半径r(mm)の曲面により接続されていることを特徴とする。 The LED illumination device according to claim 3 is characterized in that, in the invention according to claim 1 or 2, the adjacent microlenses are connected by a curved surface having a radius r (mm).
 本発明者の研究により、隣接する前記マイクロレンズの光学面の交差部(境界)がエッジであると、光の散乱などが生じ出射光のロスが生じることが判明した。かかる知見により、隣接する前記マイクロレンズ同士を半径r(mm)の曲面により接続することで、散乱等を抑制し、照度低下や光の利用効率低下を抑制できることが見出された。 According to the research of the present inventor, it has been found that when the intersection (boundary) of the optical surfaces of the adjacent microlenses is an edge, light scattering occurs and a loss of emitted light occurs. From this knowledge, it has been found that by connecting adjacent microlenses with curved surfaces having a radius r (mm), scattering and the like can be suppressed, and a decrease in illuminance and a decrease in light utilization efficiency can be suppressed.
 請求項4に記載のLED照明装置は、請求項3に記載の発明において、以下の式を満たすことを特徴とする。
 R/20(mm)≦r≦R/10(mm)   (5)
The LED lighting device according to claim 4 is characterized in that, in the invention according to claim 3, the following expression is satisfied.
R / 20 (mm) ≦ r ≦ R / 10 (mm) (5)
 (5)式の下限を下回ると、交差部がエッジに近くなるので、散乱等の抑制効果が低くなる恐れがある。一方、(5)式の上限を上回ると、マイクロレンズの光学面が小さくなり、所望の配光特性に沿って出射する光線が少なくなる恐れがある。従って、(5)式の範囲を満たすのが好ましい。加えて、マイクロレンズ間のエッジを抑えることで、レンズ自体の強度を高めることもできる。 If the lower limit of the expression (5) is not reached, the crossing portion is close to the edge, so that the suppression effect such as scattering may be reduced. On the other hand, if the value exceeds the upper limit of the expression (5), the optical surface of the microlens becomes small, and there is a possibility that light rays emitted along the desired light distribution characteristics may be reduced. Therefore, it is preferable to satisfy the range of the formula (5). In addition, the strength of the lens itself can be increased by suppressing the edge between the microlenses.
 請求項5に記載のLED照明装置は、請求項1~4のいずれかに記載の発明において、前記マイクロレンズの外形はハニカム形状であることを特徴とする。マイクロレンズの光軸同士を近接させると、マイクロレンズの光学面同士が重なり合うことにより、マイクロレンズの外形がハニカム形状となる。逆に言えば、マイクロレンズの外形をハニカム形状にすることにより、前記マイクロレンズの光軸間隔を狭く抑えることができる。 The LED illumination device according to claim 5 is characterized in that, in the invention according to any one of claims 1 to 4, an outer shape of the microlens is a honeycomb shape. When the optical axes of the microlenses are brought close to each other, the optical surfaces of the microlenses overlap with each other, so that the outer shape of the microlens becomes a honeycomb shape. In other words, by making the outer shape of the microlens into a honeycomb shape, the optical axis interval of the microlens can be reduced.
 請求項6に記載のLED照明装置は、請求項1~5のいずれかに記載の発明において、前記レンズから出射する出射光の配光角は、30度以下であることを特徴とする。これによりダウンライト用の照明に好適なLED照明装置を提供できる。特に、本発明のレンズを使用すれば、イエローリングや複数のLEDの像の写りこみという課題が発生しやすい配光角が30度以下という狭い配光角においても、イエローリングや複数のLEDの像の写り込みがないため、特に本発明の効果が顕著となる。 The LED illumination device according to claim 6 is characterized in that, in the invention according to any one of claims 1 to 5, a light distribution angle of light emitted from the lens is 30 degrees or less. Thereby, the LED illuminating device suitable for the illumination for downlights can be provided. In particular, when the lens of the present invention is used, the yellow ring and the LEDs of a plurality of LEDs can be used even in a narrow light distribution angle of 30 degrees or less, which is likely to cause a problem of yellow ring and reflection of images of the LEDs. Since there is no reflection of an image, the effect of the present invention is particularly remarkable.
 請求項7に記載のLED照明装置用レンズは、請求項1~6のいずれかに記載のLED照明装置に用いることを特徴とする。 The LED illumination device lens according to claim 7 is used for the LED illumination device according to any one of claims 1 to 6.
 本発明に係るLED(Light Emitting Diode)照明装置は、LED光源と、レンズと、を有するものである。 The LED (Light Emitting Diode) illumination device according to the present invention has an LED light source and a lens.
 LED光源としては、様々なものを用いることが出来るが、白色LEDが好ましく用いられる。 Although various LED light sources can be used, white LEDs are preferably used.
 白色LEDとしては、青色LEDチップと青色LEDチップから発せられた青色光線によって黄色に発光するYAG蛍光体等の蛍光体を組み合わせたものが好ましく用いられるが、青色LEDチップ、緑色LEDチップ及び赤色LEDチップとを組み合わせて白色光を形成する白色LEDであってもよい。白色LEDとしては、例えば特開2008-231218号公報に記載されたものを用いることができるが、これに限られない。 As the white LED, a combination of a blue LED chip and a phosphor such as a YAG phosphor that emits yellow light by blue light emitted from the blue LED chip is preferably used, but a blue LED chip, a green LED chip, and a red LED are used. It may be a white LED that forms white light in combination with a chip. As the white LED, for example, one described in Japanese Patent Application Laid-Open No. 2008-231218 can be used, but is not limited thereto.
 本発明における白色LED光源は、具体的には、LEDチップと、LEDチップを覆うようにしてその上に形成された蛍光体層から構成されている。LEDチップは、第1の所定波長の光を出射するものであり、本実施の形態においては青色光を出射するようになっている。但し、本発明のLEDチップの波長及び蛍光体の出射光の波長は限定されず、LEDチップによる出射光の波長と、蛍光体による出射光の波長とが補色関係にあり合成された光が白色光となる組合せであればものであれば、使用可能である。 The white LED light source in the present invention is specifically composed of an LED chip and a phosphor layer formed on the LED chip so as to cover the LED chip. The LED chip emits light having a first predetermined wavelength. In the present embodiment, the LED chip emits blue light. However, the wavelength of the LED chip of the present invention and the wavelength of the emitted light from the phosphor are not limited, and the wavelength of the emitted light from the LED chip and the wavelength of the emitted light from the phosphor are in a complementary color relationship and the synthesized light is white. Any combination that provides light can be used.
 なお、このようなLEDチップとしては、公知の青色LEDチップを用いることができる。青色LEDチップとしては、InxGa1-xN系をはじめ既存のあらゆるものを使用することができる。青色LEDチップの発光ピーク波長は440~480nmのものが好ましい。また、LEDチップの形態としては、基板上にLEDチップを実装し、そのまま上方または側方に放射させるタイプ、又は、サファイア基板などの透明基板上に青色LEDチップを実装し、その表面にバンプを形成した後、裏返して基板上の電極と接続する、いわゆるフリップチップ接続タイプなど、どのような形態のLEDチップでも適用することが可能である。 In addition, as such an LED chip, a known blue LED chip can be used. As the blue LED chip, any existing one including InxGa1-xN can be used. The emission peak wavelength of the blue LED chip is preferably 440 to 480 nm. In addition, as a form of the LED chip, the LED chip is mounted on the substrate and directly radiated upward or sideward, or the blue LED chip is mounted on a transparent substrate such as a sapphire substrate, and bumps are formed on the surface thereof. Any form of LED chip, such as a so-called flip chip connection type, in which it is formed and turned over and connected to an electrode on a substrate, can be applied.
 蛍光体層は、LEDチップから出射される第1の所定波長の光を第2の所定波長に変換する蛍光体を有している。後述する実施の形態では、LEDチップから出射される青色光を黄色光に変換するようになっている。 The phosphor layer has a phosphor that converts light having a first predetermined wavelength emitted from the LED chip into a second predetermined wavelength. In an embodiment described later, blue light emitted from the LED chip is converted into yellow light.
 このような蛍光体層に用いられる蛍光体は、Y、Gd、Ce、Sm、Al、La及びGaの原料として酸化物、又は高温で容易に酸化物になる化合物を使用し、それらを化学量論比で十分に混合して原料を得る。又は、Y、Gd、Ce、Smの希土類元素を化学量論比で酸に溶解した溶解液を蓚酸で共沈したものを焼成して得られる共沈酸化物と、酸化アルミニウム、酸化ガリウムとを混合して混合原料を得る。これにフラックスとしてフッ化アンモニウム等のフッ化物を適量混合して加圧し成形体を得る。成形体を坩堝に詰め、空気中1350~1450℃の温度範囲で2~5時間焼成して、蛍光体の発光特性を持った焼結体を得ることができる。 The phosphor used for such a phosphor layer uses an oxide or a compound that easily becomes an oxide at a high temperature as a raw material of Y, Gd, Ce, Sm, Al, La and Ga, and converts them into a stoichiometric amount. The raw material is obtained by thoroughly mixing in a theoretical ratio. Alternatively, a coprecipitated oxide obtained by calcining a solution obtained by coprecipitation of oxalic acid with a solution obtained by dissolving a rare earth element of Y, Gd, Ce, and Sm in an acid at a stoichiometric ratio, and aluminum oxide and gallium oxide. Mix to obtain a mixed raw material. An appropriate amount of fluoride such as ammonium fluoride is mixed with this as a flux and pressed to obtain a molded body. The compact can be packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body having the phosphor emission characteristics.
 また、複数のLEDチップ各々を、レンズの光軸に対して対称に配置しても良いし、非対称に配置しても良い。ここで、図1(a)に示すように、LED光源を複数のLEDチップを用いて構成した場合、LEDチップCPに外接する最小の円C1の直径、また図1(b)に示すように、黄色蛍光体YELが円形である場合における黄色蛍光体YELの直径のうち、いずれか大きい方をLED光源の直径φ1とする。黄色蛍光体YELが多角形である場合は、その最小の外接円の直径をLED光源の直径φ1とする。 Further, each of the plurality of LED chips may be arranged symmetrically with respect to the optical axis of the lens or may be arranged asymmetrically. Here, when the LED light source is configured by using a plurality of LED chips as shown in FIG. 1A, the diameter of the smallest circle C1 circumscribing the LED chip CP, and as shown in FIG. The larger one of the diameters of the yellow phosphor YEL when the yellow phosphor YEL is circular is defined as the diameter φ1 of the LED light source. When the yellow phosphor YEL has a polygonal shape, the diameter of the smallest circumscribed circle is the diameter φ1 of the LED light source.
 LED光源は、高出力LED光源であることが好ましい。ここで、高出力LED光源としては、出力が0.5ワット以上のLEDにより構成することができる。 The LED light source is preferably a high-power LED light source. Here, the high-power LED light source can be constituted by an LED having an output of 0.5 watts or more.
 レンズは、LED光源の光放出側に配置されており、LED光源からの発光光が入射する入射面と、入射面から入射した光を反射する反射面と、LED光源からの発光光を外部に出射する出射面を有する。また、レンズの入射面とLED光源は非接触となっている。
レンズ入射面とLED光源との間は空気により充填されていることが好ましい。
The lens is disposed on the light emission side of the LED light source, the incident surface on which the emitted light from the LED light source is incident, the reflective surface that reflects the light incident from the incident surface, and the emitted light from the LED light source to the outside It has an exit surface that emits light. Further, the incident surface of the lens and the LED light source are not in contact with each other.
The space between the lens incident surface and the LED light source is preferably filled with air.
 レンズの入射面としては、正の屈折力を有するレンズ面により構成されていることが好ましいが、平面であってもよい。レンズの入射面のレンズ形状は凸形状である。さらに、入射面の形状を非球面形状としても良い。 The incident surface of the lens is preferably a lens surface having a positive refractive power, but may be a flat surface. The lens shape of the entrance surface of the lens is a convex shape. Furthermore, the shape of the incident surface may be an aspherical shape.
 レンズの出射面は、複数のマイクロレンズを並べたレンズアレイを形成した内側領域と、平坦な面からなる外側領域とからなる。レンズの反射面は、入射面と出射面の間に配置され、例えば全反射を利用して、入射面から入射した光を反射して出射面から出射させる形状を有すると好ましい。反射面に反射膜等を成膜しても良い。 The exit surface of the lens consists of an inner region where a lens array in which a plurality of microlenses are arranged and an outer region consisting of a flat surface. The reflecting surface of the lens is preferably disposed between the entrance surface and the exit surface, and has a shape that reflects the light incident from the entrance surface and emits it from the exit surface, for example, using total reflection. A reflective film or the like may be formed on the reflective surface.
 レンズは、脚部により支持されてなり、凹部を有していても良い。また、凹部は、入射面と側面入射面を有していることが好ましく、これらは平滑面であることが望ましいが、光拡散処理を施してもよい。ここで、入射面は、レンズの光軸方向に対してLED光源と対向するように形成されており、側面入射面は、レンズの光軸垂直方向に対してLED光源と対向するように形成されている。また、入射面及び側面入射面とLED光源は非接触とすることが好ましい。また、LED光源が凹部により囲まれていることが好ましく、これにより、LED光源から出射された光をレンズによって効率良く取り出すことができる。さらに、レンズに凹部を設けることにより、レンズの配線基板への取り付けをより容易にすることが可能となる。 The lens is supported by the leg and may have a recess. The concave portion preferably has an incident surface and a side incident surface, which are preferably smooth surfaces, but may be subjected to light diffusion treatment. Here, the incident surface is formed to face the LED light source with respect to the optical axis direction of the lens, and the side surface incident surface is formed to face the LED light source with respect to the direction perpendicular to the optical axis of the lens. ing. Further, it is preferable that the incident surface and the side incident surface are not in contact with the LED light source. Moreover, it is preferable that the LED light source is enclosed by the recessed part, and, thereby, the light radiate | emitted from the LED light source can be efficiently taken out with a lens. Further, by providing the lens with a concave portion, it is possible to make it easier to attach the lens to the wiring board.
 レンズは配線基板への位置決めのための形状を有していても良い。位置決めのための形状として、上述したようなレンズに凹部を設けた形状や、凸部を設けた形状が挙げられる。このような、配線基板への位置決めのための形状をレンズに設けることにより、レンズの配線基板への取り付けをより容易にすることができる。また、配線基板への位置決めのための形状をレンズに設けることにより、レンズの配線基板への取り付け方向を視覚的に判断することができるので、取り付けの作業性を向上させることができる。 The lens may have a shape for positioning on the wiring board. As a shape for positioning, the shape which provided the recessed part in the lens as mentioned above, and the shape which provided the convex part are mentioned. By providing the lens with such a shape for positioning on the wiring board, it is possible to more easily attach the lens to the wiring board. In addition, by providing the lens with a shape for positioning on the wiring board, it is possible to visually determine the mounting direction of the lens on the wiring board, so that the mounting workability can be improved.
 レンズの凹部の一部の面に、レンズに入射した光の一部を全反射してレンズの先端側に光を導くような面を形成しても良い。このような面をレンズの凹部を形成する一部の面に設ける、つまりは、LED光源近傍に設けることにより、LED光源から出射した光の取り出し効率を高めることができる。 A surface may be formed on a partial surface of the concave portion of the lens so that a part of the light incident on the lens is totally reflected to guide the light to the front end side of the lens. By providing such a surface on a part of the surface that forms the concave portion of the lens, that is, by providing the surface in the vicinity of the LED light source, it is possible to increase the extraction efficiency of the light emitted from the LED light source.
 レンズは、プラスチックで構成されていると好ましい。レンズを構成するプラスチックとしては、例えばポリカーボネートやアクリルを用いることができる。ポリカーボネートやアクリルを用いることで、射出成形により製造でき、製造コストを大幅に低減させることができる。 The lens is preferably made of plastic. For example, polycarbonate or acrylic can be used as the plastic constituting the lens. By using polycarbonate or acrylic, it can be manufactured by injection molding, and the manufacturing cost can be greatly reduced.
 LED照明装置としては、LED光源とレンズとの間にリフレクタを配置しても良い。
ここで、リフレクタとは、LED光源から出射された光を反射するものであり、リフレクタとしては、反射面を有することが好ましい。
As the LED illumination device, a reflector may be disposed between the LED light source and the lens.
Here, the reflector reflects light emitted from the LED light source, and the reflector preferably has a reflecting surface.
 LED照明装置から出射された光の強度を測定したときに、レンズの光軸上の光強度に対して、半分の光強度になる、光軸に対する角度を半値半角といい、その角度の2倍を半値全角という。本明細書で配光角と言うときは、半値全角をいう。 When the intensity of the light emitted from the LED lighting device is measured, the angle with respect to the optical axis that is half the light intensity on the optical axis of the lens is called a half-value half-angle, and twice that angle. Is called full width at half maximum. In this specification, the light distribution angle means a full width at half maximum.
 LED照明装置を搭載した照明器具としては、室内や室外で用いられる、特にダウンライト用照明に好適であるが、それ以外の用途としては、一般照明用器具(レーザーポインター、インジケーターなど)、住宅用照明器具、オフィス用照明器具、店装・展示用照明器具、街路灯用照明器具、誘導灯器具及び信号装置、広告塔、照明用ポール、水中照明用ライト、ストロボ用ライト、スポットライト、懐中電灯、電光掲示板(サインボード)、調光器、自動点滅器、ディスプレイ等のバックライト、動画装置、照光式スイッチ、光センサ、医療用ライト、車載ライト等が挙げられる。 As lighting fixtures equipped with LED lighting devices, it is suitable for indoor and outdoor use, especially for downlights, but for other uses, general lighting fixtures (laser pointers, indicators, etc.), residential use Lighting fixtures, office lighting fixtures, store / exhibit lighting fixtures, street lamp lighting fixtures, guide lamp fixtures and signaling devices, advertising towers, lighting poles, underwater lighting lights, strobe lights, spotlights, flashlights , Electronic bulletin boards (sign boards), dimmers, automatic flashers, backlights for displays, moving picture devices, illuminated switches, optical sensors, medical lights, in-vehicle lights, and the like.
 本発明によれば、配光角を狭く抑えることができるにも関わらず、出射光にイエローリングが生じたり、LEDチップの像が写り込んだりすることを抑制でき、更に照度ムラを抑制でき、光利用効率も高く維持でき明るいLED照明装置用のレンズ及びそれを用いたLED照明装置を提供することができる。 According to the present invention, despite the fact that the light distribution angle can be kept narrow, it is possible to suppress the occurrence of yellow ring in the emitted light or the image of the LED chip being reflected, and further to suppress illuminance unevenness, It is possible to provide a lens for a bright LED lighting device that can maintain high light utilization efficiency and an LED lighting device using the same.
LED光源の直径を示す図であり、(a)はLED光源を複数のLEDチップを用いて構成した場合、(b)は黄色蛍光体YELが円形である場合の例である。It is a figure which shows the diameter of a LED light source, (a) is an example in case a LED light source is comprised using a some LED chip, (b) is an example in case the yellow fluorescent substance YEL is circular. 本実施の形態にかかるLED照明装置を、出射面側から見た図である。It is the figure which looked at the LED lighting apparatus concerning this Embodiment from the output surface side. 図2の構成をIII-III線で切断して矢印方向に見た図である。It is the figure which cut | disconnected the structure of FIG. マイクロレンズを拡大して示す断面図である。It is sectional drawing which expands and shows a micro lens. 別な実施の形態にかかるレンズを成形する金型の加工状態を示す拡大図である。It is an enlarged view which shows the processing state of the metal mold | die which shape | molds the lens concerning another embodiment. 図5の金型により成形されたレンズの断面図である。It is sectional drawing of the lens shape | molded with the metal mold | die of FIG. 別な実施の形態にかかるレンズを成形する金型の加工状態を示す拡大図である。It is an enlarged view which shows the processing state of the metal mold | die which shape | molds the lens concerning another embodiment. 図7の金型により成形されたレンズの断面図である。It is sectional drawing of the lens shape | molded by the metal mold | die of FIG.
 以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、図面の寸法比率は、説明の都合上誇張され、実際の比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
 図2は、本実施の形態にかかるLED照明装置を、出射面側から見た図である。図3は、図2の構成をIII-III線で切断して矢印方向に見た図である。図4は、マイクロレンズを拡大して示す断面図である。本実施の形態にかかるLED照明装置は、レンズ1とLED光源2を有している。 FIG. 2 is a view of the LED illumination device according to the present embodiment as viewed from the exit surface side. FIG. 3 is a view of the configuration of FIG. 2 taken along line III-III and viewed in the direction of the arrow. FIG. 4 is an enlarged cross-sectional view of the microlens. The LED lighting device according to the present embodiment includes a lens 1 and an LED light source 2.
 図3に示すように、回路基板CBは、アルミニウムからなる基板本体BSと、基板本体BS上に積層された絶縁層ILと、絶縁層IL上に形成されたCu等の導体からなる配線パターンHPとから概略構成されている。配線パターンHPには、複数のLEDチップCPがそれぞれ並列に接続されている。 As shown in FIG. 3, the circuit board CB includes a substrate main body BS made of aluminum, an insulating layer IL stacked on the substrate main body BS, and a wiring pattern HP made of a conductor such as Cu formed on the insulating layer IL. It is roughly composed of A plurality of LED chips CP are connected in parallel to the wiring pattern HP.
 また、LEDチップCPは、平板状のモールド成型された蛍光体含有透明樹脂体YEL(蛍光体含有透明樹脂)によって完全に被覆されており、LEDチップCPから出射された光が全て蛍光体含有透明樹脂体YELを通過するように構成されている。この構成によりたとえば、LEDチップCPとして青色発光ダイオードを用い、蛍光体含有透明樹脂に含まれる蛍光体として黄色蛍光体を用いることで、白色光を出射できるようになっている。複数のLEDチップCPは、例えば図1(a)に示すように配置され、以上によりLED光源2を構成する。尚、LED光源2の直径をφ1(mm)とする。 Further, the LED chip CP is completely covered with a plate-shaped molded phosphor-containing transparent resin body YEL (phosphor-containing transparent resin), and all the light emitted from the LED chip CP is phosphor-containing transparent. It is configured to pass through the resin body YEL. With this configuration, for example, a blue light emitting diode is used as the LED chip CP, and a yellow phosphor is used as the phosphor contained in the phosphor-containing transparent resin, whereby white light can be emitted. The plurality of LED chips CP are arranged as shown in FIG. 1A, for example, and constitute the LED light source 2 as described above. The diameter of the LED light source 2 is φ1 (mm).
 レンズ1は、プラスチックとしてポリカーボネート又はアクリルを用いている。さらに、レンズ1は、LED光源2の光放出側に配置されており、LED光源2からの発光光が入射する入射面3と、入射面から入射した光の一部を反射する放物面状の反射面8と、発光光を外部に放出する出射面5を有している。出射面5は、複数のマイクロレンズMSを並べたレンズアレイLAを形成した円形の内側領域5aと、平面からなる環状の外側領域5bとからなる。尚、内側領域の直径をφ3(mm)とし、出射面5の直径をφ2(mm)とする。このとき、以下の式を満足する。
 3≦φ2/φ1≦5   (1)
 0.6≦φ3/φ2≦0.9   (2)
The lens 1 uses polycarbonate or acrylic as plastic. Further, the lens 1 is disposed on the light emission side of the LED light source 2 and has an incident surface 3 on which emitted light from the LED light source 2 is incident and a parabolic surface that reflects part of the light incident from the incident surface. Reflection surface 8 and an emission surface 5 for emitting emitted light to the outside. The emission surface 5 includes a circular inner region 5a in which a lens array LA in which a plurality of microlenses MS are arranged is formed, and an annular outer region 5b having a flat surface. The diameter of the inner region is φ3 (mm), and the diameter of the emission surface 5 is φ2 (mm). At this time, the following expression is satisfied.
3 ≦ φ2 / φ1 ≦ 5 (1)
0.6 ≦ φ3 / φ2 ≦ 0.9 (2)
 図2に示すように、隣接するマイクロレンズMS同士は接しており、その外形は六角形状である。 As shown in FIG. 2, adjacent microlenses MS are in contact with each other, and the outer shape thereof is a hexagonal shape.
 図4は、レンズアレイの断面を拡大して示す図である。マイクロレンズMSは同じ曲率半径R(mm)を有する。又、隣接するマイクロレンズMSの光軸間距離はD(mm)である。このとき、以下の式を満足する。
 1.0(mm)≦R≦2.0(mm)   (3)
 1・0≦R/D≦2.1   (4)
FIG. 4 is an enlarged view showing a cross section of the lens array. The microlenses MS have the same radius of curvature R (mm). The distance between the optical axes of adjacent microlenses MS is D (mm). At this time, the following expression is satisfied.
1.0 (mm) ≦ R ≦ 2.0 (mm) (3)
1 ・ 0 ≦ R / D ≦ 2.1 (4)
 また、図3に示すように、レンズ1は脚部7を有し、その中に凹部6を有し、凹部6は入射面3と側面入射面4を有している。ここで、入射面3及び側面入射面4とLED光源2は非接触であるとともに、LED光源2の周囲は側面入射面4により囲まれている。 Further, as shown in FIG. 3, the lens 1 has a leg portion 7 having a recess 6 therein, and the recess 6 has an incident surface 3 and a side incident surface 4. Here, the incident surface 3, the side surface incident surface 4, and the LED light source 2 are not in contact with each other, and the periphery of the LED light source 2 is surrounded by the side surface incident surface 4.
 本実施の形態では、LED光源2から出射した光は、側面入射面4又は入射面3から入射する。更に、入射面3から入射した光は、凸形状の入射面3で屈折して集光されて出射面5へと向かい、また側面入射面4から入射した光は、反射面8で反射されて出射面5へと向かう。その後、光の一部は、凸形状の出射面5の内側領域5aにあるレンズアレイLAで適度に散らされて外部に出射され、これによりイエローリングが抑制され、LEDチップの像が明瞭に写り込まず、更に照度ムラが抑えられている。一方、残りの光は、外側領域5bを通過して配光角が30度以内と狭く制御され、レンズ1の外部に出射される。
又、本発明者の検討結果によれば、φ2/φ1=4、φ3/φ2=0.8、R=1.3(mm)、R/D=2.0(mm)、のLED照明装置の仕様にて、配光角25度でありながら、上述の効果を得ることができ、しかも80%前後と高い効率を確保できることも確認された。
In the present embodiment, the light emitted from the LED light source 2 is incident from the side incident surface 4 or the incident surface 3. Further, the light incident from the incident surface 3 is refracted and collected by the convex incident surface 3 and travels toward the output surface 5, and the light incident from the side surface incident surface 4 is reflected by the reflecting surface 8. Heading to the exit surface 5. After that, a part of the light is appropriately scattered by the lens array LA in the inner region 5a of the convex emission surface 5 and emitted to the outside, thereby suppressing the yellow ring and clearly displaying the image of the LED chip. In addition, illuminance unevenness is further suppressed. On the other hand, the remaining light passes through the outer region 5b, is controlled to have a light distribution angle as narrow as within 30 degrees, and is emitted to the outside of the lens 1.
Further, according to the examination results of the present inventors, the LED illumination device of φ2 / φ1 = 4, φ3 / φ2 = 0.8, R = 1.3 (mm), R / D = 2.0 (mm) It was also confirmed that the above-described effects can be obtained while the light distribution angle is 25 degrees and high efficiency of about 80% can be secured.
 図5は、別な実施の形態にかかるレンズを成形する金型の加工状態を示す拡大図である。図5において、工具GTは、回転軸線Xに対して回転対称である半径Rの球面の一部からなる研磨加工面TPを下面に有する。工具GTを回転軸線X回りに回転させながら、研磨加工面TPを金型の素材Mに対して接近させ、半径Rの球面である1つの成形面RPを加工形成する。その後、工具Tを不図示の駆動源と共にピッチDだけ回転軸線Xに交差する方向に移動させて、隣接する成形面RPを同様に加工形成する。このとき、成形面RPの境界部BDが半径rの曲面となるように、研磨加工面TPで境界部BDを撫でる(図5の面内で矢印に示すように円弧状に移動させる)ようにして、工具GT及び不図示の駆動源を移動させる。以上を繰り返すことで、複数の成形面RPを成形できる。 FIG. 5 is an enlarged view showing a processing state of a mold for molding a lens according to another embodiment. In FIG. 5, the tool GT has a polished surface TP formed of a part of a spherical surface with a radius R that is rotationally symmetric with respect to the rotation axis X on the lower surface. While the tool GT is rotated about the rotation axis X, the polishing surface TP is brought close to the mold material M, and one molding surface RP that is a spherical surface having a radius R is formed. Thereafter, the tool T is moved in the direction intersecting the rotation axis X by a pitch D together with a drive source (not shown), and the adjacent forming surface RP is similarly processed and formed. At this time, the boundary portion BD is stroked on the polishing surface TP so that the boundary portion BD of the molding surface RP becomes a curved surface having a radius r (moved in an arc shape as indicated by an arrow in the plane of FIG. 5). Then, the tool GT and a drive source (not shown) are moved. By repeating the above, a plurality of molding surfaces RP can be molded.
 図6は、このようにして形成された金型により成形されたレンズの拡大断面図である。
かかる金型を用いて射出成形を行うことで、図6に示すように、金型の成形面RPによってマイクロレンズMSが転写形成され、且つ境界部BDによってマイクロレンズMS間に曲面状の連結面CTが転写形成される。マイクロレンズMSの半径をR(mm)とし、連結面CTの半径をr(mm)とすると、(5)式を満たすことが望ましい。又、隣接するマイクロレンズMSの光軸間距離をD(mm)、マイクロレンズMSの連結面CTから面頂点までの高さをH(mm)とすると、(6)式を満たすことが望ましい。
 R/20(mm)≦r≦R/10(mm)   (5)
 R-√(R2-(D/2)2)<H<R   (6)
FIG. 6 is an enlarged cross-sectional view of a lens molded by the mold thus formed.
By performing injection molding using such a mold, as shown in FIG. 6, the microlens MS is transferred and formed by the molding surface RP of the mold, and the curved connecting surface is formed between the microlenses MS by the boundary portion BD. CT is transferred and formed. When the radius of the microlens MS is R (mm) and the radius of the coupling surface CT is r (mm), it is desirable to satisfy the equation (5). Further, when the distance between the optical axes of adjacent microlenses MS is D (mm) and the height from the coupling surface CT of the microlens MS to the surface apex is H (mm), it is desirable to satisfy the equation (6).
R / 20 (mm) ≦ r ≦ R / 10 (mm) (5)
R−√ (R 2 − (D / 2) 2 ) <H <R (6)
 本実施の形態によれば、隣接するマイクロレンズMS同士を半径r(mm)の曲面状連結面CTにより接続することで、かかるレンズをLED照明装置に用いた際に、出射光の散乱等を抑制し、照度低下や光の利用効率低下を抑制できる。又、マイクロレンズMS間のエッジをなくすことで、応力集中を緩和しレンズ自体の強度を高めることもできる。本発明者の検討結果によれば、マイクロレンズMS間にエッジを有するレンズに対して、6%程度の強度が向上することがわかった。 According to the present embodiment, adjacent microlenses MS are connected to each other by a curved connecting surface CT having a radius r (mm), so that when such a lens is used for an LED illumination device, scattering of emitted light and the like are performed. It is possible to suppress illuminance and light utilization efficiency. Further, by eliminating the edge between the microlenses MS, the stress concentration can be relaxed and the strength of the lens itself can be increased. According to the examination results of the present inventors, it has been found that the strength is improved by about 6% with respect to a lens having an edge between the microlenses MS.
 図7は、更に別な実施の形態にかかるレンズを成形する金型の加工状態を示す拡大図である。ここでは、図5に示す工具GTを回転させながら、金型の素材Mに対して垂直に接近させ、所定量加工した後に離間させ、更に回転軸線に対して直交する方向に一定のピッチで移動させた後に、再び金型の素材Mに対して垂直に接近させ、同様に所定量加工した後に離間させるというようにして、ハニカム状に配置された成形面RPを形成する。かかる状態では、隣接する成形面RPの間はエッジとして残存する。その後、図7に示すように、金型の素材Mを回転させながら、バイトBTを所定量接近させ、更に半径方向に移動させることで、成形面RP間のエッジを切削して、平坦な境界面BDを形成できる。 FIG. 7 is an enlarged view showing a processing state of a mold for molding a lens according to still another embodiment. Here, while rotating the tool GT shown in FIG. 5, the tool GT approaches the mold material M perpendicularly, is processed by a predetermined amount, is separated, and is further moved at a constant pitch in a direction perpendicular to the rotation axis. Then, the molding surface RP arranged in a honeycomb shape is formed by making it approach perpendicularly again with respect to the material M of the mold again, similarly processing a predetermined amount, and then separating it. In such a state, the space between the adjacent molding surfaces RP remains as an edge. Thereafter, as shown in FIG. 7, while rotating the mold material M, the cutting tool BT is moved closer to the predetermined amount and further moved in the radial direction to cut the edge between the molding surfaces RP, and the flat boundary. The surface BD can be formed.
 図8は、このようにして形成された金型により成形されたレンズの拡大断面図である。
かかる金型を用いて射出成形を行うことで、図8に示すように、金型の成形面RPによってマイクロレンズMSが転写形成され、且つ境界面BDによってマイクロレンズMS間に平面状の連結面CTが転写形成される。これにより、出射光の散乱等を抑制できる。
FIG. 8 is an enlarged cross-sectional view of a lens molded by the mold thus formed.
By performing injection molding using such a mold, as shown in FIG. 8, the microlens MS is transferred and formed by the molding surface RP of the mold, and the planar connecting surface is formed between the microlenses MS by the boundary surface BD. CT is transferred and formed. Thereby, scattering of emitted light and the like can be suppressed.
 以上、本発明について実施形態を参照して説明したが、本発明は、本明細書に記載の実施形態に限定されるものではなく、他の実施形態を含むことは、本明細書に記載された実施形態、実施例および技術的思想から本分野の当業者にとって明らかである。 The present invention has been described above with reference to the embodiments. However, the present invention is not limited to the embodiments described in the present specification, and it is described in the present specification that other embodiments are included. It will be apparent to those skilled in the art from the embodiments, examples, and technical ideas.
 1 レンズ
 2 LED光源
 3 入射面
 4 側面入射面
 5 出射面
 6 凹部
 7 脚部
 8 反射面
DESCRIPTION OF SYMBOLS 1 Lens 2 LED light source 3 Incident surface 4 Side surface incident surface 5 Outgoing surface 6 Concave part 7 Leg part 8 Reflecting surface

Claims (7)

  1.  複数のLED光源と、
     前記LED光源の光放出側に配置され、前記LED光源からの発光光が入射する入射面と、前記入射面から入射した光を反射する反射面と、前記発光光を外部に放出する出射面とを備えたレンズを有し、
     前記レンズの出射面は、複数のマイクロレンズを並べたレンズアレイを形成した内側領域と、平坦な面からなる外側領域とからなり、以下の式を満たすことを特徴とするLED照明装置。
     3≦φ2/φ1≦5   (1)
     0.6≦φ3/φ2≦0.9   (2)
     1.0(mm)≦R≦2.0(mm)   (3)
    但し、
    φ1:前記LED光源の直径(mm)
    φ2:前記出射面の直径(mm)
    φ3:前記内側領域の直径(mm)
    R:前記マイクロレンズの曲率半径(mm)
    A plurality of LED light sources;
    An incident surface that is disposed on the light emission side of the LED light source and receives light emitted from the LED light source, a reflective surface that reflects light incident from the incident surface, and an emission surface that emits the emitted light to the outside Having a lens with
    The LED illumination device is characterized in that an exit surface of the lens includes an inner region in which a lens array in which a plurality of microlenses are arranged and an outer region composed of a flat surface, and satisfies the following expression.
    3 ≦ φ2 / φ1 ≦ 5 (1)
    0.6 ≦ φ3 / φ2 ≦ 0.9 (2)
    1.0 (mm) ≦ R ≦ 2.0 (mm) (3)
    However,
    φ1: Diameter of the LED light source (mm)
    φ2: Diameter of the exit surface (mm)
    φ3: Diameter of the inner region (mm)
    R: radius of curvature of the microlens (mm)
  2.  以下の式を満たすことを特徴とする請求項1に記載のLED照明装置。
     1.0≦R/D≦2.1   (4)
    但し、
    D:隣接する前記マイクロレンズの光軸間距離(mm)
    The LED illumination device according to claim 1, wherein the following expression is satisfied.
    1.0 ≦ R / D ≦ 2.1 (4)
    However,
    D: Distance between optical axes of adjacent microlenses (mm)
  3.  隣接する前記マイクロレンズ同士は、半径r(mm)の曲面により接続されていることを特徴とする請求項1又は2に記載のLED照明装置。 The LED illumination device according to claim 1, wherein the adjacent microlenses are connected by a curved surface having a radius r (mm).
  4.  以下の式を満たすことを特徴とする請求項3に記載のLED照明装置。
     R/20(mm)≦r≦R/10(mm)   (5)
    The LED illumination device according to claim 3, wherein the following expression is satisfied.
    R / 20 (mm) ≦ r ≦ R / 10 (mm) (5)
  5.  前記マイクロレンズの外形はハニカム形状であることを特徴とする請求項1~4のいずれか1項に記載のLED照明装置。 The LED illumination device according to any one of claims 1 to 4, wherein an outer shape of the microlens is a honeycomb shape.
  6.  前記レンズから出射する出射光の配光角は、30度以下であることを特徴とする請求項1~5のいずれか1項に記載のLED照明装置。 The LED illumination device according to any one of claims 1 to 5, wherein a light distribution angle of light emitted from the lens is 30 degrees or less.
  7.  請求項1~6のいずれか1項に記載のLED照明装置に用いることを特徴とするLED照明装置用レンズ。 A lens for an LED lighting device, which is used for the LED lighting device according to any one of claims 1 to 6.
PCT/JP2012/059316 2011-04-19 2012-04-05 Led lighting device and lens for led lighting device WO2012144325A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013510935A JPWO2012144325A1 (en) 2011-04-19 2012-04-05 LED lighting device and LED lighting device lens

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-092689 2011-04-19
JP2011092689 2011-04-19
JP2011-183298 2011-08-25
JP2011183298 2011-08-25

Publications (1)

Publication Number Publication Date
WO2012144325A1 true WO2012144325A1 (en) 2012-10-26

Family

ID=47041438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059316 WO2012144325A1 (en) 2011-04-19 2012-04-05 Led lighting device and lens for led lighting device

Country Status (2)

Country Link
JP (1) JPWO2012144325A1 (en)
WO (1) WO2012144325A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150043192A1 (en) * 2013-08-09 2015-02-12 Omron Corporation Switch and keyboard provided therewith
CN105190396A (en) * 2012-12-12 2015-12-23 莱迪奥股份公司 An optical surface, lens, reflector, optical arrangement and illuminator
JP2016152398A (en) * 2015-02-19 2016-08-22 株式会社エルム Light emission device and method of preparing fluorescent layer used for the same
JP2016171069A (en) * 2015-03-12 2016-09-23 浚洸光學科技股▲ふん▼有限公司 Light emitting system
JP2016207370A (en) * 2015-04-20 2016-12-08 アイリスオーヤマ株式会社 LED lighting device
KR101698721B1 (en) * 2016-05-25 2017-01-20 한국광기술원 LED lighting assembly and LED light using it
EP3121626A1 (en) * 2015-07-23 2017-01-25 Lieh-Hsiung Hu Refraction lens and plate-form structure which has multiple refraction lenses extending therethrough
TWI574048B (en) * 2012-12-24 2017-03-11 鴻海精密工業股份有限公司 Optical lens and backlight module using the same
KR20170077399A (en) * 2015-12-28 2017-07-06 에스엘 주식회사 A lamp for vehicle
CN106969311A (en) * 2015-11-20 2017-07-21 Sl株式会社 Lamps apparatus for vehicle
WO2018122059A1 (en) * 2016-12-29 2018-07-05 Lumileds Holding B.V. Lighting device including a transparent structure
US10247392B2 (en) 2015-06-30 2019-04-02 Chun Kuang Optics Corp. Luminous system
JP2020068206A (en) * 2018-10-24 2020-04-30 シャープ株式会社 Laser illuminating device
US10845026B2 (en) 2016-12-29 2020-11-24 Lumileds Llc Lighting device including a transparent structure with groups of diffusing lenslets on an emission surface having a different aspect ratio
EP3832198A1 (en) * 2019-12-05 2021-06-09 BJB GmbH & Co. KG Optically active cover for a light source
WO2021158189A1 (en) * 2020-10-30 2021-08-12 Oyak Renault Otomobi̇l Fabri̇kalari Anoni̇m Şi̇rketi̇ Bending and corner lighting system
JP2021141036A (en) * 2020-03-02 2021-09-16 韓一電機株式会社 Illumination lamp assembly

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968881U (en) * 1972-09-26 1974-06-15
JP2006049124A (en) * 2004-08-05 2006-02-16 Toshiba Lighting & Technology Corp Lighting system
JP2008305802A (en) * 2008-07-16 2008-12-18 Stanley Electric Co Ltd Led lighting tool
JP3148911U (en) * 2008-12-19 2009-03-05 岡谷電機産業株式会社 Lens for light emitting element
JP2009063684A (en) * 2007-09-05 2009-03-26 Hitachi Ltd Video display device
JP2009069347A (en) * 2007-09-12 2009-04-02 Toray Ind Inc Optical sheet and backlight unit using the same
JP2009205872A (en) * 2008-02-26 2009-09-10 Panasonic Electric Works Co Ltd Spotlight
JP2009266523A (en) * 2008-04-24 2009-11-12 Panasonic Electric Works Co Ltd Light-emitting unit with lens
JP2010152282A (en) * 2008-12-26 2010-07-08 Mitsubishi Electric Corp Lens, light source device, and illumination device
JP2010251073A (en) * 2009-04-14 2010-11-04 Enplas Corp Lens for lighting and lighting system equipped with this

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968881U (en) * 1972-09-26 1974-06-15
JP2006049124A (en) * 2004-08-05 2006-02-16 Toshiba Lighting & Technology Corp Lighting system
JP2009063684A (en) * 2007-09-05 2009-03-26 Hitachi Ltd Video display device
JP2009069347A (en) * 2007-09-12 2009-04-02 Toray Ind Inc Optical sheet and backlight unit using the same
JP2009205872A (en) * 2008-02-26 2009-09-10 Panasonic Electric Works Co Ltd Spotlight
JP2009266523A (en) * 2008-04-24 2009-11-12 Panasonic Electric Works Co Ltd Light-emitting unit with lens
JP2008305802A (en) * 2008-07-16 2008-12-18 Stanley Electric Co Ltd Led lighting tool
JP3148911U (en) * 2008-12-19 2009-03-05 岡谷電機産業株式会社 Lens for light emitting element
JP2010152282A (en) * 2008-12-26 2010-07-08 Mitsubishi Electric Corp Lens, light source device, and illumination device
JP2010251073A (en) * 2009-04-14 2010-11-04 Enplas Corp Lens for lighting and lighting system equipped with this

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105190396A (en) * 2012-12-12 2015-12-23 莱迪奥股份公司 An optical surface, lens, reflector, optical arrangement and illuminator
TWI574048B (en) * 2012-12-24 2017-03-11 鴻海精密工業股份有限公司 Optical lens and backlight module using the same
US20150043192A1 (en) * 2013-08-09 2015-02-12 Omron Corporation Switch and keyboard provided therewith
JP2015035396A (en) * 2013-08-09 2015-02-19 オムロン株式会社 Switch and keyboard using the same
JP2016152398A (en) * 2015-02-19 2016-08-22 株式会社エルム Light emission device and method of preparing fluorescent layer used for the same
JP2016171069A (en) * 2015-03-12 2016-09-23 浚洸光學科技股▲ふん▼有限公司 Light emitting system
JP2016207370A (en) * 2015-04-20 2016-12-08 アイリスオーヤマ株式会社 LED lighting device
US10247392B2 (en) 2015-06-30 2019-04-02 Chun Kuang Optics Corp. Luminous system
EP3121626A1 (en) * 2015-07-23 2017-01-25 Lieh-Hsiung Hu Refraction lens and plate-form structure which has multiple refraction lenses extending therethrough
CN106969311A (en) * 2015-11-20 2017-07-21 Sl株式会社 Lamps apparatus for vehicle
KR20170077399A (en) * 2015-12-28 2017-07-06 에스엘 주식회사 A lamp for vehicle
KR101937972B1 (en) * 2015-12-28 2019-04-11 에스엘 주식회사 A lamp for vehicle
KR101698721B1 (en) * 2016-05-25 2017-01-20 한국광기술원 LED lighting assembly and LED light using it
WO2018122059A1 (en) * 2016-12-29 2018-07-05 Lumileds Holding B.V. Lighting device including a transparent structure
US10845026B2 (en) 2016-12-29 2020-11-24 Lumileds Llc Lighting device including a transparent structure with groups of diffusing lenslets on an emission surface having a different aspect ratio
US11231159B2 (en) 2016-12-29 2022-01-25 Lumileds Llc Lighting device including a transparent structure
JP2020068206A (en) * 2018-10-24 2020-04-30 シャープ株式会社 Laser illuminating device
EP3832198A1 (en) * 2019-12-05 2021-06-09 BJB GmbH & Co. KG Optically active cover for a light source
CN113007668A (en) * 2019-12-05 2021-06-22 Bjb两合公司 Optically active cover for a light source
US11054107B2 (en) 2019-12-05 2021-07-06 Bjb Gmbh & Co. Kg Optically effective cover for a light source
JP2021141036A (en) * 2020-03-02 2021-09-16 韓一電機株式会社 Illumination lamp assembly
WO2021158189A1 (en) * 2020-10-30 2021-08-12 Oyak Renault Otomobi̇l Fabri̇kalari Anoni̇m Şi̇rketi̇ Bending and corner lighting system

Also Published As

Publication number Publication date
JPWO2012144325A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
WO2012144325A1 (en) Led lighting device and lens for led lighting device
EP1776544B1 (en) Light engine
TWI252290B (en) Search-light and search-light element
US9366410B2 (en) Reverse total internal reflection features in linear profile for lighting applications
CN101140384B (en) Light source
US8215802B2 (en) Multiple-tier omnidirectional solid-state emission source
JP6041450B2 (en) Light source module, lighting device and lighting system
CN102903833B (en) Wide angle based indoor lighting lamp
RU2624348C2 (en) Light-emitting device
US9269697B2 (en) System and methods for warm white LED light source
JP2013518398A (en) Light emitting diode device with wide angular distribution
JP2012231036A (en) Light-emitting device and luminaire using the same
JP6233750B2 (en) LIGHT EMITTING DEVICE AND ITS MANUFACTURING METHOD, LIGHTING LIGHT SOURCE, AND LIGHTING DEVICE
TW201331513A (en) Planar LED lighting
JP2013115079A (en) Led optical element and led lighting device
US9605814B2 (en) Lighting module
US20130043493A1 (en) Light-emitting diode structure
TW200850046A (en) Back light module and light emitting diode package structure therefor
JP2011065946A (en) Led illumination device
JP2010219163A (en) Light emitting module and lamp fitting unit
US10125950B2 (en) Optical module
JP2012089367A (en) Led lighting device, led lighting fixture and lens for led lighting device
JP2011086515A (en) Led lighting device and reflector
WO2013014809A1 (en) Led illumination device and optical element
KR102305232B1 (en) Light emitting device package and lighting apparauts including the package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774545

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013510935

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12774545

Country of ref document: EP

Kind code of ref document: A1