WO2012144323A1 - Optical adjustment film, and transparent conductive film using same - Google Patents

Optical adjustment film, and transparent conductive film using same Download PDF

Info

Publication number
WO2012144323A1
WO2012144323A1 PCT/JP2012/059196 JP2012059196W WO2012144323A1 WO 2012144323 A1 WO2012144323 A1 WO 2012144323A1 JP 2012059196 W JP2012059196 W JP 2012059196W WO 2012144323 A1 WO2012144323 A1 WO 2012144323A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
film
index layer
transparent conductive
optical adjustment
Prior art date
Application number
PCT/JP2012/059196
Other languages
French (fr)
Japanese (ja)
Inventor
圭一 梶田
勝紀 武藤
田中 治
佳弘 黒澤
大治 五島
Original Assignee
積水ナノコートテクノロジー株式会社
東山フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水ナノコートテクノロジー株式会社, 東山フイルム株式会社 filed Critical 積水ナノコートテクノロジー株式会社
Priority to JP2013510934A priority Critical patent/JP5745037B2/en
Publication of WO2012144323A1 publication Critical patent/WO2012144323A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • G02B1/116Multilayers including electrically conducting layers

Definitions

  • the present invention relates to an optical adjustment film and a transparent conductive film using the same, and in particular, an optical adjustment film advantageously used when producing a transparent conductive film for a touch panel, and a transparent conductive using the same It relates to film.
  • a tablet-type position input device is disposed on the surface of a display device such as a liquid crystal panel, and a finger or the like is displayed at a position where the instruction image is displayed while referring to the instruction image displayed in the image display area
  • a display device liquid crystal panel or the like
  • a touch panel Such an electronic component combining a display device (liquid crystal panel or the like) and a position input device is called a touch panel, and is widely adopted in mobile phones, car navigation, personal computers, various ticket vending machines, bank terminals, etc. ing.
  • the transparent conductive film provided with the transparent conductive layer which has a predetermined pattern shape in the outermost layer is adopted. There is.
  • the transparent conductive film when the transparent conductive layer is patterned, the refractive index of light is different between the portion (pattern portion) where the pattern exists and the portion (pattern opening portion) where the pattern does not exist. There is a risk that the user of the touch panel can recognize the presence of the pattern.
  • the touch panel is to display only the information from the display device correctly, and the situation where the user can recognize the presence of the pattern is not preferable.
  • electrostatic capacitance type touch panel since a patterned transparent conductive layer is formed on the entire surface of the display unit, it is a transparent conductive film having a patterned transparent conductive layer, What can not be recognized visually by the pattern, that is, a transparent conductive film having excellent visibility is required.
  • An object of the present invention is to provide an optical adjustment film capable of advantageously producing a film excellent in visibility.
  • Another object of the present invention is to provide a transparent conductive film obtained by using such an optical adjustment film.
  • the present invention is a high refractive index layer sequentially from the substrate side directly or via one or more functional layers on at least one surface of a transparent film substrate. And an optical adjustment film formed by laminating a low refractive index layer, wherein a minimum value of regular reflectance at a wavelength of 200 to 800 nm is given in a wavelength range of 230 to 265 nm. As its gist.
  • the average value of the regular reflectance at a wavelength of 400 to 650 nm is 6.16% to 6.90%.
  • the optical thickness of the high refractive index layer is 59 to 89 nm, and the optical thickness of the low refractive index layer is 40 to 51 nm.
  • the pattern portion and the pattern opening are provided directly on the surface provided with the high refractive index layer and the low refractive index layer or via one or more functional layers.
  • the gist of the present invention is also a transparent conductive film provided with a transparent conductive layer consisting of parts.
  • (DELTA) R calculated by a following formula is 0.5 or less.
  • ⁇ R
  • R 1 is a wavelength of 400 to the pattern opening.
  • R 2 is the average value of specular reflectance at 650 nm, and R 2 is the average value of specular reflectance at wavelengths of 400 to 650 nm for the pattern part.
  • the minimum value in the regular reflectance measured at the wavelength within the predetermined range (200 to 800 nm) is given by the wavelength within the range of 230 to 265 nm
  • a transparent conductive layer comprising a pattern portion and a pattern opening portion is provided on the surface of such an optical adjustment film on which the high refractive index layer and the low refractive index layer are provided to form a transparent conductive film
  • Such a transparent conductive film has excellent visibility with which the pattern of the transparent conductive layer is hard to be recognized.
  • FIG. 1 schematically shows, in a cross-section in the thickness direction, an example of a representative embodiment of a transparent conductive film using the optical adjustment film according to the present invention.
  • the high refractive index layer 16 and the low refractive index layer 18 are sequentially laminated on one surface of the transparent substrate 14 from the substrate 14, and such an optical adjustment film
  • a transparent conductive layer 20 composed of a pattern opening 20 a and a pattern portion 20 b is provided on the surface of the low refractive index layer 18 in 12, to form a transparent conductive film 10.
  • the optical adjustment film 12 is characterized in that the minimum value of the regular reflectance at the wavelength of 200 to 800 nm is given in the range of the wavelength: 230 to 265 nm, a great feature exists. It is difficult for the transparent conductive film 10 provided with the transparent conductive layer 20 including the pattern opening 20a and the pattern portion 20b to have a pattern easily recognized by the optical adjustment film 12 having such characteristics. That is, visibility becomes excellent.
  • the transparent substrate 14 is generally made of various types of plastic having transparency.
  • the plastic constituting the transparent substrate 14 includes polyester resins, acetate resins, polyethersulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth) acrylic resins, poly
  • the resin include vinyl chloride resin, polyvinylidene chloride resin, polystyrene resin, polyvinyl alcohol resin, polyarylate resin, polyphenylene sulfide resin and the like.
  • polyester resins, polycarbonate resins, polyolefin resins and the like are advantageously used.
  • the thickness of the transparent substrate 14 is preferably in the range of 2 to 500 ⁇ m, and more preferably in the range of 2 to 200 ⁇ m. Within this range, it is possible to thin the film while securing the mechanical strength of the entire transparent conductive film.
  • the high refractive index layer 16 provided on the transparent substrate 14 in FIG. 1 can be formed of various conventionally known materials as long as the object of the present invention is not hindered.
  • inorganic compounds, organic compounds, and mixtures thereof can be used.
  • examples of the inorganic compound include zinc oxide, titanium oxide, cerium oxide, aluminum oxide, tantalum oxide, yttrium oxide, ytterbium oxide, zirconium oxide, indium tin oxide and the like.
  • Such a curable monomer is not particularly limited, and examples thereof include polyfunctional or monofunctional (meth) acrylate esters, silicon compounds such as tetraethoxysilane, and the like. Moreover, even if it exists in a polymer, it does not specifically limit, A conventionally well-known thing can be used. From the viewpoint of the productivity and the strength of the high refractive index layer 16, a UV curable (photopolymerizable) polyfunctional acrylate monomer is particularly preferably used.
  • the average particle size thereof preferably does not exceed the thickness of the high refractive index layer 16, and particularly preferably 100 nm or less.
  • the average particle size is too large, the transparency of the high refractive index layer 16 may be reduced, for example, due to scattering.
  • the fine particles may have their surfaces modified with various coupling agents and the like, as necessary.
  • a coupling agent organic substituted silicon compounds, metal alkoxides such as aluminum, titanium, zirconium and antimony, organic acid salts and the like can be exemplified.
  • the high refractive index layer 16 in the present invention is preferably formed to have an optical film thickness of 59 to 89 nm, more preferably 73 to 77 nm.
  • the optical film thickness is calculated by multiplying the physical film thickness and the refractive index.
  • the low refractive index layer 18 provided on the surface of the high refractive index layer 16 in FIG. 1 does not hinder the object of the present invention, and provides a lower refractive index than that of the high refractive index layer 16. It is possible to form with material. Specifically, inorganic compounds such as silicon oxide (silica), lanthanum fluoride, magnesium fluoride, cerium fluoride, magnesium fluoride, fluorine-containing organic compounds, monofunctional or polyfunctional (meth) acrylic esters, tetra It is possible to use organic compounds such as ethoxysilane, alone or as a mixture thereof.
  • the low refractive index layer 18 is formed by a wet coating method described later, it is preferable to use a mixture of fine particles of the above-mentioned inorganic compound and a curable monomer or polymer.
  • a curable monomer is not particularly limited, but from the viewpoint of the productivity and the strength of the low refractive index layer 18, a UV curable (photopolymerizable) polyfunctional acrylate monomer is particularly preferably used.
  • the average particle size thereof preferably does not exceed the thickness of the low refractive index layer 18, and particularly preferably 100 nm or less.
  • the average particle diameter is too large, the transparency of the low refractive index layer 18 may be reduced, for example, due to scattering.
  • the fine particles may have their surfaces modified with various coupling agents and the like, as necessary.
  • a coupling agent organic substituted silicon compounds, metal alkoxides such as aluminum, titanium, zirconium and antimony, organic acid salts and the like can be exemplified.
  • the low refractive index layer 18 in the present invention is preferably formed to have an optical film thickness of 40 to 51 nm, more preferably 46 to 51 nm.
  • a transparent conductive film obtained by using an optical adjustment film in which the optical film thickness of the low refractive index layer 18 is 46 to 51 nm and the optical film thickness of the high refractive index layer 16 is 73 to 77 nm. If it is, better visibility can be exhibited.
  • the above-mentioned high refractive index layer 16 and low refractive index layer 18 may contain other components in addition to the above-mentioned compounds and the like as long as the object of the present invention is not hindered.
  • Such components include inorganic fillers, inorganic or organic pigments, polymers, polymerization initiators, polymerization inhibitors, polymerization inhibitors, antioxidants, dispersants, surfactants, light stabilizers, light absorbers, leveling agents, etc. It can be illustrated.
  • any conventionally known method such as a dry coating method or a wet coating method can be employed.
  • the wet coating method is preferable from the viewpoint of productivity and economy (low cost).
  • a wet coating method a roll coating method, a spin coating method, a dip coating method, etc. are widely known, and among them, a method capable of continuously forming a layer, such as a roll coating method, is particularly useful. It is adopted advantageously from the point of view.
  • a liquid material obtained by dispersing the above-described compound or the like in water or an organic solvent or the like is used.
  • the high refractive index layer 16 and the low refractive index layer 18 are sequentially provided on the surface of the transparent substrate 14 from the substrate side, and the optical adjustment film 12 is formed.
  • the selection etc. is comprehensively judged so that the minimum value of the regular reflectance at the wavelength of 200 to 800 nm is given in the range of the wavelength of 230 to 265 nm. That is, since the optical adjustment film 12 of the present invention has characteristic optical properties, the transparent conductive film 10 provided with the patterned transparent conductive layer 20 described later is a transparent conductive layer 20 The pattern is difficult to recognize, that is, it has excellent visibility.
  • the minimum value of regular reflectance at a wavelength of 200 to 800 nm is given in the range of wavelength: 230 to 265 nm” means that the regular reflectance at a wavelength of 200 to 800 nm is measured for an optical adjustment film. In this measurement, it means that the measurement wavelength at the time when the regular reflectance becomes the minimum value falls within the range of 230 to 265 nm.
  • the optical adjustment film 12 preferably has an average specular reflectance of 6.16% to 6.6 at a wavelength of 400 to 650 nm, in order to more advantageously receive the effects of the present invention. It is preferably 90%.
  • the average value of specular reflectance at a wavelength of 400 to 650 nm means the arithmetic mean of specular reflectance measured at a wavelength of 400 to 650 nm.
  • the pattern opening 20a and the pattern 20b are formed on the surface of the low refractive index layer 18 of the optical adjustment film 12 consisting of the transparent base 14, the high refractive index layer 16 and the low refractive index layer 18.
  • the transparent conductive layer 20 which consists of these is provided, and it is set as the transparent conductive film 10.
  • the transparent conductive layer 20 including the pattern opening 20a and the pattern portion 20b
  • the transparent conductive layer 20 ' is formed to cover the entire surface of the low refractive index layer 18, and then the transparent conductive layer 20 is formed.
  • a so-called etching method is generally employed, in which the surface of the 'is covered with a partially opened predetermined mask, and a predetermined acid decomposes (dissolves) the transparent conductive layer 20' corresponding to the site where the mask is opened.
  • Ru examples of the acid used in the etching include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, organic acids such as acetic acid, and mixtures thereof.
  • the transparent conductive layer 20 (pattern portion 20b) is usually made of indium, tin, zinc, gallium, antimony, titanium, silicon, zirconium, magnesium, aluminum, gold, silver, copper, palladium or tungsten, or their oxides. Configured Among them, those containing indium oxide as a main component such as indium oxide or indium oxide (ITO) containing tin oxide are particularly preferably used from the viewpoint of transparency and conductivity.
  • ITO indium oxide
  • any known method such as a dry coating method or a wet coating method can be employed.
  • the dry coating method may, for example, be a direct current magnetron sputtering method, a sputtering method such as a high frequency magnetron sputtering method or an ion beam sputtering method, a vacuum evaporation method such as electron beam evaporation, an ion plating method or a CVD method.
  • the transparent conductive film obtained by using the optical adjustment film according to the present invention since the optical adjustment film has a predetermined optical property, the transparent conductive film is patterned on its surface. Even if the conductive layer 20 is provided, the pattern of the transparent conductive layer is difficult to recognize, that is, it has excellent visibility.
  • a transparent conductive film in which ⁇ R calculated by the following formula is 0.5 or less is more excellent in visibility, and can be advantageously used in a touch panel or the like.
  • ⁇ R
  • R 1 is a wavelength of 400 to the pattern opening.
  • R 2 is the average value of specular reflectance at 650 nm, and R 2 is the average value of specular reflectance at wavelengths of 400 to 650 nm for the pattern part.
  • one or more functional layers may be provided between the transparent substrate and the high refractive index layer or between the low refractive index layer and the transparent conductive layer, as long as the object of the present invention is not impaired. It is also possible to provide.
  • a functional layer a layer provided for the purpose of improvement in adhesion, improvement in hardness of the whole film, antiglare, prevention of generation of Newton ring, etc. is exemplified.
  • Such various functional layers can be formed by a conventionally known method.
  • the refractive index and thickness (physical film thickness) of each layer were measured, and the optical film thickness was calculated by multiplying them (refractive index ⁇ physical film thickness).
  • the measurement of the refractive index was carried out by using a Abbe refractometer manufactured by Atago Co., Ltd., in such a manner that the measurement light was made incident on each measurement surface, according to a prescribed measurement method indicated by the refractometer.
  • the thickness (physical film thickness) of each layer was calculated using a reflection spectral film thickness meter (trade name: FE-3000) manufactured by Otsuka Electronics Co., Ltd.
  • the optical film thickness of the transparent conductive layer is calculated by the refractive index and the thickness (physical film thickness) in the pattern portion.
  • optically prepared films and transparent conductive films were produced in accordance with the procedure described below.
  • Example 1- Thickness A liquid hard coat material is coated by a roll coater on one side of a 125 ⁇ m easily adhesive polyester film (made by Toyobo Co., Ltd., trade name: A4300), and the coated film is dried in a dryer oven And dried at 100 ° C. for 1 minute. Next, the coated film after drying was irradiated with ultraviolet light (irradiation amount: 200 mJ / cm 2 ) to provide a hard coat having a thickness of about 3 ⁇ m on the polyester film. By subjecting the other side of the polyester film to the same operation, a hard coat film in which a hard coat having a thickness of about 3 ⁇ m was provided on both sides of the polyester film was obtained.
  • a liquid high refractive index layer material separately prepared is coated on one side of the obtained hard coat film using a roll coater, and the coated film is dried at 100 ° C. for 1 minute using a dryer oven. It heat-dried on condition of.
  • the coated film after drying is irradiated with ultraviolet light under a nitrogen purge (irradiation amount: 200 mJ / cm 2 ) to crosslink the urethane acrylate oligomer contained in the coated film, thereby making the polyester film hard
  • a high refractive index layer was provided on the coat.
  • the thickness of the coating film which consists of high refractive index layer material was adjusted so that the optical film thickness of the high refractive index layer finally obtained may be set to 85 nm.
  • a liquid low refractive index layer material prepared separately is coated on the high refractive index layer using a roll coater, and the coated film is heated at 100 ° C. for 1 minute using a dryer oven. It was dry.
  • the coated film after drying is irradiated with ultraviolet light under nitrogen purge (irradiation amount: 200 mJ / cm 2 ) to crosslink the urethane acrylate oligomer contained in the coated film to form a low refractive index layer
  • the optical adjustment film was produced by carrying out.
  • the thickness of the coating film which consists of low refractive index layer material was adjusted so that the optical film thickness of the low refractive index layer finally obtained may be 40 nm.
  • a DC magnetron sputtering method is performed using a sintered material comprising 97 wt% of indium oxide and 3 wt% of tin oxide as a target material on the surface of the low refractive index layer which is the outermost layer of the obtained optical adjustment film.
  • a transparent conductive layer was formed to cover the entire surface of the low refractive index layer. Specifically, after evacuating the chamber to 5 ⁇ 10 -4 Pa or less, a mixed gas of 95% Ar gas and 5% oxygen gas is introduced into the chamber, and the pressure in the chamber is Sputtering was performed at 0.2 to 0.3 Pa. Sputtering was performed so that the optical film thickness of the finally obtained transparent conductive layer would be 50 nm.
  • HCl / HNO 3 / H 2 O 20: By immersing in a solution of 1:30 (volume ratio) for 10 minutes, a transparent conductive film having a transparent conductive layer consisting of a pattern opening and a pattern portion on the outermost surface was obtained.
  • Example 2- In the same manner as in Example 1, except that various conditions were changed such that the optical film thickness of the high refractive index layer was 77 nm, and the optical film thickness of the low refractive index layer was 46 nm, Film was obtained.
  • Example 3- In the same manner as in Example 1 except that various conditions were changed such that the optical film thickness of the high refractive index layer was 68 nm, and the optical film thickness of the low refractive index layer was 42 nm, Film was obtained.
  • Example 4- In the same manner as in Example 1 except that various conditions were changed such that the optical film thickness of the high refractive index layer was 78 nm, and the optical film thickness of the low refractive index layer was 40 nm, Film was obtained.
  • Example 5 In the same manner as in Example 1 except that various conditions were changed such that the optical film thickness of the high refractive index layer was 89 nm, and the optical film thickness of the low refractive index layer was 46 nm, Film was obtained.
  • Example 6- In the same manner as in Example 1, except that various conditions were changed such that the optical film thickness of the high refractive index layer was 59 nm, and the optical film thickness of the low refractive index layer was 48 nm, Film was obtained.
  • Example 7- In the same manner as in Example 1 except that various conditions were changed such that the optical film thickness of the high refractive index layer was 75 nm, and the optical film thickness of the low refractive index layer was 47 nm, Film was obtained.
  • Example 8- In the same manner as in Example 1 except that various conditions were changed such that the optical film thickness of the high refractive index layer was 73 nm, and the optical film thickness of the low refractive index layer was 47 nm, Film was obtained.
  • Example 9 In the same manner as in Example 1 except that various conditions were changed such that the optical film thickness of the high refractive index layer was 75 nm, and the optical film thickness of the low refractive index layer was 51 nm, Film was obtained.
  • Transparent conductive film 10
  • Optical adjustment film 14
  • Transparent base 16
  • High refractive index layer 18
  • Low refractive index layer 20

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Optical Filters (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

Provided is an optical adjustment film enabling the manufacture of a transparent conductive film having a patterned transparent conductive layer and high visibility in an advantageous manner. The optical adjustment film comprises a transparent film base material on at least one surface of which a high-refractive index layer and a low-refractive index layer are layered successively from the base material side directly or via one or more functional layers. The optical adjustment film is manufactured such that the minimum value of specular reflectivity at the wavelengths of 200 to 800 nm is given in the wavelength range of 230 to 265 nm.

Description

光学調整フィルム及びそれを用いた透明導電性フィルムOptical adjustment film and transparent conductive film using the same
 本発明は、光学調整フィルム及びそれを用いた透明導電性フィルムに係り、特に、タッチパネル用透明導電性フィルムを作製する際に有利に用いられる光学調整フィルム、及び、それを用いてなる透明導電性フィルムに関するものである。 The present invention relates to an optical adjustment film and a transparent conductive film using the same, and in particular, an optical adjustment film advantageously used when producing a transparent conductive film for a touch panel, and a transparent conductive using the same It relates to film.
 近年、液晶パネル等の表示装置の表面にタブレット型の位置入力装置が配置され、液晶パネルにおける画像表示領域に表示された指示画像を参照しながら、この指示画像が表示されている箇所を指などで触れることにより、指示画像に対応する情報の入力が行える機器が増えてきている。このような、表示装置(液晶パネル等)と位置入力装置とを組み合わせた電子部品は、タッチパネルと称されて、携帯電話、カーナビゲーション、パーソナルコンピュータ、各種券売機や銀行の端末等において幅広く採用されている。 In recent years, a tablet-type position input device is disposed on the surface of a display device such as a liquid crystal panel, and a finger or the like is displayed at a position where the instruction image is displayed while referring to the instruction image displayed in the image display area There is an increasing number of devices that can input information corresponding to an instruction image by touching. Such an electronic component combining a display device (liquid crystal panel or the like) and a position input device is called a touch panel, and is widely adopted in mobile phones, car navigation, personal computers, various ticket vending machines, bank terminals, etc. ing.
 そして、タッチパネルの位置入力装置においては、一般に、表面に入力された位置を効率的に検出するために、所定のパターン形状を有する透明導電層を最外層に備えた透明導電性フィルムが採用されている。 And in the position input device of a touch panel, generally, in order to detect the position inputted into the surface efficiently, the transparent conductive film provided with the transparent conductive layer which has a predetermined pattern shape in the outermost layer is adopted. There is.
 ここで、透明導電性フィルムにおいて、透明導電層をパターン化すると、パターンが存在する部位(パターン部)と存在しない部位(パターン開口部)との間において、光の屈折率が相違することに起因して、タッチパネルの使用者がパターンの存在を看取し得る恐れがあった。タッチパネルは表示装置からの情報のみを正確に表示すべきものであり、使用者がパターンの存在を看取し得る状況は、好ましいものとは言えない。特に、所謂、静電容量方式のタッチパネルにおいては、パターン化された透明導電層が表示部の全面に形成されているため、パターン化された透明導電層を有する透明導電性フィルムであって、そのパターンが目視で認識され得ないもの、即ち、視認性に優れた透明導電性フィルムが求められているのである。 Here, in the transparent conductive film, when the transparent conductive layer is patterned, the refractive index of light is different between the portion (pattern portion) where the pattern exists and the portion (pattern opening portion) where the pattern does not exist. There is a risk that the user of the touch panel can recognize the presence of the pattern. The touch panel is to display only the information from the display device correctly, and the situation where the user can recognize the presence of the pattern is not preferable. In particular, in a so-called electrostatic capacitance type touch panel, since a patterned transparent conductive layer is formed on the entire surface of the display unit, it is a transparent conductive film having a patterned transparent conductive layer, What can not be recognized visually by the pattern, that is, a transparent conductive film having excellent visibility is required.
 かかる状況の下、近年、パターン化された透明導電層を有する透明導電性フィルムであって、そのパターンが目視で認識され得ないもの(視認性に優れた透明導電性フィルム)として、様々なものが提案されている(特許文献1~6を参照)。 Under such circumstances, in recent years, it is a transparent conductive film having a patterned transparent conductive layer, and various patterns can not be recognized visually by visual recognition (a transparent conductive film having excellent visibility). Have been proposed (see Patent Documents 1 to 6).
 しかしながら、昨今の液晶パネル等の表示技術の進歩に伴い、位置入力装置に用いられる透明導電性フィルムに対しても、従来以上の視認性が求められているのであり、この点において、従来の透明導電性フィルムにあっては、未だ解決すべき問題を内在するものであった。 However, with the recent advances in display technology for liquid crystal panels and the like, also for transparent conductive films used in position input devices, higher visibility than before is required, and in this respect, conventional transparent In the case of the conductive film, the problem still to be solved is inherent.
特開2010-23282号公報JP, 2010-23282, A 特開2010-27294号公報JP, 2010-27294, A 特開2008-98169号公報JP 2008-98169 A 特開2010-15861号公報JP, 2010-15861, A 特開2009-76432号公報JP, 2009-76432, A 特開2009-259203号公報JP, 2009-259203, A
 ここにおいて、本発明はかかる事情を背景にして為されたものであって、その解決すべき課題とするところは、パターン化された透明導電層を設けて透明導電性フィルムを作製する際に、視認性に優れたフィルムを有利に作製することが出来る光学調整フィルムを提供することにある。また、本発明は、かかる光学調整フィルムを用いて得られる透明導電性フィルムを提供することも、その課題とするところである。 Here, the present invention has been made in the background of the above circumstances, and the problem to be solved is that when producing a transparent conductive film by providing a patterned transparent conductive layer, An object of the present invention is to provide an optical adjustment film capable of advantageously producing a film excellent in visibility. Another object of the present invention is to provide a transparent conductive film obtained by using such an optical adjustment film.
 そして、本発明は、そのような課題を有利に解決するために、透明フィルム基材の少なくとも一方の面に、直接若しくは一以上の機能層を介して、該基材側から順に高屈折率層及び低屈折率層が積層形成されてなる光学調整フィルムにして、波長:200~800nmにおける正反射率の最小値が、波長:230~265nmの範囲内において与えられることを特徴とする光学調整フィルムを、その要旨とするものである。 And in order to solve such a subject advantageously, the present invention is a high refractive index layer sequentially from the substrate side directly or via one or more functional layers on at least one surface of a transparent film substrate. And an optical adjustment film formed by laminating a low refractive index layer, wherein a minimum value of regular reflectance at a wavelength of 200 to 800 nm is given in a wavelength range of 230 to 265 nm. As its gist.
 なお、そのような本発明に従う光学調整フィルムにあっては、好ましくは、波長:400~650nmにおける正反射率の平均値が6.16%~6.90%である。 In such an optical adjustment film according to the present invention, preferably, the average value of the regular reflectance at a wavelength of 400 to 650 nm is 6.16% to 6.90%.
 また、本発明に係る光学調整フィルムは、より好ましくは、前記高屈折率層の光学膜厚が59~89nmであり、前記低屈折率層の光学膜厚が40~51nmである。 In the optical adjustment film according to the present invention, more preferably, the optical thickness of the high refractive index layer is 59 to 89 nm, and the optical thickness of the low refractive index layer is 40 to 51 nm.
 一方、本発明は、上記した各態様の光学調整フィルムにおける、前記高屈折率層及び前記低屈折率層が設けられた面に、直接若しくは一以上の機能層を介して、パターン部及びパターン開口部からなる透明導電層が設けられてなる透明導電性フィルムをも、その要旨とするものである。 On the other hand, according to the present invention, in the optical adjustment film of each aspect described above, the pattern portion and the pattern opening are provided directly on the surface provided with the high refractive index layer and the low refractive index layer or via one or more functional layers. The gist of the present invention is also a transparent conductive film provided with a transparent conductive layer consisting of parts.
 なお、かかる透明導電性フィルムにおいては、好ましくは、下記式より算出されるΔRが0.5以下である。
    ΔR=|R1 -R2 | ・・・(式)
      但し、R1 は、パターン開口部についての、波長:400~
          650nmにおける正反射率の平均値であり、R2 は、パター
          ン部についての、波長:400~650nmにおける正反射率
          の平均値である。
In addition, in this transparent conductive film, Preferably, (DELTA) R calculated by a following formula is 0.5 or less.
ΔR = | R 1 -R 2 | ... (formula)
However, R 1 is a wavelength of 400 to the pattern opening.
R 2 is the average value of specular reflectance at 650 nm, and R 2 is the average value of specular reflectance at wavelengths of 400 to 650 nm for the pattern part.
 このように、本発明に従う光学調整フィルムにあっては、所定範囲(200~800nm)内の波長にて測定される正反射率における最小値が、230~265nmの範囲内の波長により与えられるものであるところから、そのような光学調整フィルムの高屈折率層及び低屈折率層が設けられた面に、パターン部及びパターン開口部からなる透明導電層を設けて透明導電性フィルムとした場合、かかる透明導電性フィルムは、透明導電層のパターンが認識され難い、視認性に優れたものとなるのである。 Thus, in the optical adjustment film according to the present invention, the minimum value in the regular reflectance measured at the wavelength within the predetermined range (200 to 800 nm) is given by the wavelength within the range of 230 to 265 nm In the case where a transparent conductive layer comprising a pattern portion and a pattern opening portion is provided on the surface of such an optical adjustment film on which the high refractive index layer and the low refractive index layer are provided to form a transparent conductive film, Such a transparent conductive film has excellent visibility with which the pattern of the transparent conductive layer is hard to be recognized.
本発明の光学調整フィルムを用いた透明導電性フィルムの一例を示す、厚さ方向の部分断面図である。It is a fragmentary sectional view of thickness direction which shows an example of the transparent conductive film using the optical adjustment film of this invention.
 以下、図面を適宜、参酌しながら、本発明を更に具体的に説明する。 Hereinafter, the present invention will be described more specifically by referring to the drawings as appropriate.
 図1には、本発明に従う光学調整フィルムを用いてなる透明導電性フィルムの代表的な実施形態の一例について、厚さ方向の断面において概略的に示されている。そこにおいて、光学調整フィルム12は、透明性基材14における一方の面に、かかる基材14から順に高屈折率層16及び低屈折率層18が積層形成されており、そのような光学調整フィルム12における低屈折率層18の表面に、パターン開口部20a及びパターン部20bからなる透明導電層20が設けられて、透明導電性フィルム10とされている。そして、本発明においては、光学調整フィルム12が、波長:200~800nmにおける正反射率の最小値が波長:230~265nmの範囲内において与えられるものであるところに、大きな特徴が存するのである。このような特性を光学調整フィルム12が有していることによって、パターン開口部20a及びパターン部20bからなる透明導電層20が設けられた透明導電性フィルム10にあっては、パターンを認識し難い、即ち、視認性が優れたものとなるのである。 FIG. 1 schematically shows, in a cross-section in the thickness direction, an example of a representative embodiment of a transparent conductive film using the optical adjustment film according to the present invention. In the optical adjustment film 12, the high refractive index layer 16 and the low refractive index layer 18 are sequentially laminated on one surface of the transparent substrate 14 from the substrate 14, and such an optical adjustment film A transparent conductive layer 20 composed of a pattern opening 20 a and a pattern portion 20 b is provided on the surface of the low refractive index layer 18 in 12, to form a transparent conductive film 10. And, in the present invention, the optical adjustment film 12 is characterized in that the minimum value of the regular reflectance at the wavelength of 200 to 800 nm is given in the range of the wavelength: 230 to 265 nm, a great feature exists. It is difficult for the transparent conductive film 10 provided with the transparent conductive layer 20 including the pattern opening 20a and the pattern portion 20b to have a pattern easily recognized by the optical adjustment film 12 having such characteristics. That is, visibility becomes excellent.
 ここで、透明性基材14は、一般に、透明性を有する各種のプラスチックにて構成されている。透明性基材14を構成するプラスチックとしては、ポリエステル系樹脂、アセテート系樹脂、ポリエーテルスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、ポリアリレート系樹脂、ポリフェニレンサルファイド系樹脂等を、例示することが出来る。それらの中でも、特に、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリオレフィン系樹脂等が有利に用いられる。 Here, the transparent substrate 14 is generally made of various types of plastic having transparency. The plastic constituting the transparent substrate 14 includes polyester resins, acetate resins, polyethersulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth) acrylic resins, poly Examples of the resin include vinyl chloride resin, polyvinylidene chloride resin, polystyrene resin, polyvinyl alcohol resin, polyarylate resin, polyphenylene sulfide resin and the like. Among them, particularly, polyester resins, polycarbonate resins, polyolefin resins and the like are advantageously used.
 また、透明性基材14の厚さは、2~500μmの範囲内にあることが好ましく、2~200μmの範囲内にあることがより好ましい。この範囲内であれば、透明導電性フィルム全体の機械的強度を確保しつつ、フィルムの薄膜化が可能ならしめられるからである。 The thickness of the transparent substrate 14 is preferably in the range of 2 to 500 μm, and more preferably in the range of 2 to 200 μm. Within this range, it is possible to thin the film while securing the mechanical strength of the entire transparent conductive film.
 図1において透明性基材14上に設けられている高屈折率層16は、本発明の目的を阻害しない限りにおいて、従来より公知の各種材料にて形成することが可能である。例えば、無機化合物、有機化合物、及びそれらの混合物を用いることが可能である。具体的に、無機化合物としては、酸化亜鉛、酸化チタン、酸化セリウム、酸化アルミニウム、酸化タンタル、酸化イットリウム、酸化イッテルビウム、酸化ジルコニウム、酸化インジウム錫等を挙げることが出来る。また、高屈折率層16を、後述するウェットコーティング法で形成する場合には、前述の無機化合物の微粒子と、硬化性単量体や重合体との混合物を用いることが好ましい。かかる硬化性単量体は特に限定されるものではないが、例えば、多官能若しくは単官能の(メタ)アクリレートエステル、テトラエトキシシラン等のケイ素化合物等を挙げることが出来る。また、重合体にあっても特に限定されるものではなく、従来より公知のものを用いることが出来る。尚、生産性及び高屈折率層16の強度の観点より、紫外線硬化性(光重合性)多官能アクリレート単量体が、特に有利に用いられる。 The high refractive index layer 16 provided on the transparent substrate 14 in FIG. 1 can be formed of various conventionally known materials as long as the object of the present invention is not hindered. For example, inorganic compounds, organic compounds, and mixtures thereof can be used. Specifically, examples of the inorganic compound include zinc oxide, titanium oxide, cerium oxide, aluminum oxide, tantalum oxide, yttrium oxide, ytterbium oxide, zirconium oxide, indium tin oxide and the like. Moreover, when forming the high refractive index layer 16 by the wet coating method mentioned later, it is preferable to use the mixture of the microparticles | fine-particles of the above-mentioned inorganic compound, and a curable monomer and a polymer. Such a curable monomer is not particularly limited, and examples thereof include polyfunctional or monofunctional (meth) acrylate esters, silicon compounds such as tetraethoxysilane, and the like. Moreover, even if it exists in a polymer, it does not specifically limit, A conventionally well-known thing can be used. From the viewpoint of the productivity and the strength of the high refractive index layer 16, a UV curable (photopolymerizable) polyfunctional acrylate monomer is particularly preferably used.
 なお、無機化合物を微粒子として用いる場合、その平均粒子径は、高屈折率層16の厚さを超えないことが好ましく、特に100nm以下であることが好ましい。平均粒子径が大きすぎる微粒子では、散乱が生じる等、高屈折率層16の透明性が低下する恐れがあるからである。また、微粒子は、必要に応じて、その表面が各種カップリング剤等によって修飾されたものであっても良い。かかるカップリング剤としては、有機置換されたケイ素化合物、アルミニウム、チタン、ジルコニウムやアンチモン等の金属アルコキシド、有機酸塩等を例示することが出来る。 When an inorganic compound is used as fine particles, the average particle size thereof preferably does not exceed the thickness of the high refractive index layer 16, and particularly preferably 100 nm or less. When the average particle size is too large, the transparency of the high refractive index layer 16 may be reduced, for example, due to scattering. In addition, the fine particles may have their surfaces modified with various coupling agents and the like, as necessary. As such a coupling agent, organic substituted silicon compounds, metal alkoxides such as aluminum, titanium, zirconium and antimony, organic acid salts and the like can be exemplified.
 また、本発明における高屈折率層16は、その光学膜厚が、好ましくは59~89nm、より好ましくは73~77nmとなるように、形成される。このように高屈折率層16の光学膜厚を所定範囲内とすることにより、本発明の効果をより有利に享受することが可能である。尚、光学膜厚とは、物理的膜厚と屈折率とを乗じて算出されるものである。 Further, the high refractive index layer 16 in the present invention is preferably formed to have an optical film thickness of 59 to 89 nm, more preferably 73 to 77 nm. By thus setting the optical film thickness of the high refractive index layer 16 within a predetermined range, it is possible to more advantageously receive the effects of the present invention. The optical film thickness is calculated by multiplying the physical film thickness and the refractive index.
 図1において高屈折率層16の表面に設けられている低屈折率層18は、本発明の目的を阻害せず、且つ、高屈折率層16より低い屈折率を与える、従来より公知の各種材料にて形成することが可能である。具体的には、酸化ケイ素(シリカ)、フッ化ランタン、フッ化マグネシウム、フッ化セリウム、フッ化マグネシウム等の無機化合物や、含フッ素有機化合物、単官能若しくは多官能(メタ)アクリル酸エステル、テトラエトキシシラン等の有機化合物を、単独で、又はそれらの混合物として、用いることが可能である。また、低屈折率層18を、後述するウェットコーティング法で形成する場合には、前述の無機化合物の微粒子と、硬化性単量体や重合体との混合物を用いることが好ましい。かかる硬化性単量体は特に限定されるものではないが、生産性及び低屈折率層18の強度の観点より、紫外線硬化性(光重合性)多官能アクリレート単量体が、特に有利に用いられる。 The low refractive index layer 18 provided on the surface of the high refractive index layer 16 in FIG. 1 does not hinder the object of the present invention, and provides a lower refractive index than that of the high refractive index layer 16. It is possible to form with material. Specifically, inorganic compounds such as silicon oxide (silica), lanthanum fluoride, magnesium fluoride, cerium fluoride, magnesium fluoride, fluorine-containing organic compounds, monofunctional or polyfunctional (meth) acrylic esters, tetra It is possible to use organic compounds such as ethoxysilane, alone or as a mixture thereof. When the low refractive index layer 18 is formed by a wet coating method described later, it is preferable to use a mixture of fine particles of the above-mentioned inorganic compound and a curable monomer or polymer. Such a curable monomer is not particularly limited, but from the viewpoint of the productivity and the strength of the low refractive index layer 18, a UV curable (photopolymerizable) polyfunctional acrylate monomer is particularly preferably used. Be
 なお、無機化合物を微粒子として用いる場合、その平均粒子径は、低屈折率層18の厚さを超えないことが好ましく、特に100nm以下であることが好ましい。平均粒子径が大きすぎる微粒子では、散乱が生じる等、低屈折率層18の透明性が低下する恐れがあるからである。また、微粒子は、必要に応じて、その表面が各種カップリング剤等によって修飾されたものであっても良い。かかるカップリング剤としては、有機置換されたケイ素化合物、アルミニウム、チタン、ジルコニウムやアンチモン等の金属アルコキシド、有機酸塩等を例示することが出来る。 When an inorganic compound is used as fine particles, the average particle size thereof preferably does not exceed the thickness of the low refractive index layer 18, and particularly preferably 100 nm or less. When the average particle diameter is too large, the transparency of the low refractive index layer 18 may be reduced, for example, due to scattering. In addition, the fine particles may have their surfaces modified with various coupling agents and the like, as necessary. As such a coupling agent, organic substituted silicon compounds, metal alkoxides such as aluminum, titanium, zirconium and antimony, organic acid salts and the like can be exemplified.
 また、本発明における低屈折率層18は、その光学膜厚が、好ましくは40~51nm、より好ましくは46~51nmとなるように形成される。特に、低屈折率層18の光学膜厚が46~51nmであり、且つ、前述の高屈折率層16の光学膜厚が73~77nmである光学調整フィルムを用いて得られる透明導電性フィルムにあっては、より優れた視認性が発揮され得る。 The low refractive index layer 18 in the present invention is preferably formed to have an optical film thickness of 40 to 51 nm, more preferably 46 to 51 nm. In particular, a transparent conductive film obtained by using an optical adjustment film in which the optical film thickness of the low refractive index layer 18 is 46 to 51 nm and the optical film thickness of the high refractive index layer 16 is 73 to 77 nm. If it is, better visibility can be exhibited.
 上述した高屈折率層16及び低屈折率層18は、上記した化合物等の他に、本発明の目的を阻害しない限りにおいて、その他の成分を含んでいても良い。そのような成分としては、無機充填材、無機又は有機顔料、重合体、重合開始剤、重合禁止剤、酸化防止剤、分散剤、界面活性剤、光安定剤、光吸収剤、レベリング剤等を例示することが出来る。 The above-mentioned high refractive index layer 16 and low refractive index layer 18 may contain other components in addition to the above-mentioned compounds and the like as long as the object of the present invention is not hindered. Such components include inorganic fillers, inorganic or organic pigments, polymers, polymerization initiators, polymerization inhibitors, polymerization inhibitors, antioxidants, dispersants, surfactants, light stabilizers, light absorbers, leveling agents, etc. It can be illustrated.
 また、高屈折率層16及び低屈折率層18の形成方法は、ドライコーティング法やウェットコーティング法等の、従来より公知の何れの手法をも採用することが可能である。本発明においては、生産性及び経済性(低コスト)の観点より、ウェットコーティング法が好ましい。ウェットコーティング法としては、ロールコート法、スピンコート法やディップコート法等が広く知られており、それらの中でも、特に、ロールコート法等の連続的に層形成が可能な方法が、生産性の観点より有利に採用される。尚、ウェットコーティング法においては、上述した化合物等を水又は有機溶媒等に分散せしめてなる液状の材料が用いられることとなる。 Further, as a method of forming the high refractive index layer 16 and the low refractive index layer 18, any conventionally known method such as a dry coating method or a wet coating method can be employed. In the present invention, the wet coating method is preferable from the viewpoint of productivity and economy (low cost). As a wet coating method, a roll coating method, a spin coating method, a dip coating method, etc. are widely known, and among them, a method capable of continuously forming a layer, such as a roll coating method, is particularly useful. It is adopted advantageously from the point of view. In the wet coating method, a liquid material obtained by dispersing the above-described compound or the like in water or an organic solvent or the like is used.
 上述した材料及び手法に従って、透明性基材14の表面に、基材側から順に高屈折率層16及び低屈折率層18が設けられて、光学調整フィルム12が形成されるが、各種材料の選択等は、光学調整フィルム12が、波長:200~800nmにおける正反射率の最小値が波長:230~265nmの範囲内において与えられるものとなるように、総合的に判断される。即ち、本発明の光学調整フィルム12は特徴的な光学特性を有するものであるところから、後述するパターン化された透明導電層20が設けられてなる透明導電性フィルム10が、透明導電層20のパターンが認識し難い、即ち、視認性に優れたものとなるのである。 According to the materials and methods described above, the high refractive index layer 16 and the low refractive index layer 18 are sequentially provided on the surface of the transparent substrate 14 from the substrate side, and the optical adjustment film 12 is formed. The selection etc. is comprehensively judged so that the minimum value of the regular reflectance at the wavelength of 200 to 800 nm is given in the range of the wavelength of 230 to 265 nm. That is, since the optical adjustment film 12 of the present invention has characteristic optical properties, the transparent conductive film 10 provided with the patterned transparent conductive layer 20 described later is a transparent conductive layer 20 The pattern is difficult to recognize, that is, it has excellent visibility.
 ここで、「波長:200~800nmにおける正反射率の最小値が波長:230~265nmの範囲内において与えられる」とは、光学調整フィルムについて、波長:200~800nmの範囲において正反射率を測定し、かかる測定において、正反射率が最小値となった際の測定波長が230~265nmの範囲内に属することを、意味するものである。 Here, “the minimum value of regular reflectance at a wavelength of 200 to 800 nm is given in the range of wavelength: 230 to 265 nm” means that the regular reflectance at a wavelength of 200 to 800 nm is measured for an optical adjustment film. In this measurement, it means that the measurement wavelength at the time when the regular reflectance becomes the minimum value falls within the range of 230 to 265 nm.
 また、本発明の効果をより有利に享受するためには、光学調整フィルム12は、上記した光学特性に加えて、波長:400~650nmにおける正反射率の平均値が6.16%~6.90%であることが好ましい。波長:400~650nmにおける正反射率の平均値とは、波長:400~650nmの範囲において測定された正反射率の算術平均を意味するものである。 In addition to the optical properties described above, the optical adjustment film 12 preferably has an average specular reflectance of 6.16% to 6.6 at a wavelength of 400 to 650 nm, in order to more advantageously receive the effects of the present invention. It is preferably 90%. The average value of specular reflectance at a wavelength of 400 to 650 nm means the arithmetic mean of specular reflectance measured at a wavelength of 400 to 650 nm.
 そして、図1に示すように、透明性基材14、高屈折率層16及び低屈折率層18からなる光学調整フィルム12の低屈折率層18の表面に、パターン開口部20a及びパターン部20bからなる透明導電層20が設けられて、透明導電性フィルム10とされているのである。 Then, as shown in FIG. 1, the pattern opening 20a and the pattern 20b are formed on the surface of the low refractive index layer 18 of the optical adjustment film 12 consisting of the transparent base 14, the high refractive index layer 16 and the low refractive index layer 18. The transparent conductive layer 20 which consists of these is provided, and it is set as the transparent conductive film 10.
 ここで、パターン開口部20a及びパターン部20bからなる透明導電層20の形成は、先ず、低屈折率層18の全面を覆うように透明導電層20’を形成し、次いで、かかる透明導電層20’の表面を、部分的に開口した所定のマスクによって覆い、所定の酸でマスクが開口している部位に対応する透明導電層20’を分解(溶解)せしめる、所謂エッチング法が、一般に採用される。尚、かかるエッチングにおいて用いられる酸としては、塩酸、硫酸、硝酸等の無機酸の他、酢酸等の有機酸、及び、これらの混合物等を例示することが出来る。 Here, to form the transparent conductive layer 20 including the pattern opening 20a and the pattern portion 20b, first, the transparent conductive layer 20 'is formed to cover the entire surface of the low refractive index layer 18, and then the transparent conductive layer 20 is formed. A so-called etching method is generally employed, in which the surface of the 'is covered with a partially opened predetermined mask, and a predetermined acid decomposes (dissolves) the transparent conductive layer 20' corresponding to the site where the mask is opened. Ru. Examples of the acid used in the etching include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, organic acids such as acetic acid, and mixtures thereof.
 透明導電層20(パターン部20b)は、通常、インジウム、錫、亜鉛、ガリウム、アンチモン、チタン、ケイ素、ジルコニウム、マグネシウム、アルミニウム、金、銀、銅、パラジウム又はタングステン、若しくはこれらの酸化物にて構成される。それらの中でも、酸化インジウムや、酸化錫を含有する酸化インジウム(ITO)等の酸化インジウムを主成分とするものが、透明性、導電性の観点から特に有利に用いられる。 The transparent conductive layer 20 (pattern portion 20b) is usually made of indium, tin, zinc, gallium, antimony, titanium, silicon, zirconium, magnesium, aluminum, gold, silver, copper, palladium or tungsten, or their oxides. Configured Among them, those containing indium oxide as a main component such as indium oxide or indium oxide (ITO) containing tin oxide are particularly preferably used from the viewpoint of transparency and conductivity.
 また、パターン開口部20aを設ける前の透明導電層20’の形成方法としては、ドライコーティング法やウェットコーティング法等、公知の手法の何れをも採用することが可能である。ドライコーティング法としては、直流マグネトロンスパッタリング法、高周波マグネトロンスパッタリング法やイオンビームスパッタリング法等のスパッタリング法、電子ビーム蒸着等の真空蒸着法、イオンプレーティング法、CVD法等を挙げることが出来る。 In addition, as a method of forming the transparent conductive layer 20 ′ before the pattern opening 20 a is provided, any known method such as a dry coating method or a wet coating method can be employed. The dry coating method may, for example, be a direct current magnetron sputtering method, a sputtering method such as a high frequency magnetron sputtering method or an ion beam sputtering method, a vacuum evaporation method such as electron beam evaporation, an ion plating method or a CVD method.
 上述してきたように、本発明に従う光学調整フィルムを用いて得られる透明導電性フィルムにあっては、光学調整フィルムが所定の光学特性を有するものであるところから、その表面にパターン化された透明導電層20が設けられても、かかる透明導電層のパターンが認識し難い、即ち、視認性に優れたものとなるのである。特に、下記式より算出されるΔRが0.5以下とされた透明導電性フィルムは、視認性がより優れたものとなり、タッチパネル等において有利に用いられ得る。
    ΔR=|R1 -R2 | ・・・(式)
      但し、R1 は、パターン開口部についての、波長:400~
          650nmにおける正反射率の平均値であり、R2 は、パター
          ン部についての、波長:400~650nmにおける正反射率
          の平均値である。
As described above, in the case of the transparent conductive film obtained by using the optical adjustment film according to the present invention, since the optical adjustment film has a predetermined optical property, the transparent conductive film is patterned on its surface. Even if the conductive layer 20 is provided, the pattern of the transparent conductive layer is difficult to recognize, that is, it has excellent visibility. In particular, a transparent conductive film in which ΔR calculated by the following formula is 0.5 or less is more excellent in visibility, and can be advantageously used in a touch panel or the like.
ΔR = | R 1 -R 2 | ... (formula)
However, R 1 is a wavelength of 400 to the pattern opening.
R 2 is the average value of specular reflectance at 650 nm, and R 2 is the average value of specular reflectance at wavelengths of 400 to 650 nm for the pattern part.
 以上、本発明の代表的な一実施形態について詳述してきたが、本発明が、そのような実施形態に限定されるものでないことは、言うまでもないところである。具体的には、本発明の目的を阻害しない限りにおいて、透明性基材と高屈折率層との間や、低屈折率層と透明導電層との間に、一又は二以上の機能層を設けることも可能である。かかる機能層としては、密着性の向上、フィルム全体の硬度の向上、防眩、ニュートンリングの発生防止等を目的として設けられる層が例示される。尚、このような種々の機能層は、従来より公知の手法によって形成することが可能である。 As mentioned above, although one representative embodiment of the present invention has been described in detail, it goes without saying that the present invention is not limited to such an embodiment. Specifically, one or more functional layers may be provided between the transparent substrate and the high refractive index layer or between the low refractive index layer and the transparent conductive layer, as long as the object of the present invention is not impaired. It is also possible to provide. As such a functional layer, a layer provided for the purpose of improvement in adhesion, improvement in hardness of the whole film, antiglare, prevention of generation of Newton ring, etc. is exemplified. Such various functional layers can be formed by a conventionally known method.
 以下に、本発明の実施例を幾つか示し、本発明を更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。また、本発明には、以下の実施例の他にも、更には、上述の具体的記述以外にも、本発明の趣旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々なる変更、修正、改良等を加え得るものであることが、理解されるべきである。 In the following, some examples of the present invention will be shown to clarify the present invention more specifically, but the present invention is not limited by any description of such examples. Is, of course. In addition to the following embodiments, the present invention also includes various modifications based on the knowledge of those skilled in the art without departing from the spirit of the present invention other than the specific description described above. It should be understood that modifications, improvements, etc. may be added.
 なお、以下の実施例及び比較例において作製した光学調整フィルム及び透明導電性フィルムの各物性は、それぞれ以下の手法に従って測定(及び算出)した。その結果を、下記表1に示す。 In addition, each physical property of the optical adjustment film and the transparent conductive film which were produced in the following Example and comparative example was measured (and calculated) according to the following methods, respectively. The results are shown in Table 1 below.
-光学膜厚の算出-
 各層の屈折率及び厚さ(物理的膜厚)を測定し、それらを乗ずることにより(屈折率×物理的膜厚)、光学膜厚を算出した。屈折率の測定は、株式会社アタゴ製のアッべ屈折率計を用いて、各測定面に対して測定光を入射させるようにして、屈折率計に示される規定の測定方法により実施した。また、各層の厚さ(物理的膜厚)は、大塚電子株式会社製の反射分光膜厚計(商品名:FE-3000 )を用いて算出した。尚、透明導電層の光学膜厚とは、パターン部における屈折率及び厚さ(物理的膜厚)により算出されるものである。
-Calculation of optical film thickness-
The refractive index and thickness (physical film thickness) of each layer were measured, and the optical film thickness was calculated by multiplying them (refractive index × physical film thickness). The measurement of the refractive index was carried out by using a Abbe refractometer manufactured by Atago Co., Ltd., in such a manner that the measurement light was made incident on each measurement surface, according to a prescribed measurement method indicated by the refractometer. Further, the thickness (physical film thickness) of each layer was calculated using a reflection spectral film thickness meter (trade name: FE-3000) manufactured by Otsuka Electronics Co., Ltd. The optical film thickness of the transparent conductive layer is calculated by the refractive index and the thickness (physical film thickness) in the pattern portion.
-最小正反射率波長の測定-
 株式会社日立製作所製の分光光度計(商品名:U4100 )に、付属の5°正反射ユニットを取り付け、正反射モードを用いて、入射角を5°として波長:200~800nm(測定範囲)における反射スペクトルを測定し、この測定範囲内における正反射率の最小値を与える波長(測定波長)を最小正反射率波長とした。尚、測定に際しては、サンプルの裏面反射や裏面側からの光の入射を無くすために、サンプルの裏面側を黒色のテープで遮光した。
-Measurement of minimum specular reflectance wavelength-
Attach the attached 5 ° specular reflection unit to a spectrophotometer (trade name: U4100) manufactured by Hitachi, Ltd., and set the incident angle to 5 ° using a regular reflection mode, at a wavelength of 200 to 800 nm (measurement range) The reflection spectrum was measured, and the wavelength (measurement wavelength) giving the minimum value of the regular reflectance within this measurement range was defined as the minimum regular reflectance wavelength. In the measurement, the back side of the sample was shielded by a black tape in order to eliminate back reflection of the sample and incidence of light from the back side.
-正反射率の平均値の算出-
 株式会社日立製作所製の分光光度計(商品名:U4100 )に、付属の5°正反射ユニットを取り付け、正反射モードを用いて、入射角を5°として波長:200~800nmの反射スペクトルを測定し、450~650nmの範囲内における正反射率の平均値(算術平均値)を算出した。尚、測定に際しては、サンプルの裏面反射や裏面側からの光の入射を無くすために、サンプルの裏面側を黒色のテープで遮光した。また、透明導電性フィルムについては、パターン開口部及びパターン部のそれぞれの部位について測定し、R1 (パターン開口部についての、波長:400~650nmにおける正反射率の平均値)、及びR2 (パターン部についての、波長:400~650nmにおける正反射率の平均値)を算出した。更に、ΔRは、以下の式より算出した。
  ΔR=|R1 -R2 | ・・・(式)
-Calculation of average value of regular reflectance-
Attach the attached 5 ° specular reflection unit to a spectrophotometer (trade name: U4100) manufactured by Hitachi, Ltd., and measure the reflection spectrum at a wavelength of 200 to 800 nm using a specular reflection mode with an incident angle of 5 ° Then, the average value (arithmetic average value) of the regular reflectance within the range of 450 to 650 nm was calculated. In the measurement, the back side of the sample was shielded by a black tape in order to eliminate back reflection of the sample and incidence of light from the back side. As for the transparent conductive film was measured for each of the sites of pattern opening portion and the pattern portion, R 1 (in the pattern openings, Wavelength: The average value of the specular reflectance at 400 ~ 650 nm), and R 2 ( The wavelength of the pattern portion was calculated as the average value of the regular reflectances at 400 to 650 nm. Furthermore, ΔR was calculated by the following equation.
ΔR = | R 1 -R 2 | ... (formula)
 先ず、以下の各材料を調製した。 First, the following materials were prepared.
-ハードコート用材料の調製-
 光重合剤含有ウレタンアクリレートオリゴマー(日本化薬株式会社製、商品名:KAYANOVA FOP4000 )に、トルエンとメチルエチルケトン(MEK)とを5:5(重量比)の割合にて混合してなる混合溶媒を加えて、液状のハードコート用材料(固形分濃度:30重量%)を調製した。
-Preparation of hard coat material-
To the photopolymerization agent-containing urethane acrylate oligomer (manufactured by Nippon Kayaku Co., Ltd., trade name: KAYANOVA FOP4000), a mixed solvent obtained by mixing toluene and methyl ethyl ketone (MEK) in a ratio of 5: 5 (weight ratio) is added Thus, a liquid hard coat material (solid content concentration: 30% by weight) was prepared.
-高屈折率層用材料の調製-
 平均粒子径が20~40nmである酸化ジルコニウム:16重量部と、ウレタンアクリレートオリゴマー(荒川化学工業株式会社製、商品名:ビームセット575 ):5重量部と、光重合開始剤(チバ・スペシャリティ・ケミカルズ株式会社製、商品名:イルガキュア184 ):3重量部と、メチルイソブチルケトン(MIBK)とメチルエチルケトン(MEK)とを5:5(重量比)の割合にて混合してなる混合溶媒(以下、MIBK/MEK混合溶媒という)とを用いて、液状の高屈折率層用材料(固形分濃度:5重量%)を調製した。
-Preparation of material for high refractive index layer-
16 parts by weight of zirconium oxide having an average particle size of 20 to 40 nm, 5 parts by weight of a urethane acrylate oligomer (manufactured by Arakawa Chemical Industries, Ltd., trade name: Beam set 575), and a photopolymerization initiator Mixed solvent (trade name: Irgacure 184, manufactured by Chemicals Co., Ltd.): 3 parts by weight, methyl isobutyl ketone (MIBK) and methyl ethyl ketone (MEK) in a ratio of 5: 5 (weight ratio) A liquid high refractive index layer material (solid content concentration: 5% by weight) was prepared using a MIBK / MEK mixed solvent).
-低屈折率層用材料の調製-
 平均粒子径が10~20nmであるコロイダルシリカ(日産化学株式会社製、商品名:MEK-ST):100重量部と、光重合剤含有ウレタンアクリレートオリゴマー(中国塗料株式会社製、商品名:オーレックス344 ):20重量部と、MIBK/MEK混合溶媒とを用いて、液状の低屈折率層用材料(固形分濃度:5重量%)を調製した。
-Preparation of material for low refractive index layer-
100 parts by weight of colloidal silica (Nissan Chemical Co., Ltd., trade name: MEK-ST) having an average particle diameter of 10 to 20 nm and a photopolymerization agent-containing urethane acrylate oligomer (trade name: Orex, manufactured by China Paint Co., Ltd.) A liquid low refractive index layer material (solid content concentration: 5% by weight) was prepared using 20 parts by weight of 344): and a MIBK / MEK mixed solvent.
 そのようにして得られた各材料を用いて、以下に述べる手法に従い、光学調製フィルム及び透明導電性フィルムを作製した。 Using each of the materials thus obtained, optically prepared films and transparent conductive films were produced in accordance with the procedure described below.
-実施例1-
 厚さ:125μmの易接着性ポリエステルフィルム(東洋紡績株式会社製、商品名:A4300 )の一方の面に、液状のハードコート用材料をロールコーターで塗工し、その塗工膜を、ドライヤーオーブンを用いて、100℃×1分の条件で加熱乾燥した。次いで、乾燥後の塗工膜に対して紫外線を照射することにより(照射量:200mJ/cm2 )、ポリエステルフィルム上に厚さ:約3μmのハードコートを設けた。ポリエステルフィルムの他方の面に対しても同一の作業を施すことにより、ポリエステルフィルムの両面に厚さ:約3μmのハードコートが設けられてなるハードコートフィルムを得た。
-Example 1-
Thickness: A liquid hard coat material is coated by a roll coater on one side of a 125 μm easily adhesive polyester film (made by Toyobo Co., Ltd., trade name: A4300), and the coated film is dried in a dryer oven And dried at 100 ° C. for 1 minute. Next, the coated film after drying was irradiated with ultraviolet light (irradiation amount: 200 mJ / cm 2 ) to provide a hard coat having a thickness of about 3 μm on the polyester film. By subjecting the other side of the polyester film to the same operation, a hard coat film in which a hard coat having a thickness of about 3 μm was provided on both sides of the polyester film was obtained.
  得られたハードコートフィルムの一方の面に、別途調製した液状の高屈折率層用材料を、ロールコーターを用いて塗工し、その塗工膜を、ドライヤーオーブンを用いて100℃×1分の条件で加熱乾燥した。次いで、乾燥後の塗工膜に対して、窒素パージ下において紫外線を照射して(照射量:200mJ/cm2 )、塗工膜に含まれるウレタンアクリレートオリゴマーを架橋することにより、ポリエステルフィルムのハードコート上に高屈折率層を設けた。尚、最終的に得られる高屈折率層の光学膜厚が85nmとなるように、高屈折率層材料からなる塗工膜の厚さを調整した。 A liquid high refractive index layer material separately prepared is coated on one side of the obtained hard coat film using a roll coater, and the coated film is dried at 100 ° C. for 1 minute using a dryer oven. It heat-dried on condition of. Next, the coated film after drying is irradiated with ultraviolet light under a nitrogen purge (irradiation amount: 200 mJ / cm 2 ) to crosslink the urethane acrylate oligomer contained in the coated film, thereby making the polyester film hard A high refractive index layer was provided on the coat. In addition, the thickness of the coating film which consists of high refractive index layer material was adjusted so that the optical film thickness of the high refractive index layer finally obtained may be set to 85 nm.
 また、別途調製した液状の低屈折率層用材料を、ロールコーターを用いて高屈折率層上に塗工し、その塗工膜を、ドライヤーオーブンを用いて100℃×1分の条件で加熱乾燥した。次いで、乾燥後の塗工膜に対して、窒素パージ下において紫外線を照射して(照射量:200mJ/cm2 )、塗工膜に含まれるウレタンアクリレートオリゴマーを架橋して低屈折率層を形成せしめることにより、光学調整フィルムを作製した。尚、最終的に得られる低屈折率層の光学膜厚が40nmとなるように、低屈折率層材料からなる塗工膜の厚さを調整した。 In addition, a liquid low refractive index layer material prepared separately is coated on the high refractive index layer using a roll coater, and the coated film is heated at 100 ° C. for 1 minute using a dryer oven. It was dry. Next, the coated film after drying is irradiated with ultraviolet light under nitrogen purge (irradiation amount: 200 mJ / cm 2 ) to crosslink the urethane acrylate oligomer contained in the coated film to form a low refractive index layer The optical adjustment film was produced by carrying out. In addition, the thickness of the coating film which consists of low refractive index layer material was adjusted so that the optical film thickness of the low refractive index layer finally obtained may be 40 nm.
 さらに、得られた光学調整フィルムの最外層たる低屈折率層の表面に、酸化インジウム:97重量%及び酸化スズ:3重量%からなる焼結体材料をターゲット材として用いて、DCマグネトロンスパッタリング法により、低屈折率層の全面を覆う透明導電層を形成した。具体的には、チャンバー内を5×10-4Pa以下となるまで真空排気した後に、かかるチャンバー内にArガス:95%及び酸素ガス:5%からなる混合ガスを導入し、チャンバー内圧力を0.2~0.3Paとしてスパッタリングを実施した。尚、最終的に得られる透明導電層の光学膜厚が50nmとなるように、スパッタリングを実施した。 Furthermore, a DC magnetron sputtering method is performed using a sintered material comprising 97 wt% of indium oxide and 3 wt% of tin oxide as a target material on the surface of the low refractive index layer which is the outermost layer of the obtained optical adjustment film. A transparent conductive layer was formed to cover the entire surface of the low refractive index layer. Specifically, after evacuating the chamber to 5 × 10 -4 Pa or less, a mixed gas of 95% Ar gas and 5% oxygen gas is introduced into the chamber, and the pressure in the chamber is Sputtering was performed at 0.2 to 0.3 Pa. Sputtering was performed so that the optical film thickness of the finally obtained transparent conductive layer would be 50 nm.
 そして、得られた透明導電層上にパターン化されたフォトレジスト膜を形成した後、フィルム全体を25℃のHCl/HNO3 /H2O 混合溶液[HCl:HNO3 :H2O =20:1:30 (体積比)]の溶液に10分間、浸漬することにより、パターン開口部及びパターン部からなる透明導電層を最表面に有する透明導電性フィルムを得た。 Then, after forming a patterned photoresist film on the obtained transparent conductive layer, the whole film is mixed solution of HCl / HNO 3 / H 2 O at 25 ° C. [HCl: HNO 3 : H 2 O = 20: By immersing in a solution of 1:30 (volume ratio) for 10 minutes, a transparent conductive film having a transparent conductive layer consisting of a pattern opening and a pattern portion on the outermost surface was obtained.
-実施例2-
  高屈折率層の光学膜厚が77nmとなるように、また、低屈折率層の光学膜厚が46nmとなるように、種々の条件を変更した以外は実施例1と同様にして、透明導電性フィルムを得た。
-Example 2-
In the same manner as in Example 1, except that various conditions were changed such that the optical film thickness of the high refractive index layer was 77 nm, and the optical film thickness of the low refractive index layer was 46 nm, Film was obtained.
-実施例3-
 高屈折率層の光学膜厚が68nmとなるように、また、低屈折率層の光学膜厚が42nmとなるように、種々の条件を変更した以外は実施例1と同様にして、透明導電性フィルムを得た。
-Example 3-
In the same manner as in Example 1 except that various conditions were changed such that the optical film thickness of the high refractive index layer was 68 nm, and the optical film thickness of the low refractive index layer was 42 nm, Film was obtained.
-実施例4-
 高屈折率層の光学膜厚が78nmとなるように、また、低屈折率層の光学膜厚が40nmとなるように、種々の条件を変更した以外は実施例1と同様にして、透明導電性フィルムを得た。
-Example 4-
In the same manner as in Example 1 except that various conditions were changed such that the optical film thickness of the high refractive index layer was 78 nm, and the optical film thickness of the low refractive index layer was 40 nm, Film was obtained.
-実施例5-
 高屈折率層の光学膜厚が89nmとなるように、また、低屈折率層の光学膜厚が46nmとなるように、種々の条件を変更した以外は実施例1と同様にして、透明導電性フィルムを得た。
-Example 5
In the same manner as in Example 1 except that various conditions were changed such that the optical film thickness of the high refractive index layer was 89 nm, and the optical film thickness of the low refractive index layer was 46 nm, Film was obtained.
-実施例6-
 高屈折率層の光学膜厚が59nmとなるように、また、低屈折率層の光学膜厚が48nmとなるように、種々の条件を変更した以外は実施例1と同様にして、透明導電性フィルムを得た。
-Example 6-
In the same manner as in Example 1, except that various conditions were changed such that the optical film thickness of the high refractive index layer was 59 nm, and the optical film thickness of the low refractive index layer was 48 nm, Film was obtained.
-実施例7-
 高屈折率層の光学膜厚が75nmとなるように、また、低屈折率層の光学膜厚が47nmとなるように、種々の条件を変更した以外は実施例1と同様にして、透明導電性フィルムを得た。
-Example 7-
In the same manner as in Example 1 except that various conditions were changed such that the optical film thickness of the high refractive index layer was 75 nm, and the optical film thickness of the low refractive index layer was 47 nm, Film was obtained.
-実施例8-
 高屈折率層の光学膜厚が73nmとなるように、また、低屈折率層の光学膜厚が47nmとなるように、種々の条件を変更した以外は実施例1と同様にして、透明導電性フィルムを得た。
-Example 8-
In the same manner as in Example 1 except that various conditions were changed such that the optical film thickness of the high refractive index layer was 73 nm, and the optical film thickness of the low refractive index layer was 47 nm, Film was obtained.
-実施例9-
 高屈折率層の光学膜厚が75nmとなるように、また、低屈折率層の光学膜厚が51nmとなるように、種々の条件を変更した以外は実施例1と同様にして、透明導電性フィルムを得た。
-Example 9-
In the same manner as in Example 1 except that various conditions were changed such that the optical film thickness of the high refractive index layer was 75 nm, and the optical film thickness of the low refractive index layer was 51 nm, Film was obtained.
-比較例1-
 高屈折率層の光学膜厚が90nmとなるように、また、低屈折率層の光学膜厚が48nmとなるように、種々の条件を変更した以外は実施例1と同様にして、透明導電性フィルムを得た。
-Comparative example 1-
In the same manner as in Example 1 except that various conditions were changed such that the optical film thickness of the high refractive index layer was 90 nm, and the optical film thickness of the low refractive index layer was 48 nm, Film was obtained.
-比較例2-
 高屈折率層の光学膜厚が69nmとなるように、また、低屈折率層の光学膜厚が30nmとなるように、種々の条件を変更した以外は実施例1と同様にして、透明導電性フィルムを得た。
-Comparative example 2-
In the same manner as in Example 1, except that various conditions were changed such that the optical film thickness of the high refractive index layer was 69 nm and the optical film thickness of the low refractive index layer was 30 nm, Film was obtained.
 以上の如くして得られた8種類の透明導電性フィルムについて、以下の手法に従って、視認性を評価した。 The visibility of the eight types of transparent conductive films obtained as described above was evaluated according to the following method.
-視認性(背景色:黒色)-
 黒い板の上に、透明導電性フィルムを、透明導電層側が最表面となるように載置し、かかる透明導電層側より、目視にてフィルムを観察した。パターン部とパターン開口部との判別が困難な場合を〇とし、パターン部とパターン開口部との判別が可能である場合を×として、評価した。評価結果を、下記表1に示す。
-Visibility (background color: black)-
The transparent conductive film was placed on the black plate so that the transparent conductive layer side was the outermost surface, and the film was visually observed from the transparent conductive layer side. The case where it was difficult to discriminate between the pattern portion and the pattern opening portion was evaluated as 、, and the case where it was possible to discriminate between the pattern portion and the pattern opening portion was evaluated as x. The evaluation results are shown in Table 1 below.
-視認性(背景色:白色)-
 白い板の上に、透明導電性フィルムを、透明導電層側が最表面となるように載置し、かかる透明導電層側より、目視にてフィルムを観察した。パターン部とパターン開口部との判別が困難な場合を〇とし、目視の角度によってパターン部とパターン開口部との判別が僅かに可能な場合を△とし、パターン部とパターン開口部との判別が可能である場合を×として、評価した。評価結果を、下記表1に示す。
-Visibility (background color: white)-
The transparent conductive film was placed on the white plate so that the transparent conductive layer side was the outermost surface, and the film was visually observed from the transparent conductive layer side. A case where discrimination between the pattern portion and the pattern opening portion is difficult is 〇, a case where discrimination between the pattern portion and the pattern opening portion is slightly possible by visual angle is △, and discrimination between the pattern portion and the pattern opening portion is The case where possible was evaluated as x. The evaluation results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 かかる表1からも明らかなように、本発明に従う光学調整フィルムに、パターン部及びパターン開口部からなる透明導電層が設けられた透明導電性フィルム(実施例1~6)にあっては、パターン部とパターン開口部との判別が困難であり、視認性に優れていることが認められる。特に、光学調整フィルムとして、高屈折率層の光学膜厚が73~77nmの範囲内であり、且つ低屈折率層の光学膜厚が46~51nmの範囲内にあるものを用いて作製された透明導電性フィルム(実施例2、実施例7~9)にあっては、黒色及び白色の何れの背景色についても優れた視認性が認められるのである。 As apparent from Table 1 above, in the case of a transparent conductive film (Examples 1 to 6) in which the optical adjustment film according to the present invention is provided with a transparent conductive layer consisting of a pattern portion and a pattern opening, It is recognized that discrimination between a part and a pattern opening is difficult and the visibility is excellent. In particular, the optical adjustment film was manufactured using an optical thickness of the high refractive index layer in the range of 73 to 77 nm and an optical thickness of the low refractive index layer in the range of 46 to 51 nm. In the case of the transparent conductive film (Example 2, Examples 7 to 9), excellent visibility is observed for both black and white background colors.
 10  透明導電性フィルム     12  光学調整フィルム
 14  透明性基材         16  高屈折率層
 18  低屈折率層         20  透明導電層
                                                                                
10 Transparent conductive film 12 Optical adjustment film 14 Transparent base 16 High refractive index layer 18 Low refractive index layer 20 Transparent conductive layer

Claims (5)

  1.  透明フィルム基材の少なくとも一方の面に、直接若しくは一以上の機能層を介して、該基材側から順に高屈折率層及び低屈折率層が積層形成されてなる光学調整フィルムにして、波長:200~800nmにおける正反射率の最小値が、波長:230~265nmの範囲内において与えられることを特徴とする光学調整フィルム。 The optical adjustment film is formed by laminating a high refractive index layer and a low refractive index layer sequentially on at least one surface of a transparent film substrate from the substrate side directly or via one or more functional layers. An optical adjustment film characterized in that the minimum value of specular reflectance at 200 to 800 nm is given in the wavelength range of 230 to 265 nm.
  2.  波長:400~650nmにおける正反射率の平均値が6.16%~6.90%である請求項1に記載の光学調整フィルム。 The optical adjustment film according to claim 1, wherein the average value of specular reflectance at a wavelength of 400 to 650 nm is 6.16% to 6.90%.
  3.  前記高屈折率層の光学膜厚が59~89nmであり、前記低屈折率層の光学膜厚が40~51nmである請求項1又は請求項2に記載の光学調整フィルム。 The optical adjustment film according to claim 1 or 2, wherein the optical thickness of the high refractive index layer is 59 to 89 nm, and the optical thickness of the low refractive index layer is 40 to 51 nm.
  4.  請求項1乃至請求項3の何れか1項に記載の光学調整フィルムにおける、前記高屈折率層及び前記低屈折率層が設けられた面に、直接若しくは一以上の機能層を介して、パターン部及びパターン開口部からなる透明導電層が設けられてなる透明導電性フィルム。 The pattern according to any one of claims 1 to 3, directly or through one or more functional layers, on the surface provided with the high refractive index layer and the low refractive index layer. The transparent conductive film provided with the transparent conductive layer which consists of a part and a pattern opening part.
  5.  下記式より算出されるΔRが0.5以下である請求項4に記載の透明導電性フィルム。
        ΔR=|R1 -R2 | ・・・(式)
          但し、R1 は、パターン開口部についての、波長:40
              0~650nmにおける正反射率の平均値であり、R2 は
              、パターン部についての、波長:400~650nmにお
              ける正反射率の平均値である。
                                                                                    
    The transparent conductive film according to claim 4, wherein ΔR calculated by the following formula is 0.5 or less.
    ΔR = | R 1 -R 2 | ... (formula)
    Where R 1 is the wavelength of 40 for the pattern opening
    R 2 is an average value of specular reflectance at 0 to 650 nm, and R 2 is an average value of specular reflectance at a wavelength of 400 to 650 nm for the pattern part.
PCT/JP2012/059196 2011-04-20 2012-04-04 Optical adjustment film, and transparent conductive film using same WO2012144323A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013510934A JP5745037B2 (en) 2011-04-20 2012-04-04 Optical adjustment film and transparent conductive film using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011093559 2011-04-20
JP2011-093559 2011-04-20

Publications (1)

Publication Number Publication Date
WO2012144323A1 true WO2012144323A1 (en) 2012-10-26

Family

ID=47041437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059196 WO2012144323A1 (en) 2011-04-20 2012-04-04 Optical adjustment film, and transparent conductive film using same

Country Status (3)

Country Link
JP (1) JP5745037B2 (en)
TW (1) TW201302477A (en)
WO (1) WO2012144323A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196258A (en) * 2014-03-31 2015-11-09 積水ナノコートテクノロジー株式会社 Conductive film and method for producing the same, and touch panel including the same
JP2016068428A (en) * 2014-09-30 2016-05-09 積水化学工業株式会社 Light-transmitting conductive film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6995491B2 (en) * 2017-04-21 2022-01-14 キヤノン株式会社 Manufacturing method of optical thin film, optical element, optical element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098169A (en) * 2005-05-26 2008-04-24 Gunze Ltd Transparent planar body and transparent touch switch
JP2008146927A (en) * 2006-12-07 2008-06-26 Nitto Denko Corp Transparent conductive laminate and touch panel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3626624B2 (en) * 1999-04-19 2005-03-09 帝人株式会社 Transparent conductive laminate and transparent tablet
JP2010015861A (en) * 2008-07-04 2010-01-21 Toyobo Co Ltd Transparent conductive laminate film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098169A (en) * 2005-05-26 2008-04-24 Gunze Ltd Transparent planar body and transparent touch switch
JP2008146927A (en) * 2006-12-07 2008-06-26 Nitto Denko Corp Transparent conductive laminate and touch panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196258A (en) * 2014-03-31 2015-11-09 積水ナノコートテクノロジー株式会社 Conductive film and method for producing the same, and touch panel including the same
JP2016068428A (en) * 2014-09-30 2016-05-09 積水化学工業株式会社 Light-transmitting conductive film

Also Published As

Publication number Publication date
TW201302477A (en) 2013-01-16
JP5745037B2 (en) 2015-07-08
JPWO2012144323A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
TWI460742B (en) Transparent conductive film
TWI583276B (en) Patterned substrates with darkened conductor traces
TWI517185B (en) Transparent conductive laminates and transparent touch panels
TWI545591B (en) Transparent conductive film and touch panel
TWI429942B (en) Hard-coated antiglare film, and polarizing plate and image display including the same
KR101471692B1 (en) Hard-coated antiglare film, polarizing plate and image display including the same, and method for producing the same
US20140345917A1 (en) Double-sided transparent conductive film and touch panel
JP4314803B2 (en) Anti-reflection film
CN111183374B (en) Hard coating film, optical laminate, and image display device
TW201124747A (en) Hard-coated antiglare film, and polarizing plate and image display including the same
JP5447728B1 (en) Intermediate base film and touch panel sensor
KR20090110914A (en) Transparent conductive multilayer body and touch panel made of the same
WO2004000550A1 (en) Plastic film and image display unit
TW201333976A (en) Transparent conductive film
JP2006116754A (en) Reflection decreasing material, and electronic image displaying device using it
TWI594890B (en) Laminate, conductive laminate and touch panel, coating composition and method for manufacturing laminate using the same
JP5958476B2 (en) Transparent conductor and touch panel
JP2009288655A (en) Antiglare hard coat film, polarizing plate and image display apparatus using the same, method for evaluating the same and method for producing the same
TW201400849A (en) Method for producing anti-glare film, anti-glare film, polarizing plate, and image display
JP7191340B2 (en) Antireflection films, polarizers and display devices
TWI718535B (en) Anti-reflective film, polarizing plate, and display apparatus
JP5521535B2 (en) Transparent conductive film
WO2015146477A1 (en) Laminate, transparent conductive laminate, and touch panel
JP2013246976A (en) Supporting material for conductive optical member, conductive optical member including the same, and electronic device including conductive optical member
WO2012144323A1 (en) Optical adjustment film, and transparent conductive film using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12773781

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013510934

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12773781

Country of ref document: EP

Kind code of ref document: A1