WO2012144179A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2012144179A1
WO2012144179A1 PCT/JP2012/002585 JP2012002585W WO2012144179A1 WO 2012144179 A1 WO2012144179 A1 WO 2012144179A1 JP 2012002585 W JP2012002585 W JP 2012002585W WO 2012144179 A1 WO2012144179 A1 WO 2012144179A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
layer
light
crystal display
display device
Prior art date
Application number
PCT/JP2012/002585
Other languages
French (fr)
Japanese (ja)
Inventor
壮史 石田
一弥 甲斐田
真也 門脇
博敏 安永
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012144179A1 publication Critical patent/WO2012144179A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix

Definitions

  • the present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device including a backlight that emits blue light.
  • the liquid crystal display device includes, for example, a thin film transistor (hereinafter referred to as “TFT”) substrate, a color filter (hereinafter referred to as “CF”) substrate, and a TFT substrate which are disposed so as to face each other. And a liquid crystal display panel constituted by a liquid crystal layer sealed between CF substrates and the like, and a backlight provided on the back side of the liquid crystal display panel.
  • TFT thin film transistor
  • CF color filter
  • the light utilization efficiency is relatively low because light from the backlight is absorbed by, for example, each colored layer constituting the CF substrate.
  • a back substrate and a front substrate disposed to face each other, a liquid crystal layer provided between the back substrate and the front substrate, a backlight unit that is provided on the back side of the back substrate and emits blue light, A red phosphor and a green phosphor that are formed on the front side of the front substrate, are emitted from the backlight unit, and emit light when excited by blue light that has passed through the liquid crystal layer and the front substrate.
  • a liquid crystal display device including a phosphor layer is disclosed.
  • the blue pixel region in the phosphor layer is configured such that the blue light emitted from the backlight unit and passed through the liquid crystal layer and the front substrate is transmitted as it is (for example, patents). Reference 1).
  • the phosphor layer is provided on the back side of the back substrate, and the front substrate is disposed between the liquid crystal layer and the phosphor layer. And the phosphor layer are spaced apart. For this reason, for example, the light transmitted through the red sub-pixel passes through the liquid crystal layer in an oblique direction and excites the green phosphor layer provided in the adjacent green sub-pixel region (hereinafter referred to as “crosstalk”). There is a problem that the image quality is remarkably deteriorated.
  • the present invention has been made in view of this point, and an object of the present invention is to provide a liquid crystal display device capable of suppressing the crosstalk phenomenon and obtaining good image quality.
  • a liquid crystal display device includes a first substrate, a second substrate disposed opposite the first substrate, and a liquid crystal provided between the first substrate and the second substrate.
  • a liquid crystal display panel in which red, green, and blue sub-pixels are arranged, a backlight that is provided on the first substrate side of the liquid crystal display panel and emits blue light, and a liquid crystal layer of the second substrate
  • a polarizing plate provided on the opposite side, a red phosphor layer provided on the polarizing plate, which converts incident blue light into red light and is arranged so as to overlap the red subpixel, and incident blue Consists of a green phosphor layer that converts light into green light and overlaps the green subpixel, and a blue transmission layer that transmits incident blue light and overlaps the blue subpixel Provided between the liquid crystal layer and the light adjustment layer, and the boundary of each sub-pixel.
  • a liquid crystal display device characterized in that it comprises a arranged shielding layer to shield the minute.
  • the liquid crystal layer and the light adjustment layer that is, the red phosphor layer and the green phosphor layer
  • the liquid crystal layer is formed in the red subpixel. Since the blue light passing in the oblique direction can be shielded by the light shielding layer, it is possible to prevent the blue light from entering the green sub-pixel and exciting the green phosphor layer. Accordingly, it is possible to suppress the crosstalk phenomenon, so that good image quality can be obtained.
  • a light shielding layer may be provided between the second substrate and the polarizing plate.
  • the light shielding layer is provided between the second substrate and the polarizing plate, and the light shielding layer is disposed near the middle between the liquid crystal layer and the light adjustment layer. Blue light that has passed in an oblique direction can be effectively shielded. Therefore, the crosstalk phenomenon can be further suppressed.
  • a light shielding layer may be provided between the polarizing plate and the light adjustment layer.
  • the light shielding layer can be easily formed on the surface of the patterned light adjustment layer by a photolithography method or the like.
  • a light shielding layer may be provided on the surface of the second substrate on the liquid crystal layer side.
  • the light shielding layer can be easily formed on the surface of the patterned common electrode or the like on the second substrate by a photolithography method or the like.
  • the light shielding layer may be formed by a photolithography method.
  • an opening is formed in each subpixel, an opening is formed in the light shielding layer so as to overlap each subpixel, and the area of the opening formed in the light shielding layer is equal to each subpixel. It is preferable that it is smaller than the area of the opening part formed in this.
  • the area of the light shielding layer that blocks the blue light that has passed through the liquid crystal layer in an oblique direction is increased, so that the blue light that has passed through the liquid crystal layer in an oblique direction can be more effectively shielded. Can do.
  • the light shielding layer may be formed of a metal material or a resin material in which a black pigment is dispersed.
  • the light shielding layer can be formed from an inexpensive and versatile material.
  • the light shielding layer may be formed of a metal material having light reflectivity.
  • the light shielding layer has light reflectivity, among the blue light from the backlight, the blue light that has not passed through each opening of the light shielding layer is reflected on the light shielding layer and the backlight ( Reflected in order by the reflection sheet provided) and reused. Therefore, the utilization efficiency of blue light from the backlight is improved.
  • a crosstalk phenomenon can be suppressed and a good image quality can be obtained.
  • FIG. 1 is a cross-sectional view of a liquid crystal display device according to a first embodiment of the present invention.
  • FIG. 3 is a perspective view showing a positional relationship among pixels, a light shielding layer, and a phosphor layer in the liquid crystal display device according to the first embodiment of the present invention.
  • FIG. 3 is a plan view showing a positional relationship between a light shielding layer and a boundary portion of a sub-pixel in the liquid crystal display device according to the first embodiment of the present invention. It is sectional drawing of the liquid crystal display device which concerns on the 2nd Embodiment of this invention. It is sectional drawing of the liquid crystal display device which concerns on the 3rd Embodiment of this invention.
  • FIG. 1 is a cross-sectional view of a liquid crystal display device according to the first embodiment of the present invention
  • FIG. 2 is a diagram illustrating a pixel, a light shielding layer, and a phosphor layer in the liquid crystal display device according to the first embodiment of the present invention. It is a perspective view which shows these positional relationships.
  • FIG. 3 is a plan view showing the positional relationship between the light shielding layer and the boundary portion of the sub-pixel in the liquid crystal display device according to the first embodiment of the present invention.
  • a liquid crystal display device 1 includes a liquid crystal display panel 50a in which a plurality of pixels P (see FIG. 2) are arranged in a matrix, and a front surface (upper surface in the figure) and a rear surface (rear surface) of the liquid crystal display panel 50a. , A pair of a first polarizing plate 51a and a second polarizing plate 51b respectively attached to the lower surface of the figure. Further, the liquid crystal display device 1 is provided on the back side of the liquid crystal display panel 50a and is provided on the surface of the backlight 70 that emits blue light Lb and the first polarizing plate 51a, and adjusts the blue light Lb from the backlight 70. And a phosphor substrate 80 on which the light adjustment layer 22 is formed.
  • each pixel P as shown in FIG. 2, a red subpixel Pr that performs red gradation display, a green subpixel Pg that performs green gradation display, and a blue gradation, which are formed to have the same size. Blue sub-pixels Pb that perform display are arranged.
  • the red subpixel Pr has an opening Ar
  • the green subpixel Pg has an opening Ag
  • the blue subpixel Pb has an opening. Ab is formed.
  • the liquid crystal display panel 50 a includes a TFT substrate 20 that is a first substrate, a counter substrate 30 that is a second substrate disposed to face the TFT substrate 20, and the TFT substrate 20 and the counter substrate 30. And a liquid crystal layer 40 provided therebetween.
  • the liquid crystal display panel 50 a adheres the TFT substrate 20 and the counter substrate 30 to each other, and seals (not shown) provided in a frame shape to enclose the liquid crystal layer 40 between the TFT substrate 20 and the counter substrate 30. ).
  • the TFT substrate 20 includes an insulating substrate 10 such as a glass substrate, a plurality of gate lines (not shown) provided on the insulating substrate 10 so as to extend in parallel to each other, and orthogonal to each gate line. And a plurality of source lines 11 provided so as to extend in parallel to each other.
  • the TFT substrate 20 covers a plurality of TFTs (not shown) provided for each intersecting portion of each gate line and each source line 11, that is, for each subpixel Pr, Pg, and Pb, and each TFT.
  • a protective film (not shown) provided in such a manner, a plurality of pixel electrodes (not shown) provided in a matrix on the protective film and connected to each TFT, and an orientation provided so as to cover each pixel electrode A film (not shown).
  • the counter substrate 30 includes an insulating substrate 15 such as a glass substrate, a common electrode (not shown) provided on the insulating substrate 15, and an alignment film (not shown) provided so as to cover the common electrode. As shown).
  • the liquid crystal layer 40 is made of a nematic liquid crystal material having electro-optical characteristics.
  • the backlight 70 is provided on the TFT substrate 20 side of the liquid crystal display panel 50a, and includes a linear light source (not shown) that emits blue light, and a light guide plate (not shown) provided on the side of the linear light source.
  • a reflection sheet (not shown) provided below the light guide plate, a diffusion sheet (not shown) provided on the light guide plate, and a prism sheet (not shown) provided on the diffusion sheet. .
  • each linear light source includes a plurality of blue LEDs (Light-Emitting-Diodes) provided in a row that emits blue light.
  • the first polarizing plate 51a is provided on the opposite side of the counter substrate 30 from the liquid crystal layer 40
  • the second polarizing plate 51b is provided on the opposite side of the TFT substrate 20 from the liquid crystal layer 40.
  • These first and second polarizing plates 51a and 51b are, for example, a pair of supports (not shown) formed of a triacetylcellulose film and the like, and polyvinyl films dyed with iodine provided between the supports.
  • a polarizer layer (not shown) including a polarizer having a unidirectional polarization axis formed of an alcohol film or the like, and a transparent protective film (not shown) provided on the surface of the support are provided.
  • the phosphor substrate 80 includes an insulating substrate 35 such as a glass substrate, and a light adjustment layer 22 provided on the insulating substrate 35.
  • the light adjustment layer 22 is provided on the surface 55 of the first polarizing plate 51a opposite to the side on which the liquid crystal layer 40 is provided.
  • the light adjustment layer 22 includes a red phosphor layer 22r provided so as to overlap the red subpixel Pr and a green phosphor provided so as to overlap the green subpixel Pg.
  • a layer 22g and a blue transmission layer 22b provided so as to overlap the blue subpixel Pb are provided.
  • the red phosphor layer 22r is a transparent resin layer (thickness of about 10 ⁇ m to several tens of ⁇ m) in which a phosphor for converting blue light Lb incident from the backlight 70 into red light Lr is dispersed. It is.
  • the green phosphor layer 22g is a transparent resin layer (thickness of 10 ⁇ m to several tens of ⁇ m) in which a phosphor for converting the blue light Lb incident from the backlight 70 into the green light Lg is dispersed. Degree).
  • the blue transmissive layer 22b is a transparent resin layer (thickness of about 10 ⁇ m to several tens of ⁇ m) configured to transmit part of the blue light Lb from the backlight 70 as the blue light Ltb. It is.
  • the red and green subpixels Pr and Pg are provided with the red phosphor layer 22r and the green phosphor layer 22g that convert blue light into red light and green light, respectively.
  • the blue transmission layer 22b is provided in the sub-pixel Pb.
  • wavelength conversion is performed by the red phosphor layer 22r and the green phosphor layer 22g, and wavelength conversion by the phosphor is not performed in the blue subpixel Pb. It has become.
  • the transparent resin layer is exemplified as the blue transmission layer 22b.
  • the blue light Lb from the backlight 70 is dispersed by dispersing transparent beads having a refractive index different from that of the transparent resin layer in the transparent resin layer. May be transmitted while being diffused, or may be a transparent inorganic material layer or a space layer.
  • a predetermined value is set for each subpixel Pr, Pg, and Pb in the liquid crystal layer 40 positioned between each pixel electrode on the TFT substrate 20 and the common electrode on the counter substrate 30.
  • the transmittance of the red light Lr, the green light Lg, and the blue light Ltb transmitted through the liquid crystal display panel 50a is adjusted for each subpixel Pr, Pg, and Pb by changing the alignment state of the liquid crystal layer 40 by applying a voltage.
  • an image display is performed.
  • each sub-pixel that is, each of the sub-pixels Pr, red, green, and blue, red, green
  • a light shielding layer 23 is provided so as to shield the boundary region between Pg and Pb).
  • the light shielding layer 23 includes an opening Kr provided so as to overlap the red subpixel Pr, an opening Kg provided so as to overlap the green subpixel Pg, and a blue subpixel.
  • An opening Kb provided to overlap Pb is provided.
  • a boundary region 24 between the red subpixel Pr and the green subpixel Pg and a boundary region 25 between the green subpixel Pg and the blue subpixel Pb are included in the light shielding layer.
  • 23 that is, the portion of the light shielding layer 23 other than the openings Kr, Kg, and Kb is shielded from light.
  • the red subpixel adjacent to the blue light Lb can be shielded. It is possible to prevent the red phosphor layer 22r from being excited by entering the Pr.
  • the blue light Lb that has passed through the liquid crystal layer 40 in the oblique direction in the blue sub-pixel Pb can be shielded by the light-shielding layer 23, the green sub-pixel adjacent to the blue light Lb. It is possible to prevent the green phosphor layer 22g from being excited by entering the Pg.
  • the light shielding layer 23 is made of a metal material such as Ta (tantalum), Cr (chromium), Mo (molybdenum), Ni (nickel), Ti (titanium), Cu (copper), Al (aluminum), or a black pigment such as carbon. Is formed of a dispersed resin material.
  • the blue light Lb from the backlight 70 passes through the openings Kr, Kg, Kb of the light shielding layer 23.
  • the blue light Lb that has not been reflected is sequentially reflected and reused by the light shielding layer 23 and the backlight 70 (the reflective sheet provided on the light shielding layer 23), so that the utilization efficiency of the blue light Lb from the backlight 70 is improved. To do.
  • the areas of the openings Kr, Kg, and Kb formed in the red phosphor layer 22r, the green phosphor layer 22g, and the blue transmission layer 22b are represented by red subpixels Pr and green subpixels, respectively. It is preferable to set the area smaller than each area of the openings Ar, Ag, and Ab formed in the pixel Pg and the blue sub-pixel Pb.
  • Table 1 shows the calculated value of the crosstalk ratio when the light shielding layer 23 having a different opening area is provided in the liquid crystal display device 1 of the present embodiment.
  • the crosstalk ratio was calculated using a ray tracing simulation apparatus (manufactured by Optical Research Associate, trade name: LightTools 7.1.0) under the following conditions. Further, out of the total light amount L of the blue light Lb emitted from the backlight 70 in the red subpixel Pr, the light amount L2 incident on the phosphor layer other than the red phosphor layer 22r (that is, the green phosphor layer 22g) is used. A value (L2 / L1) divided by the light amount L1 incident on the red phosphor layer 22r was calculated as the crosstalk ratio. As a comparative example, the same calculation was performed for the case where the light shielding layer 23 was not provided.
  • the crosstalk phenomenon can be suppressed as compared with the case where the light shielding layer 23 is not provided. Further, by making the areas of the openings Kr, Kg, Kb of the light shielding layer 23 smaller than the areas of the openings Ar, Ag, Ab formed in the sub-pixels Pr, Pg, Pb, the crosstalk phenomenon is further reduced. It turns out that it can suppress further.
  • FIG. 4 is a cross-sectional view of a liquid crystal display device according to the second embodiment of the present invention.
  • symbol is attached
  • the positional relationship between the pixel, the light shielding layer, and the phosphor layer, and the positional relationship between the light shielding layer and the boundary portion of the subpixel are the same as those described in the first embodiment. Detailed description is omitted.
  • each subpixel that is, each subpixel Pr of red, green, and blue, between the first polarizing plate 51 a and the light adjustment layer 22. It is characterized in that a light shielding layer 23 is provided so as to shield the boundary region between Pg and Pb).
  • the light shielding layer 23 can be easily formed on the surface of the patterned light adjusting layer 22 by, for example, a photolithography method.
  • a positive photosensitive resin in which black pigments such as carbon fine particles are dispersed is applied to the entire substrate of the insulating substrate 35 on which the patterned light adjustment layer 22 is formed by spin coating, for example.
  • the exposed photosensitive resin is exposed through a photomask, the light shielding layer 23 can be formed by developing and heating.
  • the liquid crystal layer 40 and the phosphor layer that is, the red phosphor layer 22r and the green phosphor layer 22g
  • the red phosphor layer 22r and the green phosphor layer 22g are arranged apart from each other.
  • the blue light Lb that has passed through the liquid crystal layer 40 in the red subpixel Pr in the oblique direction can be shielded by the light shielding layer 23, the green subpixel Pg adjacent to the blue light Lb. , And the green phosphor layer 22g can be prevented from being excited. Therefore, the crosstalk phenomenon can be suppressed.
  • the blue light Lb that has passed through the liquid crystal layer 40 in the oblique direction can be shielded by the light shielding layer 23, and therefore the red subpixel adjacent to the blue light Lb. It is possible to prevent the red phosphor layer 22r from being excited by entering the Pr.
  • the blue light Lb that has passed through the liquid crystal layer 40 in the oblique direction in the blue sub-pixel Pb can be shielded by the light-shielding layer 23, the green sub-pixel adjacent to the blue light Lb. It is possible to prevent the green phosphor layer 22g from being excited by entering the Pg.
  • Table 2 shows calculated values of the crosstalk ratio when the light shielding layer 23 having a different opening area is provided in the liquid crystal display device 60 of the present embodiment. Note that the calculation condition of the crosstalk ratio is the same as that in the above-described first embodiment, and thus detailed description thereof is omitted here.
  • the crosstalk phenomenon can be suppressed as compared with the case where the light shielding layer 23 is not provided. Further, by making the areas of the openings Kr, Kg, Kb of the light shielding layer 23 smaller than the areas of the openings Ar, Ag, Ab formed in the sub-pixels Pr, Pg, Pb, the crosstalk phenomenon is further reduced. It turns out that it can suppress.
  • FIG. 5 is a cross-sectional view of a liquid crystal display device according to the third embodiment of the present invention.
  • symbol is attached
  • the positional relationship between the pixel, the light shielding layer, and the phosphor layer, and the positional relationship between the light shielding layer and the boundary portion of the subpixel are the same as those described in the first embodiment. Detailed description is omitted.
  • each subpixel that is, each of red, green, and blue subpixels Pr, Pg, etc.
  • a light shielding layer 23 is provided so as to shield the boundary region of Pb).
  • Such a configuration makes it possible to easily form the light shielding layer 23 on the surface of the common electrode or the like patterned on the counter substrate 30 by, for example, photolithography.
  • a positive photosensitive resin in which black pigments such as carbon fine particles are dispersed is applied to the entire substrate of the counter substrate 30 on which the patterned common electrode is formed by spin coating, for example.
  • the light shielding layer 23 can be formed by exposing the photosensitive resin through a photomask and then developing and heating.
  • the liquid crystal layer 40 and the phosphor layer that is, the red phosphor layer 22r and the green phosphor layer 22g
  • the red phosphor layer 22r and the green phosphor layer 22g are arranged apart from each other.
  • the blue light Lb that has passed through the liquid crystal layer 40 in the red sub-pixel Pr in the oblique direction can be shielded by the light-shielding layer 23, the green sub-pixel Pg adjacent to the blue light Lb. , And the green phosphor layer 22g can be prevented from being excited. Therefore, the crosstalk phenomenon can be suppressed.
  • the blue light Lb that has passed through the liquid crystal layer 40 in the oblique direction can be shielded by the light shielding layer 23, and therefore the red subpixel adjacent to the blue light Lb. It is possible to prevent the red phosphor layer 22r from being excited by entering the Pr.
  • the blue light Lb that has passed through the liquid crystal layer 40 in the oblique direction can be shielded by the light-shielding layer 23, so that the blue sub-pixel Pb is adjacent to the green sub-pixel. It is possible to prevent the green phosphor layer 22g from being excited by entering the Pg.
  • Table 3 shows calculated values of the crosstalk ratio when the light shielding layer 23 having a different opening area is provided in the liquid crystal display device 60 of the present embodiment. Note that the calculation condition of the crosstalk ratio is the same as that in the above-described first embodiment, and thus detailed description thereof is omitted here.
  • the crosstalk phenomenon can be suppressed as compared with the case where the light shielding layer 23 is not provided. Further, by making the areas of the openings Kr, Kg, Kb of the light shielding layer 23 smaller than the areas of the openings Ar, Ag, Ab formed in the sub-pixels Pr, Pg, Pb, the crosstalk phenomenon is further reduced. It turns out that it can suppress.
  • the crosstalk phenomenon can be suppressed most when the light shielding layer 23 is provided between the counter substrate 30 and the first polarizing plate 51a shown in FIG. 1 (that is, the crosstalk ratio L2 / L1 is the smallest).
  • the light-shielding layer 23 is provided between the liquid crystal layer 40 and the light adjustment layer 22 in any case in the liquid crystal display devices 1, 60, 65 shown in FIGS.
  • the light shielding layer 23 is provided between the counter substrate 30 and the first polarizing plate 51 a, and the light shielding layer 23 is in the vicinity of the middle between the liquid crystal layer 40 and the light adjustment layer 22. Therefore, it is considered that the blue light Lb that has passed through the liquid crystal layer 40 in the oblique direction can be shielded most effectively by the light shielding layer 23.
  • a liquid crystal display device including a TFT substrate has been exemplified.
  • the present invention is also applied to a liquid crystal display device including another active matrix substrate, a liquid crystal display device of a passive matrix driving system, and the like. be able to.
  • the liquid crystal display device in which the red layer, the green layer, and the blue layer on the counter substrate are omitted is illustrated.
  • the present invention is directed to the counter in which the red layer, the green layer, and the blue layer are provided.
  • the present invention can also be applied to a liquid crystal display device provided with a substrate.
  • the present invention is useful for a liquid crystal display device including a backlight that emits blue light.
  • Liquid crystal display device 20 TFT substrate (first substrate) 22 light adjustment layer 22b blue transmission layer 22g green phosphor layer 22r red phosphor layer 23 light shielding layer 24 boundary region 25 boundary region 30 counter substrate (second substrate) 30a Surface of the counter substrate on the liquid crystal layer side 35 Insulating substrate 40 Liquid crystal layer 50a Liquid crystal display panel 51a First polarizing plate (polarizing plate) 60 Liquid crystal display device 65 Liquid crystal display device 70 Backlight 80 Phosphor substrate

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

A liquid crystal display device (1) is provided with: a liquid crystal display panel (50a), which has a liquid crystal layer (40), and has red, green and blue sub-pixels arranged therein; a backlight (70), which emits blue light (Lb); a first polarization plate (51a), which is provided on the facing substrate (30) side, which is the reverse side of the liquid crystal layer (40); a light adjusting layer (22), which is provided on the first polarization plate (51a), and is configured of a red phosphor layer (22r), a green phosphor layer (22g), and a blue light transmitting layer (22b); and a light shielding layer (23), which is provided between the liquid crystal layer (40) and the light adjusting layer (22), and is disposed so as to shield a boundary portion of each of the sub-pixels from light.

Description

液晶表示装置Liquid crystal display
 本発明は、液晶表示装置に関し、特に、青色光を発するバックライトを備えた液晶表示装置に関するものである。 The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device including a backlight that emits blue light.
 液晶表示装置は、例えば、互いに対向するように配置された薄膜トランジスタ(thin film transistor、以下、「TFT」と称する)基板及びカラーフィルタ(color filter、以下、「CF」と称する)基板と、TFT基板及びCF基板の間に封入された液晶層となどにより構成された液晶表示パネル、並びに液晶表示パネルの背面側に設けられたバックライトを備え、非発光型の表示装置である。そして、CF基板では、画素を構成する各副画素に、例えば、赤色、緑色又は青色に着色された着色層が設けられている。 The liquid crystal display device includes, for example, a thin film transistor (hereinafter referred to as “TFT”) substrate, a color filter (hereinafter referred to as “CF”) substrate, and a TFT substrate which are disposed so as to face each other. And a liquid crystal display panel constituted by a liquid crystal layer sealed between CF substrates and the like, and a backlight provided on the back side of the liquid crystal display panel. In the CF substrate, each sub-pixel constituting the pixel is provided with a colored layer colored, for example, red, green, or blue.
 ここで、一般に、上記構成の液晶表示装置では、バックライトからの光が、例えば、CF基板を構成する各着色層で吸収されることにより、光の利用効率が比較的低くなってしまう。 Here, in general, in the liquid crystal display device having the above-described configuration, the light utilization efficiency is relatively low because light from the backlight is absorbed by, for example, each colored layer constituting the CF substrate.
 そこで、近年、光の利用効率を向上させることにより、低消費電力を図った液晶表示装置が提案されている。 Therefore, in recent years, a liquid crystal display device has been proposed that achieves low power consumption by improving the light utilization efficiency.
 例えば、互いに対向して配置された背面基板及び前面基板と、背面基板と前面基板との間に設けられた液晶層と、背面基板の背面側に設けられ、青色光を放出するバックライトユニットとを備える液晶表示装置において、前面基板の前面側に形成され、バックライトユニットから出射され、液晶層及び前面基板を通過した青色光によって励起されることにより発光する赤色蛍光体及び緑色蛍光体を含む蛍光体層とを備えた液晶表示装置が開示されている。そして、この液晶表示装置においては、蛍光体層における青色の画素領域は、バックライトユニットから出射され、液晶層及び前面基板を通過した青色光がそのまま透過するように構成されている(例えば、特許文献1参照)。 For example, a back substrate and a front substrate disposed to face each other, a liquid crystal layer provided between the back substrate and the front substrate, a backlight unit that is provided on the back side of the back substrate and emits blue light, A red phosphor and a green phosphor that are formed on the front side of the front substrate, are emitted from the backlight unit, and emit light when excited by blue light that has passed through the liquid crystal layer and the front substrate. A liquid crystal display device including a phosphor layer is disclosed. In this liquid crystal display device, the blue pixel region in the phosphor layer is configured such that the blue light emitted from the backlight unit and passed through the liquid crystal layer and the front substrate is transmitted as it is (for example, patents). Reference 1).
特開2007-79565号公報JP 2007-79565 A
 ここで、上記特許文献1に記載の液晶表示装置においては、背面基板の背面側に蛍光体層が設けられ、液晶層と蛍光体層との間に前面基板が配置されているため、液晶層と蛍光体層とが離間して配置されている。そのため、例えば、赤色の副画素を透過した光が、液晶層において斜め方向に通過し、隣接する緑色の副画素領域に設けられた緑色蛍光体層を励起してしまう現象(以下、「クロストーク現象」という。)が生じてしまい、画質が著しく低下するというという問題があった。 Here, in the liquid crystal display device described in Patent Document 1, the phosphor layer is provided on the back side of the back substrate, and the front substrate is disposed between the liquid crystal layer and the phosphor layer. And the phosphor layer are spaced apart. For this reason, for example, the light transmitted through the red sub-pixel passes through the liquid crystal layer in an oblique direction and excites the green phosphor layer provided in the adjacent green sub-pixel region (hereinafter referred to as “crosstalk”). There is a problem that the image quality is remarkably deteriorated.
 本発明は、かかる点に鑑みてなされたものであり、クロストーク現象を抑制して、良好な画質を得ることができる液晶表示装置を提供することを目的とする。 The present invention has been made in view of this point, and an object of the present invention is to provide a liquid crystal display device capable of suppressing the crosstalk phenomenon and obtaining good image quality.
 上記目的を達成するために、本発明の液晶表示装置は、第1基板と、第1基板に対向して配置された第2基板と、第1基板及び第2基板の間に設けられた液晶層とを有し、赤色、緑色及び青色の各副画素が配列された液晶表示パネルと、液晶表示パネルの第1基板側に設けられ、青色光を発するバックライトと、第2基板の液晶層とは反対側に設けられた偏光板と、偏光板上に設けられ、入射する青色光を赤色光に変換し、赤色の副画素に重なるように配置された赤色蛍光体層と、入射する青色光を緑色光に変換し、緑色の副画素に重なるように配置された緑色蛍光体層と、入射する青色光を透過し、青色の副画素に重なるように配置された青色透過層とにより構成された光調整層と、液晶層と光調整層との間に設けられ、各副画素の境界部分を遮光するように配置された遮光層とを備えることを特徴とする液晶表示装置である。 In order to achieve the above object, a liquid crystal display device according to the present invention includes a first substrate, a second substrate disposed opposite the first substrate, and a liquid crystal provided between the first substrate and the second substrate. A liquid crystal display panel in which red, green, and blue sub-pixels are arranged, a backlight that is provided on the first substrate side of the liquid crystal display panel and emits blue light, and a liquid crystal layer of the second substrate A polarizing plate provided on the opposite side, a red phosphor layer provided on the polarizing plate, which converts incident blue light into red light and is arranged so as to overlap the red subpixel, and incident blue Consists of a green phosphor layer that converts light into green light and overlaps the green subpixel, and a blue transmission layer that transmits incident blue light and overlaps the blue subpixel Provided between the liquid crystal layer and the light adjustment layer, and the boundary of each sub-pixel. A liquid crystal display device, characterized in that it comprises a arranged shielding layer to shield the minute.
 同構成によれば、液晶層と光調整層(即ち、赤色蛍光体層と緑色蛍光体層)とが離間して配置されている場合であっても、例えば、赤色の副画素において液晶層を斜め方向に通過した青色光を遮光層により遮光することができるため、この青色光が緑色の副画素に入射して、緑色蛍光体層を励起してしまうことを防止することができる。従って、クロストーク現象を抑制することが可能になるため、良好な画質を得ることができる。 According to this configuration, even when the liquid crystal layer and the light adjustment layer (that is, the red phosphor layer and the green phosphor layer) are arranged apart from each other, for example, the liquid crystal layer is formed in the red subpixel. Since the blue light passing in the oblique direction can be shielded by the light shielding layer, it is possible to prevent the blue light from entering the green sub-pixel and exciting the green phosphor layer. Accordingly, it is possible to suppress the crosstalk phenomenon, so that good image quality can be obtained.
 本発明の液晶表示装置においては、遮光層が、第2基板と偏光板との間に設けられていてもよい。 In the liquid crystal display device of the present invention, a light shielding layer may be provided between the second substrate and the polarizing plate.
 同構成によれば、遮光層が第2基板と偏光板との間に設けられており、遮光層が液晶層と光調整層との中間付近に配置されるため、遮光層により、液晶層を斜め方向に通過した青色光を効果的に遮光することができる。従って、クロストーク現象をより一層抑制することが可能になる。 According to this configuration, the light shielding layer is provided between the second substrate and the polarizing plate, and the light shielding layer is disposed near the middle between the liquid crystal layer and the light adjustment layer. Blue light that has passed in an oblique direction can be effectively shielded. Therefore, the crosstalk phenomenon can be further suppressed.
 本発明の液晶表示装置においては、遮光層が、偏光板と光調整層との間に設けられていてもよい。 In the liquid crystal display device of the present invention, a light shielding layer may be provided between the polarizing plate and the light adjustment layer.
 同構成によれば、例えば、パターニングされた光調整層の表面上に、フォトリソグラフィー法等に、遮光層を容易に形成することが可能になる。 According to this configuration, for example, the light shielding layer can be easily formed on the surface of the patterned light adjustment layer by a photolithography method or the like.
 本発明の液晶表示装置においては、遮光層が、第2基板の液晶層側の表面に設けられていてもよい。 In the liquid crystal display device of the present invention, a light shielding layer may be provided on the surface of the second substrate on the liquid crystal layer side.
 同構成によれば、例えば、第2基板において、パターニングされた共通電極等の表面上に、フォトリソグラフィー法等に、遮光層を容易に形成することが可能になる。 According to this configuration, for example, the light shielding layer can be easily formed on the surface of the patterned common electrode or the like on the second substrate by a photolithography method or the like.
 本発明の液晶表示装置においては、遮光層は、フォトリソグラフィー法により形成されていてもよい。 In the liquid crystal display device of the present invention, the light shielding layer may be formed by a photolithography method.
 本発明の液晶表示装置においては、各副画素に開口部が形成され、遮光層に各副画素に重なるように開口部が形成され、遮光層に形成された開口部の面積が、各副画素に形成された開口部の面積よりも小さいことが好ましい。 In the liquid crystal display device of the present invention, an opening is formed in each subpixel, an opening is formed in the light shielding layer so as to overlap each subpixel, and the area of the opening formed in the light shielding layer is equal to each subpixel. It is preferable that it is smaller than the area of the opening part formed in this.
 同構成によれば、遮光層において、液晶層を斜め方向に通過した青色光を遮光する部分の面積が大きくなるため、液晶層を斜め方向に通過した青色光をより一層効果的に遮光することができる。 According to this configuration, the area of the light shielding layer that blocks the blue light that has passed through the liquid crystal layer in an oblique direction is increased, so that the blue light that has passed through the liquid crystal layer in an oblique direction can be more effectively shielded. Can do.
 本発明の液晶表示装置においては、遮光層が、金属材料、または黒色顔料が分散された樹脂材料により形成されていてもよい。 In the liquid crystal display device of the present invention, the light shielding layer may be formed of a metal material or a resin material in which a black pigment is dispersed.
 同構成によれば、安価かつ汎用性のある材料により、遮光層を形成することができる。 According to this configuration, the light shielding layer can be formed from an inexpensive and versatile material.
 本発明の液晶表示装置においては、遮光層が、光反射性を有する金属材料により形成されていてもよい。 In the liquid crystal display device of the present invention, the light shielding layer may be formed of a metal material having light reflectivity.
 同構成によれば、遮光層が光反射性を有することになるため、バックライトからの青色光のうち、遮光層の各開口部を通過しなかった青色光が、遮光層及びバックライト(に設けられた反射シート)で順に反射して再利用されることになる。従って、バックライトからの青色光の利用効率が向上する。 According to this configuration, since the light shielding layer has light reflectivity, among the blue light from the backlight, the blue light that has not passed through each opening of the light shielding layer is reflected on the light shielding layer and the backlight ( Reflected in order by the reflection sheet provided) and reused. Therefore, the utilization efficiency of blue light from the backlight is improved.
 本発明によれば、蛍光体層を備える液晶表示装置において、クロストーク現象を抑制することができ、良好な画質を得ることができる。 According to the present invention, in a liquid crystal display device including a phosphor layer, a crosstalk phenomenon can be suppressed and a good image quality can be obtained.
本発明の第1の実施形態に係る液晶表示装置の断面図である。1 is a cross-sectional view of a liquid crystal display device according to a first embodiment of the present invention. 本発明の第1の実施形態に係る液晶表示装置における画素と遮光層と蛍光体層との位置関係を示す斜視図である。FIG. 3 is a perspective view showing a positional relationship among pixels, a light shielding layer, and a phosphor layer in the liquid crystal display device according to the first embodiment of the present invention. 本発明の第1の実施形態に係る液晶表示装置における遮光層と副画素の境界部分との位置関係を示す平面図である。FIG. 3 is a plan view showing a positional relationship between a light shielding layer and a boundary portion of a sub-pixel in the liquid crystal display device according to the first embodiment of the present invention. 本発明の第2の実施形態に係る液晶表示装置の断面図である。It is sectional drawing of the liquid crystal display device which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る液晶表示装置の断面図である。It is sectional drawing of the liquid crystal display device which concerns on the 3rd Embodiment of this invention.
 (第1の実施形態)
 以下、本発明の実施形態を図面に基づいて詳細に説明する。
(First embodiment)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明の第1の実施形態に係る液晶表示装置の断面図であり、図2は、本発明の第1の実施形態の係る液晶表示装置における画素と遮光層と蛍光体層との位置関係を示す斜視図である。また、図3は、本発明の第1の実施形態に係る液晶表示装置における遮光層と副画素の境界部分との位置関係を示す平面図である。 FIG. 1 is a cross-sectional view of a liquid crystal display device according to the first embodiment of the present invention, and FIG. 2 is a diagram illustrating a pixel, a light shielding layer, and a phosphor layer in the liquid crystal display device according to the first embodiment of the present invention. It is a perspective view which shows these positional relationships. FIG. 3 is a plan view showing the positional relationship between the light shielding layer and the boundary portion of the sub-pixel in the liquid crystal display device according to the first embodiment of the present invention.
 図1に示すように、液晶表示装置1は、複数の画素P(図2参照)がマトリクス状に配列された液晶表示パネル50aと、液晶表示パネル50aの表面(図の上面)及び裏面(背面、図の下面)にそれぞれ貼り付けられた一対の第1偏光板51a及び第2偏光板51bとを備えている。また、液晶表示装置1は、液晶表示パネル50aの背面側に設けられ、青色光Lbを発するバックライト70と、第1偏光板51aの表面に設けられ、バックライト70からの青色光Lbを調整する光調整層22が形成された蛍光体基板80とを備えている。 As shown in FIG. 1, a liquid crystal display device 1 includes a liquid crystal display panel 50a in which a plurality of pixels P (see FIG. 2) are arranged in a matrix, and a front surface (upper surface in the figure) and a rear surface (rear surface) of the liquid crystal display panel 50a. , A pair of a first polarizing plate 51a and a second polarizing plate 51b respectively attached to the lower surface of the figure. Further, the liquid crystal display device 1 is provided on the back side of the liquid crystal display panel 50a and is provided on the surface of the backlight 70 that emits blue light Lb and the first polarizing plate 51a, and adjusts the blue light Lb from the backlight 70. And a phosphor substrate 80 on which the light adjustment layer 22 is formed.
 各画素Pでは、図2に示すように、互いに等しいサイズで形成された赤色の階調表示を行う赤色の副画素Pr、緑色の階調表示を行う緑色の副画素Pg、及び青色の階調表示を行う青色の副画素Pbが配列されている。 In each pixel P, as shown in FIG. 2, a red subpixel Pr that performs red gradation display, a green subpixel Pg that performs green gradation display, and a blue gradation, which are formed to have the same size. Blue sub-pixels Pb that perform display are arranged.
 また、図2に示すように、赤色の副画素Prには開口部Arが形成されており、緑色の副画素Pgには開口部Agが形成されており、青色の副画素Pbには開口部Abが形成されている。 Further, as shown in FIG. 2, the red subpixel Pr has an opening Ar, the green subpixel Pg has an opening Ag, and the blue subpixel Pb has an opening. Ab is formed.
 液晶表示パネル50aは、図1に示すように、第1基板であるTFT基板20と、TFT基板20に対向して配置された第2基板である対向基板30と、TFT基板20及び対向基板30の間に設けられた液晶層40とを備えている。また、液晶表示パネル50aは、TFT基板20及び対向基板30を互いに接着するとともに、TFT基板20及び対向基板30の間に液晶層40を封入するために枠状に設けられたシール材(不図示)とを備えている。 As shown in FIG. 1, the liquid crystal display panel 50 a includes a TFT substrate 20 that is a first substrate, a counter substrate 30 that is a second substrate disposed to face the TFT substrate 20, and the TFT substrate 20 and the counter substrate 30. And a liquid crystal layer 40 provided therebetween. In addition, the liquid crystal display panel 50 a adheres the TFT substrate 20 and the counter substrate 30 to each other, and seals (not shown) provided in a frame shape to enclose the liquid crystal layer 40 between the TFT substrate 20 and the counter substrate 30. ).
 TFT基板20は、図1に示すように、ガラス基板などの絶縁基板10と、絶縁基板10上に互いに平行に延びるように設けられた複数のゲート線(不図示)と、各ゲート線と直交する方向に互いに平行に延びるように設けられた複数のソース線11とを備えている。また、TFT基板20は、各ゲート線及び各ソース線11の交差する部分毎、即ち、各副画素Pr、Pg及びPb毎にそれぞれ設けられた複数のTFT(不図示)と、各TFTを覆うように設けられた保護膜(不図示)と、保護膜上にマトリクス状に設けられ、各TFTに接続された複数の画素電極(不図示)と、各画素電極を覆うように設けられた配向膜(不図示)とを備えている。 As shown in FIG. 1, the TFT substrate 20 includes an insulating substrate 10 such as a glass substrate, a plurality of gate lines (not shown) provided on the insulating substrate 10 so as to extend in parallel to each other, and orthogonal to each gate line. And a plurality of source lines 11 provided so as to extend in parallel to each other. The TFT substrate 20 covers a plurality of TFTs (not shown) provided for each intersecting portion of each gate line and each source line 11, that is, for each subpixel Pr, Pg, and Pb, and each TFT. A protective film (not shown) provided in such a manner, a plurality of pixel electrodes (not shown) provided in a matrix on the protective film and connected to each TFT, and an orientation provided so as to cover each pixel electrode A film (not shown).
 対向基板30は、図1に示すように、ガラス基板などの絶縁基板15と、絶縁基板15上に設けられた共通電極(不図示)と、共通電極を覆うように設けられた配向膜(不図示)とを備えている。 As shown in FIG. 1, the counter substrate 30 includes an insulating substrate 15 such as a glass substrate, a common electrode (not shown) provided on the insulating substrate 15, and an alignment film (not shown) provided so as to cover the common electrode. As shown).
 液晶層40は、電気光学特性を有するネマチックの液晶材料などにより構成されている。 The liquid crystal layer 40 is made of a nematic liquid crystal material having electro-optical characteristics.
 バックライト70は、液晶表示パネル50aのTFT基板20側に設けられており、青色光を発する線状光源(不図示)と、線状光源の側方に設けられた導光板(不図示)と、導光板の下方に設けられた反射シート(不図示)と、導光板上に設けられた拡散シート(不図示)と、拡散シート上に設けられたプリズムシート(不図示)とを備えている。 The backlight 70 is provided on the TFT substrate 20 side of the liquid crystal display panel 50a, and includes a linear light source (not shown) that emits blue light, and a light guide plate (not shown) provided on the side of the linear light source. A reflection sheet (not shown) provided below the light guide plate, a diffusion sheet (not shown) provided on the light guide plate, and a prism sheet (not shown) provided on the diffusion sheet. .
 そして、バックライト70は、線状光源からの青色光を、導光板、反射シート、拡散シート及びプリズムシートを介して青色光Lb(図1参照)として出射するように構成されている。ここで、線状光源は、各々、青色光を発する一列に設けられた複数の青色LED(Light Emitting Diode)などにより構成されている。 And the backlight 70 is comprised so that the blue light from a linear light source may be radiate | emitted as blue light Lb (refer FIG. 1) through a light-guide plate, a reflective sheet, a diffusion sheet, and a prism sheet. Here, each linear light source includes a plurality of blue LEDs (Light-Emitting-Diodes) provided in a row that emits blue light.
 第1偏光板51aは、対向基板30の液晶層40とは反対側に設けられており、第2偏光板51bは、TFT基板20の液晶層40とは反対側に設けられている。これらの第1,第2偏光板51a,51bは、例えば、トリアセチルセルロースフィルムなどにより形成された一対の支持体(不図示)と、それらの支持体の間に設けられ、ヨウ素で染色したポリビニルアルコールフィルムなどにより形成された一方向の偏光軸を有する偏光子を含む偏光子層(不図示)と、支持体の表面に設けられた透明な保護フィルム(不図示)とを備えている。 The first polarizing plate 51a is provided on the opposite side of the counter substrate 30 from the liquid crystal layer 40, and the second polarizing plate 51b is provided on the opposite side of the TFT substrate 20 from the liquid crystal layer 40. These first and second polarizing plates 51a and 51b are, for example, a pair of supports (not shown) formed of a triacetylcellulose film and the like, and polyvinyl films dyed with iodine provided between the supports. A polarizer layer (not shown) including a polarizer having a unidirectional polarization axis formed of an alcohol film or the like, and a transparent protective film (not shown) provided on the surface of the support are provided.
 蛍光体基板80は、図1に示すように、ガラス基板等の絶縁基板35と、絶縁基板35上に設けられた光調整層22とを備えている。この光調整層22は、図1に示すように、第1偏光板51aの、液晶層40が設けられた側と反対側の表面55上に設けられている。 As shown in FIG. 1, the phosphor substrate 80 includes an insulating substrate 35 such as a glass substrate, and a light adjustment layer 22 provided on the insulating substrate 35. As shown in FIG. 1, the light adjustment layer 22 is provided on the surface 55 of the first polarizing plate 51a opposite to the side on which the liquid crystal layer 40 is provided.
 光調整層22は、図1及び図2に示すように、赤色の副画素Prに重なるように設けられた赤色蛍光体層22rと、緑色の副画素Pgに重なるように設けられた緑色蛍光体層22gと、青色の副画素Pbに重なるように設けられた青色透過層22bとを備えている。 As shown in FIGS. 1 and 2, the light adjustment layer 22 includes a red phosphor layer 22r provided so as to overlap the red subpixel Pr and a green phosphor provided so as to overlap the green subpixel Pg. A layer 22g and a blue transmission layer 22b provided so as to overlap the blue subpixel Pb are provided.
 赤色蛍光体層22rは、図1に示すように、バックライト70から入射する青色光Lbを赤色光Lrに変換するための蛍光体が分散された透明樹脂層(厚さ10μm~数10μm程度)である。 As shown in FIG. 1, the red phosphor layer 22r is a transparent resin layer (thickness of about 10 μm to several tens of μm) in which a phosphor for converting blue light Lb incident from the backlight 70 into red light Lr is dispersed. It is.
 また、緑色蛍光体層22gは、図1に示すように、バックライト70から入射する青色光Lbを緑色光Lgに変換するための蛍光体が分散された透明樹脂層(厚さ10μm~数10μm程度)である。 Further, as shown in FIG. 1, the green phosphor layer 22g is a transparent resin layer (thickness of 10 μm to several tens of μm) in which a phosphor for converting the blue light Lb incident from the backlight 70 into the green light Lg is dispersed. Degree).
 また、青色透過層22bは、図1に示すように、バックライト70からの青色光Lbの一部を青色光Ltbとして透過するように構成された透明樹脂層(厚さ10μm~数10μm程度)である。 Further, as shown in FIG. 1, the blue transmissive layer 22b is a transparent resin layer (thickness of about 10 μm to several tens of μm) configured to transmit part of the blue light Lb from the backlight 70 as the blue light Ltb. It is.
 このように、本実施形態においては、赤色及び緑色の各副画素Pr,Pgに、青色光を赤色光及び緑色光にそれぞれ変換する赤色蛍光体層22r及び緑色蛍光体層22gが設けられ、青色の副画素Pbに青色透過層22bが設けられている。そして、赤色及び緑色の各副画素Pr,Pgでは、赤色蛍光体層22r及び緑色蛍光体層22gによる波長変換が行われ、青色の副画素Pbでは、蛍光体による波長変換が行われない構成となっている。 As described above, in the present embodiment, the red and green subpixels Pr and Pg are provided with the red phosphor layer 22r and the green phosphor layer 22g that convert blue light into red light and green light, respectively. The blue transmission layer 22b is provided in the sub-pixel Pb. In each of the red and green subpixels Pr and Pg, wavelength conversion is performed by the red phosphor layer 22r and the green phosphor layer 22g, and wavelength conversion by the phosphor is not performed in the blue subpixel Pb. It has become.
 なお、本実施形態では、青色透過層22bとして、透明樹脂層を例示したが、透明樹脂層と屈折率が異なる透明なビーズを透明樹脂層に分散することにより、バックライト70からの青色光Lbを拡散させながら透過させてもよく、また、透明な無機材料層や空間層であってもよい。 In the present embodiment, the transparent resin layer is exemplified as the blue transmission layer 22b. However, the blue light Lb from the backlight 70 is dispersed by dispersing transparent beads having a refractive index different from that of the transparent resin layer in the transparent resin layer. May be transmitted while being diffused, or may be a transparent inorganic material layer or a space layer.
 そして、上記構成の液晶表示装置1においては、TFT基板20上の各画素電極と対向基板30の共通電極との間に位置する液晶層40において、各副画素Pr、Pg及びPb毎に所定の電圧を印加して液晶層40の配向状態を変えることにより、各副画素Pr、Pg及びPb毎に液晶表示パネル50a内を透過する赤色光Lr、緑色光Lg及び青色光Ltbの透過率を調整して、画像表示を行うように構成されている。 In the liquid crystal display device 1 having the above-described configuration, a predetermined value is set for each subpixel Pr, Pg, and Pb in the liquid crystal layer 40 positioned between each pixel electrode on the TFT substrate 20 and the common electrode on the counter substrate 30. The transmittance of the red light Lr, the green light Lg, and the blue light Ltb transmitted through the liquid crystal display panel 50a is adjusted for each subpixel Pr, Pg, and Pb by changing the alignment state of the liquid crystal layer 40 by applying a voltage. Thus, an image display is performed.
 ここで、本実施形態においては、図1~図3に示すように、対向基板30と第1偏光板51aとの間に、各副画素(即ち、赤色、緑色、青色の各副画素Pr,Pg,Pb)の境界領域を遮光するように配置された遮光層23が設けられている点に特徴がある。 Here, in the present embodiment, as shown in FIGS. 1 to 3, each sub-pixel (that is, each of the sub-pixels Pr, red, green, and blue, red, green) between the counter substrate 30 and the first polarizing plate 51a. It is characterized in that a light shielding layer 23 is provided so as to shield the boundary region between Pg and Pb).
 この遮光層23は、図2に示すように、赤色の副画素Prに重なるように設けられた開口部Kr、緑色の副画素Pgに重なるように設けられた開口部Kg、及び青色の副画素Pbに重なるように設けられた開口部Kbを備えている。 As shown in FIG. 2, the light shielding layer 23 includes an opening Kr provided so as to overlap the red subpixel Pr, an opening Kg provided so as to overlap the green subpixel Pg, and a blue subpixel. An opening Kb provided to overlap Pb is provided.
 そして、図1~図3に示すように、赤色の副画素Prと緑色の副画素Pgとの境界領域24、及び緑色の副画素Pgと青色の副画素Pbとの境界領域25が、遮光層23(即ち、遮光層23の、開口部Kr,Kg、Kb以外の部分)により遮光されるように構成されている。 1 to 3, a boundary region 24 between the red subpixel Pr and the green subpixel Pg and a boundary region 25 between the green subpixel Pg and the blue subpixel Pb are included in the light shielding layer. 23 (that is, the portion of the light shielding layer 23 other than the openings Kr, Kg, and Kb) is shielded from light.
 この様な構成により、液晶層40と蛍光体層(即ち、赤色蛍光体層22rと緑色蛍光体層22g)とが離間して配置されている場合であっても、図1に示すように、赤色の副画素Prにおいて液晶層40を斜め方向に通過した青色光Lbを遮光層23により遮光することができるため、当該青色光Lbが隣接する緑色の副画素Pgに入射して、緑色蛍光体層22gを励起してしまうことを防止することができる。従って、クロストーク現象を抑制することが可能になり、良好な画質を得ることができる。 With such a configuration, even when the liquid crystal layer 40 and the phosphor layer (that is, the red phosphor layer 22r and the green phosphor layer 22g) are spaced apart, as shown in FIG. Since the blue light Lb that has passed through the liquid crystal layer 40 in the red sub-pixel Pr in the oblique direction can be shielded by the light-shielding layer 23, the blue light Lb is incident on the adjacent green sub-pixel Pg, and the green phosphor Excitation of the layer 22g can be prevented. Therefore, it is possible to suppress the crosstalk phenomenon and obtain a good image quality.
 また、図1に示すように、緑色の副画素Pgにおいて液晶層40を斜め方向に通過した青色光Lbを遮光層23により遮光することができるため、当該青色光Lbが隣接する赤色の副画素Prに入射して、赤色蛍光体層22rを励起してしまうことを防止することができる。 In addition, as shown in FIG. 1, since the blue light Lb that has passed through the liquid crystal layer 40 in the green subpixel Pg in the oblique direction can be shielded by the light shielding layer 23, the red subpixel adjacent to the blue light Lb can be shielded. It is possible to prevent the red phosphor layer 22r from being excited by entering the Pr.
 更に、図1に示すように、青色の副画素Pbにおいて液晶層40を斜め方向に通過した青色光Lbを遮光層23により遮光することができるため、当該青色光Lbが隣接する緑色の副画素Pgに入射して、緑色蛍光体層22gを励起してしまうことを防止することができる。 Further, as shown in FIG. 1, since the blue light Lb that has passed through the liquid crystal layer 40 in the oblique direction in the blue sub-pixel Pb can be shielded by the light-shielding layer 23, the green sub-pixel adjacent to the blue light Lb. It is possible to prevent the green phosphor layer 22g from being excited by entering the Pg.
 この遮光層23は、Ta(タンタル)、Cr(クロム)、Mo(モリブデン)、Ni(ニッケル)、Ti(チタン)、Cu(銅)、Al(アルミニウム)などの金属材料、カーボンなどの黒色顔料が分散された樹脂材料により形成される。 The light shielding layer 23 is made of a metal material such as Ta (tantalum), Cr (chromium), Mo (molybdenum), Ni (nickel), Ti (titanium), Cu (copper), Al (aluminum), or a black pigment such as carbon. Is formed of a dispersed resin material.
 また、遮光層23を光反射性を有する金属材料(例えば、アルミニウム膜)で形成することにより、バックライト70からの青色光Lbのうち、遮光層23の各開口部Kr,Kg,Kbを通過しなかった青色光Lbが、遮光層23及びバックライト70(に設けられた反射シート)により順に反射して再利用されることになるため、バックライト70からの青色光Lbの利用効率が向上する。 Further, by forming the light shielding layer 23 from a light reflective metal material (for example, an aluminum film), the blue light Lb from the backlight 70 passes through the openings Kr, Kg, Kb of the light shielding layer 23. The blue light Lb that has not been reflected is sequentially reflected and reused by the light shielding layer 23 and the backlight 70 (the reflective sheet provided on the light shielding layer 23), so that the utilization efficiency of the blue light Lb from the backlight 70 is improved. To do.
 また、本実施形態においては、赤色蛍光体層22r、緑色蛍光体層22g、及び青色透過層22bに形成された開口部Kr,Kg,Kbの各面積を、赤色の副画素Pr、緑色の副画素Pg、及び青色の副画素Pbに形成された開口部Ar,Ag,Abの各面積よりも小さく設定することが好ましい。 In the present embodiment, the areas of the openings Kr, Kg, and Kb formed in the red phosphor layer 22r, the green phosphor layer 22g, and the blue transmission layer 22b are represented by red subpixels Pr and green subpixels, respectively. It is preferable to set the area smaller than each area of the openings Ar, Ag, and Ab formed in the pixel Pg and the blue sub-pixel Pb.
 これは、開口部Kr,Kg,Kbの面積が開口部Ar,Ag,Abの各面積よりも小さい方が、遮光層23において、液晶層40を斜め方向に通過した青色光Lbを遮光する部分(即ち、遮光層23の、開口部Kr,Kg、Kb以外の部分)の面積が大きくなるため、液晶層40を斜め方向に通過した青色光Lbをより一層遮光することができるためである。 This is because the part of the light shielding layer 23 that shields the blue light Lb that has passed through the liquid crystal layer 40 obliquely when the area of the openings Kr, Kg, Kb is smaller than the area of each of the openings Ar, Ag, Ab. This is because the area of the light shielding layer 23 other than the openings Kr, Kg, and Kb is increased, so that the blue light Lb that has passed through the liquid crystal layer 40 in an oblique direction can be further shielded.
 表1に、本実施形態の液晶表示装置1において、開口面積の異なる遮光層23を設けた場合のクロストーク割合の計算値を示す。なお、クロストーク割合は、以下の条件により、光線追跡シミュレーション装置(Optical Research Associate社製、商品名:LightTools7.1.0)を使用して計算した。また、赤色の副画素Prにおいてバックライト70により発せられた青色光Lbの全光量Lのうち、赤色蛍光体層22r以外の蛍光体層(即ち、緑色蛍光体層22g)に入射した光量L2を赤色蛍光体層22rに入射した光量L1により割った値(L2/L1)をクロストーク割合として算出した。また、比較例として、遮光層23を設けなかった場合についても、同様に算出した。 Table 1 shows the calculated value of the crosstalk ratio when the light shielding layer 23 having a different opening area is provided in the liquid crystal display device 1 of the present embodiment. The crosstalk ratio was calculated using a ray tracing simulation apparatus (manufactured by Optical Research Associate, trade name: LightTools 7.1.0) under the following conditions. Further, out of the total light amount L of the blue light Lb emitted from the backlight 70 in the red subpixel Pr, the light amount L2 incident on the phosphor layer other than the red phosphor layer 22r (that is, the green phosphor layer 22g) is used. A value (L2 / L1) divided by the light amount L1 incident on the red phosphor layer 22r was calculated as the crosstalk ratio. As a comparative example, the same calculation was performed for the case where the light shielding layer 23 was not provided.
 <算出条件>
 各副画素、及び蛍光体層のサイズ:108μm×324μm
 各副画素の開口部のサイズ:98μm×314μm
 遮光層の開口部のサイズ:98μm×314μm、88μm×304μm、78μm×294μm
 遮光層の厚み:1μm
 TFT基板の厚み:400μm
 対向基板の厚み:100μm
 液晶層の厚み:5μm
 第1及び第2偏光板の厚み:100μm
 バックライトにより発せられた青色光の全光量L:0.0347[W]
 バックライトにより発せられた青色光の特性:正面方向に最大輝度を有し、全方向において、半値全幅20°の広がりを有するガウス関数で定義される配向特性を有する光
<Calculation conditions>
Size of each sub-pixel and phosphor layer: 108 μm × 324 μm
Opening size of each sub-pixel: 98 μm × 314 μm
Size of opening of light shielding layer: 98 μm × 314 μm, 88 μm × 304 μm, 78 μm × 294 μm
Light-shielding layer thickness: 1μm
TFT substrate thickness: 400 μm
Counter substrate thickness: 100 μm
Liquid crystal layer thickness: 5 μm
Thickness of the first and second polarizing plates: 100 μm
Total amount of blue light emitted by the backlight L: 0.0347 [W]
Characteristics of blue light emitted by a backlight: light having an alignment characteristic defined by a Gaussian function having a maximum brightness in the front direction and a full width at half maximum of 20 ° in all directions
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、遮光層23を設けた場合は、遮光層23を設けなかった場合に比し、クロストーク現象を抑制することができることが判る。また、遮光層23の開口部Kr,Kg,Kbの面積を、各副画素Pr,Pg,Pbに形成された開口部Ar,Ag,Abの面積よりも小さくすることにより、クロストーク現象をより一層抑制することができることが判る。 As shown in Table 1, it can be seen that when the light shielding layer 23 is provided, the crosstalk phenomenon can be suppressed as compared with the case where the light shielding layer 23 is not provided. Further, by making the areas of the openings Kr, Kg, Kb of the light shielding layer 23 smaller than the areas of the openings Ar, Ag, Ab formed in the sub-pixels Pr, Pg, Pb, the crosstalk phenomenon is further reduced. It turns out that it can suppress further.
 (第2の実施形態)
 次に、本発明の第2の実施形態について説明する。図4は、本発明の第2の実施形態に係る液晶表示装置の断面図である。なお、上記第1実施形態と同様の構成部分については同一の符号を付してその説明を省略する。また、画素と遮光層と蛍光体層との位置関係、及び遮光層と副画素の境界部分との位置関係については、上述の第1の実施形態において説明したものと同様であるため、ここでは詳しい説明を省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. FIG. 4 is a cross-sectional view of a liquid crystal display device according to the second embodiment of the present invention. In addition, about the component similar to the said 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted. Further, the positional relationship between the pixel, the light shielding layer, and the phosphor layer, and the positional relationship between the light shielding layer and the boundary portion of the subpixel are the same as those described in the first embodiment. Detailed description is omitted.
 本実施形態の液晶表示装置60においては、図4に示すように、第1偏光板51aと光調整層22との間に、各副画素(即ち、赤色、緑色、青色の各副画素Pr,Pg,Pb)の境界領域を遮光するように配置された遮光層23が設けられている点に特徴がある。 In the liquid crystal display device 60 of the present embodiment, as shown in FIG. 4, each subpixel (that is, each subpixel Pr of red, green, and blue, between the first polarizing plate 51 a and the light adjustment layer 22). It is characterized in that a light shielding layer 23 is provided so as to shield the boundary region between Pg and Pb).
 そして、この様な構成により、パターニングされた光調整層22の表面上に、例えば、フォトリソグラフィー法等に、遮光層23を容易に形成することが可能になる。 With such a configuration, the light shielding layer 23 can be easily formed on the surface of the patterned light adjusting layer 22 by, for example, a photolithography method.
 例えば、パターニングされた光調整層22が形成された絶縁基板35の基板全体に、スピンコート法により、例えば、カーボン微粒子などの黒色顔料が分散されたポジ型の感光性樹脂を塗布し、その塗布された感光性樹脂をフォトマスクを介して露光した後に、現像及び加熱することにより、遮光層23を形成することができる。 For example, a positive photosensitive resin in which black pigments such as carbon fine particles are dispersed is applied to the entire substrate of the insulating substrate 35 on which the patterned light adjustment layer 22 is formed by spin coating, for example. After the exposed photosensitive resin is exposed through a photomask, the light shielding layer 23 can be formed by developing and heating.
 また、上記第1の実施形態の場合と同様に、液晶層40と蛍光体層(即ち、赤色蛍光体層22rと緑色蛍光体層22g)とが離間して配置されている場合であっても、図4に示すように、赤色の副画素Prにおいて液晶層40を斜め方向に通過した青色光Lbを遮光層23により遮光することができるため、当該青色光Lbが隣接する緑色の副画素Pgに入射して、緑色蛍光体層22gを励起してしまうことを防止することができる。従って、クロストーク現象を抑制することが可能になる。 Further, as in the case of the first embodiment, even when the liquid crystal layer 40 and the phosphor layer (that is, the red phosphor layer 22r and the green phosphor layer 22g) are arranged apart from each other. As shown in FIG. 4, since the blue light Lb that has passed through the liquid crystal layer 40 in the red subpixel Pr in the oblique direction can be shielded by the light shielding layer 23, the green subpixel Pg adjacent to the blue light Lb. , And the green phosphor layer 22g can be prevented from being excited. Therefore, the crosstalk phenomenon can be suppressed.
 また、図4に示すように、緑色の副画素Pgにおいて液晶層40を斜め方向に通過した青色光Lbを遮光層23により遮光することができるため、当該青色光Lbが隣接する赤色の副画素Prに入射して、赤色蛍光体層22rを励起してしまうことを防止することができる。 Further, as shown in FIG. 4, in the green subpixel Pg, the blue light Lb that has passed through the liquid crystal layer 40 in the oblique direction can be shielded by the light shielding layer 23, and therefore the red subpixel adjacent to the blue light Lb. It is possible to prevent the red phosphor layer 22r from being excited by entering the Pr.
 更に、図4に示すように、青色の副画素Pbにおいて液晶層40を斜め方向に通過した青色光Lbを遮光層23により遮光することができるため、当該青色光Lbが隣接する緑色の副画素Pgに入射して、緑色蛍光体層22gを励起してしまうことを防止することができる。 Further, as shown in FIG. 4, since the blue light Lb that has passed through the liquid crystal layer 40 in the oblique direction in the blue sub-pixel Pb can be shielded by the light-shielding layer 23, the green sub-pixel adjacent to the blue light Lb. It is possible to prevent the green phosphor layer 22g from being excited by entering the Pg.
 また、第1の実施形態に場合と同様に、表2に、本実施形態の液晶表示装置60において、開口面積の異なる遮光層23を設けた場合のクロストーク割合の計算値を示す。なお、クロストーク割合の算出条件は、上述の第1の実施形態の場合と同様であるため、ここでは詳しい説明を省略する。 Similarly to the case of the first embodiment, Table 2 shows calculated values of the crosstalk ratio when the light shielding layer 23 having a different opening area is provided in the liquid crystal display device 60 of the present embodiment. Note that the calculation condition of the crosstalk ratio is the same as that in the above-described first embodiment, and thus detailed description thereof is omitted here.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、遮光層23を設けた場合は、遮光層23を設けなかった場合に比し、クロストーク現象を抑制することができることが判る。また、遮光層23の開口部Kr,Kg,Kbの面積を、副画素Pr,Pg,Pbに形成された開口部Ar,Ag,Abの面積よりも小さくすることにより、クロストーク現象をより一層抑制することができることが判る。 As shown in Table 2, it can be seen that when the light shielding layer 23 is provided, the crosstalk phenomenon can be suppressed as compared with the case where the light shielding layer 23 is not provided. Further, by making the areas of the openings Kr, Kg, Kb of the light shielding layer 23 smaller than the areas of the openings Ar, Ag, Ab formed in the sub-pixels Pr, Pg, Pb, the crosstalk phenomenon is further reduced. It turns out that it can suppress.
 (第3の実施形態)
 次に、本発明の第3の実施形態について説明する。図5は、本発明の第3の実施形態に係る液晶表示装置の断面図である。なお、上記第1実施形態と同様の構成部分については同一の符号を付してその説明を省略する。また、画素と遮光層と蛍光体層との位置関係、及び遮光層と副画素の境界部分との位置関係については、上述の第1の実施形態において説明したものと同様であるため、ここでは詳しい説明を省略する。
(Third embodiment)
Next, a third embodiment of the present invention will be described. FIG. 5 is a cross-sectional view of a liquid crystal display device according to the third embodiment of the present invention. In addition, about the component similar to the said 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted. Further, the positional relationship between the pixel, the light shielding layer, and the phosphor layer, and the positional relationship between the light shielding layer and the boundary portion of the subpixel are the same as those described in the first embodiment. Detailed description is omitted.
 本実施形態の液晶表示装置65においては、図5に示すように、対向基板30の液晶層40側の表面30aに、各副画素(即ち、赤色、緑色、青色の各副画素Pr,Pg,Pb)の境界領域を遮光するように配置された遮光層23が設けられている点に特徴がある。 In the liquid crystal display device 65 of the present embodiment, as shown in FIG. 5, each subpixel (that is, each of red, green, and blue subpixels Pr, Pg, etc.) is formed on the surface 30 a of the counter substrate 30 on the liquid crystal layer 40 side. It is characterized in that a light shielding layer 23 is provided so as to shield the boundary region of Pb).
 この様な構成により、対向基板30において、パターニングされた共通電極等の表面上に、例えば、フォトリソグラフィー法等に、遮光層23を容易に形成することが可能になる。 Such a configuration makes it possible to easily form the light shielding layer 23 on the surface of the common electrode or the like patterned on the counter substrate 30 by, for example, photolithography.
 例えば、パターニングされた共通電極が形成された対向基板30の基板全体に、スピンコート法により、例えば、カーボン微粒子などの黒色顔料が分散されたポジ型の感光性樹脂を塗布し、その塗布された感光性樹脂をフォトマスクを介して露光した後に、現像及び加熱することにより、遮光層23を形成することができる。 For example, a positive photosensitive resin in which black pigments such as carbon fine particles are dispersed is applied to the entire substrate of the counter substrate 30 on which the patterned common electrode is formed by spin coating, for example. The light shielding layer 23 can be formed by exposing the photosensitive resin through a photomask and then developing and heating.
 また、上記第1の実施形態の場合と同様に、液晶層40と蛍光体層(即ち、赤色蛍光体層22rと緑色蛍光体層22g)とが離間して配置されている場合であっても、図5に示すように、赤色の副画素Prにおいて液晶層40を斜め方向に通過した青色光Lbを遮光層23により遮光することができるため、当該青色光Lbが隣接する緑色の副画素Pgに入射して、緑色蛍光体層22gを励起してしまうことを防止することができる。従って、クロストーク現象を抑制することが可能になる。 Further, as in the case of the first embodiment, even when the liquid crystal layer 40 and the phosphor layer (that is, the red phosphor layer 22r and the green phosphor layer 22g) are arranged apart from each other. As shown in FIG. 5, since the blue light Lb that has passed through the liquid crystal layer 40 in the red sub-pixel Pr in the oblique direction can be shielded by the light-shielding layer 23, the green sub-pixel Pg adjacent to the blue light Lb. , And the green phosphor layer 22g can be prevented from being excited. Therefore, the crosstalk phenomenon can be suppressed.
 また、図5に示すように、緑色の副画素Pgにおいて液晶層40を斜め方向に通過した青色光Lbを遮光層23により遮光することができるため、当該青色光Lbが隣接する赤色の副画素Prに入射して、赤色蛍光体層22rを励起してしまうことを防止することができる。 Further, as shown in FIG. 5, in the green subpixel Pg, the blue light Lb that has passed through the liquid crystal layer 40 in the oblique direction can be shielded by the light shielding layer 23, and therefore the red subpixel adjacent to the blue light Lb. It is possible to prevent the red phosphor layer 22r from being excited by entering the Pr.
 更に、図5に示すように、青色の副画素Pbにおいて液晶層40を斜め方向に通過した青色光Lbを遮光層23により遮光することができるため、当該青色光Lbが隣接する緑色の副画素Pgに入射して、緑色蛍光体層22gを励起してしまうことを防止することができる。 Further, as shown in FIG. 5, in the blue sub-pixel Pb, the blue light Lb that has passed through the liquid crystal layer 40 in the oblique direction can be shielded by the light-shielding layer 23, so that the blue sub-pixel Pb is adjacent to the green sub-pixel. It is possible to prevent the green phosphor layer 22g from being excited by entering the Pg.
 また、第1の実施形態に場合と同様に、表3に、本実施形態の液晶表示装置60において、開口面積の異なる遮光層23を設けた場合のクロストーク割合の計算値を示す。なお、クロストーク割合の算出条件は、上述の第1の実施形態の場合と同様であるため、ここでは詳しい説明を省略する。 Similarly to the case of the first embodiment, Table 3 shows calculated values of the crosstalk ratio when the light shielding layer 23 having a different opening area is provided in the liquid crystal display device 60 of the present embodiment. Note that the calculation condition of the crosstalk ratio is the same as that in the above-described first embodiment, and thus detailed description thereof is omitted here.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、遮光層23を設けた場合は、遮光層23を設けなかった場合に比し、クロストーク現象を抑制することができることが判る。また、遮光層23の開口部Kr,Kg,Kbの面積を、副画素Pr,Pg,Pbに形成された開口部Ar,Ag,Abの面積よりも小さくすることにより、クロストーク現象をより一層抑制することができることが判る。 As shown in Table 3, it can be seen that when the light shielding layer 23 is provided, the crosstalk phenomenon can be suppressed as compared with the case where the light shielding layer 23 is not provided. Further, by making the areas of the openings Kr, Kg, Kb of the light shielding layer 23 smaller than the areas of the openings Ar, Ag, Ab formed in the sub-pixels Pr, Pg, Pb, the crosstalk phenomenon is further reduced. It turns out that it can suppress.
 なお、表1~表3から、図1に示す、対向基板30と第1偏光板51aとの間に遮光層23を設けた場合が最もクロストーク現象を抑制できる(即ち、クロストーク割合L2/L1が最も小さい)ことが判る。 From Tables 1 to 3, the crosstalk phenomenon can be suppressed most when the light shielding layer 23 is provided between the counter substrate 30 and the first polarizing plate 51a shown in FIG. 1 (that is, the crosstalk ratio L2 / L1 is the smallest).
 これは、図1、図4、図5に示す液晶表示装置1,60,65においては、どの場合も液晶層40と光調整層22との間に遮光層23が設けられているが、図1に示す液晶表示装置1においては、対向基板30と第1偏光板51aとの間に遮光層23が設けられており、当該遮光層23が、液晶層40と光調整層22との中間付近に配置されているため、遮光層23により、液晶層40を斜め方向に通過した青色光Lbを最も効果的に遮光することができるためであると考えられる。 This is because the light-shielding layer 23 is provided between the liquid crystal layer 40 and the light adjustment layer 22 in any case in the liquid crystal display devices 1, 60, 65 shown in FIGS. In the liquid crystal display device 1 shown in FIG. 1, the light shielding layer 23 is provided between the counter substrate 30 and the first polarizing plate 51 a, and the light shielding layer 23 is in the vicinity of the middle between the liquid crystal layer 40 and the light adjustment layer 22. Therefore, it is considered that the blue light Lb that has passed through the liquid crystal layer 40 in the oblique direction can be shielded most effectively by the light shielding layer 23.
 なお、上記実施形態は以下のように変更しても良い。 Note that the above embodiment may be modified as follows.
 上記各実施形態においては、TFT基板を備えた液晶表示装置を例示したが、本発明は、その他のアクティブマトリクス基板を備えた液晶表示装置、及びパッシブマトリクス駆動方式の液晶表示装置などにも適用することができる。 In each of the above embodiments, a liquid crystal display device including a TFT substrate has been exemplified. However, the present invention is also applied to a liquid crystal display device including another active matrix substrate, a liquid crystal display device of a passive matrix driving system, and the like. be able to.
 また、上記各実施形態では、対向基板上の赤色層、緑色層及び青色層が省略された液晶表示装置を例示したが、本発明は、赤色層、緑色層及び青色層などが設けられた対向基板を備えた液晶表示装置にも適用することができる。 In each of the above embodiments, the liquid crystal display device in which the red layer, the green layer, and the blue layer on the counter substrate are omitted is illustrated. However, the present invention is directed to the counter in which the red layer, the green layer, and the blue layer are provided. The present invention can also be applied to a liquid crystal display device provided with a substrate.
 以上説明したように、本発明は、青色光を発するバックライトを備えた液晶表示装置にについて有用である。 As described above, the present invention is useful for a liquid crystal display device including a backlight that emits blue light.
 1  液晶表示装置
 20  TFT基板(第1基板)
 22  光調整層
 22b  青色透過層
 22g  緑色蛍光体層
 22r  赤色蛍光体層
 23  遮光層
 24  境界領域
 25  境界領域
 30  対向基板(第2基板)
 30a  対向基板の液晶層側の表面
 35  絶縁基板
 40  液晶層
 50a  液晶表示パネル
 51a  第1偏光板(偏光板)
 60  液晶表示装置
 65  液晶表示装置
 70  バックライト
 80  蛍光体基板
1 Liquid crystal display device 20 TFT substrate (first substrate)
22 light adjustment layer 22b blue transmission layer 22g green phosphor layer 22r red phosphor layer 23 light shielding layer 24 boundary region 25 boundary region 30 counter substrate (second substrate)
30a Surface of the counter substrate on the liquid crystal layer side 35 Insulating substrate 40 Liquid crystal layer 50a Liquid crystal display panel 51a First polarizing plate (polarizing plate)
60 Liquid crystal display device 65 Liquid crystal display device 70 Backlight 80 Phosphor substrate

Claims (8)

  1.  第1基板と、前記第1基板に対向して配置された第2基板と、前記第1基板及び前記第2基板の間に設けられた液晶層とを有し、赤色、緑色及び青色の各副画素が配列された液晶表示パネルと、
     前記液晶表示パネルの前記第1基板側に設けられ、青色光を発するバックライトと、
     前記第2基板の前記液晶層とは反対側に設けられた偏光板と、
     前記偏光板上に設けられ、入射する前記青色光を赤色光に変換し、前記赤色の副画素に重なるように配置された赤色蛍光体層と、入射する前記青色光を緑色光に変換し、前記緑色の副画素に重なるように配置された緑色蛍光体層と、入射する前記青色光を透過し、前記青色の副画素に重なるように配置された青色透過層とにより構成された光調整層と、
     前記液晶層と前記光調整層との間に設けられ、前記各副画素の境界部分を遮光するように配置された遮光層と
     を備えることを特徴とする液晶表示装置。
    A first substrate; a second substrate disposed opposite to the first substrate; and a liquid crystal layer provided between the first substrate and the second substrate, each of red, green, and blue A liquid crystal display panel in which sub-pixels are arranged;
    A backlight that is provided on the first substrate side of the liquid crystal display panel and emits blue light;
    A polarizing plate provided on the opposite side of the liquid crystal layer of the second substrate;
    Provided on the polarizing plate, converts the incident blue light into red light, a red phosphor layer disposed so as to overlap the red sub-pixel, and converts the incident blue light into green light, A light adjustment layer configured by a green phosphor layer disposed so as to overlap the green subpixel and a blue transmission layer disposed so as to transmit the incident blue light and overlap the blue subpixel. When,
    A liquid crystal display device comprising: a light shielding layer provided between the liquid crystal layer and the light adjustment layer and arranged to shield a boundary portion between the sub-pixels.
  2.  前記遮光層が、前記第2基板と前記偏光板との間に設けられていることを特徴とする請求項1に記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the light shielding layer is provided between the second substrate and the polarizing plate.
  3.  前記遮光層が、前記偏光板と前記光調整層との間に設けられていることを特徴とする請求項1に記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the light shielding layer is provided between the polarizing plate and the light adjusting layer.
  4.  前記遮光層が、前記第2基板の前記液晶層側の表面に設けられていることを特徴とする請求項1に記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the light shielding layer is provided on a surface of the second substrate on the liquid crystal layer side.
  5.  前記遮光層は、フォトリソグラフィー法により形成されていることを特徴とする請求項3または請求項4に記載の液晶表示装置。 The liquid crystal display device according to claim 3 or 4, wherein the light shielding layer is formed by a photolithography method.
  6.  前記各副画素には開口部が形成され、前記遮光層には前記各副画素に重なるように開口部が形成され、前記遮光層に形成された開口部の面積が、前記各副画素に形成された開口部の面積よりも小さいことを特徴とする請求項1~請求項5のいずれか1項に記載の液晶表示装置。 An opening is formed in each subpixel, an opening is formed in the light shielding layer so as to overlap each subpixel, and an area of the opening formed in the light shielding layer is formed in each subpixel. The liquid crystal display device according to any one of claims 1 to 5, wherein the liquid crystal display device is smaller than an area of the formed opening.
  7.  前記遮光層が、金属材料、または黒色顔料が分散された樹脂材料により形成されていることを特徴とする請求項1~請求項6のいずれか1項に記載の液晶表示装置。 7. The liquid crystal display device according to claim 1, wherein the light shielding layer is formed of a metal material or a resin material in which a black pigment is dispersed.
  8.  前記遮光層が、光反射性を有する前記金属材料により形成されていることを特徴とする請求項7に記載の液晶表示装置。 The liquid crystal display device according to claim 7, wherein the light shielding layer is formed of the metal material having light reflectivity.
PCT/JP2012/002585 2011-04-20 2012-04-13 Liquid crystal display device WO2012144179A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011094309 2011-04-20
JP2011-094309 2011-04-20

Publications (1)

Publication Number Publication Date
WO2012144179A1 true WO2012144179A1 (en) 2012-10-26

Family

ID=47041313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002585 WO2012144179A1 (en) 2011-04-20 2012-04-13 Liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2012144179A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06337410A (en) * 1993-05-27 1994-12-06 Hitachi Ltd Color liquid crystal display
JPH08271879A (en) * 1995-03-31 1996-10-18 Sharp Corp Liquid crystal display element
JPH0922031A (en) * 1995-07-07 1997-01-21 Seiko Epson Corp Liquid crystal device
JP2007065361A (en) * 2005-08-31 2007-03-15 Sony Corp Color liquid crystal display apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06337410A (en) * 1993-05-27 1994-12-06 Hitachi Ltd Color liquid crystal display
JPH08271879A (en) * 1995-03-31 1996-10-18 Sharp Corp Liquid crystal display element
JPH0922031A (en) * 1995-07-07 1997-01-21 Seiko Epson Corp Liquid crystal device
JP2007065361A (en) * 2005-08-31 2007-03-15 Sony Corp Color liquid crystal display apparatus

Similar Documents

Publication Publication Date Title
JP4762297B2 (en) Liquid crystal display
US8558975B2 (en) Liquid crystal display device and method of fabricating the same
US8908128B2 (en) Color filter substrate and LCD device using it
US8830151B2 (en) Backlight unit and liquid crystal display including the same
KR20120093039A (en) Display panel and display apparatus comprising the same
US20160202541A1 (en) Display device and light-diffusing member
US20030147115A1 (en) Substrate for electrooptical device, method for manufacturing the substrate, electrooptical device, method for manufacturing the electrooptical device, and electronic apparatus
KR100934846B1 (en) Reflective type liquid crystal display device and manufacturing method
WO2016084750A1 (en) Display device
WO2014045988A1 (en) Liquid crystal display device
JP2009163062A (en) Liquid crystal display element, its manufacturing method, and liquid crystal display
JP4699073B2 (en) Color filter for transflective liquid crystal display device and manufacturing method thereof
US9664829B2 (en) Color filter
WO2020107537A1 (en) Display panel and manufacturing method therefor, and display apparatus
KR20070065065A (en) Method for manufacturing transflective type liquid crystal display device
WO2012144179A1 (en) Liquid crystal display device
CN102645784B (en) Semi transmission and semi reflection liquid crystal display panel and liquid crystal display
KR101697587B1 (en) In plane switching mode liquid crystal display device and method of fabricating the same
KR20080023380A (en) Display panel and method of manufacturing display substrate
JP2009092972A (en) Display device
KR101830600B1 (en) Backlight unit and liquid crystal display including the same
KR20110071644A (en) Liquid crystal display device
KR101068354B1 (en) Lcd and method for manufacturing lcd
JP2004317619A (en) Method of manufacturing substrate for liquid crystal display panel, and substrate for liquid crystal display panel
JP3800189B2 (en) Transflective substrate, manufacturing method thereof, electro-optical device, and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12773673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12773673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP