WO2012144129A1 - High frequency heating apparatus - Google Patents

High frequency heating apparatus Download PDF

Info

Publication number
WO2012144129A1
WO2012144129A1 PCT/JP2012/002028 JP2012002028W WO2012144129A1 WO 2012144129 A1 WO2012144129 A1 WO 2012144129A1 JP 2012002028 W JP2012002028 W JP 2012002028W WO 2012144129 A1 WO2012144129 A1 WO 2012144129A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
power generation
frequency power
heating
generation units
Prior art date
Application number
PCT/JP2012/002028
Other languages
French (fr)
Japanese (ja)
Inventor
高史 夘野
八幡 和宏
岡島 利幸
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012539114A priority Critical patent/JP5128025B1/en
Priority to CN201280001529.4A priority patent/CN102934518B/en
Publication of WO2012144129A1 publication Critical patent/WO2012144129A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/686Circuits comprising a signal generator and power amplifier, e.g. using solid state oscillators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/705Feed lines using microwave tuning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/044Microwave heating devices provided with two or more magnetrons or microwave sources of other kind
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present invention relates to a high-frequency heating apparatus including a plurality of high-frequency power generation units having amplifiers using semiconductor elements.
  • Patent Document 1 In a conventional high-frequency heating apparatus such as a microwave oven, a magnetron has been used as a high-power high-frequency generating device. Recently, a microwave oven using an oscillator and an amplifier made of a semiconductor element instead of a magnetron has been studied (Patent Document 1).
  • the microwave oven described in Patent Document 1 has an oscillator that generates a high frequency.
  • the high frequency generated from this oscillator is amplified by an amplifier made of a semiconductor element.
  • the amplified high frequency is irradiated to a to-be-heated object from the several planar antenna arrange
  • the reflected wave reflected by the object to be heated in the irradiated high frequency is received by each planar antenna, and the received reflected wave is detected by the receiving circuit.
  • the microwave oven described in Patent Document 1 includes a phase conversion circuit that can change the high-frequency phase, and controls the high-frequency phase using the phase conversion circuit.
  • the object to be heated can be heated in a relatively preferable state by controlling the reflected wave.
  • high-frequency waves may not be irradiated from some of the plurality of planar antennas due to deterioration due to long-term use. Further, in order to reduce the high frequency power to be irradiated, it is also conceivable to set a part of the plurality of planar antennas so as not to irradiate the high frequency.
  • Patent Document 1 does not disclose how to set the phase at the high frequency irradiated from the remaining planar antenna.
  • the present invention relates to a high-frequency heating apparatus provided with a plurality of high-frequency power generation units each having an amplifier made of a semiconductor element, in a case where some high-frequency power generation units are stopped or a case where some high-frequency power generation is stopped.
  • Another object of the present invention is to provide a high-frequency heating apparatus that can optimally (relatively appropriately) heat an object to be heated using another high-frequency power generation unit.
  • a high-frequency heating device (such as a microwave oven) that is an example of the present invention includes a heating chamber that houses an object to be heated, a plurality of high-frequency power generation units that radiate high-frequency waves into the heating chamber, and a plurality of high-frequency power generation units. From the frequency or phase value that can be set for each, a frequency or phase value that is suitable when only a part of the plurality of high-frequency power generation units emits the high frequency is selected, and the selected frequency or phase value is selected.
  • a high-frequency heating apparatus comprising: a control unit that radiates the high frequency from only a part of the plurality of high-frequency power generation units according to a value.
  • radiating a high frequency means radiating an electromagnetic wave having a sufficiently high frequency to an appropriate level for heating by radiation such as a microwave.
  • a high-frequency heating device including a plurality of high-frequency power generation units having amplifiers made of semiconductor elements, when some high-frequency power generation units are stopped or when some high-frequency power generation is stopped. Even in such a case, the object to be heated can be optimally (appropriately) heated using the high-frequency power generation unit that is not stopped.
  • the heating efficiency can be increased more reliably, for example, by changing the frequency or phase value and adjusting the electric field distribution in the heating chamber according to the combination of the high-frequency power generation units to be used.
  • FIG. 1 is a block diagram of a high-frequency heating device according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram of the power detector according to Embodiment 1 of the present invention.
  • FIG. 3 is an algorithm selection flowchart according to the first embodiment of the present invention.
  • FIG. 4A is a conceptual diagram of a storage unit according to Embodiment 1 of the present invention.
  • FIG. 4B is a flowchart illustrating an example in which an algorithm according to Embodiment 1 of the present invention is selected.
  • FIG. 5 is a block diagram of a high-frequency heating device according to Embodiment 2 of the present invention.
  • FIG. 6 is an algorithm selection flowchart according to the second embodiment of the present invention.
  • FIG. 1 is a block diagram of a high-frequency heating device according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram of the power detector according to Embodiment 1 of the present invention.
  • FIG. 3 is an algorithm
  • FIG. 7 is a block diagram of a high-frequency heating device according to Embodiment 3 of the present invention.
  • FIG. 8A is a diagram for explaining simulation conditions.
  • FIG. 8B shows a simulation result.
  • FIG. 8C is a diagram illustrating a simulation result.
  • FIG. 9 is a block diagram of a high-frequency heating device that is a modification of Embodiment 2 of the present invention.
  • FIG. 10 is a diagram showing a correspondence table.
  • FIG. 11 is a flowchart of the process of the high-frequency heating device.
  • FIG. 12 is a diagram illustrating a short circuit control unit and the like.
  • the high-frequency heating device 100 includes a heating chamber 101 that houses an object to be heated 110, a plurality of high-frequency power generation units 102 a to 102 c that radiate a high frequency into the heating chamber 101, and a plurality of From the frequency or phase value that can be set for each of the high-frequency power generation units 102a to 102c, a frequency or phase value that is suitable when only a part of the plurality of high-frequency power generation units 102a to 102c radiates a high frequency is selected.
  • the high-frequency heating apparatus includes a control unit that radiates high-frequency waves from only a part of the plurality of high-frequency power generation units 102a to 102c according to the selected frequency or phase value.
  • the high-frequency heating device 100 of the embodiment is a microwave oven or the like used in a general home.
  • the high-frequency heating apparatus 100 includes a heating chamber 101 that stores an object to be heated 110 (for example, food in FIG. 1), and a plurality of (for example, 3 in FIG. 1) that radiates high-frequency waves into the heating chamber 101. )
  • High frequency power generation unit 102x is a heating chamber 101 that stores an object to be heated 110 (for example, food in FIG. 1), and a plurality of (for example, 3 in FIG. 1) that radiates high-frequency waves into the heating chamber 101.
  • High frequency power generation unit 102x for example, a microwave oven or the like used in a general home.
  • only a part of the plurality of high-frequency power generation units 102x emits high-frequency radiation to heat the object to be heated 110 (S402 in FIG. 4B: Yes).
  • the above-mentioned part may be, for example, the high-frequency power generation units 102b and 102c of the three high-frequency power generation units 102x shown in FIG.
  • a frequency or phase value (for example, refer to the frequency 9F1 in FIG. 8B) is radiated from only a part. It is conceivable that the frequency or phase value (see frequency 9H1) suitable for (S402: Yes) is different.
  • the control unit 103 may select a frequency or a phase value from a plurality of values (see the frequencies 9F1 and 9H1). That is, a frequency or phase value (see frequency 9H1) suitable when only the part radiates high frequency is selected, and only the part is selected according to the selected frequency or phase value (see frequency 9H1). You may provide the control part 103 made to radiate from.
  • the frequency or phase value suitable for radiating high frequencies from all of the plurality of high frequency power generation units 102x is, for example, when high frequencies are radiated from all of the plurality of high frequency power generation units 102x (S402: No).
  • the frequency or phase value at which the heating efficiency is maximized is maximized.
  • the frequency or phase value suitable for radiating from only a part is, for example, when the high frequency is radiated from only a part of the plurality of high-frequency power generation units 102x (S402: Yes), and the heating efficiency is maximized.
  • the frequency or phase value (see frequencies 9F1 and 9H1) at which the heating efficiency is confirmed to be maximized is stored in the storage unit in advance, depending on the combination of the high-frequency power generation units to be used.
  • the data may be read from the storage unit.
  • the frequency or phase value may be determined by an algorithm that sweeps the frequency or phase and calculates the frequency or phase value that maximizes the heating efficiency.
  • control unit 103 radiates a high frequency from all of the plurality of high frequency power generation units (for example, see the antennas 108a to 108c in FIG. 1) (S402: No) or a part (for example, FIG. 1). Information indicating whether high-frequency waves are radiated only from the antennas 108b and 108c) (S402: Yes).
  • information 109I in FIG. 1 and information 701I in FIG. 7 will be exemplified later.
  • control part 103 is a case where a high frequency is radiated
  • High frequency is radiated at a frequency or phase value suitable for the above.
  • the high frequency may be radiated at a frequency or phase value suitable for radiating from only a part.
  • control unit 103 may include, for example, an acquisition unit 103a that performs the above-described acquisition and a radiation control unit 103b that operates based on the acquired information, as will be described in detail later.
  • FIG. 1 is a block diagram of a high-frequency heating device 100 according to the first embodiment.
  • a heating chamber 101 in which an object to be heated 110 is placed, a plurality of high-frequency power generation units 102a, 102b, and 102c, a control unit 103, a storage unit 104, and a stop determination unit 109.
  • the heating chamber 101 is configured so that high frequencies from the plurality of high-frequency power generation units 102 a, 102 b, 102 c do not leak out of the heating chamber 101.
  • the heating chamber 101 is also configured to confine high-frequency energy and efficiently heat the object to be heated 110 (mainly food in the case of a microwave oven).
  • each high frequency power generation unit 102a, 102b, 102c has oscillators 105a, 105b, 105c that output a high frequency.
  • amplifiers 106a, 106b, and 106c using semiconductor elements that amplify and output the high frequency output from the oscillators 105a, 105b, and 105c are provided.
  • radiators 108 a, 108 b, 108 c that radiate high-frequency waves output from the amplifiers 106 a, 106 b, 106 c into the heating chamber 101.
  • a high-power high-frequency output can be obtained by using these high-frequency power generation units 102a, 102b, and 102c. Furthermore, by using a plurality of high-frequency power generation units 102 a, 102 b, 102 c, the output can be increased even by spatial power synthesis in the heating chamber 101.
  • a frequency synthesizer using a phase locked loop can be used.
  • PPL phase locked loop
  • the oscillation frequency is determined based on digital data of a given frequency.
  • a semiconductor element used for the amplifiers 106a, 106b, and 106c for example, a multistage amplifier using an HFET (Heterojunction Field Effect Transistor: heterojunction two-dimensional electron gas field effect transistor) formed of GaN (gallium nitride) in the final stage.
  • HFET Heterojunction Field Effect Transistor: heterojunction two-dimensional electron gas field effect transistor
  • GaN gallium nitride
  • Radiators 108a, 108b, and 108c are antennas that radiate high frequencies.
  • the radiators 108a, 108b, and 108c are required to have a structure that can cope with high output.
  • the high-frequency power generation units 102a, 102b, and 102c include power detectors 107a, 107b, and 107c, respectively.
  • the high frequency radiated from the radiators 108a, 108b, 108c is reflected in the heating chamber 101 and returns to the respective high frequency power generation units 102a, 102b, 102c.
  • These high frequencies (hereinafter referred to as “reflected waves”) are measured by the power detectors 107a, 107b, and 107c, respectively.
  • the power detectors 107a, 107b, and 107c can be configured with, for example, a directional coupler formed of a quarter-wavelength coupled transmission line or the like, and a detection diode.
  • FIG. 2 is a block diagram of the power detector 107a.
  • the configuration of the other power detectors 107b and 107c is the same as that of the power detector 107a, and a detailed description thereof will be omitted.
  • the directional coupler 201 has a first transmission line that connects a port 1 (P1) connected to the amplifier 106a (FIG. 1) and a port 2 (P2) connected to the radiator 108a. Furthermore, the directional coupler 201 includes the first transmission line described above that connects the port 3 (P3) connected to the ground via a resistor and the port 4 (P4) connected to the detection diode 202 to each other. A parallel second transmission line is included.
  • the detection diode 202 can observe high-frequency power output from the port 4.
  • the amount of reflection of the reflected wave 107A returning from the radiator 108a can be observed.
  • the control unit 103 is connected to each of the storage unit 104, the stop determination unit 109, the oscillators 105a, 105b, and 105c, and the power detectors 107a, 107b, and 107c. Further, the control unit 103 has a function of reading out an algorithm from the storage unit 104 and instructing the oscillators 105a, 105b, and 105c with a frequency.
  • the control unit 103 can be configured by, for example, an LSI or a microprocessor.
  • the storage unit 104 stores a plurality of algorithms for determining high frequency values output from the oscillators 105a, 105b, and 105c.
  • not only the algorithm for determining the value of each frequency of all the oscillators when all the oscillators 105a, 105b, 105c are used is stored. That is, in this embodiment, there are selectable oscillator combinations including at least one oscillator. For each combination, an algorithm for determining the frequency of each oscillator of the combination is stored. The stored algorithm determines a frequency value at which the high frequency output from each high frequency power generation unit 102a, 102b, 102c is most sufficiently absorbed by the article 110 to be heated. That is, this is an algorithm for determining a frequency value at which reflected waves are minimized.
  • the storage unit 104 can be composed of, for example, a ROM (Read Only Memory) or a nonvolatile RAM (Random Access Memory).
  • the control unit 103 divides a frequency band (for example, from 2.4 GHz to 2.5 GHz) that can be controlled by the oscillators 105a, 105b, and 105c, from f1 to fn (f1 ⁇ f2 ⁇ ... ⁇ fn: n is a natural number of 3 or more), and the frequency of each oscillator is swept.
  • the control unit 103 determines the frequency value of each oscillator that provides the highest heating efficiency based on the Pabsi observed by the power detector. And the control part 103 sets the frequency of each oscillator so that it may become the frequency of the determined value.
  • the algorithm for each combination of oscillators may be basically the same, for example, only the number of controlled oscillators is different. However, the oscillators that are not controlled are stopped, and the output from the power detector corresponding to the stopped oscillator is ignored.
  • the algorithm stored in the storage unit 104 is not limited to the algorithm that determines the optimum frequency value by sweeping the frequency as described above. That is, for example, for each of the combinations of oscillators that can be selected in advance before shipment from the factory, the optimal frequency value of each oscillator is obtained by the algorithm as described above, and the optimal frequency of each oscillator is determined. You may memorize
  • the stop determination unit 109 determines that the high-frequency output from the high-frequency power generation units 102a, 102b, and 102c has stopped. Note that, for example, by observing currents from the amplifiers 106a, 106b, and 106c, it can be determined whether a high frequency is being output.
  • FIG. 3 is a flowchart for selecting an algorithm for heating the object to be heated 110 in the high-frequency heating apparatus 100 of the first embodiment.
  • the components constituting the high-frequency power generation units 102a, 102b, and 102c are deteriorated, etc., so that no high frequency is output (hereinafter also referred to as a stopped state). There is.
  • the stop determination unit 109 determines that some of the high frequency power generation units 102a, 102b, and 102c have stopped (step S301). When it is determined that at least one of the high-frequency power generation units 102a, 102b, and 102c has stopped, the stop determination unit 109 performs the following operation. In the operation, information indicating which high-frequency power generation unit 102a, 102b, 102c has stopped outputting high-frequency power to the heating chamber 101 is output to the control unit 103 (step S302).
  • the control unit 103 identifies one or more high-frequency power generation units whose high-frequency output is not stopped. That is, there are one or more combinations of high-frequency power generation units that can be selected from the one or more high-frequency power generation units.
  • the control unit 103 identifies an algorithm corresponding to each combination from the storage unit 104 (step S303).
  • the control unit 103 sequentially executes the algorithms specified from the storage unit 104, and determines the combination of the high-frequency power generation units that provides the best heating efficiency. Further, the frequency value of each high-frequency power generation unit at the best time is determined (step S304).
  • the control unit 103 outputs the determined frequency value to the oscillator in the high-frequency power generation unit included in the determined combination (step S305). As a result, the oscillator is set to the output frequency value (step S306).
  • the high frequency power generation unit oscillates a high frequency at the set frequency to heat the object to be heated 110 in the heating chamber 101.
  • FIG. 4A is a diagram illustrating data stored in the storage unit 104.
  • FIG. 4B is a diagram illustrating an example when the heating condition is switched by the process of the flowchart of FIG. 3.
  • the storage unit 104 stores an algorithm A1 (algorithm 91) that determines a frequency that is an optimum heating condition using all of the high-frequency power generation units 102a, 102b, and 102c. .
  • algorithms A2, A3, and A4 (algorithms 921 to 923) for selecting two of the high-frequency power generation units 102a, 102b, and 102c and determining the frequency that is the optimum heating condition are stored.
  • algorithms A5, A6, and A7 (algorithms 931 to 934) for selecting one of the high-frequency power generation units 102a, 102b, and 102c and determining the frequency that is the optimum heating condition are stored.
  • the high-frequency heating apparatus 100 is heated at the frequency determined by the algorithm A1 that determines the frequency that is the optimum heating condition using all the high-frequency power generation units 102a, 102b, and 102c.
  • the algorithm A1 determines the frequency that is the optimum heating condition using all the high-frequency power generation units 102a, 102b, and 102c.
  • the heating target 110 is being heated using the algorithm A1 (step S401).
  • the stop determination unit 109 determines whether or not the high-frequency power generation unit 102a has stopped (step S402). If it is not determined that it has stopped (step S402: No), heating with the algorithm A1 is continued, and heating with the algorithm A1 is performed after the determination (S401). On the other hand, when it is determined that the operation has been stopped (step S402: Yes), the following operation is performed (S403 ⁇ ). That is, the control unit 103 sequentially executes according to the algorithms A4, A6, and A7 that determine the frequency that is the optimum heating condition using the high-frequency power generation units 102b and 102c other than the high-frequency power generation unit 102a. Thereby, the control part 103 determines the value of the frequency of each high frequency electric power generation unit and the combination of the high frequency electric power generation unit with the highest heating efficiency (step S403).
  • the high-frequency heating device 100 of the present embodiment can obtain the following effects.
  • the optimum high-frequency frequency value is different from the following value. That is, it differs from the optimal high frequency value when heating is performed in all high frequency power generation units. For this reason, in order to maintain high heating efficiency and continue heating, it is necessary to set a high frequency again according to an algorithm.
  • the high-frequency heating apparatus 100 stores the following in anticipation that the high-frequency power generation units 102a, 102b, and 102c are stopped. That is, there is a combination of high frequency power generation units that can be selected from the high frequency power generation units 102a, 102b, and 102c. For each combination, an algorithm for determining a frequency value set in each high-frequency power generation unit for efficient heating is stored in the storage unit 104 in advance.
  • the high-frequency heating device 100 selects an algorithm when at least one of the high-frequency power generation units 102a, 102b, and 102c is stopped, that is, all or a part of the remaining high-frequency power generation units that are not stopped. Is used to select one or more algorithms for determining the frequency that is the optimum heating condition from the storage unit 104. Then, by executing each of the one or more algorithms, the combination of the high-frequency power generation units used for heating and the frequency value of each oscillator are determined.
  • the first embodiment has been described on the assumption that when the high-frequency power generation unit is stopped, the detector of the stopped high-frequency power generation unit is also stopped.
  • the following operations are performed when the radiation efficiency is calculated from the antennas 108b and 108c of the high-frequency power generation units 102b and 102c. May be performed.
  • the detection of the reflected wave for the calculation uses all the detectors 107a, 107b and 107c including the detector (power detector) 107a of the stopped high-frequency power generation unit 102a. This operation optimizes the high frequency.
  • the degree of absorption in the heated object 110 varies greatly depending on the frequency of the high frequency.
  • the heating efficiency may be higher when heating is performed with only a part of the high-frequency power generation units than when heating with all the high-frequency power generation units. That is, depending on the comparison of the input power multiplied by the heating efficiency, only a part of all the high-frequency power generation units that are not stopped is used rather than all the high-frequency power generation units that are not stopped.
  • the frequency can be finely controlled and the phase can also be controlled, so that the electric field distribution in the space of the heating chamber 101 is relatively large. Can be changed.
  • the heating efficiency refers to an efficiency representing how much high-frequency energy radiated from the radiator is absorbed by the object to be heated.
  • the heating efficiency is improved by heating only some of the high-frequency power generation units without heating all the units that are not stopped. There is a case that can be made.
  • a part of the high-frequency power generation units 102a, 102b, and 102c is previously provided. Is stored in the storage unit 104. As a result, even when a part of the high-frequency power generation units 102a, 102b, and 102c is stopped, it can be dealt with by simply reading the algorithm stored in the storage unit 104. Thereby, heating conditions can be reselected and heating can be started in a short time.
  • calculation is performed using the power detectors 107a, 107b, and 107c provided in the high-frequency heating device 100 in accordance with the algorithm stored in the storage unit 104.
  • the optimal frequency value of each oscillator is obtained in advance using the algorithm described above for all combinations of oscillators, and the optimal frequency value is stored in the storage unit. You may remember it.
  • the power detectors 107a, 107b, and 107c are not necessarily essential components.
  • the determined frequency values of the respective oscillators may be the following values.
  • the total amount of reflection amounts observed by the respective power detectors may be a frequency value that produces the smallest amount. .
  • the frequency of each of the oscillators 105a, 105b, and 105c may be individually swept, and the value of each frequency at which the total amount described above is the smallest may be set in each of the oscillators 105a and the like. .
  • Embodiment 2 The second embodiment is different from the first embodiment in that the phase of the high frequency can be controlled.
  • the high frequency heating apparatus 500 in Embodiment 2 of this invention is demonstrated with reference to drawings.
  • symbol is suitably described about the part which is common in Embodiment 1, and the overlapping description is abbreviate
  • FIG. 5 is a block diagram of the high-frequency heating device 500 according to the first embodiment of the present invention.
  • the second embodiment further includes a phase converter 501a between the oscillator 105a and the amplifier 106a as compared with the first embodiment.
  • a phase converter 501b is further provided between the oscillator 105b and the amplifier 106b.
  • a phase converter 501c is further provided between the oscillator 105c and the amplifier 106c.
  • the phase converters 501a, 501b, and 501c are connected to the control unit 103. Then, the phase converters 501a, 501b, and 501c change the high-frequency phase from the oscillators 105a, 105b, and 105c based on the phase information from the control unit 103. As a result, the high frequency whose phase has changed is output from the phase converters 501a, 501b, and 501c to the amplifiers 106a, 106b, and 106c.
  • the storage unit 104 stores a plurality of algorithms for determining the frequency and phase values of the high frequency output from the oscillators 105a, 105b, and 105c.
  • Each stored algorithm determines the frequency and phase at which the high frequency output from the corresponding one or more high frequency power generation units is absorbed most by the object 110 to be heated. That is, it is an algorithm for determining the frequency and phase at which the reflected wave is minimized.
  • the control unit 103 divides a frequency band that can be controlled by the oscillators 105a, 105b, and 105c, and each frequency from f1 to fn (f1 ⁇ f2 ⁇ ... ⁇ Fn: n is a natural number of 3 or more).
  • the frequency of each oscillator is swept.
  • the frequency band from 2.4 GHz to 2.5 GHz is mentioned, for example.
  • the control unit 103 determines the frequency of each oscillator with the highest heating efficiency based on the Pabsi observed by the power detector. And the frequency of each oscillator is set so that it may become the determined frequency.
  • the offset amount ⁇ a is a change amount of the phase adjusted by the phase converter 501a with respect to the phase of the oscillator. That is, the phase offset amount is swept from the phase offset amount ⁇ a1 to ⁇ am ( ⁇ 1 ⁇ 2 ⁇ ... ⁇ m: m is a natural number of 3 or more) obtained by dividing a predetermined range of the phase offset amount ⁇ a.
  • the predetermined range is, for example, a range from 0 ° to 360 °.
  • the control unit 103 determines the amount of phase offset of the phase converter 501a with the highest heating efficiency based on the Pabsj observed by the power detectors 107a, 107b, and 107c. Then, the phase offset amount of the phase converter 501a is set so as to be the determined phase offset amount.
  • the offset amounts of the phase converters 501b and 501c are determined in order, and the phase offset amounts of the phase converters 501b and 501c are set.
  • the control unit 103 may set the phase change amount only in the phase converters 501b and 501c without using the phase converter 501a.
  • the above description is about the algorithm for determining the frequencies of all the oscillators among the oscillators when all the oscillators 105a, 105b, and 105c are used.
  • the algorithms for all combinations of oscillators are basically the same as those described above except that the number of oscillators to be controlled is different.
  • the control unit 103 sets the phase offset amounts of the phase converters 501a, 501b, and 501c after setting the frequencies of the oscillators 105a, 105b, and 105c.
  • a method in which the order of setting is reversed and the order is reversed may be employed. Further, the control unit 103 may repeatedly perform the setting of the frequency of each oscillator and the offset amount of the phase of each phase converter to finely adjust the setting.
  • the algorithm stored in the storage unit 104 is not limited to an algorithm that causes the above operation. That is, for example, before the factory shipment, the optimal frequency and phase offset amount of each oscillator is obtained for all combinations of the oscillators using the algorithm as described above, and the frequency and phase offsets are obtained. You may remember the amount.
  • FIG. 6 is a flowchart of processing for selecting an algorithm for heating the object to be heated 110 in the high-frequency heating device 500 of the second embodiment.
  • the stop determination unit 109 determines that a part of the high-frequency power generation units 102a, 102b, and 102c has stopped (step S301). When it is determined that at least one of the high-frequency power generation units 102a, 102b, and 102c has stopped, the stop determination unit 109 outputs the following. That is, information indicating which high-frequency power generation unit 102a, 102b, 102c has stopped outputting high-frequency power to the heating chamber 101 is output to the control unit 103 (step S302).
  • the control unit 103 identifies one or more high-frequency power generation units whose high-frequency output is not stopped. That is, there is a combination of high frequency power generation units that can be selected from one or more of these high frequency power generation units.
  • the control unit 103 identifies an algorithm corresponding to each combination from the storage unit 104 (step S303).
  • the control unit 103 sequentially executes the algorithms specified from the storage unit 104 to determine the combination of the high-frequency power generation units with the best heating efficiency and the frequency and phase of each high-frequency power generation unit at the best (Step). S304).
  • the control unit 103 outputs the determined frequency to the oscillator in each high-frequency power generation unit included in the determined combination, and outputs the phase offset amount to the phase converter (step S505).
  • the following operations are performed for the oscillator and the phase converter in the high frequency power generation unit included in the determined combination. That is, the frequency of the oscillator and the phase offset amount of the phase converter are set to the frequency output from the control unit 103 and the phase offset amount, respectively (step S506).
  • the high frequency power generation unit oscillates a high frequency at the set frequency and phase, and heats the object 110 to be heated in the heating chamber 101 again.
  • the high-frequency heating device 500 of the present embodiment can obtain the following effects.
  • the high-frequency heating device 500 of the present embodiment stores the following in anticipation that the high-frequency power generation units 102a, 102b, and 102c are stopped. That is, an algorithm for determining a frequency and a phase that can be efficiently heated using one or more high-frequency power generation units is stored in the storage unit 104 in advance.
  • the control unit 103 uses one or more algorithms for determining the frequency and phase values that are the optimum heating conditions using all or a part of the remaining high-frequency power generation units that are not stopped, Select from storage unit 104. Then, by executing one or more algorithms, the combination of the high-frequency power generation units used for heating and the frequency of each oscillator and the phase offset amount of the phase converter are determined.
  • Embodiment 2 is different in that both the frequency of the oscillator of the high-frequency power generation unit and the phase offset amount of the phase converter are controlled.
  • the electric field distribution in the heating chamber 101 can be controlled more finely, and the heating efficiency to the article to be heated 110 becomes higher. Therefore, even when some high-frequency power generation units are stopped, the heating efficiency can be improved to a higher efficiency as compared with the first embodiment.
  • control unit 103 does not use all high-frequency power generation units that are not stopped to cause heating. That is, an algorithm for controlling the frequency and phase of only a part of the high-frequency power generation unit that is not stopped may be selected from the storage unit 104.
  • the frequency and the phase are controlled.
  • only the phase of the phase converters 501a, 501b, and 501c may be controlled using an oscillator with a fixed frequency.
  • the specific contents of the algorithm stored in the storage unit 104 are the same as those in the first embodiment except for the following points. That is, the same applies except that the phase is swept in addition to the high frequency, the amount of high frequency reflection is measured, and the power absorbed by the object to be heated 110 is calculated.
  • the storage unit 104 stores an algorithm corresponding to each combination of high-frequency power generation units that can be selected from a plurality (one or more) of high-frequency power generation units. That is, an algorithm for determining the frequency and phase offset amount that absorbs the largest energy to the object 110 to be heated, that is, the frequency and phase offset amount that minimizes the reflected wave, is stored in the storage unit 104. It is remembered.
  • the calculation is performed using the power detectors 107a, 107b, and 107c provided in the high-frequency heating device 500 in accordance with the algorithm stored in the storage unit 104.
  • the optimal frequency of each oscillator and the phase offset amount of each phase converter can be obtained in advance for all combinations of oscillators using the above algorithm. Good.
  • the obtained optimum frequency and phase offset amount are stored 104 in the storage unit.
  • the power detectors 107a, 107b, and 107c are not necessarily essential components.
  • FIG. 8A is a view of the bottom surface of the heating chamber as viewed from above, and shows the simulation conditions.
  • planar antennas 801a, 801b, 801c, and 801d are arranged on the bottom surface 801 of the heating chamber having a width of 410 mm, a depth of 314 mm, and a height of 230 mm.
  • the four positions at which the planar antennas 801a, 801b, 801c, and 801d are arranged are the positions of four vertices of a square having a side of 120 mm that are equally spaced from the center of the bottom surface 801 of the heating chamber.
  • the heating efficiency for the object to be heated was calculated.
  • FIG. 8B shows the heating efficiency when all four high-frequency power generation units (high-frequency power generation units 102a to 102d: see FIG. 8A) are used and when three or two high-frequency power generation units are used. It is a figure which shows the 1st part of the result of having calculated.
  • FIG. 8C is a diagram showing a second part of the result.
  • (0-1) in FIG. 8B represents a case where the frequencies of all four high-frequency power generation units are controlled using an algorithm that optimizes only the frequency.
  • (0-2) represents a case where the frequency and phase offset amounts of all four high-frequency power generation units are controlled using an algorithm that optimizes the frequency and phase offset amounts.
  • the heating efficiency is 78.4%, whereas the heating efficiency can be improved to 94.98% by optimizing both the frequency and the phase offset amount. That is, these represent that heating efficiency is higher by controlling both the frequency and the phase offset amount than by controlling only the frequency.
  • (1a-1) uses all four high-frequency power generation units and optimizes the frequency and phase offset amounts, and applies the frequency and phase offset amounts as described above (0-2).
  • the heating efficiency at the time of radiating a high frequency from antenna (planar antenna) 801a, 801b, 801c is shown. This heating efficiency is 71.25% as indicated by (0-2), and the high efficiency was radiated using four antennas, and the heating efficiency in the above (0-2) was 94.98%.
  • (1a-2) optimizes the frequency and phase offset amount again using the data of the power detectors of the four high-frequency power generation units in a state where the high-frequency radiation of the antenna 802d is stopped.
  • the heating efficiency is shown. This heating efficiency is 76.36%.
  • the heating efficiency is improved as compared with the heating efficiency of 71.25% in (1a-1), but compared with the heating efficiency of 94.98% in (0-2). Is quite low.
  • (1a-3) is a heating efficiency when the antenna 802d of the stopped high-frequency power generation unit is short-circuited to the wall surface of the heating chamber (for example, the short-circuit control unit 103Q in FIG. 12 may be short-circuited). Is shown. In that case, the frequency and phase offsets are used by using only the power detector data of the remaining three high-frequency power generation units without using the power detector data of the stopped high-frequency power generation units. Optimize the amount. This heating efficiency is 93.29%. This heating efficiency of 93.29% in (1a-3) is substantially equivalent to the heating efficiency of 94.98% in (0-2) described above.
  • FIG. 8C is a diagram showing a result of calculating the heating efficiency when two of the high-frequency power generation units are stopped.
  • (2a-1) to (2a-3) are cases in which high-frequency radiation of the antennas 802c and 802d is stopped.
  • (2a-2) uses the data of the power detection units of the four high-frequency power generation units in a state where the high-frequency radiation of the antennas 802c and 802d is stopped, and again sets the frequency and phase offset amount. Shows the heating efficiency when optimized. This heating efficiency is 56.04%. Although the heating efficiency is improved as compared with the heating efficiency of 48.16% in (2a-1) described above, it is considerably lower than the heating efficiency of 94.98% in (0-2) described above. .
  • (2a-3) does not use the data of the power detector of the stopped high-frequency power generation unit, such as by short-circuiting the antennas 802c and 802d of the stopped high-frequency power generation unit with the wall surface of the heating chamber.
  • the heating efficiency when the frequency and the phase offset amount are optimized using only the data of the power detectors of the remaining two high-frequency power generation units is shown. This heating efficiency is 89.99%. This heating efficiency of 89.99% in (2a-3) is significantly improved compared to the heating efficiency of 48.16% and 56.04% in (2a-1) and (2a-2).
  • the results when the high-frequency power generation units connected to the antennas 802b and 802c are stopped are shown in (2b-1) to (2b-3). Also, the results when the high-frequency power generation units connected to the antennas 802a and 802b are stopped are shown in (2c-1) to (2c-3). In addition, the results when the high-frequency power generation units connected to the antennas 802a and 802d are stopped are shown in (2d-1) to (2d-3). In addition, the results when the high-frequency power generation units connected to the antennas 802b and 802d are stopped are shown in (2e-1) to (2e-3). In addition, the results when the high-frequency power generation units connected to the antennas 802a and 802c are stopped are shown in (2f-1) to (2f-3).
  • Embodiment 3 The third embodiment is different from the first embodiment in that there is an input unit (input unit 701 in FIG. 7) that allows the user to specify the heating power.
  • input unit 701 in FIG. 7 the high-frequency heating device 700 according to Embodiment 3 of the present invention will be described with reference to the drawings.
  • the part which is common in Embodiment 1 describes the same code
  • FIG. 7 is a block diagram of the high-frequency heating apparatus 700 in the present embodiment.
  • Embodiment 3 further includes an input unit 701 that allows the user 701u to specify heating power, as compared with Embodiment 1.
  • the input unit 701 is connected to the control unit 103.
  • the user can designate the power (see information 701I) for heating the article 110 to be heated. For example, the user can specify 500 W, 750 W, 1000 W, and the like.
  • the power information indicating the designated power is output to the control unit 103.
  • the control unit 103 determines the number of high-frequency power generation units to be used from the high-frequency power generation units 102a, 102b, and 102c in order to satisfy the power specified by the user 701u (see the third column in FIG. 10, S51 in FIG. 11). ).
  • the control unit 103 specifies an algorithm for heating using the determined number (for example, two) of high-frequency power generation units from the storage unit 104.
  • the control unit 103 sequentially executes the specified algorithm, and determines the combination of the high-frequency power generation units with the highest heating efficiency and the frequency of each high-frequency power generation unit (see the second and third columns, S52a and S52b). .
  • the determined frequency is output to the oscillator of the high-frequency power generation unit (for example, the high-frequency power generation units 102a and 102b) determined to be used for heating. Further, information for stopping the oscillation is output to the oscillator of the high-frequency power generation unit (for example, the high-frequency power generation unit 102c) that is determined not to be used for heating.
  • the high-frequency power generation unit for example, the high-frequency power generation units 102a and 102b
  • the user has the input unit 701 that can appropriately select the power used for heating, and determines a suitable number of high-frequency power generation units according to the power specified by the user. Select the algorithm corresponding to the number. According to the selected algorithm, the combination of the high-frequency power generation units and the frequency of each high-frequency power generation unit that provides the best heating efficiency are determined. The high frequency output to the heating chamber 101 from a part of the high frequency power generation unit is stopped, and the determined frequency is output to the high frequency power generation unit that is not stopped.
  • the control unit 103 defines only the frequencies of the oscillators 105a, 105b, and 105c. However, as in the second embodiment, the control unit 103 further includes phase converters 501a, 501b, and 501c, and has the frequency and phase. Both the offset amount and the offset amount may be controlled. Further, as in the modification of the second embodiment, only the phase offset amount of the phase converters 501a, 501b, and 501c may be controlled using an oscillator with a fixed frequency.
  • the number of high-frequency power generation units may be determined as described above.
  • the determined number may be, for example, a larger number as the specified power is larger.
  • the fourth embodiment is different from the first embodiment in that there is an input unit that allows the user to select an energy saving mode.
  • the block diagram in the fourth embodiment of the present invention is the same as the block diagram in the third embodiment shown in FIG.
  • the user 701 u (FIG. 7) can specify a mode for heating the article to be heated 110 in the input unit 701.
  • the user can designate a heating mode (energy saving mode) having the highest heating efficiency.
  • information indicating the designated mode is output to the control unit 103.
  • the control unit 103 calls, from the storage unit 104, an algorithm corresponding to each combination of high-frequency power generation units that can be selected from all high-frequency power generation units.
  • the control unit 103 sequentially executes the called algorithms, and determines the combination of the high-frequency power generation units with the highest heating efficiency and the frequency of each high-frequency power generation unit. And the determined frequency is output to the oscillator of the high frequency electric power generation unit (for example, high frequency electric power generation unit 102a, 102b) judged to be used for heating.
  • information for stopping the oscillation is output to the oscillator of the high-frequency power generation unit (for example, the high-frequency power generation unit 102c) that is determined not to be used for heating.
  • the user has the input unit 701 that can select the heating mode, and according to the mode specified by the user, the algorithms corresponding to the selectable combinations are sequentially executed, and the heating efficiency is the highest.
  • the combination of the high frequency power generation units to be improved and the frequency of each high frequency power generation unit are determined.
  • the output of the high frequency to the heating chamber 101 from a part of the high frequency power generation unit is stopped, and the frequency at which the heating efficiency is increased is output to the high frequency power generation unit that is not stopped. .
  • the heating efficiency can be maximized.
  • the control unit 103 defines only the frequencies of the oscillators 105a, 105b, and 105c. However, as in the second embodiment, the control unit 103 further includes phase converters 501a, 501b, and 501c, and has the frequency and phase. Both the offset amount and the offset amount may be controlled. Further, as in the modification of the second embodiment, only the phase offset amount of the phase converters 501a, 501b, and 501c may be controlled using an oscillator with a fixed frequency.
  • the user can specify the heating time from the input unit 701.
  • the algorithm corresponding to each combination of the high-frequency power generation unit is executed in order, back-calculated from the highest heating efficiency and heating power in each combination, so that the heat treatment is completed at the specified time,
  • the combination of the high frequency power generation units and the frequency of each high frequency power generation unit are determined.
  • the time required for heating varies depending on the weight of the object to be heated 110 even when the heating power is the same. For this reason, for example, by arranging a weight sensor on the bottom surface of the heating chamber 101 and accurately measuring the weight of the object to be heated, the heating time can be estimated more accurately.
  • the high-frequency frequency and the phase offset amount are optimized by measuring the reflected wave from the heating chamber 101.
  • the reflected waves include the following first and second reflected waves.
  • the first reflected wave is a reflected wave due to mismatch between the impedance on the high-frequency power generation unit 102x side and the impedance on the heating chamber 101 side, as viewed from the antenna end.
  • the second reflected wave is a reflected wave in which the high frequency once radiated from the high frequency power generation units to the heating chamber 101 is returned through the antenna without being consumed by the heated object 110.
  • Embodiment 1 or 2 when a high frequency is no longer radiated from a part of the high frequency power generation unit, the user may be notified of the failure by an LED, a liquid crystal, or the like provided in the high frequency heating device.
  • Embodiments 1 to 4 have been described with three high-frequency power generation units, even if four or more high-frequency power generation units are used, the same effect can be obtained by storing the algorithm in the storage unit. be able to.
  • Embodiments 1 to 4 have the stop determination unit 109, but the stop determination unit 109 can be eliminated if the control unit 103 has a stop determination function. In the third and fourth embodiments, the stop determination unit 109 may be omitted.
  • an algorithm for setting both high frequency and phase offset is used.
  • an algorithm that sets only the phase offset amount of the phase converters 501a, 501b, and 501c using one oscillator with a fixed frequency may be stored in the storage unit 104 and used. Such a modification is shown in FIG.
  • FIG. 9 is a block diagram of a high-frequency heating device 800 that is a modification of the second embodiment of the present invention.
  • oscillators 105a, 105b, and 105c are one oscillator 801x.
  • the high-frequency output from the oscillator 801x is distributed to the phase converters 501a, 501b, and 501c and output.
  • Other configurations are the same as those of the high-frequency heating device 500. Note that the number of oscillators is not limited to one.
  • the high-frequency heating device 100 performs the following operation when high-frequency output from at least one of the plurality of high-frequency power generation units 102a, 102b, and 102c to the heating chamber is stopped. That is, in this case, the control unit 103 selects, from the storage unit 104, an algorithm that determines an optimal phase when the object 110 to be heated is heated using a high-frequency power generation unit that is not stopped. Then, according to the selected algorithm, the phase of the high frequency output from the oscillator of the high frequency power generation unit that is not stopped is controlled. With this configuration, even when heating is performed using the remaining high-frequency power generation units that are not stopped, the heating efficiency can be increased, and the high heating efficiency can be reliably maintained.
  • each high-frequency power generation unit 102x (for example, high-frequency power) not included in the part.
  • a short control unit short circuit control unit 103Q in FIG. 12 for short-circuiting the antenna of the generation unit 102a) may be provided.
  • each of these antennas becomes a (relatively large) load, and it is avoided that the amount of heat given to the object to be heated 110 is reduced by heating.
  • the present invention can be realized not only as a device, a system, an integrated circuit, etc., but also as a method that uses processing means constituting the device as steps, or as a program that causes a computer to execute these steps, It can also be realized as a computer-readable recording medium such as a CD-ROM that records the program, or as information, data, or a signal indicating the program. These programs, information, data, and signals may be distributed via a communication network such as the Internet.
  • the present invention relates to a high-frequency heating apparatus having a plurality of high-frequency power generation units, even when some high-frequency power generation units are stopped or when some high-frequency power generation is stopped. Since the power generation unit can be used to optimally (relatively appropriately) heat the object to be heated, it is useful as a high-frequency heating device such as a microwave oven.

Abstract

A high frequency heating apparatus (100) is provided with: a plurality of high frequency power generating units (102x); and a control unit (103), which selects a frequency or a phase value that are suitable for merely some of the high frequency power generating units to radiate the high-frequency waves, from among frequencies or phase values that can be set to each of the high frequency power generating units, and makes the high-frequency waves radiated from merely some of the high frequency power generating units. A subject to be heated can be optimally heated using the rest of the high frequency power generating units, even if some high frequency power generating units are stopped.

Description

高周波加熱装置High frequency heating device
 本発明は、半導体素子を使った増幅器を有する高周波電力発生ユニットを複数備える高周波加熱装置に関する。 The present invention relates to a high-frequency heating apparatus including a plurality of high-frequency power generation units having amplifiers using semiconductor elements.
 従来の、電子レンジ等の高周波加熱装置では、大電力の高周波発生デバイスとして、マグネトロンが用いられていた。最近では、マグネトロンに代えて、発振器と、半導体素子からなる増幅器とを用いた電子レンジが検討されている(特許文献1)。 In a conventional high-frequency heating apparatus such as a microwave oven, a magnetron has been used as a high-power high-frequency generating device. Recently, a microwave oven using an oscillator and an amplifier made of a semiconductor element instead of a magnetron has been studied (Patent Document 1).
 特許文献1に記載の電子レンジは、高周波を発生させる発振器を有している。この発振器から発生した高周波は、半導体素子からなる増幅器で増幅される。そして、増幅された高周波は、加熱室内に配置された複数の平面アンテナから、被加熱物へ照射される。 The microwave oven described in Patent Document 1 has an oscillator that generates a high frequency. The high frequency generated from this oscillator is amplified by an amplifier made of a semiconductor element. And the amplified high frequency is irradiated to a to-be-heated object from the several planar antenna arrange | positioned in a heating chamber.
 また、照射された高周波のうち、被加熱物によって反射した反射波は、各平面アンテナで受信され、受信された反射波は、受信回路によって検出される。そして、特許文献1に記載の電子レンジでは、高周波の位相を変化させることができる位相変換回路を備え、位相変換回路を使って、高周波の位相を制御する。このことによって、反射波を制御し、比較的好ましい状態で、被加熱物を加熱できる。 Also, the reflected wave reflected by the object to be heated in the irradiated high frequency is received by each planar antenna, and the received reflected wave is detected by the receiving circuit. The microwave oven described in Patent Document 1 includes a phase conversion circuit that can change the high-frequency phase, and controls the high-frequency phase using the phase conversion circuit. Thus, the object to be heated can be heated in a relatively preferable state by controlling the reflected wave.
特開2000-357583号公報JP 2000-357583 A
 特許文献1に記載の電子レンジでは、長期使用による劣化によって、複数の平面アンテナのうちの一部の平面アンテナから、高周波が照射されなくなることがある。また、照射する高周波電力を小さくするために、複数の平面アンテナのうちの一部のアンテナに対して、高周波を照射しないように設定することも考えられる。 In the microwave oven described in Patent Document 1, high-frequency waves may not be irradiated from some of the plurality of planar antennas due to deterioration due to long-term use. Further, in order to reduce the high frequency power to be irradiated, it is also conceivable to set a part of the plurality of planar antennas so as not to irradiate the high frequency.
 しかし、このような場合において、特許文献1に記載の電子レンジでは、残りの平面アンテナから照射される高周波における位相を、どのように設定するかについては、何ら開示されていない。 However, in such a case, the microwave oven described in Patent Document 1 does not disclose how to set the phase at the high frequency irradiated from the remaining planar antenna.
 本発明は、半導体素子からなる増幅器を有する高周波電力発生ユニットを複数備えた高周波加熱装置において、一部の高周波電力発生ユニットが停止した場合や、一部の高周波電力発生を停止させる場合であっても、他の高周波電力発生ユニットを用いて、被加熱物を最適に(比較的適切に)加熱できる高周波加熱装置を提供することを目的とする。 The present invention relates to a high-frequency heating apparatus provided with a plurality of high-frequency power generation units each having an amplifier made of a semiconductor element, in a case where some high-frequency power generation units are stopped or a case where some high-frequency power generation is stopped. Another object of the present invention is to provide a high-frequency heating apparatus that can optimally (relatively appropriately) heat an object to be heated using another high-frequency power generation unit.
 本発明の一例である高周波加熱装置(電子レンジなど)は、被加熱物を収納する加熱室と、高周波を前記加熱室内へ放射する複数の高周波電力発生ユニットと、前記複数の高周波電力発生ユニットのそれぞれに設定可能な周波数または位相の値から、前記複数の高周波電力発生ユニットの一部のみが前記高周波を放射する際に適した周波数または位相の値を選択して、選択した前記周波数または位相の値に従って、前記複数の高周波電力発生ユニットの一部のみから前記高周波を放射させる制御部とを備える、高周波加熱装置である。 A high-frequency heating device (such as a microwave oven) that is an example of the present invention includes a heating chamber that houses an object to be heated, a plurality of high-frequency power generation units that radiate high-frequency waves into the heating chamber, and a plurality of high-frequency power generation units. From the frequency or phase value that can be set for each, a frequency or phase value that is suitable when only a part of the plurality of high-frequency power generation units emits the high frequency is selected, and the selected frequency or phase value is selected. A high-frequency heating apparatus comprising: a control unit that radiates the high frequency from only a part of the plurality of high-frequency power generation units according to a value.
 なお、高周波を放射するとは、例えば、マイクロ波などの、放射により加熱をするのに適切な程度に、十分に高い周波数の電磁波を放射することなどをいう。 It should be noted that radiating a high frequency means radiating an electromagnetic wave having a sufficiently high frequency to an appropriate level for heating by radiation such as a microwave.
 本発明によれば、半導体素子からなる増幅器を有する高周波電力発生ユニットを複数備えた高周波加熱装置において、一部の高周波電力発生ユニットが停止した場合や、一部の高周波電力発生を停止させる場合であっても、停止していない高周波電力発生ユニットを用いて、被加熱物を最適に(適切に)加熱することが可能となる。 According to the present invention, in a high-frequency heating device including a plurality of high-frequency power generation units having amplifiers made of semiconductor elements, when some high-frequency power generation units are stopped or when some high-frequency power generation is stopped. Even in such a case, the object to be heated can be optimally (appropriately) heated using the high-frequency power generation unit that is not stopped.
 複数備えた高周波電力発生ユニットを全て使用する場合と、一部が停止した場合とでは、加熱室内の電界分布が変化し、適切な周波数または位相の条件が異なる。しかし、使用する高周波電力発生ユニットの組み合わせに応じて、周波数または位相の値を変更し、加熱室内の電界分布を調整することで、例えば、より確実に、加熱効率が高くできる。 ∙ When all the high-frequency power generation units provided are used and when some of them are stopped, the electric field distribution in the heating chamber changes and the appropriate frequency or phase conditions differ. However, the heating efficiency can be increased more reliably, for example, by changing the frequency or phase value and adjusting the electric field distribution in the heating chamber according to the combination of the high-frequency power generation units to be used.
図1は、本発明の実施形態1における高周波加熱装置のブロック図である。FIG. 1 is a block diagram of a high-frequency heating device according to Embodiment 1 of the present invention. 図2は、本発明の実施形態1における電力検出器のブロック図である。FIG. 2 is a block diagram of the power detector according to Embodiment 1 of the present invention. 図3は、本発明の実施形態1におけるアルゴリズムの選択フローチャートである。FIG. 3 is an algorithm selection flowchart according to the first embodiment of the present invention. 図4Aは、本発明の実施形態1における記憶部の概念図である。FIG. 4A is a conceptual diagram of a storage unit according to Embodiment 1 of the present invention. 図4Bは、本発明の実施形態1におけるアルゴリズムが選択される実例を示したフローチャートである。FIG. 4B is a flowchart illustrating an example in which an algorithm according to Embodiment 1 of the present invention is selected. 図5は、本発明の実施形態2における高周波加熱装置のブロック図である。FIG. 5 is a block diagram of a high-frequency heating device according to Embodiment 2 of the present invention. 図6は、本発明の実施形態2におけるアルゴリズムの選択フローチャートである。FIG. 6 is an algorithm selection flowchart according to the second embodiment of the present invention. 図7は、本発明の実施形態3における高周波加熱装置のブロック図である。FIG. 7 is a block diagram of a high-frequency heating device according to Embodiment 3 of the present invention. 図8Aは、シミュレーション条件を説明する図である。FIG. 8A is a diagram for explaining simulation conditions. 図8Bは、シミュレーション結果を示す図である。FIG. 8B shows a simulation result. 図8Cは、シミュレーション結果を示す図である。FIG. 8C is a diagram illustrating a simulation result. 図9は、本発明の実施形態2における変形例である高周波加熱装置のブロック図である。FIG. 9 is a block diagram of a high-frequency heating device that is a modification of Embodiment 2 of the present invention. 図10は、対応関係の表を示す図である。FIG. 10 is a diagram showing a correspondence table. 図11は、高周波加熱装置の処理のフローチャートである。FIG. 11 is a flowchart of the process of the high-frequency heating device. 図12は、短絡制御部などを示す図である。FIG. 12 is a diagram illustrating a short circuit control unit and the like.
 以下、図面を参照して、本発明を実施する形態の一例を説明する。 Hereinafter, an example of an embodiment for carrying out the present invention will be described with reference to the drawings.
 実施形態の高周波加熱装置100は、図1に示すように、被加熱物110を収納する加熱室101と、高周波を加熱室101内へ放射する複数の高周波電力発生ユニット102a~102cと、複数の高周波電力発生ユニット102a~102cのそれぞれに設定可能な周波数または位相の値から、複数の高周波電力発生ユニット102a~102cの一部のみが高周波を放射する際に適した周波数または位相の値を選択して、選択した周波数または位相の値に従って、複数の高周波電力発生ユニット102a~102cの一部のみから高周波を放射させる制御部とを備える高周波加熱装置である。 As shown in FIG. 1, the high-frequency heating device 100 according to the embodiment includes a heating chamber 101 that houses an object to be heated 110, a plurality of high-frequency power generation units 102 a to 102 c that radiate a high frequency into the heating chamber 101, and a plurality of From the frequency or phase value that can be set for each of the high-frequency power generation units 102a to 102c, a frequency or phase value that is suitable when only a part of the plurality of high-frequency power generation units 102a to 102c radiates a high frequency is selected. The high-frequency heating apparatus includes a control unit that radiates high-frequency waves from only a part of the plurality of high-frequency power generation units 102a to 102c according to the selected frequency or phase value.
 例えば、実施の形態の高周波加熱装置100は、一般家庭で利用される電子レンジなどである。そして、この高周波加熱装置100は、被加熱物110(例えば、図1での食品など)を収納する加熱室101と、高周波を前記加熱室101内へ放射する複数(例えば、図1での3個)の高周波電力発生ユニット102xとを備える。 For example, the high-frequency heating device 100 of the embodiment is a microwave oven or the like used in a general home. The high-frequency heating apparatus 100 includes a heating chamber 101 that stores an object to be heated 110 (for example, food in FIG. 1), and a plurality of (for example, 3 in FIG. 1) that radiates high-frequency waves into the heating chamber 101. ) High frequency power generation unit 102x.
 そして、複数の高周波電力発生ユニット102xの一部のみが高周波の放射をして被加熱物110を加熱する場合(図4BのS402:Yes)もある。ここで、上述の一部は、例えば、図1で示される3個の高周波電力発生ユニット102xのうちの、高周波電力発生ユニット102b、102cでもよい。 In some cases, only a part of the plurality of high-frequency power generation units 102x emits high-frequency radiation to heat the object to be heated 110 (S402 in FIG. 4B: Yes). Here, the above-mentioned part may be, for example, the high-frequency power generation units 102b and 102c of the three high-frequency power generation units 102x shown in FIG.
 つまり、複数の高周波電力発生ユニット102xの全部から高周波を放射させる場合(S402:No)と共に、一部のみから高周波を放射させる場合(S402:Yes)もある。 That is, there is a case where a high frequency is radiated from all of the plurality of high frequency power generation units 102x (S402: No) and a case where a high frequency is radiated from only a part (S402: Yes).
 そして、複数の高周波電力発生ユニット102xの全部から高周波を放射させる場合(S402:No)に適した周波数または位相の値(例えば、図8Bの周波数9F1を参照)は、一部のみから放射させる際(S402:Yes)に適した周波数または位相の値(周波数9H1を参照)とは異なることが考えられる。 When a high frequency is radiated from all of the plurality of high frequency power generation units 102x (S402: No), a frequency or phase value (for example, refer to the frequency 9F1 in FIG. 8B) is radiated from only a part. It is conceivable that the frequency or phase value (see frequency 9H1) suitable for (S402: Yes) is different.
 そこで、制御部103が、周波数または位相の値を複数個(周波数9F1、9H1を参照)のうちから選択してもよい。つまり、当該一部のみが高周波を放射する際に適した周波数または位相の値(周波数9H1を参照)を選択して、選択した周波数または位相の値(周波数9H1を参照)に従って、前記一部のみから放射させる制御部103を備えてもよい。 Therefore, the control unit 103 may select a frequency or a phase value from a plurality of values (see the frequencies 9F1 and 9H1). That is, a frequency or phase value (see frequency 9H1) suitable when only the part radiates high frequency is selected, and only the part is selected according to the selected frequency or phase value (see frequency 9H1). You may provide the control part 103 made to radiate from.
 なお、複数の高周波電力発生ユニット102xの全部から高周波を放射させる場合に適した周波数または位相の値は、例えば、複数の高周波電力発生ユニット102x全部から高周波を放射させる際において(S402:No)、加熱効率が最大になる周波数または位相の値などである。そして、一部のみから放射させる際に適した周波数または位相の値は、例えば、複数の高周波電力発生ユニット102xの一部のみから高周波を放射させる際に(S402:Yes)、加熱効率が最大になる周波数または位相の値などである。 Note that the frequency or phase value suitable for radiating high frequencies from all of the plurality of high frequency power generation units 102x is, for example, when high frequencies are radiated from all of the plurality of high frequency power generation units 102x (S402: No). For example, the frequency or phase value at which the heating efficiency is maximized. The frequency or phase value suitable for radiating from only a part is, for example, when the high frequency is radiated from only a part of the plurality of high-frequency power generation units 102x (S402: Yes), and the heating efficiency is maximized. Such as frequency or phase value.
 なお、例えば、予め、加熱効率が最大になることが確認された周波数または位相の値(周波数9F1、9H1を参照)を記憶部に記憶しておき、使用する高周波電力発生ユニットの組み合わせに応じて、記憶部から読み出してもよい。また、周波数や位相を掃引し、加熱効率が最大となる周波数または位相の値を算出するアルゴリズムにより周波数または位相の値を決定してもよい。 In addition, for example, the frequency or phase value (see frequencies 9F1 and 9H1) at which the heating efficiency is confirmed to be maximized is stored in the storage unit in advance, depending on the combination of the high-frequency power generation units to be used. The data may be read from the storage unit. Alternatively, the frequency or phase value may be determined by an algorithm that sweeps the frequency or phase and calculates the frequency or phase value that maximizes the heating efficiency.
 これにより、複数の高周波電力発生ユニット102x全部から高周波が放射される場合(S402:No)だけでなく、一部のみから放射される場合にも(S402:Yes)、確実に、適切な条件での放射ができる。これにより、ひいては、例えば、確実に、加熱効率が高くできる。 Thereby, not only when a high frequency is radiated from all of the plurality of high frequency power generation units 102x (S402: No), but also when only a part is radiated (S402: Yes), surely under appropriate conditions. Can emit. Thereby, for example, the heating efficiency can be reliably increased.
 なお、例えば、制御部103は、複数の高周波電力発生ユニットの全部(例えば、図1のアンテナ108a~108cを参照)から高周波が放射される(S402:No)か、一部(例えば、図1のアンテナ108b、108c)のみから高周波が放射される(S402:Yes)かを示す情報を取得してもよい。なお、取得される情報の具体例として、後で、図1の情報109I、図7の情報701Iなどが例示される。 For example, the control unit 103 radiates a high frequency from all of the plurality of high frequency power generation units (for example, see the antennas 108a to 108c in FIG. 1) (S402: No) or a part (for example, FIG. 1). Information indicating whether high-frequency waves are radiated only from the antennas 108b and 108c) (S402: Yes). As specific examples of the acquired information, information 109I in FIG. 1 and information 701I in FIG. 7 will be exemplified later.
 そして、制御部103は、取得された当該情報により、複数の高周波電力発生ユニット全部から高周波が放射される場合にのみ(S402:No)、複数の高周波電力発生ユニットの全部から高周波を放射させる場合に適した周波数または位相の値で高周波を放射させる。一方、一部のみから高周波が放射される場合には(S402:Yes)、一部のみから放射させる際に適した周波数または位相の値で高周波を放射させてもよい。 And the control part 103 is a case where a high frequency is radiated | emitted from all the some high frequency electric power generation units only when a high frequency is radiated | emitted from all the some high frequency electric power generation units by the said acquired information (S402: No). High frequency is radiated at a frequency or phase value suitable for the above. On the other hand, when a high frequency is radiated from only a part (S402: Yes), the high frequency may be radiated at a frequency or phase value suitable for radiating from only a part.
 なお、制御部103は、後で詳しく説明されるように、例えば、上述の取得を行う取得部103aと、取得された情報に基づく動作をする放射制御部103bとを含んでもよい。 Note that the control unit 103 may include, for example, an acquisition unit 103a that performs the above-described acquisition and a radiation control unit 103b that operates based on the acquired information, as will be described in detail later.
 (実施形態1)
 以下、本発明における実施の形態1における高周波加熱装置100について、図面を参照して説明する。
(Embodiment 1)
Hereinafter, high-frequency heating apparatus 100 according to Embodiment 1 of the present invention will be described with reference to the drawings.
 図1は、実施の形態1における高周波加熱装置100のブロック図である。 FIG. 1 is a block diagram of a high-frequency heating device 100 according to the first embodiment.
 図1の高周波加熱装置100は、被加熱物110を入れる加熱室101と、複数の高周波電力発生ユニット102a、102b、102cと、制御部103と、記憶部104と、停止判定器109を備える。 1 includes a heating chamber 101 in which an object to be heated 110 is placed, a plurality of high-frequency power generation units 102a, 102b, and 102c, a control unit 103, a storage unit 104, and a stop determination unit 109.
 加熱室101は、複数の高周波電力発生ユニット102a、102b、102cからの高周波が、加熱室101の外へ漏洩されないように構成されている。また、加熱室101は、高周波のエネルギーを閉じ込めて、被加熱物110(電子レンジの場合は主に食品)を、効率よく温めることができるようにも構成されている。 The heating chamber 101 is configured so that high frequencies from the plurality of high-frequency power generation units 102 a, 102 b, 102 c do not leak out of the heating chamber 101. The heating chamber 101 is also configured to confine high-frequency energy and efficiently heat the object to be heated 110 (mainly food in the case of a microwave oven).
 つまり、それぞれの高周波電力発生ユニット102a、102b、102cは、高周波を出力する発振器105a、105b、105cを有する。また、発振器105a、105b、105cから出力される高周波を増幅して出力する、半導体素子を用いた増幅器106a、106b、106cを有する。また、増幅器106a、106b、106cから出力される高周波を、加熱室101内へ放射する放射器108a、108b、108cを有する。 That is, each high frequency power generation unit 102a, 102b, 102c has oscillators 105a, 105b, 105c that output a high frequency. In addition, amplifiers 106a, 106b, and 106c using semiconductor elements that amplify and output the high frequency output from the oscillators 105a, 105b, and 105c are provided. In addition, there are radiators 108 a, 108 b, 108 c that radiate high-frequency waves output from the amplifiers 106 a, 106 b, 106 c into the heating chamber 101.
 これらの高周波電力発生ユニット102a、102b、102cを用いることで、大電力の高周波出力を得ることができる。さらに、複数の高周波電力発生ユニット102a、102b、102cを用いることで、加熱室101における空間電力合成によっても、出力が高くできる。 A high-power high-frequency output can be obtained by using these high-frequency power generation units 102a, 102b, and 102c. Furthermore, by using a plurality of high-frequency power generation units 102 a, 102 b, 102 c, the output can be increased even by spatial power synthesis in the heating chamber 101.
 発振器105a、105b、105cには、例えば、フェーズ・ロックド・ループ(PLL:Phase Locked Loop)を用いた周波数シンセサイザなどを用いることができる。PPLを使用した場合には、与えられた周波数のデジタル・データに基づいて、発振周波数が決定される。 For the oscillators 105a, 105b, and 105c, for example, a frequency synthesizer using a phase locked loop (PLL) can be used. When PPL is used, the oscillation frequency is determined based on digital data of a given frequency.
 増幅器106a、106b、106cに用いる半導体素子には、例えばGaN(窒化ガリウム)で形成されるHFET(Heterojunction Field Effect Transistor:異種接合2次元電子ガス電界効果トランジスタ)を最終段に用いた多段増幅器などを用いることができる。半導体素子を用いた電力増幅器は、近年の半導体デバイス技術の進化により、電子レンジで使用される2.4GHz帯でも、数百Wクラスの出力に増幅できる。 As a semiconductor element used for the amplifiers 106a, 106b, and 106c, for example, a multistage amplifier using an HFET (Heterojunction Field Effect Transistor: heterojunction two-dimensional electron gas field effect transistor) formed of GaN (gallium nitride) in the final stage. Can be used. A power amplifier using a semiconductor element can be amplified to an output of several hundreds of watts even in a 2.4 GHz band used in a microwave oven due to recent advances in semiconductor device technology.
 放射器108a、108b、108cは、高周波を放射するアンテナである。なお、放射器108a、108b、108cには、高出力に対応できる構造が必要である。 Radiators 108a, 108b, and 108c are antennas that radiate high frequencies. The radiators 108a, 108b, and 108c are required to have a structure that can cope with high output.
 高周波電力発生ユニット102a、102b、102cは、それぞれ、電力検出器107a、107b、107cを備える。放射器108a、108b、108cから放射された高周波が、加熱室101内で反射して、それぞれの高周波電力発生ユニット102a、102b、102cへ戻ってくる。それらの高周波(以降、「反射波」と称す)が、それぞれ、電力検出器107a、107b、107cにより測定される。なお、電力検出器107a、107b、107cは、例えば、4分の1波長結合伝送線路などで形成される方向性結合器と、検波ダイオードとで構成することができる。 The high-frequency power generation units 102a, 102b, and 102c include power detectors 107a, 107b, and 107c, respectively. The high frequency radiated from the radiators 108a, 108b, 108c is reflected in the heating chamber 101 and returns to the respective high frequency power generation units 102a, 102b, 102c. These high frequencies (hereinafter referred to as “reflected waves”) are measured by the power detectors 107a, 107b, and 107c, respectively. The power detectors 107a, 107b, and 107c can be configured with, for example, a directional coupler formed of a quarter-wavelength coupled transmission line or the like, and a detection diode.
 図2は、電力検出器107aのブロック図である。なお、他の電力検出器107b、107cの構成も、この電力検出器107aと同様な構成であるので、詳しい説明は省略する。 FIG. 2 is a block diagram of the power detector 107a. The configuration of the other power detectors 107b and 107c is the same as that of the power detector 107a, and a detailed description thereof will be omitted.
 図2の電力検出器107aは、方向性結合器201と、検波ダイオード202と、終端抵抗により構成されている。方向性結合器201は、増幅器106a(図1)と接続されたポート1(P1)と、放射器108aと接続されたポート2(P2)とを結ぶ第1伝送線路を有する。さらに、方向性結合器201は、グランドに、抵抗を介して接続されたポート3(P3)と、検波ダイオード202に接続されたポート4(P4)とを結ぶ、上述された第1伝送線路と平行な第2伝送線路を有する。 2 includes a directional coupler 201, a detection diode 202, and a termination resistor. The directional coupler 201 has a first transmission line that connects a port 1 (P1) connected to the amplifier 106a (FIG. 1) and a port 2 (P2) connected to the radiator 108a. Furthermore, the directional coupler 201 includes the first transmission line described above that connects the port 3 (P3) connected to the ground via a resistor and the port 4 (P4) connected to the detection diode 202 to each other. A parallel second transmission line is included.
 検波ダイオード202は、ポート4から出力される、高周波の電力を観測することができる。 The detection diode 202 can observe high-frequency power output from the port 4.
 つまり、ポート1から高周波が入射された場合には、第1伝送線路を介して、ポート2に、高周波の大部分が出力される。ポート2への、高周波の出力と同時に、ポート1から入射された高周波は、第1伝送線路と第2伝送線路との結合量だけ小さくなって、ポート3(P3)にも出力される。ここで、ポート1から入射された高周波は、ポート4(P4)には出力されない。一方、ポート2から高周波が入射された場合には、第1伝送線路を介して、ポート1に、入射された高周波の大部分が出力される。ポート1への、高周波の出力と同時に、ポート2へ入射された高周波は、第1伝送線路と第2伝送線路との結合量だけ小さくなって、ポート4にも出力される。ここでも、ポート2から入射された高周波は、ポート3には出力されない。 That is, when a high frequency is incident from the port 1, most of the high frequency is output to the port 2 via the first transmission line. Simultaneously with the high frequency output to the port 2, the high frequency incident from the port 1 is reduced by the amount of coupling between the first transmission line and the second transmission line, and is also output to the port 3 (P3). Here, the high frequency incident from the port 1 is not output to the port 4 (P4). On the other hand, when a high frequency is incident from the port 2, most of the incident high frequency is output to the port 1 through the first transmission line. At the same time as the high frequency output to port 1, the high frequency incident on port 2 is reduced by the amount of coupling between the first transmission line and the second transmission line and is also output to port 4. Again, the high frequency incident from port 2 is not output to port 3.
 このような特性を有する方向性結合器201のポート4の高周波の出力を、検波ダイオード202を用いて観測することによって、放射器108aから戻ってくる反射波107Aの反射量を観測できる。 By observing the high frequency output of the port 4 of the directional coupler 201 having such characteristics using the detection diode 202, the amount of reflection of the reflected wave 107A returning from the radiator 108a can be observed.
 制御部103は、記憶部104と、停止判定器109と、発振器105a、105b、105cと、電力検出器107a、107b、107cとのそれぞれに接続されている。さらに、制御部103は、記憶部104からアルゴリズムを読み出し、発振器105a、105b、105cへ周波数を指示する機能を有している。なお、制御部103は、例えば、LSIまたはマイクロプロセッサ等で構成できる。 The control unit 103 is connected to each of the storage unit 104, the stop determination unit 109, the oscillators 105a, 105b, and 105c, and the power detectors 107a, 107b, and 107c. Further, the control unit 103 has a function of reading out an algorithm from the storage unit 104 and instructing the oscillators 105a, 105b, and 105c with a frequency. The control unit 103 can be configured by, for example, an LSI or a microprocessor.
 記憶部104には、発振器105a、105b、105cから出力される、高周波の周波数の値を決定するためのアルゴリズムが複数記憶されている。 The storage unit 104 stores a plurality of algorithms for determining high frequency values output from the oscillators 105a, 105b, and 105c.
 本実施形態では、すべての発振器105a、105b、105cを使用する場合における、すべての発振器の各周波数の値を決定するためのアルゴリズムだけが記憶されるのではない。つまり、本実施形態では、少なくとも1つの発振器を含む、選択可能な発振器の組み合わせがある。それぞれの組み合わせに対して、その組み合わせの各発振器の周波数を決定するためのアルゴリズムが記憶されている。なお、記憶されたアルゴリズムは、各高周波電力発生ユニット102a、102b、102cから出力された高周波が、最も十分に、被加熱物110へ吸収されるような周波数の値を決定するものである。すなわち、反射波が、最も少なくなるような周波数の値を決定するアルゴリズムである。 In the present embodiment, not only the algorithm for determining the value of each frequency of all the oscillators when all the oscillators 105a, 105b, 105c are used is stored. That is, in this embodiment, there are selectable oscillator combinations including at least one oscillator. For each combination, an algorithm for determining the frequency of each oscillator of the combination is stored. The stored algorithm determines a frequency value at which the high frequency output from each high frequency power generation unit 102a, 102b, 102c is most sufficiently absorbed by the article 110 to be heated. That is, this is an algorithm for determining a frequency value at which reflected waves are minimized.
 なお、記憶部104は、例えば、ROM(Read Only Memory)や不揮発性のRAM(Random Access Memory)で構成できる。 The storage unit 104 can be composed of, for example, a ROM (Read Only Memory) or a nonvolatile RAM (Random Access Memory).
 以下に、記憶部104に記憶されたアルゴリズムによる具体的な動作について説明する。 Hereinafter, a specific operation by the algorithm stored in the storage unit 104 will be described.
 まず、制御部103は、発振器105a、105b、105cが制御できる周波数帯域(例えば、2.4GHzから2.5GHzまで)を分割した周波数である、f1からfnまで(f1<f2<・・・<fn:nは3以上の自然数)の各周波数に、それぞれの発振器の周波数をスイープさせる。この時に、f1からfnまでの各周波数に対する反射波の反射量Prefi(i=1,・・・n)を、電力検出器107a、107b、107cで観測する。 First, the control unit 103 divides a frequency band (for example, from 2.4 GHz to 2.5 GHz) that can be controlled by the oscillators 105a, 105b, and 105c, from f1 to fn (f1 <f2 <... < fn: n is a natural number of 3 or more), and the frequency of each oscillator is swept. At this time, the reflection amount Prefi (i = 1,... N) of the reflected wave with respect to each frequency from f1 to fn is observed by the power detectors 107a, 107b, and 107c.
 ここで、被加熱物110以外での電力損失がないと仮定すれば、被加熱物110に吸収された電力Pabsi(i=1,・・・n)は、
  Pabsi=Pout-Prefi ・・・・(式1)
で求めることができる。この式により、Pabsiが、より大きい周波数の時には、反射がより少なくて、高周波のエネルギーが被加熱物110に、より多く吸収され、加熱効率が高いことがわかる。
Here, assuming that there is no power loss other than the object to be heated 110, the electric power Pabsi (i = 1,... N) absorbed by the object to be heated 110 is
Pabsi = Pout−Prefi (formula 1)
Can be obtained. From this equation, it can be seen that when Pabsi is at a higher frequency, there is less reflection, and high-frequency energy is absorbed more by the object to be heated 110, and the heating efficiency is higher.
 制御部103は、電力検出器で観測されたPabsiに基づいて、最も加熱効率が高くなる、各発振器の周波数の値を決定する。そして、制御部103は、決定された値の周波数となるように、各発振器の周波数を設定する。 The control unit 103 determines the frequency value of each oscillator that provides the highest heating efficiency based on the Pabsi observed by the power detector. And the control part 103 sets the frequency of each oscillator so that it may become the frequency of the determined value.
 以上の説明は、すべての発振器105a、105b、105cを使用した場合に、各発振器のうちの全ての周波数の値を決定するためのアルゴリズムについてである。 The above description is about the algorithm for determining the values of all frequencies of each oscillator when all the oscillators 105a, 105b, and 105c are used.
 一方で、発振器の、それぞれの組み合わせに対するアルゴリズムも、例えば、制御対象とする発振器の数が異なるだけで、基本的には同じでもよい。但し、制御対象としない発振器は、停止され、停止された発振器に対応する電力検出器からの出力は無視される。 On the other hand, the algorithm for each combination of oscillators may be basically the same, for example, only the number of controlled oscillators is different. However, the oscillators that are not controlled are stopped, and the output from the power detector corresponding to the stopped oscillator is ignored.
 なお、記憶部104に記憶されたアルゴリズムとしては、上記のように、周波数をスイープさせて、最適な周波数の値を決定するアルゴリズムに限らない。つまり、例えば、予め工場出荷前に、選択可能な、発振器の組み合わせのそれぞれに対して、上記のようなアルゴリズムで、各発振器の最適な周波数の値を求めておいて、それらの最適な周波数の値を記憶しておいてもよい。 It should be noted that the algorithm stored in the storage unit 104 is not limited to the algorithm that determines the optimum frequency value by sweeping the frequency as described above. That is, for example, for each of the combinations of oscillators that can be selected in advance before shipment from the factory, the optimal frequency value of each oscillator is obtained by the algorithm as described above, and the optimal frequency of each oscillator is determined. You may memorize | store a value.
 停止判定器109は、高周波電力発生ユニット102a、102b、102cからの高周波の出力が停止したことを判定する。なお、例えば、増幅器106a、106b、106cからの電流を観測することで、高周波が出力されているかを判定することができる。 The stop determination unit 109 determines that the high-frequency output from the high-frequency power generation units 102a, 102b, and 102c has stopped. Note that, for example, by observing currents from the amplifiers 106a, 106b, and 106c, it can be determined whether a high frequency is being output.
 続いて、実施形態1における、被加熱物110を加熱するためのアルゴリズムを選択する流れを説明する。 Subsequently, a flow of selecting an algorithm for heating the article to be heated 110 in the first embodiment will be described.
 図3は、実施形態1の高周波加熱装置100における、被加熱物110を加熱するためのアルゴリズムを選択するフローチャートである。 FIG. 3 is a flowchart for selecting an algorithm for heating the object to be heated 110 in the high-frequency heating apparatus 100 of the first embodiment.
 高周波加熱装置100の長期間の使用が原因で、高周波電力発生ユニット102a、102b、102cを構成する部品が劣化すること等によって、高周波が出力されない状態(以降、停止した状態とも称する)となることがある。 Due to the long-term use of the high-frequency heating device 100, the components constituting the high-frequency power generation units 102a, 102b, and 102c are deteriorated, etc., so that no high frequency is output (hereinafter also referred to as a stopped state). There is.
 停止判定器109は、高周波電力発生ユニット102a、102b、102cのうちの一部が停止したことを判定する(ステップS301)。高周波電力発生ユニット102a、102b、102cのうちの少なくとも1つが停止したと判定された場合、停止判定器109は、次の動作をする。その動作では、いずれの高周波電力発生ユニット102a、102b、102cからの、加熱室101への高周波の出力が停止したかを示す情報を、制御部103へ出力する(ステップS302)。 The stop determination unit 109 determines that some of the high frequency power generation units 102a, 102b, and 102c have stopped (step S301). When it is determined that at least one of the high-frequency power generation units 102a, 102b, and 102c has stopped, the stop determination unit 109 performs the following operation. In the operation, information indicating which high-frequency power generation unit 102a, 102b, 102c has stopped outputting high-frequency power to the heating chamber 101 is output to the control unit 103 (step S302).
 制御部103は、高周波の出力が停止していない1つ以上の高周波電力発生ユニットを特定する。つまり、それらの1つ以上の高周波電力発生ユニットから選択可能な、高周波電力発生ユニットの組み合わせが1つ以上ある。制御部103は、それぞれの組み合わせに対応するアルゴリズムを、記憶部104から特定する(ステップS303)。制御部103は、記憶部104から特定したアルゴリズムを順に実行し、加熱効率が最も良くなる高周波電力発生ユニットの組み合わせを決定する。また、その最も良くなるときの、各高周波電力発生ユニットの周波数の値を決定する(ステップS304)。 The control unit 103 identifies one or more high-frequency power generation units whose high-frequency output is not stopped. That is, there are one or more combinations of high-frequency power generation units that can be selected from the one or more high-frequency power generation units. The control unit 103 identifies an algorithm corresponding to each combination from the storage unit 104 (step S303). The control unit 103 sequentially executes the algorithms specified from the storage unit 104, and determines the combination of the high-frequency power generation units that provides the best heating efficiency. Further, the frequency value of each high-frequency power generation unit at the best time is determined (step S304).
 制御部103は、決定した組み合わせに含まれる高周波電力発生ユニットにおける発振器へ、決定した周波数の値を出力する(ステップS305)。これにより、その発振器は、出力された周波数の値に設定される(ステップS306)。 The control unit 103 outputs the determined frequency value to the oscillator in the high-frequency power generation unit included in the determined combination (step S305). As a result, the oscillator is set to the output frequency value (step S306).
 この設定された周波数で、高周波電力発生ユニットは、高周波を発振して、加熱室101内の被加熱物110を加熱する。 The high frequency power generation unit oscillates a high frequency at the set frequency to heat the object to be heated 110 in the heating chamber 101.
 図4Aは、記憶部104に記憶されるデータを示す図である。 FIG. 4A is a diagram illustrating data stored in the storage unit 104.
 図4Bは、図3のフローチャートの処理によって、加熱条件が切り替えられた場合の例を示した図である。 FIG. 4B is a diagram illustrating an example when the heating condition is switched by the process of the flowchart of FIG. 3.
 図4Aで模式的に示すように、記憶部104には、高周波電力発生ユニット102a、102b、102cの全てを使って最適加熱条件となる周波数を決定するアルゴリズムA1(アルゴリズム91)が記憶されている。また、高周波電力発生ユニット102a、102b、102cのうち2つを選択して最適加熱条件となる周波数を決定するアルゴリズムA2、A3、A4(アルゴリズム921~923)が記憶されている。また、高周波電力発生ユニット102a、102b、102cのうち1つを選択して最適加熱条件となる周波数を決定するアルゴリズムA5、A6、A7(アルゴリズム931~934)が記憶されている。 As schematically shown in FIG. 4A, the storage unit 104 stores an algorithm A1 (algorithm 91) that determines a frequency that is an optimum heating condition using all of the high-frequency power generation units 102a, 102b, and 102c. . Further, algorithms A2, A3, and A4 (algorithms 921 to 923) for selecting two of the high-frequency power generation units 102a, 102b, and 102c and determining the frequency that is the optimum heating condition are stored. Further, algorithms A5, A6, and A7 (algorithms 931 to 934) for selecting one of the high-frequency power generation units 102a, 102b, and 102c and determining the frequency that is the optimum heating condition are stored.
 通常、高周波加熱装置100は、すべての高周波電力発生ユニット102a、102b、102cを使って最適加熱条件となる周波数を決定するアルゴリズムA1で決定した周波数により、加熱をしている。しかしながら、高周波加熱装置100の経時劣化などによって、1つの高周波電力発生ユニットが停止した場合が考えられる。 Usually, the high-frequency heating apparatus 100 is heated at the frequency determined by the algorithm A1 that determines the frequency that is the optimum heating condition using all the high-frequency power generation units 102a, 102b, and 102c. However, there may be a case where one high-frequency power generation unit is stopped due to deterioration of the high-frequency heating device 100 over time.
 図4Bのフローチャートに記載の通り、最初は、アルゴリズムA1を使って、被加熱物110を加熱中である(ステップS401)。 As described in the flowchart of FIG. 4B, first, the heating target 110 is being heated using the algorithm A1 (step S401).
 その後に、高周波電力発生ユニット102aが停止したか否かを、停止判定器109が判定する(ステップS402)。停止したと判定されない場合には(ステップS402:No)、アルゴリズムA1での加熱が続けられ、その判定より後にも、アルゴリズムA1での加熱が行われる(S401)。一方で、停止したと判定される場合には(ステップS402:Yes)、次の動作が行われる(S403~)。つまり、制御部103は、高周波電力発生ユニット102a以外の高周波電力発生ユニット102b、102cを使って最適加熱条件となる周波数を決定するアルゴリズムA4、A6、A7に従って順に、実行させる。これにより、制御部103は、最も加熱効率が良い高周波電力発生ユニットの組み合わせ、および各高周波電力発生ユニットの周波数の値を決定する(ステップS403)。 Thereafter, the stop determination unit 109 determines whether or not the high-frequency power generation unit 102a has stopped (step S402). If it is not determined that it has stopped (step S402: No), heating with the algorithm A1 is continued, and heating with the algorithm A1 is performed after the determination (S401). On the other hand, when it is determined that the operation has been stopped (step S402: Yes), the following operation is performed (S403 ~). That is, the control unit 103 sequentially executes according to the algorithms A4, A6, and A7 that determine the frequency that is the optimum heating condition using the high-frequency power generation units 102b and 102c other than the high-frequency power generation unit 102a. Thereby, the control part 103 determines the value of the frequency of each high frequency electric power generation unit and the combination of the high frequency electric power generation unit with the highest heating efficiency (step S403).
 今回の例では、アルゴリズムA4に従って決定された周波数において、最も良い加熱効率が得られたと仮定する。そこで、このアルゴリズムA4で決定される周波数に従って、高周波電力発生ユニット102b、102cで、加熱を再開する(ステップ404)。 In this example, it is assumed that the best heating efficiency is obtained at the frequency determined according to algorithm A4. Therefore, heating is resumed in the high-frequency power generation units 102b and 102c in accordance with the frequency determined by the algorithm A4 (step 404).
 以上のような、実施形態1の構成およびフローチャートによって、本実施形態の高周波加熱装置100は、以下の効果を得ることができる。 With the configuration and flowchart of the first embodiment as described above, the high-frequency heating device 100 of the present embodiment can obtain the following effects.
 高周波電力発生ユニット102a、102b、102cの少なくとも1つが停止し、停止していない残りの高周波電力発生ユニットで加熱する場合、すべての高周波電力発生ユニットを使用して加熱する場合と比較して、加熱室101内のマイクロ波分布が変化する。そのため、残りの高周波電力発生ユニットで加熱するこの場合における、最適になる高周波の周波数の値は、次の値とは異なる。つまり、全ての高周波電力発生ユニットで加熱する場合における、最適になる高周波の周波数の値とは異なる。このため、高い加熱効率を維持して、加熱を継続させるためには、再度、アルゴリズムに従って、高周波の周波数を設定する必要がある。 When at least one of the high-frequency power generation units 102a, 102b, 102c is stopped and heating is performed with the remaining high-frequency power generation units that are not stopped, heating is performed as compared with the case where heating is performed using all the high-frequency power generation units. The microwave distribution in the chamber 101 changes. Therefore, in this case where heating is performed with the remaining high-frequency power generating units, the optimum high-frequency frequency value is different from the following value. That is, it differs from the optimal high frequency value when heating is performed in all high frequency power generation units. For this reason, in order to maintain high heating efficiency and continue heating, it is necessary to set a high frequency again according to an algorithm.
 そこで、本実施形態の高周波加熱装置100は、高周波電力発生ユニット102a、102b、102cが停止することを見越して、次の記憶をしている。つまり、高周波電力発生ユニット102a、102b、102cから選択可能な高周波電力発生ユニットの組み合わせがある。それぞれの組み合わせに対して、効率良く加熱するために各高周波電力発生ユニットに設定する周波数の値を決定するアルゴリズムが、予め記憶部104に記憶されている。 Therefore, the high-frequency heating apparatus 100 according to the present embodiment stores the following in anticipation that the high-frequency power generation units 102a, 102b, and 102c are stopped. That is, there is a combination of high frequency power generation units that can be selected from the high frequency power generation units 102a, 102b, and 102c. For each combination, an algorithm for determining a frequency value set in each high-frequency power generation unit for efficient heating is stored in the storage unit 104 in advance.
 そして、高周波加熱装置100は、高周波電力発生ユニット102a、102b、102cの少なくとも1つが停止した場合に、アルゴリズムを選択するつまり、残りの、停止していない高周波電力発生ユニットの全て、または、一部を用いて最適加熱条件となる周波数を決定するためのアルゴリズムの1つ以上を、記憶部104から選択する。そして、それらの1つ以上のアルゴリズムのそれぞれを実行することにより、加熱に用いる高周波電力発生ユニットの組み合わせ、および各発振器の周波数の値を決定する。 The high-frequency heating device 100 selects an algorithm when at least one of the high-frequency power generation units 102a, 102b, and 102c is stopped, that is, all or a part of the remaining high-frequency power generation units that are not stopped. Is used to select one or more algorithms for determining the frequency that is the optimum heating condition from the storage unit 104. Then, by executing each of the one or more algorithms, the combination of the high-frequency power generation units used for heating and the frequency value of each oscillator are determined.
 これらの構成により、一部の高周波電力発生ユニットが停止した場合でも、加熱効率を可能な限り、向上することができる。 These configurations can improve the heating efficiency as much as possible even when some high-frequency power generation units are stopped.
 なお、本実施形態1では、高周波電力発生ユニットを停止させた場合、停止した高周波電力発生ユニットの検出器も停止していることを前提に説明した。一方、必ずしも、停止した高周波電力発生ユニットの検出器を停止させる必要はない。つまり、高周波電力発生ユニットが停止すると、その高周波電力発生ユニットのアンテナから、高周波を放射することはできないが、アンテナを介して、反射波を検出することは可能である。このため、検出器の機能のみを使用し、最適加熱条件となる周波数を決定してもよい。 The first embodiment has been described on the assumption that when the high-frequency power generation unit is stopped, the detector of the stopped high-frequency power generation unit is also stopped. On the other hand, it is not always necessary to stop the detector of the stopped high-frequency power generation unit. That is, when the high-frequency power generation unit stops, high-frequency waves cannot be radiated from the antenna of the high-frequency power generation unit, but it is possible to detect reflected waves via the antenna. For this reason, only the function of a detector may be used and the frequency used as optimal heating conditions may be determined.
 例えば、高周波電力発生ユニット102aが停止した場合に、高周波の周波数を再選択する過程において、高周波電力発生ユニット102b、102cのアンテナ108b、108cから放射させ、加熱効率を計算する際に、次の動作が行われてもよい。その動作では、その計算のための反射波の検出では、停止した高周波電力発生ユニット102aの検出器(電力検出器)107aを含む、すべての検出器107a、107b、107cを使用する。この動作により、高周波の周波数が最適化される。 For example, when the high-frequency power generation unit 102a is stopped, in the process of reselecting the high-frequency frequency, the following operations are performed when the radiation efficiency is calculated from the antennas 108b and 108c of the high-frequency power generation units 102b and 102c. May be performed. In the operation, the detection of the reflected wave for the calculation uses all the detectors 107a, 107b and 107c including the detector (power detector) 107a of the stopped high-frequency power generation unit 102a. This operation optimizes the high frequency.
 加熱室101内では、高周波の周波数よって、被加熱物110での吸収の程度が大きく変化する。例えば、すべての高周波電力発生ユニットで加熱するよりも、一部のみの高周波電力発生ユニットで加熱する方が、加熱効率が高い場合もある。すなわち、投入電力に加熱効率をかけた値の比較によっては、停止していない全ての高周波電力発生ユニットを使うよりも、停止していないそれら全ての高周波電力発生ユニットのうちの一部だけを使う方が良いこともある。特に、半導体素子を用いた発振器と増幅器とを使用した場合、マグネトロンを使用した場合と異なり、周波数を細かく制御でき、かつ位相も制御できるので、加熱室101の空間内の電界分布を比較的大きく変化させることができる。 In the heating chamber 101, the degree of absorption in the heated object 110 varies greatly depending on the frequency of the high frequency. For example, the heating efficiency may be higher when heating is performed with only a part of the high-frequency power generation units than when heating with all the high-frequency power generation units. That is, depending on the comparison of the input power multiplied by the heating efficiency, only a part of all the high-frequency power generation units that are not stopped is used rather than all the high-frequency power generation units that are not stopped. Sometimes it is better. In particular, when an oscillator and an amplifier using semiconductor elements are used, unlike the case of using a magnetron, the frequency can be finely controlled and the phase can also be controlled, so that the electric field distribution in the space of the heating chamber 101 is relatively large. Can be changed.
 このため、被加熱物の材質や分量、形状によっては、一部の高周波電力発生ユニットを使う方が、良い場合が生じ易くなる。したがって、高周波電力発生ユニットの組み合わせによっては、次のような場合もある。つまり、多くの高周波電力発生ユニットを使うよりも、少ない高周波電力発生ユニットを使う方が、被加熱物110の部分に、高周波のエネルギーを集中させることができ、加熱効率も向上させることが可能な場合もある。なお、例えば、加熱効率とは、放射器から放射される高周波のエネルギーが被加熱物にどれだけ吸収されるかを表した効率をいう。 For this reason, depending on the material, quantity, and shape of the object to be heated, it is easier to use some high-frequency power generation units. Therefore, depending on the combination of the high-frequency power generation units, the following may occur. That is, it is possible to concentrate high-frequency energy on the part 110 to be heated and improve the heating efficiency when using a small number of high-frequency power generation units rather than using many high-frequency power generation units. In some cases. For example, the heating efficiency refers to an efficiency representing how much high-frequency energy radiated from the radiator is absorbed by the object to be heated.
 以上のように、高周波電力発生ユニットの少なくとも1つが故障した場合に、停止していない全てのユニットで加熱しないで、一部の高周波電力発生ユニットのみを用いて加熱することで、加熱効率を向上させることができる場合がある。 As described above, when at least one of the high-frequency power generation units fails, the heating efficiency is improved by heating only some of the high-frequency power generation units without heating all the units that are not stopped. There is a case that can be made.
 なお、本実施形態1では、工場出荷時に、すなわち、ユーザが、被加熱物の加熱を始める指示を、高周波加熱装置100に出す前に、予め、高周波電力発生ユニット102a、102b、102cの一部が停止した場合に使用するアルゴリズムを記憶部104に記憶している。これにより、高周波電力発生ユニット102a、102b、102cの一部が停止した場合でも、記憶部104に記憶しているアルゴリズムを読み出すだけで対応できる。これにより、短時間に、加熱条件を再選択して、加熱を開始できる。 In the first embodiment, at the time of factory shipment, that is, before the user issues an instruction to start heating of the object to be heated to the high-frequency heating device 100, a part of the high-frequency power generation units 102a, 102b, and 102c is previously provided. Is stored in the storage unit 104. As a result, even when a part of the high-frequency power generation units 102a, 102b, and 102c is stopped, it can be dealt with by simply reading the algorithm stored in the storage unit 104. Thereby, heating conditions can be reselected and heating can be started in a short time.
 なお、実施形態1では、記憶部104に記憶されたアルゴリズムに従い、高周波加熱装置100に備え付けられた電力検出器107a、107b、107cを用いて計算をした。しかしながら、工場出荷前に、予め、発振器のすべての組み合わせに対して、上記のようなアルゴリズムで、各発振器の最適な周波数の値を求めておいて、その最適な周波数の値を、記憶部に記憶しておいてもよい。その場合には、高周波加熱装置100において、電力検出器107a、107b、107cは必ずしも必須の構成ではない。 In the first embodiment, calculation is performed using the power detectors 107a, 107b, and 107c provided in the high-frequency heating device 100 in accordance with the algorithm stored in the storage unit 104. However, before the factory shipment, the optimal frequency value of each oscillator is obtained in advance using the algorithm described above for all combinations of oscillators, and the optimal frequency value is stored in the storage unit. You may remember it. In that case, in the high-frequency heating device 100, the power detectors 107a, 107b, and 107c are not necessarily essential components.
 また、例えば、決定される、それぞれの発振器(発振器105a、105b、105c)の周波数の値は、次のような値などでもよい。つまり、それぞれの電力検出器(電力検出器107a、107b、107c)で観測される反射量が合計された合計量(反射量の平均量)として、最も少ない量を生じさせる周波数の値などでもよい。 Further, for example, the determined frequency values of the respective oscillators (the oscillators 105a, 105b, and 105c) may be the following values. In other words, the total amount of reflection amounts observed by the respective power detectors ( power detectors 107a, 107b, 107c) (average amount of reflection amounts) may be a frequency value that produces the smallest amount. .
 なお、例えば、発振器105a、105b、105cに、互いに異なる周波数が設定されても良い。つまり、それぞれの発振器105a、105b、105cの周波数を、個別にスイープして、上述された合計量が、最も少ない量となる各周波数の値が、それらの発振器105a等にそれぞれ設定されても良い。 Note that, for example, different frequencies may be set in the oscillators 105a, 105b, and 105c. That is, the frequency of each of the oscillators 105a, 105b, and 105c may be individually swept, and the value of each frequency at which the total amount described above is the smallest may be set in each of the oscillators 105a and the like. .
 (実施形態2)
 本実施形態2では、実施形態1と比較して、高周波の位相を制御できる点で異なる。以下、本発明の実施形態2における高周波加熱装置500について、図面を参照して説明する。なお、実施形態1と共通する部分は、適宜、同一符号を記して、重複した説明を省略する。
(Embodiment 2)
The second embodiment is different from the first embodiment in that the phase of the high frequency can be controlled. Hereinafter, the high frequency heating apparatus 500 in Embodiment 2 of this invention is demonstrated with reference to drawings. In addition, the same code | symbol is suitably described about the part which is common in Embodiment 1, and the overlapping description is abbreviate | omitted.
 図5は、本発明の実施形態1における高周波加熱装置500のブロック図である。 FIG. 5 is a block diagram of the high-frequency heating device 500 according to the first embodiment of the present invention.
 実施形態2は、実施形態1と比較して、発振器105aと増幅器106aとの間に、位相変換器501aを更に備える。そして、発振器105bと増幅器106bとの間に、位相変換器501bを更に備える。そして、発振器105cと増幅器106cとの間に、位相変換器501cを更に備える。 The second embodiment further includes a phase converter 501a between the oscillator 105a and the amplifier 106a as compared with the first embodiment. A phase converter 501b is further provided between the oscillator 105b and the amplifier 106b. A phase converter 501c is further provided between the oscillator 105c and the amplifier 106c.
 位相変換器501a、501b、501cは、制御部103に接続されている。そして、位相変換器501a、501b、501cは、制御部103からの位相情報に基づいて、発振器105a、105b、105cからの高周波の位相を変化させる。これにより、位相が変化した高周波が、位相変換器501a、501b、501cから、増幅器106a、106b、106cへと出力される。 The phase converters 501a, 501b, and 501c are connected to the control unit 103. Then, the phase converters 501a, 501b, and 501c change the high-frequency phase from the oscillators 105a, 105b, and 105c based on the phase information from the control unit 103. As a result, the high frequency whose phase has changed is output from the phase converters 501a, 501b, and 501c to the amplifiers 106a, 106b, and 106c.
 記憶部104は、発振器105a、105b、105cから出力する高周波の、周波数および位相の値を決定するためのアルゴリズムが複数記憶されている。 The storage unit 104 stores a plurality of algorithms for determining the frequency and phase values of the high frequency output from the oscillators 105a, 105b, and 105c.
 本実施形態では、全ての発振器105a、105b、105cを使用する場合の、各発振器の周波数および位相の値を決定するためのアルゴリズムだけが記憶されるのでない。発振器105a、105b、105cから選択される、1以上の発振器の組み合わせのそれぞれに対応したアルゴリズムが記憶されている。 In this embodiment, only the algorithm for determining the frequency and phase values of each oscillator when all the oscillators 105a, 105b, and 105c are used is not stored. An algorithm corresponding to each of a combination of one or more oscillators selected from the oscillators 105a, 105b, and 105c is stored.
 なお、記憶されたそれぞれのアルゴリズムは、対応する1以上の高周波電力発生ユニットから出力された高周波が、最も被加熱物110へ吸収されるような、周波数および位相を決定するものである。すなわち、反射波が最も少なくなるような周波数および位相を決定するアルゴリズムである。 Each stored algorithm determines the frequency and phase at which the high frequency output from the corresponding one or more high frequency power generation units is absorbed most by the object 110 to be heated. That is, it is an algorithm for determining the frequency and phase at which the reflected wave is minimized.
 以下に、記憶部104に記憶されたアルゴリズムによる具体的な動作について説明する。 Hereinafter, a specific operation by the algorithm stored in the storage unit 104 will be described.
 まず、制御部103は、発振器105a、105b、105cが制御できる周波数帯域を分割した周波数である、f1からfnまで(f1<f2<・・・<fn:nは3以上の自然数)の各周波数に、それぞれの発振器の周波数をスイープさせる。なお、上述された、制御ができる周波数帯域の一例としては、例えば、2.4GHzから2.5GHzまでの周波数帯域が挙げられる。この時に、f1からfnまでの各周波数に対する反射波の反射量Prefi(i=1,・・・n)を、電力検出器107a、107b、107cで観測する。 First, the control unit 103 divides a frequency band that can be controlled by the oscillators 105a, 105b, and 105c, and each frequency from f1 to fn (f1 <f2 <... <Fn: n is a natural number of 3 or more). Next, the frequency of each oscillator is swept. In addition, as an example of the frequency band which can be controlled, the frequency band from 2.4 GHz to 2.5 GHz is mentioned, for example. At this time, the reflection amount Prefi (i = 1,... N) of the reflected wave with respect to each frequency from f1 to fn is observed by the power detectors 107a, 107b, and 107c.
 被加熱物110以外での電力損失がないと仮定すれば、被加熱物110に吸収された電力Pabsi(i=1,・・・n)は、
  Pabsi=Pout-Prefi ・・・・(式1)
で求めることができる。この式により、Pabsiが大きい周波数の時には、反射が少なく、高周波のエネルギーが、被加熱物110に良く吸収され、加熱効率が高いことがわかる。
Assuming that there is no power loss other than the object 110 to be heated, the power Pabsi (i = 1,... N) absorbed by the object 110 to be heated is
Pabsi = Pout−Prefi (formula 1)
Can be obtained. From this equation, it can be seen that when the frequency of Pabsi is large, there is little reflection, and high-frequency energy is well absorbed by the article 110 to be heated, and the heating efficiency is high.
 制御部103は、電力検出器で観測されたPabsiに基づいて、最も加熱効率が高くなる、各発振器の周波数を決定する。そして、決定された周波数となるように、各発振器の周波数を設定する。 The control unit 103 determines the frequency of each oscillator with the highest heating efficiency based on the Pabsi observed by the power detector. And the frequency of each oscillator is set so that it may become the determined frequency.
 次に、位相変換器501aが制御できる位相のオフセット量θaについての処理がされる。オフセット量θaとは、発振器の位相に対する、位相変換器501aで調整する位相の変化量である。つまり、位相のオフセット量θaの所定範囲を分割した、位相のオフセット量θa1からθamまで(θ1<θ2<・・・<θm:mは3以上の自然数)に、位相のオフセット量をスイープさせる。上述の所定範囲は、例えば、0°から360°までの範囲である。 Next, processing is performed for the phase offset amount θa that can be controlled by the phase converter 501a. The offset amount θa is a change amount of the phase adjusted by the phase converter 501a with respect to the phase of the oscillator. That is, the phase offset amount is swept from the phase offset amount θa1 to θam (θ1 <θ2 <... <Θm: m is a natural number of 3 or more) obtained by dividing a predetermined range of the phase offset amount θa. The predetermined range is, for example, a range from 0 ° to 360 °.
 周波数をスイープした場合と同様に、θa1からθamまでの各オフセット量に対する反射波の反射量Prefj(j=1、・・・、m)を、電力検出器107a、107b、107cで観測する。 Similarly to the case where the frequency is swept, the reflection amount Prefj (j = 1,..., M) of the reflected wave with respect to each offset amount from θa1 to θam is observed by the power detectors 107a, 107b, and 107c.
 被加熱物110以外での電力損失がないと仮定すれば、被加熱物110に吸収された電力Pabsj(j=1、・・・、m)は、
  Pabsj=Pout-Prefj ・・・・(式2)
で求めることができる。この式により、Pabsjが大きい位相のオフセット量の時には、反射が少なく、高周波のエネルギーが、被加熱物110に良く吸収され、加熱効率が高いことがわかる。
Assuming that there is no power loss other than the object 110 to be heated, the electric power Pabsj (j = 1,..., M) absorbed by the object 110 to be heated is
Pabsj = Pout−Prefj (Expression 2)
Can be obtained. From this equation, it can be seen that when Pabsj is a large phase offset amount, there is little reflection, and high-frequency energy is well absorbed by the article 110 to be heated, and the heating efficiency is high.
 制御部103は、電力検出器107a、107b、107cで観測されたPabsjに基づいて、最も加熱効率が高くなる、位相変換器501aの位相のオフセット量を決定する。そして、決定された、位相のオフセット量となるように、位相変換器501aの、位相のオフセット量を設定する。 The control unit 103 determines the amount of phase offset of the phase converter 501a with the highest heating efficiency based on the Pabsj observed by the power detectors 107a, 107b, and 107c. Then, the phase offset amount of the phase converter 501a is set so as to be the determined phase offset amount.
 同様に、位相変換器501b、501cについても、順にオフセット量を決定し、各位相変換器501b、501cの、位相のオフセット量を設定する。 Similarly, the offset amounts of the phase converters 501b and 501c are determined in order, and the phase offset amounts of the phase converters 501b and 501c are set.
 ここで、加熱室101内の電磁界分布を制御するためには、必ずしも全ての高周波電力発生ユニットの位相変換器501a、501b、501cのオフセット量を設定する必要はない。加熱室101内の電磁界分布は、各位相変換器501a、501b、501cの相対的な位相差で制御可能である。このため、例えば、制御部103は、位相変換器501aを使用せず、位相変換器501b、501cのみに位相変化量を設定してもよい。 Here, in order to control the electromagnetic field distribution in the heating chamber 101, it is not always necessary to set the offset amounts of the phase converters 501a, 501b, and 501c of all the high-frequency power generation units. The electromagnetic field distribution in the heating chamber 101 can be controlled by the relative phase difference between the phase converters 501a, 501b, and 501c. For this reason, for example, the control unit 103 may set the phase change amount only in the phase converters 501b and 501c without using the phase converter 501a.
 以上の説明は、すべての発振器105a、105b、105cを使用した場合に、各発振器のうちの全ての発振器の周波数を決定するためのアルゴリズムについてである。そして、発振器の全ての組み合わせに対するアルゴリズムも、例えば、制御対象とする発振器の数が異なるだけで、基本的には、上述されたアルゴリズムと同じである。 The above description is about the algorithm for determining the frequencies of all the oscillators among the oscillators when all the oscillators 105a, 105b, and 105c are used. The algorithms for all combinations of oscillators are basically the same as those described above except that the number of oscillators to be controlled is different.
 なお、本実施形態2では、制御部103は、各発振器105a、105b、105cの周波数を設定後に、各位相変換器501a、501b、501cの位相のオフセット量を設定した。一方、設定の順序が前後した、順序が逆の方法が採られてもよい。また、制御部103は、各発振器の周波数と、各位相変換器の位相のオフセット量の設定を繰り返し実施し、設定を微調整してもよい。 In the second embodiment, the control unit 103 sets the phase offset amounts of the phase converters 501a, 501b, and 501c after setting the frequencies of the oscillators 105a, 105b, and 105c. On the other hand, a method in which the order of setting is reversed and the order is reversed may be employed. Further, the control unit 103 may repeatedly perform the setting of the frequency of each oscillator and the offset amount of the phase of each phase converter to finely adjust the setting.
 なお、記憶部104に記憶されたアルゴリズムとしては、上記のような動作をさせるようなアルゴリズムに限らない。つまり、例えば、予め工場出荷前に、発振器のすべての組み合わせに対して、上記のようなアルゴリズムで、各発振器の最適な周波数および位相のオフセット量を求めておいて、その、周波数および位相のオフセット量を記憶しておいてもよい。 It should be noted that the algorithm stored in the storage unit 104 is not limited to an algorithm that causes the above operation. That is, for example, before the factory shipment, the optimal frequency and phase offset amount of each oscillator is obtained for all combinations of the oscillators using the algorithm as described above, and the frequency and phase offsets are obtained. You may remember the amount.
 なお、その他の構成は、例えば、実施形態1と同様である。 Other configurations are the same as those of the first embodiment, for example.
 続いて、本実施形態2の高周波加熱装置500における、被加熱物110を加熱するためのアルゴリズムを選択する動作を説明する。 Subsequently, an operation of selecting an algorithm for heating the article to be heated 110 in the high-frequency heating device 500 of the second embodiment will be described.
 図6は、実施形態2の高周波加熱装置500における、被加熱物110を加熱するためのアルゴリズムを選択する処理のフローチャートである。 FIG. 6 is a flowchart of processing for selecting an algorithm for heating the object to be heated 110 in the high-frequency heating device 500 of the second embodiment.
 停止判定器109は、高周波電力発生ユニット102a、102b、102cの一部が停止したことを判定する(ステップS301)。高周波電力発生ユニット102a、102b、102cのうちの少なくとも1つが停止したと判定された場合、停止判定器109は、次の出力をする。つまり、何れの高周波電力発生ユニット102a、102b、102cからの、加熱室101への高周波の出力が停止したかを示す情報を、制御部103へ出力する(ステップS302)。 The stop determination unit 109 determines that a part of the high-frequency power generation units 102a, 102b, and 102c has stopped (step S301). When it is determined that at least one of the high-frequency power generation units 102a, 102b, and 102c has stopped, the stop determination unit 109 outputs the following. That is, information indicating which high-frequency power generation unit 102a, 102b, 102c has stopped outputting high-frequency power to the heating chamber 101 is output to the control unit 103 (step S302).
 制御部103は、高周波の出力が停止していない1つ以上の高周波電力発生ユニットを特定する。つまり、それらの1つ以上の高周波電力発生ユニットから選択可能な高周波電力発生ユニットの組み合わせがある。制御部103は、それぞれの組み合わせに対応するアルゴリズムを、記憶部104から特定する(ステップS303)。制御部103は、記憶部104から特定したアルゴリズムを順に実行し、加熱効率が最もよくなる高周波電力発生ユニットの組み合わせと、その最もよくなるときの各高周波電力発生ユニットの周波数と位相とを決定する(ステップS304)。制御部103は、決定した組み合わせに含まれる各高周波電力発生ユニットにおける発振器へ、決定した周波数を出力し、位相変換器へ、位相のオフセット量を出力する(ステップS505)。 The control unit 103 identifies one or more high-frequency power generation units whose high-frequency output is not stopped. That is, there is a combination of high frequency power generation units that can be selected from one or more of these high frequency power generation units. The control unit 103 identifies an algorithm corresponding to each combination from the storage unit 104 (step S303). The control unit 103 sequentially executes the algorithms specified from the storage unit 104 to determine the combination of the high-frequency power generation units with the best heating efficiency and the frequency and phase of each high-frequency power generation unit at the best (Step). S304). The control unit 103 outputs the determined frequency to the oscillator in each high-frequency power generation unit included in the determined combination, and outputs the phase offset amount to the phase converter (step S505).
 決定した組み合わせに含まれる高周波電力発生ユニットにおける発振器と位相変換器とについて、次の動作がされる。つまり、その発振器の周波数と、その位相変換器の、位相のオフセット量とは、それぞれ、制御部103から出力された周波数と、位相のオフセット量とに設定される(ステップS506)。この設定された周波数と位相で、高周波電力発生ユニットは、高周波を発振して、加熱室101内の被加熱物110を再び加熱する。 The following operations are performed for the oscillator and the phase converter in the high frequency power generation unit included in the determined combination. That is, the frequency of the oscillator and the phase offset amount of the phase converter are set to the frequency output from the control unit 103 and the phase offset amount, respectively (step S506). The high frequency power generation unit oscillates a high frequency at the set frequency and phase, and heats the object 110 to be heated in the heating chamber 101 again.
 以上のような実施形態2の構成およびフローチャートによって、本実施形態の高周波加熱装置500は、以下の効果を得ることができる。 By the configuration and flowchart of the second embodiment as described above, the high-frequency heating device 500 of the present embodiment can obtain the following effects.
 高周波電力発生ユニット102a、102b、102cの少なくとも1つが停止し、停止していない残りの高周波電力発生ユニットで加熱する場合、全ての高周波電力発生ユニットを使用して加熱する場合と比較して、加熱室101内のマイクロ波分布が変化する。そのため、加熱効率が最適になる高周波の周波数と位相のオフセット量とが、全てで加熱される場合とは異なる。このため、高い加熱効率を維持して加熱を継続させるためには、再度、アルゴリズムに従って、高周波の周波数と位相のオフセット量とを設定する必要がある。 When at least one of the high-frequency power generation units 102a, 102b, 102c is stopped and heating is performed with the remaining high-frequency power generation units that are not stopped, heating is performed as compared with the case where heating is performed using all the high-frequency power generation units. The microwave distribution in the chamber 101 changes. For this reason, the frequency of the high frequency and the phase offset amount at which the heating efficiency is optimum are different from those in the case where the heating is performed entirely. For this reason, in order to maintain high heating efficiency and continue heating, it is necessary to set the frequency of the high frequency and the amount of phase offset again according to the algorithm.
 そこで、本実施形態の高周波加熱装置500は、高周波電力発生ユニット102a、102b、102cが停止することを見越して、次の記憶をしている。つまり、1つ以上の高周波電力発生ユニットを使って効率良く加熱ができる周波数と位相とを決定するためのアルゴリズムを、予め記憶部104に記憶している。 Therefore, the high-frequency heating device 500 of the present embodiment stores the following in anticipation that the high-frequency power generation units 102a, 102b, and 102c are stopped. That is, an algorithm for determining a frequency and a phase that can be efficiently heated using one or more high-frequency power generation units is stored in the storage unit 104 in advance.
 また、高周波電力発生ユニット102a、102b、102cの少なくとも1つが停止した場合に、次の選択をする。つまり、制御部103は、残りの、停止していない高周波電力発生ユニットの全て、または、一部を用いて、最適加熱条件となる周波数と位相の値を決定するためのアルゴリズムを1つ以上、記憶部104から選択する。そして、それらの1つ以上のアルゴリズムを実行することにより、加熱に用いる高周波電力発生ユニットの組み合わせ、および各発振器の周波数と位相変換器の位相のオフセット量とを決定する。 Also, when at least one of the high-frequency power generation units 102a, 102b, 102c is stopped, the next selection is made. That is, the control unit 103 uses one or more algorithms for determining the frequency and phase values that are the optimum heating conditions using all or a part of the remaining high-frequency power generation units that are not stopped, Select from storage unit 104. Then, by executing one or more algorithms, the combination of the high-frequency power generation units used for heating and the frequency of each oscillator and the phase offset amount of the phase converter are determined.
 そして、実施形態1と比較して、本実施形態2の構成では、高周波電力発生ユニットの発振器の周波数と、位相変換器の位相のオフセット量との両方を制御する点が異なる。これにより、加熱室101内の電界分布をより細かく制御でき、被加熱物110への加熱効率は、より高くなる。したがって、一部の高周波電力発生ユニットが停止した場合でも、実施形態1と比較して、加熱効率を、より高い効率に向上することができる。 And compared with Embodiment 1, the configuration of Embodiment 2 is different in that both the frequency of the oscillator of the high-frequency power generation unit and the phase offset amount of the phase converter are controlled. Thereby, the electric field distribution in the heating chamber 101 can be controlled more finely, and the heating efficiency to the article to be heated 110 becomes higher. Therefore, even when some high-frequency power generation units are stopped, the heating efficiency can be improved to a higher efficiency as compared with the first embodiment.
 なお、制御部103が、停止していないすべての高周波電力発生ユニットを使用して、加熱をさせるのではない、次のような場合があることは、実施形態1と同様である。つまり、停止していない高周波電力発生ユニットの一部のみの高周波の周波数と位相とを制御するアルゴリズムを記憶部104から選択する場合がある。 In addition, it is the same as in the first embodiment that the control unit 103 does not use all high-frequency power generation units that are not stopped to cause heating. That is, an algorithm for controlling the frequency and phase of only a part of the high-frequency power generation unit that is not stopped may be selected from the storage unit 104.
 また、本実施形態では、周波数と位相とを制御したが、周波数を固定した発振器を用いて、位相変換器501a、501b、501cの位相のみを制御してもよい。 In this embodiment, the frequency and the phase are controlled. However, only the phase of the phase converters 501a, 501b, and 501c may be controlled using an oscillator with a fixed frequency.
 さらに、記憶部104に記憶されたアルゴリズムの具体的な内容は、次の点以外については、実施形態1と同様である。つまり、高周波の周波数に加えて、位相もスイープさせて、高周波の反射量を測定して、被加熱物110へ吸収された電力を計算して求める点以外は同様である。 Furthermore, the specific contents of the algorithm stored in the storage unit 104 are the same as those in the first embodiment except for the following points. That is, the same applies except that the phase is swept in addition to the high frequency, the amount of high frequency reflection is measured, and the power absorbed by the object to be heated 110 is calculated.
 すなわち、記憶部104には、複数(1以上)の高周波電力発生ユニットから選択可能な、高周波電力発生ユニットの組み合わせのそれぞれに対応して、アルゴリズムが記憶されている。つまり、被加熱物110へ最も大きなエネルギーが吸収される、周波数と位相のオフセット量、すなわち、反射波が最も少なくなる、周波数と位相のオフセット量とを決定するためのアルゴリズムが、記憶部104に記憶されている。 That is, the storage unit 104 stores an algorithm corresponding to each combination of high-frequency power generation units that can be selected from a plurality (one or more) of high-frequency power generation units. That is, an algorithm for determining the frequency and phase offset amount that absorbs the largest energy to the object 110 to be heated, that is, the frequency and phase offset amount that minimizes the reflected wave, is stored in the storage unit 104. It is remembered.
 なお、実施形態2では、記憶部104に記憶されたアルゴリズムに従い、高周波加熱装置500に備え付けられた電力検出器107a、107b、107cを用いて計算をした。しかしながら、工場出荷前に、予め、発振器の全ての組み合わせに対して、上記のようなアルゴリズムで、各発振器の最適な周波数と、各位相変換器の、位相のオフセット量とを求めておいてもよい。求められたその最適な、周波数と、位相のオフセット量とを記憶部に記憶104しておく。この場合には、高周波加熱装置500において、電力検出器107a、107b、107cは、必ずしも必須の構成ではない。 In the second embodiment, the calculation is performed using the power detectors 107a, 107b, and 107c provided in the high-frequency heating device 500 in accordance with the algorithm stored in the storage unit 104. However, before shipping to the factory, the optimal frequency of each oscillator and the phase offset amount of each phase converter can be obtained in advance for all combinations of oscillators using the above algorithm. Good. The obtained optimum frequency and phase offset amount are stored 104 in the storage unit. In this case, in the high-frequency heating device 500, the power detectors 107a, 107b, and 107c are not necessarily essential components.
 次に、シミュレーション結果を用いて、本願発明の効果を説明する。 Next, the effects of the present invention will be described using simulation results.
 図8Aは、加熱室の底面を上方から見た図であり、シミュレーション条件を示している図である。 FIG. 8A is a view of the bottom surface of the heating chamber as viewed from above, and shows the simulation conditions.
 図8Aに示すように、幅410mm、奥行き314mm、高さ230mmの大きさで構成した加熱室の底面801に、4個の平面アンテナ801a、801b、801c、801dを配置している。平面アンテナ801a、801b、801c、801dが配置された4つの位置は、加熱室の底面801の中心から等間隔になるようにされた、一辺120mmの正方形の4つの頂点の位置である。また、被加熱物として、285gの水負荷を想定し、この被加熱物に対する加熱効率を計算した。 As shown in FIG. 8A, four planar antennas 801a, 801b, 801c, and 801d are arranged on the bottom surface 801 of the heating chamber having a width of 410 mm, a depth of 314 mm, and a height of 230 mm. The four positions at which the planar antennas 801a, 801b, 801c, and 801d are arranged are the positions of four vertices of a square having a side of 120 mm that are equally spaced from the center of the bottom surface 801 of the heating chamber. In addition, assuming a water load of 285 g as an object to be heated, the heating efficiency for the object to be heated was calculated.
 図8Bは、4個すべての高周波電力発生ユニット(高周波電力発生ユニット102a~102d:図8A参照)を使用した場合と、3個または2個の高周波電力発生ユニットを使用した場合とでの加熱効率を計算した結果の第1の部分を示す図である。 FIG. 8B shows the heating efficiency when all four high-frequency power generation units (high-frequency power generation units 102a to 102d: see FIG. 8A) are used and when three or two high-frequency power generation units are used. It is a figure which shows the 1st part of the result of having calculated.
 図8Cは、その結果の第2の部分を示す図である。 FIG. 8C is a diagram showing a second part of the result.
 つまり、各アルゴリズムにより決定された、加熱効率が最も良くなる周波数、または、周波数および位相のオフセット量を設定した時の加熱効率を示している。 That is, it shows the heating efficiency when the frequency or the offset amount of the frequency and phase determined by each algorithm is set to the best heating efficiency.
 図8Bの(0-1)は、周波数のみを最適化するアルゴリズムを使用して、4個すべての高周波電力発生ユニットの周波数を制御した場合を表している。(0-2)は、周波数と位相のオフセット量を最適化するアルゴリズムを使用して、4個すべての高周波電力発生ユニットの周波数と位相のオフセット量とを制御した場合を表している。周波数のみの最適化では、加熱効率が78.4%であるのに対し、周波数と位相のオフセット量の両方を最適化することによって、加熱効率を、94.98%まで向上させることができる。つまり、これらは、周波数のみの制御よりも、周波数と位相のオフセット量との両方を制御することで、より加熱効率が高くなることを表している。 (0-1) in FIG. 8B represents a case where the frequencies of all four high-frequency power generation units are controlled using an algorithm that optimizes only the frequency. (0-2) represents a case where the frequency and phase offset amounts of all four high-frequency power generation units are controlled using an algorithm that optimizes the frequency and phase offset amounts. In the optimization of only the frequency, the heating efficiency is 78.4%, whereas the heating efficiency can be improved to 94.98% by optimizing both the frequency and the phase offset amount. That is, these represent that heating efficiency is higher by controlling both the frequency and the phase offset amount than by controlling only the frequency.
 図8Bの(1a-1)~(1d-3)は、高周波電力発生ユニットのうちの1個を停止させた場合の加熱効率を計算した結果である。 (1a-1) to (1d-3) in FIG. 8B are the results of calculating the heating efficiency when one of the high-frequency power generation units is stopped.
 (1a-1)~(1a-3)は、アンテナ802dでの、高周波の放射を停止させた場合について示す。 (1a-1) to (1a-3) show a case where high-frequency radiation at the antenna 802d is stopped.
 (1a-1)は、4個すべての高周波電力発生ユニットを使用し、周波数と位相のオフセット量とを最適化した、上述の(0-2)の、周波数と位相のオフセット量とをそのまま適用して、アンテナ(平面アンテナ)801a、801b、801cから、高周波を放射した場合の加熱効率を示している。この加熱効率は、(0-2)で示される通り、71.25%であり、4個のアンテナを使用して高周波を放射した、上述の(0-2)での加熱効率94.98%と比べ、大幅に低下している。つまり、低下した低下幅は、94.98-71.25=23.73%である。 (1a-1) uses all four high-frequency power generation units and optimizes the frequency and phase offset amounts, and applies the frequency and phase offset amounts as described above (0-2). And the heating efficiency at the time of radiating a high frequency from antenna (planar antenna) 801a, 801b, 801c is shown. This heating efficiency is 71.25% as indicated by (0-2), and the high efficiency was radiated using four antennas, and the heating efficiency in the above (0-2) was 94.98%. Compared to In other words, the decreased width is 94.98-71.25 = 23.73%.
 (1a-2)は、アンテナ802dの高周波の放射を停止させた状態で、4個の高周波電力発生ユニットの電力検出部のデータを使用して、再度、周波数と位相のオフセット量とを最適化した時の加熱効率を示している。この加熱効率は、76.36%である。この(1a-2)では、(1a-1)での加熱効率71.25%と比較して、加熱効率が改善しているが、(0-2)の加熱効率94.98%と比較すると、かなり低い。 (1a-2) optimizes the frequency and phase offset amount again using the data of the power detectors of the four high-frequency power generation units in a state where the high-frequency radiation of the antenna 802d is stopped. The heating efficiency is shown. This heating efficiency is 76.36%. In this (1a-2), the heating efficiency is improved as compared with the heating efficiency of 71.25% in (1a-1), but compared with the heating efficiency of 94.98% in (0-2). Is quite low.
 (1a-3)は、停止している高周波電力発生ユニットのアンテナ802dを、加熱室の壁面と短絡させるなどした(例えば、図12の短絡制御部103Qがショートさせてもよい)場合の加熱効率を示している。その場合には、停止している高周波電力発生ユニットの電力検出器のデータを使用せず、残りの3個の高周波電力発生ユニットの電力検出器のデータのみを使用して、周波数と位相のオフセット量とを最適化する。この加熱効率は、93.29%である。(1a-3)におけるこの加熱効率93.29%は、先述の(0-2)の加熱効率94.98%とほぼ同等である。 (1a-3) is a heating efficiency when the antenna 802d of the stopped high-frequency power generation unit is short-circuited to the wall surface of the heating chamber (for example, the short-circuit control unit 103Q in FIG. 12 may be short-circuited). Is shown. In that case, the frequency and phase offsets are used by using only the power detector data of the remaining three high-frequency power generation units without using the power detector data of the stopped high-frequency power generation units. Optimize the amount. This heating efficiency is 93.29%. This heating efficiency of 93.29% in (1a-3) is substantially equivalent to the heating efficiency of 94.98% in (0-2) described above.
 同様に、アンテナ802cに接続している高周波電力発生ユニットが停止した場合の結果を、(1b-1)~(1b-3)に示している。また、アンテナ802bに接続している高周波電力発生ユニットを停止した場合の結果を、(1c-1)~(1c-3)に示している。また、アンテナ802aに接続している高周波電力発生ユニットを停止した場合の結果を、(1d-1)~(1d-3)に示している。 Similarly, the results when the high-frequency power generation unit connected to the antenna 802c is stopped are shown in (1b-1) to (1b-3). The results when the high-frequency power generation unit connected to the antenna 802b is stopped are shown in (1c-1) to (1c-3). The results when the high-frequency power generation unit connected to the antenna 802a is stopped are shown in (1d-1) to (1d-3).
 これらの結果も、上述した、(1a-1)~(1a-3)の結果と同様に、停止している高周波電力発生ユニットのアンテナを、加熱室の壁面と短絡させるなどして、(0-2)に近い加熱効率が実現できている。つまり、停止している高周波電力発生ユニットの電力検出器のデータを使用せず、残りの3個の高周波電力発生ユニットの電力検出器のデータのみを使用して、周波数と位相のオフセット量とを最適化する。このことで、近い加熱効率が実現できている((1b-3)での91.42%、(1c-3)での96.24%、(1d-3)での89.02%を参照)。 These results are also similar to the results of (1a-1) to (1a-3) described above by short-circuiting the antenna of the stopped high-frequency power generation unit with the wall surface of the heating chamber (0 Heating efficiency close to -2) has been achieved. That is, the frequency and phase offset amounts are calculated using only the data of the power detectors of the remaining three high frequency power generation units without using the data of the power detectors of the stopped high frequency power generation units. Optimize. This allows near heating efficiency to be achieved (see 91.42% for (1b-3), 96.24% for (1c-3), 89.02% for (1d-3)). ).
 図8Cは、各高周波電力発生ユニットのうちの2個を停止させた場合の加熱効率を計算した結果を示す図である。 FIG. 8C is a diagram showing a result of calculating the heating efficiency when two of the high-frequency power generation units are stopped.
 (2a-1)~(2a-3)は、アンテナ802c、802dの高周波の放射を停止させた場合である。 (2a-1) to (2a-3) are cases in which high-frequency radiation of the antennas 802c and 802d is stopped.
 (2a-1)は、4個すべての高周波電力発生ユニットを使用し、周波数と位相のオフセット量とを最適化した(0-2)の、周波数と位相のオフセット量とをそのまま適用して、アンテナ801a、801bから高周波を放射した場合の加熱効率である。この加熱効率は、48.16%で、4個のアンテナを使用して、高周波を放射した(0-2)での加熱効率94.98%と比べ、大幅に低下している。つまり、この低下での低下幅は、94.98-48.16=46.82%である。 (2a-1) uses all four high-frequency power generation units and optimizes the frequency and phase offset amount (0-2), and directly applies the frequency and phase offset amount, This is the heating efficiency when high-frequency waves are radiated from the antennas 801a and 801b. This heating efficiency is 48.16%, which is significantly lower than the heating efficiency of 94.98% in (0-2) that radiated high frequency using four antennas. In other words, the width of the decrease is 94.98−48.16 = 46.82%.
 (2a-2)は、アンテナ802c、802dの高周波の放射を停止させた状態で、4個の高周波電力発生ユニットの電力検出部のデータを使用して、再度、周波数と位相のオフセット量とを最適化した時の加熱効率を示す。この加熱効率は、56.04%である。上述された(2a-1)での加熱効率48.16%と比較して、加熱効率が改善しているが、先述の(0-2)の加熱効率94.98%と比較すると、かなり低い。 (2a-2) uses the data of the power detection units of the four high-frequency power generation units in a state where the high-frequency radiation of the antennas 802c and 802d is stopped, and again sets the frequency and phase offset amount. Shows the heating efficiency when optimized. This heating efficiency is 56.04%. Although the heating efficiency is improved as compared with the heating efficiency of 48.16% in (2a-1) described above, it is considerably lower than the heating efficiency of 94.98% in (0-2) described above. .
 (2a-3)は、停止している高周波電力発生ユニットのアンテナ802c、802dを、加熱室の壁面と短絡させるなどし、停止している高周波電力発生ユニットの電力検出器のデータを使用せず、残りの2個の高周波電力発生ユニットの電力検出器のデータのみを使用して、周波数と位相のオフセット量とを最適化した場合の加熱効率を示している。この加熱効率は、89.99%である。(2a-3)におけるこの加熱効率89.99%は、(2a-1)、(2a-2)での加熱効率48.16%、56.04%に比べ大幅に改善している。 (2a-3) does not use the data of the power detector of the stopped high-frequency power generation unit, such as by short-circuiting the antennas 802c and 802d of the stopped high-frequency power generation unit with the wall surface of the heating chamber. The heating efficiency when the frequency and the phase offset amount are optimized using only the data of the power detectors of the remaining two high-frequency power generation units is shown. This heating efficiency is 89.99%. This heating efficiency of 89.99% in (2a-3) is significantly improved compared to the heating efficiency of 48.16% and 56.04% in (2a-1) and (2a-2).
 同様に、アンテナ802b、802cに接続している高周波電力発生ユニットが停止した場合の結果を、(2b-1)~(2b-3)に示している。また、アンテナ802a、802bに接続している高周波電力発生ユニットが停止した場合の結果を、(2c-1)~(2c-3)に示している。また、アンテナ802a、802dに接続している高周波電力発生ユニットが停止した場合の結果を、(2d-1)~(2d-3)に示している。また、アンテナ802b、802dに接続している高周波電力発生ユニットが停止した場合の結果を、(2e-1)~(2e-3)に示している。また、アンテナ802a、802cに接続している高周波電力発生ユニットが停止した場合の結果を、(2f-1)~(2f-3)に示している。 Similarly, the results when the high-frequency power generation units connected to the antennas 802b and 802c are stopped are shown in (2b-1) to (2b-3). Also, the results when the high-frequency power generation units connected to the antennas 802a and 802b are stopped are shown in (2c-1) to (2c-3). In addition, the results when the high-frequency power generation units connected to the antennas 802a and 802d are stopped are shown in (2d-1) to (2d-3). In addition, the results when the high-frequency power generation units connected to the antennas 802b and 802d are stopped are shown in (2e-1) to (2e-3). In addition, the results when the high-frequency power generation units connected to the antennas 802a and 802c are stopped are shown in (2f-1) to (2f-3).
 これらの結果も、(2a-1)~(2a-3)の結果と同様に、停止している高周波電力発生ユニットのアンテナを、加熱室の壁面と短絡させるなどし、停止している高周波電力発生ユニットの電力検出器のデータを使用せず、残りの2個の高周波電力発生ユニットの電力検出器のデータのみを使用して周波数と位相のオフセット量を最適化することで、高い加熱効率が実現できている。 These results are also the same as the results of (2a-1) to (2a-3), such as by short-circuiting the antenna of the stopped high-frequency power generation unit with the wall surface of the heating chamber, etc. By using only the power detector data of the remaining two high frequency power generation units without using the power detector data of the generation unit, the frequency and phase offset amount is optimized, thereby increasing the heating efficiency. It has been realized.
 このように、高周波電力発生ユニットの組み合わせのそれぞれに対応したアルゴリズムが予め用意される。つまり、4個全ての高周波電力発生ユニットの電力検出器のデータを使用してでの最適な加熱条件を決定するアルゴリズムが用意されるだけでなく、1個または複数の高周波電力発生ユニットを停止させて、残りの高周波電力発生ユニットの電力検出器のデータを使用してでの最適な加熱条件(周波数と位相の値)を決定するアルゴリズムが用意される。これにより、状況に応じてアルゴリズムを切り替えて使用することにより、高い加熱効率を維持することができる。 Thus, algorithms corresponding to each combination of high-frequency power generation units are prepared in advance. In other words, not only an algorithm for determining the optimum heating condition using the power detector data of all four high-frequency power generation units is prepared, but also one or more high-frequency power generation units are stopped. Thus, an algorithm for determining optimum heating conditions (frequency and phase values) using the power detector data of the remaining high-frequency power generation units is prepared. Thereby, high heating efficiency is maintainable by switching and using an algorithm according to a condition.
 さらに、次の各加熱効率がある。つまり、(1c―3)のように、アンテナ802bに接続している高周波電力発生ユニットを停止させて、残りの高周波電力発生ユニットの周波数と位相のオフセット量とを調整した時の加熱効率(96.24%)がある。また、(2f-3)のように、アンテナ802a、802cに接続している高周波電力発生ユニットを停止させて、残りの高周波電力発生ユニットの周波数と位相のオフセット量とを調整したときの加熱効率(96.36%)がある。これらの各熱効率は、それぞれ、4個すべての高周波電力発生ユニットの周波数と位相のオフセット量とを調整した(0-2)の加熱効率(94.98%)よりも高くなっている。 Furthermore, there are the following heating efficiencies. That is, as in (1c-3), when the high frequency power generation unit connected to the antenna 802b is stopped and the frequency and phase offset amount of the remaining high frequency power generation units are adjusted, the heating efficiency (96 24%). Further, as in (2f-3), the heating efficiency when the high-frequency power generation units connected to the antennas 802a and 802c are stopped and the frequency and phase offset amount of the remaining high-frequency power generation units are adjusted. (96.36%). Each of these thermal efficiencies is higher than the heating efficiency (94.98%) of (0-2) obtained by adjusting the frequency and phase offset amount of all four high-frequency power generation units.
 つまり、この点などに鑑みれば、次の動作をすることが考えられる。つまり、長期間の使用が原因で、高周波電力発生ユニットが劣化した場合以外の他の場合(劣化してない場合)にも、1個または複数の高周波電力発生ユニットを、積極的に停止させ、より高い加熱効率で、加熱することもできる。このような、積極的な停止をさせる実施形態を次に説明する。 That is, in view of this point, it is possible to perform the following operation. In other words, in cases other than when the high frequency power generation unit has deteriorated due to long-term use (when it has not deteriorated), one or more high frequency power generation units are actively stopped, Heating can be performed with higher heating efficiency. Next, an embodiment that makes such a positive stop will be described.
 (実施形態3)
 本実施形態3では、実施形態1と比較して、ユーザが、加熱電力を指定できる入力部(図7の入力部701)がある点で異なる。以下、本発明の実施形態3における高周波加熱装置700について、図面を参照して説明する。なお、実施形態1と共通する部分は、同一符号を記して、詳しい説明を省略する。
(Embodiment 3)
The third embodiment is different from the first embodiment in that there is an input unit (input unit 701 in FIG. 7) that allows the user to specify the heating power. Hereinafter, the high-frequency heating device 700 according to Embodiment 3 of the present invention will be described with reference to the drawings. In addition, the part which is common in Embodiment 1 describes the same code | symbol, and abbreviate | omits detailed description.
 図7は、本実施形態における高周波加熱装置700のブロック図である。 FIG. 7 is a block diagram of the high-frequency heating apparatus 700 in the present embodiment.
 実施形態3は、実施形態1と比較して、ユーザ701uが加熱電力を指定できる入力部701を更に備える。入力部701は、制御部103に接続されている。入力部701には、ユーザが、被加熱物110を加熱する電力(情報701Iを参照)を指定できるようになっている。例えば、500W、750W、1000W等を、ユーザが指定できる。 Embodiment 3 further includes an input unit 701 that allows the user 701u to specify heating power, as compared with Embodiment 1. The input unit 701 is connected to the control unit 103. In the input unit 701, the user can designate the power (see information 701I) for heating the article 110 to be heated. For example, the user can specify 500 W, 750 W, 1000 W, and the like.
 ユーザ701uが、入力部701から、加熱する電力を指定すると、指定された電力を示す電力情報(図10第1列参照)は、制御部103へ出力される。 When the user 701u designates the power to be heated from the input unit 701, the power information indicating the designated power (see the first column in FIG. 10) is output to the control unit 103.
 制御部103は、ユーザ701uが指定した電力を満たすために、高周波電力発生ユニット102a、102b、102cから、使用する高周波電力発生ユニットの個数を決定する(図10第3列、図11のS51参照)。制御部103は、決定した高周波電力発生ユニットの個数(例えば2個)を使って加熱するためのアルゴリズムを、記憶部104から特定する。制御部103は、特定したアルゴリズムを順に実行し、最も加熱効率が良くなる高周波電力発生ユニットの組み合わせ、および各高周波電力発生ユニットの周波数を決定する(第2、第3列、S52a、S52b参照)。 The control unit 103 determines the number of high-frequency power generation units to be used from the high-frequency power generation units 102a, 102b, and 102c in order to satisfy the power specified by the user 701u (see the third column in FIG. 10, S51 in FIG. 11). ). The control unit 103 specifies an algorithm for heating using the determined number (for example, two) of high-frequency power generation units from the storage unit 104. The control unit 103 sequentially executes the specified algorithm, and determines the combination of the high-frequency power generation units with the highest heating efficiency and the frequency of each high-frequency power generation unit (see the second and third columns, S52a and S52b). .
 そして、加熱に使用すると判断した高周波電力発生ユニット(例えば、高周波電力発生ユニット102a、102b)の発振器へは、決定した周波数を出力する。また、加熱に使用しないと判断した高周波電力発生ユニット(例えば、高周波電力発生ユニット102c)の発振器へは、発振を停止する情報を出力する。 Then, the determined frequency is output to the oscillator of the high-frequency power generation unit (for example, the high-frequency power generation units 102a and 102b) determined to be used for heating. Further, information for stopping the oscillation is output to the oscillator of the high-frequency power generation unit (for example, the high-frequency power generation unit 102c) that is determined not to be used for heating.
 以上のように、本実施形態3では、ユーザが、加熱に使用する電力を、適宜選択できる入力部701を有し、ユーザが指定した電力に従って、適した個数の高周波電力発生ユニットを決定し、個数に対応したアルゴリズムを選択する。選択したアルゴリズムに従って、最も加熱効率が良くなる、高周波電力発生ユニットの組み合わせ、および各高周波電力発生ユニットの周波数を決定する。高周波電力発生ユニットの一部からの、加熱室101への高周波の出力を停止させて、停止させなかった高周波電力発生ユニットには、決定した周波数を出力する。 As described above, in the third embodiment, the user has the input unit 701 that can appropriately select the power used for heating, and determines a suitable number of high-frequency power generation units according to the power specified by the user. Select the algorithm corresponding to the number. According to the selected algorithm, the combination of the high-frequency power generation units and the frequency of each high-frequency power generation unit that provides the best heating efficiency are determined. The high frequency output to the heating chamber 101 from a part of the high frequency power generation unit is stopped, and the determined frequency is output to the high frequency power generation unit that is not stopped.
 これらの構成によって、ユーザが指定した電力においても、加熱効率も最大化できる。 These configurations can maximize the heating efficiency even at the power specified by the user.
 なお、実施形態3では、制御部103が、発振器105a、105b、105cの周波数のみを規定したが、実施形態2のように、位相変換器501a、501b、501cを更に備えて、周波数と位相のオフセット量との両方を制御しても良い。また、実施形態2の変形例にもあるように、周波数を固定した発振器を用いて、位相変換器501a、501b、501cの位相のオフセット量のみを制御してもよい。 In the third embodiment, the control unit 103 defines only the frequencies of the oscillators 105a, 105b, and 105c. However, as in the second embodiment, the control unit 103 further includes phase converters 501a, 501b, and 501c, and has the frequency and phase. Both the offset amount and the offset amount may be controlled. Further, as in the modification of the second embodiment, only the phase offset amount of the phase converters 501a, 501b, and 501c may be controlled using an oscillator with a fixed frequency.
 なお、例えば、上述のように、高周波電力発生ユニットの個数が決定されてもよい。そして、決定される個数は、例えば、指定された電力が、より大きい電力であるほど、より多い個数でもよい。 Note that, for example, the number of high-frequency power generation units may be determined as described above. The determined number may be, for example, a larger number as the specified power is larger.
 (実施形態4)
 本実施形態4では、実施形態1と比較して、ユーザが、省エネモードを選択できる入力部がある点で異なる。
(Embodiment 4)
The fourth embodiment is different from the first embodiment in that there is an input unit that allows the user to select an energy saving mode.
 例えば、本発明の実施形態4でのブロック図は、図7に示す、実施形態3でのブロック図と同じである。但し、入力部701には、ユーザ701u(図7)が、被加熱物110を加熱するモードを指定できるようになっている。例えば、最も加熱効率が高い加熱モード(省エネモード)等をユーザが指定できる。ユーザが、入力部701から、省エネモードを指定すると、指定されたモードを示す情報(図7の情報701Iを参照)は、制御部103へ出力される。 For example, the block diagram in the fourth embodiment of the present invention is the same as the block diagram in the third embodiment shown in FIG. However, the user 701 u (FIG. 7) can specify a mode for heating the article to be heated 110 in the input unit 701. For example, the user can designate a heating mode (energy saving mode) having the highest heating efficiency. When the user designates the energy saving mode from the input unit 701, information indicating the designated mode (see information 701I in FIG. 7) is output to the control unit 103.
 制御部103は、全ての高周波電力発生ユニットから選択可能な高周波電力発生ユニットの組み合わせのそれぞれに対応するアルゴリズムを、記憶部104から呼び出す。制御部103は、呼び出したアルゴリズムを順に実行し、最も加熱効率が良くなる高周波電力発生ユニットの組み合わせ、および各高周波電力発生ユニットの周波数を決定する。そして、加熱に使用すると判断した高周波電力発生ユニット(例えば、高周波電力発生ユニット102a、102b)の発振器へは、決定した周波数を出力する。一方、加熱に使用しないと判断した高周波電力発生ユニット(例えば、高周波電力発生ユニット102c)の発振器へは、発振を停止する情報を出力する。 The control unit 103 calls, from the storage unit 104, an algorithm corresponding to each combination of high-frequency power generation units that can be selected from all high-frequency power generation units. The control unit 103 sequentially executes the called algorithms, and determines the combination of the high-frequency power generation units with the highest heating efficiency and the frequency of each high-frequency power generation unit. And the determined frequency is output to the oscillator of the high frequency electric power generation unit (for example, high frequency electric power generation unit 102a, 102b) judged to be used for heating. On the other hand, information for stopping the oscillation is output to the oscillator of the high-frequency power generation unit (for example, the high-frequency power generation unit 102c) that is determined not to be used for heating.
 以上のように、本実施形態4では、ユーザが、加熱モードを選択できる入力部701を有し、ユーザが指定したモードに従って、選択可能な組み合わせに対応するアルゴリズムを順に実行し、最も加熱効率が良くなる、高周波電力発生ユニットの組み合わせ、および各高周波電力発生ユニットの周波数を決定する。そして、選択したアルゴリズムに従って、高周波電力発生ユニットの一部からの、加熱室101への高周波の出力を停止させて、停止させなかった高周波電力発生ユニットには、加熱効率が高くなる周波数を出力する。これらの構成によって、加熱効率を最大化できる。 As described above, in the fourth embodiment, the user has the input unit 701 that can select the heating mode, and according to the mode specified by the user, the algorithms corresponding to the selectable combinations are sequentially executed, and the heating efficiency is the highest. The combination of the high frequency power generation units to be improved and the frequency of each high frequency power generation unit are determined. And according to the selected algorithm, the output of the high frequency to the heating chamber 101 from a part of the high frequency power generation unit is stopped, and the frequency at which the heating efficiency is increased is output to the high frequency power generation unit that is not stopped. . With these configurations, the heating efficiency can be maximized.
 なお、実施形態4では、制御部103が、発振器105a、105b、105cの周波数のみを規定したが、実施形態2のように、位相変換器501a、501b、501cを更に備えて、周波数と位相のオフセット量との両方を制御しても良い。また、実施形態2の変形例にもあるように、周波数を固定した発振器を用いて、位相変換器501a、501b、501cの位相のオフセット量のみを制御してもよい。 In the fourth embodiment, the control unit 103 defines only the frequencies of the oscillators 105a, 105b, and 105c. However, as in the second embodiment, the control unit 103 further includes phase converters 501a, 501b, and 501c, and has the frequency and phase. Both the offset amount and the offset amount may be controlled. Further, as in the modification of the second embodiment, only the phase offset amount of the phase converters 501a, 501b, and 501c may be controlled using an oscillator with a fixed frequency.
 また、本実施形態の変形例として、ユーザが、入力部701から、加熱時間を指定することも可能である。 Also, as a modification of the present embodiment, the user can specify the heating time from the input unit 701.
 この場合には、高周波電力発生ユニットの各組み合わせに対応するアルゴリズムを順に実行し、各組み合わせにおける最も高い加熱効率と加熱電力とから逆算して、指定した時間で、加熱処理が完了するように、高周波電力発生ユニットの組み合わせ、および各高周波電力発生ユニットの周波数を決定する。なお、その際には、被加熱物110の重量により、同じ加熱電力であっても、加熱に要する時間が異なる。このため、例えば、加熱室101の底面に、重量センサを配置し、被加熱物の重量を正確に測定することにより、加熱時間をより正確に見積もることができる。 In this case, the algorithm corresponding to each combination of the high-frequency power generation unit is executed in order, back-calculated from the highest heating efficiency and heating power in each combination, so that the heat treatment is completed at the specified time, The combination of the high frequency power generation units and the frequency of each high frequency power generation unit are determined. In this case, the time required for heating varies depending on the weight of the object to be heated 110 even when the heating power is the same. For this reason, for example, by arranging a weight sensor on the bottom surface of the heating chamber 101 and accurately measuring the weight of the object to be heated, the heating time can be estimated more accurately.
 (変形した実施形態)
 実施形態1から4までのアルゴリズムでは、加熱室101からの反射波を測定することによって、高周波の周波数と位相のオフセット量とを最適化した。しかしながら、反射波の中には、次の第1、第2の反射波がある。第1の反射波は、アンテナ端からみた、高周波電力発生ユニット102x側のインピーダンスと、加熱室101側のインピーダンスとの間の不整合による反射波である。第2の反射波は、各高周波電力発生ユニットから、一旦、加熱室101に放射された高周波が、被加熱物110で消費されずにアンテナを介して戻ってくる反射波である。これらの2種類の反射波を別々に検出し、いずれかの反射波のみを優先的に制御してもよい。
(Modified embodiment)
In the algorithms of the first to fourth embodiments, the high-frequency frequency and the phase offset amount are optimized by measuring the reflected wave from the heating chamber 101. However, the reflected waves include the following first and second reflected waves. The first reflected wave is a reflected wave due to mismatch between the impedance on the high-frequency power generation unit 102x side and the impedance on the heating chamber 101 side, as viewed from the antenna end. The second reflected wave is a reflected wave in which the high frequency once radiated from the high frequency power generation units to the heating chamber 101 is returned through the antenna without being consumed by the heated object 110. These two types of reflected waves may be detected separately and only one of the reflected waves may be controlled with priority.
 実施形態1または2において、高周波電力発生ユニットの一部から高周波が放射されなくなった場合には、高周波加熱装置に備え付けられたLEDや液晶等によって、ユーザに故障を知らせても良い。 In Embodiment 1 or 2, when a high frequency is no longer radiated from a part of the high frequency power generation unit, the user may be notified of the failure by an LED, a liquid crystal, or the like provided in the high frequency heating device.
 実施形態1から4までは、3つの高周波電力発生ユニットで説明をしたが、4つ以上の高周波電力発生ユニットを用いても、アルゴリズムを記憶部に記憶しておくことで、同様な効果を得ることができる。 Although Embodiments 1 to 4 have been described with three high-frequency power generation units, even if four or more high-frequency power generation units are used, the same effect can be obtained by storing the algorithm in the storage unit. be able to.
 実施形態1から4までは、停止判定器109を有しているが、制御部103が、停止判定の機能を有することで、停止判定器109を無くすこともできる。また、実施形態3、4では、停止判定器109を省略してもよい。 Embodiments 1 to 4 have the stop determination unit 109, but the stop determination unit 109 can be eliminated if the control unit 103 has a stop determination function. In the third and fourth embodiments, the stop determination unit 109 may be omitted.
 実施形態2では、高周波の周波数と位相のオフセット量との両方を設定するアルゴリズムを使用した。一方、周波数を固定した1つの発振器を用いて、位相変換器501a、501b、501cの位相のオフセット量のみを設定するアルゴリズムを記憶部104に記憶して、使用しても良い。そのような変形例を、図9に示す。 In the second embodiment, an algorithm for setting both high frequency and phase offset is used. On the other hand, an algorithm that sets only the phase offset amount of the phase converters 501a, 501b, and 501c using one oscillator with a fixed frequency may be stored in the storage unit 104 and used. Such a modification is shown in FIG.
 図9は、本発明の実施形態2における変形例である高周波加熱装置800のブロック図である。 FIG. 9 is a block diagram of a high-frequency heating device 800 that is a modification of the second embodiment of the present invention.
 図9に記載の高周波加熱装置800では、図5の高周波加熱装置500と比較して、発振器105a、105b、105cが、1つの発振器801xである点で異なる。この発振器801xからの高周波出力は、各位相変換器501a、501b、501cへ分配されて、出力される。他の構成は、高周波加熱装置500と同一である。なお、発振器の数は、1つに限定されない。 9 is different from the high-frequency heating device 500 in FIG. 5 in that the oscillators 105a, 105b, and 105c are one oscillator 801x. The high-frequency output from the oscillator 801x is distributed to the phase converters 501a, 501b, and 501c and output. Other configurations are the same as those of the high-frequency heating device 500. Note that the number of oscillators is not limited to one.
 なお、こうして、例えば、次の動作がされる。つまり、高周波加熱装置100では、複数の高周波電力発生ユニット102a、102b、102cのうち少なくとも1つからの、加熱室への高周波の出力が停止した場合に、次の動作をする。つまり、この場合に、制御部103は、停止していない高周波電力発生ユニットを使って被加熱物110を加熱する際に最適な位相を決定するアルゴリズムを記憶部104から選択する。そして、選択したアルゴリズムに従って、停止していない高周波電力発生ユニットの発振器から出力される高周波の位相を制御する。この構成により、停止していない、残りの高周波電力発生ユニットを用いて加熱した場合においても、加熱効率が高くでき、確実に、高い加熱効率を維持することができる。 In this way, for example, the following operation is performed. That is, the high-frequency heating device 100 performs the following operation when high-frequency output from at least one of the plurality of high-frequency power generation units 102a, 102b, and 102c to the heating chamber is stopped. That is, in this case, the control unit 103 selects, from the storage unit 104, an algorithm that determines an optimal phase when the object 110 to be heated is heated using a high-frequency power generation unit that is not stopped. Then, according to the selected algorithm, the phase of the high frequency output from the oscillator of the high frequency power generation unit that is not stopped is controlled. With this configuration, even when heating is performed using the remaining high-frequency power generation units that are not stopped, the heating efficiency can be increased, and the high heating efficiency can be reliably maintained.
 なお、一部のみ(例えば、高周波電力発生ユニット102b、102cのみ)での放射がされる場合に(S402:Yes)、当該一部に含まれないそれぞれの高周波電力発生ユニット102x(例えば、高周波電力発生ユニット102a)のアンテナをショートさせるショート制御部(図12の短絡制御部103Q)が設けられてもよい。 When radiation is performed only in a part (for example, only the high-frequency power generation units 102b and 102c) (S402: Yes), each high-frequency power generation unit 102x (for example, high-frequency power) not included in the part. A short control unit (short circuit control unit 103Q in FIG. 12) for short-circuiting the antenna of the generation unit 102a) may be provided.
 これにより、それらのアンテナのそれぞれが(比較的大きな)負荷となり、加熱により、被加熱物110に与えられる熱量が少なくなってしまうのが回避される。 Thus, each of these antennas becomes a (relatively large) load, and it is avoided that the amount of heat given to the object to be heated 110 is reduced by heating.
 なお、本発明は、装置、システム、集積回路などとして実現できるだけでなく、その装置等を構成する処理手段をステップとする方法として実現したり、それらステップをコンピュータに実行させるプログラムとして実現したり、そのプログラムを記録したコンピュータ読み取り可能な、CD-ROMなどの記録媒体として実現したり、そのプログラムを示す情報、データ又は信号として実現したりすることもできる。そして、それらプログラム、情報、データ及び信号は、インターネット等の通信ネットワークを介して配信してもよい。 The present invention can be realized not only as a device, a system, an integrated circuit, etc., but also as a method that uses processing means constituting the device as steps, or as a program that causes a computer to execute these steps, It can also be realized as a computer-readable recording medium such as a CD-ROM that records the program, or as information, data, or a signal indicating the program. These programs, information, data, and signals may be distributed via a communication network such as the Internet.
 なお、本発明について、実施の形態に基づいて説明したが、本発明は、上記の実施の形態に限定されるものではない。本発明の主旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。 Although the present invention has been described based on the embodiments, the present invention is not limited to the above embodiments. Unless it deviates from the main point of this invention, what made the various deformation | transformation which those skilled in the art think about this embodiment, and the form constructed | assembled combining the component in a different embodiment are also contained in the scope of the present invention. .
 本発明は、複数の高周波電力発生ユニットを有する高周波加熱装置において、一部の高周波電力発生ユニットが停止した場合や、一部の高周波電力発生を停止させる場合であっても、停止していない高周波電力発生ユニットを用いて、被加熱物を最適に(比較的適切に)加熱できるので、電子レンジ等の高周波加熱装置として有用である。 The present invention relates to a high-frequency heating apparatus having a plurality of high-frequency power generation units, even when some high-frequency power generation units are stopped or when some high-frequency power generation is stopped. Since the power generation unit can be used to optimally (relatively appropriately) heat the object to be heated, it is useful as a high-frequency heating device such as a microwave oven.
 確実に、適切な条件(周波数など)での放射ができる。ひいては、例えば、確実に、加熱効率が高くできる。 Certainly, radiation under appropriate conditions (frequency, etc.) is possible. As a result, for example, the heating efficiency can be reliably increased.
 100  高周波加熱装置
 101  加熱室
 102a、102b、102c  高周波電力発生ユニット
 102x 複数の高周波電力発生ユニット
 103  制御部
 104  記憶部
 105a、105b、105c、801  発振器
 106a、106b、106c  増幅器
 107a、107b、107c  電力検出器
 108a、108b、108c  放射器
 109  停止判定器
 501a、501b、501c  位相変換器
 701  入力部
 801 底面
 801X 幅
 801Y 奥行き
 802X 距離
 802Y 距離
 9F1、9G1、9H1 周波数
 9F2、9G2、9H2 加熱効率
 802a、802b、802c、802d 平面アンテナ
DESCRIPTION OF SYMBOLS 100 High frequency heating apparatus 101 Heating chamber 102a, 102b, 102c High frequency electric power generation unit 102x Several high frequency electric power generation units 103 Control part 104 Memory | storage part 105a, 105b, 105c, 801 Oscillator 106a, 106b, 106c Amplifier 107a, 107b, 107c Power detection 108a, 108b, 108c Radiator 109 Stop determiner 501a, 501b, 501c Phase converter 701 Input unit 801 Bottom surface 801X Width 801Y Depth 802X Distance 802Y Distance 9F1, 9G1, 9H1 Frequency 9F2, 9G2, 9H2 Heating efficiency 802c, 802d planar antenna

Claims (14)

  1.  被加熱物を収納する加熱室と、
     高周波を前記加熱室内へ放射する複数の高周波電力発生ユニットと、
     前記複数の高周波電力発生ユニットのそれぞれに設定可能な周波数または位相の値から、前記複数の高周波電力発生ユニットの一部のみが前記高周波を放射する際に適した周波数または位相の値を選択して、選択した周波数または位相の値に従って、前記複数の高周波電力発生ユニットの前記一部のみから前記高周波を放射させる制御部と、
     を備える、高周波加熱装置。
    A heating chamber for storing an object to be heated;
    A plurality of high-frequency power generating units that radiate high-frequency waves into the heating chamber;
    From the frequency or phase value that can be set for each of the plurality of high-frequency power generation units, a frequency or phase value that is suitable when only a part of the plurality of high-frequency power generation units radiates the high frequency is selected. A control unit that radiates the high frequency from only the part of the plurality of high frequency power generation units according to a selected frequency or phase value;
    A high-frequency heating device.
  2.  予め定められた指示を入力する入力部を備え、
     前記制御部は、当該予め定められた指示が入力された場合に、前記一部のみが前記高周波を放射する場合に適する、選択した前記周波数または位相の値に従って、前記複数の高周波電力発生ユニットの前記一部のみから前記高周波を放射させる、
     請求項1に記載の高周波加熱装置。
    An input unit for inputting a predetermined instruction;
    When the predetermined instruction is input, the control unit is suitable for the case where only the part radiates the high frequency, and the control unit is configured to control the plurality of high frequency power generation units according to the selected frequency or phase value. Radiating the high frequency from only the part,
    The high frequency heating device according to claim 1.
  3.  さらに、前記複数の高周波電力発生ユニットの全部に前記高周波を放射させて前記被加熱物を加熱する際に適した周波数または位相の値を決定するアルゴリズムと、前記複数の高周波電力発生ユニットの前記一部のみに前記高周波を放射させて加熱する際に適した周波数または位相の値を決定するアルゴリズムとを含む複数のアルゴリズムを記憶する記憶部を備え、
     前記制御部は、記憶された前記複数のアルゴリズムから所定のアルゴリズムを選択し、選択した前記アルゴリズムにより決定される周波数または位相の値を選択し、選択した前記周波数または位相の値に従って、前記複数の高周波電力発生ユニットの全部または前記一部のみから前記高周波を放射させる、
     請求項2に記載の高周波加熱装置。
    Furthermore, an algorithm for determining a frequency or phase value suitable for heating the object to be heated by radiating the high frequency to all of the plurality of high frequency power generation units, and the one of the plurality of high frequency power generation units. A storage unit for storing a plurality of algorithms including an algorithm for determining a frequency or phase value suitable for heating by radiating the high frequency to only the unit,
    The control unit selects a predetermined algorithm from the plurality of stored algorithms, selects a frequency or phase value determined by the selected algorithm, and according to the selected frequency or phase value, Radiating the high frequency from all or only a part of the high frequency power generation unit;
    The high frequency heating device according to claim 2.
  4.  前記入力部は、ユーザが、前記複数の高周波電力発生ユニットから前記加熱室内へ放射される高周波の電力を指定する入力部であり、
     前記制御部は、記憶された複数の前記アルゴリズムのうち、指定された前記電力に対応した個数の高周波電力発生ユニットに対応する前記アルゴリズムを実行し、前記アルゴリズムによって決定される、最も加熱効率が高くなる前記高周波電力発生ユニットの組み合わせと、それぞれの前記高周波電力発生ユニットの周波数または位相の値を選択し、選択した前記高周波電力発生ユニットと前記周波数または位相の値に従って、選択した前記組み合わせの高周波電力発生ユニットに前記高周波を放射させる、
     請求項3に記載の高周波加熱装置。
    The input unit is an input unit by which a user designates high-frequency power radiated from the plurality of high-frequency power generation units into the heating chamber,
    The control unit executes the algorithm corresponding to the number of high-frequency power generation units corresponding to the specified power among the plurality of stored algorithms, and is determined by the algorithm, and has the highest heating efficiency. The combination of the high-frequency power generation units and the frequency or phase value of each of the high-frequency power generation units is selected, and the selected high-frequency power of the combination is selected according to the selected high-frequency power generation unit and the frequency or phase value. Causing the generating unit to emit the high frequency,
    The high frequency heating device according to claim 3.
  5.  前記入力部は、ユーザが省エネモードを指定する入力部であり、
     前記制御部は、
     前記省エネモードが指定された場合、
     記憶された前記複数のアルゴリズムのそれぞれを実行し、前記アルゴリズムによって決定される、最も加熱効率が高くなる前記高周波電力発生ユニットの組み合わせと、それぞれの前記高周波電力発生ユニットの周波数または位相の値を選択し、前記周波数または位相の値に従って、選択した前記組み合わせの高周波電力発生ユニットに前記高周波を放射させる、
     請求項3に記載の高周波加熱装置。
    The input unit is an input unit for a user to specify an energy saving mode,
    The controller is
    When the energy saving mode is specified,
    Execute each of the plurality of stored algorithms, and select the combination of the high-frequency power generation unit with the highest heating efficiency and the frequency or phase value of each high-frequency power generation unit determined by the algorithm And, according to the value of the frequency or phase, radiate the high frequency to the selected high frequency power generation unit of the combination,
    The high frequency heating device according to claim 3.
  6.  前記入力部は、ユーザが加熱時間を指定する入力部であり、
     前記制御部は、
     記憶された前記複数のアルゴリズムのそれぞれを実行し、前記アルゴリズムのそれぞれによって決定される最も高い加熱効率と加熱電力とから逆算して、指定された前記加熱時間で、加熱処理が完了するように、前記高周波電力発生ユニットの組み合わせと、それぞれの前記高周波電力発生ユニットの周波数または位相の値を選択し、前記周波数または位相の値に従って、選択した前記組み合わせの高周波電力発生ユニットに前記高周波を放射させる、
     請求項3に記載の高周波加熱装置。
    The input unit is an input unit for a user to specify a heating time,
    The controller is
    Run each of the stored algorithms and back-calculate from the highest heating efficiency and heating power determined by each of the algorithms so that the heating process is completed in the specified heating time, Selecting the combination of the high-frequency power generation units and the frequency or phase value of each of the high-frequency power generation units, and radiating the high-frequency power generation unit of the selected combination according to the frequency or phase value,
    The high frequency heating device according to claim 3.
  7.  1以上の前記高周波電力発生ユニットのそれぞれは、高周波を出力する発振器と、前記発振器から出力される前記高周波を増幅して出力する増幅器と、前記増幅器から出力される前記高周波を前記加熱室内へ放射する放射器と、を有する、
     請求項1に記載の高周波加熱装置。
    Each of the one or more high frequency power generation units includes an oscillator that outputs a high frequency, an amplifier that amplifies and outputs the high frequency output from the oscillator, and radiates the high frequency output from the amplifier into the heating chamber. And a radiator
    The high frequency heating device according to claim 1.
  8.  1以上の前記高周波電力発生ユニットのそれぞれは、高周波を出力する発振器と、前記発振器から出力される前記高周波の位相を変化させて出力する位相変換器と、前記位相変換器から出力される前記高周波を増幅して出力する増幅器と、前記増幅器から出力される前記高周波を、前記加熱室内へ放射する放射器と、を有する、
     請求項1に記載の高周波加熱装置。
    Each of the one or more high-frequency power generation units includes an oscillator that outputs a high frequency, a phase converter that changes the phase of the high-frequency output from the oscillator, and a high-frequency that is output from the phase converter. An amplifier for amplifying and outputting, and a radiator for radiating the high frequency output from the amplifier into the heating chamber,
    The high frequency heating device according to claim 1.
  9.  前記記憶部は、前記複数のアルゴリズムを、前記被加熱物の加熱が開始されるよりも前から予め記憶する、
     請求項3~6のいずれか1項に記載の高周波加熱装置。
    The storage unit stores the plurality of algorithms in advance from before the heating of the object to be heated is started,
    The high-frequency heating device according to any one of claims 3 to 6.
  10.  高周波を放射することが不能となった前記高周波電力発生ユニットを検出する検出部を備え、
     前記制御部は、前記検出部によって不能となったことが検出された前記高周波電力発生ユニットを除く前記高周波電力発生ユニットの全部または一部のみが前記高周波を放射する際に適した周波数また位相の値を選択して、選択した前記周波数または位相の値に従って、前記不能となったことが検出された高周波電力発生ユニットを除く前記高周波電力発生ユニットの前記全部または一部のみから、前記高周波を放射させる、
     請求項1に記載の高周波加熱装置。
    A detection unit for detecting the high-frequency power generation unit that is unable to radiate a high frequency;
    The control unit has a frequency or phase suitable when all or a part of the high-frequency power generation unit except the high-frequency power generation unit detected to be disabled by the detection unit emits the high frequency. A value is selected, and according to the selected frequency or phase value, the high-frequency power is radiated from only all or a part of the high-frequency power generation unit excluding the high-frequency power generation unit detected to be disabled. Let
    The high frequency heating device according to claim 1.
  11.  前記制御部は、前記複数の高周波電力発生ユニットのそれぞれに設定可能な周波数または位相の値から、前記複数の高周波電力発生ユニットの一部のみが前記高周波を放射する際に加熱効率が最大となる周波数または位相の値を選択する、
     請求項1に記載の高周波加熱装置。
    The control unit maximizes the heating efficiency when only a part of the plurality of high-frequency power generation units emits the high-frequency from the frequency or phase value that can be set for each of the plurality of high-frequency power generation units. Select frequency or phase value,
    The high frequency heating device according to claim 1.
  12.  さらに、前記複数の高周波電力発生ユニットの全部に前記高周波を放射させて前記被加熱物を加熱する際に適した周波数または位相の値を決定するアルゴリズムと、前記複数の高周波電力発生ユニットの前記一部のみに前記高周波を放射させて加熱する際に適した周波数または位相の値を決定するアルゴリズムとを含む複数のアルゴリズムを記憶する記憶部を備え、
     前記制御部は、記憶された前記複数のアルゴリズムから所定のアルゴリズムを選択し、選択した前記アルゴリズムにより決定される周波数または位相の値を選択し、選択した前記周波数または位相の値に従って、前記複数の高周波電力発生ユニットの全部または前記一部のみから前記高周波を放射させる、
     請求項1に記載の高周波加熱装置。
    Furthermore, an algorithm for determining a frequency or phase value suitable for heating the object to be heated by radiating the high frequency to all of the plurality of high frequency power generation units, and the one of the plurality of high frequency power generation units. A storage unit for storing a plurality of algorithms including an algorithm for determining a frequency or phase value suitable for heating by radiating the high frequency to only the unit,
    The control unit selects a predetermined algorithm from the plurality of stored algorithms, selects a frequency or phase value determined by the selected algorithm, and according to the selected frequency or phase value, Radiating the high frequency from all or only a part of the high frequency power generation unit;
    The high frequency heating device according to claim 1.
  13.  高周波を放射することが不能となった前記高周波電力発生ユニットを検出する検出部を備え、
     前記制御部は、前記検出部によって不能となったことが検出された前記高周波電力発生ユニットを除く前記高周波電力発生ユニットの全部または一部のみが前記高周波を放射する際に適した周波数また位相の値を決定するアルゴリズムを選択し、選択した前記アルゴリズムにより決定される周波数または位相の値を選択し、選択した前記周波数または位相の値に従って、前記不能となったことが検出された高周波電力発生ユニットを除く前記高周波電力発生ユニットの全部または前記一部のみから前記高周波を放射させる、
     請求項12に記載の高周波加熱装置。
    A detection unit for detecting the high-frequency power generation unit that is unable to radiate a high frequency;
    The control unit has a frequency or phase suitable when all or a part of the high-frequency power generation unit except the high-frequency power generation unit detected to be disabled by the detection unit emits the high frequency. A high-frequency power generation unit that selects an algorithm for determining a value, selects a frequency or phase value determined by the selected algorithm, and detects the disabled state according to the selected frequency or phase value Radiating the high frequency from all or only a part of the high frequency power generation unit excluding
    The high-frequency heating device according to claim 12.
  14.  前記複数の高周波電力発生ユニットのそれぞれは、前記高周波を放射する放射器を有し、
     前記制御部が前記一部のみから高周波を放射させる場合に、当該一部に含まれない前記高周波電力発生ユニットのそれぞれの前記放射器をショートさせるショート制御部を備える、
     請求項1記載の高周波加熱装置。
    Each of the plurality of high frequency power generation units has a radiator that radiates the high frequency,
    A short control unit that short-circuits each of the radiators of the high-frequency power generation unit not included in the part when the control unit radiates high-frequency from only the part;
    The high-frequency heating device according to claim 1.
PCT/JP2012/002028 2011-04-19 2012-03-23 High frequency heating apparatus WO2012144129A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012539114A JP5128025B1 (en) 2011-04-19 2012-03-23 High frequency heating device
CN201280001529.4A CN102934518B (en) 2011-04-19 2012-03-23 High frequency heating apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011092639 2011-04-19
JP2011-092639 2011-04-19

Publications (1)

Publication Number Publication Date
WO2012144129A1 true WO2012144129A1 (en) 2012-10-26

Family

ID=47041266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002028 WO2012144129A1 (en) 2011-04-19 2012-03-23 High frequency heating apparatus

Country Status (3)

Country Link
JP (1) JP5128025B1 (en)
CN (1) CN102934518B (en)
WO (1) WO2012144129A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022711A1 (en) * 2015-07-31 2017-02-09 イマジニアリング株式会社 Electromagnetic wave heating device
WO2018212068A1 (en) * 2017-05-19 2018-11-22 エバートロン ホールディングス ピーティーイー リミテッド Component control device, component control method, transport method, cooking method, and program
US10368692B2 (en) 2015-09-01 2019-08-06 Husqvarna Ab Dynamic capacitive RF food heating tunnel
EP3550936A1 (en) * 2018-04-04 2019-10-09 LG Electronics Inc. Microwave heating system having improved frequency scanning and heating methods
JP7033431B2 (en) 2016-11-18 2022-03-10 エヌエックスピー ユーエスエイ インコーポレイテッド Establishment of RF excitation signal parameters in solid-state heating equipment
US11284742B2 (en) 2015-09-01 2022-03-29 Illinois Tool Works, Inc. Multi-functional RF capacitive heating food preparation device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104613513A (en) * 2013-11-01 2015-05-13 广东美的厨房电器制造有限公司 Microwave heating device, and controlling method thereof
CN104869679B (en) * 2015-06-09 2017-08-04 内蒙古科技大学 A kind of apparatus and method for realizing variable frequency microwave heating
WO2017142503A1 (en) * 2016-02-15 2017-08-24 Whirlpool Corporation Method and apparatus for delivering radio frequency electromagnetic energy to cook foodstuff
US10327289B2 (en) 2016-04-01 2019-06-18 Illinois Tool Works Inc. Microwave heating device and method for operating a microwave heating device
CN106287866B (en) * 2016-08-04 2018-11-23 广东美的厨房电器制造有限公司 Control method, device and the semiconductor microwave oven of semiconductor microwave oven
CN108347800B (en) * 2018-01-31 2022-05-24 广东美的厨房电器制造有限公司 Microwave heating device and detection method
CN110493909B (en) * 2019-08-27 2022-09-30 上海点为智能科技有限责任公司 Distributed radio frequency or microwave thawing equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60193292A (en) * 1984-03-15 1985-10-01 富士通株式会社 Electronic range
JPH03163790A (en) * 1989-11-20 1991-07-15 Sanyo Electric Co Ltd Microwave oven
JP2008034244A (en) * 2006-07-28 2008-02-14 Matsushita Electric Ind Co Ltd Microwave treatment device and microwave treatment method
JP2010198752A (en) * 2009-02-23 2010-09-09 Panasonic Corp Microwave processing device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5064924B2 (en) * 2006-08-08 2012-10-31 パナソニック株式会社 Microwave processing equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60193292A (en) * 1984-03-15 1985-10-01 富士通株式会社 Electronic range
JPH03163790A (en) * 1989-11-20 1991-07-15 Sanyo Electric Co Ltd Microwave oven
JP2008034244A (en) * 2006-07-28 2008-02-14 Matsushita Electric Ind Co Ltd Microwave treatment device and microwave treatment method
JP2010198752A (en) * 2009-02-23 2010-09-09 Panasonic Corp Microwave processing device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022711A1 (en) * 2015-07-31 2017-02-09 イマジニアリング株式会社 Electromagnetic wave heating device
EP3331323A4 (en) * 2015-07-31 2018-07-25 Imagineering, Inc. Electromagnetic wave heating device
US20190003715A1 (en) * 2015-07-31 2019-01-03 Imagineering Inc. Electromagnetic wave heating system
US11284742B2 (en) 2015-09-01 2022-03-29 Illinois Tool Works, Inc. Multi-functional RF capacitive heating food preparation device
US10368692B2 (en) 2015-09-01 2019-08-06 Husqvarna Ab Dynamic capacitive RF food heating tunnel
JP7033431B2 (en) 2016-11-18 2022-03-10 エヌエックスピー ユーエスエイ インコーポレイテッド Establishment of RF excitation signal parameters in solid-state heating equipment
JPWO2018212068A1 (en) * 2017-05-19 2021-09-16 エバートロン ホールディングス ピーティーイー リミテッド Ingredient control device, ingredient control method, transportation method, cooking method, and program
EP3627967A4 (en) * 2017-05-19 2021-03-03 Evertron Holdings Pte. Ltd. Component control device, component control method, transport method, cooking method, and program
WO2018212068A1 (en) * 2017-05-19 2018-11-22 エバートロン ホールディングス ピーティーイー リミテッド Component control device, component control method, transport method, cooking method, and program
JP7175071B2 (en) 2017-05-19 2022-11-18 エバートロン ホールディングス ピーティーイー リミテッド Component control device, component control method, transportation method, cooking method, and program
US11102853B2 (en) 2018-04-04 2021-08-24 Lg Electronics Inc. Microwave heating system having improved frequency scanning and heating methods
KR20190116016A (en) * 2018-04-04 2019-10-14 엘지전자 주식회사 Microwave heating system having improved frequency scanning and heating algorithm
EP3550936A1 (en) * 2018-04-04 2019-10-09 LG Electronics Inc. Microwave heating system having improved frequency scanning and heating methods
KR102534795B1 (en) * 2018-04-04 2023-05-19 엘지전자 주식회사 Microwave heating system having improved frequency scanning and heating algorithm

Also Published As

Publication number Publication date
CN102934518B (en) 2015-07-22
JP5128025B1 (en) 2013-01-23
CN102934518A (en) 2013-02-13
JPWO2012144129A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
JP5128025B1 (en) High frequency heating device
US10455650B2 (en) Time estimation for energy application in an RF energy transfer device
JP4935188B2 (en) Microwave equipment
US8330085B2 (en) Spread-spectrum high-frequency heating device
WO2010134307A1 (en) Microwave heating device and microwave heating method
JP4976591B2 (en) High frequency heating apparatus and high frequency heating method
US10368402B2 (en) Microwave heating device and method for operating a microwave heating device
WO2013183200A1 (en) High-frequency heating device
EP3563628A1 (en) System and method for detecting changes in food load characteristics using coefficient of variation of efficiency
KR20110129719A (en) A cooking apparatus using microwave and method for operating the same
JP2009259511A (en) Microwave processor
US11617240B2 (en) Microwave heating device and method for operating a microwave heating device
CN103080656A (en) Cooking apparatus
WO2018125147A1 (en) Electromagnetic cooking device with automatic liquid heating and method of controlling cooking in the electromagnetic cooking device
WO2018125129A1 (en) Electromagnetic cooking device with automatic popcorn popping feature and method of controlling cooking in the electromagnetic device
WO2018125151A1 (en) Electromagnetic cooking device with automatic anti-splatter operation and method of controlling cooking in the electromagnetic device
WO2018125143A1 (en) Detecting changes in food load characteristics using q-factor
JP2009181728A (en) Microwave processing device
KR102534795B1 (en) Microwave heating system having improved frequency scanning and heating algorithm
KR101762163B1 (en) A cooking apparatus
JP7019702B2 (en) Cooker
EP3563638A1 (en) Electromagnetic cooking device with automatic melt operation and method of controlling cooking in the electromagnetic cooking device
JP7019703B2 (en) Cooker
KR20120071988A (en) A cooking apparatus and method for operating the same
KR101762162B1 (en) A cooking apparatus and method for controlling the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001529.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012539114

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12773971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12773971

Country of ref document: EP

Kind code of ref document: A1