WO2012143584A1 - Coating that can transmit electromagnetic radiation - Google Patents

Coating that can transmit electromagnetic radiation Download PDF

Info

Publication number
WO2012143584A1
WO2012143584A1 PCT/ES2012/000100 ES2012000100W WO2012143584A1 WO 2012143584 A1 WO2012143584 A1 WO 2012143584A1 ES 2012000100 W ES2012000100 W ES 2012000100W WO 2012143584 A1 WO2012143584 A1 WO 2012143584A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
paint
radiation
light
layer
Prior art date
Application number
PCT/ES2012/000100
Other languages
Spanish (es)
French (fr)
Inventor
Javier VILLAR CLOQUELL
Original Assignee
Kaparazoom Slu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaparazoom Slu filed Critical Kaparazoom Slu
Publication of WO2012143584A1 publication Critical patent/WO2012143584A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/004Reflecting paints; Signal paints

Definitions

  • the present invention falls within the lighting sector. Although it is extensive for its application to the signage industry or by application of Ultraviolet C to sterilize in the hospital medical field.
  • JP 11038232 describes a transparent resin with particles intended to create a diffusing layer on a light screen, sifting it, achieving the effect that produces for example an acid or glazed glass sheet.
  • coatings formed by layers of paint designed to transmit and diffuse light radiation are not known.
  • the present invention proposes a solution to illuminate an object, through a new coating whose physical-optical properties allow it to create a diopter formed by the coating and the air that allows to transmit a radiation of light and diffuse it from the surface of the painted object.
  • a light source (2) After applying this coating (1) (figure 1) on an object (5) (figure 1), so that it illuminates, a light source (2) will be activated (figure 1) that transmits the radiation to the interior (3) (figure 1) of the coating.
  • This source of electromagnetic radiation can have a wavelength range from 50 micrometers (infrared) to 200 nanometers (ultraviolet).
  • the coating will consist of at least one paint layer of polymeric base material, silicone, polyurethane, fiberglass, aerobic polymer, acrylic resin, polyester, vinyl or epoxy, with a light permeability greater than 80% and with a refractive index between 1.2 and 1.9.
  • the diopter formed by the coating and the air allows the critical angle of reflection not to be exceeded.
  • the diffusion (4) (figure 1) of the exterior light can be achieved with different coating characteristics.
  • the modification of surface roughness from 10 to 300 micrometers acts by generating a change in the radiation exit angle, exceeding the critical index of refraction and thereby varying the amount of diffused light.
  • diffusion abroad can be achieved by anisotropy of the coating, generated by the addition of micro or nano particles (6) (figure 4), of nitrides, carbides, oxides such as silicon oxide, titanium, zirconium, cerium, metal salts, and halogenated derivatives, since the addition of these components modify the physical-optical properties of the coating such as the refractive index, the reflection index, the attenuation and the light permeability. Causing that part of the light transmitted through the interior of the coating changes its angle of refraction and diffuses to the outside (4) ( Figure 1, 2, 3,4 and 5).
  • Another way to vary the coating index is the inclusion of charges or additives such as AsGa, KH 2 P0 4 , KD 2 P0 4 or L ⁇ Ta0 3 , whose refractive values change when an electric field is applied.
  • charges or additives such as AsGa, KH 2 P0 4 , KD 2 P0 4 or L ⁇ Ta0 3 , whose refractive values change when an electric field is applied.
  • Versions of this coating are provided in which conventional reflective paint layers (7) are incorporated ( Figure 2).
  • This layer is between the object to be coated (5) (figure 2) and the transmitter layer (8) (figure 2) in order to improve the efficiency of the light source transmission. In turn, this layer avoids the physical-optical discontinuities of the base object, homogenizing it to a known value.
  • the reflective paint layer (9) (figure 3) is located on the outside of the coating, in order to minimize diffusion losses in those areas where you do not want to illuminate.
  • the coating is applied in at least one layer on the object that we want to illuminate using conventional painting techniques, both manual or industrialized, such as: rollers, brush, spray, spray gun, curtain or electrodeposition.
  • Figure 1 Coating of one or several layers of paint (1), radiation emitting source (2), transmitted radiation conducted inside the coating (3), radiation diffusing the coating (4) outside, object to be illuminated ( 5).
  • Figure 2 Radiation transmitted or conducted inside the coating (3), radiation diffusing outside the coating (4), object to be illuminated (5), reflective paint layer (7), acrylic paint layer (8).
  • Figure 3 Radiation transmitted or conducted inside the coating (3), radiation diffusing outside the coating (4), object to be removed (5), acrylic paint layer with micro or nano particles (8) and paint layers reflective (9).
  • Figure 4 Coating of one or several layers of paint (1), radiation transmitted or conducted inside the coating (3), radiation diffusing outside the coating (4), nano or micro particles included in the paint (6) , reflective paint layer (7), acrylic paint layer with micro or nano particles (11) and silicone-based paint layer (12).
  • Figure 5 coating of one or several layers of paint (1), radiation emitting source (2), radiation diffusing outside the coating (4), TAC medical equipment. (10)
  • the described embodiment comprises a coating (1) ( Figure 4 and 5) that transmits electromagnetic radiation more specifically in its ultraviolet C range. This radiation has known sterilizing effects.
  • This coating is applied on a computerized axial tomography (T.A.C.) device (figures 4 and 5), whose complex geometry and difficult access requires an effective sterilization method.
  • T.A.C. computerized axial tomography
  • a first layer of conventional reflective paint (7) ( Figure 4) is applied by means of a spray gun, such as a white paint formulated with anatase titanium dioxide given its high reflection index. This allows the surface of the object to be homogenized and in turn minimizes radiation attenuation.
  • a second layer of acrylic-based transmitter paint (11) is applied ( Figure 4) due to its rapid drying with a light transmission greater than 90% and with a characteristic refractive index of 1.49.
  • This second layer of paint is formulated with micro particles of metal oxides such as cerium oxides. Causing that part of the light transmitted through the interior of the coating affects the micro particles (6) (figure 4) changing its angle of refraction and diffuses to the outside (4) (figures 4 and 5).
  • a third layer of a silicone-based paint (12) (figure 4) with a light transmission greater than 60% and a characteristic refractive index of less than 1.4 is applied.
  • the diopter formed by the second and third layers will allow a refractive index jump structure to be formed for radiation guidance.
  • Ultraviolet radiation is transmitted along a zigzag path (3) (figure 4). And its diffusion will be the result of the anisotropy of the second layer of paint created with the addition of metal oxide particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)

Abstract

The invention relates to a coating formed by at least one layer of transmitting paint. Said paint layers generate a dioptre with the air, and its refractive index can be adjusted as a function of the composition and surface finish thereof. By applying a light source to an object painted with this coating, the surface thereof will be illuminated, independently of its geometry. The invention is intended for use in the fields of lighting and signage and in hospital environments.

Description

TRANSMISIÓN DE LUZ A TRAVÉS DE UN NUEVO RECUBRIMIENTO  TRANSMISSION OF LIGHT THROUGH A NEW COATING
Sector de la técnica Technical sector
La presente invención se encuadra dentro del sector de la iluminación. Si bien es extensivo por su aplicación a la industria de la señalética o mediante aplicación de Ultravioleta C para esterilizar en el campo médico hospitalario. The present invention falls within the lighting sector. Although it is extensive for its application to the signage industry or by application of Ultraviolet C to sterilize in the hospital medical field.
Antecedentes de la invención Background of the invention
Son conocidos diferentes sistemas de transmisión de luz basados en fibra óptica ya sea en su forma convencional o en forma de lámina, obtenidos industrialmente mediante una preforma de fibra óptica que posteriormente sufre un proceso de estirado destinadas a transmitir diferentes rangos del espectro electromagnético. La patente JP 11038232 describe una resina transparente con partículas destinada a crear una capa difusora sobre una pantalla de luz, tamizando ésta, consiguiendo el efecto que produce por ejemplo una lámina de cristal al ácido o glaseada. No se conocen antecedentes de recubrimientos formados por capas de pintura ideados para transmitir y difundir la radiación lumínica. Different light transmission systems based on optical fiber are known, either in their conventional form or in the form of a sheet, obtained industrially by means of a fiber optic preform that subsequently undergoes a stretching process intended to transmit different ranges of the electromagnetic spectrum. JP 11038232 describes a transparent resin with particles intended to create a diffusing layer on a light screen, sifting it, achieving the effect that produces for example an acid or glazed glass sheet. There is no known history of coatings formed by layers of paint designed to transmit and diffuse light radiation.
Objeto de la invención Object of the invention
Poder iluminar cualquier superficie independientemente de su geometría, aplicando un nuevo recubrimiento formado al menos por una capa de pintura transmisora de la luz. Lo cual permitiría por ejemplo iluminar las paredes de un quirófano, mobiliario, electrodomésticos o paneles publicitarios. Descripción de (a invención To be able to illuminate any surface regardless of its geometry, applying a new coating formed at least by a layer of light-transmitting paint. This would allow for example to illuminate the walls of an operating room, furniture, appliances or advertising panels. Description of (to invention
Existen numerosas aplicaciones donde se hace preciso iluminar determinadas superficies, ya sea con fines decorativos, de señalización u otros. La presente Invención propone una solución para iluminar un objeto, a través de un nuevo recubrimiento cuyas propiedades físico-ópticas le permitan crear un dioptrio formado por el recubrimiento y el aire que permita transmitir una radiación de luz y difundirla desde la superficie del objeto pintado. There are numerous applications where it is necessary to illuminate certain surfaces, whether for decorative, signage or other purposes. The present invention proposes a solution to illuminate an object, through a new coating whose physical-optical properties allow it to create a diopter formed by the coating and the air that allows to transmit a radiation of light and diffuse it from the surface of the painted object.
Tras aplicar este recubrimiento (1) (figura 1) sobre un objeto (5) (figura 1), para que ilumine, se activará una fuente de luz (2) (figura 1) que transmite la radiación al interior (3) (figura 1) del recubrimiento. Esta fuente de radiación electromagnética puede tener un rango de longitud de onda desde los 50 micrómetros (infrarrojo) hasta los 200 nanómetros (ultravioleta). After applying this coating (1) (figure 1) on an object (5) (figure 1), so that it illuminates, a light source (2) will be activated (figure 1) that transmits the radiation to the interior (3) (figure 1) of the coating. This source of electromagnetic radiation can have a wavelength range from 50 micrometers (infrared) to 200 nanometers (ultraviolet).
El recubrimiento estará formado por al menos una capa de pintura de material base polimérico, silicona, poliuretano, fibra de vidrio, polímero aerifico, resina acrílica, poliéster, vinilo o epoxi, con una permeabilidad lumínica mayor del 80% y con un índice de refracción entre 1,2 y 1,9. The coating will consist of at least one paint layer of polymeric base material, silicone, polyurethane, fiberglass, aerobic polymer, acrylic resin, polyester, vinyl or epoxy, with a light permeability greater than 80% and with a refractive index between 1.2 and 1.9.
Para que la radiación luminosa sea conducida por el interior del recubrimiento, el dioptrio formado por el recubrimiento y el aire, permite que no se supere el ángulo crítico de reflexión. In order for the light radiation to be conducted inside the coating, the diopter formed by the coating and the air allows the critical angle of reflection not to be exceeded.
La difusión (4) (figura 1) de la luz al exterior se puede conseguir con diferentes características del recubrimiento. De un lado, la modificación de la rugosidad superficial de 10 a 300 micrómetros actúa generando un cambio en el ángulo de salida de la radiación, superando el índice crítico de refracción y variando con esto la cantidad de luz difundida. De otro lado la difusión al exterior se puede conseguir mediante la anisotropía del recubrimiento, generado mediante la adición de micro o nano partículas (6) (figura 4), de nitruros, carburos, óxidos como óxido de silicio, titanio, zirconio, cerio, sales metálicas, y derivados halogenados, ya que la adición de estos componentes modifican las propiedades físico-ópticas del recubrimiento como el índice de refracción, el índice de reflexión, la atenuación y la permeabilidad lumínica. Provocando que parte de la luz transmitida por el interior del recubrimiento cambie su ángulo de refracción y se difunda al exterior (4) (figura 1, 2, 3,4 y 5). The diffusion (4) (figure 1) of the exterior light can be achieved with different coating characteristics. On the one hand, the modification of surface roughness from 10 to 300 micrometers acts by generating a change in the radiation exit angle, exceeding the critical index of refraction and thereby varying the amount of diffused light. On the other hand, diffusion abroad can be achieved by anisotropy of the coating, generated by the addition of micro or nano particles (6) (figure 4), of nitrides, carbides, oxides such as silicon oxide, titanium, zirconium, cerium, metal salts, and halogenated derivatives, since the addition of these components modify the physical-optical properties of the coating such as the refractive index, the reflection index, the attenuation and the light permeability. Causing that part of the light transmitted through the interior of the coating changes its angle of refraction and diffuses to the outside (4) (Figure 1, 2, 3,4 and 5).
Otra forma prevista para variar el índice del recubrimiento consiste en la inclusión de cargas o aditivos como el AsGa, KH2P04, KD2P04 o L¡Ta03, cuyos valores de refracción cambian cuando se aplica un campo eléctrico. Another way to vary the coating index is the inclusion of charges or additives such as AsGa, KH 2 P0 4 , KD 2 P0 4 or L¡Ta0 3 , whose refractive values change when an electric field is applied.
Se han previsto versiones de este recubrimiento en la que se incorporan capas de pintura reflectante convencional (7) (figura 2). Esta capa está entre el objeto a recubrir (5) (figura 2) y la capa transmisora (8) (figura 2) al objeto de mejorar la eficiencia de la transmisión de la fuente de luz. A su vez, esta capa evita las discontinuidades físico-ópticas del objeto de base, homogeneizando éste a un valor conocido. Y otras versiones en las que la capa de pintura reflectante (9) (figura 3) está situada en el exterior del recubrimiento, al objeto de minimizar las pérdidas por difusión en aquellas zonas donde no se quiere iluminar. Versions of this coating are provided in which conventional reflective paint layers (7) are incorporated (Figure 2). This layer is between the object to be coated (5) (figure 2) and the transmitter layer (8) (figure 2) in order to improve the efficiency of the light source transmission. In turn, this layer avoids the physical-optical discontinuities of the base object, homogenizing it to a known value. And other versions in which the reflective paint layer (9) (figure 3) is located on the outside of the coating, in order to minimize diffusion losses in those areas where you do not want to illuminate.
El recubrimiento es aplicado en al menos una capa sobre el objeto que queremos iluminar mediante las técnicas convencionales de pintado, tanto manuales o industrializadas, como: rodillos, pincel, spray, pistola de pintado, cortina o electrodeposición. The coating is applied in at least one layer on the object that we want to illuminate using conventional painting techniques, both manual or industrialized, such as: rollers, brush, spray, spray gun, curtain or electrodeposition.
BREVE DESCRIPCIÓN DE LOS DIBUJOS: BRIEF DESCRIPTION OF THE DRAWINGS:
Para la mejor comprensión de cuanto queda descrito en la presente memoria, se acompañan unos dibujos en los que, tan sólo a título de ejemplo, se representa una imagen de la realización de pintura que transmite e irradia luz ultravioleta. Descripción figuras For the best understanding of what is described herein, some drawings are attached in which, just by way of example, an image of the painting embodiment that transmits and radiates ultraviolet light is represented. Description figures
Figura 1: Recubrimiento de una o varias capas de pintura (1), fuente emisora de radiación (2), radiación transmitida conducida en el interior del recubrimiento (3), radiación que difunde al exterior el recubrimiento (4), objeto a iluminar (5). Figure 1: Coating of one or several layers of paint (1), radiation emitting source (2), transmitted radiation conducted inside the coating (3), radiation diffusing the coating (4) outside, object to be illuminated ( 5).
Figura 2: Radiación transmitida o conducida en el interior del recubrimiento (3), radiación que difunde al exterior del recubrimiento (4), objeto a iluminar (5), capa de pintura reflectante (7), capa de pintura acrílica (8). Figure 2: Radiation transmitted or conducted inside the coating (3), radiation diffusing outside the coating (4), object to be illuminated (5), reflective paint layer (7), acrylic paint layer (8).
Figura 3: Radiación transmitida o conducida en el interior del recubrimiento (3), radiación que difunde al exterior del recubrimiento (4), objeto a eliminar (5), capa de pintura acrílica con micro o nano partículas (8) y capas de pintura reflectante (9). Figura 4: Recubrimiento de una o varias capas de pintura (1), radiación transmitida o conducida en el interior del recubrimiento (3), radiación que difunde al exterior del recubrimiento (4), nano o micro partículas incluidas en la pintura (6), capa de pintura reflectante (7), capa de de pintura acrílica con micro o nano partículas (11) y capa de pintura con base de siliconas (12). Figura 5: recubrimiento de una o varias capas de pintura (1), fuente emisora de radiación (2), radiación que difunde al exterior del recubrimiento (4), equipo médico TAC. (10). Figure 3: Radiation transmitted or conducted inside the coating (3), radiation diffusing outside the coating (4), object to be removed (5), acrylic paint layer with micro or nano particles (8) and paint layers reflective (9). Figure 4: Coating of one or several layers of paint (1), radiation transmitted or conducted inside the coating (3), radiation diffusing outside the coating (4), nano or micro particles included in the paint (6) , reflective paint layer (7), acrylic paint layer with micro or nano particles (11) and silicone-based paint layer (12). Figure 5: coating of one or several layers of paint (1), radiation emitting source (2), radiation diffusing outside the coating (4), TAC medical equipment. (10)
DESCRIPCIÓN DE UNA FORMA DE REALIZACIÓN PREFERIDA: DESCRIPTION OF A PREFERRED EMBODIMENT:
Se cita a modo de ejemplo una forma de realización preferida siendo independiente del objeto de la invención los materiales empleados en la fabricación de los componentes de la pintura, las capas que la forman y los métodos de aplicación y todos los detalles accesorios que puedan presentarse, siempre y cuando no afecten a su esencialidad. An example of a preferred embodiment is cited, being independent of the object of the invention the materials used in the manufacture of the components of the paint, the layers that form it and the methods of application and all the accessory details that may arise, as long as they do not affect their essentiality.
La forma de realización descrita, comprende un recubrimiento (1) (figura 4y 5) transmisor de la radiación electromagnética más concretamente en su rango ultravioleta C. Esta radiación tiene conocidos efectos esterilizantes. Este recubrimiento es aplicado sobre un equipo de Tomografía Axial Computerizada (T.A.C.) (figuras 4 y 5), cuya geometría compleja y de difícil acceso precisa de un método de esterilización eficaz. The described embodiment comprises a coating (1) (Figure 4 and 5) that transmits electromagnetic radiation more specifically in its ultraviolet C range. This radiation has known sterilizing effects. This coating is applied on a computerized axial tomography (T.A.C.) device (figures 4 and 5), whose complex geometry and difficult access requires an effective sterilization method.
Primeramente se procede a la aplicación mediante una pistola de una primera capa de pintura reflectante convencional (7) (figura 4) como por ejemplo una pintura blanca formulada con dióxido de titanio anatasa dado su elevado índice de reflexión. Esto permite homogeneizar la superficie del objeto y a su vez minimiza la atenuación de la radiación. Tras su secado se aplica una segunda capa de pintura transmisora de base acrílica (11) (figura 4) por su rápido secado con una transmisión luminosa mayor del 90% y con un índice de refracción característico de 1,49. Esta segunda capa de pintura está formulada con micro partículas de óxidos metálicos como óxidos de cerio. Provocando que parte de la luz transmitida por el interior del recubrimiento incidencia en las micro partículas (6) (figura 4) cambiando su ángulo de refracción y se difunda al exterior (4) (figuras 4 y 5). First, a first layer of conventional reflective paint (7) (Figure 4) is applied by means of a spray gun, such as a white paint formulated with anatase titanium dioxide given its high reflection index. This allows the surface of the object to be homogenized and in turn minimizes radiation attenuation. After drying, a second layer of acrylic-based transmitter paint (11) is applied (Figure 4) due to its rapid drying with a light transmission greater than 90% and with a characteristic refractive index of 1.49. This second layer of paint is formulated with micro particles of metal oxides such as cerium oxides. Causing that part of the light transmitted through the interior of the coating affects the micro particles (6) (figure 4) changing its angle of refraction and diffuses to the outside (4) (figures 4 and 5).
Por último se aplica una tercera capa de una pintura con bases de siliconas (12) (figura 4) con una transmisión luminosa mayor del 60% y un índice de refracción característico menor a 1,4. El dioptrio formado por la segunda y tercera capa permitirá conformar una estructura de salto de índice de refracción para el guiado de la radiación. La radiación ultravioleta se transmite siguiendo una trayectoria en zig-zag (3) (figura 4). Y su difusión será resultado de la anisotropía de la segunda capa de pintura creada con la adición de las partículas de óxidos metálicos. Una vez secado el recubrimiento, aplicaremos una fuente de luz ultravioleta C (2) (figura 5), de forma que esta radiación penetre en el interior de la segunda capa de pintura con lo que la radiación y sus efectos esterilizantes se transmitirán a lo largo del recubrimiento difundiendo (4) (figura 5) parte de ésta en toda la superficie del objeto. Finally, a third layer of a silicone-based paint (12) (figure 4) with a light transmission greater than 60% and a characteristic refractive index of less than 1.4 is applied. The diopter formed by the second and third layers will allow a refractive index jump structure to be formed for radiation guidance. Ultraviolet radiation is transmitted along a zigzag path (3) (figure 4). And its diffusion will be the result of the anisotropy of the second layer of paint created with the addition of metal oxide particles. Once the coating has dried, we will apply an ultraviolet light source C (2) (figure 5), so that this radiation penetrates into the second layer of paint so that the radiation and its sterilizing effects will be transmitted along of the coating spreading (4) (figure 5) part of it over the entire surface of the object.

Claims

REIVINDICACIONES: CLAIMS:
Transmisión de radiación del rango infrarrojo al ultravioleta procedente de una fuente de luz externa a través de un recubrimiento caracterizada por estar constituido por un recubrimiento (1) que conduce la radiación electromagnética del rango de 50 micrómetros a 200 nanómetros por su interior, compuesto por al menos una capa de pintura de material base polimérico, silicona, poliuretano, fibra de vidrio, polímero acrílico, resina acrílica, poliéster, vinilo, epoxi o PET, con una permeabilidad lumínica mayor del 60% y con un índice de refracción entre 1,3 y 1,9. El dioptrio formado por el recubrimiento y el aire permite que no se supere el ángulo crítico de reflexión y que la radiación luminosa sea conducida por el interior del recubrimiento. La difusión de la luz al exterior se produce por presentar la capa de pintura una rugosidad superficial de 10 a 300 micrómetros que actúa generando un cambio en el ángulo de salida de la radiación, superando el índice crítico de reflexión. Transmission of infrared to ultraviolet radiation from an external light source through a coating characterized by being a coating (1) that conducts electromagnetic radiation from the range of 50 micrometers to 200 nanometers inside, consisting of less a paint layer of polymeric base material, silicone, polyurethane, fiberglass, acrylic polymer, acrylic resin, polyester, vinyl, epoxy or PET, with a light permeability greater than 60% and with a refractive index between 1.3 and 1.9. The diopter formed by the coating and the air allows the critical angle of reflection not to be exceeded and the light radiation to be conducted inside the coating. The diffusion of the light to the exterior is produced by presenting the paint layer with a surface roughness of 10 to 300 micrometers that acts generating a change in the radiation exit angle, exceeding the critical reflection index.
Reivindicación dependiente de la 1 caracterizada por que la difusión al exterior se puede controlar mediante la anisotropía de la pintura generada mediante la adición de micro o nano partículas de nitruros, carburos, óxidos como óxido de silicio, óxido de titanio, óxido de zirconio, óxido de cerio, sales metálicas, y derivados haiogenados. Provocando que parte de la luz transmitida por el interior del recubrimiento cambie su ángulo de refracción y se difunda al exterior.  Claim dependent on the 1 characterized in that the diffusion abroad can be controlled by anisotropy of the paint generated by the addition of micro or nano particles of nitrides, carbides, oxides such as silicon oxide, titanium oxide, zirconium oxide, oxide of cerium, metal salts, and haiogenated derivatives. Causing that part of the light transmitted inside the coating change its angle of refraction and diffuse to the outside.
Reivindicación dependiente de la 1 y de la 2, caracterizada por comprender este recubrimiento (1) de una primera capa en contacto con el objeto (5) sobre el que se aplica el recubrimiento, de una pintura reflectante convencional (7). Reivindicación dependiente de la 1 a 2, caracterizada por comprender este recubrimiento (1) de una capa externa, de una pintura reflectante convencional (3) al objeto de disminuir las pérdidas de transmisión de la radiación. Reivindicación dependiente de la 1 a 2, caracterizada por que al menos una de las capas del recubrimiento (1) incluye cargas o aditivos de AsGa, KH2P04, KD2P04 o LiTa03, proporcionando propiedades de variación del índice de reflexión al aplicarle un campo eléctrico. Claim dependent on 1 and 2, characterized by comprising this coating (1) of a first layer in contact with the object (5) on which the coating is applied, of a conventional reflective paint (7). Claim dependent from 1 to 2, characterized by comprising this coating (1) of an outer layer, of a conventional reflective paint (3) in order to reduce radiation transmission losses. Claim dependent from 1 to 2, characterized in that at least one of the layers of the coating (1) includes fillers or additives of AsGa, KH 2 P0 4 , KD 2 P0 4 or LiTa0 3 , providing properties of variation of the reflection index by applying an electric field.
PCT/ES2012/000100 2011-04-19 2012-04-17 Coating that can transmit electromagnetic radiation WO2012143584A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201100285 2011-04-19
ES201100285A ES2396536B1 (en) 2011-04-19 2011-04-19 ELECTROMAGNETIC RADIATION TRANSMITTER COATING

Publications (1)

Publication Number Publication Date
WO2012143584A1 true WO2012143584A1 (en) 2012-10-26

Family

ID=47041078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/000100 WO2012143584A1 (en) 2011-04-19 2012-04-17 Coating that can transmit electromagnetic radiation

Country Status (2)

Country Link
ES (1) ES2396536B1 (en)
WO (1) WO2012143584A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111518467A (en) * 2020-03-27 2020-08-11 浙江大学 Preparation method of high-functionality polyurethane acrylate-silicon dioxide composite hardened coating

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647489A (en) * 1985-05-15 1987-03-03 Rohm Gmbh Chemische Fabrik Multilayer web plate with improved light-permeability
US4707725A (en) * 1985-09-30 1987-11-17 Mitsubishi Denki Kabushiki Kaisha Fluorescent coating for uv sensitive semiconductor device
EP0659844A1 (en) * 1993-12-22 1995-06-28 Sekisui Chemical Co., Ltd. Transparent conductive coating composition and transparent antistatic molded article
EP0730168A2 (en) * 1995-03-03 1996-09-04 Seiko Epson Corporation Film-forming coating solution and synthetic resin lens
US20030092815A1 (en) * 2000-04-11 2003-05-15 Elke Steudel Transparent medium having angle-selective transmission or reflection properties and/or absorption properties
US20080008857A1 (en) * 2006-07-07 2008-01-10 Kalkanoglu Husnu M Solar Heat Responsive Exterior Surface Covering
US20090128912A1 (en) * 2005-09-16 2009-05-21 Matsushita Electric Industrial Co., Ltd. Composite material and optical component using the same
WO2010104146A1 (en) * 2009-03-11 2010-09-16 旭化成イーマテリアルズ株式会社 Coating composition, coating film, laminate, and process for production of laminate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647489A (en) * 1985-05-15 1987-03-03 Rohm Gmbh Chemische Fabrik Multilayer web plate with improved light-permeability
US4707725A (en) * 1985-09-30 1987-11-17 Mitsubishi Denki Kabushiki Kaisha Fluorescent coating for uv sensitive semiconductor device
EP0659844A1 (en) * 1993-12-22 1995-06-28 Sekisui Chemical Co., Ltd. Transparent conductive coating composition and transparent antistatic molded article
EP0730168A2 (en) * 1995-03-03 1996-09-04 Seiko Epson Corporation Film-forming coating solution and synthetic resin lens
US20030092815A1 (en) * 2000-04-11 2003-05-15 Elke Steudel Transparent medium having angle-selective transmission or reflection properties and/or absorption properties
US20090128912A1 (en) * 2005-09-16 2009-05-21 Matsushita Electric Industrial Co., Ltd. Composite material and optical component using the same
US20080008857A1 (en) * 2006-07-07 2008-01-10 Kalkanoglu Husnu M Solar Heat Responsive Exterior Surface Covering
WO2010104146A1 (en) * 2009-03-11 2010-09-16 旭化成イーマテリアルズ株式会社 Coating composition, coating film, laminate, and process for production of laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111518467A (en) * 2020-03-27 2020-08-11 浙江大学 Preparation method of high-functionality polyurethane acrylate-silicon dioxide composite hardened coating

Also Published As

Publication number Publication date
ES2396536A1 (en) 2013-02-22
ES2396536B1 (en) 2013-12-26

Similar Documents

Publication Publication Date Title
JP7197362B2 (en) System for disinfecting surfaces
US9618672B2 (en) Uniform illumination light diffusing fiber device
JP6632527B2 (en) Antimicrobial light transmission device and method for sterilizing a surface
WO2010011299A3 (en) Nanostructured optical fiber illumination systems and methods for biological applications
US20150335773A1 (en) Methods of irradiating articles and sanitizing systems employing light diffusing fibers
US20140218958A1 (en) Uniform illumination light diffusing fiber
JP3998502B2 (en) Gaze guidance lighting device
WO2017038047A1 (en) Flexible linear light-emitting object and process for producing same
US20200049874A1 (en) Ambient fiber lighting systems and methods
KR20200110673A (en) Light diffusion optical fiber illumination, blue-violet light transmission system illumination, blue-violet light transmission system, and blue-violet light induced disinfection method
ES2396536B1 (en) ELECTROMAGNETIC RADIATION TRANSMITTER COATING
US20120063149A1 (en) Multifunctional ambient lighting compositions
Logunov et al. Silica nano-structured fiber for illumination
US10107944B2 (en) Light emitting device for emitting diffuse ultraviolet light
JP2021500623A (en) Light diffusing optical fiber for guiding and scattering ultraviolet light
KR101917220B1 (en) Light emitting glass plate using by light diffusive panel
CN109530189A (en) For motor vehicle resin composite component and its manufacturing method
JP2020514784A5 (en)
JP7084693B2 (en) Light utilization space system
JP2006349918A (en) Game machine component
RU2446051C1 (en) Moulded polymer translucent article
JP2003105950A (en) Luminous joint
RO132468A0 (en) Photochemical method for disinfection and control of nosocomial infections in hospital and enclosures of biological risk
JP7241323B2 (en) Translucent member and light source system
BR112018007865A2 (en) nox reduction coatings and methods for reducing nox with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12774157

Country of ref document: EP

Kind code of ref document: A1