WO2012142809A1 - 一种输电线路接地故障自动定位装置 - Google Patents

一种输电线路接地故障自动定位装置 Download PDF

Info

Publication number
WO2012142809A1
WO2012142809A1 PCT/CN2011/079174 CN2011079174W WO2012142809A1 WO 2012142809 A1 WO2012142809 A1 WO 2012142809A1 CN 2011079174 W CN2011079174 W CN 2011079174W WO 2012142809 A1 WO2012142809 A1 WO 2012142809A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission line
ground fault
fault
power transmission
main control
Prior art date
Application number
PCT/CN2011/079174
Other languages
English (en)
French (fr)
Inventor
王辉
吴才彪
吴健成
潘国强
张子兆
沈超
沈峰
陈勇
鲁志豪
周华
周永宝
鲍长庚
Original Assignee
上海市电力公司
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海市电力公司, 国家电网公司 filed Critical 上海市电力公司
Publication of WO2012142809A1 publication Critical patent/WO2012142809A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/085Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Definitions

  • the invention relates to a grounding fault automatic positioning device for a transmission line. Background technique
  • the measurement result it can be determined that a certain section of the line is grounded or both grounded. Secondly, according to the judgment result, the segmentation search is continued, and the search range is gradually reduced. The grounding range is reduced to a certain extent. , can be arranged for a full inspection along the line.
  • the present invention aims to provide an automatic positioning device for grounding faults of a transmission line, so as to effectively reduce the positioning time of the grounding fault point of the transmission line and greatly improve the work efficiency of the maintenance personnel.
  • the invention relates to an automatic positioning device for ground fault of a transmission line, wherein the transmission line is connected to the outlet side of the main transformer of the substation, each transmission line is composed of a three-phase bus, and each transmission line is provided with a plurality of nodes.
  • the positioning device comprises a signal source device connected to the busbar side of the main transformer, and a plurality of fault displays on each phase bus respectively hooked at each node of each of the transmission lines a display, a plurality of overhead substations and an information processing center system respectively disposed at each node of each of the transmission lines,
  • the signal source device includes a resistance box, a voltage sensor connected between the neutral point of the main transformer bus bar and the ground, and a controller connected to the voltage sensor, wherein the resistance box includes serially connected in series a switch between the neutral point of the main transformer bus and the ground and a plurality of high voltage resistors, and the switch receives a control signal output by the controller, and outputs a ripple current signal;
  • Each of the fault displays includes an electromagnetic induction device for receiving the ripple current signal, a detection control module coupled to the electromagnetic induction device, and an antenna communication device coupled to the detection control module;
  • the overhead substation includes a main control device, a GPRS module respectively connected to the main control device, a battery, and a solar battery interface and a solar battery panel sequentially connected to the battery, wherein the main control device passes A wireless communication antenna is communicatively coupled to the antenna communication device, and the GPRS module is communicatively coupled to the information processing center system via a GPRS antenna.
  • the main control device is wirelessly connected with the antenna communication device; the GPRS module is connected to the information processing center system by GSM communication.
  • the resistance box further includes a case for setting the switch and a plurality of high voltage resistors.
  • the overhead substation further includes a chassis for setting the main control device, the GPRS module, the battery, and the solar battery interface.
  • the present invention senses the neutral point offset voltage through the signal source device disposed on the busbar side of the main transformer of the substation, and feeds back a ripple current signal to the busbar side, and then sets it on the outlet side of the main transformer of the substation.
  • the fault display senses the ripple current signal to detect and locate the faulty line, and finally sends the detected fault information to the mobile phone or monitoring device of the operator via the information processing center system through the overhead substation, thereby enabling the operator to Timely and accurately grasp the safety situation of transmission lines, save repair time, improve work efficiency, and greatly reduce the economic loss and social impact caused by line faults.
  • FIG. 1 is a working principle diagram of a grounding fault automatic positioning device for a transmission line according to the present invention
  • FIG. 2 is a diagram showing installation of a signal source device in a grounding fault automatic positioning device for a transmission line according to the present invention
  • FIG. 3 is a schematic structural view of a resistance box of a signal source device in a ground fault automatic positioning device for a transmission line according to the present invention
  • FIG. 4 is a schematic structural view of a fault display in a ground fault automatic positioning device for a transmission line according to the present invention
  • Fig. 5 is a schematic view showing the structure of an overhead substation in a grounding fault automatic positioning device for a transmission line according to the present invention. detailed description
  • the transmission line 6 is connected to the outlet side of the main transformer 5 of the substation, and each transmission line 6 is composed of a three-phase bus, and each transmission line 6 is provided with a plurality of nodes.
  • the present invention is a transmission line ground fault automatic positioning device, comprising a signal source device 1 connected to the busbar side of the main transformer 5, and a plurality of each phase bus respectively hooked at each node of each transmission line 6.
  • the faulty display 2, a plurality of overhead substations 3 and an information processing center system 4 respectively disposed at each node of each of the transmission lines 6.
  • the signal source device 1 includes a resistance box 11, a voltage sensor 12 connected between the neutral point 50 of the main transformer 5 and the ground, and a controller 13 connected to the voltage sensor 12, wherein the resistance box 11 includes a box 113.
  • Each of the fault displays 2 includes an electromagnetic induction device 21 for receiving a ripple current signal, a detection control module 22 coupled to the electromagnetic induction device 21, and an antenna communication device 23 coupled to the detection control module 22.
  • the overhead substation 3 includes a main control device 31, a GPRS module 32 and a battery 33 respectively connected to the main control device 31, and a solar battery interface 34, a solar battery panel 35 and a solar battery panel 35, which are sequentially connected to the battery 33.
  • a wifi wireless signal is output, and the GPRS module 32 is connected to the information processing center system 4GSM through a GPRS antenna 37, that is, the GPRS module 32 outputs a GSM signal to the information processing center system 4 via the GPRS antenna 37.
  • the controller 13 When a single-phase ground fault occurs on the transmission line 6, the offset voltage of the busbar neutral point 50 of the main transformer 5 occurs, and when the controller 13 detects that the offset voltage is greater than a set value by the voltage sensor 12 (the set value) After being preset in the controller 13 and held for a certain period of time, the controller 13 inputs the resistance box 11 according to the offset voltage, and sends a closing and opening control signal to the switch 111, thereby making the main transformer 5 bus neutral.
  • Point 50 band shortly accesses a medium resistor, and causes switch 111 to feed back a large ripple current signal to the bus side of main transformer 5 under the action of zero sequence voltage for a period of time (ie, a set of code grounding Current pulse);
  • the magnitude of the current pulse depends on the grounding resistance of the neutral point of the neutral point of the busbar 50, that is, the number of the high voltage resistors 112 (the number of the high voltage resistors 112 in this embodiment is four) and the resistance value. If the value is too low, the grounding current will be large, so that the interference to the communication line will be large; however, if the resistance value is too large, the reliability of the operation will be affected.
  • the choice of the magnitude of the resistance depends on the expected magnitude of the ground current, and the magnitude of the ground current can be determined according to the proportion of the cable included in the transmission line 6; in general, when the transmission line 6 has a cable ratio ⁇ 80%, When the grounding current is 100 200 A, the total resistance of the high voltage resistor 112 should be 28.80-57.74 ⁇ . When the transmission line 6 contains the cable ratio > 80%, the grounding current is 500 ⁇ 600 A, then the total resistance of the high voltage resistor 112 It should be 7.2 ⁇ 14.4 ⁇ .
  • the resistor box 11 is also provided with a protective grounding device 114 to prevent the metal box 113 from being charged to avoid accidents.
  • the fault display 2 can determine the single-phase bus where the transmission line 6 has a ground fault, and since the fault display 2 is provided at each node on each phase bus, the specificity of the single-phase bus can be determined. The fault point is accurately positioned.
  • the fault display 2 utilizes the principle of electromagnetic induction, that is, the electromagnetic induction device 21 detects the ripple current signal on the transmission line 6, and does not directly contact the core, thereby avoiding the phenomenon of damage due to the flow of a large current; the detection control module 22 Received electricity After the fault signal outputted by the magnetic induction device 21, the fault information is processed, and the antenna communication device 23 is triggered to output the fault location information in a wireless communication manner.
  • the communication signal of the overhead substation 3 disposed at each node of the transmission line 6 may cover the three faulty displays 2 at the node, when the main control device 31 receives the faulty display 2 on the faulty phase line via the wireless communication antenna 36.
  • the GPRS module 32 is activated to transmit fault information to the information processing center system 4 via the GPRS antenna 37; the main control unit 31 is powered by the battery 33, and the battery 33 is powered by the solar battery interface 34 from the outside of the chassis 38.
  • the battery board 35 is charged.
  • the information processing center system 4 records the specific location of the ground fault of the transmission line 6 in the system according to the received fault information, and sends it to the mobile phone or the monitoring device 7 of the operating personnel in the form of a short message, so that the operating personnel can be timely and accurate. Master the safety of transmission lines, save repair time and improve work efficiency.
  • the controller 13 of the signal source device 1 is a product of the model RC2000F produced by Shanghai Feikete Electric Co., Ltd.
  • the fault display 2 adopts the model GY-1PE-FG produced by Guangyuan Branch (Beijing) Technology Co., Ltd., wherein the electromagnetic induction device 21 adopts the 16F630 chip produced by American Microchip Technology Co., Ltd. 23 uses the TR24A wireless communication module.
  • the GPRS module 32 in the overhead substation 3 is a GSM communication module of the type TC35i produced by Siemens, and the main control device 31 adopts an 8-bit chip of Atmage32 which is produced by Atmel Corporation as a processor.
  • a clock module is separately configured in the main control device 31, and the clock module can be a clock chip of the model PCF8563 produced by Philips, and the solar battery panel 35 is used. It is a 10W monocrystalline silicon solar panel.
  • the information processing center system 4 uses the ATOM fanless embedded industrial computer and the PC matched with it, so that it has low power consumption, stable and reliable operation, strong computing power, unattended, automatic anti-crash and excellent. EMC electromagnetic compatibility and anti-electromagnetic interference capabilities.

Description

一种输电线路接地故障自动定位装置 技术领域
本发明涉及一种输电线路接地故障自动定位装置。 背景技术
众所周知, 由于自然灾害或其他因素的影响,输电线路难免遭受损坏出现接地 故障, 尤其容易在中、 高压架空输电线路上出现接地故障, 其中最常见的故障是架 空线路单相接地。对于此类故障,检修人员一般是通过检测线路的电压来判明接地 故障的接地点的位置;对于较短的架空输电线路寻找接地点时,可安排人员沿线进 行全面检查; 但是对于较长的架空输电线路寻找接地点时, 宜采用优选法进行, 即 首先在线路长度的 1/2处的耐张杆进行分段, 分别拆开线路三相的引流线, 使整个 线路分为两段, 然后用 2500V兆欧表分别测量三相导线的绝缘电阻, 根据测量结 果可判明线路的某段接地或两段均接地,其次根据判断结果继续分段查找,逐步缩 小查找范围, 待接地范围缩小到一定程度, 可安排人员沿线进行全面检查。
然而, 上述无论是全面检查法, 还是优选法, 都需要检修人员耗费大量的时间 和精力, 工作效率极低。 因此, 现在迫切需要研制一种故障自动定位装置以解决上 述问题。 发明内容
为了解决上述现有技术存在的问题, 本发明旨在提供一种输电线路接地故 障自动定位装置, 以实现有效减少输电线路接地故障点的定位时间, 大大提高 检修人员工作效率的目的。
本发明所述的一种输电线路接地故障自动定位装置, 所述输电线路连接在 变电站主变压器出线侧, 每条输电线路由三相总线构成, 且每条输电线路上设 有若干个节点, 所述定位装置包括一连接在所述主变压器母线侧的信号源设 备、 若干个分别挂接在所述每条输电线路的每个节点处的每相总线上的故障显 示器、 若干个分别设置在所述每条输电线路的每个节点处的架空子站和一信息 处理中心系统,
所述信号源设备包括一电阻箱、 一连接在所述主变压器母线中性点与地之 间的电压传感器和一与该电压传感器连接的控制器, 其中, 所述电阻箱包括依 次串联在所述主变压器母线中性点与地之间的一开关和若干个高压电阻, 且该 开关接收所述控制器输出的一控制信号, 并输出一脉动电流信号;
所述每个故障显示器包括一用于接收所述脉动电流信号的电磁感应装置、 一与该电磁感应装置连接的检测控制模块和一与该检测控制模块连接的天线 通讯装置;
所述架空子站包括一主控制装置、 分别与该主控制装置连接的一 GPRS模 块和一蓄电池以及与该蓄电池依次连接的一太阳能电池接口和一太阳能蓄电 池板, 其中, 所述主控制装置通过一无线通信天线与所述天线通讯装置通讯连 接, 所述 GPRS模块通过一 GPRS天线与所述信息处理中心系统通讯连接。
在上述的输电线路接地故障自动定位装置中, 所述主控制装置与天线通讯 装置无线通讯连接; 所述 GPRS模块与信息处理中心系统 GSM通讯连接。
在上述的输电线路接地故障自动定位装置中, 所述电阻箱还包括用于设置 所述开关和若干个高压电阻的箱体。
在上述的输电线路接地故障自动定位装置中, 所述架空子站还包括用于设 置所述主控制装置、 GPRS模块、 蓄电池和太阳能电池接口的机箱。
由于采用了上述的技术解决方案,本发明通过设置在变电站主变压器母线侧的 信号源设备感应其中性点偏移电压,并向母线侧反馈一脉动电流信号, 然后通过设 置在变电站主变压器出线侧的故障显示器感应该脉动电流信号,以实现对故障线路 的检测与定位,最后通过架空子站将检测到的故障信息经由信息处理中心系统发送 至运行人员的手机或监控设备,从而使运行人员能及时、准确地掌握输电线路的安 全情况, 节省抢修时间, 提高工作效率, 大大降低了线路故障所带来的经济损失和 社会影响。 附图说明
图 1是本发明一种输电线路接地故障自动定位装置的工作原理图; 图 2是本发明一种输电线路接地故障自动定位装置中信号源设备的安装示 意图;
图 3是本发明一种输电线路接地故障自动定位装置中信号源设备的电阻箱 的结构示意图;
图 4是本发明一种输电线路接地故障自动定位装置中故障显示器的结构示 意图;
图 5是本发明一种输电线路接地故障自动定位装置中架空子站的结构示意 图。 具体实施方式
下面结合附图, 对本发明的具体实施例进行详细说明。
请参阅图 1至图 5 , 输电线路 6连接在变电站主变压器 5出线侧, 每条输电线 路 6由三相总线构成, 且每条输电线路 6上设有若干个节点。 本发明, 即一种输电 线路接地故障自动定位装置, 包括一连接在主变压器 5母线侧的信号源设备 1、 若 干个分别挂接在每条输电线路 6的每个节点处的每相总线上的故障显示器 2、若干 个分别设置在每条输电线路 6的每个节点处的架空子站 3和一信息处理中心系统 4。
信号源设备 1包括一电阻箱 11、一连接在主变压器 5母线中性点 50与地之间 的电压传感器 12和一与电压传感器 12连接的控制器 13 , 其中, 电阻箱 11包括一 箱体 113、 设置在箱体 113内并依次串联在主变压器 5母线中性点 50与地之间的 一开关 111和若干个高压电阻 112以及一设置在箱体 113内的保护接地装置 114, 且开关 111接收控制器 13输出的一控制信号, 并输出一脉动电流信号。
每个故障显示器 2包括一用于接收脉动电流信号的电磁感应装置 21、 一与电 磁感应装置 21连接的检测控制模块 22和一与检测控制模块 22连接的天线通讯装 置 23。
架空子站 3包括一主控制装置 31、 分别与主控制装置 31连接的一 GPRS模 块 32和一蓄电池 33以及与蓄电池 33依次连接的一太阳能电池接口 34、一太阳能 蓄电池板 35和一用于设置主控制装置 31、 GPRS模块 32、 蓄电池 33和太阳能电 池接口 34的机箱 38, 其中, 主控制装置 31通过一无线通信天线 36与天线通讯装 置 23无线通讯连接, 即主控制装置 31通过无线通信天线 36向天线通讯装置 23 输出一 wifi无线信号, GPRS模块 32通过一 GPRS天线 37与信息处理中心系统 4GSM通讯连接,即 GPRS模块 32通过 GPRS天线 37向信息处理中心系统 4输出 一 GSM信号。
下面以一根三相输电线路 6为例, 对本发明的工作原理如下:
当输电线路 6出现一个单相接地故障时, 主变压器 5母线中性点 50会出现偏 移电压, 当控制器 13通过电压传感器 12检测到该偏移电压大于一个设定值(该设 定值预设在控制器 13内部),并保持了一定的时间后,则控制器 13根据偏移电压, 投入电阻箱 11 , 向开关 111发出合、 分闸控制信号, 从而使主变压器 5母线中性 点 50波段性地短时接入一个中电阻, 并使开关 111在一个时间段内在零序电压的 作用下,会向主变压器 5母线侧反馈一较大的脉动电流信号(即一组编码接地电流 脉冲); 电流脉冲的大小取决于母线中性点 50中性点的接地电阻, 即高压电阻 112 的个数(本实施例中高压电阻 112的个数为 4个)与阻值, 若阻值取的太低, 接地 电流就会较大,如此一来对通信线路的干扰就会较大;但是如果阻值取的太大的话, 又会影响到运行的可靠性。 因此, 阻值的大小的选择取决于接地电流大小的预期, 而接地电流的大小可按输电线路 6所含电缆的比例来决定; 一般情况下, 当输电线 路 6含电缆比例 < 80%时, 接地电流为 100 200 A, 则高压电阻 112的总阻值应为 28.80-57.74Ω ; 当输电线路 6含电缆比例 > 80%时, 接地电流为 500~600 A, 则高 压电阻 112的总阻值应为 7.2~14.4 Ω ; 另外, 电阻箱 11中除了高压电阻 112接地 以形成回路外,还设有保护接地装置 114以防止金属箱体 113带电,避免引起伤亡 事故。
虽然上述的脉动电流信号会经由主变压器 5传递至输电线路 6的每相总线,但 是由于回路只会在输电线路 6的接地故障点和大地之间形成, 因此,只有挂接在发 生接地故障的单相输电线路 6上的故障显示器 2才能检测到该脉动电流信号,而挂 接在其它未出现接地故障的单相输电线路 6上的故障显示器 2因为没有形成回路, 因此无法检测到该信号; 故障显示器 2根据这一工作原理, 即可确定输电线路 6 发生接地故障的单相总线, 而且由于每相总线上的各个节点处均设有故障显示器 2, 因此, 即可对单相总线的具体故障点进行准确定位。 故障显示器 2利用电磁感 应原理, 即电磁感应装置 21检测输电线路 6上的脉动电流信号, 而并不跟线芯直 接接触, 从而避免了因流过大电流而发生损坏的现象; 检测控制模块 22接收到电 磁感应装置 21输出的故障信号后 , 进行故障信息的处理 , 并触发天线通讯装置 23 以无线通讯方式向外输出该故障的位置信息。
设置在输电线路 6每个节点处的架空子站 3的通讯信号可以覆盖该节点处的三 个故障显示器 2, 当主控制装置 31通过无线通信天线 36接收到故障相线上的故障 显示器 2发出的故障信息后, 启动 GPRS模块 32工作, 即通过 GPRS天线 37向信 息处理中心系统 4发送故障信息; 主控制装置 31由蓄电池 33供电, 且蓄电池 33 通过太阳能电池接口 34由设在机箱 38外的太阳能蓄电池板 35充电。
信息处理中心系统 4根据接收到的故障信息,将输电线路 6发生接地故障的具 体位置记录在系统中, 并以短信形式发送至运行人员的手机或监控设备 7, 从而使 运行人员能及时、准确地掌握输电线路的安全情况,节省抢修时间,提高工作效率。
本实施例中, 信号源设备 1中控制器 13采用的是上海菲柯特电气有限公司生 产的型号为 RC2000F的产品。 故障显示器 2采用的是光远科电 (北京)科技有限 公司生产的型号为 GY-1PE-FG的产品, 其中, 电磁感应装置 21采用的是美国微 芯科技公司生产的 16F630芯片 , 天线通讯装置 23采用的是 TR24A型无线通讯模 块。架空子站 3中的 GPRS模块 32采用的是西门子公司生产的型号为 TC35i的 GSM 通讯模块, 主控制装置 31采用的爱特梅尔公司生产的型号为 Atmage32的 8位芯 片的单片机作为处理器, 另外, 为了确保检测状态低功耗以及系统时间准确, 主控 制装置 31内还独立配置的一时钟模块, 该时钟模块可采用的飞利浦公司生产的型 号为 PCF8563的时钟芯片, 太阳能蓄电池板 35采用的是 10W单晶硅太阳能电池 板。 信息处理中心系统 4采用的是 ATOM无风扇嵌入式工控机以及与之配合的 pc 机, 从而具有低功耗、 运行稳定可靠、 运算能力强、 可无人值守、 能自动防死机并 具有出色的 EMC电磁兼容能力和抗电磁干扰能力等优点。
以上结合附图实施例对本发明进行了详细说明, 本领域中普通技术人员可 根据上述说明对本发明做出种种变化例。 因而, 实施例中的某些细节不应构成 对本发明的限定, 本发明将以所附权利要求书界定的范围作为本发明的保护范 围。

Claims

1. 一种输电线路接地故障自动定位装置,所述输电线路连接在变电站主变 压器出线侧, 每条输电线路由三相总线构成, 且每条输电线路上设有若干个节 点, 其特征在于, 所述定位装置包括一连接在所述主变压器母线侧的信号源设 备、 若干个分别挂接在所述每条输电线路的每个节点处的每相总线上的故障显 示器、 若干个分别设置在所述每条输电线路的每个节点处的架空子站和一信息 处理中心系统,
所述信号源设备包括一电阻箱、 一连接在所述主变压器母线中性点与地之 间的电压传感器和一与该电压传感器连接的控制器, 其中, 所述电阻箱包括依 次串联在所述主变压器母线中性点与地之间的一开关和若干个高压电阻, 且该 开关接收所述控制器输出的一控制信号, 并输出一脉动电流信号;
所述每个故障显示器包括一用于接收所述脉动电流信号的电磁感应装置、 一与该电磁感应装置连接的检测控制模块和一与该检测控制模块连接的天线 通讯装置;
所述架空子站包括一主控制装置、 分别与该主控制装置连接的一 GPRS模 块和一蓄电池以及与该蓄电池依次连接的一太阳能电池接口和一太阳能蓄电 池板, 其中, 所述主控制装置通过一无线通信天线与所述天线通讯装置通讯连 接, 所述 GPRS模块通过一 GPRS天线与所述信息处理中心系统通讯连接。
2. 根据权利要求 1所述的输电线路接地故障自动定位装置, 其特征在于, 所述主控制装置与天线通讯装置无线通讯连接; 所述 GPRS模块与信息处理中 心系统 GSM通讯连接。
3. 根据权利要求 1或 2所述的输电线路接地故障自动定位装置, 其特征 在于, 所述电阻箱还包括用于设置所述开关和若干个高压电阻的箱体。
4. 根据权利要求 1或 2所述的输电线路接地故障自动定位装置, 其特征在 于, 所述架空子站还包括用于设置所述主控制装置、 GPRS模块、 蓄电池和太 阳能电池接口的机箱。
PCT/CN2011/079174 2011-04-22 2011-08-31 一种输电线路接地故障自动定位装置 WO2012142809A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011201213632U CN202041612U (zh) 2011-04-22 2011-04-22 一种输电线路接地故障自动定位装置
CN201120121363.2 2011-04-22

Publications (1)

Publication Number Publication Date
WO2012142809A1 true WO2012142809A1 (zh) 2012-10-26

Family

ID=44969050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079174 WO2012142809A1 (zh) 2011-04-22 2011-08-31 一种输电线路接地故障自动定位装置

Country Status (2)

Country Link
CN (1) CN202041612U (zh)
WO (1) WO2012142809A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103471722A (zh) * 2013-10-08 2013-12-25 珠海亿能电力科技有限公司 智能移动式在线测温系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749553A (zh) * 2011-04-22 2012-10-24 上海市电力公司 一种输电线路接地故障自动定位装置
CN108872795A (zh) * 2018-07-26 2018-11-23 国网福建省电力有限公司 基于零序电流的中性点不接地系统单相失地故障定位方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273470A (ja) * 1993-03-19 1994-09-30 Sumitomo Electric Ind Ltd 架空送電線の事故区間標定装置
JP2008096336A (ja) * 2006-10-13 2008-04-24 J-Power Systems Corp サージ電流簡易検出器
CN101459334A (zh) * 2007-12-14 2009-06-17 山东科汇电力自动化有限公司 电力系统故障信息获取方法
CN201307148Y (zh) * 2008-10-10 2009-09-09 孟宪龙 输电线路杆塔接地故障监测定位装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273470A (ja) * 1993-03-19 1994-09-30 Sumitomo Electric Ind Ltd 架空送電線の事故区間標定装置
JP2008096336A (ja) * 2006-10-13 2008-04-24 J-Power Systems Corp サージ電流簡易検出器
CN101459334A (zh) * 2007-12-14 2009-06-17 山东科汇电力自动化有限公司 电力系统故障信息获取方法
CN201307148Y (zh) * 2008-10-10 2009-09-09 孟宪龙 输电线路杆塔接地故障监测定位装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103471722A (zh) * 2013-10-08 2013-12-25 珠海亿能电力科技有限公司 智能移动式在线测温系统

Also Published As

Publication number Publication date
CN202041612U (zh) 2011-11-16

Similar Documents

Publication Publication Date Title
CN205067643U (zh) 变电站直流供电系统的分布式绝缘监测装置
CN202975229U (zh) 变电站二次回路多点接地检测查找仪
CN202815148U (zh) 便携式电缆故障检测终端
CN106443293A (zh) 一种直流接地故障在线检测及报警装置
CN203519180U (zh) 电缆搭接终端无线温度在线监测装置
CN202166682U (zh) 一种直接接地绝缘故障检测装置
WO2012142809A1 (zh) 一种输电线路接地故障自动定位装置
CN103777077A (zh) 无线钳形相位检测装置
CN102749553A (zh) 一种输电线路接地故障自动定位装置
CN102590695A (zh) 电力线路故障检测与定位装置
CN205539316U (zh) 一种基于pmu的配电网混合故障测距装置
CN201689147U (zh) 一种晶闸管整流桥触发角监测装置
WO2012142808A1 (zh) 一种用于输电线路接地故障自动定位装置的故障显示器
CN206074750U (zh) 一种电力变压器故障检测系统
CN205229412U (zh) 可视化便携式断路器操作机构状态检测装置
CN204945238U (zh) 一种自供电分布式无线电流传感器
CN201385683Y (zh) 交流转辙机道岔阻力监测装置
CN203349964U (zh) 一种自取能无线温度传感芯片
CN206378569U (zh) 一种电压继电器异常检测装置
CN206132912U (zh) 一种用于直流接地极线路故障探测的行波脉冲发生装置
CN202433480U (zh) 基于时间同步的架空线快速故障定位装置
CN104749486A (zh) 一种基于剩余电流保护器的it系统单相故障定位方法
CN203630207U (zh) 变压器夹件接地电流的双互感器在线监测装置
CN203772958U (zh) 无线钳形相位检测装置
CN203965059U (zh) Opgw线在线监测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11863923

Country of ref document: EP

Kind code of ref document: A1