WO2012141669A1 - Strake for gravitational settling of heavy minerals from pulp - Google Patents
Strake for gravitational settling of heavy minerals from pulp Download PDFInfo
- Publication number
- WO2012141669A1 WO2012141669A1 PCT/UA2012/000018 UA2012000018W WO2012141669A1 WO 2012141669 A1 WO2012141669 A1 WO 2012141669A1 UA 2012000018 W UA2012000018 W UA 2012000018W WO 2012141669 A1 WO2012141669 A1 WO 2012141669A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- riffles
- pulp
- strake
- carpet
- gutter
- Prior art date
Links
- 229910052500 inorganic mineral Inorganic materials 0.000 title claims abstract description 26
- 239000011707 mineral Substances 0.000 title claims abstract description 26
- 235000010755 mineral Nutrition 0.000 claims abstract description 25
- 230000001413 cellular effect Effects 0.000 claims abstract description 12
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 10
- 235000000396 iron Nutrition 0.000 claims abstract description 8
- 230000004907 flux Effects 0.000 claims description 15
- 230000005284 excitation Effects 0.000 claims description 6
- 239000003302 ferromagnetic material Substances 0.000 claims description 6
- 238000004804 winding Methods 0.000 claims description 5
- 239000002245 particle Substances 0.000 description 27
- 239000012141 concentrate Substances 0.000 description 19
- 239000002689 soil Substances 0.000 description 12
- 230000005291 magnetic effect Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 239000013049 sediment Substances 0.000 description 7
- 238000000605 extraction Methods 0.000 description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 238000005065 mining Methods 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 241000566515 Nedra Species 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 235000002918 Fraxinus excelsior Nutrition 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 230000033558 biomineral tissue development Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- YDZQQRWRVYGNER-UHFFFAOYSA-N iron;titanium;trihydrate Chemical compound O.O.O.[Ti].[Fe] YDZQQRWRVYGNER-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000320 mechanical mixture Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/02—Magnetic separation acting directly on the substance being separated
- B03C1/025—High gradient magnetic separators
- B03C1/031—Component parts; Auxiliary operations
- B03C1/033—Component parts; Auxiliary operations characterised by the magnetic circuit
- B03C1/0335—Component parts; Auxiliary operations characterised by the magnetic circuit using coils
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03B—SEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
- B03B5/00—Washing granular, powdered or lumpy materials; Wet separating
- B03B5/68—Washing granular, powdered or lumpy materials; Wet separating by water impulse
- B03B5/70—Washing granular, powdered or lumpy materials; Wet separating by water impulse on tables or strakes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/02—Magnetic separation acting directly on the substance being separated
- B03C1/04—Magnetic separation acting directly on the substance being separated with the material carriers in the form of trays or with tables
- B03C1/08—Magnetic separation acting directly on the substance being separated with the material carriers in the form of trays or with tables with non-movable magnets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/02—Magnetic separation acting directly on the substance being separated
- B03C1/30—Combinations with other devices, not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/32—Magnetic separation acting on the medium containing the substance being separated, e.g. magneto-gravimetric-, magnetohydrostatic-, or magnetohydrodynamic separation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C2201/00—Details of magnetic or electrostatic separation
- B03C2201/20—Magnetic separation of bulk or dry particles in mixtures
Definitions
- This invention relates to structure of strakes for gravitational settling from pulp of such heavy minerals, in initial granulometric composition of which prevail fine-dispersed and/or lamellar particles. These strakes are meant:
- tails of such natural placers which were mined by inadequate means, crushed dumps of mining and/or metallurgical works, and ashes of thermal power-stations that use hard fuel, and,
- the cells of said carpets can be loaded by sediment very quickly (usually for 1.5-2 hours of functioning) and tightly. Therefore, small grains and, especially, fine-dispersed and/or lamellar particles of gold skip over arisen bed and, together with pulp flux, take away into tails pile, and attainable percentage of the base product in obtained concentrate is substantially less than its eventual percentage.
- extraction about 300 tons of gold from placers in the Amur region of Russian Federation was finished in accumulation more than 10 9 m 3 tails, which - according to geologists' assessment - contain more than 600 tons of non-separated gold.
- the large (on reserves) and practically inaccessible (for usual extraction means) man-caused placers had appeared instead of natural placers.
- SU 831180 discloses a method for loosening of bed by forced oscillation of riffles of guides. However, this allows loosening only upper layer of detritus settled in the catching carpet's cells, but major portion of concentrate remains practically undisturbed.
- a flow-through gutter at least a bottom of which is made from non-ferromagnetic material, and which, in operative position, is inclined to the horizontal line and connected by upper end to a pulp source and by lower end to a tailing pile,
- this means is based on a pulse alternating current generator and solenoids, windings of which are connected to the pulse generator, and upper ends of which are placed under the catching carpet's cells equipped with said permanent magnetic elements.
- the known strake can be equipped with:
- a set of kinematically linked hard guides of deep filling each of which comprises of lengthwise undulating in plan riffles (these riffles are located either above the catching carpet in first strake section, or above the respective guides of shallow filling in any other strake section and connected to the proper reciprocal motion drives), and
- transversal riffles which are fixed rigidly in the guide frames between the rows of said undulating riffles and between each extreme row of such riffles and respective side of the flow- through gutter, and have height that is practically equal to the height of said lengthwise undulating riffles.
- the known elastic catching carpet (see Fig.2 of said RU 2095147) has:
- each cell is confined by a bottom and a skirting, an supporting substrate layer that, in operative position, located on the bottom of the flow- through gutter and fastened to the upper cellular layer, and
- said flat permanent magnet elements which are fixed in respect of the substrate layer and located at least under some cells of upper layer.
- a flow-through gutter at least a bottom of which is made from non-ferromagnetic material, and which, in operative position, is inclined to the horizontal line and connected by upper end to a pulp source and by lower end to a tailing pile,
- a preferably double-layer elastic cellular catching carpet placed, in operative position, on the flow-through gutter's bottom; this carpet has - an upper cellular layer, each cell of which is confined by a bottom and a skirting and, optionally, is equipped with a petal valve located above said bottom, and/or with filaments fastened to said bottom between the valve's petals and the skirting), and
- a substrate supporting layer which is equipped with permanent magnetic elements fixed at least under some cells of the upper cellular layer;
- each said set comprises of:
- axles of rotation of each row of said plate-shaped transversal riffles these axles pierce respective said flat insertions at a level no more than the half of their height
- this means is based on a pulse alternating current generator and solenoids, windings of which are connected to the pulse generator, and upper ends of which are placed under the catching carpet's cells equipped with said permanent magnetic elements.
- the compound lengthwise undulating riffles having said flat insertions between said half-sine parts and the catching carpet having said permanent magnetic elements must be made and mounted very precisely in order to provide shaking of bed and sediments within the carpet's cells only in aforesaid volumes.
- These conditions may be kept on application of small-sized strakes during geological exploration, but are practically unrealizable during large-scale mining of placers by big strakes.
- the upper cellular layer of the double-layer elastic catching carpet may drift irregularly about the lower supporting layer during each work cycle. These drifts decrease efficacy of shaking even if the known strake would use for geological exploration.
- unavoidable alternating-sign deformation of the lengthwise undulating riffles causes quite often breakages of said riffles in interfaces the half-sine parts and the flat insertions of theirs.
- the invention is based on the problem - by improvement of form and arrangement of means of deceleration of a pulp flux and loosening of a sediment by vertical pushes - to create a more simple and reliable strake for catching of any fine-dispersed and/or lamellar particles of heavy minerals.
- a strake for gravitational settling of heavy minerals from pulp comprises of:
- (1 ) a made from non-ferromagnetic material flow-through gutter, which is inclined in operative position to the horizontal line and connected by upper end to a pulp source and by lower end to a tailing pile,
- a set of kinematically linked hard guides of shallow filling which are independently connected to the drives for their reciprocal motion along the flow-through gutter's sides and said carpet; this set comprises of: (3a) a lower guide that is adjacent to the said carpet and comprises of a rigid frame and rigid preferably straight transversal riffles, and
- an upper guide that is placed above the lower guide and comprises of at least two rows of lengthwise undulating in plan riffles, each of which is composed of alternated in series to bulge direction half-sine parts,
- an intermediate resilient support that is located under the flow-through gutter's bottom and has regular recesses, central through hole under each recess, and placed within said recesses non-ferromagnetic pushers, and
- a means for excitation of vertical vibrations within the pulp flux is based on a pulse alternating current generator and solenoids having ferromagnetic irons, at that windings of the solenoids are connected to the pulse generator, and their irons are located under said central through holes in said resilient support and equipped additionally by lower stops.
- the proposed strake is substantially simpler and trouble-free.
- Operational testing of the strake showed that adjustable synchronous shaking of all sediment in the said carpet's cells (by said pushers) and mechanical loosening of a bed arisen above said catching carpet (by the lower guide) are well sufficient with the view of separation of the most part of fine-dispersed and lamellar particles of heavy minerals from the pulp flux.
- First additional feature consists in that said straight transversal riffles of the lower guide are practically perpendicular to the frame's sides. This provides equal conditions for loosening of the bed and transfer of 'easy particles' of detritus over said riffles.
- each lengthwise undulating in plan riffle is composed of smoothly conjugated thin-layer circular semi-cylinders. This simplifies production of the proposed strake.
- Fig.1 shows the longitudinal section of the strake (without end parts);
- Fig.2 shows the top view of the strake
- Fig.3 shows the cross-section of the strake
- Fig.4 shows the simplest variant of the structure of the lower guide having straight riffles, which are practically perpendicular to the sides of the guide's frame (top view);
- Fig.5 shows the same as Fig.4 (longitudinal section by symmetry plane);
- Fig.6 shows the more complicated structure of the lower guide having straight riffles, which are inclined to the sides of the guide's frame at an angle less than 90° (top view);
- Fig.7 shows a set of examples of possible cross-section of the riffles of the lower guide
- Fig.8 shows schematic view of transfer of detritus over the riffles of the lower guide.
- the proposed strake has a made from non-ferromagnetic material flow-through gutter, which comprises of sides 1 and (preferably thin-sheet) bottom 2. Said gutter is inclined in operative position to the horizontal line (usually at angle in the range from 6° to 11°) and connected by upper end to a pulp source and by lower end to a tailing pile.
- a cellular (usually resilient) catching carpet 3 is placed on the flow-through gutter's bottom 2.
- a set of kinematically linked lower 4 and upper 5 hard guides of shallow filling are located above said carpet 3.
- Said guides 4 and 5 are made from non-ferromagnetic material and independently connected to the drives for their reciprocal motion along the flow-through gutter's sides 1 and said carpet 3.
- Each lower guide 4 that is adjacent in operative position to the said carpet 3 comprises of a rigid frame 6 and rigid preferably straight transversal riffles 7 (see Figs 4 and 6).
- These riffles 7 are usually perpendicular to the sides of the frame 6 (see Figs 4 and 5), but may be located at other angles as it shown on Fig.6.
- the riffles 7 may be made as rods having different cross- section, e.g. in the form of a rectangle, a solid triangle, a solid semi-cylinder, an angle bar, a bow-shaped bar etc. (see Fig.7). In practice, the angle bar and the bow-shaped bar are preferable. It is also preferable if said straight riffles 7 are practically perpendicular to the sides of said frame 6.
- Each upper guide 5 (see Fig.2) is placed in operative position above the lower guide and comprises of at least two rows of lengthwise undulating in plan riffles 8, each of which is composed of alternated in series to bulge direction half-sine parts.
- these riffles 8 are usually composed of smoothly conjugated circular thin-layer circular semi-cylinders.
- the strake (see Figs 1 and 3) is equipped with placed under the bottom 2 -
- an intermediate (entire or composed of transversal strips) resilient support 9 that has not designated especially regular (preferably cylindrical) recesses, central through hole under each recess, and placed within said recesses non-ferromagnetic pushers 10 shaped usually as plain washers, and,
- a means for excitation of vertical vibrations within the pulp flux is based on not showed especially a suitable pulse alternating current generator and solenoids 11 having ferromagnetic irons 12.
- windings of the solenoids 11 are connected to the above-mentioned pulse generator, and said irons 12 are located under said central through holes in said resilient support 9 and equipped additionally by not showed especially lower stops.
- the described strake can use for mining of heavy minerals and exploration placers of theirs as follows.
- the catching carpet 3 must be placed on the flow-through gutter's bottom 2, and said gutter must be mounted in desirable operative position. Then a personnel switch on above- mentioned drives of reciprocal motion of said guides 4 and 5, begin delivery of a pulp, and switch on solenoids 11.
- Wave-like form of channels between said undulating riffles 8 and between them and the sides 1 of said flow-through gutter causes deceleration of the pulp flux and redistribution of 'easy particles' of enclosing strata and/or soils and 'heavy particles' of valuable mineral in velocity field within aforesaid channels. Reciprocal motion of said guides 5 promotes the redistribution of all said hard particles additionally.
- the irons 12 of the solenoids 11 actuate practically synchronous and intensity-regulated vertical impacts of plain washers-pushers 10 in the thin-sheet strake's bottom 2. These impacts shake efficiently practically all mass of concentrate settling in the cells of said carpet 3 and the bed as it forms above said carpet 3. Additional loosening of said bed provides by the transversal riffles 7 of the lower guide 4 being in the reciprocal motion.
- the personnel make an end of delivery of the pulp into the strake and, practically at the same time, switch off above-mentioned drives of the reciprocal motion of the guides 4 and 5 and cut off the power from the solenoids 11. Then the personnel take out the catching carpet 3 from said flow-through gutter, remove obtained concentrate from the cells of the catching carpet 3 and encase it in a not shown shielding container, which serves for storage and transportation of the concentrate to a refinery.
- peripherals such as any upstream catcher of ferromagnetic impurities, at least one other additional downstream strake, etc.
- the strakes according to the invention can series-produce at present machine-building plants. Further they can be used preferably as output devices of dredges or other devices for industrial hydraulic mining of such both natural and man-caused placers those contain precious metals particles related to preferable shallow granulometric classes (less than 0.15 mm).
- strakes according to the invention are applicable:
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Paper (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
UAA201104550A UA103203C2 (ru) | 2011-04-14 | 2011-04-14 | Шлюз для гравитационного осаждения тяжелых минералов из пульпы |
UAA201104550 | 2011-04-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012141669A1 true WO2012141669A1 (en) | 2012-10-18 |
Family
ID=47009589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/UA2012/000018 WO2012141669A1 (en) | 2011-04-14 | 2012-02-27 | Strake for gravitational settling of heavy minerals from pulp |
Country Status (2)
Country | Link |
---|---|
UA (1) | UA103203C2 (ru) |
WO (1) | WO2012141669A1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106140451A (zh) * | 2016-08-29 | 2016-11-23 | 宋文革 | 一种重介质浅槽分选机上升流防堵方法及装置 |
WO2020186596A1 (zh) * | 2019-03-15 | 2020-09-24 | 山东华特磁电科技股份有限公司 | 低频交流电磁淘洗机 |
WO2024193124A1 (zh) * | 2023-03-20 | 2024-09-26 | 蔚来汽车科技(安徽)有限公司 | 粉料除磁装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2649614C1 (ru) * | 2016-12-13 | 2018-04-04 | Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) | Концентратор тяжелых минералов из сыпучего материала |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1755925A1 (ru) * | 1990-03-28 | 1992-08-23 | Институт Геотехнической Механики Ан Усср | Вибрационный струйный желоб |
RU2095147C1 (ru) * | 1995-05-03 | 1997-11-10 | Виктор Трофимович Кардаш | Способ обогащения россыпей постоянным разрыхлением концентрата тяжелых минералов и устройство для его осуществления |
US5927508A (en) * | 1996-05-16 | 1999-07-27 | Plath; David C. | Method and apparatus for recovering fine gold from low grade ores |
RU2262385C1 (ru) * | 2003-12-15 | 2005-10-20 | Виктор Трофимович Кардаш | Шлюз для осаждения концентратов тяжелых минералов из пульпы и улавливающий коврик для него |
-
2011
- 2011-04-14 UA UAA201104550A patent/UA103203C2/ru unknown
-
2012
- 2012-02-27 WO PCT/UA2012/000018 patent/WO2012141669A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1755925A1 (ru) * | 1990-03-28 | 1992-08-23 | Институт Геотехнической Механики Ан Усср | Вибрационный струйный желоб |
RU2095147C1 (ru) * | 1995-05-03 | 1997-11-10 | Виктор Трофимович Кардаш | Способ обогащения россыпей постоянным разрыхлением концентрата тяжелых минералов и устройство для его осуществления |
US5927508A (en) * | 1996-05-16 | 1999-07-27 | Plath; David C. | Method and apparatus for recovering fine gold from low grade ores |
RU2262385C1 (ru) * | 2003-12-15 | 2005-10-20 | Виктор Трофимович Кардаш | Шлюз для осаждения концентратов тяжелых минералов из пульпы и улавливающий коврик для него |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106140451A (zh) * | 2016-08-29 | 2016-11-23 | 宋文革 | 一种重介质浅槽分选机上升流防堵方法及装置 |
WO2020186596A1 (zh) * | 2019-03-15 | 2020-09-24 | 山东华特磁电科技股份有限公司 | 低频交流电磁淘洗机 |
WO2024193124A1 (zh) * | 2023-03-20 | 2024-09-26 | 蔚来汽车科技(安徽)有限公司 | 粉料除磁装置 |
Also Published As
Publication number | Publication date |
---|---|
UA103203C2 (ru) | 2013-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7134555B2 (en) | Apparatus for isolating materials | |
WO2012141669A1 (en) | Strake for gravitational settling of heavy minerals from pulp | |
US5927508A (en) | Method and apparatus for recovering fine gold from low grade ores | |
US9399225B1 (en) | Gravity recovery system and method for recovery of heavy metals from sands and gravels | |
CN110302889A (zh) | 一种重介质矿石分选设备 | |
AU2008305810A1 (en) | Strake for extraction of heavy minerals from pulp | |
JP6113361B2 (ja) | 重鉱物成分と磁性鉱物成分の同時選別が可能な比重選別装置 | |
RU2634768C1 (ru) | Магнитожидкостный сепаратор для извлечения золота из минерального сырья | |
CN101102849B (zh) | 用于从矿浆沉积重矿物精矿的洗矿槽及其收集毡层 | |
Grewal | Introduction to mineral processing | |
RU2750552C1 (ru) | Способ извлечения благородных металлов и установка "стевер" для его реализации | |
US1752169A (en) | Concentrator | |
RU2211091C1 (ru) | Способ гравитационно-магнитного обогащения песков россыпных месторождений и устройство для его осуществления | |
RU2403978C1 (ru) | Промывочно-обогатительный прибор для переработки металлоносных песков | |
RU2262385C1 (ru) | Шлюз для осаждения концентратов тяжелых минералов из пульпы и улавливающий коврик для него | |
Gungoren et al. | Introduction to Mineral Research | |
RU2339452C1 (ru) | Способ разделения частиц по плотности и устройство для его осуществления | |
RU57148U1 (ru) | Сепаратор | |
RU2153399C2 (ru) | Способ обогащения золотосодержащих песков и промывочный прибор для обогащения золотосодержащих песков | |
US3162296A (en) | Conveyor for magnetic material | |
RU2238802C2 (ru) | Способ разделения сыпучей массы по плотности и/или по размерам частиц и установка для его реализации | |
RU2315663C1 (ru) | Устройство для выделения проводящих частиц из смеси дисперсных немагнитных материалов | |
RU2447948C2 (ru) | Устройство для обогащения тонкодисперсных шлихов, содержащих магнитные минералы | |
RU2649614C1 (ru) | Концентратор тяжелых минералов из сыпучего материала | |
DE860625C (de) | Foerderstrecke mit Schwingantrieb fuer Stueck- und Schuettgueter, insbesondere fuer eisenhaltige Stoffe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12771117 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12771117 Country of ref document: EP Kind code of ref document: A1 |