WO2012141480A2 - Procédé et appareil de transmission et de réception de données dans un système de communication mobile - Google Patents

Procédé et appareil de transmission et de réception de données dans un système de communication mobile Download PDF

Info

Publication number
WO2012141480A2
WO2012141480A2 PCT/KR2012/002726 KR2012002726W WO2012141480A2 WO 2012141480 A2 WO2012141480 A2 WO 2012141480A2 KR 2012002726 W KR2012002726 W KR 2012002726W WO 2012141480 A2 WO2012141480 A2 WO 2012141480A2
Authority
WO
WIPO (PCT)
Prior art keywords
message
terminal
data transmission
data
rrc connection
Prior art date
Application number
PCT/KR2012/002726
Other languages
English (en)
Korean (ko)
Other versions
WO2012141480A3 (fr
Inventor
김성훈
리에샤우트게르트 잔 반
김상범
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to US14/111,530 priority Critical patent/US9622164B2/en
Priority to EP19160842.1A priority patent/EP3512122B1/fr
Priority to ES12770987T priority patent/ES2724802T3/es
Priority to EP12770987.1A priority patent/EP2698930B1/fr
Publication of WO2012141480A2 publication Critical patent/WO2012141480A2/fr
Publication of WO2012141480A3 publication Critical patent/WO2012141480A3/fr
Priority to US15/483,979 priority patent/US10362621B2/en
Priority to US16/518,875 priority patent/US10887942B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/02Protecting privacy or anonymity, e.g. protecting personally identifiable information [PII]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/03Protecting confidentiality, e.g. by encryption
    • H04W12/037Protecting confidentiality, e.g. by encryption of the control plane, e.g. signalling traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/20Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0254Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity detecting a user operation or a tactile contact or a motion of the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/10Integrity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a method and apparatus for transmitting and receiving data in a mobile communication system.
  • a mobile communication system has been developed for the purpose of providing communication while securing user mobility.
  • Such a mobile communication system has reached a stage capable of providing high-speed data communication service as well as voice communication due to the rapid development of technology.
  • LTE Long Term Evolution
  • the LTE system aims to be commercialized in 2010, and implements high-speed packet-based communication having a transmission rate of up to 100 Mbps, which is higher than the currently provided data rate, and is almost standardized.
  • the present invention has been proposed to solve the above problems, and an object thereof is to provide a method and apparatus for efficiently processing small and intermittently occurring packets.
  • the data transmission method of the terminal if the data to be transmitted, a condition determination step of determining whether a short data transmission condition is satisfied and the short data transmission condition is satisfied If so, it may include transmitting the data to be transmitted in a radio resource control (RRC) connection setup complete message.
  • RRC radio resource control
  • the terminal for transmitting data if the data to be transmitted, the control unit for determining whether a short data transmission condition is satisfied and the short data transmission condition,
  • the RRC may include a transceiver configured to include data to be transmitted in a radio resource control (RRC) connection setup complete message.
  • RRC radio resource control
  • FIG. 1 is a diagram showing the structure of an LTE system to which the present invention is applied;
  • FIG. 2 is a diagram showing a radio protocol structure in an LTE system to which the present invention is applied;
  • 3 is a diagram illustrating a data transmission procedure 1
  • FIG. 4 is a view for explaining an embodiment of the present invention.
  • 5 is a diagram illustrating a data transmission procedure 2
  • FIG. 6 illustrates a general security 1 procedure and a modified security 1 procedure.
  • FIG 7 illustrates various message formats according to an embodiment of the present invention.
  • 9 is a diagram illustrating ciphering / deciphering.
  • FIG. 10 is a diagram illustrating an operation of a terminal device according to an embodiment.
  • FIG. 11 is a view for explaining the operation of the MME 125 apparatus of the embodiment.
  • 13 is a diagram illustrating an operation of a terminal to which another modified security procedure 1 is applied;
  • FIG. 14 illustrates an overall operation of processing a mobile terminated call according to an embodiment.
  • 15 is a diagram showing the overall operation of the second embodiment.
  • 16 shows the data format of a special DRB.
  • 17 is a diagram illustrating a terminal operation according to the second embodiment of the present disclosure.
  • FIG. 18 is a diagram illustrating a terminal device according to an embodiment of the present invention.
  • FIG. 19 illustrates a network device according to a preferred embodiment of the present invention.
  • the present invention relates to a method and apparatus for processing data that is small in size and occurs intermittently.
  • FIG. 1 is a diagram illustrating a structure of an LTE system to which the present invention is applied.
  • a radio access network of an LTE system includes a next-generation base station (Evolved Node B, ENB, Node B, or base station) 105, 110, 115, and 120 and an MME 125. And S-GW 130 (Serving-Gateway).
  • the user equipment (hereinafter referred to as UE or UE) 135 connects to an external network through the ENBs 105, 110, 115, and 120 and the S-GW 130.
  • the ENBs 105, 110, 115, and 120 correspond to existing Node Bs of the UMTS system.
  • the ENB 105 is connected to the UE 135 by radio channel and performs a more complicated role than the existing Node B.
  • all user traffic including real-time services such as Voice over IP (VoIP) over the Internet protocol, is serviced through a shared channel, so that UEs can receive information on buffer status, available transmit power, and channel status.
  • VoIP Voice over IP
  • a device is needed to collect and schedule the ENBs 105, 110, 115, and 120.
  • One ENB typically controls multiple cells.
  • the LTE system uses orthogonal frequency division multiplexing (hereinafter, referred to as OFDM) in a 20 MHz bandwidth as a radio access technology.
  • OFDM orthogonal frequency division multiplexing
  • AMC adaptive modulation & coding
  • the S-GW 130 is a device that provides a data bearer, and generates or removes a data bearer under the control of the MME 125.
  • the MME 125 is a device that is responsible for various control functions as well as mobility management function for the terminal 135 is connected to a plurality of base stations.
  • FIG. 2 is a diagram illustrating a radio protocol structure in an LTE system to which the present invention is applied.
  • a wireless protocol of an LTE system includes packet data convergence protocols 205 and 240 (PDCP), radio link control 210 and 235 (RMC), and medium access control 215 and 230 (MAC) in a terminal and an ENB, respectively.
  • the PDCP Packet Data Convergence Protocol
  • RLC Radio Link control
  • PDCP PDU Packet Data Unit
  • the MACs 215 and 230 are connected to several RLC layer devices configured in one terminal, and multiplex RLC PDUs to MAC PDUs and demultiplex RLC PDUs from MAC PDUs.
  • the physical layers 220 and 225 channel-code and modulate higher layer data, make an OFDM symbol, and transmit it to a wireless channel, or demodulate, channel decode, and transmit the received OFDM symbol through a wireless channel to a higher layer. .
  • FIG 3 is a diagram illustrating a procedure of establishing a connection with a network in order for the terminal 135 to transmit and receive data.
  • the terminal 135 (hereinafter idle mode UE), which is not currently connected, performs an RRC connection establishment procedure with the base station 105 when data to be transmitted is generated.
  • the terminal 135 establishes reverse transmission synchronization with the base station 105 through a random access process and transmits an RRC CONNECTION REQUEST message to the base station 105 (step 305).
  • the message contains an identifier of the terminal 135 and a reason for establishing a connection.
  • the base station 105 transmits an RRC CONNECTION SETUP message so that the UE 135 establishes an RRC connection (step 310).
  • the message contains the RRC connection configuration information.
  • the RRC connection is also called a signaling radio bearer (SRB), and is used for transmitting and receiving an RRC message, which is a control message between the terminal 135 and the base station 105.
  • SRB signaling radio bearer
  • the UE 135 After establishing the RRC connection, the UE 135 transmits an RRC CONNECTION SETUP COMPLETE message to the base station 105 (step 315).
  • the message includes a SERVICE REQUEST message that the terminal 135 requests the MME 125 to establish a bearer for a predetermined service.
  • the base station 105 transmits a SERVICE REQUEST message stored in an RRC CONNECTION SETUP COMPLETE message to the MME 125 (step 320), and the MME 125 requests the terminal 135 to request the MME 125. Determine whether to provide a service. If it is determined that the terminal 135 provides the requested service, the MME 125 transmits an initial context setup request message to the base station 105 (step 325).
  • the message includes QoS information to be applied when setting a data radio bearer (DRB), and security related information (for example, a security key and a security algorithm) to be applied to the DRB.
  • DRB data radio bearer
  • the base station 105 exchanges a SECURITY MODE COMMAND message (step 330) and a SECURITY MODE COMPLETE message (step 335) with the terminal 135 to establish security.
  • the base station 105 transmits an RRC connection reconfiguration message to the terminal 135 (step 340).
  • the message includes configuration information of a DRB to be processed with user data, and the terminal 135 sets up the DRB by applying the information, and transmits an RRC CONNECTION RECONFIGURATION COMPLETE message to the base station 105 ( Step 345).
  • the base station 105 which has completed the UE 135 and DRB setup, transmits an initial context setup complete message to the MME 125 (step 350), and the MME 125 receives the S-GW.
  • the S1 bearer setup message and the S1 bearer setup response S1 BEARER SETUP RESPONSE message are exchanged with the 130 to establish the S1 bearer.
  • the S1 bearer S1 BEARER is a data transmission connection established between the S-GW 130 and the base station 105 and is mapped one-to-one with the DRB.
  • the terminal 135 and the network basically maintain two kinds of security settings.
  • security 1 the security between the terminal 135 and the MME 125
  • security 2 the security between the terminal 135 and the base station 105
  • Security 1 For a control message between the terminal 135 and the MME 125 (hereinafter referred to as a control message between the terminal and the MME 125 as a NAS message) using a predetermined security key, a predetermined security algorithm, and a COUNT. Security provided. Security 1 is maintained even if the terminal 135 transitions to the idle mode after the terminal 135 first accesses the network. Security 1 provides integrity protection and ciphering. Integrity protection is applied to all NAS messages except the initial access message, and ciphering is applied after the first DRB is configured in the terminal 135.
  • the terminal 135 transmits the service request message including information indicating which security key has been applied, and the MME 125 uses the information and a predetermined serial number of the service request to perform an integrity check. Do this. If the integrity check is verified, subsequent NAS messages will be ciphered.
  • COUNT is a variable that increases monotonically from packet to packet and is derived from the NAS serial number. Hereinafter, the count of Security 1 is called COUNT1.
  • Security 2 Provides security for the data exchange between terminal 135 and base station 105 using some other security key and some security algorithm and COUNT.
  • Security 2 is applied after the terminal 135 establishes an RRC connection and exchanges a security mode command / completion message with the base station 105, and is performed by the PDCP layer of the terminal 135.
  • Security key and algorithm information is determined during the security mode setting process.
  • COUNT is a variable that increases monotonically from packet to packet and is derived from the PDCP serial number.
  • the count of security 2 is called COUNT2.
  • the process of FIG. 3 is largely comprised of three stages: RRC connection setup (305, 310, 315), security 2 setup (330, 335), and DRB setup (340, 345). Performing these procedures should not be a problem in general data transmission. However, in case of establishing a connection and transmitting / receiving a few small packets, performing all of the above procedures may cause a relative increase in the relative signaling overhead. Can be.
  • the present invention defines a suitable new data transmission process (hereinafter, referred to as a short data transfer process) when intermittently transmitting and receiving small packets.
  • the terminal 135 determines whether the newly generated data meets the short data transmission condition (410). If it is determined that it is desirable to apply the general data transmission / reception procedure, go to step 415 to perform data transfer procedure 1, and if it is desirable to apply the short data transmission procedure. The flow proceeds to step 420 to perform data transmission procedure 2.
  • the data transmission procedure 1 refers to the procedure shown in FIG. 3.
  • the data transmission procedure 2 has the following features and a more detailed procedure will be described in FIG. 5.
  • Short data transfer usage conditions may include the following.
  • RRC idle data is generated in a predetermined EPS bearer of the ECM-IDLE terminal 135 (or in a predetermined service).
  • the EPS bearer selects and notifies the terminal 135 in the process of setting the EPS bearer between the terminal 135 and the network.
  • an EPS bearer for an instant messaging service can be set up to invoke a short data transfer procedure.
  • a packet whose size is equal to or smaller than a predetermined reference value is generated in the RRC idle and ECM-IDLE terminal 135.
  • the size of the packet is the size before the PDCP / RLC / MAC header is added.
  • the RRC idle a packet has been generated in any EPS bearer of the ECM-IDLE terminal 135, and less than a predetermined number of packets have been generated in the EPS bearer for a predetermined period. For example, if a new packet is generated in the RRC idle and the EPS bearer of the ECM-IDLE terminal 135 having a total of 5 forward and reverse packets in the last 10 minutes, a short data transmission procedure is invoked.
  • packets have been generated in the RRC idle, ECM-IDLE terminal 135, and the terminal 135 has generated a predetermined number or less of packets for a predetermined period. For example, if a packet is generated in the RRC idle or ECM-IDLE terminal 135 having a total of 5 forward packets and 5 reverse packets in the last 10 minutes, a short data transmission procedure is invoked.
  • RRC idle when a packet is generated in any EPS bearer of the ECM-IDLE terminal 135 and a predetermined number or less packets are generated during the most recent RRC connection state or the most recently activated state in the EPS bearer.
  • the ECM-IDLE state is described below.
  • the terminal is in the ECM-IDLE state when there is no NAS signaling connection existing between the terminal and the network.
  • MME 125 stores terminal contexts such as security contexts and allowed QoS profiles.
  • the terminal performs cell selection / reselection and PLMN (Public Land Mobile Network) selection.
  • PLMN Public Land Mobile Network
  • the terminal maintains registration, allows the MME 125 to page to the terminal, and performs a service request procedure from the MME 125.
  • the terminal In order to respond to the paging, the terminal must perform a TA update and perform a service request procedure to establish radio bearers when uplink user data should be transmitted.
  • the RRC idle state is described below.
  • the UE is RRC_CONNECTED when the RRC connection is established. If this is not the case, that is, if the RRC connection is not established, the terminal is in the RRC_IDLE state.
  • the UE applies UE controlled mobility, monitors the paging channel to detect incoming call and system information changes, performs neighbor cell measurement and cell (re) selection and obtains system information.
  • the EPS bearer is described below.
  • the EPS bearer is a separate level for bearer level QoS control in EPC / E-UTRAN. That is, traffic mapped to all the same EPS bearers receives the same bearer level packet forwarding process (eg, scheduling policy, queue management policy, rate shaping policy RLC configuration, etc.). Providing another bearer level packet forward policy requires separate EPS bearers.
  • bearer level packet forwarding process eg, scheduling policy, queue management policy, rate shaping policy RLC configuration, etc.
  • Each EPS bearer (GBR and Non-GBR) is associated with the following bearer level QoS parameters:
  • QCI QoS Class Identifier
  • ARP Allocation and Retention Priority
  • QCI is used as a reference for accessing node-specific parameters that control bearer level packet forwarding processing (scheduling weights, admission thresholds, queue management thresholds, link layer protocol settings, etc.). It is a scalar quantity, and the QCI is preset by an operator who owns an access node such as a base station.
  • the ARP should include information about the priority level (scalar), pre-emption capability (flag) and pre-emption vulnerability (flag).
  • the main purpose of the ARP is to determine whether bearer establishment / modification requests can be accepted or rejected based on resource limitations.
  • 5 is a flowchart of a data transmission procedure 2.
  • step 505 short data is generated at the terminal 105.
  • UE 105 RRC initiates the RRC connection setup procedure with a "short data transmission" reason value. Or, an indicator indicating that a 'short data transfer' procedure is required may be transmitted in an RRC connection setup complete message of step 515. Not all data is subject to data transfer procedure 2. For only the preset EPS bearer (or when the predefined condition is completed), data transfer procedure 2 is applied. Whether the EPS bearer is for 'short data transfer' is set during the EPS bearer setup procedure.
  • ENB 105 transmits an RRC connection setup message.
  • SRB 1 establishment information is included in the RRC connection setup message.
  • ENB 105 transmits an uplink grant for terminal 135 after SRB1 setup. Accordingly, the terminal 135 may not initiate a random access procedure for requesting a reverse grant for transmitting an RRC connection setup complete message for a certain period of time.
  • the terminal 135 transmits an RRC connection setup complete message including an IP packet to a container (called dedicatedNASInfo) for the MME 125.
  • the RRC connection setup complete message may be sent in a plurality of MAC PDUs.
  • the buffer status report (BSR) and channel quality information (CQI) may be included together as the MAC CE.
  • the channel quality information may include the following content.
  • CQI Channel Quality Indicator of the current cell.
  • the information is derived from the received RSRP or RSRQ. This is mainly for downlink scheduling.
  • Pathloss The pathloss of the current cell reference signal.
  • the information is derived from the RSRP and downlink transmit power of the reference channel.
  • the downlink transmit power of the reference channel can be given from the system information. Since the ENB 105 already knows the downlink transmission power, the UE 135 may calculate the path loss directly even though the UE 135 reports RSRP instead of the path loss.
  • Power Headroom Information about nominal terminal maximum transmit power and estimated power difference for UL-SCH transmission (ie, MAC PDU transmission).
  • the RRC connection setup complete message is successfully received and ENB 105 sends a dedicatedNASInfo included in the RRC connection setup complete message to MME 125.
  • the RRC connection setup complete message also includes routing information for the MME 125 (i.e., to which MME 125 dedicatedNASInfo should be delivered).
  • the MME 125 deciphers dedicatedNASInfo and demultiplexes an IP packet and transmits it to the S-GW 130.
  • the S-GW 130 delivers the IP packet to the destination node based on the routing information included in the IP packet.
  • security 1 is applied even for an IP packet.
  • security 2 is applied when data transmission procedure 1 is in use for transmitting and receiving arbitrary IP packets
  • security 1 is applied when data transmission procedure 2 is in use.
  • the security 1 is used to provide security for the NAS control message between the terminal 135 and the base station 105.
  • security is applied to the IP packet using security 1 only for short data.
  • general security 1 if UE 135 transmits a service request message to MME 125 and DRB is set in response thereto, ciphering is applied to NAS control message. The procedure cannot be followed as it is necessary to start ring application.
  • ciphering is applied from the NAS control message stored in the RRC connection setup complete message.
  • FIG. 6 is a diagram illustrating a general security procedure 1 (step 605-step 625) and a security procedure 1 (step 630-step 645) in the data transmission procedure 2.
  • FIG. Steps 630-645 do not proceed after steps 605-625, and steps 630-645 and 605-625 are separate procedures.
  • the terminal 135 applies the modified security 1 procedure if the data transmission procedure 2 is in use, and applies the general security 1 procedure if the data transmission procedure 2 is not in use.
  • the terminal 135 transmits a service request message, which is a first control message for transitioning to an EMM-CONNECTED state, but applies integrity protection but does not cipher (605).
  • the service request message contains a key set identifier (KSI), which is information for identifying a security key applied to security 1.
  • KAI key set identifier
  • the MME 125 determines whether to verify with reference to the message authentication code (MAC) stored in the message. If the message is verified (verify), the MME 125 activates the ciphering function of security 1 (610) and performs a UE context configuration process with the base station 105 (615). Enabling the ciphering function of security 1 means that afterwards, siphering is performed on the transmitted NAS message and deciphering is performed on the received NAS message.
  • MAC message authentication code
  • the base station 105 transmits a control message for commanding the DRB setting to the terminal 135 (620).
  • the terminal 135 activates the ciphering function of security 1 when the DRB is initially set (625).
  • the terminal 135 activates the ciphering function of security 1 before transmitting the first control message for transitioning to the EMM-CONNECTED state (630). That is, from the first control message, the integrity protection as well as the ciphering are applied.
  • the terminal 135 transmits the first control message sipping the predetermined part to the MME 125 (635), and the MME 125 receiving the control message checks the MAC-I of the control message to control the control. It determines whether to verify the message (640), and if verified, activates the security 1 ciphering function and performs deciphering on a predetermined portion of the control message (645).
  • FIG. 7 is a structural diagram of messages for transitioning to an EMM-CONNECTED state.
  • the first control message on the general security 1 procedure for transitioning to the EMM-CONNECTED state and the first control message on the modified security 1 procedure and subsequent messages on the transition to the EMM-CONNECTED state are shown in FIG. 7.
  • the general security 1 procedure is used in data transfer procedure 1 and the modified security 1 procedure is used in data transfer procedure 2.
  • the first NAS message 740 when using the general security 1 procedure may be a service request message.
  • routine control information such as a protocol discriminator 705 or a security header type 710 is first received.
  • 705 is information indicating which L3 protocol the control message relates to, and 710 indicates whether the message is integrity protected or ciphered.
  • MAC 740 is integrity protected but not ciphered. This means that MAC 720 is calculated for the message and that value is stored in the message. Integrity protection is specifically performed as follows.
  • the transmitting device calculates MAC by inputting a predetermined key 825, a message 815 to which predetermined variables and integrity protection are applied to a device having a predetermined security algorithm.
  • the predetermined variables include COUNT 805, DIRECTION 810, BEARER 820, and the like.
  • COUNT is a variable derived from the NAS serial number
  • DIRECTION is a variable determined according to the reverse / forward direction
  • BEARER is a predefined value. The following is a more detailed description of COUNT.
  • NAS OVERFLOW is a 16-bit value that is incremented each time the NAS SQN is increased from its maximum value, and NAS SQN is an 8-bit serial number included in each NAS message. .
  • messages 740 and 745 5 bits, rather than 8 bits, are used for the NAS serial number. This is to send both KSI and NAS serial number in one byte.
  • the receiving device When the receiving device receives a predetermined message, the receiving device calculates the MAC using the same algorithm, the same variable, and the same key. In addition, the calculated MAC is compared with the received MAC, and if the two values are the same, the message is determined to be verified.
  • the first message 745 for transitioning to the EMM-connected state is a message in which the entire message is integrally protected and part of the message is ciphered.
  • Message 745 unlike message 740, includes information 725 that identifies the type of message. The information is for distinguishing between the message 740 and the message 745 sharing the property of the first message to transition to the ECM-CONNECTED state.
  • the MAC 730 is a calculated MAC for the entire message 745 or a MAC calculated for the remaining portion of the message 745 except for header information related to an IP packet.
  • the MAC 730 may be a value calculated by inputting the IP packet and the relevant NAS header 735 and the MAC 730 into the message 815 in the message 745, or the message 745. All parts except the MAC 730 are input to the message 815 and calculated.
  • the IP packet and associated NAS header 735 is a concatenation of an IP packet to be transmitted by the terminal 135 and a NAS level header accompanying the packet.
  • the NAS level header may include, for example, information indicating that an IP packet is stored in a payload.
  • the terminal 135 applies ciphering only to the IP packet and the associated NAS header 735 portion of the message 745 and no ciphering for the rest. Cyphering is completed by applying a predetermined operation (e.g., an exclusive OR operation) to a KEYSTREAM BLOCK 930 having the same length as the bitstream to which siphering is applied (PLAINTEXT 935). .
  • the KEYSTREAM BLOCK 930 is generated by a predetermined key, a predetermined algorithm, and predetermined variables.
  • the predetermined variables include COUNT 905, BEARER 910, DIRECTION 915, LENGTH 920, and the like. .
  • LENGTH is a variable indicating the length of PLAINTEXT (935) / KEYSTREAM BLOCK (930). Deciphering is completed by applying certain operations on the KEYSTREAM BLOCK 930 and CIPHERTEXT BLOCK 940 generated by the same key, the same algorithm, and the same variables applied to the ciphering.
  • the terminal 135 inputs the IP packet and the associated NAS header 735 to the PLAINTEXT BLOCK 935 and the IP packet and the associated NAS header 735 to the LENGTH 920 in sipping a portion of the message 745. Enter the length of, enter the value associated with the serial number of message 745 as COUNT, and use the key derived from KSI as the ciphering key.
  • the MME 125 In deciphering the message 745, the MME 125 inputs the IP packet of the received message 745 and the associated NAS header 735 into the CIPHERTEXT BLOCK 940 and the COUNT with the serial number of the message 745. Enter the relevant value and use the key derived from KSI as the deciphering key.
  • Subsequent messages 750 that are sent and received after transitioning to the EMM-connected state in data transmission procedure 2 are the same as messages 745 except that no KSI is transmitted and an 8-bit serial number is used.
  • the terminal 135 and the MME 125 perform the ciphering first and then perform the integrity protection in processing the message 745. That is, the terminal 135 inputs the ciphered IP packet and associated NAS header 735 as part of the message to calculate the MAC, and the MME 125 similarly inputs the IP packet and associated NAS header 735 as part of the message. If the verification is successful after calculating the MAC, deciphering is performed on the IP packet and the associated NAS header 735. This is to perform subsequent operations using only the information stored in the trusted message after passing the integrity check.
  • data transmission procedure 1 is applied, when security is applied in PDCP, or when processing message 750, integrity protection is performed first, and then ciphering is performed. This is because in this case, since the integrity check has already been completed in the previous step, it is not necessary to check whether the transmitting device and the receiving device trust each message.
  • FIG. 10 is a flowchart of the operation of the terminal 135 device.
  • the terminal 135 starts the data transmission procedure 2 (step 1005).
  • the terminal 135 transmits an RRC connection request message using a random access procedure.
  • the message indicates the reason for the RRC connection setup procedure.
  • the terminal 135 may indicate that the message is for a short data transmission procedure. Or, it may be indicated in the RRC connection complete message that a short data transfer procedure is required.
  • step 1015 upon receiving the RRC connection setup message, the terminal 135 performs the following operation.
  • UE 135 establishes SRB 1 according to the information received in the RRC connection setup message.
  • the UE 135 notifies the upper layer (which manages the EPS bearer data transmission) that short data transmission is possible.
  • the EPS bearer management entity then sends an IP packet to the NAS layer.
  • the NAS layer concatenates the message type field, IP packet, and others to produce a message 745.
  • the NAS layer sipes the IP packet and associated NAS header 735 portions with the current NAS security key and other variables.
  • the NAS layer currently computes the MAC with security keys and other variables. In general, it should be noted that NAS ciphering is performed after the first message has been successfully transmitted.
  • NAS layer forwards message 745 to RRC layer.
  • step 1020 the RRC builds an RRC connection setup complete message.
  • the RRC connection setup complete message includes the following information.
  • Routing information selectedPLMN-Identity, registeredMME to determine which MME 125 the NAS message should be routed to
  • the indication is included in this message.
  • the UE 135 If the RRC connection setup complete message cannot be delivered over one MAC PDU (ie, split and delivered across multiple MAC PDUs), the UE 135 includes the first portion of the RRC connection setup complete message. Include the following information in the MAC PDU.
  • Information related to channel status can be the RSRP measurement result of the serving cell. Or it may be information processed from RSRP, such as CQI. Based on this information, the ENB 105 allocates resources for the RRC connection setup complete message to the terminal 135.
  • the terminal 135 transmits an RRC connection setup complete message through SRQ 1 which is ARQ protected.
  • step 1025 the terminal 135 configures a message 750 for data generated from the same EPS bearer and transmits the message 750 to the base station 105.
  • 11 illustrates the operation of the MME 125.
  • the MME 125 receives a NAS message for any terminal 135.
  • the MME 125 checks whether the NAS message is a message 745 or a message 750. If the message is the first NAS message transmitted by the UE 135 in the ECM-IDLE state, and there is information indicating that the message type field has a predetermined information, for example, a message to which the data transmission procedure 2 is applied, the message is a message 745. )to be. If the message is not the first NAS message transmitted by the UE 135 in the ECM-IDLE state, but the message type field has information indicating that the data transmission procedure 2 is applied, the message is the message 750.
  • the MME 125 proceeds to step 1115 and performs an integrity check on the received NAS message and, if verified, performs the necessary subsequent operation.
  • the terminal 135 If the received message is a message 745 or a message 750, the terminal 135 performs an integrity check and deciphering of the received message (1120). If the integrity check succeeds, the terminal 135 checks the IP packet stored in the message. Forward to S-GW 130 at 135 (1125).
  • the embodiment may be modified such that the terminal 135 transmits two NAS messages in concatenation at step 520 of FIG. 5. That is, the terminal 135 transmits the conventional service request message and the NAS message containing the IP packet to the base station 105 at step 520, and the base station 105 sequentially transmits the messages to the MME 125. If the terminal 135 decides to use the data transmission procedure 2, it generates a service request message according to the conventional procedure, and immediately activates the ciphering function of security 1 unlike the normal procedure. Then, a NAS message containing the IP packet is generated and ciphering is applied to the NAS message. The NAS message containing the service request message and the IP packet may be stored together in an RRC connection setup complete message.
  • the base station 105 When the base station 105 receives the RRC connection setup complete message, the base station 105 transmits the service request message and the NAS message containing the IP packet to the MME 125, and the MME 125 performs an integrity check on the service request message. When the integrity is verified, the deciphering key is determined by referring to the KSI information. The deciphering key is applied to decipher the NAS message containing the IP packet. The MME 125 extracts the IP packet stored in the NAS message and transmits it to the S-GW 130 of the terminal 135.
  • the terminal 135 In another modified security procedure 1, the terminal 135 generates a service request message to transition to the EMM-CONNECTED state (1205). When the generation of the service request message is completed, the ciphering function of security 1 is activated (started) (1210). In operation 1215, a NAS message (hereinafter referred to as an IP NAS message) containing the IP packet is generated and ciphering is applied to the message.
  • IP NAS message a NAS message (hereinafter referred to as an IP NAS message) containing the IP packet is generated and ciphering is applied to the message.
  • the service request message and the IP NAS message are transmitted together to the MME 125 (1220), and the MME 125 performs an integrity check on the service request message (1225), and upon successful verification, activates the ciphering function. (1230).
  • the MME 125 performs deciphering on the IP NAS message received with the service request message (1235).
  • the service request message may be different from a typical service request message, which is then referred to as a service request type 2 message.
  • the MME 125 performs a procedure for setting up a DRB when receiving a service request message, but does not perform the procedure when receiving a service request type 2 message.
  • the format of the service request type 2 message may be a form in which a message type field is added to a typical service request message.
  • FIG 13 illustrates the operation of the terminal 135 when the modified data transmission procedure 2 is used.
  • the terminal 135 starts the modified data transmission procedure 2 process (1305).
  • the UE 135 transmits an RRC connection request message using a random access procedure.
  • the message indicates the reason for the RRC connection setup procedure.
  • Terminal 135 may indicate that it is for a short data transfer procedure. Or, it may be indicated that a short data transmission procedure is required in the RRC connection complete message.
  • step 1315 upon receiving the RRC connection setup message, the terminal 135 performs the following operation.
  • the UE establishes SRB 1 according to the information received in the RRC connection setup message.
  • the terminal informs the upper layer (which manages the EPS bearer data transmission) that short data transmission is possible.
  • the EPS bearer management entity then forwards the IP packet to the NAS layer.
  • the NAS layer creates a service request type 2 message and an IP NAS message.
  • the format of an IP NAS message is the same as message 750.
  • the NAS layer applies integrity protection to service request type 2 messages and sipes IP NAS messages with the current NAS security key and other variables.
  • the NAS layer forwards the service request type 2 message and the IP NAS message to the RRC layer.
  • step 1320 the RRC builds an RRC connection setup complete message.
  • the RRC connection setup complete message includes the following information.
  • Routing information selectedPLMN-Identity, registeredMME that ENB 105 determines to which MME 125 NAS messages are routed;
  • dedicatedInfoNAS1 a service request type 2 message
  • dedicatedInfoNAS2 an IP NAS message
  • an indication of a short data transfer procedure may be indicated in this message if it is not indicated in the RRC connection request message.
  • the UE 135 sends the following information to the first part of the RRC connection setup complete message. It may be included in the MAC PDU including.
  • Information related to channel conditions can be the RSRP measurement result of the serving cell. Or it may be information processed from the RSRP, such as CQI. Based on this information, ENB 105 allocates resources for RRC connection setup complete message to terminal 135.
  • the terminal 135 transmits an RRC connection setup complete message through SRQ 1 which is ARQ protected.
  • the terminal 135 configures a message 750 with respect to data generated from the same EPS bearer, and transmits the message 750 to the base station 105.
  • FIG. 14 illustrates a mobile terminated case operation.
  • the S-GW 130 is preset with information on which EPS bearer is for a short data transmission procedure.
  • the IP packet arrives at S-GW 130. If the IP packet is for an EPS bearer for short data transmission, S-GW 130 forwards the IP packet to MME 125 in DL DATA NOTIFICATION at step 1405.
  • the MME 125 stores the IP packet and starts a paging procedure towards the ENBs.
  • the paging message may include an indicator indicating that it is for a short data transfer procedure.
  • ENB 105 Upon receiving the paging message, ENB 105 sends the paging message to the air interface.
  • the terminal 135 When the terminal 135 receives a paging message targeting the terminal 135, the terminal 135 transmits an RRC connection request message using a random access procedure in step 1415.
  • the base station 105 transmits an RRC connection setup message at step 1420.
  • the UE 135 Upon receiving the RRC Connection Setup message, the UE 135 establishes SRB 1 and creates a Service Request Type 2 message.
  • the UE 135 multiplexes the service request type 2 message to the RRC connection setup complete message and transmits it through SRB 1.
  • ENB 105 determines the MME 125 to which the service request type 2 message will be delivered.
  • ENB 105 forms the appropriate S1 message and includes a service request type 2 message therein.
  • ENB 105 sends its S1 message to MME 125 in step 1430.
  • MME 125 receives an S1 message that includes a service request type 2 message.
  • MME 125 performs an integrity check. If the integrity check is successful, ENB 105 sipes the stored IP packet with the security key indicated by the KSI in the service request type 2 message.
  • MME 125 forms a NAS IP message.
  • the MME 125 forms a DL DIRECT TRNSFER message containing the IP packet in step 1435 and sends it to the ENB 105.
  • the ENB 105 forms a downlink direct delivery message containing a NAS IP message and transmits it to the terminal 135.
  • the terminal 135 receives the NAS IP message included in the downlink direct delivery message.
  • the terminal 135 NAS layer deciphers the NAS IP message and forwards it to the appropriate entity (ie, the IP layer of terminal 135).
  • Embodiment 2 of the present invention provides a method and apparatus for generating a special DRB and transmitting an IP packet to the special DRB during an RRC connection setup process.
  • 15 is a flowchart of a data transmission process according to an exemplary embodiment.
  • step 1500 data is generated in an EPS bearer set up to use data transfer procedure 3.
  • Data transmission procedure 3 has the following features.
  • step 1505 the terminal 135 forms an RRC connection request message and transmits it using a random access procedure.
  • the RRC Connection Request message contains an indicator indicating that it is for a 'short data transfer' procedure and that a special DRB should be established during the RRC connection setup procedure.
  • step 1510 upon receiving the RRC connection request message including the 'short data transmission' indicator, the ENB 105 performs the following operations.
  • ENB 105 performs the following. If not, ENB 105 rejects the RRC connection request.
  • the special DRB consists of a PDCP entity and an RLC AM entity.
  • the configuration of the PDCP entity and the RLS AM entity is determined to meet QoS requirements (i.e. high reliability, low or medium delay, etc.) for short data transmission.
  • step 1515 upon receiving the RRC connection setup message, the terminal 135 performs the following operation.
  • RRC notifies data transfer to upper layer.
  • the upper layer forwards IP packets to a special DRB.
  • Special DRBs process IP packets.
  • the special DRB adds the following information to the IP packet.
  • Routing information (ie IP address) of the S-GW 130 to which the IP packet should be transmitted
  • the information may be included in any protocol entity of the special DRB.
  • information may be included in a PDCP header.
  • Additional information 1605 is routing information of the associated S-GW 130.
  • Security information 1610 may be added to other protocol entities where ciphering is performed.
  • ⁇ Security information may include information about variables such as COUNT and ciphering keys.
  • the necessary action may include, for example, requesting scheduling and reporting the size of the short data (including the possible L2 header size).
  • the terminal 135 transmits short data through a special DRB.
  • step 1520 upon receiving 'short data' through the special DRB, the ENB 105 performs the following operation.
  • SP short data Security Protected short data
  • S-GW 130 Transmit SP short data to S-GW 130 via a common S1-U bearer.
  • ENB 105 There may be a plurality of S-GWs connected to ENB 105.
  • ENB 105 has at least one common S1-U bearer (s) for each S-GW 130.
  • the ENB 105 determines the S-GW 130 to which the SP short data should be transmitted based on the S-GW 130 address included in the additional information 1605.
  • the ENB 105 may add necessary information to the SP short data so that the S-GW 130 may identify from which terminal 135 the SP short data comes from. Make sure The information may be, for example, the TMSI of the terminal 135. Alternatively, this information may be included, for example, in the security information 1610 by the terminal 135.
  • step 1525 upon receiving the SP short data through the S1-U bearer, the S-GW 130 performs the following operation.
  • the processor deciphers the SP short data with the received security information appended to the SP short data.
  • S-GW 130 After deciphering, S-GW 130 routes the IP packet to the destination.
  • 17 is a flowchart illustrating a data transmission / reception process of the terminal 135.
  • the terminal 135 starts the modified data transmission procedure 3 process (1705).
  • the UE 135 transmits an RRC connection request message using a random access procedure.
  • the message indicates the reason for the RRC connection setup procedure.
  • the terminal 135 indicates that the message is for a short data transmission procedure.
  • step 1715 upon receiving the RRC connection setup message, the terminal 135 performs the following operation.
  • UE 135 establishes SRB 1 according to the information received in the RRC connection setup message.
  • the UE establishes a special DRB according to the information received in the RRC connection setup message.
  • the difference between a special DRB and a regular DRB is that a special DRB is established during the RRC connection establishment procedure, while a generic DRB is established during the RRC connection reestablishment procedure.
  • the terminal informs the upper layer (which manages the EPS bearer data transmission) that short data transmission is possible.
  • the EPS bearer management entity forwards the IP packet to the special DRB.
  • Special DRBs form PDCP SDUs in IP packets. Additional information and security information are added to the IP packet, and the IP packet is ciphered using the information contained in the security information.
  • Additional information includes routing information to the associated S-GW 130.
  • step 1720 the terminal 135 transmits the PDCP SDU using a special DRB. After that, the terminal 135 transmits the IP packet of the EPS bearer using a special DRB. From then on, UE transmits the IP packet of the EPS bearer using the special DRB.
  • FIG. 18 is a block diagram showing the configuration of a terminal 135 according to an embodiment of the present invention.
  • the terminal 135 includes a transceiver 1805, a controller 1810, a multiplexing and demultiplexing unit 1815, a control message processor 1830, and various upper layer processors. 1820, 1825, EPS bearer manager 1840, and NAS layer device 1845.
  • the transceiver 1805 receives data and a predetermined control signal through a forward channel of a serving cell and transmits data and a predetermined control signal through a reverse channel. When a plurality of serving cells are set, the transceiver 1805 performs data transmission and reception and control signal transmission and reception through the plurality of serving cells.
  • the multiplexing and demultiplexing unit 1815 multiplexes data generated by the upper layer processing units 1820 and 1825 or the control message processing unit 1830, or demultiplexes the data received by the transmitting and receiving unit 1805 so that the appropriate upper layer processing unit 1820. 1825 or the control message processor 1830.
  • the control message processing unit 1830 is an RRC layer device and processes the control message received from the base station 105 to take necessary actions. For example, upon receiving an RRC connection setup message, it sets up SRB1 and a special DRB.
  • the higher layer processors 1820 and 1825 mean a DRB device and may be configured for each service.
  • Data generated from user services such as FTP (File Transfer Protocol) or Voice over Internet Protocol (VoIP) is processed and transferred to the multiplexing and demultiplexing unit 1815 or data transferred from the multiplexing and demultiplexing unit 1815 Process it and pass it to the higher-level service application.
  • FTP File Transfer Protocol
  • VoIP Voice over Internet Protocol
  • One service may be mapped one-to-one with one EPS bearer and one upper layer processor. If any EPS bearer uses data transfer procedure 2 or 3, the upper layer processor is not configured for the EPS bearer.
  • the control unit 1810 checks scheduling commands, for example, reverse grants, received through the transceiver unit 1805, and performs multiplexing and demultiplexing units 1815 and the multiplexer and demultiplexer 1815 to perform reverse transmission on the appropriate transmission resources at an appropriate time. ).
  • the EPS bearer manager 1840 determines whether to apply the data transmission procedure 2 or 3, and if the data transmission procedure is applied, delivers the IP packet to the RRC layer device or the special DRB device.
  • FIG. 19 is a block diagram illustrating a configuration of a base station 105, an MME 125, and an S-GW 130 according to an exemplary embodiment of the present invention.
  • the apparatus of the base station 105 of FIG. 19 includes a transceiver 1905 and a controller. (1910), multiplexing and demultiplexing unit (1920), control message processing unit (1935), various upper layer processing units (1925, 1930), scheduler (1915), EPS bearer device (1940, 1945) and NAS layer device (1950) ).
  • the EPS bearer device is located in the S-GW 130 and the NAS layer device is located in the MME 125.
  • the transceiver 1905 transmits data and a predetermined control signal through a forward carrier and receives data and a predetermined control signal through a reverse carrier. When a plurality of carriers are set, the transceiver 1905 transmits and receives data and control signals through the plurality of carriers.
  • the multiplexing and demultiplexing unit 1920 multiplexes data generated by the upper layer processing units 1925 and 1930 or the control message processing unit 1935 or demultiplexes the data received by the transmitting and receiving unit 1905 so that the appropriate upper layer processing unit 1925, 1930, the control message processor 1935, or the controller 1910.
  • the control message processing unit 1935 processes the control message transmitted by the terminal 135 to take necessary actions, or generates and transmits a control message to the terminal 135 to the lower layer.
  • the upper layer processing units 1925 and 1930 may be configured for each EPS bearer, and the data transmitted from the EPS bearer device may be configured as an RLC PDU and transmitted to the multiplexing and demultiplexing unit 1920 or transmitted from the multiplexing and demultiplexing unit 1920.
  • the RLC PDU is configured as a PDCP SDU and delivered to the EPS bearer device.
  • the scheduler allocates transmission resources to the terminal 135 at an appropriate time point in consideration of the buffer state, the channel state, etc. of the terminal 135, processes the signal transmitted by the terminal 135 to the transceiver unit, or signals the terminal 135. Process to send.
  • the EPS bearer device is configured for each EPS bearer, and processes the data transmitted from the upper layer processor and delivers the data to the next network node.
  • the upper layer processor and the EPS bearer device are interconnected by the S1-U bearer.
  • the upper layer processor corresponding to the special DRB is connected by the EPS bearer and the common S1-U bearer for the special DRB.
  • the NAS layer device processes the IP packet stored in the NAS message and delivers it to the S-GW 130.

Abstract

La présente invention porte sur un procédé et un appareil de transmission/réception de données, et un procédé destiné à un équipement utilisateur transmettant des données selon un mode de réalisation de la présente invention comprend : une opération de détermination de conditions destinée à déterminer si une condition de transmission de données courtes est satisfaite lorsque les données à transmettre sont générées, et une opération d'insertion des données à transmettre dans un message d'achèvement d'établissement de connexion de commande de ressource radio (RRC), et de transmission de celui-ci lorsque la condition de transmission des données courtes est satisfaite. Selon un mode de réalisation de la présente invention, le problème de surcharge de réseau peut être résolu par la réduction d'un surdébit de signalisation lors du traitement de petits paquets qui sont générés par intermittence dans le système de communication mobile ; et un appareil et un procédé permettant d'améliorer les performances de la batterie dans l'équipement de l'utilisateur peuvent être mis en œuvre efficacement.
PCT/KR2012/002726 2011-04-11 2012-04-10 Procédé et appareil de transmission et de réception de données dans un système de communication mobile WO2012141480A2 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/111,530 US9622164B2 (en) 2011-04-11 2012-04-10 Method and apparatus for transmitting/receiving data in mobile communication system
EP19160842.1A EP3512122B1 (fr) 2011-04-11 2012-04-10 Procédé et dispositif pour transmettre/recevoir des données dans un système de communication mobile
ES12770987T ES2724802T3 (es) 2011-04-11 2012-04-10 Procedimiento y aparato de transmisión/recepción de datos en un sistema de comunicación móvil
EP12770987.1A EP2698930B1 (fr) 2011-04-11 2012-04-10 Procédé et appareil de transmission et de réception de données dans un système de communication mobile
US15/483,979 US10362621B2 (en) 2011-04-11 2017-04-10 Method and apparatus for transmitting/receiving data in mobile communication system
US16/518,875 US10887942B2 (en) 2011-04-11 2019-07-22 Method and apparatus for transmitting/receiving data in mobile communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161473966P 2011-04-11 2011-04-11
US61/473,966 2011-04-11
KR10-2012-0037355 2012-04-10
KR1020120037355A KR101903041B1 (ko) 2011-04-11 2012-04-10 이동통신 시스템에서 데이터 송수신 방법 및 장치

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US14/111,530 A-371-Of-International US9622164B2 (en) 2011-04-11 2012-04-10 Method and apparatus for transmitting/receiving data in mobile communication system
US15/483,979 Continuation US10362621B2 (en) 2011-04-11 2017-04-10 Method and apparatus for transmitting/receiving data in mobile communication system
US15/483,979 Continuation-In-Part US10362621B2 (en) 2011-04-11 2017-04-10 Method and apparatus for transmitting/receiving data in mobile communication system

Publications (2)

Publication Number Publication Date
WO2012141480A2 true WO2012141480A2 (fr) 2012-10-18
WO2012141480A3 WO2012141480A3 (fr) 2013-01-10

Family

ID=47284463

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/KR2012/002729 WO2012141482A2 (fr) 2011-04-11 2012-04-10 Procédé et appareil de commande efficace d'une priorité de resélection de cellule d'un équipement utilisateur dans une cellule csg
PCT/KR2012/002727 WO2012141481A2 (fr) 2011-04-11 2012-04-10 Procédé et appareil pour équipement utilisateur dans un mode d'économie de batterie transmettant un signal de commande en direction inverse dans un système de communication mobile
PCT/KR2012/002726 WO2012141480A2 (fr) 2011-04-11 2012-04-10 Procédé et appareil de transmission et de réception de données dans un système de communication mobile

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/KR2012/002729 WO2012141482A2 (fr) 2011-04-11 2012-04-10 Procédé et appareil de commande efficace d'une priorité de resélection de cellule d'un équipement utilisateur dans une cellule csg
PCT/KR2012/002727 WO2012141481A2 (fr) 2011-04-11 2012-04-10 Procédé et appareil pour équipement utilisateur dans un mode d'économie de batterie transmettant un signal de commande en direction inverse dans un système de communication mobile

Country Status (8)

Country Link
US (6) US9622164B2 (fr)
EP (3) EP3512122B1 (fr)
JP (2) JP6033842B2 (fr)
KR (3) KR101929307B1 (fr)
CN (2) CN103620984B (fr)
AU (1) AU2012243644B2 (fr)
ES (2) ES2724802T3 (fr)
WO (3) WO2012141482A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015108337A1 (fr) * 2014-01-14 2015-07-23 엘지전자 주식회사 Procédé de commutation de chemin pour une double connectivité dans un système de communications sans fil, et appareil correspondant
US20150264596A1 (en) * 2014-03-11 2015-09-17 Samsung Electronics Co., Ltd. Method and apparatus of dynamically adjusting bit rate of bearer in wireless communication system
WO2016208950A1 (fr) * 2015-06-23 2016-12-29 엘지전자(주) Procédé d'émission/réception de données dans un système de communication sans fil et dispositif associé

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104244367B (zh) * 2006-11-22 2017-12-22 沃达方集团有限公司 电信网络和装置
KR101948801B1 (ko) 2011-04-11 2019-02-18 삼성전자주식회사 Mbms 지원 사용자 장치의 데이터 수신 방법 및 장치
KR101929307B1 (ko) * 2011-04-11 2018-12-17 삼성전자 주식회사 Csg 셀에서 단말이 셀 재선택 우선 순위를 효율적으로 제어하는 방법 및 장치
CN105577364B (zh) * 2011-10-27 2019-11-05 华为技术有限公司 一种加密方法、解密方法和相关装置
US9055560B2 (en) 2012-01-18 2015-06-09 Mediatek Inc. Method of enhanced connection recovery and loss-less data recovery
CN104412653B (zh) * 2012-06-27 2018-09-28 高通股份有限公司 Ue在单播空闲模式中播放embms内容的网络驱动小区重选方法
WO2014065535A1 (fr) * 2012-10-28 2014-05-01 Lg Electronics Inc. Fonctionnement utilisant divers temporisateurs dans un système de communication sans fil
US9900815B2 (en) 2012-10-30 2018-02-20 Lg Electronics Inc. Method for handling frequency priority based on terminal supporting characteristics in wireless communication system and apparatus for supporting same
EP2916595B1 (fr) * 2012-10-30 2021-09-29 LG Electronics Inc. Procédé de resélection de cellules basée sur une gestion prioritaire dans un système de communication sans fil et appareil prenant en charge ledit procédé
EP2995164B1 (fr) * 2013-05-08 2019-07-10 Telefonaktiebolaget LM Ericsson (publ) Ré-établissement de transfert de données de paquet
US20160149876A1 (en) * 2013-06-28 2016-05-26 Nec Corporation Security for prose group communication
EP3028493B1 (fr) * 2013-08-04 2018-12-26 LG Electronics Inc. Procédé et appareil d'unification de groupes de services de proximité dans un système de communications sans fil
PL3050392T3 (pl) 2013-09-27 2020-10-05 Nokia Solutions And Networks Oy Zoptymalizowana procedura do autonomicznej mobilności urządzenia użytkownika
US9408118B2 (en) 2014-03-05 2016-08-02 T-Mobile Usa, Inc. Traffic management for heterogenous networks
US9408180B2 (en) 2014-03-05 2016-08-02 T-Mobile Usa, Inc. Traffic management for heterogenous networks
US9538540B2 (en) * 2014-03-06 2017-01-03 Mediatek Inc. Smart congestion control for RRC connected mode in LTE systems
US9374781B2 (en) * 2014-07-14 2016-06-21 Amazon Technologies, Inc. Method for discontinuous reception (DRX) in dual connectivity
RU2665881C1 (ru) * 2014-10-23 2018-09-04 Хуавей Текнолоджиз Ко., Лтд. Способ и устройство соединения для управления (rrc) радиоресурсами и способ и устройство повторного rrc соединения
EP3462752B1 (fr) * 2015-01-30 2020-04-22 Sony Corporation Appareil et procédés de télécommunication
JP6804986B2 (ja) * 2015-01-30 2020-12-23 京セラ株式会社 ユーザ端末及び基地局
CN106171031B (zh) * 2015-02-11 2020-04-21 华为技术有限公司 组通信中组优先级通知方法、设备及系统
US10201016B2 (en) * 2015-02-18 2019-02-05 Qualcomm Incorporated Techniques for cell access using an unlicensed radio frequency spectrum band
EP3266250B1 (fr) * 2015-03-06 2019-10-30 Nokia Solutions and Networks Oy Sélection de cellule
WO2016148357A1 (fr) * 2015-03-17 2016-09-22 엘지전자(주) Procédé et appareil de transmission/réception de données pour terminal dans un système de communication sans fil
US10694383B2 (en) * 2015-03-23 2020-06-23 Lg Electronics Inc. Method and device for transmitting or receiving data by terminal in wireless communication system
CN107113056B (zh) 2015-04-10 2020-02-21 华为技术有限公司 确定csi报告的应用时间的方法、装置和设备
US10159108B2 (en) * 2015-04-10 2018-12-18 Motorola Mobility Llc DRX handling in LTE license assisted access operation
US9967076B2 (en) * 2015-04-16 2018-05-08 Ofinno Technologies, Llc Control signaling in a wireless device and wireless network
CN106162578B (zh) * 2015-04-24 2020-03-17 北京智谷睿拓技术服务有限公司 转发控制方法、移动终端信息发送方法、及其装置
US10582522B2 (en) * 2015-09-04 2020-03-03 Lg Electronics Inc. Data transmission and reception method and device of terminal in wireless communication system
EP4311143A3 (fr) * 2016-03-31 2024-04-03 Kyocera Corporation Terminal radio et station de base
EP3244672B1 (fr) * 2016-05-09 2020-12-09 HTC Corporation Gestion du changement d'état du contrôle des ressources radio
WO2017200299A1 (fr) * 2016-05-18 2017-11-23 엘지전자 주식회사 Procédé de réalisation d'une procédure de resélection de cellule par un terminal et appareil de prise en charge correspondant
US9985107B2 (en) * 2016-06-29 2018-05-29 International Business Machines Corporation Method and structure for forming MOSFET with reduced parasitic capacitance
EP3488541B1 (fr) * 2016-07-20 2020-11-25 Nec Corporation Procédés de signalisation dans un système de communication sans fil avancé prenant en charge une transmission par superposition à multiples utilisateurs
KR101960177B1 (ko) 2016-07-21 2019-03-20 주식회사 케이티 NB-IoT 단말의 이동성 처리 수행 방법 및 그 장치
US20170013651A1 (en) * 2016-09-22 2017-01-12 Mediatek Singapore Pte. Ltd. NAS Security And Handling Of Multiple Initial NAS Messages
US10440691B2 (en) 2016-09-30 2019-10-08 Kt Corporation Method for controlling connection status of UE and apparatus thereof
CN108616898B (zh) * 2016-12-05 2021-04-13 中国电信股份有限公司 频率优先级信息处理方法和系统以及相关设备
EP3913966B1 (fr) 2017-03-23 2023-07-12 LG Electronics Inc. Procédé et dispositif pour indiquer le type de support utilisé pour le prochain message dans un système de communication sans fil
WO2018208076A1 (fr) * 2017-05-10 2018-11-15 엘지전자 주식회사 Procédé pour demander une connexion rrc et appareil le prenant en charge
US10582446B2 (en) * 2017-05-11 2020-03-03 Telefonaktiebolaget Lm Ericsson (Publ) Support of mobile station assisted dedicated core network selection
US20200169887A1 (en) * 2017-06-16 2020-05-28 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for the handling of data radio bearer integrity protection failure in nr
US11025403B2 (en) * 2017-07-12 2021-06-01 Qualcomm Incorporated Frame structure dependent configuration of physical channels
WO2019036930A1 (fr) * 2017-08-23 2019-02-28 Oppo广东移动通信有限公司 Procédé de transmission de données, dispositif terminal d'émission et dispositif terminal de réception
CN113490289B (zh) * 2017-09-06 2023-11-14 北京小米移动软件有限公司 下行数据传输方法及装置、用户设备、基站
EP3689015A1 (fr) * 2017-09-28 2020-08-05 Telefonaktiebolaget LM Ericsson (Publ) Améliorations de sécurité pour transmissions de données précoces
US10659257B2 (en) * 2017-10-31 2020-05-19 Qualcomm Incorporated Low latency multiplexing operations
US11252669B2 (en) * 2018-07-25 2022-02-15 Qualcomm Incorporated Selective extension of an active period of a DRX cycle for reselection
US11234180B2 (en) * 2019-01-03 2022-01-25 Qualcomm Incorporated Mobility procedures with hierarchical mobility
JP6851406B2 (ja) * 2019-02-07 2021-03-31 シャープ株式会社 端末装置、基地局装置、方法、および、集積回路
CN113365358B (zh) * 2019-04-26 2023-09-05 维沃移动通信有限公司 一种信道监听方法、终端及网络设备
PL4040825T3 (pl) * 2019-04-29 2024-04-15 Telefonaktiebolaget Lm Ericsson (Publ) Obsługa procedur uwierzytelniania wielokrotnego w 5g
AU2019444187B2 (en) * 2019-05-05 2022-07-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and Device for Configuring Terminal Policy, Terminal, Base Station and Storage Medium
CN112437470B (zh) * 2019-08-26 2022-07-19 中国移动通信有限公司研究院 一种小区重选方法及设备
WO2021087950A1 (fr) * 2019-11-08 2021-05-14 Zte Corporation Techniques d'économie d'énergie
KR102265514B1 (ko) * 2019-11-22 2021-06-15 주식회사 엘지유플러스 무선 통신 시스템의 데이터 송수신 방법 및 장치
JP7299571B2 (ja) * 2020-07-13 2023-06-28 華碩電脳股▲分▼有限公司 無線通信システムにおいて設定された上りリンクグラントのバンドルのためのdrxタイマを取り扱うための方法および装置
WO2022077372A1 (fr) * 2020-10-15 2022-04-21 北京小米移动软件有限公司 Procédé et appareil de traitement d'informations de contrôle d'accès, et dispositif de communication et support de stockage
CN117479264A (zh) * 2021-01-08 2024-01-30 Oppo广东移动通信有限公司 无线通信方法和终端设备
EP4298863A1 (fr) * 2021-03-16 2024-01-03 Ofinno, LLC Transmission de petites données
CN113518459B (zh) * 2021-07-14 2023-07-04 中国联合网络通信集团有限公司 资源调度处理方法、装置及电子设备
US11792712B2 (en) 2021-12-23 2023-10-17 T-Mobile Usa, Inc. Cell reselection priority assignment based on performance triggers

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US124301A (en) * 1872-03-05 Improvement in safety-guards for hatchways
KR100548344B1 (ko) 2003-05-13 2006-02-02 엘지전자 주식회사 이동통신 시스템에서의 rrc연결방법
KR100595644B1 (ko) 2004-01-09 2006-07-03 엘지전자 주식회사 이동통신 시스템에서 점대다 서비스를 위한 통지 지시자 수신방법
EP2242190B1 (fr) 2004-03-30 2012-06-13 Sony Corporation Terminal de communication mobile et système de radiocommunication
DE602005027504D1 (de) 2005-02-16 2011-05-26 Panasonic Corp Unterstützung mobiler Endgeräte in einem Multicast- oder Rundfunkdienst mit mehreren Trägern
KR101161025B1 (ko) 2005-05-12 2012-06-28 삼성전자주식회사 이동통신 시스템에서 트래픽 채널을 미리 설정하는 방법 및장치
KR100703400B1 (ko) 2005-07-15 2007-04-03 삼성전자주식회사 멀티 모드 이동 단말에서 단말 인증정보 전달 장치
KR101213285B1 (ko) * 2006-01-04 2012-12-17 삼성전자주식회사 이동통신 시스템에서 아이들모드 단말기의 세션 설정 프로토콜 데이터를 전송하는 방법 및 장치
KR100901375B1 (ko) 2006-08-03 2009-06-05 삼성전자주식회사 광대역 무선통신 시스템에서 상향링크 데이터를 송신하기위한 장치 및 방법
KR101424258B1 (ko) * 2006-08-23 2014-08-13 엘지전자 주식회사 무선통신 시스템에서 랜덤 액세스 과정을 수행하는 방법
US7724697B2 (en) * 2007-01-08 2010-05-25 Nokia Corporation Method, apparatus and system for providing reports on channel quality of a communication system
US20100075667A1 (en) * 2007-02-12 2010-03-25 Nokia Corporation Apparatus, Method and Computer Program Product Providing Inter-Node B Signalling of Cell Status Information
KR20080084533A (ko) * 2007-03-16 2008-09-19 엘지전자 주식회사 이동통신 시스템에서의 데이터 통신 방법
EP1973355A1 (fr) 2007-03-19 2008-09-24 Nokia Siemens Networks Gmbh & Co. Kg Procédé et appareil de configuration de temporisateurs de mode
CN101702964B (zh) 2007-03-30 2014-03-19 意大利电信股份公司 使移动通信终端能够与无线电通信网络连接的方法和系统
US20090015408A1 (en) 2007-07-10 2009-01-15 Yoshinori Asai Handy-type wireless tag reader/writer
US8699711B2 (en) 2007-07-18 2014-04-15 Interdigital Technology Corporation Method and apparatus to implement security in a long term evolution wireless device
KR101479340B1 (ko) * 2007-09-18 2015-01-06 엘지전자 주식회사 무선통신 시스템에서 셀 재선택 과정을 수행하는 방법
EP2046090A1 (fr) 2007-10-02 2009-04-08 Panasonic Corporation Gestion de signalisation de contrôle de session pour services de multidiffusion/radiodiffusion
KR20090038752A (ko) 2007-10-16 2009-04-21 엘지전자 주식회사 데이터 전송 서비스를 위한 무선연결 설정방법
KR20090045039A (ko) 2007-10-30 2009-05-07 엘지전자 주식회사 우선순위에 기반한 셀 재선택 방법
US9215731B2 (en) * 2007-12-19 2015-12-15 Qualcomm Incorporated Method and apparatus for transfer of a message on a common control channel for random access in a wireless communication network
US8559946B2 (en) * 2008-02-08 2013-10-15 Qualcomm Incorporated Discontinuous transmission signaling over an uplink control channel
US8249004B2 (en) * 2008-03-14 2012-08-21 Interdigital Patent Holdings, Inc. Coordinated uplink transmission in LTE DRX operations for a wireless transmit receive unit
US8780732B2 (en) 2008-03-18 2014-07-15 Qualcomm Incorporated Method of network management by assistance from terminal using control-plane signaling between terminal and network
TWI507062B (zh) * 2008-03-24 2015-11-01 Interdigital Patent Holdings 封閉用戶群組胞元之胞元選擇及再選擇
KR101437693B1 (ko) 2008-03-31 2014-09-03 엘지전자 주식회사 핸드오버 과정 수행방법
US8195991B2 (en) * 2008-06-20 2012-06-05 Qualcomm Incorporated Handling of integrity check failure in a wireless communication system
CN101742580B (zh) * 2008-11-11 2012-05-23 华为技术有限公司 小区重选方法及装置
CN101801068B (zh) * 2009-02-10 2012-04-25 电信科学技术研究院 一种小区重选优先级的确定方法及设备
KR101580151B1 (ko) 2009-03-16 2015-12-24 삼성전자주식회사 이동통신시스템에서 무선링크 실패로 인한 호 절단을 개선하기 위한 방법 및 시스템
US9210633B2 (en) * 2009-04-20 2015-12-08 Interdigital Patent Holdings, Inc. Method and apparatus for avoiding interference from closed subscriber group cells
US8437798B2 (en) 2009-04-27 2013-05-07 Motorola Mobility Llc Uplink scheduling support in multi-carrier wireless communication systems
KR101717522B1 (ko) 2009-04-27 2017-03-17 엘지전자 주식회사 다중 반송파를 지원하는 무선 통신 시스템에서 하향링크 제어채널을 모니터링하는 방법 및 장치
EP2421292B1 (fr) * 2009-04-30 2015-04-15 Huawei Technologies Co., Ltd. Procédé et dispositif d'établissement de mécanisme de sécurité de liaison d'interface radio
ATE550904T1 (de) * 2009-06-18 2012-04-15 Panasonic Corp Erweitertes direktzugriffsverfahren für mobile kommunikationen
EP2453704B1 (fr) * 2009-07-07 2018-09-05 Sharp Kabushiki Kaisha Procédé de resélection de cellule et dispositif de station mobile
CN101990184B (zh) * 2009-08-06 2014-09-10 中兴通讯股份有限公司 一种终端的小区选择或者小区重选方法
DK2468050T3 (da) * 2009-08-17 2020-04-20 Nokia Technologies Oy Diskontinuerlig modtagelse til et flerkomponent-bæresystem
EP2484171B1 (fr) * 2009-10-02 2019-12-04 BlackBerry Limited Détermination de causes d'établissement de sessions d'urgence
WO2011083151A1 (fr) * 2010-01-08 2011-07-14 Research In Motion Limited Établissement d'une connexion radio d'urgence
EP3328102B1 (fr) * 2010-03-23 2020-02-19 IOT Holdings, Inc. Procédé de communication pour un dispositif de communication de type machine et unité d'émission/réception sans fil correspondant
US9014035B2 (en) * 2010-04-01 2015-04-21 Nokia Corporation Method and apparatus for providing management of measurement reporting after cell change
US8655305B2 (en) * 2011-03-21 2014-02-18 Htc Corporation Methods for requesting emergency bearer services for low priority devices, and apparatuses using the same
ES2729550T3 (es) * 2011-03-29 2019-11-04 Lg Electronics Inc Método para que un equipo de usuario transmita/reciba datos en un sistema de comunicación inalámbrica y aparato para el mismo
KR101929307B1 (ko) * 2011-04-11 2018-12-17 삼성전자 주식회사 Csg 셀에서 단말이 셀 재선택 우선 순위를 효율적으로 제어하는 방법 및 장치
CN103782523B (zh) * 2011-07-01 2017-08-01 英特尔公司 用于均匀圆形阵列(uca)的结构化码本
US9668207B2 (en) * 2011-08-12 2017-05-30 Telefonaktiebolaget Lm Ericsson (Publ) Deciding whether to send uplink control signaling based on the active time status of a user equipment configured with discontinuous reception (DRX)
WO2013162277A1 (fr) * 2012-04-24 2013-10-31 Lg Electronics Inc. Procédé et appareil de sélection d'une cellule dans un système de communications sans fil
US9749904B1 (en) * 2013-03-29 2017-08-29 Syniverse Communications, Inc. Circuit switch voice roaming to LTE network

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2698930A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015108337A1 (fr) * 2014-01-14 2015-07-23 엘지전자 주식회사 Procédé de commutation de chemin pour une double connectivité dans un système de communications sans fil, et appareil correspondant
US10085201B2 (en) 2014-01-14 2018-09-25 Lg Electronics Inc. Path switch method for dual connectivity in wireless communication system and apparatus for same
US20150264596A1 (en) * 2014-03-11 2015-09-17 Samsung Electronics Co., Ltd. Method and apparatus of dynamically adjusting bit rate of bearer in wireless communication system
US10390255B2 (en) * 2014-03-11 2019-08-20 Samsung Electronics Co., Ltd. Method and apparatus of dynamically adjusting bit rate of bearer in wireless communication system
WO2016208950A1 (fr) * 2015-06-23 2016-12-29 엘지전자(주) Procédé d'émission/réception de données dans un système de communication sans fil et dispositif associé
US10778697B2 (en) 2015-06-23 2020-09-15 Lg Electronics Inc. Method for transmitting/receiving data in wireless communication system, and device for same

Also Published As

Publication number Publication date
EP2698006A4 (fr) 2015-08-05
KR20120115954A (ko) 2012-10-19
AU2012243644B2 (en) 2016-02-25
AU2012243644A1 (en) 2013-10-17
AU2012243644A8 (en) 2014-01-09
JP2017060172A (ja) 2017-03-23
WO2012141481A3 (fr) 2013-01-10
US20190342938A1 (en) 2019-11-07
KR101929307B1 (ko) 2018-12-17
US20120258750A1 (en) 2012-10-11
WO2012141481A2 (fr) 2012-10-18
WO2012141480A3 (fr) 2013-01-10
KR20180107772A (ko) 2018-10-02
JP2014514850A (ja) 2014-06-19
EP2698930A2 (fr) 2014-02-19
CN103620984A (zh) 2014-03-05
EP2698930B1 (fr) 2019-03-06
EP2698006B1 (fr) 2020-09-09
EP3512122B1 (fr) 2020-06-03
WO2012141482A2 (fr) 2012-10-18
US20140036685A1 (en) 2014-02-06
US10362621B2 (en) 2019-07-23
US20170303334A1 (en) 2017-10-19
KR20120115946A (ko) 2012-10-19
EP2698930A4 (fr) 2014-09-24
CN103620984B (zh) 2017-05-24
CN103597878B (zh) 2017-12-08
US9578563B2 (en) 2017-02-21
JP6033842B2 (ja) 2016-11-30
ES2724802T3 (es) 2019-09-16
WO2012141482A3 (fr) 2013-01-10
JP6301428B2 (ja) 2018-03-28
KR101903041B1 (ko) 2018-10-02
US9432927B2 (en) 2016-08-30
US9622164B2 (en) 2017-04-11
US20140029563A1 (en) 2014-01-30
EP2698006A2 (fr) 2014-02-19
US10887942B2 (en) 2021-01-05
KR101978767B1 (ko) 2019-05-15
EP3512122A1 (fr) 2019-07-17
US20160366625A1 (en) 2016-12-15
ES2801325T3 (es) 2021-01-11
AU2012243644A2 (en) 2014-11-13
CN103597878A (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
WO2012141480A2 (fr) Procédé et appareil de transmission et de réception de données dans un système de communication mobile
WO2018143593A1 (fr) Procédé d'application d'une qualité de service (qos) réfléchissante dans un système de communication sans fil, et dispositif à cet effet
WO2018128452A1 (fr) Procédé de transmission de paquets de données sans perte sur la base d'une structure de qualité de service (qos) dans un système de communication sans fil et dispositif associé
WO2018131947A1 (fr) Procédé de fonctionnement de communication véhicule-à-toute-entité (v2x) exécuté par un terminal v2x dans un système de communication sans fil et terminal l'utilisant
WO2014025141A1 (fr) Procédé pour transférer un rapport d'état et dispositif de communication de celui-ci dans un système de communication sans fil
WO2013112021A1 (fr) Procédé et appareil d'émission et de réception de données au moyen de plusieurs porteuses dans des systèmes de communications mobiles
WO2019194528A1 (fr) Procédé et appareil pour l'exécution d'une transmission
WO2016068456A1 (fr) Procédé pour éviter l'émission de pdu mac ne contenant que des bits de remplissage dans un système de communication d2d et dispositif associé
WO2013168917A1 (fr) Procédé et appareil pour transmettre et recevoir des données à l'aide d'une pluralité de porteuses dans un système de communication mobile
WO2015046976A1 (fr) Procédé et appareil d'émission et de réception de données au moyen de plusieurs porteuses dans un système de communication mobile
WO2015115835A1 (fr) Procédé et appareil de transmission/réception de données, par un terminal, au moyen d'une pluralité de porteuses dans un système de communications mobiles
EP2745432A2 (fr) Procédé et appareil pour la prise en charge efficace de plusieurs bandes de fréquences dans un système de communication mobile
WO2019160281A1 (fr) Procédé et appareil pour réaliser un transfert basé sur dc
WO2013183971A1 (fr) Procédé et système pour une protection sélective de données échangées entre un équipement d'utilisateur et un réseau
WO2019059729A1 (fr) Procédé et appareil pour activer une partie de largeur de bande
WO2019054841A1 (fr) Procédé permettant de mettre en œuvre une qualité de service réfléchissante dans un système de communication sans fil, et dispositif associé
EP3613236A1 (fr) Procédé et appareil de signalisation de résultat de mesurage
WO2018212535A1 (fr) Appareil et procédé pour un équipement utilisateur (ue) exploitant un support scindé
WO2017030427A1 (fr) Procédé et appareil d'accès, de transfert et de commande de chiffrement d'un ue
WO2019074297A1 (fr) Procédé et appareil de changement de version de pdcp
WO2018174624A1 (fr) Procédé et appareil pour coordonner des capacités de terminal pour un interfonctionnement lte/nr dans un système de communication sans fil
WO2019017663A1 (fr) Procédé de transmission d'un rapport de marge de puissance dans un système de communication sans fil et dispositif associé
WO2021125712A1 (fr) Procédé et appareil de gestion de temporisateur associé à la transmission de segmentation d'un message rrc dans un système de communication mobile de prochaine génération
WO2019070107A1 (fr) Procédé et appareil de commande de duplication de paquets
WO2021096184A1 (fr) Procédé et dispositif permettant de segmenter un message de commande de ressources radio de liaison descendante dans un système de communication mobile de nouvelle génération

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12770987

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012770987

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14111530

Country of ref document: US