WO2012141303A1 - Fuel cell module - Google Patents

Fuel cell module Download PDF

Info

Publication number
WO2012141303A1
WO2012141303A1 PCT/JP2012/060160 JP2012060160W WO2012141303A1 WO 2012141303 A1 WO2012141303 A1 WO 2012141303A1 JP 2012060160 W JP2012060160 W JP 2012060160W WO 2012141303 A1 WO2012141303 A1 WO 2012141303A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
wall portion
side wall
oxidant
exhaust gas
Prior art date
Application number
PCT/JP2012/060160
Other languages
French (fr)
Japanese (ja)
Inventor
暁 山本
水野 康
幸弘 川路
翔 横山
浩嗣 三瓶
Original Assignee
Jx日鉱日石エネルギー株式会社
三恵技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社, 三恵技研工業株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2012141303A1 publication Critical patent/WO2012141303A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fuel cell module.
  • a conventional fuel cell module in which a reformer and a cell stack are housed in a fuel cell casing shown in Patent Document 1.
  • the fuel cell housing includes a storage chamber for storing the reformer and the cell stack, an exhaust gas channel formed outside the storage chamber, an oxidant channel formed outside the exhaust gas channel, And an oxidant supply member extending downward from the oxidant flow path toward the storage chamber.
  • the exhaust gas flow path has a portion that allows the exhaust gas generated from the combustion portion at the upper end of the cell stack to pass downward on the side of the storage chamber, and a portion that collects the exhaust gas and discharges it outside the system below the storage chamber. ing.
  • the oxidant flow path has a part where the oxidant is introduced below the exhaust gas flow path and a part where the oxidant introduced from below the exhaust gas flow path passes above the storage chamber.
  • the oxidant supply member is disposed so as to enter a gap between the cell stacks arranged in a direction orthogonal to the cell stacking direction in the horizontal direction, and supplies the oxidant to each cell stack from the gap.
  • the tip has a through hole.
  • the casing of the conventional fuel cell module has a structure in which two metal boxes having an internal space extending in the horizontal direction are stacked, and the internal space of the lower box is an oxidant channel.
  • the oxidizer is introduced into the internal space of the upper box body, and the exhaust gas in the exhaust gas flow passage is discharged from the system.
  • a plurality of metal plates extending in the vertical direction are welded to two stacked boxes, and these metal plates are used as the wall surfaces of the exhaust gas channel and the oxidant channel.
  • the exhaust gas flow channel and the oxidant flow channel can be partitioned by simply placing a single plate material between the two flow channels, but in the conventional configuration, functional overlap is defined that the both flow channels are partitioned.
  • functional overlap is defined that the both flow channels are partitioned.
  • it is difficult to say that it is an efficient configuration (the upper wall portion of the box disposed on the lower side and the bottom wall portion of the box disposed on the upper side). .
  • an object of the present invention is to provide a fuel cell module having a simple configuration that is easy to manufacture while reducing the number of welded portions connecting the wall portions.
  • a fuel cell module includes a cell stack that generates power using a hydrogen-containing gas and an oxidant, and a housing that houses the cell stack and has an internal space for burning off-gas from the cell stack. And the housing covers a first case that forms an internal space, and an exhaust gas passage that covers the first case and allows the exhaust gas due to off-gas combustion to pass between the first case and the first case.
  • a second case and a third case that covers the second case and that forms an oxidant flow path for allowing the oxidant to pass between the second case and the second case.
  • a structure including a second case side wall portion opposed to the second case side wall portion fixed to the second case side wall portion and a second case bottom wall portion formed integrally with the second case side wall portion by bending the plate material. And the third case side wall portion facing each other, the third case upper wall portion fixed to the third case side wall portion, and the third case bottom wall portion formed integrally with the third case side wall portion by bending the plate material It is characterized by including.
  • the parts are integrally formed by bending the plate material.
  • the third case side wall, the third case upper wall, and the third case bottom wall constituting the third case, the third case side wall and the third case bottom wall are formed by bending a plate material. It is integrally formed by processing.
  • each wall part by the bending process of a board
  • connection location folding location of a board
  • plate material) of a wall part can be suitably maintained by forming a wall part by a bending process.
  • the number of places where the wall portions are connected by welding is reduced, there are few inspection places when the inspection of the welding places is performed, and labor and cost can be reduced.
  • the housing of the fuel cell module according to one aspect of the present invention has a wall portion formed by bending, so that it can be a heat-resistant housing. As described above, it is possible to reduce the number of welded portions that connect the wall portions and to achieve a simple configuration that is easy to manufacture. In addition, the material cost can be reduced by the simple configuration.
  • FIG. 1 is a schematic configuration diagram of a fuel cell module according to an embodiment of the present invention. It is a schematic sectional drawing along the II-II line
  • FIG. 3 is a sectional view taken along line III-III shown in FIG. 2.
  • It is a schematic block diagram of the conventional fuel cell module. It is a conceptual diagram which shows the assembly process of the conventional fuel cell module.
  • the fuel cell module 1 uses a reformer 2 that generates a reformed gas RG using a hydrogen-containing fuel, and a reformed gas RG and an oxidant OX.
  • a cell stack 3 that generates power
  • a water vaporization unit 4 that generates water vapor that is supplied to the reformer 2 by vaporizing water
  • a housing that houses the reformer 2, the cell stack 3, and the water vaporization unit 4.
  • a body 6 Although not shown in FIGS. 1 to 3, a housing for storing auxiliary equipment such as a pump and control equipment is provided below the fuel cell module 1.
  • each wall part since the flow of gas is shown notionally, the plate
  • the reformer 2, the cell stack 3, and the like are omitted in order to show each wall portion with emphasis.
  • the cross section of each wall part is shown by the line, each wall part actually has predetermined
  • hydrocarbon fuel a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used.
  • hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil. Examples of alcohols include methanol and ethanol. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet.
  • oxygen-enriched air for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.
  • the reformer 2 generates the reformed gas RG using the supplied hydrogen-containing fuel.
  • the reformer 2 reforms the hydrogen-containing fuel by the reforming reaction using the reforming catalyst to generate the reformed gas RG.
  • the reforming method in the reformer 2 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed.
  • the reformer 2 is disposed on the upper side of the cell stack 3 so as to be heated by combustion heat described later. That is, the off gas (unreacted reformed gas) of the reformed gas RG introduced to the fuel electrode side of the cell stack 3 is unreacted among oxidants such as air introduced to the oxidant electrode side such as the air electrode. Combusted together with oxygen (unreacted oxidant gas), the reformer 2 is heated by this combustion heat.
  • the reformer 2 supplies the reformed gas RG to the fuel electrode of the cell stack 3.
  • the cell stack 3 has a plurality of cells called SOFC (Solid Oxide Fuel Cells) that are regularly arranged and connected. Each cell is configured by disposing an electrolyte that is a solid oxide between a fuel electrode and an oxidant electrode.
  • the electrolyte is made of, for example, yttria stabilized zirconia (YSZ) or the like, and conducts oxide ions at a high temperature.
  • the fuel electrode is made of, for example, a mixture of nickel and YSZ, and reacts oxide ions with hydrogen in the reformed gas RG to generate electrons and water.
  • the oxidant electrode is made of, for example, lanthanum strontium manganite and reacts oxygen and electrons in the oxidant OX to generate oxide ions.
  • a cell stack 3 in which a plurality of cells are erected on a pedestal 7 and aligned and connected in a line in the same direction will be described as an example.
  • a direction in which a plurality of cells stand on the pedestal 7 and are aligned and extended in a row facing the same direction will be referred to as a “stacking direction” and will be described below.
  • the cell stacks 3 are arranged in two rows on the upper surface of the base 7 so as to face each other in a direction orthogonal to the stacking direction of the cells. However, the cell stacks 3 may be arranged in a line.
  • the base 7 and the reformer 2 are connected by a pipe 8.
  • the reformed gas RG supplied from the reformer 2 is supplied to each cell of the cell stack 3 via the base 7.
  • the reformed gas RG and the oxidant OX that have not reacted in the cell stack 3 are burned in the combustion section 9 at the top of the cell stack 3. Due to the combustion of off-gas in the combustion section 9, the reformer 2 is heated and exhaust gas EG is generated.
  • the water vaporization unit 4 generates water vapor supplied to the reformer 2 by heating and vaporizing the supplied water.
  • the steam generated in the water vaporization unit 4 passes through the first case bottom wall 18 and uses a pipe (not shown) connecting the water vaporization unit 4 and the reformer 2 to the reformer 2.
  • heat generated in the fuel cell module 1 such as recovering heat of the reformer 2, heat of the combustion unit 9, or heat of the exhaust gas EG may be used.
  • the water vaporization part 4 is arrange
  • the housing 6 is a rectangular parallelepiped metal box having an internal space for housing the reformer 2, the cell stack 3, and the water vaporization unit 4.
  • the casing 6 includes a storage chamber 11 that stores the cell stack 3, an exhaust gas passage 12 that is formed outside the storage chamber 11, passes the exhaust gas EG from the combustion of the off gas from the cell stack 3, and an oxidizing agent OX.
  • An oxidant flow path 13 to be passed through and each wall portion forming the storage chamber 11, the exhaust gas flow path 12 and the oxidant flow path 13 are provided.
  • the direction along the stacking direction of the cells of the cell stack 3 is referred to as the “length direction D1” of the casing 6, and the direction orthogonal to the stacking direction of the cells in the horizontal direction is the casing 6.
  • the vertical direction is the “vertical direction D3” of the housing 6.
  • the storage chamber 11 includes first case side wall portions 16 and 17 that face each other in the width direction D2, a first case bottom wall portion 18 that is connected to each lower end portion of the first case side wall portions 16 and 17, and a length direction. D1 is formed inside end wall portions 33 and 34 facing each other.
  • the base 7 is disposed on the first case bottom wall portion 18.
  • a heat insulating material may be disposed between the first case bottom wall portion 18 and the pedestal 7. In order to allow the exhaust gas EG generated in the combustion unit 9 to pass through, the upper end of the storage chamber 11 is open.
  • the exhaust gas flow path 12 is located above the upper ends of the second case side walls 21 and 22 and the first case side walls 16 and 17 disposed on the outside of the first case side walls 16 and 17 in the width direction D2.
  • the second case upper wall portion 23 disposed, the second case bottom wall portion 24 disposed below the first case bottom wall portion 18, and the end wall portions 33 and 34 facing each other in the length direction D1. And formed by.
  • the second case upper wall portion 23 is connected to the upper end portions of the second case side wall portions 21 and 22, and the second case bottom wall portion 24 is connected to the lower end portions of the second case side wall portions 21 and 22.
  • the second case side wall portions 21 and 22 are disposed so as to be spaced apart from the first case side wall portions 16 and 17.
  • the second case upper wall portion 23 is disposed so as to be opposed to and spaced from the upper end portion of the storage chamber 11.
  • the second case bottom wall portion 24 is disposed so as to face the first case bottom wall portion 18 while being spaced apart from the first case bottom wall portion 18.
  • the exhaust gas passage 12 includes exhaust gas passages 12A and 12B formed between the upper opening of the storage chamber 11 and the second case upper wall portion 23, the second case side walls 21 and 22, and the first case side wall. Exhaust gas passages 12C and 12D formed between the portions 16 and 17, and exhaust gas passages 12E and 12F formed between the second case bottom wall portion 24 and the first case bottom wall portion 18. Have.
  • the exhaust gas passages 12A and 12B guide the exhaust gas EG from the combustion unit 9 to the exhaust gas passages 12C and 12D.
  • the exhaust gas channels 12C and 12D pass the exhaust gas EG downward, and supply the heat of the exhaust gas EG to the oxidant OX flowing through the outer oxidant channels 13C and 13D.
  • the exhaust gas passages 12 ⁇ / b> E and 12 ⁇ / b> F pass the exhaust gas EG in the horizontal direction toward the exhaust pipe 32 and supply the heat of the exhaust gas EG to the water vaporization unit 4.
  • the oxidant flow path 13 is disposed above the second case upper wall portion 23 and the third case side wall portions 26 and 27 disposed on the outer sides of the second case side wall portions 21 and 22 in the width direction D2.
  • the third case upper wall portion 28 disposed below the second case bottom wall portion 24, and end wall portions 33 and 34 facing each other in the length direction D1. It is formed.
  • the third case upper wall portion 28 is connected to the upper end portions of the third case side wall portions 26 and 27, and the third case bottom wall portion 29 is connected to the lower end portions of the third case side wall portions 26 and 27.
  • the third case side wall portions 26, 27 are disposed so as to be spaced apart from the second case side wall portions 21, 22.
  • the third case upper wall portion 28 is disposed so as to face the second case upper wall portion 23 while being spaced apart from the second case upper wall portion 23.
  • the third case bottom wall portion 29 is disposed so as to be spaced apart from the second case bottom wall portion 24.
  • a slit 39 extending in the length direction D1 is formed at the center of the second case upper wall 23, and an oxidant supply member 36 is inserted into the slit 39.
  • the oxidant supply member 36 supplies the oxidant OX to the cell stack 3.
  • the oxidant supply member 36 extends so as to enter a gap between the pair of cell stacks 3, and has an oxidant flow path 13 ⁇ / b> K inside and has through holes 37 and 38 at the tip.
  • the oxidant flow path 13 includes the oxidant flow paths 13A and 13B formed between the third case upper wall portion 28 and the second case upper wall portion 23, the third case side wall portions 26 and 27, and the second case.
  • Oxidant channels 13C, 13D formed between the side walls 21, 22 and oxidant channels 13G, 13H formed between the third case bottom wall 29 and the second case bottom wall 24.
  • the oxidant flow paths 13G and 13H pass the oxidant OX from the air supply pipe 31 so as to spread in the horizontal direction and guide the oxidant flow paths 13C and 13D.
  • the oxidant channels 13C and 13D allow the oxidant OX to pass upward, and heat the oxidant OX by the heat of the exhaust gas EG flowing through the inner exhaust gas channels 12C and 12D.
  • the oxidant flow paths 13A and 13B allow the oxidant OX to pass from the outside toward the inside in the width direction D2, flow into the oxidant flow path 13K of the oxidant supply member 36, and guide it to the through holes 37 and 38.
  • the third case bottom wall 29 is provided with an air supply pipe 31 for allowing an oxidant to flow into the oxidant flow path 13 from an oxidant supply section (not shown).
  • the second case bottom wall 24 is provided with an exhaust pipe 32 for exhausting the exhaust gas from the exhaust gas passage 12.
  • the side wall portions 16, 17, 21, 22, 26, 27, the upper wall portions 23, 28, and the bottom wall portions 18, 24, 29 extend to the end portions 6a, 6b of the housing 6 in the length direction D1. Yes. End wall portions 33 and 34 are respectively provided at both ends of the casing 6 in the length direction D1.
  • the third case side wall portions 26 and 27, the third case upper wall portion 28, the third case bottom wall portion 29, and the end wall portions 33 and 34 constitute an outer shell of the fuel cell module 1, and are connected to each other at the connection portion. The sealing property is ensured, and the airtightness in the housing 6 is ensured.
  • the reformed gas RG generated in the reformer 2 using the hydrogen-containing fuel supplied from the outside and the water vapor from the water vaporization unit 4 flows into the pedestal 7 through the pipe 8, and from the pedestal 7 to the cell stack 3. Supplied to each cell.
  • the reformed gas RG flows through the cell stack 3 from below to above, and a part of the reformed gas RG is used as an off-gas for combustion in the combustion unit 9.
  • the oxidant OX is supplied from the outside through the air supply pipe 31, spreads in the horizontal direction in the oxidant flow paths 13G and 13H, and moves upward in the oxidant flow paths 13C and 13D while being heated by the exhaust gas EG flowing inside. Pass through.
  • the oxidant OX passes through the oxidant flow paths 13A and 13B, flows through the oxidant flow path 13K of the oxidant supply member 36, passes through the through holes 37 and 38, and is supplied to the cell stack 3, and a part thereof Used for combustion in the combustion section 9.
  • the exhaust gas EG generated in the combustion unit 9 is guided to the exhaust gas channels 12C and 12D by the exhaust gas channels 12A and 12B, and flows downward through the exhaust gas channels 12C and 12D while supplying heat to the oxidant OX flowing outside. pass.
  • the exhaust gas EG reaches the bottom, it flows into the exhaust gas channels 12E and 12F, and passes through the exhaust gas channels 12E and 12F while supplying heat to the water vaporization unit 4.
  • the exhaust gas EG that has passed through the exhaust gas flow paths 12E and 12F is exhausted from the exhaust pipe 32.
  • the fuel cell module 1 accommodates the cell stack 3 by using, as a third case 50, a member constituting the outermost wall portion of the housing 6.
  • the second case 60 and the first case 70 are the portions that become hot.
  • the third case 50 includes third case side wall portions 26 and 27, a third case upper wall portion 28, a third case bottom wall portion 29, and end wall portions 33 and 34.
  • one end portion 50 b in the length direction D ⁇ b> 1 is sealed with the end wall portion 34, and the other end portion 50 a is sealed with the end wall portion 33. Thereby, the airtightness inside the third case 50 is ensured.
  • the third case side wall portions 26 and 27 and the third case bottom wall portion 29 are integrally formed with each wall portion as a boundary by bending a single plate material. That is, in the third case 50, a corner (folded portion) M51 formed by connecting the third case side wall 26 and the third case bottom wall 29, and the third case side wall 27 and the third case bottom. Corner portions (folded portions) M52 formed by the connection with the wall portion 29 are each formed by bending.
  • the upper ends of the third case side walls 26 and 27 and the third case upper wall 28 are fixed by welding or bolting. Further, both end portions in the length direction D1 of the third case side wall portions 26 and 27, the third case upper wall portion 28, and the third case bottom wall portion 29 are fixed to the end wall portions 33 and 34 by welding, respectively. Has been.
  • the second case 60 includes second case side walls 21 and 22, a second case upper wall 23, a second case bottom wall 24, and end walls 33 and 34.
  • one end portion 60 b in the length direction D ⁇ b> 1 is sealed with the end wall portion 34, and the other end portion 60 a is sealed with the end wall portion 33.
  • the second case side wall portions 21 and 22 and the second case bottom wall portion 24 are integrally formed with each wall portion as a boundary by bending a single plate material. That is, in the second case 60, the corner (folded portion) M61 formed by the connection between the second case side wall 21 and the second case bottom wall 24, and the second case side wall 22 and the second case bottom. Corner portions (folded portions) M62 formed by connection with the wall portion 24 are each formed by bending. Further, the upper ends of the second case side wall parts 21 and 22 and the second case upper wall part 23 are fixed by welding or bolting. Further, both end portions in the length direction D1 of the second case side wall portions 21 and 22, the second case upper wall portion 23, and the second case bottom wall portion 24 are fixed to the end wall portions 33 and 34 by welding, respectively. Has been.
  • the first case 70 includes first case side wall portions 16 and 17, a first case bottom wall portion 18, and end wall portions 33 and 34.
  • the first case 70 opens upward.
  • one end portion 70 b of the first case 70 in the length direction D ⁇ b> 1 is sealed with the end wall portion 34, and the other end portion 70 a of the first case 70 is sealed with the end wall portion 33. Is done.
  • first case side wall portions 16 and 17 and the first case bottom wall portion 18 are integrally formed with each wall portion as a boundary by bending a single plate material. That is, in the first case 70, the corner portion M71 formed by connecting the first case side wall portion 16 and the first case bottom wall portion 18, and the first case side wall portion 17 and the first case bottom wall portion 18 Each of the corner portions M72 formed by the connection is formed by bending. Moreover, the both ends of the length direction D1 in the 1st case side wall parts 16 and 17 and the 1st case bottom wall part 18 are being fixed to the end wall parts 33 and 34 by welding, respectively.
  • first case 70 for example, a high temperature oxidation resistant material such as NCA1 or SUS310S can be used.
  • the housing 106 of the fuel cell module 100 is configured by sequentially fixing each wall portion forming each flow path to the base 110 by welding.
  • the base 110 is configured by stacking a first box body 111 and a second box body 112.
  • the first box body 111 includes an upper wall portion 18A, a bottom wall portion 24A, and lower end portions 21a and 22a of the second case side wall portions 21 and 22.
  • the second box body 112 is constituted by an upper wall portion 24B, a bottom wall portion 29, and lower end portions 26a and 27a of the third case side wall portions 26 and 27.
  • a through hole for passing the oxidant and the exhaust gas is also provided at a predetermined position.
  • the side walls 16, 17, 21, 22, 26, 27 and the upper wall 23 are assembled on the upper surface of the base 110 and welded to be integrated. Openings are formed on the outermost upper surface and both end faces in the length direction D1, and the three openings are sealed by the third case upper wall portion 28 and the end wall portions 33, 34 that function as lids. To do.
  • the wall portions are all connected by welding, which makes it difficult to manufacture the casing.
  • the second case upper wall connected to the upper ends of the second case side walls 21 and 22 and the second case side walls 21 and 22 constituting the second case 60.
  • the second case bottom wall portion 24 connected to the lower end portions of the portion 23 and the second case side wall portions 21 and 22, the second case side wall portions 21 and 22 and the second case bottom wall portion 24 are made of a plate material.
  • the respective wall portions are integrally formed with the bent portion as a boundary.
  • the third case side wall portions 26 and 27 and the third case bottom wall portion 29 are formed by bending the plate material with the bent portion as a boundary.
  • Each wall part is integrally formed.
  • the airtightness at the connecting portion (corner portions M51, M52, M61, M62) of the wall portion can be suitably maintained.
  • the number of places where the wall portions are connected by welding is reduced, there are few inspection places when the inspection of the welding places is performed, and labor and cost can be reduced.
  • the connecting portions (corner portions M51, 61, M52, M62) of the wall portion located at the location where the accuracy of the width of the oxidant flow path 13 is required are formed by bending, oxidation is performed.
  • the width of the agent flow path 13 can be set with high accuracy. Thereby, the heat exchange performance from the exhaust gas EG to the oxidant OX can be set to a desired value, and the temperature control of the oxidant OX immediately after being introduced into the oxidant flow path 13 can be performed with high accuracy. it can.
  • the connecting portions (corner portions M51, M52, M61, M62) of the wall portions formed by the bending process are more sensitive to heat, such as thermal shock due to heat cycle, than the locations where the wall portions are connected by welding. It has become strong. Therefore, since the housing 6 of the fuel cell module 1 has a wall portion formed by bending, it can be made a heat-resistant housing. As described above, it is possible to reduce the number of welded portions that connect the wall portions and to achieve a simple configuration that is easy to manufacture. In addition, the material cost can be reduced by the simple configuration.
  • the present invention is not limited to the above-described embodiment.
  • the configuration of the oxidant flow path 13K that guides the oxidant to the cell stack 3 may be changed as appropriate.
  • the reformer 2 In a fuel cell system that supplies fuel that does not require reforming treatment, such as pure hydrogen or hydrogen-enriched gas introduced from outside the fuel cell system, to the fuel electrode of the cell stack, the reformer 2
  • the water vaporizer 4 can be omitted.

Abstract

This fuel cell module of one aspect of this invention is provided with a casing that houses a reformer and a cell stack. The casing is provided with a first case forming an internal space, a second case which covers the first case and, together with said first case, forms an exhaust gas flow path which allows passage of an exhaust gas resulting from combustion of offgas, and a third case which covers the second case and, together with said second case, forms an oxidizer flow path which allows passage of an oxidizer. The second case is configured to include second case side walls opposite to one another, a second case top wall fixed to the second case side walls, and a second case bottom wall formed integrally with the second case side walls by bending the sheet material. The third case is configured to include third case side walls opposite to one another, a third case top wall fixed to the third case side walls, and a third case bottom wall formed integrally with the third case side walls by bending the sheet material.

Description

燃料電池モジュールFuel cell module
 本発明は、燃料電池モジュールに関する。 The present invention relates to a fuel cell module.
 従来の燃料電池モジュールとして、特許文献1に示す燃料電池用筐体に、改質器とセルスタックとを収納して構成したものが知られている。この燃料電池用筐体は、改質器及びセルスタックを収納する収納室と、収納室の外側に形成された排ガス流路と、排ガス流路の外側に形成された酸化剤流路と、上方の酸化剤流路から収納室へ向かって下方へ延びる酸化剤供給部材とを備えている。排ガス流路は、収納室の側方においてセルスタック上端部の燃焼部から発生する排ガスを下方へ通過させる部分と、収納室の下方において排ガスを集めて系外へ排出する部分と、を有している。酸化剤流路は、排ガス流路の下方において酸化剤が導入される部分と、排ガス流路の下方から導入された酸化剤を収納室の上方へ通過させる部分と、を有している。また、酸化剤供給部材は、水平方向においてセルの積層方向と直交する方向に並べられたセルスタックの間の隙間に入り込むように配置され、当該隙間から各セルスタックに対して酸化剤を供給するように、先端部に貫通孔を有している。 2. Description of the Related Art A conventional fuel cell module is known in which a reformer and a cell stack are housed in a fuel cell casing shown in Patent Document 1. The fuel cell housing includes a storage chamber for storing the reformer and the cell stack, an exhaust gas channel formed outside the storage chamber, an oxidant channel formed outside the exhaust gas channel, And an oxidant supply member extending downward from the oxidant flow path toward the storage chamber. The exhaust gas flow path has a portion that allows the exhaust gas generated from the combustion portion at the upper end of the cell stack to pass downward on the side of the storage chamber, and a portion that collects the exhaust gas and discharges it outside the system below the storage chamber. ing. The oxidant flow path has a part where the oxidant is introduced below the exhaust gas flow path and a part where the oxidant introduced from below the exhaust gas flow path passes above the storage chamber. The oxidant supply member is disposed so as to enter a gap between the cell stacks arranged in a direction orthogonal to the cell stacking direction in the horizontal direction, and supplies the oxidant to each cell stack from the gap. As shown, the tip has a through hole.
特開2010-044990号公報JP 2010-044990 A
 しかしながら、従来の燃料電池モジュールの筐体は、水平方向に広がる内部空間を有する金属製の箱体を2つ重ねた構成となっており、下側の箱体の内部空間が、酸化剤流路における酸化剤が導入される部分となり、上側の箱体の内部空間が、排ガス流路における排ガスを系外に排出する部分となっている。また、この筐体は、重ねられた2つの箱体に、上下方向に延びる複数枚の金属板を溶接し、これらの金属板を、排ガス流路及び酸化剤流路の壁面として用いている。このような構造では、筐体内に形成される流路毎に、箱体に対して金属板を溶接する必要があり、溶接箇所が多く、溶接箇所の数の多さに比例して歪が発生する可能性が高くなるという問題があった。また、金属板を箱体に溶接する構成であるため、金属板の垂直方向・水平方向等の設置位置の管理に手間が掛かるという問題もあった。また、溶接箇所の検査を行う際にも、検査箇所が多くなり、手間やコストが掛かるという問題もあった。また、2つの箱体を重ねて排ガス流路及び酸化剤流路の下側の部分を形成する構成であるため、排ガス流路及び酸化剤流路の下側部分において、両流路の区画は、下側に配置された箱体の上壁部と、上側に配置された箱体の底壁部とによって行われている。すなわち、排ガス流路と酸化剤流路とは、1枚の板材を両流路間に配置するだけで区画することができるものの、従来の構成では、両流路を区画するという機能的に重複した部位(下側に配置された箱体の上壁部、及び上側に配置された箱体の底壁部)が存在しており、効率的な構成であるとは言い難いという問題もあった。 However, the casing of the conventional fuel cell module has a structure in which two metal boxes having an internal space extending in the horizontal direction are stacked, and the internal space of the lower box is an oxidant channel. The oxidizer is introduced into the internal space of the upper box body, and the exhaust gas in the exhaust gas flow passage is discharged from the system. In addition, in this case, a plurality of metal plates extending in the vertical direction are welded to two stacked boxes, and these metal plates are used as the wall surfaces of the exhaust gas channel and the oxidant channel. In such a structure, it is necessary to weld a metal plate to the box for each flow path formed in the housing, and there are many welding points, and distortion occurs in proportion to the number of welding points. There was a problem that there was a high possibility of doing. In addition, since the metal plate is welded to the box, there is a problem that it takes time to manage the installation position of the metal plate in the vertical direction and the horizontal direction. In addition, when inspecting the welded part, there are problems that the number of inspection parts increases, which takes time and cost. In addition, since the two boxes are stacked to form the lower part of the exhaust gas flow path and the oxidant flow path, in the lower part of the exhaust gas flow path and the oxidant flow path, the sections of both flow paths are The upper wall portion of the box placed on the lower side and the bottom wall portion of the box placed on the upper side are used. That is, the exhaust gas flow channel and the oxidant flow channel can be partitioned by simply placing a single plate material between the two flow channels, but in the conventional configuration, functional overlap is defined that the both flow channels are partitioned. There is also a problem that it is difficult to say that it is an efficient configuration (the upper wall portion of the box disposed on the lower side and the bottom wall portion of the box disposed on the upper side). .
 そこで本発明は、このような課題を解決するためになされたものであり、壁部同士を連結する溶接箇所を少なくすると共に、製造が容易な簡素な構成の燃料電池モジュールを提供することを目的とする。 Accordingly, the present invention has been made to solve such a problem, and an object of the present invention is to provide a fuel cell module having a simple configuration that is easy to manufacture while reducing the number of welded portions connecting the wall portions. And
 本発明の一側面の燃料電池モジュールは、水素含有ガス及び酸化剤を用いて発電を行うセルスタックと、セルスタックを収納すると共に、セルスタックからのオフガスを燃焼させるための内部空間を有する筐体と、を備え、筐体は、内部空間を形成する第1のケースと、第1のケースを覆うと共に、第1のケースとの間でオフガスの燃焼による排ガスを通過させる排ガス流路を形成する第2のケースと、第2のケースを覆うと共に、第2のケースとの間で酸化剤を通過させる酸化剤流路を形成する第3のケースと、を備え、第2のケースは、互いに対向する第2ケース側壁部、第2ケース側壁部に固定された第2ケース上壁部、及び板材の折り曲げにより第2ケース側壁部と一体に形成された第2ケース底壁部を含んで構成され、第3のケースは、互いに対向する第3ケース側壁部、第3ケース側壁部に固定された第3ケース上壁部、及び板材の折り曲げにより第3ケース側壁部と一体に形成された第3ケース底壁部を含んで構成されることを特徴とする。 A fuel cell module according to one aspect of the present invention includes a cell stack that generates power using a hydrogen-containing gas and an oxidant, and a housing that houses the cell stack and has an internal space for burning off-gas from the cell stack. And the housing covers a first case that forms an internal space, and an exhaust gas passage that covers the first case and allows the exhaust gas due to off-gas combustion to pass between the first case and the first case. A second case and a third case that covers the second case and that forms an oxidant flow path for allowing the oxidant to pass between the second case and the second case. A structure including a second case side wall portion opposed to the second case side wall portion fixed to the second case side wall portion and a second case bottom wall portion formed integrally with the second case side wall portion by bending the plate material. And the third The third case side wall portion facing each other, the third case upper wall portion fixed to the third case side wall portion, and the third case bottom wall portion formed integrally with the third case side wall portion by bending the plate material It is characterized by including.
 この燃料電池モジュールによれば、第2のケースを構成する、第2ケース側壁部、第2ケース上壁部、及び第2ケース底壁部のうち、第2ケース側壁部及び第2ケース底壁部は、板材の折り曲げ加工により一体に形成される。また、第3のケースを構成する、第3ケース側壁部、第3ケース上壁部、及び第3ケース底壁部のうち、第3ケース側壁部及び第3ケース底壁部は、板材の折り曲げ加工により一体に形成される。このように、板材の折り曲げ加工によって各壁部を形成することにより、壁部同士を溶接等によって連結する必要がない。また、折り曲げ加工によって壁部を形成することにより、壁部の連結箇所(板材の折り曲げ箇所)における気密性を好適に保つことができる。また、溶接によって壁部を連結する箇所が少なくなるので、溶接箇所の検査を行う際にも、検査箇所が少なく、手間やコストを低減することができる。 According to the fuel cell module, the second case side wall and the second case bottom wall among the second case side wall, the second case upper wall, and the second case bottom wall constituting the second case. The parts are integrally formed by bending the plate material. Of the third case side wall, the third case upper wall, and the third case bottom wall constituting the third case, the third case side wall and the third case bottom wall are formed by bending a plate material. It is integrally formed by processing. Thus, by forming each wall part by the bending process of a board | plate material, it is not necessary to connect wall parts by welding etc. FIG. Moreover, the airtightness in the connection location (folding location of a board | plate material) of a wall part can be suitably maintained by forming a wall part by a bending process. In addition, since the number of places where the wall portions are connected by welding is reduced, there are few inspection places when the inspection of the welding places is performed, and labor and cost can be reduced.
 また、折り曲げ加工を行う場合には、第2ケース側壁部と第2ケース底壁部とで形成される部材、及び第3ケース側壁部と第3ケース底壁部とで形成される部材の寸法管理が容易となる。従って、これらの部材を用いて形成される排ガス流路及び酸化剤流路を、高い精度で形成することができる。また、折り曲げ加工によって形成された壁部の連結箇所は、溶接によって各壁部を連結した箇所に比べて、例えば、ヒートサイクルによる熱衝撃等、熱に強いものとなっている。従って、本願発明の一側面の燃料電池モジュールの筐体は折り曲げ加工によって形成された壁部を有していることにより、熱に強い筐体とすることができる。以上によって、壁部同士を連結する溶接箇所を少なくすると共に、製造が容易な簡素な構成とすることができる。また、簡素な構成となることにより、材料費を削減することができる。 When bending is performed, the dimension of the member formed by the second case side wall and the second case bottom wall and the dimension of the member formed by the third case side wall and the third case bottom wall Management becomes easy. Therefore, the exhaust gas channel and the oxidant channel formed using these members can be formed with high accuracy. Moreover, the connection part of the wall part formed by the bending process is a thing strong against heat, such as the thermal shock by a heat cycle, for example compared with the part which connected each wall part by welding. Therefore, the housing of the fuel cell module according to one aspect of the present invention has a wall portion formed by bending, so that it can be a heat-resistant housing. As described above, it is possible to reduce the number of welded portions that connect the wall portions and to achieve a simple configuration that is easy to manufacture. In addition, the material cost can be reduced by the simple configuration.
 本発明の一側面によれば、壁部同士を連結する溶接箇所を少なくすると共に、製造が容易な簡素な構成とすることができる。 According to one aspect of the present invention, it is possible to reduce the number of welded portions connecting the wall portions and to achieve a simple configuration that is easy to manufacture.
本発明の一実施形態に係る燃料電池モジュールの概略構成図である。1 is a schematic configuration diagram of a fuel cell module according to an embodiment of the present invention. 図1に示すII―II線に沿った概略断面図である。It is a schematic sectional drawing along the II-II line | wire shown in FIG. 図2に示すIII―III線に沿った断面図である。FIG. 3 is a sectional view taken along line III-III shown in FIG. 2. 従来の燃料電池モジュールの概略構成図である。It is a schematic block diagram of the conventional fuel cell module. 従来の燃料電池モジュールの組み立て工程を示す概念図である。It is a conceptual diagram which shows the assembly process of the conventional fuel cell module.
 以下、本発明の一実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping description is abbreviate | omitted.
 図1,図2及び図3に示されるように、燃料電池モジュール1は、水素含有燃料を用いて改質ガスRGを発生させる改質器2と、改質ガスRG及び酸化剤OXを用いて発電を行うセルスタック3と、水を気化させることによって改質器2へ供給される水蒸気を生成する水気化部4と、改質器2、セルスタック3、及び水気化部4を収納する筐体6と、を備える。図1~図3では図示されていないが、燃料電池モジュール1の下方には、ポンプ等の補機や制御機器等を収納する筐体が設けられる。なお、図1及び図2では、ガスの流れを概念的に示しているため、各壁部の板厚は省略されている。図3では、各壁部を強調して示すために、改質器2やセルスタック3等は省略されている。また、図3において、各壁部の断面が線で示されているが、各壁部は、実際には所定の板厚を有している。 As shown in FIGS. 1, 2, and 3, the fuel cell module 1 uses a reformer 2 that generates a reformed gas RG using a hydrogen-containing fuel, and a reformed gas RG and an oxidant OX. A cell stack 3 that generates power, a water vaporization unit 4 that generates water vapor that is supplied to the reformer 2 by vaporizing water, and a housing that houses the reformer 2, the cell stack 3, and the water vaporization unit 4. And a body 6. Although not shown in FIGS. 1 to 3, a housing for storing auxiliary equipment such as a pump and control equipment is provided below the fuel cell module 1. In addition, in FIG.1 and FIG.2, since the flow of gas is shown notionally, the plate | board thickness of each wall part is abbreviate | omitted. In FIG. 3, the reformer 2, the cell stack 3, and the like are omitted in order to show each wall portion with emphasis. Moreover, in FIG. 3, although the cross section of each wall part is shown by the line, each wall part actually has predetermined | prescribed board thickness.
 水素含有燃料として、例えば、炭化水素系燃料が用いられる。炭化水素系燃料として、分子中に炭素と水素とを含む化合物(酸素等、他の元素を含んでいてもよい)若しくはそれらの混合物が用いられる。炭化水素系燃料として、例えば、炭化水素類、アルコール類、エーテル類、バイオ燃料が挙げられ、これらの炭化水素系燃料は従来の石油・石炭等の化石燃料由来のもの、合成ガス等の合成系燃料由来のもの、バイオマス由来のものを適宜用いることができる。具体的には、炭化水素類として、メタン、エタン、プロパン、ブタン、天然ガス、LPG(液化石油ガス)、都市ガス、タウンガス、ガソリン、ナフサ、灯油、軽油が挙げられる。アルコール類として、メタノール、エタノールが挙げられる。エーテル類として、ジメチルエーテルが挙げられる。バイオ燃料として、バイオガス、バイオエタノール、バイオディーゼル、バイオジェットが挙げられる。 As the hydrogen-containing fuel, for example, a hydrocarbon fuel is used. As the hydrocarbon fuel, a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used. Examples of hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil. Examples of alcohols include methanol and ethanol. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet.
 酸化剤として、例えば、空気、純酸素ガス(通常の除去手法で除去が困難な不純物を含んでもよい)、酸素富化空気が用いられる。 As the oxidizing agent, for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.
 改質器2は、供給される水素含有燃料を用いて改質ガスRGを発生させる。改質器2は、改質触媒を用いた改質反応により、水素含有燃料を改質して改質ガスRGを発生させる。改質器2での改質方式は、特に限定されず、例えば、水蒸気改質、部分酸化改質、自己熱改質、その他の改質方式を採用できる。改質器2は、後述する燃焼熱によって加熱され得るようにセルスタック3の上側に配置されている。すなわち、セルスタック3の燃料極側に導入された改質ガスRGのオフガス(未反応改質ガス)は、空気極等の酸化剤極側に導入された空気等の酸化剤のうちの未反応酸素(未反応酸化剤ガス)と共に燃焼させられ、改質器2は、この燃焼熱によって加熱される。改質器2は、改質ガスRGをセルスタック3の燃料極へ供給する。 The reformer 2 generates the reformed gas RG using the supplied hydrogen-containing fuel. The reformer 2 reforms the hydrogen-containing fuel by the reforming reaction using the reforming catalyst to generate the reformed gas RG. The reforming method in the reformer 2 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed. The reformer 2 is disposed on the upper side of the cell stack 3 so as to be heated by combustion heat described later. That is, the off gas (unreacted reformed gas) of the reformed gas RG introduced to the fuel electrode side of the cell stack 3 is unreacted among oxidants such as air introduced to the oxidant electrode side such as the air electrode. Combusted together with oxygen (unreacted oxidant gas), the reformer 2 is heated by this combustion heat. The reformer 2 supplies the reformed gas RG to the fuel electrode of the cell stack 3.
 セルスタック3は、規則的に配置し連結されたSOFC(Solid Oxide Fuel Cells)と称される複数のセルを有している。各セルは、固体酸化物である電解質が燃料極と酸化剤極との間に配置されることで構成されている。電解質は、例えばイットリア安定化ジルコニア(YSZ)等からなり、高温下で酸化物イオンを伝導する。燃料極は、例えばニッケルとYSZとの混合物からなり、酸化物イオンと改質ガスRG中の水素とを反応させて、電子及び水を発生させる。酸化剤極は、例えばランタンストロンチウムマンガナイトからなり、酸化剤OX中の酸素と電子とを反応させて、酸化物イオンを発生させる。本実施形態では、複数のセルが台座7に立設し、同一方向を向いて一列に整列して連結しているセルスタック3を例に説明する。なお、ここでは、複数のセルが台座7に立設し、同一方向を向いて一列に整列して伸延する方向を「積層方向」と称して以下の説明を行う。セルスタック3は、台座7の上面において、各セルの積層方向と直交する方向に向かい合うように二列に配置される。ただし、セルスタック3は一列に配置されてもよい。 The cell stack 3 has a plurality of cells called SOFC (Solid Oxide Fuel Cells) that are regularly arranged and connected. Each cell is configured by disposing an electrolyte that is a solid oxide between a fuel electrode and an oxidant electrode. The electrolyte is made of, for example, yttria stabilized zirconia (YSZ) or the like, and conducts oxide ions at a high temperature. The fuel electrode is made of, for example, a mixture of nickel and YSZ, and reacts oxide ions with hydrogen in the reformed gas RG to generate electrons and water. The oxidant electrode is made of, for example, lanthanum strontium manganite and reacts oxygen and electrons in the oxidant OX to generate oxide ions. In this embodiment, a cell stack 3 in which a plurality of cells are erected on a pedestal 7 and aligned and connected in a line in the same direction will be described as an example. Here, a direction in which a plurality of cells stand on the pedestal 7 and are aligned and extended in a row facing the same direction will be referred to as a “stacking direction” and will be described below. The cell stacks 3 are arranged in two rows on the upper surface of the base 7 so as to face each other in a direction orthogonal to the stacking direction of the cells. However, the cell stacks 3 may be arranged in a line.
 台座7と改質器2とは、パイプ8で接続されている。改質器2から供給された改質ガスRGは、台座7を介してセルスタック3の各セルに供給される。セルスタック3で反応しなかった改質ガスRG及び酸化剤OXは、セルスタック3の上部の燃焼部9で燃焼する。燃焼部9でのオフガスの燃焼により、改質器2が加熱されると共に排ガスEGが発生する。 The base 7 and the reformer 2 are connected by a pipe 8. The reformed gas RG supplied from the reformer 2 is supplied to each cell of the cell stack 3 via the base 7. The reformed gas RG and the oxidant OX that have not reacted in the cell stack 3 are burned in the combustion section 9 at the top of the cell stack 3. Due to the combustion of off-gas in the combustion section 9, the reformer 2 is heated and exhaust gas EG is generated.
 水気化部4は、供給される水を加熱し気化させることによって、改質器2に供給される水蒸気を生成する。水気化部4で生成された水蒸気は、例えば、第1ケース底壁部18を貫通して水気化部4と改質器2とを接続する配管(不図示)を用いて、改質器2へ供給される。水気化部4における水の加熱は、例えば、改質器2の熱、燃焼部9の熱、あるいは排ガスEGの熱を回収する等、燃料電池モジュール1内で発生した熱を用いてもよい。本実施形態では、水気化部4は、底部の排ガス流路に配置され、排ガスEGの熱を回収する構成となっている。また、改質器2内において生じる改質反応が水蒸気改質反応を伴わない場合は、水気化器4を省略することができる。 The water vaporization unit 4 generates water vapor supplied to the reformer 2 by heating and vaporizing the supplied water. For example, the steam generated in the water vaporization unit 4 passes through the first case bottom wall 18 and uses a pipe (not shown) connecting the water vaporization unit 4 and the reformer 2 to the reformer 2. Supplied to. For the heating of the water in the water vaporization unit 4, for example, heat generated in the fuel cell module 1 such as recovering heat of the reformer 2, heat of the combustion unit 9, or heat of the exhaust gas EG may be used. In this embodiment, the water vaporization part 4 is arrange | positioned at the exhaust gas flow path of a bottom part, and becomes a structure which collect | recovers the heat | fever of exhaust gas EG. Further, when the reforming reaction occurring in the reformer 2 does not involve the steam reforming reaction, the water vaporizer 4 can be omitted.
 筐体6は、改質器2、セルスタック3、及び水気化部4を収納するための内部空間を有する、直方体状の金属製の箱体である。筐体6は、セルスタック3を収納する収納室11と、収納室11よりも外側に形成され、セルスタック3からのオフガスの燃焼による排ガスEGを通過させる排ガス流路12と、酸化剤OXを通過させる酸化剤流路13と、収納室11や排ガス流路12や酸化剤流路13を形成する各壁部と、を備える。なお、以下の説明においては、セルスタック3の各セルの積層方向に沿った方向を筐体6の「長さ方向D1」とし、水平方向において各セルの積層方向と直交する方向を筐体6の「幅方向D2」とし、鉛直方向を筐体6の「上下方向D3」として以下の説明を行う。 The housing 6 is a rectangular parallelepiped metal box having an internal space for housing the reformer 2, the cell stack 3, and the water vaporization unit 4. The casing 6 includes a storage chamber 11 that stores the cell stack 3, an exhaust gas passage 12 that is formed outside the storage chamber 11, passes the exhaust gas EG from the combustion of the off gas from the cell stack 3, and an oxidizing agent OX. An oxidant flow path 13 to be passed through and each wall portion forming the storage chamber 11, the exhaust gas flow path 12 and the oxidant flow path 13 are provided. In the following description, the direction along the stacking direction of the cells of the cell stack 3 is referred to as the “length direction D1” of the casing 6, and the direction orthogonal to the stacking direction of the cells in the horizontal direction is the casing 6. In the following description, the vertical direction is the “vertical direction D3” of the housing 6.
 収納室11は、幅方向D2に互いに対向する第1ケース側壁部16,17、第1ケース側壁部16,17の各下端部に連結される第1ケース底壁部18、及び、長さ方向D1に互いに対向する端壁部33,34の内側に形成される。収納室11では、台座7が第1ケース底壁部18に配置される。なお、第1ケース底壁部18と台座7との間に断熱材が配置されていてもよい。燃焼部9で発生した排ガスEGを通過させるため、収納室11の上端部は開口している。 The storage chamber 11 includes first case side wall portions 16 and 17 that face each other in the width direction D2, a first case bottom wall portion 18 that is connected to each lower end portion of the first case side wall portions 16 and 17, and a length direction. D1 is formed inside end wall portions 33 and 34 facing each other. In the storage chamber 11, the base 7 is disposed on the first case bottom wall portion 18. A heat insulating material may be disposed between the first case bottom wall portion 18 and the pedestal 7. In order to allow the exhaust gas EG generated in the combustion unit 9 to pass through, the upper end of the storage chamber 11 is open.
 排ガス流路12は、幅方向D2において第1ケース側壁部16,17の外側にそれぞれ配置される第2ケース側壁部21,22と、第1ケース側壁部16,17の上端部よりも上側に配置される第2ケース上壁部23と、第1ケース底壁部18よりも下側に配置される第2ケース底壁部24と、長さ方向D1に互いに対向する端壁部33,34と、によって形成される。 The exhaust gas flow path 12 is located above the upper ends of the second case side walls 21 and 22 and the first case side walls 16 and 17 disposed on the outside of the first case side walls 16 and 17 in the width direction D2. The second case upper wall portion 23 disposed, the second case bottom wall portion 24 disposed below the first case bottom wall portion 18, and the end wall portions 33 and 34 facing each other in the length direction D1. And formed by.
 第2ケース上壁部23は第2ケース側壁部21,22の上端部に連結され、第2ケース底壁部24は第2ケース側壁部21,22の下端部に連結される。第2ケース側壁部21,22は、第1ケース側壁部16,17から離間して対向するように配置される。第2ケース上壁部23は、収納室11の上端部から離間して対向するように配置される。第2ケース底壁部24は、第1ケース底壁部18から離間して対向するように配置される。 The second case upper wall portion 23 is connected to the upper end portions of the second case side wall portions 21 and 22, and the second case bottom wall portion 24 is connected to the lower end portions of the second case side wall portions 21 and 22. The second case side wall portions 21 and 22 are disposed so as to be spaced apart from the first case side wall portions 16 and 17. The second case upper wall portion 23 is disposed so as to be opposed to and spaced from the upper end portion of the storage chamber 11. The second case bottom wall portion 24 is disposed so as to face the first case bottom wall portion 18 while being spaced apart from the first case bottom wall portion 18.
 排ガス流路12は、収納室11の上側の開口部と第2ケース上壁部23との間に形成される排ガス流路12A,12Bと、第2ケース側壁部21,22と第1ケース側壁部16,17との間に形成される排ガス流路12C,12Dと、第2ケース底壁部24と第1ケース底壁部18との間に形成される排ガス流路12E,12Fと、を有する。排ガス流路12A,12Bは、燃焼部9からの排ガスEGを排ガス流路12C,12Dへ導く。排ガス流路12C,12Dは、排ガスEGを下方へ通過させ、当該排ガスEGの熱を外側の酸化剤流路13C,13Dを流れる酸化剤OXに供給する。排ガス流路12E,12Fは、排ガスEGを排気管32へ向かって水平方向に通過させ、当該排ガスEGの熱を水気化部4に供給する。 The exhaust gas passage 12 includes exhaust gas passages 12A and 12B formed between the upper opening of the storage chamber 11 and the second case upper wall portion 23, the second case side walls 21 and 22, and the first case side wall. Exhaust gas passages 12C and 12D formed between the portions 16 and 17, and exhaust gas passages 12E and 12F formed between the second case bottom wall portion 24 and the first case bottom wall portion 18. Have. The exhaust gas passages 12A and 12B guide the exhaust gas EG from the combustion unit 9 to the exhaust gas passages 12C and 12D. The exhaust gas channels 12C and 12D pass the exhaust gas EG downward, and supply the heat of the exhaust gas EG to the oxidant OX flowing through the outer oxidant channels 13C and 13D. The exhaust gas passages 12 </ b> E and 12 </ b> F pass the exhaust gas EG in the horizontal direction toward the exhaust pipe 32 and supply the heat of the exhaust gas EG to the water vaporization unit 4.
 酸化剤流路13は、幅方向D2において第2ケース側壁部21,22の外側にそれぞれ配置される第3ケース側壁部26,27と、第2ケース上壁部23よりも上側に配置される第3ケース上壁部28と、第2ケース底壁部24よりも下側に配置される第3ケース底壁部29と、長さ方向D1に互いに対向する端壁部33,34と、によって形成される。 The oxidant flow path 13 is disposed above the second case upper wall portion 23 and the third case side wall portions 26 and 27 disposed on the outer sides of the second case side wall portions 21 and 22 in the width direction D2. By the third case upper wall portion 28, the third case bottom wall portion 29 disposed below the second case bottom wall portion 24, and end wall portions 33 and 34 facing each other in the length direction D1. It is formed.
 第3ケース上壁部28は第3ケース側壁部26,27の上端部に連結され、第3ケース底壁部29は第3ケース側壁部26,27の下端部に連結される。第3ケース側壁部26,27は、第2ケース側壁部21,22から離間して対向するように配置される。第3ケース上壁部28は、第2ケース上壁部23から離間して対向するように配置される。第3ケース底壁部29は、第2ケース底壁部24から離間して対向するように配置される。 The third case upper wall portion 28 is connected to the upper end portions of the third case side wall portions 26 and 27, and the third case bottom wall portion 29 is connected to the lower end portions of the third case side wall portions 26 and 27. The third case side wall portions 26, 27 are disposed so as to be spaced apart from the second case side wall portions 21, 22. The third case upper wall portion 28 is disposed so as to face the second case upper wall portion 23 while being spaced apart from the second case upper wall portion 23. The third case bottom wall portion 29 is disposed so as to be spaced apart from the second case bottom wall portion 24.
 第2ケース上壁部23には中央部に長さ方向D1へ延びるスリット39が形成されており、当該スリット39には、酸化剤供給部材36が挿入される。酸化剤供給部材36は、セルスタック3に酸化剤OXを供給する。酸化剤供給部材36は、一対のセルスタック3の間の隙間に入り込むように延びており、内部に酸化剤流路13Kを有すると共に、先端部に貫通孔37,38を有している。 A slit 39 extending in the length direction D1 is formed at the center of the second case upper wall 23, and an oxidant supply member 36 is inserted into the slit 39. The oxidant supply member 36 supplies the oxidant OX to the cell stack 3. The oxidant supply member 36 extends so as to enter a gap between the pair of cell stacks 3, and has an oxidant flow path 13 </ b> K inside and has through holes 37 and 38 at the tip.
 酸化剤流路13は、第3ケース上壁部28と第2ケース上壁部23との間に形成される酸化剤流路13A,13Bと、第3ケース側壁部26,27と第2ケース側壁部21,22との間に形成される酸化剤流路13C,13Dと、第3ケース底壁部29と第2ケース底壁部24との間に形成される酸化剤流路13G,13Hと、を有する。酸化剤流路13G,13Hは、給気管31からの酸化剤OXを水平方向に広がるように通過させ、酸化剤流路13C,13Dへ導く。酸化剤流路13C,13Dは、酸化剤OXを上方へ通過させ、当該酸化剤OXを内側の排ガス流路12C,12Dを流れる排ガスEGの熱によって加熱する。酸化剤流路13A,13Bは、酸化剤OXを幅方向D2における外側から内側へ向かって通過させ、酸化剤供給部材36の酸化剤流路13Kへ流して貫通孔37,38へ導く。 The oxidant flow path 13 includes the oxidant flow paths 13A and 13B formed between the third case upper wall portion 28 and the second case upper wall portion 23, the third case side wall portions 26 and 27, and the second case. Oxidant channels 13C, 13D formed between the side walls 21, 22 and oxidant channels 13G, 13H formed between the third case bottom wall 29 and the second case bottom wall 24. And having. The oxidant flow paths 13G and 13H pass the oxidant OX from the air supply pipe 31 so as to spread in the horizontal direction and guide the oxidant flow paths 13C and 13D. The oxidant channels 13C and 13D allow the oxidant OX to pass upward, and heat the oxidant OX by the heat of the exhaust gas EG flowing through the inner exhaust gas channels 12C and 12D. The oxidant flow paths 13A and 13B allow the oxidant OX to pass from the outside toward the inside in the width direction D2, flow into the oxidant flow path 13K of the oxidant supply member 36, and guide it to the through holes 37 and 38.
 第3ケース底壁部29には、図示されない酸化剤供給部から酸化剤流路13に酸化剤を流入させるための給気管31が設けられている。また、第2ケース底壁部24には、排ガス流路12からの排ガスを排気する排気管32が設けられている。 The third case bottom wall 29 is provided with an air supply pipe 31 for allowing an oxidant to flow into the oxidant flow path 13 from an oxidant supply section (not shown). The second case bottom wall 24 is provided with an exhaust pipe 32 for exhausting the exhaust gas from the exhaust gas passage 12.
 側壁部16,17,21,22,26,27、上壁部23,28、及び底壁部18,24,29は、長さ方向D1における筐体6の端部6a,6bにまで延びている。筐体6の長さ方向D1の両端部には、それぞれ端壁部33,34が設けられている。第3ケース側壁部26,27、第3ケース上壁部28、第3ケース底壁部29、及び端壁部33,34は、燃料電池モジュール1の外殻を構成し、互いの接続部におけるシール性が確保されており、筐体6内の気密性が確保されている。 The side wall portions 16, 17, 21, 22, 26, 27, the upper wall portions 23, 28, and the bottom wall portions 18, 24, 29 extend to the end portions 6a, 6b of the housing 6 in the length direction D1. Yes. End wall portions 33 and 34 are respectively provided at both ends of the casing 6 in the length direction D1. The third case side wall portions 26 and 27, the third case upper wall portion 28, the third case bottom wall portion 29, and the end wall portions 33 and 34 constitute an outer shell of the fuel cell module 1, and are connected to each other at the connection portion. The sealing property is ensured, and the airtightness in the housing 6 is ensured.
 次に、改質ガスRG、酸化剤OX、及び排ガスEGの流れについて説明する。 Next, the flow of the reformed gas RG, the oxidizer OX, and the exhaust gas EG will be described.
 外部から供給される水素含有燃料及び水気化部4からの水蒸気を用いて改質器2で発生した改質ガスRGは、パイプ8を通過して台座7に流れ込み、台座7からセルスタック3の各セルに供給される。改質ガスRGは、セルスタック3を下方から上方へ向かって流れ、一部はオフガスとして燃焼部9での燃焼に用いられる。酸化剤OXは、外部から給気管31を介して供給され、酸化剤流路13G,13Hにて水平方向に広がり、内側を流れる排ガスEGで加熱されながら酸化剤流路13C,13Dを上方へ向かって通過する。酸化剤OXは、酸化剤流路13A,13Bを通過し、酸化剤供給部材36の酸化剤流路13Kを流れて、貫通孔37,38を通過してセルスタック3へ供給され、一部は燃焼部9での燃焼に用いられる。燃焼部9で発生した排ガスEGは、排ガス流路12A,12Bで排ガス流路12C,12Dに導かれ、外側を流れる酸化剤OXに熱を供給しながら排ガス流路12C,12Dを下方へ向かって通過する。排ガスEGは、底部まで達すると排ガス流路12E,12Fへ流れ込み、水気化部4に熱を供給しながら排ガス流路12E,12Fを通過する。排ガス流路12E,12Fを通過した排ガスEGは、排気管32から排気される。 The reformed gas RG generated in the reformer 2 using the hydrogen-containing fuel supplied from the outside and the water vapor from the water vaporization unit 4 flows into the pedestal 7 through the pipe 8, and from the pedestal 7 to the cell stack 3. Supplied to each cell. The reformed gas RG flows through the cell stack 3 from below to above, and a part of the reformed gas RG is used as an off-gas for combustion in the combustion unit 9. The oxidant OX is supplied from the outside through the air supply pipe 31, spreads in the horizontal direction in the oxidant flow paths 13G and 13H, and moves upward in the oxidant flow paths 13C and 13D while being heated by the exhaust gas EG flowing inside. Pass through. The oxidant OX passes through the oxidant flow paths 13A and 13B, flows through the oxidant flow path 13K of the oxidant supply member 36, passes through the through holes 37 and 38, and is supplied to the cell stack 3, and a part thereof Used for combustion in the combustion section 9. The exhaust gas EG generated in the combustion unit 9 is guided to the exhaust gas channels 12C and 12D by the exhaust gas channels 12A and 12B, and flows downward through the exhaust gas channels 12C and 12D while supplying heat to the oxidant OX flowing outside. pass. When the exhaust gas EG reaches the bottom, it flows into the exhaust gas channels 12E and 12F, and passes through the exhaust gas channels 12E and 12F while supplying heat to the water vaporization unit 4. The exhaust gas EG that has passed through the exhaust gas flow paths 12E and 12F is exhausted from the exhaust pipe 32.
 図1~図3に示すように、本実施形態に係る燃料電池モジュール1は、筐体6のうち、最外部に係る壁部を構成する部材を第3のケース50とし、セルスタック3を収納することで高熱となる部分を第2のケース60及び第1のケース70としている。 As shown in FIGS. 1 to 3, the fuel cell module 1 according to the present embodiment accommodates the cell stack 3 by using, as a third case 50, a member constituting the outermost wall portion of the housing 6. By doing so, the second case 60 and the first case 70 are the portions that become hot.
 第3のケース50は、第3ケース側壁部26,27、第3ケース上壁部28、第3ケース底壁部29、及び端壁部33,34によって構成されている。第3のケース50は、長さ方向D1における一方の端部50bが端壁部34で封止されると共に、他方の端部50aが端壁部33で封止される。これによって、第3のケース50の内部の気密性が確保される。 The third case 50 includes third case side wall portions 26 and 27, a third case upper wall portion 28, a third case bottom wall portion 29, and end wall portions 33 and 34. In the third case 50, one end portion 50 b in the length direction D <b> 1 is sealed with the end wall portion 34, and the other end portion 50 a is sealed with the end wall portion 33. Thereby, the airtightness inside the third case 50 is ensured.
 なお、第3ケース側壁部26,27及び第3ケース底壁部29は、一枚の板材の折り曲げ加工により、折り曲げ部を境界としてそれぞれの壁部が一体に形成されている。すなわち、第3のケース50において、第3ケース側壁部26と第3ケース底壁部29との連結により形成された角部(折り曲げ部)M51、及び第3ケース側壁部27と第3ケース底壁部29との連結により形成された角部(折り曲げ部)M52は、それぞれ折り曲げによって形成されている。また、第3ケース側壁部26,27の上端と、第3ケース上壁部28との固定は、溶接あるいはボルト止め等によって行われる。また、第3ケース側壁部26,27、第3ケース上壁部28、及び第3ケース底壁部29における、長さ方向D1の両端部は、それぞれ端壁部33,34に、溶接により固定されている。 The third case side wall portions 26 and 27 and the third case bottom wall portion 29 are integrally formed with each wall portion as a boundary by bending a single plate material. That is, in the third case 50, a corner (folded portion) M51 formed by connecting the third case side wall 26 and the third case bottom wall 29, and the third case side wall 27 and the third case bottom. Corner portions (folded portions) M52 formed by the connection with the wall portion 29 are each formed by bending. The upper ends of the third case side walls 26 and 27 and the third case upper wall 28 are fixed by welding or bolting. Further, both end portions in the length direction D1 of the third case side wall portions 26 and 27, the third case upper wall portion 28, and the third case bottom wall portion 29 are fixed to the end wall portions 33 and 34 by welding, respectively. Has been.
 第2のケース60は、第2ケース側壁部21,22、第2ケース上壁部23、第2ケース底壁部24、及び端壁部33,34によって構成されている。第2のケース60は、長さ方向D1における一方の端部60bが端壁部34で封止されると共に、他方の端部60aが端壁部33で封止される。 The second case 60 includes second case side walls 21 and 22, a second case upper wall 23, a second case bottom wall 24, and end walls 33 and 34. In the second case 60, one end portion 60 b in the length direction D <b> 1 is sealed with the end wall portion 34, and the other end portion 60 a is sealed with the end wall portion 33.
 なお、第2ケース側壁部21,22及び第2ケース底壁部24は、一枚の板材の折り曲げ加工により、折り曲げ部を境界としてそれぞれの壁部が一体に形成されている。すなわち、第2のケース60において、第2ケース側壁部21と第2ケース底壁部24との連結により形成された角部(折り曲げ部)M61、及び第2ケース側壁部22と第2ケース底壁部24との連結により形成された角部(折り曲げ部)M62は、それぞれ折り曲げによって形成されている。また、第2ケース側壁部21,22の上端と、第2ケース上壁部23との固定は、溶接あるいはボルト止め等によって行われる。また、第2ケース側壁部21,22、第2ケース上壁部23、及び第2ケース底壁部24における、長さ方向D1の両端部は、それぞれ端壁部33,34に、溶接により固定されている。 The second case side wall portions 21 and 22 and the second case bottom wall portion 24 are integrally formed with each wall portion as a boundary by bending a single plate material. That is, in the second case 60, the corner (folded portion) M61 formed by the connection between the second case side wall 21 and the second case bottom wall 24, and the second case side wall 22 and the second case bottom. Corner portions (folded portions) M62 formed by connection with the wall portion 24 are each formed by bending. Further, the upper ends of the second case side wall parts 21 and 22 and the second case upper wall part 23 are fixed by welding or bolting. Further, both end portions in the length direction D1 of the second case side wall portions 21 and 22, the second case upper wall portion 23, and the second case bottom wall portion 24 are fixed to the end wall portions 33 and 34 by welding, respectively. Has been.
 第1のケース70は、第1ケース側壁部16,17、第1ケース底壁部18、及び端壁部33,34によって構成されている。第1のケース70は、上方に開口している。また、長さ方向D1における第1のケース70の一方の端部70bは、端壁部34で封止されると共に、第1のケース70の他方の端部70aは端壁部33で封止される。 The first case 70 includes first case side wall portions 16 and 17, a first case bottom wall portion 18, and end wall portions 33 and 34. The first case 70 opens upward. In addition, one end portion 70 b of the first case 70 in the length direction D <b> 1 is sealed with the end wall portion 34, and the other end portion 70 a of the first case 70 is sealed with the end wall portion 33. Is done.
 なお、第1ケース側壁部16,17及び第1ケース底壁部18は、一枚の板材の折り曲げ加工により、折り曲げ部を境界としてそれぞれの壁部が一体に形成されている。すなわち、第1のケース70において、第1ケース側壁部16と第1ケース底壁部18との連結により形成された角部M71、及び第1ケース側壁部17と第1ケース底壁部18との連結により形成された角部M72は、それぞれ折り曲げによって形成されている。また、第1ケース側壁部16,17、及び第1ケース底壁部18における、長さ方向D1の両端部は、それぞれ端壁部33,34に、溶接により固定されている。 Note that the first case side wall portions 16 and 17 and the first case bottom wall portion 18 are integrally formed with each wall portion as a boundary by bending a single plate material. That is, in the first case 70, the corner portion M71 formed by connecting the first case side wall portion 16 and the first case bottom wall portion 18, and the first case side wall portion 17 and the first case bottom wall portion 18 Each of the corner portions M72 formed by the connection is formed by bending. Moreover, the both ends of the length direction D1 in the 1st case side wall parts 16 and 17 and the 1st case bottom wall part 18 are being fixed to the end wall parts 33 and 34 by welding, respectively.
 なお、第1のケース70、第2のケース60、及び第3のケース50として、例えば、NCA1やSUS310Sといった高温耐酸化性材料を用いることができる。 In addition, as the first case 70, the second case 60, and the third case 50, for example, a high temperature oxidation resistant material such as NCA1 or SUS310S can be used.
 次に、本実施形態に係る燃料電池モジュール1の作用・効果について説明する。 Next, operations and effects of the fuel cell module 1 according to this embodiment will be described.
 まず、比較のために従来の燃料電池モジュール100の構成を図4及び図5を参照して説明する。燃料電池モジュール100の筐体106は、ベース110に対して、各流路を形成する各壁部を溶接によって順次固定することで構成される。ベース110は、第1の箱体111と第2の箱体112とを積み重ねることによって構成されている。第1の箱体111は、上壁部18Aと、底壁部24Aと、第2ケース側壁部21,22の下端部分21a,22aと、によって構成されている。また、第2の箱体112は、上壁部24Bと、底壁部29と、第3ケース側壁部26,27の下端部分26a,27aと、によって構成されている。また、酸化剤と排ガスを通すための貫通孔も所定の位置に有している。このようなベース110の上面に、側壁部16,17,21,22,26,27、上壁部23を組み付けて溶接して一体化する。最外部の上面、及び長さ方向D1の両端面には開口部が形成され、当該三箇所の開口部を蓋体として機能する第3ケース上壁部28、端壁部33,34で封止する。 First, the configuration of a conventional fuel cell module 100 will be described with reference to FIGS. 4 and 5 for comparison. The housing 106 of the fuel cell module 100 is configured by sequentially fixing each wall portion forming each flow path to the base 110 by welding. The base 110 is configured by stacking a first box body 111 and a second box body 112. The first box body 111 includes an upper wall portion 18A, a bottom wall portion 24A, and lower end portions 21a and 22a of the second case side wall portions 21 and 22. Further, the second box body 112 is constituted by an upper wall portion 24B, a bottom wall portion 29, and lower end portions 26a and 27a of the third case side wall portions 26 and 27. In addition, a through hole for passing the oxidant and the exhaust gas is also provided at a predetermined position. The side walls 16, 17, 21, 22, 26, 27 and the upper wall 23 are assembled on the upper surface of the base 110 and welded to be integrated. Openings are formed on the outermost upper surface and both end faces in the length direction D1, and the three openings are sealed by the third case upper wall portion 28 and the end wall portions 33, 34 that function as lids. To do.
 従来の燃料電池モジュール100のような構造では、各壁部同士の連結は、全て溶接によって行われており、筐体の製造が困難であるといった問題があった。 In the structure such as the conventional fuel cell module 100, the wall portions are all connected by welding, which makes it difficult to manufacture the casing.
 本実施形態に係る燃料電池モジュール1では、第2のケース60を構成する、第2ケース側壁部21,22、第2ケース側壁部21,22の各上端部に連結される第2ケース上壁部23、及び第2ケース側壁部21,22の各下端部に連結される第2ケース底壁部24のうち、第2ケース側壁部21,22及び第2ケース底壁部24は、板材の折り曲げ加工により、折り曲げ部を境界としてそれぞれの壁部が一体に形成される。また、第3のケース50を構成する、第3ケース側壁部26,27、第3ケース側壁部26,27の各上端部に連結される第3ケース上壁部28、及び第3ケース側壁部26,27の各下端部に連結される第3ケース底壁部29のうち、第3ケース側壁部26,27及び第3ケース底壁部29は、板材の折り曲げ加工により、折り曲げ部を境界としてそれぞれの壁部が一体に形成される。このように、板材の折り曲げ加工によって各壁部を形成することにより、壁部同士を溶接等によって連結する必要がない。また、折り曲げ加工によって壁部を形成することにより、壁部の連結箇所(角部M51,M52,M61,M62)における気密性を好適に保つことができる。また、溶接によって壁部を連結する箇所が少なくなるので、溶接箇所の検査を行う際にも、検査箇所が少なく、手間やコストを低減することができる。 In the fuel cell module 1 according to the present embodiment, the second case upper wall connected to the upper ends of the second case side walls 21 and 22 and the second case side walls 21 and 22 constituting the second case 60. Of the second case bottom wall portion 24 connected to the lower end portions of the portion 23 and the second case side wall portions 21 and 22, the second case side wall portions 21 and 22 and the second case bottom wall portion 24 are made of a plate material. By the bending process, the respective wall portions are integrally formed with the bent portion as a boundary. Further, the third case side wall portions 26 and 27, the third case side wall portions 26 and 27 constituting the third case 50, the third case upper wall portion 28 connected to the respective upper end portions, and the third case side wall portion. Among the third case bottom wall portions 29 connected to the respective lower end portions of 26 and 27, the third case side wall portions 26 and 27 and the third case bottom wall portion 29 are formed by bending the plate material with the bent portion as a boundary. Each wall part is integrally formed. Thus, by forming each wall part by the bending process of a board | plate material, it is not necessary to connect wall parts by welding etc. FIG. Further, by forming the wall portion by bending, the airtightness at the connecting portion (corner portions M51, M52, M61, M62) of the wall portion can be suitably maintained. In addition, since the number of places where the wall portions are connected by welding is reduced, there are few inspection places when the inspection of the welding places is performed, and labor and cost can be reduced.
 また、折り曲げ加工を行う場合には、第2ケース側壁部21,22と第2ケース底壁部24とで形成される部材、及び第3ケース側壁部26,27と第3ケース底壁部29とで形成される部材の寸法管理が容易となる。従って、これらの部材を用いて形成される排ガス流路12及び酸化剤流路13を、高い精度で形成することができる。また、酸化剤OXを好適に加熱するために、酸化剤流路13に導入された直後の酸化剤OXを排ガスEGの熱によって所定の温度まですばやく加熱する必要があるなど、酸化剤流路13に導入された直後の酸化剤OXに対しては、高い精度での温度管理が求められる。すなわち、酸化剤流路13における、角部M51,M61の近傍、及び角部M52,M62の近傍の部位においては、酸化剤流路13の幅の精度管理が重要となる。本実施形態においては、酸化剤流路13の幅の精度が求められる箇所に位置する壁部の連結部分(角部M51,61,M52,M62)が、折り曲げ加工によって形成されているため、酸化剤流路13の幅を高い精度で設定することができる。これにより、排ガスEGから酸化剤OXへの熱の交換性能を所望の値に設定することができ、酸化剤流路13に導入された直後の酸化剤OXの温度管理を高い精度で行うことができる。 When bending is performed, members formed by the second case side wall portions 21 and 22 and the second case bottom wall portion 24, and the third case side wall portions 26 and 27 and the third case bottom wall portion 29 are formed. It becomes easy to manage the dimensions of the members formed. Therefore, the exhaust gas passage 12 and the oxidant passage 13 formed using these members can be formed with high accuracy. Further, in order to suitably heat the oxidant OX, it is necessary to quickly heat the oxidant OX immediately after being introduced into the oxidant flow path 13 to a predetermined temperature by the heat of the exhaust gas EG. For the oxidizer OX immediately after being introduced into, temperature control with high accuracy is required. That is, in the oxidant channel 13 in the vicinity of the corners M51 and M61 and in the vicinity of the corners M52 and M62, accuracy management of the width of the oxidant channel 13 is important. In the present embodiment, since the connecting portions (corner portions M51, 61, M52, M62) of the wall portion located at the location where the accuracy of the width of the oxidant flow path 13 is required are formed by bending, oxidation is performed. The width of the agent flow path 13 can be set with high accuracy. Thereby, the heat exchange performance from the exhaust gas EG to the oxidant OX can be set to a desired value, and the temperature control of the oxidant OX immediately after being introduced into the oxidant flow path 13 can be performed with high accuracy. it can.
 また、折り曲げ加工によって形成された壁部の連結箇所(角部M51,M52,M61,M62)は、溶接によって各壁部を連結した箇所に比べて、例えば、ヒートサイクルによる熱衝撃等、熱に強いものとなっている。従って、燃料電池モジュール1の筐体6は折り曲げ加工によって形成された壁部を有していることにより、熱に強い筐体とすることができる。以上によって、壁部同士を連結する溶接箇所を少なくすると共に、製造が容易な簡素な構成とすることができる。また、簡素な構成となることにより、材料費を削減することができる。 In addition, the connecting portions (corner portions M51, M52, M61, M62) of the wall portions formed by the bending process are more sensitive to heat, such as thermal shock due to heat cycle, than the locations where the wall portions are connected by welding. It has become strong. Therefore, since the housing 6 of the fuel cell module 1 has a wall portion formed by bending, it can be made a heat-resistant housing. As described above, it is possible to reduce the number of welded portions that connect the wall portions and to achieve a simple configuration that is easy to manufacture. In addition, the material cost can be reduced by the simple configuration.
 また、第2ケース上壁部23の第2ケース側壁部21,22への固定、及び、第3ケース上壁部28の第3ケース側壁部26,27への固定を溶接によって行うことにより、壁部同士を容易に連結することができる。 Further, by fixing the second case upper wall portion 23 to the second case side wall portions 21 and 22 and fixing the third case upper wall portion 28 to the third case side wall portions 26 and 27 by welding, The walls can be easily connected to each other.
 本発明は上述の一実施形態に限定されるものではない。 The present invention is not limited to the above-described embodiment.
 例えば、角部M51,M52,M61,M62が折り曲げ加工によって形成されていれば、セルスタック3に酸化剤を導く酸化剤流路13Kなどの構成は、適宜変更してもよい。 For example, if the corners M51, M52, M61, and M62 are formed by bending, the configuration of the oxidant flow path 13K that guides the oxidant to the cell stack 3 may be changed as appropriate.
 また、セルスタックの燃料極に、改質ガスではなく燃料電池システム外部から導入する純水素、水素富化ガスなど改質処理を必要としない燃料を供給する燃料電池システムにおいては、改質器2、水気化器4を省略することができる。 In a fuel cell system that supplies fuel that does not require reforming treatment, such as pure hydrogen or hydrogen-enriched gas introduced from outside the fuel cell system, to the fuel electrode of the cell stack, the reformer 2 The water vaporizer 4 can be omitted.
 本発明の一側面によれば、壁部同士を連結する溶接箇所を少なくすると共に、製造が容易な簡素な構成とすることができる。 According to one aspect of the present invention, it is possible to reduce the number of welded portions connecting the wall portions and to achieve a simple configuration that is easy to manufacture.
 1…燃料電池モジュール、2…改質器、3…セルスタック、4…水気化部、6…筐体、11…収納室、12…排ガス流路、13…酸化剤流路、16,17…第1ケース側壁部、18…第1ケース底壁部、21,22…第2ケース側壁部、23…第2ケース上壁部、24…第2ケース底壁部、26,27…第3ケース側壁部、28…第3ケース上壁部、29…第3ケース底壁部、50…第3のケース、60…第2のケース、70…第1のケース、M51,M52,M61,M62…角部(折り曲げ部)。 DESCRIPTION OF SYMBOLS 1 ... Fuel cell module, 2 ... Reformer, 3 ... Cell stack, 4 ... Water vaporization part, 6 ... Case, 11 ... Storage chamber, 12 ... Exhaust gas flow path, 13 ... Oxidant flow path, 16, 17 ... 1st case side wall part, 18 ... 1st case bottom wall part, 21, 22 ... 2nd case side wall part, 23 ... 2nd case upper wall part, 24 ... 2nd case bottom wall part, 26, 27 ... 3rd case Side wall 28, third case upper wall, 29 ... third case bottom wall, 50 ... third case, 60 ... second case, 70 ... first case, M51, M52, M61, M62 ... Corner (folded part).

Claims (3)

  1.  水素含有ガス及び酸化剤を用いて発電を行うセルスタックと、
     前記セルスタックを収納すると共に、前記セルスタックからのオフガスを燃焼させるための内部空間を有する筐体と、を備え、
     前記筐体は、
     前記内部空間を形成する第1のケースと、
     前記第1のケースを覆うと共に、前記第1のケースとの間で前記オフガスの燃焼による排ガスを通過させる排ガス流路を形成する第2のケースと、
     前記第2のケースを覆うと共に、前記第2のケースとの間で前記酸化剤を通過させる酸化剤流路を形成する第3のケースと、を備え、
     前記第2のケースは、互いに対向する第2ケース側壁部、前記第2ケース側壁部に固定された第2ケース上壁部、及び板材の折り曲げにより前記第2ケース側壁部と一体に形成された第2ケース底壁部を含んで構成され、
     前記第3のケースは、互いに対向する第3ケース側壁部、前記第3ケース側壁部に固定された第3ケース上壁部、及び板材の折り曲げにより前記第3ケース側壁部と一体に形成された第3ケース底壁部を含んで構成されることを特徴とする燃料電池モジュール。
    A cell stack for generating power using a hydrogen-containing gas and an oxidant;
    A housing that houses the cell stack and has an internal space for burning off-gas from the cell stack;
    The housing is
    A first case forming the internal space;
    A second case that covers the first case and forms an exhaust gas passage through which the exhaust gas due to the combustion of the off gas passes between the first case;
    A third case that covers the second case and forms an oxidant flow path for allowing the oxidant to pass between the second case and the second case;
    The second case is formed integrally with the second case side wall portion by bending a second case side wall portion facing each other, a second case upper wall portion fixed to the second case side wall portion, and a plate material. Comprising a second case bottom wall,
    The third case is formed integrally with the third case side wall portion by bending a third case side wall portion facing each other, a third case upper wall portion fixed to the third case side wall portion, and a plate material. A fuel cell module comprising a bottom wall portion of a third case.
  2.  前記第2ケース上壁部の前記第2ケース側壁部への固定、及び、前記第3ケース上壁部の前記第3ケース側壁部への固定のうち、少なくともいずれかの固定は溶接によって行われることを特徴とする請求項1に記載の燃料電池モジュール。 At least one of fixing the second case upper wall portion to the second case side wall portion and fixing the third case upper wall portion to the third case side wall portion is performed by welding. The fuel cell module according to claim 1.
  3.  前記筐体は、水素含有燃料を用いて改質ガスを発生させる改質器を収容し、
     前記セルスタックは、前記水素含有ガスとして前記改質器が発生させる改質ガスを用いて発電を行うことを特徴とする請求項1又は2に記載の燃料電池モジュール。
    The housing contains a reformer that generates a reformed gas using a hydrogen-containing fuel,
    The fuel cell module according to claim 1, wherein the cell stack performs power generation using a reformed gas generated by the reformer as the hydrogen-containing gas.
PCT/JP2012/060160 2011-04-15 2012-04-13 Fuel cell module WO2012141303A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011091160A JP5756327B2 (en) 2011-04-15 2011-04-15 Fuel cell module
JP2011-091160 2011-04-15

Publications (1)

Publication Number Publication Date
WO2012141303A1 true WO2012141303A1 (en) 2012-10-18

Family

ID=47009461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060160 WO2012141303A1 (en) 2011-04-15 2012-04-13 Fuel cell module

Country Status (2)

Country Link
JP (1) JP5756327B2 (en)
WO (1) WO2012141303A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11456478B2 (en) * 2018-11-16 2022-09-27 Honda Motor Co., Ltd. Fuel cell system with auxiliary device case

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5763396B2 (en) * 2011-04-15 2015-08-12 Jx日鉱日石エネルギー株式会社 Fuel cell module
JP5876287B2 (en) * 2011-12-20 2016-03-02 アイシン精機株式会社 Fuel cell device
JP6789747B2 (en) * 2016-09-29 2020-11-25 森村Sofcテクノロジー株式会社 Solid oxide fuel cell device
DE102021214812A1 (en) * 2021-12-21 2023-06-22 Robert Bosch Gesellschaft mit beschränkter Haftung fuel cell device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378459A (en) * 1986-09-20 1988-04-08 Toshiba Battery Co Ltd Manufacture of sealed alkaline storage battery
JPH11238522A (en) * 1998-02-24 1999-08-31 Ishikawajima Harima Heavy Ind Co Ltd Double container type fuel cell device
JP2003323912A (en) * 2002-04-30 2003-11-14 Mitsubishi Heavy Ind Ltd Fuel cell module
JP2007003067A (en) * 2005-06-22 2007-01-11 Matsushita Electric Ind Co Ltd Refrigerator
JP2009076274A (en) * 2007-09-19 2009-04-09 Nippon Telegr & Teleph Corp <Ntt> Fuel cell module
JP2010231919A (en) * 2009-03-26 2010-10-14 Kyocera Corp Fuel cell module and fuel cell device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4943037B2 (en) * 2005-07-27 2012-05-30 京セラ株式会社 Fuel cell module
JP5180003B2 (en) * 2008-08-18 2013-04-10 フタバ産業株式会社 Fuel cell housing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378459A (en) * 1986-09-20 1988-04-08 Toshiba Battery Co Ltd Manufacture of sealed alkaline storage battery
JPH11238522A (en) * 1998-02-24 1999-08-31 Ishikawajima Harima Heavy Ind Co Ltd Double container type fuel cell device
JP2003323912A (en) * 2002-04-30 2003-11-14 Mitsubishi Heavy Ind Ltd Fuel cell module
JP2007003067A (en) * 2005-06-22 2007-01-11 Matsushita Electric Ind Co Ltd Refrigerator
JP2009076274A (en) * 2007-09-19 2009-04-09 Nippon Telegr & Teleph Corp <Ntt> Fuel cell module
JP2010231919A (en) * 2009-03-26 2010-10-14 Kyocera Corp Fuel cell module and fuel cell device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11456478B2 (en) * 2018-11-16 2022-09-27 Honda Motor Co., Ltd. Fuel cell system with auxiliary device case

Also Published As

Publication number Publication date
JP2012226869A (en) 2012-11-15
JP5756327B2 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP6030547B2 (en) Fuel cell module
US9105916B2 (en) Fuel cell module
JP5947226B2 (en) Fuel cell module
WO2012141309A1 (en) Fuel cell module
WO2012137934A1 (en) Fuel cell module
JP5756327B2 (en) Fuel cell module
JP6082533B2 (en) Reformer support structure and fuel cell module
JP5581240B2 (en) CO2 recovery type solid oxide fuel cell system and operation control method thereof
JP6280470B2 (en) Fuel cell module
JP5968876B2 (en) Fuel cell module
US10604408B2 (en) Reactor incorporating a heat exchanger
JPWO2012091029A1 (en) Fuel cell system
JP2015144091A (en) fuel cell device
JP5763396B2 (en) Fuel cell module
WO2012141305A1 (en) Fuel cell module
JP2014032801A (en) Fuel cell module
JP5291915B2 (en) Indirect internal reforming type solid oxide fuel cell and operation method thereof
WO2012111824A1 (en) Fuel cell module
JP6068333B2 (en) Fuel cell module
JP2015144090A (en) fuel cell device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12771694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12771694

Country of ref document: EP

Kind code of ref document: A1