WO2012140981A1 - Water-soluble ionic polymer and method for producing same - Google Patents

Water-soluble ionic polymer and method for producing same Download PDF

Info

Publication number
WO2012140981A1
WO2012140981A1 PCT/JP2012/056222 JP2012056222W WO2012140981A1 WO 2012140981 A1 WO2012140981 A1 WO 2012140981A1 JP 2012056222 W JP2012056222 W JP 2012056222W WO 2012140981 A1 WO2012140981 A1 WO 2012140981A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
exchange resin
ionic polymer
resin
soluble ionic
Prior art date
Application number
PCT/JP2012/056222
Other languages
French (fr)
Japanese (ja)
Inventor
剛 本多
茂 澤山
Original Assignee
ハイモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハイモ株式会社 filed Critical ハイモ株式会社
Priority to JP2013509832A priority Critical patent/JP5839412B2/en
Publication of WO2012140981A1 publication Critical patent/WO2012140981A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/06Oxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/50Partial depolymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/05Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from solid polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/10Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a technique for converting a water-swellable and ionic water-insoluble resin into a water-soluble ionic polymer. More specifically, the present invention is water-swellable, and the ionic water-insoluble resin is water-soluble by the action of an oxidizing agent.
  • the present invention relates to a water-soluble ionic polymer produced by appropriate oxidative decomposition so as to be converted into an ionic polymer, and a production method thereof.
  • the solidification method, the incineration method, the landfilling method, etc. are known as the processing method of the waste ion exchange resin, which is a used ion exchange resin, all of them from the viewpoint of material reuse or carbon dioxide emission. It is not preferable.
  • a method of treating a radioactive ion exchange resin a method of oxidative decomposition using iron ions, copper ions or the like as a catalyst in the presence of hydrogen peroxide is known (Patent Documents 1 and 2). All of these are decomposed until they become gaseous products and liquid products to reduce the volume of waste, and are not intended to reuse the ion exchange resin.
  • Patent Document 3 a method of decomposing in supercritical water and recovering an oil component has been proposed, but the recovered oil component is only reused as fuel, which is insufficient from the viewpoint of substance reuse.
  • Patent Document 4 a method has been proposed in which the quaternary ammonium base of the ion exchange resin is biodegradable and detoxified by high temperature and high pressure, and the cross-linked polymer skeleton is reused as fuel. It is sufficient (Patent Document 4). These are all decomposed under severe conditions such as using a large amount of hydrogen peroxide, and no reusable water-soluble ionic polymer has been obtained.
  • Patent Document 1 hydrogen peroxide is used in a large excess of about 4 to 40 times the mass of waste ion exchange resin 1, which is considered to be mainly for the purpose of decomposing water and carbon dioxide. It is done. Further, Patent Document 2 cannot accurately grasp the amount of hydrogen peroxide relative to the waste ion exchange resin used. Therefore, it is considered that no method for producing a water-soluble ionic polymer from a waste ion exchange resin with an appropriate amount of an oxidizing agent is found at present.
  • Patent Document 5 has a main problem of facilitating the incineration process by blending a polyvalent metal compound capable of preventing melting and solidification of the superabsorbent resin and adhesion to the incinerator during the incineration process.
  • Patent Document 6 in order to facilitate separation of the paper plastic film and the water absorbent resin in the waste, a salt of a divalent or higher polyvalent metal ion is added to the waste containing the water absorbent resin, and the water A method of aggregating a water absorbent resin is disclosed.
  • Patent Document 7 discloses that a gel substance is liquefied by adding an inorganic ionic metal salt composition liquid to a cloth or paper containing a water-swelled gel substance and having a mass ratio of about 0.1%. A method of liquefying and dehydrating is described. However, this operation only reduces the swelling degree of the water-absorbent resin by adding salts to reduce the apparent viscosity, and does not solve the problem. These prior documents need to be finally incinerated, and do not lead to a reduction in environmental load. Furthermore, the present applicant has proposed a method for producing a low molecular weight polymer by molecular cleavage using an oxidizing agent (Patent Document 8), but the polymer used is limited to a water-soluble polymer.
  • the present invention provides various industrially reusable water-soluble ionic properties by appropriately decomposing an ion exchange resin or a used waste ion exchange resin, or a water absorbent resin or a used waste water absorbent resin by an oxidation reaction.
  • the subject is a method of converting to a polymer.
  • Water is obtained by oxidatively decomposing an ion-exchange resin or waste ion-exchange resin having a sulfonic acid group, a quaternary ammonium base, or the like, or a water-absorbing resin or waste water-absorbing resin having a carboxyl group or the like under an appropriate condition with an oxidizing agent.
  • These water-soluble ionic polymers are very useful industrially, and are expected to be reusable for various purposes. Further, from the viewpoint of raw material procurement, the target water-soluble ionic polymer can be produced from inexpensive raw materials, and cost reduction can be achieved.
  • a water-swellable water-insoluble resin having an ionic group made of an addition polymer of vinyl monomer or a grafted product to which vinyl monomer is added is oxidized and decomposed with an oxidizing agent to make water-soluble. It is a water-soluble ionic polymer characterized by the above.
  • the invention of claim 2 is characterized in that the water-insoluble resin is a cation exchange resin, hydrogen peroxide is used as the oxidizing agent in a mass of 0.01 to 1.5 times the dry mass of the cation exchange resin, and the catalyst.
  • the water-insoluble resin is an anion exchange resin, and at least one selected from peroxodisulfate and hydrogen peroxide is used as the oxidizing agent, and the oxidation is performed with respect to the dry mass of the anion exchange resin.
  • the water-insoluble resin is a water-absorbing resin, and at least one selected from peroxodisulfate and hydrogen peroxide is used as the oxidizing agent, and the weight of the water-absorbing resin is based on the dry mass.
  • the invention of claim 5 is the water-soluble ionic polymer according to claim 2 or 3, wherein the cation exchange resin or the anion exchange resin is a waste ion exchange resin.
  • the invention of claim 6 is characterized in that the cation exchange resin has one or more monomer structural units selected from styrene, acrylic acid esters and methacrylic acid esters as a skeleton, has a sulfonic acid group or a carboxyl group, and is in water.
  • the invention according to claim 7 is characterized in that the anion exchange resin has one or more monomer structural units selected from styrene, acrylic ester and methacrylic ester as a skeleton, and a tertiary amino group or a quaternary ammonium base.
  • the invention according to claim 8 is characterized in that the water-absorbent resin is a starch-acrylonitrile-acrylic acid graft copolymer, a starch-acrylic acid graft copolymer, a starch-acrylamide-acrylic acid graft copolymer, or a crosslinked sodium polyacrylate.
  • the invention according to claim 9 is a water-swellable, water-swellable resin having an ionic group comprising a vinyl monomer addition polymer or a graft product to which a vinyl monomer has been added.
  • a method for producing a water-soluble ionic polymer is a method for producing a water-soluble ionic polymer.
  • a water-soluble ionic polymer can be obtained in high yield from an ion exchange resin, a waste ion exchange resin or a water absorbent resin, and a waste water absorbent resin that have hardly been reused in the past. It can be used. Further, from the viewpoint of raw material procurement, the target product can be manufactured with inexpensive raw materials, and cost reduction can be achieved.
  • the waste ion exchange resin referred to in the present invention is as follows. While ion exchange resins are repeatedly regenerated and used, organic contaminants are adsorbed on the surface of the resin particles, and this is difficult to desorb during regeneration or regenerative operations with high concentrations of acid or alkali. Reduces ion exchange capacity.
  • the raw ion exchange resin can be either a waste ion exchange resin or a new ion exchange resin.
  • waste ion exchange resins it is very important to use waste ion exchange resins as raw materials, convert them as water-soluble ionic polymers, and apply them to new industrial applications. .
  • the waste ion exchange resin may have various contaminants adsorbed on the resin surface, it may have to be pretreated before the oxidation reaction is performed. If necessary, after the treatment, 0.1 to 5 times the amount of water is added to the mass of the water-containing waste ion exchange resin and mixed. As necessary, an iron ion source and a copper ion source such as ferrous sulfate, ferrous chloride, ferric sulfate, ferric chloride, and cupric sulfate are added and dissolved as a catalyst. The amount of iron ions and copper ions added is 0.0001 to 0.01 times, preferably 0.0005 to 0.01 times the dry mass of the waste ion exchange resin.
  • hydrogen peroxide is used in an amount of 0.01 to 1.5 times, more preferably 0.05 to 1 times. Since hydrogen peroxide is generally sold as a 35% by mass aqueous solution, it is described as an addition amount of a 35% by mass aqueous solution in an amount of 0.03 to 4.5 times, more preferably 0.15 to 3 times. Use double amount. If the amount of hydrogen peroxide is less than this, the decomposition rate becomes low. If the amount of hydrogen peroxide is larger than this, it is difficult to control the reaction, and the amount obtained as a water-soluble ionic polymer is significantly reduced.
  • the reaction temperature is room temperature to 90 ° C, preferably 40 to 90 ° C.
  • the reaction time is about 3 to 50 hours, with the disappearance of the solids of the ion exchange resin as a guide, depending on the amount of oxidizing agent and the amount of catalyst.
  • This method is particularly effective for the decomposition of the cation exchange resin. This is probably because the cation exchange resin has an anion group, so that iron ions and copper ions are taken into the inside to favor the decomposition. Further, for example, when hydrochloric acid or the like is added at the time of decomposition to make it acidic, the decomposition is accelerated, and a water-soluble ionic polymer can be obtained with a smaller amount of hydrogen peroxide.
  • the concentration of the oxidation reaction is 10 to 50% by mass, preferably 15 to 40% by mass, as the ion exchange resin concentration in the dispersion.
  • Another method for obtaining a water-soluble ionic polymer is a method using peroxodisulfate. Add 0.1 to 5 times the amount of water by weight to the water-containing waste ion exchange resin and mix.
  • peroxodisulfate is added as peroxodisulfate ions in an amount of 0.01 to 1.5 times, more preferably 0.05 to 1 times the dry mass of the waste ion exchange resin. If the amount of peroxodisulfate is less than this, the decomposition rate is lowered. If the amount of peroxodisulfuric acid is larger than this, it is difficult to control the reaction, and the amount obtained as a water-soluble ionic polymer is remarkably reduced.
  • peroxodisulfate potassium peroxodisulfate, sodium peroxodisulfate, ammonium peroxodisulfate and the like can be used.
  • the decomposition temperature is 40 to 100 ° C., preferably 60 to 90 ° C.
  • the reaction time is determined based on the disappearance of the solid matter of the ion exchange resin, but is approximately 1 to 80 hours, preferably 5 to 40 hours. This method is particularly effective for the decomposition of anion exchange resins. This is presumably because the anion exchange resin has a cationic group, so that peroxodisulfate ions are taken into the inside and favorably decomposed.
  • the concentration of the ion exchange resin in the dispersion is 10 to 50% by mass, preferably 15 to 40% by mass.
  • the water-soluble ionic polymer produced by oxidation of the ion exchange resin or waste ion exchange resin of the present invention is usually a water-soluble ionic polymer having a weight average molecular weight of several thousand to several hundred thousand. And if you try to make something higher than hundreds of thousands, This is possible by reducing the amount of oxidant used, but the reaction is slow and is not very practical. Therefore, the preferred range of the weight average molecular weight that can be produced in the present invention is from several thousand to several hundred thousand, more preferably from several thousand to 100,000.
  • the ion exchange resin used as a raw material used in the present invention is not particularly limited. It is a polymer compound having a granular anionic group or cationic group that is insoluble in water and swells in water.
  • Examples of the monomer used as a raw material for polymerizing these ionic polymer compounds include styrene and its derivatives. Specific examples include styrene, o-methylstyrene, p-methylstyrene, m-methylstyrene, p-ethylstyrene, 2,4-dimethylstyrene, pn-butylstyrene, p-tert-butylstyrene, and pn.
  • -Alkyl styrene such as hexyl styrene and pn-octyl styrene; alkoxy styrene such as p-methoxy styrene; aryl styrene such as p-phenyl styrene; halogeno styrene such as p-chloro styrene and 3,4-dichloro styrene; And halogenoalkyl styrene such as chloromethyl styrene, chlorobutyl styrene and bromobutyl styrene.
  • Acrylic acid or methacrylic acid esters can also be used. Specific examples include acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, propyl acrylate, n-octyl acrylate, acrylic Dodecyl acid, stearyl acrylate, phenyl acrylate, and the like, methacrylic acid, methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, n-octyl methacrylate, dodecyl methacrylate, 2-methacrylic acid 2- Examples thereof include ethylhexyl, stearyl methacrylate, phenyl methacrylate, dimethylaminoethyl methacrylate, dimethylaminomethyl methacrylate and the like.
  • polyvinyl aromatic compounds used as crosslinking agents include styrene derivatives such as divinylbenzene, divinyltoluene, divinylxylene, trivinylbenzene, bisvinylbiphenyl, bisvinylphenylsulfone, bisvinylphenylethane, and bisvinylphenylbutane, ethylene
  • styrene derivatives such as divinylbenzene, divinyltoluene, divinylxylene, trivinylbenzene, bisvinylbiphenyl, bisvinylphenylsulfone, bisvinylphenylethane, and bisvinylphenylbutane
  • acrylic derivatives such as glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and glycerol di (
  • copolymerization of a monovinyl aromatic compound such as styrene with a polyvinyl aromatic compound such as divinylbenzene, and a third vinyl compound used as necessary can be performed by a known method.
  • a mixture of all raw material monomers is subjected to suspension polymerization in the presence of a polymerization initiator in accordance with a known method to obtain a spherical crosslinked copolymer.
  • an ionic group there are a method of modifying after polymerization and a method of copolymerizing an ionic monomer, and a method of polymerizing the styrene monomer together with a crosslinking agent and modifying after polymerization. Many are taken.
  • Anionic ion exchange resins that introduce cationic groups can be added to the polymer by adding chloromethyl methyl ether together with a Friedel Crafts catalyst such as anhydrous zinc chloride to chloromethylate the benzene ring, and then quaternary ammonium with trimethylamine or the like. Convert to base and introduce cationic group.
  • transduces an anionic group uses a solvent, such as nitrobenzene, and swells a polymer, Then, sulfonation of a benzene ring is implemented with concentrated sulfuric acid, and an anionic group is introduce
  • a weak anionic group such as a carboxyl group
  • a method of copolymerizing acrylonitrile and divinylbenzene and hydrolyzing it into a carboxyl group after polymerization is employed.
  • the ion exchange resin used in the present invention is insoluble in water in which a quaternary ammonium base or a sulfonic acid group is added to the skeleton of a hydrophobic monomer structural unit such as styrene, acrylate ester or methacrylate ester, It is a polymer compound having an ionic group that swells in water.
  • the shape and form of the ion exchange resin are not particularly limited, and any shape such as a plate shape, a membrane shape, a fiber shape, and a spherical shape can be used, and a gel shape, a porous shape, a high porous shape, and an enlarged mesh shape are usable. Any form such as shape can be used.
  • the average particle diameter is not particularly limited, but those having a range of 100 ⁇ m to 2 mm are usually used as raw materials.
  • the water-absorbing resin is intended for all water-absorbing resins having the above-mentioned problems, but more specifically, it is used for manufacturing water-absorbing articles such as paper diapers.
  • Water-absorbing resin that is, polymer such as sodium polyacrylate cross-linked product, sodium polysulfonate cross-linked product, copolymer such as acrylic acid, sulfonic acid and vinyl alcohol, and the monomer and cellulose, starch, etc. And the graft polymer of carboxymethyl and the like. These are generally crosslinked and are alkali metal salts.
  • starch-acrylonitrile graft copolymer starch-acrylic acid graft copolymer, starch-acrylamide graft copolymer, cellulose-acrylonitrile graft copolymer, carboxymethylcellulose cross-linked product, sodium polyacrylate cross-linked product
  • examples thereof include sodium acrylate-vinyl alcohol copolymer, N-substituted acrylamide cross-linked product, polyvinyl alcohol cross-linked product, polyvinyl alcohol freezing / thawing water absorbing gel, and the like.
  • water-absorbent resins can be used as new water-absorbent resins before being processed into paper diapers and sanitary products, and after being processed and used as paper diapers and sanitary products, paper and pulp are removed. It is also possible to use a water-absorbing resin that has been washed appropriately. In addition, it is preferable to use a sodium polyacrylate crosslinked body, which is the most common and inexpensive, from the viewpoint of chemical composition, as a raw material for the oxidation reaction.
  • the water-absorbing resin used in the present invention will be described below with reference to a crosslinked polymer of a water-soluble anionic monomer or a crosslinked copolymer with a nonionic monomer.
  • the ionicity is generally anionic with little influence on a living body, and examples of such monomers include (meth) acrylic acid, 2- (meth) acrylamido-2-methylpropanesulfonic acid, or those And nonionic monomers such as (meth) acrylamide, N, N-dimethylacrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, and the like, each of which may be used alone. Alternatively, two or more kinds may be mixed and used.
  • alkali metal in the alkali metal salt examples include lithium, sodium, and potassium. Since the water-soluble ethylenically unsaturated monomer is easily available industrially, (meth) acrylic acid and its alkali metal salt or (meth) acrylamide are often used in many cases.
  • Polyvinyl compounds used as crosslinking agents are ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, glycerin di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polyglycerin.
  • Examples thereof include di (meth) acrylate and N, N′-methylenebisacrylamide, and N, N′-methylenebisacrylamide is preferable.
  • a granular material can be obtained by reverse phase suspension polymerization using the above monomer.
  • the solvent include aliphatic hydrocarbon compounds such as n-hexane, n-heptane, and ligroin; alicyclic hydrocarbon compounds such as cyclopentane, methylcyclopentane, cyclohexane, and methylcyclohexane; benzene, toluene, Examples thereof include aromatic hydrocarbon compounds such as xylene, and these may be used alone or in admixture of two or more.
  • n-hexane, n-heptane and cyclohexane are preferred because they are easily available industrially, have stable quality and are inexpensive.
  • the surfactant is preferably a sucrose fatty acid ester, sorbitol fatty acid ester, polyoxyethylene alkylphenyl ether, etc., in combination with a polymer protective colloid, Examples include ethyl cellulose, ethyl hydroxyethyl cellulose, polyethylene oxide, anhydrous maleated polyethylene, anhydrous maleated polybutadiene, anhydrous maleated EPDM (ethylene / propylene / diene / terpolymer) and the like, and they may be used alone, Two or more kinds may be mixed and used.
  • the average particle diameter of the water-absorbent resin particles thus obtained is usually from the viewpoint of preventing gel blocking due to fine powder in the absorbent article, and preventing the gritty feeling due to coarse particles, and improving the flexibility of the absorbent body. It is desirable that the thickness is 100 to 600 ⁇ m, preferably 200 to 500 ⁇ m.
  • starch-acrylonitrile graft copolymer and starch-acrylamide graft copolymer are graft-polymerized with acrylonitrile or acrylamide in the presence of starch.
  • these water-soluble polymers are crosslinked by various methods to form a polymer gel.
  • New water-absorbing resin before processing, or used water-absorbing resin, after necessary separation and washing treatment add 1 to 10 times the amount of water to the weight of the dried water-absorbing resin And mix.
  • an iron ion source and a copper ion source such as ferrous sulfate, ferrous chloride, ferric sulfate, ferric chloride, and cupric sulfate are added and dissolved as a catalyst.
  • the amount of iron ions or copper ions added is 0.00005 to 0.02 times, preferably 0.0001 to 0.01 times the dry weight of the water absorbent resin.
  • the water-absorbing resin is generally an anionic polymer, and it is considered that these iron ions or copper ions are adsorbed on the water-absorbing resin and promote the oxidative decomposition reaction.
  • hydrogen peroxide is added in an amount of 0.003 to 1.5 times, more preferably 0.03 to 1 times by mass. In the case of 35% hydrogen peroxide solution, it is added in an amount of 0.009 to 4.3 times, more preferably 0.09 to 2.9 times by mass. If the amount of hydrogen peroxide is less than this, the decomposition rate becomes low. If the amount of hydrogen peroxide is larger than this, it is difficult to control the reaction, and the amount obtained as a water-soluble ionic polymer is significantly reduced.
  • the reaction temperature is room temperature to 90 ° C, preferably 40 to 90 ° C.
  • the reaction time is about 1 to 50 hours, based on the disappearance of the water-absorbent resin solids, depending on the amount of oxidizing agent and the amount of catalyst. Further, for example, when hydrochloric acid or the like is added at the time of decomposition to make it acidic, the decomposition is accelerated, and a water-soluble ionic polymer can be obtained with a smaller amount of hydrogen peroxide. After mixing the water-absorbing resin, the metal ions as the catalyst, and hydrogen peroxide to form a uniform dispersed liquid, it is possible to stop the stirring and proceed the reaction without stirring.
  • This method is a particularly effective process when carrying out the oxidation reaction at a high concentration. Accordingly, considering that the reaction is performed without stirring, the concentration of the oxidation reaction is 10 to 50% by mass, preferably 15 to 40% by mass, as the ion exchange resin concentration in the dispersion.
  • Another method for obtaining a water-soluble ionic polymer is a method using peroxodisulfate. Add 1 to 10 times the amount of water by weight to the dried water-absorbent resin and mix.
  • peroxodisulfate is added in an amount of 0.003 to 3 times, more preferably 0.01 to 2 times the dry weight of the water absorbent resin. If the amount of peroxodisulfate is less than this, the decomposition rate is lowered. If the amount of peroxodisulfuric acid is larger than this, it is difficult to control the reaction, and the amount obtained as a water-soluble ionic polymer is remarkably reduced.
  • peroxodisulfate potassium peroxodisulfate, sodium peroxodisulfate, ammonium peroxodisulfate and the like can be used.
  • the decomposition temperature is 40 to 100 ° C., preferably 60 to 90 ° C.
  • the reaction time is determined based on the disappearance of the water-absorbent resin, but is approximately 1 to 80 hours, preferably 3 to 40 hours.
  • the concentration of the oxidation reaction is 10 to 50% by mass, preferably 15 to 40% by mass as the water-absorbing resin concentration in the dispersion.
  • the water-soluble anionic polymer produced by the water-absorbing resin or waste water-absorbing resin oxidizing agent of the present invention is usually a water-soluble ionic polymer having a weight average molecular weight of several thousand to several hundred thousand. Further, when trying to produce a product higher than several hundred thousand, it can be achieved by reducing the amount of the oxidizing agent used, but the reaction becomes slow and is not very practical. Therefore, the preferred range of the weight average molecular weight that can be produced in the present invention is from several thousand to several hundred thousand, more preferably from several thousand to 100,000.
  • Water-soluble polymers with ionic groups include coagulants, flocculants, concrete additives, fluidizing agents, ink fixing agents, dye fixing agents, dye fixing agents, detergent builders, antistatic agents, scale inhibitors, etc. Industrial applications. According to the method of the present invention, it is possible to convert a waste ion exchange resin into a water-soluble ionic polymer applicable to these uses.
  • the ion equivalent value is an ion equivalent value with respect to 1 g of the water-soluble ionic polymer in the decomposition solution produced by decomposing 1 g of the water-insoluble resin dry mass, and is a value obtained by colloid titration.
  • colloidal titration an automatic potentiometric titrator AT-510 (manufactured by Kyoto Denshi) incorporating a streaming potential detector PCD-500 (manufactured by Kyoto Denshi) was used.
  • an aqueous polyvinyl sulfonate solution was used for titration of the cationic water-soluble polymer
  • an aqueous polydiallyldimethylammonium chloride solution was used for titration of the anionic water-soluble polymer.
  • the molecular weight of the water-soluble ionic polymer obtained by decomposition was determined as the molecular weight in terms of polyethylene glycol by GPC.
  • a GPC apparatus manufactured by JASCO was used, and a G3000PW manufactured by Tosoh Corporation was used as a column.
  • the eluent was a buffer of 1M acetic acid and 1M sodium acetate 1: 1 mixture and eluted at a flow rate of 0.5 ml / min.
  • Example 1 0.051 g of ferrous sulfate heptahydrate is dissolved in 37.6 g of demineralized water, and 42.6 g of cation exchange resin SK1B (manufactured by Mitsubishi Chemical Corporation) in a water-containing state (mass after drying of 20.0 g) is added and dispersed therein. I let you. 20.0 g of 35% hydrogen peroxide was added and held at 80 ° C. for 3 hours. The cation exchange resin was completely dissolved. Demineralized water was added to the resulting solution to make 100 g, and a 20% water-soluble ionic polymer aqueous solution was obtained. A part was sampled from here, and the ion equivalent value was determined by colloid titration. The obtained water-soluble ionic polymer had an ion equivalent value of 4.7 meq / g. The weight average molecular weight was 4400. This is Prototype-1.
  • Catalyst (iron ion, copper ion) is a mass ratio of ions to 1 g of dry ion exchange resin, and hydrogen peroxide and peroxodisulfate are added in a mass ratio of 1 g of dry ion exchange resin.
  • Hydrogen peroxide 35% aqueous solution, product ion equivalent value; meq / g, FS; Ferrous sulfate heptahydrate, HPO; Hydrogen peroxide, APD; Ammonium peroxodisulfuric acid, FR; Ferric sulfate, FC; Ferrous chloride tetrahydrate, CS; Copper sulfate.
  • Example 2 Dissolved 0.001 g of ferrous sulfate heptahydrate in 80 g of demineralized water, added 0.3 g of 35% hydrogen peroxide, and dried the water-absorbent resin (cross-linked sodium polyacrylate) 10.0 g Was added. Initially, the water-absorbing resin absorbed all the aqueous solution and was in a solid state. Hold at 80 ° C. for 1.5 hours. The water absorbent resin was completely dissolved. The weight of the obtained solution was 101 g. A part was sampled from here, and the ion equivalent value was determined by colloid titration. The obtained water-soluble ionic polymer had an ion equivalent value of 11.5 meq / g. The weight average molecular weight was 205000. This is Prototype-15.
  • trial production-16 to trial production-30 were produced using the oxidizing agent, catalyst and water-absorbing resin shown in Table 2. These results are shown in Table 2.
  • Catalyst (iron ion, copper ion) is a mass ratio of ions to 1 g of dry ion exchange resin, and hydrogen peroxide and peroxodisulfate are added in a mass ratio of 1 g of dry ion exchange resin.
  • Hydrogen peroxide 35% aqueous solution, product ion equivalent value; meq / g, FS; Ferrous sulfate heptahydrate, HPO; Hydrogen peroxide, APD; Ammonium peroxodisulfuric acid, FR; Ferric sulfate, FC; Ferric chloride hexahydrate, CS; Copper sulfate, Cross-linked sodium polyacrylate (ACS), starch-sodium acrylate graft copolymer (SAS), sodium acrylate-vinyl alcohol copolymer (ASPV), starch-acrylamide-sodium acrylate graft copolymer (SAAS) .
  • an ion exchange resin or waste ion exchange resin having a sulfonic acid group, a carboxyl group, a quaternary ammonium group, or the like, or a water-absorbing resin having a carboxyl group can be appropriately oxidized. It can be converted into a water-soluble ionic polymer by oxidative decomposition under the amount of the agent and reaction conditions.
  • This technique is a method for producing a water-soluble ionic polymer using a low-cost raw material, and is expected to be reusable for various applications, and has very high industrial applicability.

Abstract

By oxidatively decomposing an ion exchange resin or waste ion exchange resin having a sulfonic acid group, a carboxyl group, a quaternary ammonium group or the like or a water absorbent resin having a carboxyl group with an oxidant in an adequate amount under adequate reaction conditions, the resin can be converted into a water-soluble ionic polymer. According to the present invention, a water-soluble ionic polymer can be obtained with high yield from waste ion exchange resins that have rarely been reused, and thus the above-mentioned resins are reusable as water-soluble ionic polymers.

Description

水溶性イオン性高分子およびその製造方法Water-soluble ionic polymer and production method thereof
本発明は、水膨潤性でありイオン性の水不溶性樹脂を水溶性イオン性高分子に変換する技術に関し、詳しくは水膨潤性であり、イオン性の水不溶性樹脂を酸化剤の作用により水溶性イオン性高分子に変換するよう適度に酸化分解し製造した、水溶性イオン性高分子およびその製造方法に関する。これら水膨潤性でありイオン性の水不溶性樹脂より変換した水溶性イオン性高分子は、工業的な用途に再利用することができる。 The present invention relates to a technique for converting a water-swellable and ionic water-insoluble resin into a water-soluble ionic polymer. More specifically, the present invention is water-swellable, and the ionic water-insoluble resin is water-soluble by the action of an oxidizing agent. The present invention relates to a water-soluble ionic polymer produced by appropriate oxidative decomposition so as to be converted into an ionic polymer, and a production method thereof. These water-swellable and water-soluble ionic polymers converted from ionic water-insoluble resins can be reused for industrial applications.
使用済みのイオン交換樹脂である廃イオン交換樹脂の処理方法としては現在、固化法、焼却法、埋め立て法等が知られているが、いずれも物質再利用の観点あるいは二酸化炭素排出等の観点から好ましくない。放射性イオン交換樹脂を処理する方法として過酸化水素存在下、鉄イオン、銅イオン等を触媒として酸化分解する方法が知られている(特許文献1、2)。これらはいずれもガス状生成物と液状生成物になるまで分解し、廃棄物の減容化を目的としたものであり、イオン交換樹脂の再利用を目的としたものではない。また、超臨界水中で分解しオイル分を回収する方法が提案されているが、回収したオイル分は燃料として再利用するに過ぎず、物質再利用の観点からは不十分である(特許文献3)。また高温、高圧化で分解し、イオン交換樹脂の四級アンモニウム塩基を生物分解無害化し、架橋高分子骨格を燃料等として再利用する方法が提案されているが、物質再利用の観点からは不十分である(特許文献4)。これらはいずれも大量の過酸化水素を使用するなど過酷な条件下で分解を行うものであり、再利用可能な水溶性イオン性高分子は得られていない。 Currently, the solidification method, the incineration method, the landfilling method, etc. are known as the processing method of the waste ion exchange resin, which is a used ion exchange resin, all of them from the viewpoint of material reuse or carbon dioxide emission. It is not preferable. As a method of treating a radioactive ion exchange resin, a method of oxidative decomposition using iron ions, copper ions or the like as a catalyst in the presence of hydrogen peroxide is known (Patent Documents 1 and 2). All of these are decomposed until they become gaseous products and liquid products to reduce the volume of waste, and are not intended to reuse the ion exchange resin. In addition, a method of decomposing in supercritical water and recovering an oil component has been proposed, but the recovered oil component is only reused as fuel, which is insufficient from the viewpoint of substance reuse (Patent Document 3). ). In addition, a method has been proposed in which the quaternary ammonium base of the ion exchange resin is biodegradable and detoxified by high temperature and high pressure, and the cross-linked polymer skeleton is reused as fuel. It is sufficient (Patent Document 4). These are all decomposed under severe conditions such as using a large amount of hydrogen peroxide, and no reusable water-soluble ionic polymer has been obtained.
特許文献1は、過酸化水素を廃イオン交換樹脂の質量1に対し約4倍~約40倍と大過剰に使用しているが、これは目的が主として水と炭酸ガスまで分解するためと考えられる。また特許文献2は、使用している廃イオン交換樹脂に対する過酸化水素の量は正確に把握できない。従って適度な酸化剤の添加量によって廃イオン交換樹脂から水溶性イオン性高分子を製造する方法は現在のところ見当たらないと考えられる。 In Patent Document 1, hydrogen peroxide is used in a large excess of about 4 to 40 times the mass of waste ion exchange resin 1, which is considered to be mainly for the purpose of decomposing water and carbon dioxide. It is done. Further, Patent Document 2 cannot accurately grasp the amount of hydrogen peroxide relative to the waste ion exchange resin used. Therefore, it is considered that no method for producing a water-soluble ionic polymer from a waste ion exchange resin with an appropriate amount of an oxidizing agent is found at present.
一方、吸水性樹脂の処理に関しては、現在のところ焼却処理が主流である。特許文献5は、焼却処理する際に高吸水性樹脂の融解固化や焼却炉への付着を防止できる多価金属化合物を配合することにより焼却処理を容易にすることが中心の課題になっている。特許文献6には廃棄物中の紙プラスチックフィルムと吸水性樹脂の分離を容易にするため、吸水性樹脂を含む廃棄物に二価以上の多価金属イオンの塩を添加して、水中で該吸水性樹脂を凝集させる方法が開示されている。特許文献7は、吸水膨潤したゲル状物質を内包する布、紙類に質量比0.1%程度、無機イオン系金属塩組成物液を添加することによりゲル物質を液化させゲル状物質のみを液化抽出し脱水する方法が記載されている。しかしこの操作は、塩類を添加することにより吸水性樹脂の膨潤度を低下させ、見かけ粘性を低下させただけであり問題の解決にはなっていない。これら先行文献は、最終的には焼却処理を実施する必要があり環境負荷の低減には結びつかない。さらに本出願人は、酸化剤を使用し分子切断法による低分子化高分子の製造方法を提案しているが(特許文献8)、使用する高分子は水溶性高分子に限定されていること、また金属イオンからなる触媒は基本的に不要であるため本発明とは直接的には関係がない。
特開昭58-072099号公報 特開2000-065986号公報 特開平11-049889号公報 特開2007-297455号公報 特開2000-136314号公報 特開2000-246011号公報 特開2002-206084号公報 国際公開2004-074331号公報
On the other hand, as for the treatment of the water-absorbing resin, the incineration treatment is currently mainstream. Patent Document 5 has a main problem of facilitating the incineration process by blending a polyvalent metal compound capable of preventing melting and solidification of the superabsorbent resin and adhesion to the incinerator during the incineration process. . In Patent Document 6, in order to facilitate separation of the paper plastic film and the water absorbent resin in the waste, a salt of a divalent or higher polyvalent metal ion is added to the waste containing the water absorbent resin, and the water A method of aggregating a water absorbent resin is disclosed. Patent Document 7 discloses that a gel substance is liquefied by adding an inorganic ionic metal salt composition liquid to a cloth or paper containing a water-swelled gel substance and having a mass ratio of about 0.1%. A method of liquefying and dehydrating is described. However, this operation only reduces the swelling degree of the water-absorbent resin by adding salts to reduce the apparent viscosity, and does not solve the problem. These prior documents need to be finally incinerated, and do not lead to a reduction in environmental load. Furthermore, the present applicant has proposed a method for producing a low molecular weight polymer by molecular cleavage using an oxidizing agent (Patent Document 8), but the polymer used is limited to a water-soluble polymer. In addition, since a catalyst made of metal ions is basically unnecessary, it is not directly related to the present invention.
Japanese Laid-Open Patent Publication No. 58-072099 JP 2000-065986 A Japanese Patent Laid-Open No. 11-049889 JP 2007-297455 A JP 2000-136314 A JP 2000-246011 A JP 2002-206084 A International Publication No. 2004-074331
以上のように廃イオン交換樹脂あるいは廃吸水性樹脂の再利用は既知の方法では全くなされていなかったか、または極めて不十分であった。本発明はイオン交換樹脂あるいは使用済みの廃イオン交換樹脂、または吸水性樹脂あるいは使用済みの廃吸水性樹脂を酸化反応により適度に分解することにより、種々工業的に再利用可能な水溶性イオン性高分子に変換する方法を課題とする。 As described above, the reuse of the waste ion-exchange resin or the waste water-absorbing resin has not been performed by a known method at all or is extremely insufficient. The present invention provides various industrially reusable water-soluble ionic properties by appropriately decomposing an ion exchange resin or a used waste ion exchange resin, or a water absorbent resin or a used waste water absorbent resin by an oxidation reaction. The subject is a method of converting to a polymer.
スルホン酸基、四級アンモニウム塩基等を有するイオン交換樹脂あるいは廃イオン交換樹脂、またはカルボキシル基等を有する吸水性樹脂あるいは廃吸水性樹脂を、酸化剤により適度な条件化で酸化分解することにより水溶性イオン性高分子に変換でき、これら水溶性イオン性高分子は、工業上非常に有用なものであり、種々の目的に再利用できると期待される。また原料調達の観点からは、安価な原料によって目的とする水溶性イオン性高分子が製造可能であり、コスト削減が達成可能である。 Water is obtained by oxidatively decomposing an ion-exchange resin or waste ion-exchange resin having a sulfonic acid group, a quaternary ammonium base, or the like, or a water-absorbing resin or waste water-absorbing resin having a carboxyl group or the like under an appropriate condition with an oxidizing agent. These water-soluble ionic polymers are very useful industrially, and are expected to be reusable for various purposes. Further, from the viewpoint of raw material procurement, the target water-soluble ionic polymer can be produced from inexpensive raw materials, and cost reduction can be achieved.
請求項1の発明は、ビニル単量体の付加重合物あるいはビニル単量体を付加したグラフト化物よりなるイオン性基を有する水膨潤性である水不溶性樹脂を酸化剤により酸化分解し、水溶化したことを特徴とする水溶性イオン性高分子である。 In the invention of claim 1, a water-swellable water-insoluble resin having an ionic group made of an addition polymer of vinyl monomer or a grafted product to which vinyl monomer is added is oxidized and decomposed with an oxidizing agent to make water-soluble. It is a water-soluble ionic polymer characterized by the above.
請求項2の発明は、前記水不溶性樹脂がカチオン交換樹脂であり、前記酸化剤として過酸化水素を前記カチオン交換樹脂乾燥質量に対し質量で0.01~1.5倍使用し、および触媒として鉄イオンあるいは銅イオンを前記カチオン性イオン交換樹脂乾燥質量に対し質量で0.0001~0.01倍併用することを特徴とする請求項1に記載の水溶性イオン性高分子である。 The invention of claim 2 is characterized in that the water-insoluble resin is a cation exchange resin, hydrogen peroxide is used as the oxidizing agent in a mass of 0.01 to 1.5 times the dry mass of the cation exchange resin, and the catalyst. The water-soluble ionic polymer according to claim 1, wherein iron ion or copper ion is used in a mass of 0.0001 to 0.01 times by mass with respect to the dry mass of the cationic ion exchange resin.
請求項3の発明は、前記水不溶性樹脂がアニオン交換樹脂であり、前記酸化剤としてペルオキソ二硫酸塩および過酸化水素から選択される一種以上を使用し、前記アニオン交換樹脂乾燥質量に対し前記酸化剤を質量で0.01~1.5倍使用することを特徴とする請求項1に記載の水溶性イオン性高分子である。 According to a third aspect of the present invention, the water-insoluble resin is an anion exchange resin, and at least one selected from peroxodisulfate and hydrogen peroxide is used as the oxidizing agent, and the oxidation is performed with respect to the dry mass of the anion exchange resin. The water-soluble ionic polymer according to claim 1, wherein the agent is used in an amount of 0.01 to 1.5 times by mass.
請求項4の発明は、前記水不溶性樹脂が吸水性樹脂であり、前記酸化剤としてペルオキソ二硫酸塩および過酸化水素から選択される一種以上を使用し、前記吸水性樹脂乾燥質量に対し質量で0.003~3倍使用することを特徴とする請求項1に記載の水溶性イオン性高分子である。 According to a fourth aspect of the present invention, the water-insoluble resin is a water-absorbing resin, and at least one selected from peroxodisulfate and hydrogen peroxide is used as the oxidizing agent, and the weight of the water-absorbing resin is based on the dry mass. The water-soluble ionic polymer according to claim 1, which is used in an amount of 0.003 to 3 times.
請求項5の発明は、前記カチオン交換樹脂あるいは前記アニオン交換樹脂が、廃イオン交換樹脂であることを特徴とする請求項2あるいは3に記載の水溶性イオン性高分子である。 The invention of claim 5 is the water-soluble ionic polymer according to claim 2 or 3, wherein the cation exchange resin or the anion exchange resin is a waste ion exchange resin.
請求項6の発明は、前記カチオン交換樹脂が、スチレン、アクリル酸エステルおよびメタクリル酸エステルより選択される一種以上の単量体構造単位を骨格とし、スルホン酸基あるいはカルボキシル基を有し、水に膨潤する高分子化合物であることを特徴とする請求項2あるいは5に記載の水溶性イオン性高分子である。 The invention of claim 6 is characterized in that the cation exchange resin has one or more monomer structural units selected from styrene, acrylic acid esters and methacrylic acid esters as a skeleton, has a sulfonic acid group or a carboxyl group, and is in water. 6. The water-soluble ionic polymer according to claim 2, which is a polymer compound that swells.
請求項7の発明は、前記アニオン交換樹脂が、スチレン、アクリル酸エステルおよびメタクリル酸エステルより選択される一種以上の単量体構造単位を骨格とし、三級アミノ基あるいは四級アンモニウム塩基を側鎖に有する、水に膨潤する高分子化合物であることを特徴とする請求項3に記載の水溶性イオン性高分子である。 The invention according to claim 7 is characterized in that the anion exchange resin has one or more monomer structural units selected from styrene, acrylic ester and methacrylic ester as a skeleton, and a tertiary amino group or a quaternary ammonium base. The water-soluble ionic polymer according to claim 3, which is a polymer compound which swells in water.
請求項8の発明は、前記吸水性樹脂が、澱粉-アクリロニトリルーアクリル酸グラフト共重合体、澱粉-アクリル酸グラフト共重合体、澱粉-アクリルアミドーアクリル酸グラフト共重合体、ポリアクリル酸ナトリウム架橋体より選択される一種以上であることを特徴とする請求項4に記載の水溶性イオン性高分子である。 The invention according to claim 8 is characterized in that the water-absorbent resin is a starch-acrylonitrile-acrylic acid graft copolymer, a starch-acrylic acid graft copolymer, a starch-acrylamide-acrylic acid graft copolymer, or a crosslinked sodium polyacrylate. The water-soluble ionic polymer according to claim 4, wherein the water-soluble ionic polymer is one or more selected from the group consisting of more than one.
請求項9の発明は、ビニル単量体の付加重合物あるいはビニル単量体を付加したグラフト化物よりなるイオン性基を有する水膨潤性であり水不溶性樹脂を酸化剤により酸化分解し、水溶化することを特徴とする水溶性イオン性高分子の製造方法である。 The invention according to claim 9 is a water-swellable, water-swellable resin having an ionic group comprising a vinyl monomer addition polymer or a graft product to which a vinyl monomer has been added. A method for producing a water-soluble ionic polymer.
本発明によれば、従来再利用が殆どなされていなかったイオン交換樹脂、廃イオン交換樹脂あるいは吸水性樹脂、廃吸水性樹脂から水溶性イオン性高分子を高収率で得ることができ、再利用することが可能となる。また原料調達の観点からは、安価な原料によって目的とする製品が製造可能であり、コスト削減が達成可能である。 According to the present invention, a water-soluble ionic polymer can be obtained in high yield from an ion exchange resin, a waste ion exchange resin or a water absorbent resin, and a waste water absorbent resin that have hardly been reused in the past. It can be used. Further, from the viewpoint of raw material procurement, the target product can be manufactured with inexpensive raw materials, and cost reduction can be achieved.
初めにイオン交換樹脂の水溶化に関して説明する。本発明において使用するイオン交換樹脂は、使用前の新品イオン交換樹脂は使用可能であることは当然であるが、リサイクルの観点から特に廃イオン交換樹脂を使用することが好ましい。本発明で言う廃イオン交換樹脂とは、以下のようなものである。イオン交換樹脂は繰り返し再生し使用しているうち、樹脂粒子表面には有機性の汚染物質が吸着しこれは再生時、あるいは高濃度の酸やアルカリによる回生操作にも脱離することは難しく、イオン交換能を低下させる。あるいは再生使用を繰り返していると、架橋点が切断され架橋度が低下し、粒子が過度に膨潤し原水がカラムを通過しにくくなり処理量が低下し、実用上問題となる。更に樹脂粒子同士が衝突により破壊され、細粒化してやはり処理量が低下する。このような種々の要因で劣化したイオン交換樹脂は、実用に絶えず廃棄処分となり、廃イオン交換樹脂となる。本発明の水溶性イオン性高分子の製造方法において、原料となるイオン交換樹脂は、廃イオン交換樹脂および新品イオン交換樹脂のどちらでも使用可能である。しかし環境問題に対する意識の高まりなどを考えると、廃イオン交換樹脂を原料として使用し、水溶性イオン性高分子として変換し新たな工業的な用途に応用することは、非常に重要なことである。 First, the water-solubilization of the ion exchange resin will be described. As a matter of course, a new ion exchange resin before use can be used as the ion exchange resin used in the present invention, but it is particularly preferable to use a waste ion exchange resin from the viewpoint of recycling. The waste ion exchange resin referred to in the present invention is as follows. While ion exchange resins are repeatedly regenerated and used, organic contaminants are adsorbed on the surface of the resin particles, and this is difficult to desorb during regeneration or regenerative operations with high concentrations of acid or alkali. Reduces ion exchange capacity. Or, when the recycling is repeated, the crosslinking point is cut, the degree of crosslinking is lowered, the particles are excessively swollen, the raw water does not easily pass through the column, the processing amount is lowered, and this is a practical problem. Further, the resin particles are broken by collision and become finer and the processing amount is also reduced. The ion exchange resin deteriorated due to such various factors is constantly disposed of in practice and becomes a waste ion exchange resin. In the method for producing the water-soluble ionic polymer of the present invention, the raw ion exchange resin can be either a waste ion exchange resin or a new ion exchange resin. However, considering the growing awareness of environmental issues, it is very important to use waste ion exchange resins as raw materials, convert them as water-soluble ionic polymers, and apply them to new industrial applications. .
以下に本発明について詳細に説明する。廃イオン交換樹脂は、その樹脂表面に種々の汚染物質が吸着していることもあるために、酸化反応を実施する前に前処理を行わなければならない場合もある。必要ならその処置を行った後、含水状態の廃イオン交換樹脂の質量に対し0.1~5倍量の水を添加し混合する。ここに必要に応じて触媒として鉄イオン源、銅イオン源である硫酸第一鉄、塩化第一鉄、硫酸第二鉄、塩化第二鉄、硫酸第二銅などを添加溶解させる。鉄イオン、銅イオンの添加量は、廃イオン交換樹脂乾燥質量に対し0.0001~0.01倍量、好ましくは0.0005~0.01倍量である。前記触媒量がこれよりも少ないと分解率が低くなる。触媒量がこれよりも多いと反応の制御が難しく水溶性イオン性高分子として得られる量が著しく少なくなる。これら触媒とともに過酸化水素を0.01~1.5倍量、更に好ましくは0.05~1倍量を併用する。過酸化水素は、一般的に35質量%の水溶液として販売されているため、35質量%の水溶液の添加量として記載すると、0.03~4.5倍量、更に好ましくは0.15~3倍量を併用する。過酸化水素量がこれよりも少ないと分解率が低くなる。過酸化水素量がこれよりも多いと反応の制御が難しく、水溶性イオン性高分子として得られる量が著しく低下する。 The present invention is described in detail below. Since the waste ion exchange resin may have various contaminants adsorbed on the resin surface, it may have to be pretreated before the oxidation reaction is performed. If necessary, after the treatment, 0.1 to 5 times the amount of water is added to the mass of the water-containing waste ion exchange resin and mixed. As necessary, an iron ion source and a copper ion source such as ferrous sulfate, ferrous chloride, ferric sulfate, ferric chloride, and cupric sulfate are added and dissolved as a catalyst. The amount of iron ions and copper ions added is 0.0001 to 0.01 times, preferably 0.0005 to 0.01 times the dry mass of the waste ion exchange resin. When the amount of the catalyst is less than this, the decomposition rate is lowered. When the amount of the catalyst is larger than this, it is difficult to control the reaction, and the amount obtained as the water-soluble ionic polymer is remarkably reduced. Along with these catalysts, hydrogen peroxide is used in an amount of 0.01 to 1.5 times, more preferably 0.05 to 1 times. Since hydrogen peroxide is generally sold as a 35% by mass aqueous solution, it is described as an addition amount of a 35% by mass aqueous solution in an amount of 0.03 to 4.5 times, more preferably 0.15 to 3 times. Use double amount. If the amount of hydrogen peroxide is less than this, the decomposition rate becomes low. If the amount of hydrogen peroxide is larger than this, it is difficult to control the reaction, and the amount obtained as a water-soluble ionic polymer is significantly reduced.
反応温度は室温~90℃、好ましくは40~90℃である。反応時間は、イオン交換樹脂固形物の消失を目安とし、酸化剤量、触媒量にもよるが、おおよそ3~50時間程度である。この方法はカチオン交換樹脂の分解に特に効果的である。カチオン交換樹脂はアニオン基を有しているために、鉄イオン、銅イオンを内部に取り込み分解に有利に働くためであると思われる。また分解時例えば塩酸等を添加し、酸性条件にすると分解が促進され、より少量の過酸化水素で水溶性イオン性高分子を得ることが可能となる。イオン交換樹脂、触媒としての金属イオンおよび過酸化水素を混合し、均一の分散液状にした後は、攪拌を停止し無攪拌の状態で反応を進めることも可能である。この方法は、高濃度にて酸化反応を実施する際に特に有効なプロセスである。従って無攪拌にて反応を行うことも考慮すると酸化反応の濃度としては、分散液中のイオン交換樹脂濃度として10~50質量%であり、好ましくは15~40質量%である。 The reaction temperature is room temperature to 90 ° C, preferably 40 to 90 ° C. The reaction time is about 3 to 50 hours, with the disappearance of the solids of the ion exchange resin as a guide, depending on the amount of oxidizing agent and the amount of catalyst. This method is particularly effective for the decomposition of the cation exchange resin. This is probably because the cation exchange resin has an anion group, so that iron ions and copper ions are taken into the inside to favor the decomposition. Further, for example, when hydrochloric acid or the like is added at the time of decomposition to make it acidic, the decomposition is accelerated, and a water-soluble ionic polymer can be obtained with a smaller amount of hydrogen peroxide. After mixing the ion exchange resin, the metal ions as the catalyst, and hydrogen peroxide to form a uniform dispersed liquid, it is possible to stop the stirring and proceed the reaction without stirring. This method is a particularly effective process when carrying out the oxidation reaction at a high concentration. Accordingly, considering that the reaction is performed without stirring, the concentration of the oxidation reaction is 10 to 50% by mass, preferably 15 to 40% by mass, as the ion exchange resin concentration in the dispersion.
水溶性イオン性高分子を得る他の方法は、ペルオキソ二硫酸塩を用いる方法である。含水状態の廃イオン交換樹脂に対し質量で0.1~5倍量の水を添加し混合する。ここにペルオキソ二硫酸塩をペルオキソ二硫酸イオンとして廃イオン交換樹脂乾燥質量の0.01~1.5倍量、更に好ましくは、0.05~1倍量添加する。ペルオキソ二硫酸塩の量がこれよりも少ないと分解率が低くなる。ペルオキソ二硫酸の量がこれよりも多いと反応の制御が難しく水溶性イオン性高分子として得られる量が著しく少なくなる。ペルオキソ二硫酸塩としては、ペルオキソ二硫酸カリウム、ペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸アンモニウム等を用いることができる。分解温度は40~100℃、好ましくは60~90℃である。反応時間はイオン交換樹脂固形物の消失を目安とするが、おおよそ1~80時間、好ましくは5~40時間である。この方法はアニオン交換樹脂の分解に特に効果的である。アニオン交換樹脂はカチオン性基を有しているためにペルオキソ二硫酸イオンを内部に取り込み、分解に有利に働くためであると思われる。ペルオキソ二硫酸塩を使用して酸化反応を実施する場合も過酸化水素と金属イオン触媒を用いて実施する場合と同様に無攪拌で行うことも可能であり、その場合も酸化反応の濃度は、分散液中のイオン交換樹脂濃度として10~50質量%であり、好ましくは15~40質量%である。 Another method for obtaining a water-soluble ionic polymer is a method using peroxodisulfate. Add 0.1 to 5 times the amount of water by weight to the water-containing waste ion exchange resin and mix. Here, peroxodisulfate is added as peroxodisulfate ions in an amount of 0.01 to 1.5 times, more preferably 0.05 to 1 times the dry mass of the waste ion exchange resin. If the amount of peroxodisulfate is less than this, the decomposition rate is lowered. If the amount of peroxodisulfuric acid is larger than this, it is difficult to control the reaction, and the amount obtained as a water-soluble ionic polymer is remarkably reduced. As peroxodisulfate, potassium peroxodisulfate, sodium peroxodisulfate, ammonium peroxodisulfate and the like can be used. The decomposition temperature is 40 to 100 ° C., preferably 60 to 90 ° C. The reaction time is determined based on the disappearance of the solid matter of the ion exchange resin, but is approximately 1 to 80 hours, preferably 5 to 40 hours. This method is particularly effective for the decomposition of anion exchange resins. This is presumably because the anion exchange resin has a cationic group, so that peroxodisulfate ions are taken into the inside and favorably decomposed. Even when the oxidation reaction is carried out using peroxodisulfate, it can be carried out without stirring as in the case of carrying out using hydrogen peroxide and a metal ion catalyst. The concentration of the ion exchange resin in the dispersion is 10 to 50% by mass, preferably 15 to 40% by mass.
本発明のイオン交換樹脂あるいは廃イオン交換樹脂の酸化により生成した水溶性イオン性高分子は通常、重量平均分子量で数千~数十万の水溶性イオン性高分子のものが生成する。また数十万より高いものを製造しようとした場合、
酸化剤の使用量などを減少させれば可能であるが、反応が遅くなりあまり実用的ではない。よって本発明において製造可能な好ましい重量平均分子量の範囲は数千~数十万であり、更に好ましくは数千~100,000である。
The water-soluble ionic polymer produced by oxidation of the ion exchange resin or waste ion exchange resin of the present invention is usually a water-soluble ionic polymer having a weight average molecular weight of several thousand to several hundred thousand. And if you try to make something higher than hundreds of thousands,
This is possible by reducing the amount of oxidant used, but the reaction is slow and is not very practical. Therefore, the preferred range of the weight average molecular weight that can be produced in the present invention is from several thousand to several hundred thousand, more preferably from several thousand to 100,000.
本発明で使用する原料となるイオン交換樹脂は、特に限定されたものではない。
水に不溶であり、水に膨潤する粒状のアニオン性基あるいはカチオン性基を有する高分子化合物である。これらイオン性高分子化合物を重合するための原料となる単量体は、スチレン及びその誘導体があげられる。具体例としてはスチレン、o-メチルスチレン、p-メチルスチレン、m-メチルスチレン、p-エチルスチレン、2,4-ジメチルスチレン、p-n-ブチルスチレン、p-tert-ブチルスチレン、p-n-ヘキシルスチレン、p-n-オクチルスチレン等のアルキルスチレン;p-メトキシスチレン等のアルコキシスチレン;p-フェニルスチレン等のアリールスチレン;p-クロルスチレン、3,4-ジクロルスチレン等のハロゲノスチレン;クロロメチルスチレン、クロロブチルスチレン、ブロモブチルスチレン等のハロゲノアルキルスチレンなどである。
The ion exchange resin used as a raw material used in the present invention is not particularly limited.
It is a polymer compound having a granular anionic group or cationic group that is insoluble in water and swells in water. Examples of the monomer used as a raw material for polymerizing these ionic polymer compounds include styrene and its derivatives. Specific examples include styrene, o-methylstyrene, p-methylstyrene, m-methylstyrene, p-ethylstyrene, 2,4-dimethylstyrene, pn-butylstyrene, p-tert-butylstyrene, and pn. -Alkyl styrene such as hexyl styrene and pn-octyl styrene; alkoxy styrene such as p-methoxy styrene; aryl styrene such as p-phenyl styrene; halogeno styrene such as p-chloro styrene and 3,4-dichloro styrene; And halogenoalkyl styrene such as chloromethyl styrene, chlorobutyl styrene and bromobutyl styrene.
またアクリル酸あるいはメタクリル酸エステル類も使用可能であり、具体例としてはアクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸プロピル、アクリル酸n-オクチル、アクリル酸ドデシル、アクリル酸ステアリル、アクリル酸フェニル等があげられ、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸n-オクチル、メタクリル酸ドデシル、メタクリル酸2-エチルヘキシル、メタクリル酸ステアリル、メタクリル酸フェニル、メタクリル酸ジメチルアミノエチル、メタクリル酸ジメチルアミノメチル等があげられる。 Acrylic acid or methacrylic acid esters can also be used. Specific examples include acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, propyl acrylate, n-octyl acrylate, acrylic Dodecyl acid, stearyl acrylate, phenyl acrylate, and the like, methacrylic acid, methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, n-octyl methacrylate, dodecyl methacrylate, 2-methacrylic acid 2- Examples thereof include ethylhexyl, stearyl methacrylate, phenyl methacrylate, dimethylaminoethyl methacrylate, dimethylaminomethyl methacrylate and the like.
更に架橋剤として使用されるポリビニル芳香族化合物は、ジビニルベンゼン、ジビニルトルエン、ジビニルキシレン、トリビニルベンゼン、ビスビニルビフェニル、ビスビニルフェニルスルホン、ビスビニルフェニルエタン、ビスビニルフェニルブタン等のスチレン誘導体、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート等のアクリル系誘導体などがあげられる。 Furthermore, polyvinyl aromatic compounds used as crosslinking agents include styrene derivatives such as divinylbenzene, divinyltoluene, divinylxylene, trivinylbenzene, bisvinylbiphenyl, bisvinylphenylsulfone, bisvinylphenylethane, and bisvinylphenylbutane, ethylene Examples thereof include acrylic derivatives such as glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and glycerol di (meth) acrylate.
重合方法としては、スチレンのようなモノビニル芳香族化合物とジビニルベンゼンのようなポリビニル芳香族化合物、また必要に応じて用いられる第3のビニル化合物との共重合は、公知の方法により行なうことができる。通常は、全原料モノマーの混合物を、公知の方法に準じて重合開始剤の存在下懸濁重合し、球状の架橋共重合体とする。 As a polymerization method, copolymerization of a monovinyl aromatic compound such as styrene with a polyvinyl aromatic compound such as divinylbenzene, and a third vinyl compound used as necessary can be performed by a known method. . Usually, a mixture of all raw material monomers is subjected to suspension polymerization in the presence of a polymerization initiator in accordance with a known method to obtain a spherical crosslinked copolymer.
イオン性基を導入する方法としては、重合後変性する方法と、イオン性単量体を共重合する方法があるが、上記スチレン系単量体を架橋剤とともに重合し、重合後変性する方法が多く採られている。カチオン性基を導入するアニオン性イオン交換樹脂は、重合物に無水塩化亜鉛などフリーデルクラフツ触媒とともにクロロメチルメチルエーテルなどを加え、ベンゼン環のクロロメチル化を行い、その後、トリメチルアミンなどにより四級アンモニウム塩基に変換し、カチオン性基を導入する。 As a method of introducing an ionic group, there are a method of modifying after polymerization and a method of copolymerizing an ionic monomer, and a method of polymerizing the styrene monomer together with a crosslinking agent and modifying after polymerization. Many are taken. Anionic ion exchange resins that introduce cationic groups can be added to the polymer by adding chloromethyl methyl ether together with a Friedel Crafts catalyst such as anhydrous zinc chloride to chloromethylate the benzene ring, and then quaternary ammonium with trimethylamine or the like. Convert to base and introduce cationic group.
またアニオン性基を導入するカチオン性イオン交換樹脂は、重合物をニトロベンゼンなどの溶剤を使用し、膨潤させた後、濃硫酸によりベンゼン環のスルホン化を実施し、アニオン性基を導入する。またカルボキシル基など弱アニオン性基を導入する場合は、アクリロニトリルとジビニルベンゼンを共重合し、重合後、加水分解しカルボキシル基とするなどの方法が採られる。 Moreover, the cationic ion exchange resin which introduce | transduces an anionic group uses a solvent, such as nitrobenzene, and swells a polymer, Then, sulfonation of a benzene ring is implemented with concentrated sulfuric acid, and an anionic group is introduce | transduced. When a weak anionic group such as a carboxyl group is introduced, a method of copolymerizing acrylonitrile and divinylbenzene and hydrolyzing it into a carboxyl group after polymerization is employed.
従って本発明で使用するイオン交換樹脂は、スチレンやアクリル酸エステル・メタクリル酸エステルのような疎水性単量体構造単位を骨格に四級アンモニウム塩基やスルホン酸基が付加した水に不溶であり、水に膨潤するイオン性基を有する高分子化合物である。 Therefore, the ion exchange resin used in the present invention is insoluble in water in which a quaternary ammonium base or a sulfonic acid group is added to the skeleton of a hydrophobic monomer structural unit such as styrene, acrylate ester or methacrylate ester, It is a polymer compound having an ionic group that swells in water.
またイオン交換樹脂の形状及び形態は、特に限定されず、板状、膜状、繊維状、球状等のいかなる形状のものも使用可能であり、またゲル形、ポーラス形、ハイポーラス形、拡大網目形等のいかなる形態も使用可能である。またその平均粒径も特に制限されないが、通常100μm~2mmの範囲のものを原料として使用する。 In addition, the shape and form of the ion exchange resin are not particularly limited, and any shape such as a plate shape, a membrane shape, a fiber shape, and a spherical shape can be used, and a gel shape, a porous shape, a high porous shape, and an enlarged mesh shape are usable. Any form such as shape can be used. Further, the average particle diameter is not particularly limited, but those having a range of 100 μm to 2 mm are usually used as raw materials.
次に吸水性樹脂の酸化反応による水溶性イオン高分子の製造に関して説明する。
本発明において、吸水性樹脂とは、前述した様な問題を潜在的に持つ吸水性樹脂全てを対象としているが、より具体的には、紙オムツを始めとした吸水性物品製造に用いられている吸水性樹脂、即ち、ポリアクリル酸ナトリウム架橋体、ポリスルホン酸ナトリウム架橋体などの高分子物、アクリル酸やスルホン酸とビニルアルコールなどの共重合物、また、前記単量体とセルロース、デンプンなどのグラフト重合物や、カルボキシメチル化物などが挙げられる。これらは架橋され、かつアルカリ金属塩であることが一般的である。具体的に挙げれば澱粉-アクリロニトリルグラフト共重合体、澱粉-アクリル酸グラフト共重合体、澱粉-アクリルアミドグラフト共重合体、セルロース-アクリロニトリルグラフト共重合体、カルボキシメチルセルロース架橋体、ポリアクリル酸ナトリウム架橋体、アクリル酸ナトリウム-ビニルアルコール共重合体、N-置換アクリルアミド架橋体、ポリビニルアルコール架橋体、ポリビニルアルコール凍結・解凍吸水ゲルなどである。これら吸水性樹脂は、紙オムツや生理用品に加工される前の新品の吸水性樹脂を使用することができるし、また紙オムツや生理用品に加工され使用された後、紙やパルプなどを除去し適宜洗浄した吸水性樹脂を使用することもできる。また化学組成の観点からは最も一般的であり価格も廉価であるポリアクリル酸ナトリウム架橋体を酸化反応の原料として使用することが好ましい。
Next, the production of the water-soluble ionic polymer by the oxidation reaction of the water absorbent resin will be described.
In the present invention, the water-absorbing resin is intended for all water-absorbing resins having the above-mentioned problems, but more specifically, it is used for manufacturing water-absorbing articles such as paper diapers. Water-absorbing resin, that is, polymer such as sodium polyacrylate cross-linked product, sodium polysulfonate cross-linked product, copolymer such as acrylic acid, sulfonic acid and vinyl alcohol, and the monomer and cellulose, starch, etc. And the graft polymer of carboxymethyl and the like. These are generally crosslinked and are alkali metal salts. Specifically, starch-acrylonitrile graft copolymer, starch-acrylic acid graft copolymer, starch-acrylamide graft copolymer, cellulose-acrylonitrile graft copolymer, carboxymethylcellulose cross-linked product, sodium polyacrylate cross-linked product, Examples thereof include sodium acrylate-vinyl alcohol copolymer, N-substituted acrylamide cross-linked product, polyvinyl alcohol cross-linked product, polyvinyl alcohol freezing / thawing water absorbing gel, and the like. These water-absorbent resins can be used as new water-absorbent resins before being processed into paper diapers and sanitary products, and after being processed and used as paper diapers and sanitary products, paper and pulp are removed. It is also possible to use a water-absorbing resin that has been washed appropriately. In addition, it is preferable to use a sodium polyacrylate crosslinked body, which is the most common and inexpensive, from the viewpoint of chemical composition, as a raw material for the oxidation reaction.
本発明で使用する吸水性樹脂を水溶性アニオン性単量体の架橋重合物、あるいは非イオン性単量体との架橋共重合物の例で説明すると以下のようになる。イオン性は生体などへの影響の少ないアニオン性が一般的であり、そのような単量体の例としては、(メタ)アクリル酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸またはそれらのアルカリ金属塩、(メタ)アクリルアミド、N,N-ジメチルアクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド等のノニオン性モノマーが挙げられ、それらはそれぞれ単独で用いてもよく、2種以上を混合して用いてもよい。なおアルカリ金属塩におけるアルカリ金属としては、リチウム、ナトリウム、カリウム等が挙げられる。水溶性エチレン性不飽和単量体は、工業的に入手が容易であることから、好ましくは(メタ)アクリル酸およびそのアルカリ金属塩あるいは(メタ)アクリルアミドを使用する場合が多い。 The water-absorbing resin used in the present invention will be described below with reference to a crosslinked polymer of a water-soluble anionic monomer or a crosslinked copolymer with a nonionic monomer. The ionicity is generally anionic with little influence on a living body, and examples of such monomers include (meth) acrylic acid, 2- (meth) acrylamido-2-methylpropanesulfonic acid, or those And nonionic monomers such as (meth) acrylamide, N, N-dimethylacrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, and the like, each of which may be used alone. Alternatively, two or more kinds may be mixed and used. Examples of the alkali metal in the alkali metal salt include lithium, sodium, and potassium. Since the water-soluble ethylenically unsaturated monomer is easily available industrially, (meth) acrylic acid and its alkali metal salt or (meth) acrylamide are often used in many cases.
架橋剤として使用するポリビニル化合物は、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリグリセリンジ(メタ)アクリレートおよびN,N’-メチレンビスアクリルアミドなどであり、N,N’-メチレンビスアクリルアミドが好ましい。 Polyvinyl compounds used as crosslinking agents are ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, glycerin di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polyglycerin. Examples thereof include di (meth) acrylate and N, N′-methylenebisacrylamide, and N, N′-methylenebisacrylamide is preferable.
重合は、上記単量体を用い逆相懸濁重合により、粒状物を得ることができる。その場合の溶媒としては、例えば、n-ヘキサン、n-ヘプタン、リグロイン等の脂肪族炭化水素化合物;シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン等の脂環族炭化水素化合物;ベンゼン、トルエン、キシレン等の芳香族炭化水素化合物等が挙げられ、それらは、それぞれ単独で用いてもよく、2種以上を混合して用いてもよい。それらの中では、工業的に入手が容易で、品質が安定し、かつ安価であることから、n-ヘキサン、n-ヘプタンおよびシクロヘキサンが好ましい。また界面活性剤は、ショ糖脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンアルキルフェニルエーテルなどを用い、高分子保護コロイドを併用することも好ましく、
例えばエチルセルロース、エチルヒドロキシエチルセルロース、ポリエチレンオキサイド、無水マレイン化ポリエチレン、無水マレイン化ポリブタジエン、無水マレイン化EPDM(エチレン/プロピレン/ジエン/ターポリマー)等が挙げられ、それらは、それぞれ単独で用いてもよく、2種以上を混合して用いてもよい。
For the polymerization, a granular material can be obtained by reverse phase suspension polymerization using the above monomer. In this case, examples of the solvent include aliphatic hydrocarbon compounds such as n-hexane, n-heptane, and ligroin; alicyclic hydrocarbon compounds such as cyclopentane, methylcyclopentane, cyclohexane, and methylcyclohexane; benzene, toluene, Examples thereof include aromatic hydrocarbon compounds such as xylene, and these may be used alone or in admixture of two or more. Among them, n-hexane, n-heptane and cyclohexane are preferred because they are easily available industrially, have stable quality and are inexpensive. Further, the surfactant is preferably a sucrose fatty acid ester, sorbitol fatty acid ester, polyoxyethylene alkylphenyl ether, etc., in combination with a polymer protective colloid,
Examples include ethyl cellulose, ethyl hydroxyethyl cellulose, polyethylene oxide, anhydrous maleated polyethylene, anhydrous maleated polybutadiene, anhydrous maleated EPDM (ethylene / propylene / diene / terpolymer) and the like, and they may be used alone, Two or more kinds may be mixed and used.
かくして得られる吸水性樹脂粒子の平均粒子径は、通常、吸収性物品において、微粉によるゲルブロッキングを防止する観点、および粗粒によるごつごつ感を防止し、吸収体の柔軟性を向上させる観点から、100~600μm、好ましくは200~500μmであることが望ましい。 The average particle diameter of the water-absorbent resin particles thus obtained is usually from the viewpoint of preventing gel blocking due to fine powder in the absorbent article, and preventing the gritty feeling due to coarse particles, and improving the flexibility of the absorbent body. It is desirable that the thickness is 100 to 600 μm, preferably 200 to 500 μm.
その他の組成の製造法として、澱粉-アクリロニトリルグラフト共重合体、澱粉-アクリルアミドグラフト共重合体は澱粉存在下でアクリロニトリルやアクリルアミドをグラフト重合させ、重合後、アクリロニトリルの場合は加水分解しアニオン性基を導入する。カルボキシメチルセルロース架橋体、ポリビニルアルコール架橋体の場合は、これら水溶性高分子を種々の方法によって架橋し高分子ゲルとする。 As another method for producing the composition, starch-acrylonitrile graft copolymer and starch-acrylamide graft copolymer are graft-polymerized with acrylonitrile or acrylamide in the presence of starch. Introduce. In the case of a crosslinked carboxymethyl cellulose and a crosslinked polyvinyl alcohol, these water-soluble polymers are crosslinked by various methods to form a polymer gel.
次に酸化反応による水溶化の操作に関して説明する。加工される前の新品の吸水性樹脂、あるいは使用済みの吸水性樹脂であれば必要な分別と洗浄処置を行った後、乾燥した吸水性樹脂の質量に対し1~10倍量の水を添加し混合する。ここに必要に応じて触媒として鉄イオン源、銅イオン源である硫酸第一鉄、塩化第一鉄、硫酸第二鉄、塩化第二鉄、硫酸第二銅などを添加溶解させる。鉄イオンあるいは銅イオンの添加量は、吸水性樹脂乾燥質量に対し0.00005~0.02倍量、好ましくは0.0001~0.01倍量である。吸水性樹脂の分解の場合は、鉄イオンあるいは銅イオンが無添加であっても分解は実施することが可能であるが、鉄イオンあるいは銅イオンを共存することにより反応が早く進行し使用することが好ましい。吸水性樹脂は、一般的にアニオン性高分子であり、これら鉄イオンあるいは銅イオンが吸水性樹脂に吸着し、酸化分解反応を促進するものと考えられる。また過酸化水素を質量で0.003~1.5倍量、更に好ましくは0.03~1倍量添加する。また35%過酸化水素水である場合は、質量で0.009~4.3倍量、更に好ましくは0.09~2.9倍量添加する。過酸化水素量がこれよりも少ないと分解率が低くなる。過酸化水素量がこれよりも多いと反応の制御が難しく、水溶性イオン性高分子として得られる量が著しく低下する。 Next, the operation of water solubilization by oxidation reaction will be described. New water-absorbing resin before processing, or used water-absorbing resin, after necessary separation and washing treatment, add 1 to 10 times the amount of water to the weight of the dried water-absorbing resin And mix. As necessary, an iron ion source and a copper ion source such as ferrous sulfate, ferrous chloride, ferric sulfate, ferric chloride, and cupric sulfate are added and dissolved as a catalyst. The amount of iron ions or copper ions added is 0.00005 to 0.02 times, preferably 0.0001 to 0.01 times the dry weight of the water absorbent resin. In the case of decomposition of the water absorbent resin, it is possible to carry out the decomposition even if no iron ion or copper ion is added, but the reaction proceeds quickly by using the iron ion or copper ion together and used. Is preferred. The water-absorbing resin is generally an anionic polymer, and it is considered that these iron ions or copper ions are adsorbed on the water-absorbing resin and promote the oxidative decomposition reaction. Further, hydrogen peroxide is added in an amount of 0.003 to 1.5 times, more preferably 0.03 to 1 times by mass. In the case of 35% hydrogen peroxide solution, it is added in an amount of 0.009 to 4.3 times, more preferably 0.09 to 2.9 times by mass. If the amount of hydrogen peroxide is less than this, the decomposition rate becomes low. If the amount of hydrogen peroxide is larger than this, it is difficult to control the reaction, and the amount obtained as a water-soluble ionic polymer is significantly reduced.
反応温度は室温~90℃、好ましくは40~90℃である。反応時間は、吸水性樹脂固形物の消失を目安とし、酸化剤量、触媒量にもよるが、おおよそ1~50時間程度である。また分解時例えば塩酸等を添加し、酸性条件にすると分解が促進され、より少量の過酸化水素で水溶性イオン性高分子を得ることが可能となる。吸水性樹脂、触媒としての金属イオンおよび過酸化水素を混合し、均一の分散液状にした後は、攪拌を停止し無攪拌の状態で反応を進めることも可能である。この方法は、高濃度にて酸化反応を実施する際に特に有効なプロセスである。従って無攪拌にて反応を行うことも考慮すると酸化反応の濃度としては、分散液中のイオン交換樹脂濃度として10~50質量%であり、好ましくは15~40質量%である。 The reaction temperature is room temperature to 90 ° C, preferably 40 to 90 ° C. The reaction time is about 1 to 50 hours, based on the disappearance of the water-absorbent resin solids, depending on the amount of oxidizing agent and the amount of catalyst. Further, for example, when hydrochloric acid or the like is added at the time of decomposition to make it acidic, the decomposition is accelerated, and a water-soluble ionic polymer can be obtained with a smaller amount of hydrogen peroxide. After mixing the water-absorbing resin, the metal ions as the catalyst, and hydrogen peroxide to form a uniform dispersed liquid, it is possible to stop the stirring and proceed the reaction without stirring. This method is a particularly effective process when carrying out the oxidation reaction at a high concentration. Accordingly, considering that the reaction is performed without stirring, the concentration of the oxidation reaction is 10 to 50% by mass, preferably 15 to 40% by mass, as the ion exchange resin concentration in the dispersion.
水溶性イオン性高分子を得る他の方法は、ペルオキソ二硫酸塩を用いる方法である。乾燥した吸水性樹脂に対し質量で1~10倍量の水を添加し混合する。ここにペルオキソ二硫酸塩を吸水性樹脂乾燥質量の0.003~3倍量、更に好ましくは、0.01~2倍量添加する。ペルオキソ二硫酸塩の量がこれよりも少ないと分解率が低くなる。ペルオキソ二硫酸の量がこれよりも多いと反応の制御が難しく水溶性イオン性高分子として得られる量が著しく少なくなる。ペルオキソ二硫酸塩としては、ペルオキソ二硫酸カリウム、ペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸アンモニウム等を用いることができる。分解温度は40~100℃、好ましくは60~90℃である。反応時間は吸水性樹脂の消失を目安とするが、おおよそ1~80時間、好ましくは3~40時間である。この場合の酸化反応の濃度は、分散液中の吸水性樹脂濃度として10~50質量%であり、好ましくは15~40質量%である。 Another method for obtaining a water-soluble ionic polymer is a method using peroxodisulfate. Add 1 to 10 times the amount of water by weight to the dried water-absorbent resin and mix. Here, peroxodisulfate is added in an amount of 0.003 to 3 times, more preferably 0.01 to 2 times the dry weight of the water absorbent resin. If the amount of peroxodisulfate is less than this, the decomposition rate is lowered. If the amount of peroxodisulfuric acid is larger than this, it is difficult to control the reaction, and the amount obtained as a water-soluble ionic polymer is remarkably reduced. As peroxodisulfate, potassium peroxodisulfate, sodium peroxodisulfate, ammonium peroxodisulfate and the like can be used. The decomposition temperature is 40 to 100 ° C., preferably 60 to 90 ° C. The reaction time is determined based on the disappearance of the water-absorbent resin, but is approximately 1 to 80 hours, preferably 3 to 40 hours. In this case, the concentration of the oxidation reaction is 10 to 50% by mass, preferably 15 to 40% by mass as the water-absorbing resin concentration in the dispersion.
本発明の吸水性樹脂あるいは廃吸水性樹脂の酸化剤により生成した水溶性アニオン性高分子は通常、重量平均分子量で数千~数十万の水溶性イオン性高分子のものが生成する。また数十万より高いものを製造しようとした場合、酸化剤の使用量などを減少させれば可能であるが、反応が遅くなりあまり実用的ではない。よって本発明において製造可能な好ましい重量平均分子量の範囲は数千~数十万であり、更に好ましくは数千~100,000である。 The water-soluble anionic polymer produced by the water-absorbing resin or waste water-absorbing resin oxidizing agent of the present invention is usually a water-soluble ionic polymer having a weight average molecular weight of several thousand to several hundred thousand. Further, when trying to produce a product higher than several hundred thousand, it can be achieved by reducing the amount of the oxidizing agent used, but the reaction becomes slow and is not very practical. Therefore, the preferred range of the weight average molecular weight that can be produced in the present invention is from several thousand to several hundred thousand, more preferably from several thousand to 100,000.
イオン性基を有する水溶性高分子は、凝結剤、凝集剤、コンクリート添加剤、流動化剤、インク定着剤、染料定着剤、色素定着剤、洗剤ビルダー、静電防止剤、スケール防止剤等様々な工業的用途がある。本発明の方法によれば廃イオン交換樹脂を、これらの用途に応用可能な水溶性イオン性高分子に変換することが可能である。 Water-soluble polymers with ionic groups include coagulants, flocculants, concrete additives, fluidizing agents, ink fixing agents, dye fixing agents, dye fixing agents, detergent builders, antistatic agents, scale inhibitors, etc. Industrial applications. According to the method of the present invention, it is possible to convert a waste ion exchange resin into a water-soluble ionic polymer applicable to these uses.
ここでイオン当量値とは、水不溶性樹脂乾燥質量1gを分解して生成した分解液中の水溶性イオン性高分子の1gに対するイオン当量値であり、コロイド滴定法により求めた値である。コロイド滴定には、流動電位検出器PCD-500(京都電子製)を組み込んだ電位差自動滴定装置AT-510(京都電子製)を使用した。滴定時、カチオン性水溶性高分子の滴定にはポリビニルスルホン酸カリウム水溶液を、アニオン性水溶性高分子の滴定にはポリジアリルジメチルアンモニウムクロリド水溶液を用いた。 Here, the ion equivalent value is an ion equivalent value with respect to 1 g of the water-soluble ionic polymer in the decomposition solution produced by decomposing 1 g of the water-insoluble resin dry mass, and is a value obtained by colloid titration. For colloidal titration, an automatic potentiometric titrator AT-510 (manufactured by Kyoto Denshi) incorporating a streaming potential detector PCD-500 (manufactured by Kyoto Denshi) was used. At the time of titration, an aqueous polyvinyl sulfonate solution was used for titration of the cationic water-soluble polymer, and an aqueous polydiallyldimethylammonium chloride solution was used for titration of the anionic water-soluble polymer.
以下、本発明を実施例により更に具体的に説明するが、本発明は、その要旨を越えない限り以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
(分子量の測定)
分解して得られた水溶性イオン性高分子の分子量はGPCによるポリエチレングリコール換算の分子量として求めた。GPC装置はJASCO製のものを用い、カラムは東ソー製G3000PWを用いた。溶離液は1M酢酸と1M酢酸ナトリウム1:1混合液のバッファーを用い、流速0.5ml/minで溶離した。
(Measurement of molecular weight)
The molecular weight of the water-soluble ionic polymer obtained by decomposition was determined as the molecular weight in terms of polyethylene glycol by GPC. A GPC apparatus manufactured by JASCO was used, and a G3000PW manufactured by Tosoh Corporation was used as a column. The eluent was a buffer of 1M acetic acid and 1M sodium acetate 1: 1 mixture and eluted at a flow rate of 0.5 ml / min.
(実施例1)
脱塩水37.6gに硫酸第一鉄7水和物0.051gを溶解させ、ここに含水状態のカチオン交換樹脂SK1B(三菱化学社製)42.6g(乾燥後質量20.0g)を添加分散させた。35%過酸化水素20.0gを添加し、80℃で3時間保持した。カチオン交換樹脂は完全に溶解した。得られた溶液に脱塩水を加え100gとし、20%の水溶性イオン性高分子水溶液とした。ここから一部サンプリングし、コロイド滴定によりイオン当量値を求めた。得られた水溶性イオン性高分子のイオン当量値は、4.7meq/gであった。重量平均分子量は4400であった。これを試作-1とする。
Example 1
0.051 g of ferrous sulfate heptahydrate is dissolved in 37.6 g of demineralized water, and 42.6 g of cation exchange resin SK1B (manufactured by Mitsubishi Chemical Corporation) in a water-containing state (mass after drying of 20.0 g) is added and dispersed therein. I let you. 20.0 g of 35% hydrogen peroxide was added and held at 80 ° C. for 3 hours. The cation exchange resin was completely dissolved. Demineralized water was added to the resulting solution to make 100 g, and a 20% water-soluble ionic polymer aqueous solution was obtained. A part was sampled from here, and the ion equivalent value was determined by colloid titration. The obtained water-soluble ionic polymer had an ion equivalent value of 4.7 meq / g. The weight average molecular weight was 4400. This is Prototype-1.
同様な操作にて、表1に記載する酸化剤、触媒、イオン交換樹脂を用いて試作-2~試作-14のような物性を有する水溶性イオン性高分子を製造した。これらの結果を表1に示す。 In the same manner, water-soluble ionic polymers having physical properties such as Trial Production-2 to Trial Production-14 were produced using the oxidizing agent, catalyst and ion exchange resin shown in Table 1. These results are shown in Table 1.
(表1)
Figure JPOXMLDOC01-appb-I000001
触媒(鉄イオン、銅イオン)は乾燥イオン交換樹脂1gに対するイオンの質量比、過酸化水素、ペルオキソ二硫酸塩添加量は、乾燥イオン交換樹脂1gに対する質量比。過酸化水素;35%水溶液、生成物イオン当量値;meq/g、
FS;硫酸第一鉄7水和物、HPO;過酸化水素、APD;アンモニウムペルオキソ二硫酸、FR;硫酸第二鉄、FC;塩化第一鉄4水和物、CS;硫酸銅。
(Table 1)
Figure JPOXMLDOC01-appb-I000001
Catalyst (iron ion, copper ion) is a mass ratio of ions to 1 g of dry ion exchange resin, and hydrogen peroxide and peroxodisulfate are added in a mass ratio of 1 g of dry ion exchange resin. Hydrogen peroxide; 35% aqueous solution, product ion equivalent value; meq / g,
FS; Ferrous sulfate heptahydrate, HPO; Hydrogen peroxide, APD; Ammonium peroxodisulfuric acid, FR; Ferric sulfate, FC; Ferrous chloride tetrahydrate, CS; Copper sulfate.
(実施例2)
脱塩水80gに硫酸第一鉄7水和物0.001gを溶解させ、35%過酸化水素0.3gを添加し、ここに乾燥させた吸水性樹脂(ポリアクリル酸ナトリウム架橋体)10.0gを添加した。初期は吸水性樹脂が水溶液を全て吸水し固体状態であった。80℃で1.5時間保持した。吸水性樹脂は完全に溶解した。得られた溶液の重量は101gであった。ここから一部サンプリングし、コロイド滴定によりイオン当量値を求めた。得られた水溶性イオン性高分子のイオン当量値は、11.5meq/gであった。重量平均分子量は205000であった。これを試作-15とする。
(Example 2)
Dissolved 0.001 g of ferrous sulfate heptahydrate in 80 g of demineralized water, added 0.3 g of 35% hydrogen peroxide, and dried the water-absorbent resin (cross-linked sodium polyacrylate) 10.0 g Was added. Initially, the water-absorbing resin absorbed all the aqueous solution and was in a solid state. Hold at 80 ° C. for 1.5 hours. The water absorbent resin was completely dissolved. The weight of the obtained solution was 101 g. A part was sampled from here, and the ion equivalent value was determined by colloid titration. The obtained water-soluble ionic polymer had an ion equivalent value of 11.5 meq / g. The weight average molecular weight was 205000. This is Prototype-15.
同様な操作にて、表2に記載する酸化剤、触媒、吸水性樹脂を用いて試作-16~試作-30を製造した。これらの結果を表2に示す。 By a similar operation, trial production-16 to trial production-30 were produced using the oxidizing agent, catalyst and water-absorbing resin shown in Table 2. These results are shown in Table 2.
(表2)
Figure JPOXMLDOC01-appb-I000002
触媒(鉄イオン、銅イオン)は乾燥イオン交換樹脂1gに対するイオンの質量比、過酸化水素、ペルオキソ二硫酸塩添加量は、乾燥イオン交換樹脂1gに対する質量比。過酸化水素;35%水溶液、生成物イオン当量値;meq/g、
FS;硫酸第一鉄7水和物、HPO;過酸化水素、APD;アンモニウムペルオキソ二硫酸、FR;硫酸第二鉄、FC;塩化第二鉄6水和物、CS;硫酸銅、
ポリアクリル酸ナトリウム架橋体(ACS)、澱粉-アクリル酸ナトリウムグラフト共重合体(SAS)、アクリル酸ナトリウム-ビニルアルコール共重合体(ASPV)、澱粉―アクリルアミドーアクリル酸ナトリウムグラフト共重合体(SAAS)。
(Table 2)
Figure JPOXMLDOC01-appb-I000002
Catalyst (iron ion, copper ion) is a mass ratio of ions to 1 g of dry ion exchange resin, and hydrogen peroxide and peroxodisulfate are added in a mass ratio of 1 g of dry ion exchange resin. Hydrogen peroxide; 35% aqueous solution, product ion equivalent value; meq / g,
FS; Ferrous sulfate heptahydrate, HPO; Hydrogen peroxide, APD; Ammonium peroxodisulfuric acid, FR; Ferric sulfate, FC; Ferric chloride hexahydrate, CS; Copper sulfate,
Cross-linked sodium polyacrylate (ACS), starch-sodium acrylate graft copolymer (SAS), sodium acrylate-vinyl alcohol copolymer (ASPV), starch-acrylamide-sodium acrylate graft copolymer (SAAS) .
本発明の水溶性イオン性高分子の製造方法によりスルホン酸基、カルボキシル基、第四級アンモニウム基等を有するイオン交換樹脂あるいは廃イオン交換樹脂、またはカルボキシル基を有する吸水性樹脂を、適度な酸化剤の量と反応条件下にて酸化分解することにより水溶性イオン性高分子に変換することができる。この技術は、低コストの原料を用いた水溶性イオン性高分子の製造方法であり、種々の用途に再利用可能と期待され、産業上の利用可能性は非常に高い。 By the method for producing the water-soluble ionic polymer of the present invention, an ion exchange resin or waste ion exchange resin having a sulfonic acid group, a carboxyl group, a quaternary ammonium group, or the like, or a water-absorbing resin having a carboxyl group can be appropriately oxidized. It can be converted into a water-soluble ionic polymer by oxidative decomposition under the amount of the agent and reaction conditions. This technique is a method for producing a water-soluble ionic polymer using a low-cost raw material, and is expected to be reusable for various applications, and has very high industrial applicability.

Claims (9)

  1. ビニル単量体の付加重合物あるいはビニル単量体を付加したグラフト化物よりなるイオン性基を有する水膨潤性である水不溶性樹脂を酸化剤により酸化分解し、水溶化したことを特徴とする水溶性イオン性高分子。 Water-soluble, water-insoluble resin having an ionic group consisting of an addition polymer of vinyl monomer or a grafted product to which vinyl monomer is added, and water-solubilized by oxidative decomposition with an oxidizing agent Ionic polymer.
  2. 前記水不溶性樹脂がカチオン交換樹脂であり、前記酸化剤として過酸化水素を前記カチオン交換樹脂乾燥質量に対し質量で0.01~1.5倍使用し、および触媒として鉄イオンあるいは銅イオンを前記カチオン交換樹脂乾燥質量に対し質量で0.0001~0.01倍併用することを特徴とする請求項1に記載の水溶性イオン性高分子。 The water-insoluble resin is a cation exchange resin, hydrogen peroxide is used as the oxidizing agent in a mass of 0.01 to 1.5 times the dry mass of the cation exchange resin, and iron ions or copper ions are used as a catalyst. The water-soluble ionic polymer according to claim 1, wherein the water-soluble ionic polymer is used in an amount of 0.0001 to 0.01 times by mass with respect to the dry mass of the cation exchange resin.
  3. 前記水不溶性樹脂がアニオン交換樹脂であり、前記酸化剤としてペルオキソ二硫酸塩および過酸化水素から選択される一種以上を使用し、前記アニオン交換樹脂乾燥質量に対し前記酸化剤を質量で0.01~1.5倍使用することを特徴とする請求項1に記載の水溶性イオン性高分子。 The water-insoluble resin is an anion exchange resin, and at least one selected from peroxodisulfate and hydrogen peroxide is used as the oxidizing agent, and the oxidizing agent is 0.01 by mass relative to the dry mass of the anion exchange resin. The water-soluble ionic polymer according to claim 1, wherein the water-soluble ionic polymer is used in an amount of up to 1.5 times.
  4. 前記水不溶性樹脂が吸水性樹脂であり、前記酸化剤としてペルオキソ二硫酸塩および過酸化水素から選択される一種以上を使用し、前記吸水性樹脂乾燥質量に対し質量で0.003~3倍使用することを特徴とする請求項1に記載の水溶性イオン性高分子。 The water-insoluble resin is a water-absorbing resin, and at least one selected from peroxodisulfate and hydrogen peroxide is used as the oxidizing agent, and used in a mass of 0.003 to 3 times the dry weight of the water-absorbing resin. The water-soluble ionic polymer according to claim 1, wherein
  5. 前記カチオン交換樹脂あるいは前記アニオン交換樹脂が、廃イオン交換樹脂であることを特徴とする請求項2あるいは3に記載の水溶性イオン性高分子。 The water-soluble ionic polymer according to claim 2 or 3, wherein the cation exchange resin or the anion exchange resin is a waste ion exchange resin.
  6. 前記カチオン交換樹脂が、スチレン、アクリル酸エステルおよびメタクリル酸エステルより選択される一種以上の単量構造単位を骨格とし、スルホン酸基あるいはカルボキシル基を有し、水に膨潤する高分子化合物であることを特徴とする請求項2に記載の水溶性イオン性高分子。 The cation exchange resin is a polymer compound having one or more monomeric structural units selected from styrene, acrylic acid esters and methacrylic acid esters as a skeleton, having a sulfonic acid group or a carboxyl group, and swelling in water. The water-soluble ionic polymer according to claim 2, wherein
  7. 前記アニオン交換樹脂が、スチレン、アクリル酸エステルおよびメタクリル酸エステルより選択される一種以上の単量体構造単位を骨格とし、三級アミノ基あるいは四級アンモニウム塩基を側鎖に有する、水に膨潤する高分子化合物であることを特徴とする請求項3に記載の水溶性イオン性高分子。 The anion exchange resin has one or more monomer structural units selected from styrene, acrylic ester and methacrylic ester as a skeleton, and has a tertiary amino group or a quaternary ammonium base in the side chain and swells in water. The water-soluble ionic polymer according to claim 3, which is a polymer compound.
  8. 前記吸水性樹脂が、澱粉-アクリル酸ナトリウムグラフト共重合体、澱粉-アクリルアミドーアクリル酸グラフト共重合体、ポリアクリル酸ナトリウム架橋体、アクリル酸ナトリウムーポリビニルアルコール共重合体より選択される一種以上であることを特徴とする請求項4に記載の水溶性イオン性高分子。 The water-absorbing resin is at least one selected from starch-sodium acrylate graft copolymer, starch-acrylamide-acrylic acid graft copolymer, cross-linked sodium polyacrylate, sodium acrylate-polyvinyl alcohol copolymer. The water-soluble ionic polymer according to claim 4, wherein the water-soluble ionic polymer is present.
  9. 水性媒体中にて、ビニル単量体の付加重合物あるいはビニル単量体を付加したグラフト化物よりなるイオン性基を有する水膨潤性である水不溶性樹脂を酸化剤により酸化分解し、水溶化することを特徴とする水溶性イオン性高分子の製造方法。 In aqueous medium, water-swellable water-insoluble resin having an ionic group consisting of an addition polymer of vinyl monomer or a grafted product of vinyl monomer is oxidized and decomposed with an oxidizing agent to make it water-soluble. A method for producing a water-soluble ionic polymer characterized by the above.
PCT/JP2012/056222 2011-04-15 2012-03-12 Water-soluble ionic polymer and method for producing same WO2012140981A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013509832A JP5839412B2 (en) 2011-04-15 2012-03-12 Water-soluble ionic polymer and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-091005 2011-04-15
JP2011091005 2011-04-15

Publications (1)

Publication Number Publication Date
WO2012140981A1 true WO2012140981A1 (en) 2012-10-18

Family

ID=47009163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056222 WO2012140981A1 (en) 2011-04-15 2012-03-12 Water-soluble ionic polymer and method for producing same

Country Status (2)

Country Link
JP (1) JP5839412B2 (en)
WO (1) WO2012140981A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160888A (en) * 2014-02-27 2015-09-07 株式会社東芝 Treatment method and treatment equipment of used ion exchange resin
KR101563963B1 (en) 2014-06-12 2015-10-28 주식회사 만도 Damping force controlling shock absorber
JP2017171830A (en) * 2016-03-25 2017-09-28 独立行政法人国立高等専門学校機構 Processing method of composite material
KR20180047245A (en) * 2016-10-31 2018-05-10 한국생산기술연구원 Conducting polymer dispersion of high viscosity and method for manufacturing using the same
JP2022544666A (en) * 2019-08-23 2022-10-20 ザ プロクター アンド ギャンブル カンパニー Degradation of superabsorbent polymers via oxidative degradation
WO2023149576A1 (en) * 2022-02-04 2023-08-10 株式会社日本触媒 Method for producing water-absorbing resin containing recycled water-absorbing resin, and use thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5872099A (en) * 1981-10-27 1983-04-28 日揮株式会社 Treatment of radioactive organic waste
JPS61157539A (en) * 1984-12-28 1986-07-17 Fuji Electric Co Ltd Decomposition treatment of ion exchange resin
JPH04317784A (en) * 1991-04-15 1992-11-09 Nippon Shokubai Co Ltd Disposal of water absorbable polymer
JP2000065986A (en) * 1998-08-24 2000-03-03 Jgc Corp Method and device for treating radioactive organic waste

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5872099A (en) * 1981-10-27 1983-04-28 日揮株式会社 Treatment of radioactive organic waste
JPS61157539A (en) * 1984-12-28 1986-07-17 Fuji Electric Co Ltd Decomposition treatment of ion exchange resin
JPH04317784A (en) * 1991-04-15 1992-11-09 Nippon Shokubai Co Ltd Disposal of water absorbable polymer
JP2000065986A (en) * 1998-08-24 2000-03-03 Jgc Corp Method and device for treating radioactive organic waste

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160888A (en) * 2014-02-27 2015-09-07 株式会社東芝 Treatment method and treatment equipment of used ion exchange resin
KR101563963B1 (en) 2014-06-12 2015-10-28 주식회사 만도 Damping force controlling shock absorber
JP2017171830A (en) * 2016-03-25 2017-09-28 独立行政法人国立高等専門学校機構 Processing method of composite material
KR20180047245A (en) * 2016-10-31 2018-05-10 한국생산기술연구원 Conducting polymer dispersion of high viscosity and method for manufacturing using the same
JP2022544666A (en) * 2019-08-23 2022-10-20 ザ プロクター アンド ギャンブル カンパニー Degradation of superabsorbent polymers via oxidative degradation
JP7350157B2 (en) 2019-08-23 2023-09-25 ザ プロクター アンド ギャンブル カンパニー Degradation of superabsorbent polymers via oxidative degradation
WO2023149576A1 (en) * 2022-02-04 2023-08-10 株式会社日本触媒 Method for producing water-absorbing resin containing recycled water-absorbing resin, and use thereof

Also Published As

Publication number Publication date
JPWO2012140981A1 (en) 2014-07-28
JP5839412B2 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
JP5839412B2 (en) Water-soluble ionic polymer and production method thereof
US20080099715A1 (en) Polymer Beads Incorporating Iron Oxide Particles
CN107207634B (en) Method for producing water-absorbent resin
JPH06345819A (en) Production of highly water absorbing resin
JPH1171424A (en) Ultra-absorbing polymer
EP1724292B1 (en) Process for producing macroporous acrylic resins
CN107973872A (en) Nano ferriferrous oxide adulterates the preparation method of styrene diethylene benzene copoly mer hydrophobic catalyst carrier
JP2005325272A (en) Preparation method of porous resin
JP2011527359A (en) Method for producing water-absorbing polymer particles
JP2006342245A (en) Porous resin beads
KR20210049869A (en) Water absorbent resin manufacturing method and water absorbent resin
JP4602011B2 (en) Porous resin beads and method for producing the same
CN113372611B (en) Super-absorbent polymer capable of improving absorption speed and preparation method and application thereof
US10427135B2 (en) Aminopolycarboxylic acids useful as processing aids in the manufacture of superabsorbents
TW200302233A (en) Complexing resins and method for preparation thereof
KR20110129595A (en) Process for preparing microporous hypercrosslinked monodisperse polymer particles with a diameter of micron
EP1350800B1 (en) Preparation of macroreticular polymers
JPH01249808A (en) Production of salt-resistant water-absorbable resin particle
JPH11179218A (en) Ion exchange resin
KR102014742B1 (en) Mixed salt suspension polymerization process and resins and catalysts produced thereof
JP2006095470A (en) Water-absorbing medium, and method for concentrating suspension using it
JPH03134038A (en) Particulate material containing chitosan and production thereof
JP5794991B2 (en) Use of heated vapor condensate to produce water-absorbing polymer particles
CN105777971B (en) A kind of preparation method of composite porous organic carrier
JP2597402B2 (en) Method for producing water absorbent resin fine particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12771502

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013509832

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 12771502

Country of ref document: EP

Kind code of ref document: A1