WO2012137785A1 - Exposure device using microlens array - Google Patents

Exposure device using microlens array Download PDF

Info

Publication number
WO2012137785A1
WO2012137785A1 PCT/JP2012/059102 JP2012059102W WO2012137785A1 WO 2012137785 A1 WO2012137785 A1 WO 2012137785A1 JP 2012059102 W JP2012059102 W JP 2012059102W WO 2012137785 A1 WO2012137785 A1 WO 2012137785A1
Authority
WO
WIPO (PCT)
Prior art keywords
microlens array
pattern
substrate
mask
exposure
Prior art date
Application number
PCT/JP2012/059102
Other languages
French (fr)
Japanese (ja)
Inventor
水村 通伸
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Publication of WO2012137785A1 publication Critical patent/WO2012137785A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/50Mask blanks not covered by G03F1/20 - G03F1/34; Preparation thereof
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems

Definitions

  • the present invention relates to an exposure apparatus using a microlens array, and more particularly to an exposure apparatus using a microlens array suitable for exposure of a liquid crystal display panel for portable equipment.
  • liquid crystal display devices mounted on devices such as mobile phones and portable information terminals are required to have smaller panels and higher definition panels. .
  • An exposure apparatus used when manufacturing a liquid crystal display panel of such a portable device conventionally uses a stepper used for exposure of a semiconductor device for high-definition exposure.
  • the substrate to be exposed is, for example, a large 1.5 m square substrate, and the exposure is performed a plurality of times for each region to be one or a plurality of individual substrates.
  • the boundary of the exposure area of the objective lens May be located inside the panel. Then, in the panel, the areas on both sides of the boundary of the exposure area are exposed with different shots, and there is a problem that the position of the wiring or the like is shifted at the boundary. Therefore, at this boundary, it is necessary to perform a so-called “next” process such as thickening the wiring pattern, forming the inclined end portion, and overlapping the inclined portion. In addition, even if this “next” process is performed, the portions subjected to this “next” may be connected on a straight line, resulting in stripes. It must be discarded. Further, even when the exposure pattern is a pattern that is difficult to process next, it is necessary to discard the panel at the boundary of the exposure area without making it a product.
  • Patent Documents 1 and 2 an exposure apparatus using a microlens array has also been proposed (Patent Documents 1 and 2).
  • a conventional exposure apparatus using a microlens array exposes a panel for a large-sized liquid crystal display device such as a television, and when applied as it is to a liquid crystal display device for a portable device, In the case of this liquid crystal display panel, since the panel is small and has various sizes, there is a problem that the manufacturing efficiency is poor.
  • the mask In an exposure apparatus that uses a microlens array, the mask has a pattern that matches the size of each panel.
  • the microlens array also has a microlens chip that matches the size of the panel. Fixed and used. Therefore, when exposing panels of different sizes, it is necessary to replace the microlens chip at the same time as the mask, and there is a problem that the manufacturing efficiency is further reduced.
  • a microlens is used as a mask in which a plurality of pattern regions are formed so as to be separated by an appropriate length, and corresponding to the size of each pattern region.
  • the chip is used by being fixed to the holder.
  • the present invention has been made in view of such a problem, and a micro lens array that efficiently uses a micro lens array according to the size of a liquid crystal display panel for a portable device and can reduce waste of substrate material.
  • An object of the present invention is to provide an exposure apparatus using a lens array.
  • An exposure apparatus using a microlens array includes a light source that emits exposure light, and a plurality of patterns in which exposure light from the light source is incident to be exposed corresponding to a plurality of panels. And a microlens array comprising a plurality of microlens array chips, on which exposure light that has passed through the mask is incident and an erecting equal-magnification image of the mask pattern is formed on the substrate, and the microlens array
  • the exposure light is obtained by moving the mask and the substrate relative to the light source and the microlens array in a state in which a positional relationship between the holder supporting the lens array, the light source, and the microlens array is fixed.
  • a driving device that scans the substrate in a first direction, and a control device that controls the driving device and the light source, and A plurality of pattern regions are arranged in a second direction orthogonal to the first direction, and adjacent pattern regions are integers n (n) of the arrangement pitch P in the second direction of the panel to be manufactured. ⁇ 2) times the pitch nP, and the microlens array has the microlens array chips arranged in the second direction, and each microlens array chip has a length in the second direction. Is longer than the length of the pattern region in the second direction, and is provided in the same number as the pattern region.
  • the transmitted light of each pattern region is irradiated to the substrate by the corresponding microlens array chip.
  • the panel in this invention means the display screen of a liquid crystal display panel, and its periphery part, and the exposure pattern formed includes the pattern of a display screen, and its periphery pattern.
  • the substrate is moved by the arrangement pitch P in the second direction of the panel, and thereafter
  • the control device scans exposure light by the driving device and the light source.
  • a light source for emitting exposure light and a pattern to be exposed by exposure light from the light source are formed corresponding to a plurality of panels, respectively.
  • the mask and the substrate are moved relative to the light source and the microlens array while the positional relationship between the holder supporting the microlens array and the light source and the microlens array is fixed.
  • a driving device that scans exposure light in a first direction on the substrate; and a control device that controls the driving device and the light source;
  • a plurality of the pattern regions are arranged in a second direction orthogonal to the first direction, and an integer m or more of two or more integers arranged at an arrangement pitch P in the second direction of the panel to be manufactured.
  • a pattern area group consisting of pattern areas is arranged at a pitch mnP that is an integer n (n ⁇ 2) times the product mP of the number m of the pattern areas and the arrangement pitch P, and the microlens array
  • the array chips are arranged in the second direction, and each microlens array chip has a length in the second direction longer than a product mP of the number m of pattern areas of the pattern area group and the arrangement pitch P.
  • the same number as the pattern region groups is provided, and the transmitted light of each pattern region group is irradiated to the substrate by the corresponding microlens array chip.
  • the substrate is moved by the length mP in the second direction of the pattern region group, and then the The control device scans exposure light by the driving device and the light source.
  • the plurality of pattern areas arranged in the second direction of the mask have an integer n (n) of the arrangement pitch P in the second direction of the panel in which adjacent pattern areas are manufactured.
  • the plurality of microlens array chips that are arranged with a pitch nP that is n ⁇ 2) times longer than the length of the pattern region in the second direction is longer than the length of the pattern region in the second direction.
  • the same number of regions are provided, and the transmitted light of each pattern region is irradiated to the substrate by the corresponding microlens array chip.
  • a plurality of pattern areas arranged in the second direction of the mask is a pattern area composed of two or more integer m pattern areas arranged at an arrangement pitch P in the second direction of the panel to be manufactured.
  • a pitch mnP that is an integer n (n ⁇ 2) times the product mP of the number m of pattern areas in this pattern area group and the arrangement pitch P
  • a plurality of microlens arrays are formed.
  • the number of microlens array chips in the second direction is longer than the product mP of the number m of pattern areas in the pattern area group and the arrangement pitch P, and is provided in the same number as the pattern area group.
  • the light is irradiated onto the substrate by the corresponding microlens array chip. Therefore, after scanning the exposure light, the exposure is formed by sequentially scanning the exposure light by the driving device and the light source while moving the substrate by the product mP of the number m of pattern areas of the pattern area group and the arrangement pitch P. Unexposed areas adjacent to the pattern are sequentially exposed without gaps, and the microlens array can be used effectively to expose a panel substrate that is smaller than the mask with high efficiency. Can be reduced.
  • (A) is a figure which shows the relative positional relationship of a mask and a microlens array in the exposure apparatus using the microlens array which concerns on embodiment of this invention
  • (b) is a figure which shows the board
  • (A) is a figure which shows the next exposure process of FIG. 1
  • (b) is a figure which shows the exposed board
  • FIG. 1 It is a figure which shows the relationship between the exposure light in a scanning exposure process, and a micro lens array.
  • A is a figure which shows the relative positional relationship of a mask and a microlens array in the case of manufacturing a panel of a different magnitude
  • (b) is a figure which shows the board
  • FIG. It is a modification of FIG. It is a figure which shows the operation
  • FIG. 1A shows a relative positional relationship between a mask and a microlens array in an exposure apparatus using a microlens array according to an embodiment of the present invention
  • FIG. 1B shows a substrate exposed thereby
  • FIG. 2 and FIG. 2 are diagrams showing the next exposure process in FIG.
  • FIG. 3 is a perspective view showing an exposure apparatus using a microlens array according to an embodiment of the present invention
  • FIG. 4 is a perspective view showing a mask stage and a microlens array
  • FIG. 5 is a perspective view showing the entire mask stage. As shown in FIG.
  • the exposure apparatus can move the glass substrate 40 in a scanning direction (first direction) 1 and a direction (second direction) 2 perpendicular to the scanning direction 1.
  • a substrate stage 12 is installed on the XY stage 11 so as to be movable in the first direction 1.
  • a gantry 13 is installed above the XY stage 11 and the substrate stage 12, and four light sources 14 are fixedly installed on the gantry 13 as an example.
  • These light sources 14 are, for example, high-pressure mercury lamp light sources, and irradiate ultraviolet exposure light 15 having a wavelength of 365 nm downward.
  • the irradiation area of the exposure light 15 is rectangular as shown in FIG.
  • a mask stage 18 is disposed below the light source 14 of the exposure light 15 as shown in FIG.
  • a first guide 16 extending in the second direction 2 is suspended from the gantry 13, and a second guide 17 extending in the first direction 1 is suspended from the first guide 16.
  • the first guide 16 is fixed on the gantry 13, and the second guide 17 is supported on the first guide 16 extending in the second direction 2 so as to be movable in the second direction 2.
  • the four mask stages 18 are supported so as to be movable in the first direction 1 on the second guide 17 extending in the first direction 1 while maintaining the positional relationship with each other.
  • the mask stage 18 is formed with a rectangular opening, and the mask 20 is supported in the opening. Accordingly, the mask 20 can be scanned with respect to the first direction 1 and can be shifted with respect to the second direction 2 by the first guide 16 and the second guide 17.
  • microlens array holder 21 is installed below the mask 20, a microlens array holder 21 is installed.
  • a plurality of chip-like microlens arrays 22a are supported in the opening of the holder 21, and a plurality of microlens array chips 22a are supported.
  • a microlens array 22 made up of is formed.
  • the microlens array chip 22a is formed with a large number of microlenses, and an erecting equal-magnification image of the pattern of the mask 20 is formed on the substrate 40 disposed below the microlens array 22 by each microlens. An image is formed.
  • the microlens formation area in the microlens array 22 coincides with the rectangular irradiation area of the exposure light 15 from the light source 14. Projected onto the substrate.
  • the exposure apparatus is provided with a drive device that simultaneously and integrally scans the mask 20 supported by the mask stage 18 and the substrate 40 on the substrate stage 12 in the first direction 1.
  • the substrate 40 on the substrate stage 12 is configured to be shiftable in the second direction 2 with respect to the light source 14, the mask 20, and the microlens array 22 by moving the substrate stage 12 in the second direction 2. Yes.
  • the movement of the substrate stage 12 in the second direction 2 may be performed manually or may be performed by a driving device provided for shifting the substrate.
  • the plurality of microlens array chips 22 a are arranged in the second direction 2 and supported by the holder 21, and the holder 21 is fixed on the gantry 13.
  • the exposure light 15 from the light source 14 is held on the substrate 40 by the microlens array 22, and the mask 40 and the substrate 40 move in the first direction 1 so that the substrate 40 is exposed.
  • a pattern scanned in the light 15 and formed in the pattern area 20 a of the mask is exposed and transferred onto the substrate 40.
  • the scanning of the light source 14 and the microlens array 22 relative to the mask 20 and the substrate 40 by the first driving device in the first direction 1 is controlled by a control device (not shown). Then, after the exposure device scans the exposure light by controlling the drive device and the light source by the control device, when the substrate 40 is shifted in the second direction 2, the control device again controls the drive device and the light source. Repeat scanning the exposure light. Thereby, the scanning of the exposure light in the first direction 1 and the shift of the substrate 40 in the second direction 2 are sequentially performed, and the pattern forming region of the substrate is sequentially exposed.
  • the control device again controls the driving device and the light source to perform exposure. Perform a light scan. As a result, the region where the exposure pattern is formed and the region adjacent in the second direction are sequentially exposed.
  • the size of the mask 20 held on the mask stage 18 is, for example, a width in the second direction 2 of 400 mm.
  • the mask 20 is provided with a pattern region 20a in which a pattern to be exposed is formed corresponding to a plurality of panels.
  • a plurality of pattern regions 20a are arranged in the second direction 2, and the adjacent pattern regions 20a are integers n (n) of the arrangement pitch P in the second direction 2 of the panel to be manufactured. It is arranged with a pitch nP which is ⁇ 2) times, and each pattern region 20a corresponds to a plurality of panels arranged in the first direction 1.
  • a portion of the mask 20 other than the region where the pattern region 20a is formed becomes a light shielding region.
  • the exposure light emitted from the light source 14 passes through only the pattern region 20 a and enters the microlens array 22.
  • the exposure light 15a irradiated to the part other than the pattern region 20a is not transmitted through the mask 20, as shown in FIG.
  • the mask 20 has three pattern regions 20a, and the width Wp in the second direction 2 of the pattern region 20a is equal to the width of the panel to be manufactured. Equally, adjacent pattern regions 20a are arranged at a pitch 2P that is twice the arrangement pitch P of the panels.
  • the length Wm in the second direction of the microlens array chip 22a is longer than the width Wp in the second direction 2 of the pattern region 20a, and the same number of three microlens array chips 22a as the pattern regions 20a.
  • the edge of the microlens array chip 22a does not exist at the position where the transmitted light of the pattern region 20a is incident.
  • the three microlens array chips 22a supported by the holder 21 have the same length Wm in the second direction 2, for example.
  • the glass substrate 40 on which the resist film is formed is transferred onto the substrate stage 12 and set at a position facing the mask 20 supported by the four mask stages 18. Then, the guides 16 and 17 and the substrate stage 12 and the XY stage 11 hold the substrate 40 and the mask 20 in a fixed positional relationship and are driven simultaneously by a driving device.
  • the masks 20 are held on the four mask stages 18, and the four exposure lights 15 from the four light sources 14 are incident on each mask 20.
  • the rectangular irradiation region of the exposure light 15 has a length in the width direction corresponding to the entire length of the mask 20 in the second direction 2 (direction orthogonal to the scanning direction).
  • the exposure light 15 is moved from the mask 20 and the substrate 40 simultaneously and relative to the exposure light 15 in the first direction 1. Is scanned in the scanning direction indicated by the white arrow.
  • FIG. 7 is a perspective view showing a state in which the mask 20 is removed.
  • the exposure light 15 transmitted through each pattern region 20 a of the mask 20 is a microlens of a microlens array chip 22 a whose rectangular irradiation region is supported in the opening of the microlens array holder 21.
  • the positional relationship between the exposure light 15 and the microlens array 22 is fixed.
  • the microlens array 22 is scanned relative to the mask 20 and the substrate 40 in the scanning direction indicated by the white arrow, and the exposure light 15 transmitted through the mask 20 is imaged on the substrate 40 (in FIG. 1). Area 41a).
  • the pattern of the mask 20 is transferred onto the substrate 40 as an erecting equal-magnification image, and a strip-shaped exposure pattern 41 is formed on the resist.
  • the mask 20 is formed with three pattern regions 20a.
  • Each pattern region 20a has the same width in the second direction as the panel to be manufactured, and adjacent pattern regions 20a are adjacent to each other.
  • the panels to be manufactured are arranged at a pitch 2P that is twice the arrangement pitch P in the second direction of the panel.
  • the exposure patterns 41 are similarly formed in a strip shape with a width equal to the width Wp of the pattern region 20a in the second direction and each exposure pattern 41 having a pitch of 2P.
  • the microlens array 22 is a microlens array manufactured by cutting an off-the-shelf microlens array manufactured with a width of 150 mm into a length Wm that is longer than the width of any of a plurality of types of panels to be manufactured.
  • the lens array chip 22a is arranged in the second direction 2 so that any transmitted light in the pattern area 20a corresponding to the width of each panel has a microscopic effect of each microlens array chip 22a. It is configured to be incident on the lens portion. Then, by performing a single scanning operation on the resist film on the glass substrate 40, three panels can be exposed simultaneously, and the exposure operation can be made highly efficient. At this time, since there is no seam of the microlens array chip 22a in each panel, it is not necessary to perform the so-called “next” process in the exposure pattern. Therefore, exposure unevenness does not occur in the exposure pattern.
  • an unexposed area having the same width as the arrangement pitch P in the second direction of the panel remains between the exposure patterns 41 formed by one scan.
  • the emission of the exposure light 15 from the light source 14 is temporarily stopped, and the substrate 40 on the substrate stage 12 is moved with respect to the light source 14, the mask 20, and the microlens array 22.
  • the panel is shifted by the arrangement pitch P in the second direction of the panel to be manufactured, and then the exposure light 15 is emitted again.
  • the shift of the substrate 40 in the second direction 2 is performed manually or, if a drive device is provided for shifting the substrate, by the drive device. Then, as shown in FIG.
  • the pattern regions 20a of the mask 20 are arranged twice because the adjacent pattern regions 20a are arranged at a pitch 2P that is twice the arrangement pitch P in the second direction of the panel to be manufactured.
  • an unexposed area having a width (P ⁇ Wp) of the difference between the panel arrangement pitch P and the panel width Wp is left between the exposure patterns 41.
  • This region can be used as a cutting allowance when dicing a single substrate into a plurality of panels.
  • the light source 14, the mask 20, and the microlens array 22 are all moved in the second direction relative to the substrate 40 before the second scan, the exposure pattern formed by the second scan. Also in 41, there is no seam of the microlens array chip 22a inside each panel, and it is not necessary to perform the so-called “next” processing in the exposure pattern, and uneven exposure occurs in the exposure pattern. There is nothing.
  • the mask is usually about 400 mm in width, but if such a long microlens array is to be manufactured, the cost increases.
  • a microlens array having a chip shape having a length (width) of about 150 mm has a low relative manufacturing cost per unit length. Therefore, a plurality of microlens array chips are connected to form a microlens array corresponding to the mask width, or the microlens array holder 21 is provided with a microlens array chip having a length of 150 mm, for example. It is necessary to form a Cr film on the mask portion in the area where the lens array chip does not exist to block transmission of exposure light.
  • a plurality of microlens array chips are arranged in the second direction, and the microlens array is constituted by a plurality of microlens array chips each corresponding to the mask width.
  • the length of each microlens array chip 22a is cut to a length Wm that is longer than the width of any of the plurality of types of panels to be manufactured.
  • any transmitted light of the pattern region 20a corresponding to the widths of the plurality of types of panels to be manufactured is incident on the microlens portion having the optical action of each microlens array chip 22a. It is configured. Therefore, the so-called “next” does not exist in the exposure pattern 41 of the panel, and since many and other types of panels can be exposed at the same time, it is efficient.
  • the adjacent pattern regions 20a are separated by an integral multiple of the panel arrangement pitch P 2 in the second direction (see FIG. 8). 8 is twice the pitch), and any transmitted light of each pattern can be incident on the microlens portion having the optical function of each microlens array chip 22a. An effect can be obtained. Also, in the case of manufacturing a panel having a width Wp 3 (see FIGS. 9 and 10) whose width in the second direction is smaller than Wp, adjacent pattern regions 20a are arranged in the second direction with the arrangement pitch P 3 of the panels. Provided with a pitch of an integral multiple (FIG. 9: 3 times, FIG. 10: 4 times) and configured so that any transmitted light of each pattern is incident on the microlens portion having the optical action of each microlens array chip 22a If it is done, the effect of the present invention can be obtained.
  • the first embodiment shown in FIGS. 1 to 10 is a case where four masks 20 are installed on four mask stages 18, but the second embodiment uses a large mask.
  • the resist film on the glass substrate is to be exposed.
  • 11 to 14 the mask is not shown to show the microlens array 22, but is supported by the frame of the mask stage 42.
  • one mask (not shown) supported by one mask stage 42 is arranged on the substrate 40, and the exposure light 15 enters the microlens array 22 through the mask. Then, the exposure light transmitted through the mask is condensed by the microlens array 22 and converged on the substrate 40. An erecting equal-magnification image of the mask pattern is formed on the substrate 40, and the exposure pattern 41 is formed. It is formed.
  • the entire area of the substrate 40 is exposed by increasing the number of shots according to the size of the substrate.
  • the substrate (mask) is divided into four parts in the vertical and horizontal directions, and divided into 16 equal area regions, and each exposure light from each light source 14 is divided into the upper left region of the divided region.
  • the exposure of 2 shots 3 shots in the case of FIG. 9 and 4 shots in the case of FIG. 10) similar to the embodiment is performed.
  • the exposure light 15 scans the substrate area adjacent to the right side (right side in the second direction) in the same manner as in the first embodiment.
  • the substrate region adjacent in the first direction is scanned in the same manner as in the first embodiment.
  • the substrate region adjacent in the second direction is scanned in the same manner as in the first embodiment.
  • the entire region of the substrate 40 is exposed.
  • the same effect as that of the first embodiment can be obtained by increasing the number of shots and performing exposure while sequentially moving the substrate in the first and second directions.
  • the pattern areas 20a of the mask 20 are arranged such that adjacent pattern areas 20a are separated from each other by an appropriate length.
  • a group of patterns is formed by two pattern areas 20a. Region groups are configured.
  • the pattern area group is the product of the number 2 of the arrangement pitch P 3 and the pattern area of the panel, i.e., it is arranged at a pitch of 2P 3.
  • microlens array chips 22a the second direction length Wm is longer than the product 2P and the number 2 of the arrangement pitch P 3 and the pattern area of the panel, the three equal and each pattern area group Micro
  • the lens array chips 22a are arranged in the second direction 2.
  • Other configurations are the same as those in the first embodiment.
  • the first embodiment shown in FIG. 10 it is provided at four times the pitch between adjacent pattern areas 20a arranged in panels with each other in the second direction pitch P 3. Therefore, in order to expose the front surface of the substrate 40, it is necessary to perform scanning by the driving device and the light source four times while shifting the substrate 40.
  • the two pattern regions 20a are arranged adjacent to each other, and all of the transmitted light is configured to pass through the portion having the optical action of one microlens array chip 22a.
  • the area of the exposure pattern formed by one scan is twice that of the first embodiment.
  • the substrate 40 is shifted in the second direction by the product 2P 3 of the panel arrangement pitch P 3 and the number 2 of pattern areas, By scanning with a light source, the entire surface of the substrate 40 can be exposed by two-shot exposure.
  • the number of adjacent pattern regions 20a can be increased within the range of the length in the second direction of the microlens array chip 22a, thereby shortening the exposure tact.
  • a pattern region group is configured by a plurality of pattern regions 20a
  • the above embodiment is an example, and when the number of pattern regions 20a configuring one pattern region group is m, adjacent patterns are formed. If the regions are arranged at a pitch mnP that is an integer n (n ⁇ 2) times the product mP of m and the arrangement pitch P, the same effect as in the present embodiment can be obtained.
  • the microlens array can be used efficiently in accordance with the size of a liquid crystal display panel for a portable device, which is effective in reducing waste of substrate material. is there.
  • 1 first direction (scan direction), 2: second direction (direction orthogonal to the scan direction), 14: light source, 15: exposure light, 18: mask stage, 20: mask, 20a: pattern region, 21: micro Lens array holder, 22: Microlens array chip, 40: Substrate, 41: Exposure pattern

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Liquid Crystal (AREA)

Abstract

A mask is provided with a plurality of pattern regions in which is formed a pattern having a width (Wp) identical to that of a panel to be formed. The pattern regions are arranged at a pitch (nP) which is n-times larger than the arrangement pitch (P) in a second direction of the panel to be manufactured (where n is an integer greater than or equal to 2). A microlens array for forming an erect equal-magnification image of the pattern on a substrate is obtained by arranging in the second direction the same number of microlens array chips as that of the pattern regions. Each of the microlens array chips has a length in the second direction that is greater than the width (Wp) of the pattern in the second direction. Light transmitted through each of the pattern regions is emitted onto the substrate by the corresponding microlens array chip. It is thereby possible to use the microlens array in an effective manner in accordance with the size of a liquid crystal display panel for portable equipment, and reduce waste of substrate material.

Description

マイクロレンズアレイを使用した露光装置Exposure system using microlens array
 本発明は、マイクロレンズアレイを使用した露光装置に関し、特に、携帯機器用の液晶表示パネルの露光に好適のマイクロレンズアレイを使用した露光装置に関する。 The present invention relates to an exposure apparatus using a microlens array, and more particularly to an exposure apparatus using a microlens array suitable for exposure of a liquid crystal display panel for portable equipment.
 携帯電話及び携帯型情報端末等の機器に搭載される液晶表示装置は、テレビジョン等の大型の液晶表示装置と異なり、パネルが小型になると共に、パネルはより高精細であることが要求される。 Unlike large liquid crystal display devices such as televisions, liquid crystal display devices mounted on devices such as mobile phones and portable information terminals are required to have smaller panels and higher definition panels. .
 このような携帯型機器の液晶表示パネルを製造する際に使用される露光装置は、従来、高精細の露光のために、半導体装置の露光に使用されているステッパが使用されている。 An exposure apparatus used when manufacturing a liquid crystal display panel of such a portable device conventionally uses a stepper used for exposure of a semiconductor device for high-definition exposure.
 従来、ステッパにより携帯機器用の小型の液晶表示パネルを露光する際には、マスクのパターンを透過した光を、縮小光学系に透過された後、基板に照射する。この際、露光対象の基板は、例えば1.5m角の大型の基板であり、露光の際には、1又は複数枚の個別基板となる領域ごとに複数回露光される。そして、複数回の露光により個別基板となる領域の全てが露光された基板は、分割されて、複数枚のガラス基板が製造される。 Conventionally, when a small liquid crystal display panel for a portable device is exposed by a stepper, light transmitted through a mask pattern is transmitted through a reduction optical system and then irradiated onto a substrate. At this time, the substrate to be exposed is, for example, a large 1.5 m square substrate, and the exposure is performed a plurality of times for each region to be one or a plurality of individual substrates. And the board | substrate with which all the area | regions used as an individual board | substrate by multiple times of exposure was divided | segmented, and a several glass substrate is manufactured.
 しかしながら、このステッパにおいては、1個の対物レンズにより露光される領域の大きさが決まっているため、1枚のガラス基板上に複数枚のパネルを作製する際、その対物レンズの露光領域の境界が、パネルの内部に位置する場合が生じる。そうすると、そのパネルにおいては、露光領域の境界を挟んで両側の領域が別のショットで露光されることになり、境界において、配線等の位置がずれてしまうという問題点がある。このため、この境界においては、配線パターンを太くしたり、端部を傾斜して形成してその傾斜部で重ねあわせる等の所謂「つぎ」の処理を行う必要がある。また、この「つぎ」の処理を施しても、この「つぎ」を施した部分が直線上に連なって、縞が生じてしまうことがあり、そうすると、この縞が生じたパネルについては、製品とならず、廃棄せざるを得ない。更に、露光パターンがこの「つぎ」の処理が困難なパターンの場合にも、露光領域の境界のパネルについては、製品とせずに廃棄することが必要になる。 However, in this stepper, since the size of the area exposed by one objective lens is determined, when producing a plurality of panels on one glass substrate, the boundary of the exposure area of the objective lens May be located inside the panel. Then, in the panel, the areas on both sides of the boundary of the exposure area are exposed with different shots, and there is a problem that the position of the wiring or the like is shifted at the boundary. Therefore, at this boundary, it is necessary to perform a so-called “next” process such as thickening the wiring pattern, forming the inclined end portion, and overlapping the inclined portion. In addition, even if this “next” process is performed, the portions subjected to this “next” may be connected on a straight line, resulting in stripes. It must be discarded. Further, even when the exposure pattern is a pattern that is difficult to process next, it is necessary to discard the panel at the boundary of the exposure area without making it a product.
 而して、マイクロレンズアレイを使用した露光装置も提案されている(特許文献1及び2)。しかしながら、従来のマイクロレンズアレイを使用した露光装置は、テレビジョン等の大型液晶表示装置用のパネルを露光するものであり、それをそのまま、携帯機器用の液晶表示装置に適用すると、携帯機器用の液晶表示パネルの場合は、パネルが小さく、また種々の大きさがあるため、製造効率が悪いという問題点がある。 Thus, an exposure apparatus using a microlens array has also been proposed (Patent Documents 1 and 2). However, a conventional exposure apparatus using a microlens array exposes a panel for a large-sized liquid crystal display device such as a television, and when applied as it is to a liquid crystal display device for a portable device, In the case of this liquid crystal display panel, since the panel is small and has various sizes, there is a problem that the manufacturing efficiency is poor.
特開2010-102149号公報JP 2010-102149 A 特開2008-197226号公報JP 2008-197226 A
 上述のように、携帯機器用の液晶表示パネルのように、高精細が要求されると共に、小型のパネルの場合、従来のステッパを使用すると、露光パターンの「つぎ」が必要となり、マイクロレンズアレイを使用すると、製造効率が悪いという問題点がある。 As described above, high-definition is required as in liquid crystal display panels for portable devices, and in the case of a small panel, the use of a conventional stepper requires a “next” exposure pattern, and a microlens array However, there is a problem that the production efficiency is poor.
 また、マイクロレンズアレイを使用した露光装置においては、マスクには、各パネルの大きさに合わせたパターンが形成されており、マイクロレンズアレイも、パネルの大きさに合わせたマイクロレンズチップがホルダに固定されて使用されている。従って、大きさが異なるパネルを露光する場合においては、マスクと同時にマイクロレンズチップも取り換える必要があり、製造効率が更に低下するという問題点がある。 In an exposure apparatus that uses a microlens array, the mask has a pattern that matches the size of each panel. The microlens array also has a microlens chip that matches the size of the panel. Fixed and used. Therefore, when exposing panels of different sizes, it is necessary to replace the microlens chip at the same time as the mask, and there is a problem that the manufacturing efficiency is further reduced.
 更に、複数個のパネルを同時に露光する場合においては、マスクとしては、複数個のパターン領域が適長離隔するように形成されたものが使用され、各パターン領域の大きさに対応させたマイクロレンズチップがホルダに固定されて使用されている。このような構成の露光装置を使用して露光すると、各パターン領域間には、露光光が照射されない。よって、この領域は、露光されず、基板材料の広い面積が無駄になるという問題点がある。 Further, in the case where a plurality of panels are exposed simultaneously, a microlens is used as a mask in which a plurality of pattern regions are formed so as to be separated by an appropriate length, and corresponding to the size of each pattern region. The chip is used by being fixed to the holder. When exposure is performed using the exposure apparatus having such a configuration, exposure light is not irradiated between the pattern areas. Therefore, there is a problem that this region is not exposed and a large area of the substrate material is wasted.
 本発明はかかる問題点に鑑みてなされたものであって、携帯機器用の液晶表示パネルの大きさに合わせて効率的にマイクロレンズアレイを使用し、基板材料の無駄を低減することができるマイクロレンズアレイを使用した露光装置を提供することを目的とする。 The present invention has been made in view of such a problem, and a micro lens array that efficiently uses a micro lens array according to the size of a liquid crystal display panel for a portable device and can reduce waste of substrate material. An object of the present invention is to provide an exposure apparatus using a lens array.
 本発明に係るマイクロレンズアレイを使用した露光装置は、露光光を発光する光源と、この光源からの露光光が入射され露光すべきパターンが複数個のパネルに対応して夫々形成された複数個のパターン領域を有するマスクと、マスクを透過した露光光が入射され前記マスクのパターンの正立等倍像を基板上に結像させる複数個のマイクロレンズアレイチップからなるマイクロレンズアレイと、このマイクロレンズアレイを支持するホルダと、前記光源と前記マイクロレンズアレイとの位置関係を固定した状態で、前記マスク及び前記基板を前記光源及び前記マイクロレンズアレイに対して相対的に移動させて前記露光光を前記基板上で第1方向にスキャンする駆動装置と、前記駆動装置及び前記光源を制御する制御装置と、を有し、前記マスクは、前記パターン領域が、前記第1方向に直交する第2方向に複数個配列され、隣接するパターン領域同士は、製造せんとするパネルの前記第2方向の配列ピッチPの整数n(n≧2)倍のピッチnPで配置されており、前記マイクロレンズアレイは、前記マイクロレンズアレイチップが前記第2方向に配列されており、各マイクロレンズアレイチップは、その前記第2方向の長さが前記パターン領域の前記第2方向の長さよりも長く、前記パターン領域と同数設けられ、各パターン領域の透過光は夫々対応するマイクロレンズアレイチップにより基板に照射されることを特徴とする。露光光としては、水銀ランプ光等が使用される。なお、本発明におけるパネルとは、液晶表示パネルの表示画面及びその周辺部を意味し、形成される露光パターンは、表示画面のパターン及びその周辺パターンを含むものである。 An exposure apparatus using a microlens array according to the present invention includes a light source that emits exposure light, and a plurality of patterns in which exposure light from the light source is incident to be exposed corresponding to a plurality of panels. And a microlens array comprising a plurality of microlens array chips, on which exposure light that has passed through the mask is incident and an erecting equal-magnification image of the mask pattern is formed on the substrate, and the microlens array The exposure light is obtained by moving the mask and the substrate relative to the light source and the microlens array in a state in which a positional relationship between the holder supporting the lens array, the light source, and the microlens array is fixed. A driving device that scans the substrate in a first direction, and a control device that controls the driving device and the light source, and A plurality of pattern regions are arranged in a second direction orthogonal to the first direction, and adjacent pattern regions are integers n (n) of the arrangement pitch P in the second direction of the panel to be manufactured. ≧ 2) times the pitch nP, and the microlens array has the microlens array chips arranged in the second direction, and each microlens array chip has a length in the second direction. Is longer than the length of the pattern region in the second direction, and is provided in the same number as the pattern region. The transmitted light of each pattern region is irradiated to the substrate by the corresponding microlens array chip. As the exposure light, mercury lamp light or the like is used. In addition, the panel in this invention means the display screen of a liquid crystal display panel, and its periphery part, and the exposure pattern formed includes the pattern of a display screen, and its periphery pattern.
 本発明に係るマイクロレンズアレイを使用した露光装置において、例えば前記駆動装置及び前記光源による露光光のスキャン後に、前記基板は前記パネルの前記第2方向の前記配列ピッチPだけ移動され、その後、前記制御装置は、前記駆動装置及び前記光源による露光光のスキャンを行う。 In the exposure apparatus using the microlens array according to the present invention, for example, after the exposure light is scanned by the driving device and the light source, the substrate is moved by the arrangement pitch P in the second direction of the panel, and thereafter The control device scans exposure light by the driving device and the light source.
 本発明に係る他のマイクロレンズアレイを使用した露光装置は、露光光を発光する光源と、この光源からの露光光が入射され露光すべきパターンが複数個のパネルに対応して夫々形成された複数個のパターン領域を有するマスクと、マスクを透過した露光光が入射され前記マスクのパターンの正立等倍像を基板上に結像させる複数個のマイクロレンズアレイチップからなるマイクロレンズアレイと、このマイクロレンズアレイを支持するホルダと、前記光源と前記マイクロレンズアレイとの位置関係を固定した状態で、前記マスク及び前記基板を前記光源及び前記マイクロレンズアレイに対して相対的に移動させて前記露光光を前記基板上で第1方向にスキャンする駆動装置と、前記駆動装置及び前記光源を制御する制御装置と、を有し、前記マスクは、前記パターン領域が、前記第1方向に直交する第2方向に複数個配列され、製造せんとするパネルの前記第2方向の配列ピッチPで配列された2以上の整数m個のパターン領域からなるパターン領域群が、そのパターン領域数mと前記配列ピッチPとの積mPの整数n(n≧2)倍のピッチmnPで配置されており、前記マイクロレンズアレイは、前記マイクロレンズアレイチップが前記第2方向に配列されており、各マイクロレンズアレイチップは、その前記第2方向の長さが前記パターン領域群のパターン領域数mと前記配列ピッチPとの積mPよりも長く、前記パターン領域群と同数設けられ、各パターン領域群の透過光は夫々対応するマイクロレンズアレイチップにより基板に照射されることを特徴とする。 In an exposure apparatus using another microlens array according to the present invention, a light source for emitting exposure light and a pattern to be exposed by exposure light from the light source are formed corresponding to a plurality of panels, respectively. A mask having a plurality of pattern regions, and a microlens array comprising a plurality of microlens array chips, on which exposure light that has passed through the mask is incident to form an erecting equal-magnification image of the mask pattern on the substrate, The mask and the substrate are moved relative to the light source and the microlens array while the positional relationship between the holder supporting the microlens array and the light source and the microlens array is fixed. A driving device that scans exposure light in a first direction on the substrate; and a control device that controls the driving device and the light source; In the mask, a plurality of the pattern regions are arranged in a second direction orthogonal to the first direction, and an integer m or more of two or more integers arranged at an arrangement pitch P in the second direction of the panel to be manufactured. A pattern area group consisting of pattern areas is arranged at a pitch mnP that is an integer n (n ≧ 2) times the product mP of the number m of the pattern areas and the arrangement pitch P, and the microlens array The array chips are arranged in the second direction, and each microlens array chip has a length in the second direction longer than a product mP of the number m of pattern areas of the pattern area group and the arrangement pitch P. The same number as the pattern region groups is provided, and the transmitted light of each pattern region group is irradiated to the substrate by the corresponding microlens array chip.
 このマイクロレンズアレイを使用した露光装置において、例えば、前記駆動装置及び前記光源による露光光のスキャン後に、前記基板は前記パターン領域群の前記第2方向の前記長さmPだけ移動され、その後、前記制御装置は、前記駆動装置及び前記光源による露光光のスキャンを行う。 In the exposure apparatus using the microlens array, for example, after scanning of exposure light by the driving device and the light source, the substrate is moved by the length mP in the second direction of the pattern region group, and then the The control device scans exposure light by the driving device and the light source.
 本発明の露光装置においては、マスクの第2方向に複数個配列された複数個のパターン領域は、隣接するパターン領域同士が、製造せんとするパネルの第2方向の配列ピッチPの整数n(n≧2)倍のピッチnPで配置されており、マイクロレンズアレイを構成する複数個のマイクロレンズアレイチップは、その第2方向の長さがパターン領域の第2方向の長さよりも長く、パターン領域と同数設けられ、各パターン領域の透過光は夫々対応するマイクロレンズアレイチップにより基板に照射される。よって、露光光のスキャン後に、基板をパネルの第2方向の配列ピッチPずつ移動させながら、順次駆動装置及び光源による露光光のスキャンを行えば、形成された露光パターンに隣接する未露光の箇所が順次隙間なく露光され、マイクロレンズアレイを有効に使用して、マスクよりも小さな大きさのパネル基板を、高効率で露光することができ、基板材料の無駄も低減することができる。 In the exposure apparatus according to the present invention, the plurality of pattern areas arranged in the second direction of the mask have an integer n (n) of the arrangement pitch P in the second direction of the panel in which adjacent pattern areas are manufactured. The plurality of microlens array chips that are arranged with a pitch nP that is n ≧ 2) times longer than the length of the pattern region in the second direction is longer than the length of the pattern region in the second direction. The same number of regions are provided, and the transmitted light of each pattern region is irradiated to the substrate by the corresponding microlens array chip. Therefore, after scanning the exposure light, if the exposure light is sequentially scanned by the driving device and the light source while moving the substrate by the arrangement pitch P in the second direction of the panel, an unexposed portion adjacent to the formed exposure pattern. Are sequentially exposed without a gap, and a panel substrate having a size smaller than the mask can be exposed with high efficiency by effectively using the microlens array, and waste of the substrate material can be reduced.
 また、マスクの第2方向に複数個配列された複数個のパターン領域が、製造せんとするパネルの第2方向の配列ピッチPで配列された2以上の整数m個のパターン領域からなるパターン領域群を構成し、このパターン領域群のパターン領域数mと配列ピッチPとの積mPの整数n(n≧2)倍のピッチmnPで配置されている場合においては、マイクロレンズアレイを構成する複数個のマイクロレンズアレイチップは、その第2方向の長さがパターン領域群のパターン領域数mと配列ピッチPとの積mPよりも長く、パターン領域群と同数設けられ、各パターン領域群の透過光は夫々対応するマイクロレンズアレイチップにより基板に照射される。よって、露光光のスキャン後に、基板を、パターン領域群のパターン領域数mと配列ピッチPとの積mPだけ移動させながら、順次駆動装置及び光源による露光光のスキャンを行えば、形成された露光パターンに隣接する未露光の箇所が順次隙間なく露光され、マイクロレンズアレイを有効に使用して、マスクよりも小さな大きさのパネル基板を、高効率で露光することができ、基板材料の無駄も低減することができる。 In addition, a plurality of pattern areas arranged in the second direction of the mask is a pattern area composed of two or more integer m pattern areas arranged at an arrangement pitch P in the second direction of the panel to be manufactured. When a group is formed and arranged with a pitch mnP that is an integer n (n ≧ 2) times the product mP of the number m of pattern areas in this pattern area group and the arrangement pitch P, a plurality of microlens arrays are formed. The number of microlens array chips in the second direction is longer than the product mP of the number m of pattern areas in the pattern area group and the arrangement pitch P, and is provided in the same number as the pattern area group. The light is irradiated onto the substrate by the corresponding microlens array chip. Therefore, after scanning the exposure light, the exposure is formed by sequentially scanning the exposure light by the driving device and the light source while moving the substrate by the product mP of the number m of pattern areas of the pattern area group and the arrangement pitch P. Unexposed areas adjacent to the pattern are sequentially exposed without gaps, and the microlens array can be used effectively to expose a panel substrate that is smaller than the mask with high efficiency. Can be reduced.
(a)は本発明の実施形態に係るマイクロレンズアレイを使用した露光装置において、マスク及びマイクロレンズアレイの相対的位置関係を示す図、(b)はこれにより露光された基板を示す図である。(A) is a figure which shows the relative positional relationship of a mask and a microlens array in the exposure apparatus using the microlens array which concerns on embodiment of this invention, (b) is a figure which shows the board | substrate exposed by this. . (a)は図1の次順の露光工程を示す図、(b)は露光された基板を示す図である。(A) is a figure which shows the next exposure process of FIG. 1, (b) is a figure which shows the exposed board | substrate. 本発明の実施形態に係るマイクロレンズアレイを使用した露光装置を示す斜視図である。It is a perspective view which shows the exposure apparatus which uses the micro lens array which concerns on embodiment of this invention. マスクステージとマイクロレンズアレイを示す斜視図である。It is a perspective view which shows a mask stage and a micro lens array. マスクステージ全体を示す斜視図である。It is a perspective view which shows the whole mask stage. スキャン露光工程における露光光とマスクとの関係を示す図である。It is a figure which shows the relationship between the exposure light and mask in a scanning exposure process. スキャン露光工程における露光光とマイクロレンズアレイとの関係を示す図である。It is a figure which shows the relationship between the exposure light in a scanning exposure process, and a micro lens array. (a)は異なる大きさのパネルを製造する場合におけるマスク及びマイクロレンズアレイの相対的位置関係を示す図、(b)はこれにより露光された基板を示す図である。(A) is a figure which shows the relative positional relationship of a mask and a microlens array in the case of manufacturing a panel of a different magnitude | size, (b) is a figure which shows the board | substrate exposed by this. 同じく大きさが小さいパネルを製造する場合におけるマスク及びマイクロレンズアレイの相対的位置関係及び基板を示す図である。It is a figure which shows the relative positional relationship of a mask and a micro lens array, and a board | substrate in the case of manufacturing a panel with a similarly small magnitude | size. 図9の変形例である。It is a modification of FIG. 本発明の第2実施形態に係るマイクロレンズアレイを使用した露光装置における露光光及びマイクロレンズアレイの動作を示す図である。It is a figure which shows the operation | movement of exposure light and the micro lens array in the exposure apparatus using the micro lens array which concerns on 2nd Embodiment of this invention. 図11に続く動作を示す図である。It is a figure which shows the operation | movement following FIG. 図12に続く動作を示す図である。It is a figure which shows the operation | movement following FIG. 図13に続く動作を示す図である。It is a figure which shows the operation | movement following FIG. (a)は本発明の第3実施形態に係るマイクロレンズアレイを使用した露光装置において、マスク及びマイクロレンズアレイの相対的位置関係を示す図、(b)はこれにより露光された基板を示す図である。(A) is a figure which shows the relative positional relationship of a mask and a microlens array in the exposure apparatus using the microlens array which concerns on 3rd Embodiment of this invention, (b) is a figure which shows the board | substrate exposed by this It is.
 以下、本発明の実施形態について、添付の図面を参照して具体的に説明する。図1(a)は本発明の実施形態に係るマイクロレンズアレイを使用した露光装置において、マスク及びマイクロレンズアレイの相対的位置関係を示す図、図1(b)はこれにより露光された基板を示す図、図2は図1の次順の露光工程を示す図である。図3は本発明の実施形態に係るマイクロレンズアレイを使用した露光装置を示す斜視図、図4はマスクステージとマイクロレンズアレイを示す斜視図、図5はマスクステージ全体を示す斜視図である。本実施形態に係る露光装置は、図3に示すように、ガラス基板40を、スキャン方向(第1方向)1及びこのスキャン方向1に直角の方向(第2方向)2に移動させることができるX-Yステージ11の上に基板ステージ12が第1方向1に移動可能に設置されている。このX-Yステージ11及び基板ステージ12の上方に、架台13が設置されており、この架台13上に、一例として、4個の光源14が固定設置されている。これらの光源14は、例えば、高圧水銀ランプ光源であり、波長が365nmの紫外光の露光光15を、下方に向けて照射する。この露光光15の照射領域は、図5に示すように矩形である。 Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1A shows a relative positional relationship between a mask and a microlens array in an exposure apparatus using a microlens array according to an embodiment of the present invention, and FIG. 1B shows a substrate exposed thereby. FIG. 2 and FIG. 2 are diagrams showing the next exposure process in FIG. FIG. 3 is a perspective view showing an exposure apparatus using a microlens array according to an embodiment of the present invention, FIG. 4 is a perspective view showing a mask stage and a microlens array, and FIG. 5 is a perspective view showing the entire mask stage. As shown in FIG. 3, the exposure apparatus according to the present embodiment can move the glass substrate 40 in a scanning direction (first direction) 1 and a direction (second direction) 2 perpendicular to the scanning direction 1. A substrate stage 12 is installed on the XY stage 11 so as to be movable in the first direction 1. A gantry 13 is installed above the XY stage 11 and the substrate stage 12, and four light sources 14 are fixedly installed on the gantry 13 as an example. These light sources 14 are, for example, high-pressure mercury lamp light sources, and irradiate ultraviolet exposure light 15 having a wavelength of 365 nm downward. The irradiation area of the exposure light 15 is rectangular as shown in FIG.
 この露光光15の光源14の下方には、図4に示すように、マスクステージ18が配置されている。架台13には、第2方向2に延びる第1ガイド16が懸架されており、この第1ガイド16に第1方向1に延びる第2ガイド17が懸架されている。第1ガイド16は架台13上に固定されており、第2ガイド17は第2方向2に延びる第1ガイド16上に第2方向2に移動可能に支持されている。そして、4個のマスクステージ18は相互にその位置関係を保持したまま、第1方向1に延びる第2ガイド17上に第1方向1に移動可能に支持されている。このマスクステージ18には、矩形の開口が形成されており、この開口にマスク20が支持されている。従って、マスク20は、第1ガイド16及び第2ガイド17により、第1方向1に対して、スキャンすることができ、第2方向2に対して、シフトすることができる。 A mask stage 18 is disposed below the light source 14 of the exposure light 15 as shown in FIG. A first guide 16 extending in the second direction 2 is suspended from the gantry 13, and a second guide 17 extending in the first direction 1 is suspended from the first guide 16. The first guide 16 is fixed on the gantry 13, and the second guide 17 is supported on the first guide 16 extending in the second direction 2 so as to be movable in the second direction 2. The four mask stages 18 are supported so as to be movable in the first direction 1 on the second guide 17 extending in the first direction 1 while maintaining the positional relationship with each other. The mask stage 18 is formed with a rectangular opening, and the mask 20 is supported in the opening. Accordingly, the mask 20 can be scanned with respect to the first direction 1 and can be shifted with respect to the second direction 2 by the first guide 16 and the second guide 17.
 このマスク20の下方には、マイクロレンズアレイホルダ21が設置されており、このホルダ21の開口部内に、チップ状のマイクロレンズアレイ22aが複数個支持されており、複数個のマイクロレンズアレイチップ22aからなるマイクロレンズアレイ22が構成されている。マイクロレンズアレイチップ22aは、夫々、多数のマイクロレンズが形成されており、各マイクロレンズにより、マスク20のパターンの正立等倍像が、マイクロレンズアレイ22の下方に配置される基板40上に結像するようになっている。このマイクロレンズアレイ22におけるマイクロレンズの形成領域は、光源14からの露光光15の矩形の照射領域に一致し、露光光15がマスク20の一部の領域を透過した後、マイクロレンズアレイ22により、基板上に投影される。 Below the mask 20, a microlens array holder 21 is installed. A plurality of chip-like microlens arrays 22a are supported in the opening of the holder 21, and a plurality of microlens array chips 22a are supported. A microlens array 22 made up of is formed. The microlens array chip 22a is formed with a large number of microlenses, and an erecting equal-magnification image of the pattern of the mask 20 is formed on the substrate 40 disposed below the microlens array 22 by each microlens. An image is formed. The microlens formation area in the microlens array 22 coincides with the rectangular irradiation area of the exposure light 15 from the light source 14. Projected onto the substrate.
 本実施形態においては、露光装置には、マスクステージ18に支持されたマスク20と、基板ステージ12上の基板40とを、同時一体的に第1方向1にスキャンする駆動装置が設けられている。また、基板ステージ12上の基板40は、基板ステージ12を第2方向2に移動させることにより、光源14、マスク20及びマイクロレンズアレイ22に対して、第2方向2にシフト可能に構成されている。なお、基板ステージ12の第2方向2への移動は、手動で行っても基板のシフト用に駆動装置を設け、この駆動装置により行ってもよい。本実施形態においては、複数個のマイクロレンズアレイチップ22aは、第2方向2に配列されてホルダ21に支持されており、ホルダ21は架台13上に固定されている。従って、光源14からの露光光15がマイクロレンズアレイ22により基板40上に集光される状態を保持して、マスク20と基板40とが第1方向1に移動することにより、基板40が露光光15によりスキャンされ、マスクのパターン領域20aに形成されたパターンが基板40上に露光されて転写される。 In the present embodiment, the exposure apparatus is provided with a drive device that simultaneously and integrally scans the mask 20 supported by the mask stage 18 and the substrate 40 on the substrate stage 12 in the first direction 1. . The substrate 40 on the substrate stage 12 is configured to be shiftable in the second direction 2 with respect to the light source 14, the mask 20, and the microlens array 22 by moving the substrate stage 12 in the second direction 2. Yes. The movement of the substrate stage 12 in the second direction 2 may be performed manually or may be performed by a driving device provided for shifting the substrate. In the present embodiment, the plurality of microlens array chips 22 a are arranged in the second direction 2 and supported by the holder 21, and the holder 21 is fixed on the gantry 13. Accordingly, the exposure light 15 from the light source 14 is held on the substrate 40 by the microlens array 22, and the mask 40 and the substrate 40 move in the first direction 1 so that the substrate 40 is exposed. A pattern scanned in the light 15 and formed in the pattern area 20 a of the mask is exposed and transferred onto the substrate 40.
 第1の駆動装置によるマスク20及び基板40に対する光源14及びマイクロレンズアレイ22の相対的第1方向1へのスキャンは、図示しない制御装置により制御されている。そして、露光装置は、制御装置により駆動装置及び光源を制御して露光光をスキャンした後、基板40が第2方向2にシフトされると、再度、制御装置により駆動装置及び光源を制御して露光光をスキャンすることを繰り返す。これにより、第1方向1への露光光のスキャンと第2方向2への基板40のシフトとが順次行われて、基板のパターン形成用領域が順次露光されていく。即ち、駆動装置及び光源による露光光のスキャン後に、例えば手動で基板40がパネルの第2方向2の配列ピッチPだけ移動されると、制御装置は、再度、駆動装置及び光源を制御して露光光のスキャンを行う。これにより、露光パターンが形成された領域と第2方向に隣接する領域が順次露光されていく。 The scanning of the light source 14 and the microlens array 22 relative to the mask 20 and the substrate 40 by the first driving device in the first direction 1 is controlled by a control device (not shown). Then, after the exposure device scans the exposure light by controlling the drive device and the light source by the control device, when the substrate 40 is shifted in the second direction 2, the control device again controls the drive device and the light source. Repeat scanning the exposure light. Thereby, the scanning of the exposure light in the first direction 1 and the shift of the substrate 40 in the second direction 2 are sequentially performed, and the pattern forming region of the substrate is sequentially exposed. That is, after the exposure light is scanned by the driving device and the light source, for example, when the substrate 40 is manually moved by the arrangement pitch P in the second direction 2 of the panel, the control device again controls the driving device and the light source to perform exposure. Perform a light scan. As a result, the region where the exposure pattern is formed and the region adjacent in the second direction are sequentially exposed.
 マスクステージ18に保持されるマスク20の大きさは、例えば、第2方向2の幅が400mmである。そして、マスク20には、露光すべきパターンが複数個のパネルに対応して形成されたパターン領域20aが設けられている。本実施形態においては、パターン領域20aは、第2方向2に複数個配列されており、隣接するパターン領域20a同士は、製造せんとするパネルの第2方向2の配列ピッチPの整数n(n≧2)倍のピッチnPで配置されており、各パターン領域20aは第1方向1に並ぶ複数個のパネルに対応している。マスク20は、パターン領域20aが形成された領域以外の部分が遮光領域となる。よって、光源14から出射された露光光は、パターン領域20aのみを透過して、マイクロレンズアレイ22に入射する。一方、パターン領域20a以外の部分に照射された露光光15aは、図1に示すように、マスク20に透過されない。本実施形態においては、図1に示すように、マスク20には3個のパターン領域20aが形成されており、パターン領域20aの第2方向2の幅Wpは、製造しようとするパネルの幅と等しく、隣接するパターン領域20a同士は、パネルの配列ピッチPの2倍のピッチ2Pで配置されている。 The size of the mask 20 held on the mask stage 18 is, for example, a width in the second direction 2 of 400 mm. The mask 20 is provided with a pattern region 20a in which a pattern to be exposed is formed corresponding to a plurality of panels. In the present embodiment, a plurality of pattern regions 20a are arranged in the second direction 2, and the adjacent pattern regions 20a are integers n (n) of the arrangement pitch P in the second direction 2 of the panel to be manufactured. It is arranged with a pitch nP which is ≧ 2) times, and each pattern region 20a corresponds to a plurality of panels arranged in the first direction 1. A portion of the mask 20 other than the region where the pattern region 20a is formed becomes a light shielding region. Therefore, the exposure light emitted from the light source 14 passes through only the pattern region 20 a and enters the microlens array 22. On the other hand, the exposure light 15a irradiated to the part other than the pattern region 20a is not transmitted through the mask 20, as shown in FIG. In the present embodiment, as shown in FIG. 1, the mask 20 has three pattern regions 20a, and the width Wp in the second direction 2 of the pattern region 20a is equal to the width of the panel to be manufactured. Equally, adjacent pattern regions 20a are arranged at a pitch 2P that is twice the arrangement pitch P of the panels.
 本発明においては、マイクロレンズアレイチップ22aの第2方向の長さWmは、パターン領域20aの第2方向2の幅Wpよりも長く、各パターン領域20aと同数の3枚のマイクロレンズアレイチップ22aが第2方向2に配列されており、夫々、光源14から出射されマスク20のパターン領域20aを透過した露光光15の全てが、夫々対応するマイクロレンズアレイチップ22aの光学作用を有する部分に入射される。よって、パターン領域20aの透過光が入射される位置にマイクロレンズアレイチップ22aの端縁は存在しない。図1に示すように、ホルダ21に支持されている3枚のマイクロレンズアレイチップ22aは、例えば、第2方向2の長さWmが同一である。 In the present invention, the length Wm in the second direction of the microlens array chip 22a is longer than the width Wp in the second direction 2 of the pattern region 20a, and the same number of three microlens array chips 22a as the pattern regions 20a. Are arranged in the second direction 2, and all of the exposure light 15 emitted from the light source 14 and transmitted through the pattern region 20a of the mask 20 is incident on the portion having the optical action of the corresponding microlens array chip 22a. Is done. Therefore, the edge of the microlens array chip 22a does not exist at the position where the transmitted light of the pattern region 20a is incident. As shown in FIG. 1, the three microlens array chips 22a supported by the holder 21 have the same length Wm in the second direction 2, for example.
 次に、上述の如く構成されたマイクロレンズアレイを使用した露光装置の動作について説明する。レジスト膜が形成されたガラス基板40は、基板ステージ12上に搬送されてきて、4個のマスクステージ18に支持されたマスク20と正対する位置に設定される。そして、ガイド16,17並びに基板ステージ12及びX-Yステージ11により、基板40とマスク20とは一定の位置関係を保持して、駆動装置により同時に駆動される。 Next, the operation of the exposure apparatus using the microlens array configured as described above will be described. The glass substrate 40 on which the resist film is formed is transferred onto the substrate stage 12 and set at a position facing the mask 20 supported by the four mask stages 18. Then, the guides 16 and 17 and the substrate stage 12 and the XY stage 11 hold the substrate 40 and the mask 20 in a fixed positional relationship and are driven simultaneously by a driving device.
 本実施形態においては、図5に示すように、4個のマスクステージ18に夫々マスク20が保持されており、4個の光源14からの4個の露光光15は、各マスク20に入射し、露光光15の矩形の照射領域は、その幅方向の長さが、マスク20の第2方向2(スキャン方向に直交する方向)の全域の長さに対応するようになっている。この露光光15は、図6に示すように、マスク20及び基板40が、同時一体的に第1方向1に露光光15に対して相対的に移動することにより、露光光15は、マスク20を白抜き矢印にて示すスキャン方向にスキャンする。 In the present embodiment, as shown in FIG. 5, the masks 20 are held on the four mask stages 18, and the four exposure lights 15 from the four light sources 14 are incident on each mask 20. The rectangular irradiation region of the exposure light 15 has a length in the width direction corresponding to the entire length of the mask 20 in the second direction 2 (direction orthogonal to the scanning direction). As shown in FIG. 6, the exposure light 15 is moved from the mask 20 and the substrate 40 simultaneously and relative to the exposure light 15 in the first direction 1. Is scanned in the scanning direction indicated by the white arrow.
 図7は、マスク20を取り除いた状態を示す斜視図である。この図7に示すように、マスク20の各パターン領域20aを透過した露光光15は、その矩形の照射領域が、マイクロレンズアレイホルダ21の開口部内に支持されたマイクロレンズアレイチップ22aのマイクロレンズ形成領域内にある。そして、この露光光15と、マイクロレンズアレイ22とは、その位置関係が固定されており、マスク20及び基板40が一体的に同時に移動する間に、図7に示すように、露光光15が白抜き矢印にて示すスキャン方向にマスク20及び基板40に対して相対的にスキャンされ、マイクロレンズアレイ22は、マスク20を透過してきた露光光15を基板40上に結像させる(図1における符号41aの領域)。これにより、図1に示すように、基板40上に、マスク20のパターンが、正立等倍像として転写され、帯状の露光パターン41がレジスト上に形成される。 FIG. 7 is a perspective view showing a state in which the mask 20 is removed. As shown in FIG. 7, the exposure light 15 transmitted through each pattern region 20 a of the mask 20 is a microlens of a microlens array chip 22 a whose rectangular irradiation region is supported in the opening of the microlens array holder 21. Within the forming area. The positional relationship between the exposure light 15 and the microlens array 22 is fixed. While the mask 20 and the substrate 40 move together at the same time, as shown in FIG. The microlens array 22 is scanned relative to the mask 20 and the substrate 40 in the scanning direction indicated by the white arrow, and the exposure light 15 transmitted through the mask 20 is imaged on the substrate 40 (in FIG. 1). Area 41a). Thereby, as shown in FIG. 1, the pattern of the mask 20 is transferred onto the substrate 40 as an erecting equal-magnification image, and a strip-shaped exposure pattern 41 is formed on the resist.
 本実施形態においては、マスク20には、3個のパターン領域20aが形成されており、各パターン領域20aは、製造しようとするパネルと第2方向の幅が等しく、隣接するパターン領域20a同士が、製造せんとするパネルの第2方向の配列ピッチPの2倍のピッチ2Pで配置されている。よって、露光パターン41も同様に、第2方向のパターン領域20aの幅Wpと等しい幅で、各露光パターン41同士が2Pのピッチで帯状に3本形成される。マイクロレンズアレイ22は、例えば、幅が150mmで製造される既製のマイクロレンズアレイを、製造しようとする複数種のパネルのいずれのパネルの幅よりも長くなるような長さWmに切断してマイクロレンズアレイチップ22aとし、これを第2方向2に配列して構成されており、各パネルの幅に対応するパターン領域20aのいずれの透過光も、各マイクロレンズアレイチップ22aの光学作用を有するマイクロレンズ部分に入射されるように構成されている。そして、ガラス基板40上のレジスト膜に対する1回のスキャン動作により、3枚のパネルを同時に露光することができ、露光動作を高効率化することができる。また、このとき、各パネルについては、その内部にマイクロレンズアレイチップ22aの継ぎ目は存在しないため、露光パターンにおいて、従来の所謂「つぎ」の処理を行う必要はない。よって、露光パターンに露光ムラが発生することはない。 In this embodiment, the mask 20 is formed with three pattern regions 20a. Each pattern region 20a has the same width in the second direction as the panel to be manufactured, and adjacent pattern regions 20a are adjacent to each other. The panels to be manufactured are arranged at a pitch 2P that is twice the arrangement pitch P in the second direction of the panel. Accordingly, the exposure patterns 41 are similarly formed in a strip shape with a width equal to the width Wp of the pattern region 20a in the second direction and each exposure pattern 41 having a pitch of 2P. For example, the microlens array 22 is a microlens array manufactured by cutting an off-the-shelf microlens array manufactured with a width of 150 mm into a length Wm that is longer than the width of any of a plurality of types of panels to be manufactured. The lens array chip 22a is arranged in the second direction 2 so that any transmitted light in the pattern area 20a corresponding to the width of each panel has a microscopic effect of each microlens array chip 22a. It is configured to be incident on the lens portion. Then, by performing a single scanning operation on the resist film on the glass substrate 40, three panels can be exposed simultaneously, and the exposure operation can be made highly efficient. At this time, since there is no seam of the microlens array chip 22a in each panel, it is not necessary to perform the so-called “next” process in the exposure pattern. Therefore, exposure unevenness does not occur in the exposure pattern.
 マスク20のパターン領域20aの配置により、1回のスキャンにより形成された露光パターン41の間には、パネルの第2の方向の配列ピッチPと同一の幅の未露光の領域が残る。本実施形態においては、1回のスキャンが終わったら、光源14からの露光光15の出射を一旦停止し、基板ステージ12上の基板40を、光源14、マスク20及びマイクロレンズアレイ22に対して、製造しようとするパネルの第2方向の配列ピッチPだけシフトし、その後、露光光15の出射を再開する。このとき、基板40の第2方向2へのシフトは、手動で行うか、又は基板のシフト用に駆動装置が設けられている場合には、駆動装置により行う。そして、図2に示すように、第1方向1における1回目のスキャン方向とは逆方向にスキャンして、未露光の領域を露光する。これにより、未露光の領域が露光され、1回目のスキャンと同様の露光パターン41が形成される。本実施形態においては、マスク20のパターン領域20aは、隣接するパターン領域20a同士が、製造しようとするパネルの第2方向の配列ピッチPの2倍のピッチ2Pで配置されているため、2回のスキャンによる露光パターン41の形成により露光パターン41間には、パネルの配列ピッチPとパネル幅Wpとの差分(P-Wp)の幅の未露光の領域が残される。この領域は、1枚の基板を複数枚のパネルにダイシングする際に、切断代として使用できる。2回目のスキャンの前に、光源14、マスク20及びマイクロレンズアレイ22の全てが、基板40に対して、相対的に第2方向に移動されるため、2回目のスキャンにより形成された露光パターン41においても、各パネルについては、その内部にマイクロレンズアレイチップ22aの継ぎ目は存在せず、露光パターンにおいて、従来の所謂「つぎ」の処理を行う必要はなく、露光パターンに露光ムラが発生することはない。 Due to the arrangement of the pattern area 20a of the mask 20, an unexposed area having the same width as the arrangement pitch P in the second direction of the panel remains between the exposure patterns 41 formed by one scan. In the present embodiment, after one scan, the emission of the exposure light 15 from the light source 14 is temporarily stopped, and the substrate 40 on the substrate stage 12 is moved with respect to the light source 14, the mask 20, and the microlens array 22. The panel is shifted by the arrangement pitch P in the second direction of the panel to be manufactured, and then the exposure light 15 is emitted again. At this time, the shift of the substrate 40 in the second direction 2 is performed manually or, if a drive device is provided for shifting the substrate, by the drive device. Then, as shown in FIG. 2, scanning is performed in the direction opposite to the first scanning direction in the first direction 1 to expose an unexposed area. Thereby, an unexposed area is exposed and an exposure pattern 41 similar to the first scan is formed. In the present embodiment, the pattern regions 20a of the mask 20 are arranged twice because the adjacent pattern regions 20a are arranged at a pitch 2P that is twice the arrangement pitch P in the second direction of the panel to be manufactured. As a result of the formation of the exposure pattern 41 by scanning, an unexposed area having a width (P−Wp) of the difference between the panel arrangement pitch P and the panel width Wp is left between the exposure patterns 41. This region can be used as a cutting allowance when dicing a single substrate into a plurality of panels. Since the light source 14, the mask 20, and the microlens array 22 are all moved in the second direction relative to the substrate 40 before the second scan, the exposure pattern formed by the second scan. Also in 41, there is no seam of the microlens array chip 22a inside each panel, and it is not necessary to perform the so-called “next” processing in the exposure pattern, and uneven exposure occurs in the exposure pattern. There is nothing.
 マスクは、通常、幅が400mm程度であるが、このような長寸のマイクロレンズアレイを製造しようとすると、コストが高くなる。マイクロレンズアレイは、通常、150mm程度の長さ(幅)のチップ状のものが、単位長あたりの相対的な製造コストは低い。よって、複数枚のマイクロレンズアレイチップをつなぎ合わせて、マスク幅に対応するマイクロレンズアレイを構成するか、又は、マイクロレンズアレイホルダ21に例えば長さが150mmのマイクロレンズアレイチップを設け、このマイクロレンズアレイチップが存在しない領域のマスク部分には、Cr膜を形成して、露光光の透過を遮断するという作業が必要である。後者の場合は、ガラス基板40に使用しない領域(パネルとならない領域)が生じてしまうので、無駄である。そこで、複数枚のマイクロレンズアレイチップを第2方向に配列して、夫々マスク幅に対応した複数枚のマイクロレンズアレイチップによりマイクロレンズアレイを構成することが好ましい。このとき、本実施形態のように、各マイクロレンズアレイチップ22aの長さを、製造しようとする複数種のパネルのいずれのパネルの幅よりも長くなるような長さWmに切断し、これを第2方向に配列し、製造しようとするパネルの複数種の幅に対応するパターン領域20aのいずれの透過光も、各マイクロレンズアレイチップ22aの光学作用を有するマイクロレンズ部分に入射されるように構成されている。よって、所謂「つぎ」がパネルの露光パターン41内に存在せず、しかも可及的に多数及び他種類のパネルを一度に露光処理できるため、効率的である。 The mask is usually about 400 mm in width, but if such a long microlens array is to be manufactured, the cost increases. In general, a microlens array having a chip shape having a length (width) of about 150 mm has a low relative manufacturing cost per unit length. Therefore, a plurality of microlens array chips are connected to form a microlens array corresponding to the mask width, or the microlens array holder 21 is provided with a microlens array chip having a length of 150 mm, for example. It is necessary to form a Cr film on the mask portion in the area where the lens array chip does not exist to block transmission of exposure light. In the latter case, an area that is not used for the glass substrate 40 (an area that does not become a panel) is generated, which is useless. Therefore, it is preferable that a plurality of microlens array chips are arranged in the second direction, and the microlens array is constituted by a plurality of microlens array chips each corresponding to the mask width. At this time, as in this embodiment, the length of each microlens array chip 22a is cut to a length Wm that is longer than the width of any of the plurality of types of panels to be manufactured. Arranged in the second direction so that any transmitted light of the pattern region 20a corresponding to the widths of the plurality of types of panels to be manufactured is incident on the microlens portion having the optical action of each microlens array chip 22a. It is configured. Therefore, the so-called “next” does not exist in the exposure pattern 41 of the panel, and since many and other types of panels can be exposed at the same time, it is efficient.
 なお、第2方向の幅がWpよりも大きい幅Wpのパネル(図8参照)を製造する場合において、隣接するパターン領域20a同士を第2方向にパネルの配列ピッチPの整数倍(図8においては2倍)のピッチで設け、各パターンのいずれの透過光も、各マイクロレンズアレイチップ22aの光学作用を有するマイクロレンズ部分に入射されるように構成されていれば、上記本発明の効果を得ることができる。また、第2方向の幅がWpよりも小さい幅Wpのパネル(図9及び図10参照)を製造する場合においても、隣接するパターン領域20a同士を第2方向にパネルの配列ピッチPの整数倍(図9:3倍、図10:4倍)のピッチで設け、各パターンのいずれの透過光も、各マイクロレンズアレイチップ22aの光学作用を有するマイクロレンズ部分に入射されるように構成されていれば、本発明の効果を得ることができる。 In the case of manufacturing a panel having a width Wp 2 whose width in the second direction is larger than Wp (see FIG. 8), the adjacent pattern regions 20a are separated by an integral multiple of the panel arrangement pitch P 2 in the second direction (see FIG. 8). 8 is twice the pitch), and any transmitted light of each pattern can be incident on the microlens portion having the optical function of each microlens array chip 22a. An effect can be obtained. Also, in the case of manufacturing a panel having a width Wp 3 (see FIGS. 9 and 10) whose width in the second direction is smaller than Wp, adjacent pattern regions 20a are arranged in the second direction with the arrangement pitch P 3 of the panels. Provided with a pitch of an integral multiple (FIG. 9: 3 times, FIG. 10: 4 times) and configured so that any transmitted light of each pattern is incident on the microlens portion having the optical action of each microlens array chip 22a If it is done, the effect of the present invention can be obtained.
 次に、本発明の第2実施形態について、図11乃至図14を参照して、説明する。図1乃至図10に示す第1実施形態は、4個のマスク20を4個のマスクステージ18に設置していた場合のものであるが、本第2実施形態は、大きなマスクを使用して、ガラス基板上のレジスト膜を露光しようとするものである。なお、図11乃至図14において、マスクはマイクロレンズアレイ22を示すために図示していないが、マスクステージ42の枠に支持されている。図11に示すように、基板40上に、1個のマスクステージ42に支持された1個のマスク(図示せず)が配置され、露光光15は、マスクを介してマイクロレンズアレイ22に入射され、マスクを透過した露光光がマイクロレンズアレイ22により、集光されて基板40上に収束し、マスクのパターンの正立等倍像が、基板40上に結像して、露光パターン41が形成される。 Next, a second embodiment of the present invention will be described with reference to FIGS. The first embodiment shown in FIGS. 1 to 10 is a case where four masks 20 are installed on four mask stages 18, but the second embodiment uses a large mask. The resist film on the glass substrate is to be exposed. 11 to 14, the mask is not shown to show the microlens array 22, but is supported by the frame of the mask stage 42. As shown in FIG. 11, one mask (not shown) supported by one mask stage 42 is arranged on the substrate 40, and the exposure light 15 enters the microlens array 22 through the mask. Then, the exposure light transmitted through the mask is condensed by the microlens array 22 and converged on the substrate 40. An erecting equal-magnification image of the mask pattern is formed on the substrate 40, and the exposure pattern 41 is formed. It is formed.
 本実施形態においては、ショット数を基板の大きさに応じて増やすことにより、基板40の全域が露光される。先ず、図11に示すように、基板(マスク)を縦横4分割して、16の等面積の領域に分割し、各光源14からの各露光光を、その分割領域の左上の領域について、第1実施形態と同様の2ショット(図9の場合は3ショット、図10の場合は4ショット)の露光を行う。次いで、図12に示すように、露光光15は、その右隣(第2方向の右側)の基板領域を、第1実施形態と同様にスキャンする。その後、図13に示すように、第1方向に隣接する基板領域を第1実施形態と同様にスキャンする。その後、図14に示すように、第2方向に隣接する基板領域を第1実施形態と同様にスキャンする。これにより、基板40の全領域が露光される。 In this embodiment, the entire area of the substrate 40 is exposed by increasing the number of shots according to the size of the substrate. First, as shown in FIG. 11, the substrate (mask) is divided into four parts in the vertical and horizontal directions, and divided into 16 equal area regions, and each exposure light from each light source 14 is divided into the upper left region of the divided region. The exposure of 2 shots (3 shots in the case of FIG. 9 and 4 shots in the case of FIG. 10) similar to the embodiment is performed. Next, as shown in FIG. 12, the exposure light 15 scans the substrate area adjacent to the right side (right side in the second direction) in the same manner as in the first embodiment. Thereafter, as shown in FIG. 13, the substrate region adjacent in the first direction is scanned in the same manner as in the first embodiment. Thereafter, as shown in FIG. 14, the substrate region adjacent in the second direction is scanned in the same manner as in the first embodiment. Thereby, the entire region of the substrate 40 is exposed.
 このように、基板が大きい場合においても、基板を第1及び第2方向に順次移動させながら、ショット数を増やして露光することにより、第1実施形態と同様の効果を得ることができる。 As described above, even when the substrate is large, the same effect as that of the first embodiment can be obtained by increasing the number of shots and performing exposure while sequentially moving the substrate in the first and second directions.
 次に、本発明の第3実施形態に係るマイクロレンズアレイを使用した露光装置について説明する。第1実施形態においては、マスク20のパターン領域20aは、隣接するパターン領域20a同士が適長離隔して配列されていたが、本実施形態においては、2個のパターン領域20aにより1群のパターン領域群が構成されている。そして、このパターン領域群が、パネルの配列ピッチPとパターン領域の数2との積、即ち、2Pのピッチで配列されている。 Next, an exposure apparatus using the microlens array according to the third embodiment of the present invention will be described. In the first embodiment, the pattern areas 20a of the mask 20 are arranged such that adjacent pattern areas 20a are separated from each other by an appropriate length. In the present embodiment, a group of patterns is formed by two pattern areas 20a. Region groups are configured. Then, the pattern area group is the product of the number 2 of the arrangement pitch P 3 and the pattern area of the panel, i.e., it is arranged at a pitch of 2P 3.
 また、マイクロレンズアレイチップ22aは、その第2方向の長さWmが、パネルの配列ピッチPとパターン領域の数2との積2Pよりも長く、各パターン領域群と同数の3枚のマイクロレンズアレイチップ22aが第2方向2に配列されている。その他の構成は、第1実施形態と同様である。 Further, the microlens array chips 22a, the second direction length Wm is longer than the product 2P and the number 2 of the arrangement pitch P 3 and the pattern area of the panel, the three equal and each pattern area group Micro The lens array chips 22a are arranged in the second direction 2. Other configurations are the same as those in the first embodiment.
 図10に示す第1実施形態の変形例においては、隣接するパターン領域20a同士を第2方向にパネルの配列ピッチPの4倍のピッチで設けている。よって、基板40の前面を露光するためには、駆動装置及び光源によるスキャンを、基板40をシフトさせながら4回実施する必要がある。しかし、本実施形態のように、2個のパターン領域20aを隣接するように配置し、この透過光の全てが1枚のマイクロレンズアレイチップ22aの光学作用を有する部分を透過するように構成することにより、1回のスキャンにより形成される露光パターンの面積は、第1実施形態の2倍となる。本実施形態においては、1回の露光光のスキャン後には、基板40をパネルの配列ピッチPとパターン領域の数2との積2Pだけ第2の方向にシフトして、再度駆動装置及び光源によるスキャンを行うことにより、2ショットの露光により、基板40の全面を露光できる。 In a variant of the first embodiment shown in FIG. 10, it is provided at four times the pitch between adjacent pattern areas 20a arranged in panels with each other in the second direction pitch P 3. Therefore, in order to expose the front surface of the substrate 40, it is necessary to perform scanning by the driving device and the light source four times while shifting the substrate 40. However, as in this embodiment, the two pattern regions 20a are arranged adjacent to each other, and all of the transmitted light is configured to pass through the portion having the optical action of one microlens array chip 22a. Thus, the area of the exposure pattern formed by one scan is twice that of the first embodiment. In the present embodiment, after one exposure light scan, the substrate 40 is shifted in the second direction by the product 2P 3 of the panel arrangement pitch P 3 and the number 2 of pattern areas, By scanning with a light source, the entire surface of the substrate 40 can be exposed by two-shot exposure.
 本実施形態においては、隣接するパターン領域20aの数は、マイクロレンズアレイチップ22aの第2方向の長さの範囲内で増やすことができ、これにより、露光タクトを短縮することができる。 In the present embodiment, the number of adjacent pattern regions 20a can be increased within the range of the length in the second direction of the microlens array chip 22a, thereby shortening the exposure tact.
 なお、複数個のパターン領域20aによりパターン領域群を構成する場合において、上記実施形態は、一例であり、1のパターン領域群を構成するパターン領域20aの数をmとしたときに、隣接するパターン領域同士を前記mと配列ピッチPとの積mPの整数n(n≧2)倍のピッチmnPで配置すれば、本実施形態と同様の効果が得られる。 In the case where a pattern region group is configured by a plurality of pattern regions 20a, the above embodiment is an example, and when the number of pattern regions 20a configuring one pattern region group is m, adjacent patterns are formed. If the regions are arranged at a pitch mnP that is an integer n (n ≧ 2) times the product mP of m and the arrangement pitch P, the same effect as in the present embodiment can be obtained.
 本発明は、マイクロレンズアレイを使用した露光装置において、携帯機器用の液晶表示パネルの大きさに合わせて効率的にマイクロレンズアレイを使用することができるので、基板材料の無駄の低減に有効である。 INDUSTRIAL APPLICABILITY In the exposure apparatus using a microlens array, the microlens array can be used efficiently in accordance with the size of a liquid crystal display panel for a portable device, which is effective in reducing waste of substrate material. is there.
1:第1方向(スキャン方向)、2:第2方向(スキャン方向に直交する方向)、14:光源、15:露光光、18:マスクステージ、20:マスク、20a:パターン領域、21:マイクロレンズアレイホルダ、22:マイクロレンズアレイチップ、40:基板、41:露光パターン 1: first direction (scan direction), 2: second direction (direction orthogonal to the scan direction), 14: light source, 15: exposure light, 18: mask stage, 20: mask, 20a: pattern region, 21: micro Lens array holder, 22: Microlens array chip, 40: Substrate, 41: Exposure pattern

Claims (4)

  1. 露光光を発光する光源と、この光源からの露光光が入射され露光すべきパターンが複数個のパネルに対応して夫々形成された複数個のパターン領域を有するマスクと、マスクを透過した露光光が入射され前記マスクのパターンの正立等倍像を基板上に結像させる複数個のマイクロレンズアレイチップからなるマイクロレンズアレイと、このマイクロレンズアレイを支持するホルダと、前記光源と前記マイクロレンズアレイとの位置関係を固定した状態で、前記マスク及び前記基板を前記光源及び前記マイクロレンズアレイに対して相対的に移動させて前記露光光を前記基板上で第1方向にスキャンする駆動装置と、前記駆動装置及び前記光源を制御する制御装置と、を有し、
    前記マスクは、前記パターン領域が、前記第1方向に直交する第2方向に複数個配列され、隣接するパターン領域同士は、製造せんとするパネルの前記第2方向の配列ピッチPの整数n(n≧2)倍のピッチnPで配置されており、
    前記マイクロレンズアレイは、前記マイクロレンズアレイチップが前記第2方向に配列されており、各マイクロレンズアレイチップは、その前記第2方向の長さが前記パターン領域の前記第2方向の長さよりも長く、前記パターン領域と同数設けられ、各パターン領域の透過光は夫々対応するマイクロレンズアレイチップにより基板に照射されることを特徴とするマイクロレンズアレイを使用した露光装置。
    A light source that emits exposure light, a mask having a plurality of pattern areas in which exposure light from the light source is incident and a pattern to be exposed is formed corresponding to a plurality of panels, and exposure light transmitted through the mask , A microlens array composed of a plurality of microlens array chips that form an erecting equal-magnification image of the mask pattern on the substrate, a holder that supports the microlens array, the light source, and the microlens A driving device that scans the exposure light in the first direction on the substrate by moving the mask and the substrate relative to the light source and the microlens array in a state where the positional relationship with the array is fixed; A control device for controlling the drive device and the light source,
    In the mask, a plurality of the pattern areas are arranged in a second direction orthogonal to the first direction, and adjacent pattern areas are an integer n (n) of the arrangement pitch P in the second direction of the panel to be manufactured. n> 2) times the pitch nP,
    In the microlens array, the microlens array chips are arranged in the second direction, and each microlens array chip has a length in the second direction that is longer than a length in the second direction of the pattern region. An exposure apparatus using a microlens array, which is long and provided in the same number as the pattern area, and the transmitted light of each pattern area is irradiated to the substrate by a corresponding microlens array chip.
  2. 前記駆動装置及び前記光源による露光光のスキャン後に、前記基板は前記パネルの前記第2方向の前記配列ピッチPだけ移動され、その後、前記制御装置は、前記駆動装置及び前記光源による露光光のスキャンを行うことを特徴とする請求項1に記載のマイクロレンズアレイを使用した露光装置。 After scanning the exposure light by the driving device and the light source, the substrate is moved by the arrangement pitch P in the second direction of the panel, and then the control device scans the exposure light by the driving device and the light source. The exposure apparatus using the microlens array according to claim 1, wherein:
  3. 露光光を発光する光源と、この光源からの露光光が入射され露光すべきパターンが複数個のパネルに対応して夫々形成された複数個のパターン領域を有するマスクと、マスクを透過した露光光が入射され前記マスクのパターンの正立等倍像を基板上に結像させる複数個のマイクロレンズアレイチップからなるマイクロレンズアレイと、このマイクロレンズアレイを支持するホルダと、前記光源と前記マイクロレンズアレイとの位置関係を固定した状態で、前記マスク及び前記基板を前記光源及び前記マイクロレンズアレイに対して相対的に移動させて前記露光光を前記基板上で第1方向にスキャンする駆動装置と、前記駆動装置及び前記光源を制御する制御装置と、を有し、
    前記マスクは、前記パターン領域が、前記第1方向に直交する第2方向に複数個配列され、製造せんとするパネルの前記第2方向の配列ピッチPで配列された2以上の整数m個のパターン領域からなるパターン領域群が、そのパターン領域数mと前記配列ピッチPとの積mPの整数n(n≧2)倍のピッチmnPで配置されており、
    前記マイクロレンズアレイは、前記マイクロレンズアレイチップが前記第2方向に配列されており、各マイクロレンズアレイチップは、その前記第2方向の長さが前記パターン領域群のパターン領域数mと前記配列ピッチPとの積mPよりも長く、前記パターン領域群と同数設けられ、各パターン領域群の透過光は夫々対応するマイクロレンズアレイチップにより基板に照射されることを特徴とするマイクロレンズアレイを使用した露光装置。
    A light source that emits exposure light, a mask having a plurality of pattern areas in which exposure light from the light source is incident and a pattern to be exposed is formed corresponding to a plurality of panels, and exposure light transmitted through the mask , A microlens array composed of a plurality of microlens array chips that form an erecting equal-magnification image of the mask pattern on the substrate, a holder that supports the microlens array, the light source, and the microlens A driving device that scans the exposure light in the first direction on the substrate by moving the mask and the substrate relative to the light source and the microlens array in a state where the positional relationship with the array is fixed; A control device for controlling the drive device and the light source,
    In the mask, a plurality of the pattern regions are arranged in a second direction orthogonal to the first direction, and an integer m or more of 2 or more arranged at an arrangement pitch P in the second direction of the panel to be manufactured. A pattern area group consisting of pattern areas is arranged at a pitch mnP that is an integer n (n ≧ 2) times the product mP of the number m of the pattern areas and the arrangement pitch P,
    In the microlens array, the microlens array chips are arranged in the second direction, and each microlens array chip has a length in the second direction that is the number m of pattern areas of the pattern area group and the arrangement. Uses a microlens array that is longer than the product mP with the pitch P and is provided in the same number as the pattern region group, and the transmitted light of each pattern region group is irradiated to the substrate by the corresponding microlens array chip. Exposure equipment.
  4. 前記駆動装置及び前記光源による露光光のスキャン後に、前記基板は前記パターン領域群の前記パターン領域数mと前記配列ピッチPとの積mPだけ移動され、その後、前記制御装置は、前記駆動装置及び前記光源による露光光のスキャンを行うことを特徴とする請求項3に記載のマイクロレンズアレイを使用した露光装置。 After the exposure light is scanned by the driving device and the light source, the substrate is moved by a product mP of the number m of the pattern regions in the pattern region group and the arrangement pitch P, and then the control device includes the driving device and The exposure apparatus using a microlens array according to claim 3, wherein exposure light is scanned by the light source.
PCT/JP2012/059102 2011-04-05 2012-04-03 Exposure device using microlens array WO2012137785A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011084090A JP5704535B2 (en) 2011-04-05 2011-04-05 Exposure system using microlens array
JP2011-084090 2011-04-05

Publications (1)

Publication Number Publication Date
WO2012137785A1 true WO2012137785A1 (en) 2012-10-11

Family

ID=46969181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059102 WO2012137785A1 (en) 2011-04-05 2012-04-03 Exposure device using microlens array

Country Status (3)

Country Link
JP (1) JP5704535B2 (en)
TW (1) TW201241582A (en)
WO (1) WO2012137785A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9921482B2 (en) 2013-07-01 2018-03-20 V Technology Co., Ltd. Exposure device and lighting unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09244255A (en) * 1996-03-13 1997-09-19 Nikon Corp Exposure device for liquid crystal
JP2004335864A (en) * 2003-05-09 2004-11-25 Nikon Corp Aligner and exposure method
JP2006148123A (en) * 2004-11-22 2006-06-08 Asml Netherlands Bv Lithography apparatus and method for manufacturing device
JP2009204982A (en) * 2008-02-28 2009-09-10 Dainippon Screen Mfg Co Ltd Pattern drawing device and pattern drawing method
JP2010102149A (en) * 2008-10-24 2010-05-06 V Technology Co Ltd Exposure apparatus and photomask
JP2010521067A (en) * 2007-03-14 2010-06-17 エーエスエムエル ネザーランズ ビー.ブイ. Optimal rasterization for maskless lithography

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3348467B2 (en) * 1993-06-30 2002-11-20 株式会社ニコン Exposure apparatus and method
DE19757074A1 (en) * 1997-12-20 1999-06-24 Zeiss Carl Fa Projection exposure system and exposure method
JP4984810B2 (en) * 2006-02-16 2012-07-25 株式会社ニコン Exposure method, exposure apparatus, and photomask
JP5245506B2 (en) * 2008-04-16 2013-07-24 株式会社ニコン Stage apparatus, exposure method and apparatus, and device manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09244255A (en) * 1996-03-13 1997-09-19 Nikon Corp Exposure device for liquid crystal
JP2004335864A (en) * 2003-05-09 2004-11-25 Nikon Corp Aligner and exposure method
JP2006148123A (en) * 2004-11-22 2006-06-08 Asml Netherlands Bv Lithography apparatus and method for manufacturing device
JP2010521067A (en) * 2007-03-14 2010-06-17 エーエスエムエル ネザーランズ ビー.ブイ. Optimal rasterization for maskless lithography
JP2009204982A (en) * 2008-02-28 2009-09-10 Dainippon Screen Mfg Co Ltd Pattern drawing device and pattern drawing method
JP2010102149A (en) * 2008-10-24 2010-05-06 V Technology Co Ltd Exposure apparatus and photomask

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9921482B2 (en) 2013-07-01 2018-03-20 V Technology Co., Ltd. Exposure device and lighting unit

Also Published As

Publication number Publication date
JP2012220592A (en) 2012-11-12
JP5704535B2 (en) 2015-04-22
TW201241582A (en) 2012-10-16

Similar Documents

Publication Publication Date Title
KR100859400B1 (en) Light irradiation apparatus
JP5294488B2 (en) Exposure equipment
KR20070100963A (en) Exposure method and tool
JP5825470B2 (en) Exposure apparatus and shading plate
KR101325431B1 (en) Exposure method, color filter manufacturing method, and exposure device
JP2009295614A (en) Method for manufacturing semiconductor device
JP5704535B2 (en) Exposure system using microlens array
KR100816494B1 (en) A maskless exposure apparatus and a manufacturing method for display substrate using thereof
US20140308768A1 (en) Laser-induced thermal imaging apparatus, method of laser-induced thermal imaging, and manufacturing method of organic light-emitting display apparatus using the method
JP5760292B2 (en) Exposure system using microlens array
JP2010161246A (en) Transmission optical system, illumination optical system, exposure device, exposure method, and method of manufacturing device
JP7383341B2 (en) Direct exposure equipment and substrate exposure method
JP5747305B2 (en) Exposure apparatus and microlens array structure
WO2018109912A1 (en) Laser annealing apparatus, laser annealing method, and mask
JP2010122619A (en) Pattern drawing device, pattern drawing method and mask for pattern drawing
JP2006145745A (en) Pattern drawing apparatus and method for drawing pattern
JP4713223B2 (en) Pattern transfer apparatus and transfer method
KR101883186B1 (en) Exposure apparatus having blind and method of driving the same
CN1721962A (en) Gray mask and manufacturing method thereof
JP6447148B2 (en) Projection exposure equipment
TW202318529A (en) Die removing device and die removing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12768343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12768343

Country of ref document: EP

Kind code of ref document: A1