WO2012137762A1 - Display device and electronic apparatus provided with display device - Google Patents

Display device and electronic apparatus provided with display device Download PDF

Info

Publication number
WO2012137762A1
WO2012137762A1 PCT/JP2012/059042 JP2012059042W WO2012137762A1 WO 2012137762 A1 WO2012137762 A1 WO 2012137762A1 JP 2012059042 W JP2012059042 W JP 2012059042W WO 2012137762 A1 WO2012137762 A1 WO 2012137762A1
Authority
WO
WIPO (PCT)
Prior art keywords
light guide
liquid crystal
light
display device
guide element
Prior art date
Application number
PCT/JP2012/059042
Other languages
French (fr)
Japanese (ja)
Inventor
寿史 渡辺
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012137762A1 publication Critical patent/WO2012137762A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133524Light-guides, e.g. fibre-optic bundles, louvered or jalousie light-guides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13336Combining plural substrates to produce large-area displays, e.g. tiled displays

Definitions

  • the present invention relates to a display device capable of reducing a decrease in transmittance of a light guide element, and an electronic apparatus including the display device.
  • the display panel has a display area composed of a plurality of pixels and a frame area formed outside the display area.
  • the frame region is provided with a seal portion for sealing and holding a display medium (electro-optical element) such as a liquid crystal material, a drive circuit mounting portion for driving the pixels, and the like, and does not contribute to display. .
  • Patent Document 1 discloses a liquid crystal display device that has an optical fiber face plate that covers the entire surface of the display panel and guides part of light emitted from the display area to the frame area by the optical fiber face plate.
  • Patent Document 2 discloses a display unit and a composite type in which an optical fiber face plate composite is provided on the entire surface of the display panel, and the light emitted from the display area is enlarged and displayed on the outer size of the display panel by the optical fiber face plate.
  • a display is disclosed.
  • Patent Document 3 has light compensation means comprising a large number of inclined thin films and a transparent body filled between the inclined thin films over almost the entire surface of the display panel.
  • a display device is disclosed in which the light is guided to the frame region by light compensation means.
  • Patent Document 4 discloses a display device in which a diffusion member including a large number of optical fibers is disposed only in a region near the frame region, and light emitted from the display region is guided to the frame region by the optical fiber. Is disclosed. By the techniques disclosed in these patent documents 1 to 4, seamless display can be realized.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 7-128652 (published May 19, 1995)” Japanese Patent Publication “Japanese Patent Laid-Open No. 2000-56713 (published on February 25, 2000)” Japanese Patent Publication “Japanese Patent Laid-Open No. 2001-5414 (published on January 12, 2001)” US Pat. No. 5,129,028 (registered July 7, 1992)
  • the light guide element generally includes a metal layer and a transmission layer, and light incident on the metal layer is guided while being reflected many times in the metal layer.
  • the loss greatly affects the transmittance of the light guide element.
  • FIG. 16 is a cross-sectional view schematically showing a configuration of a main part of a liquid crystal display device including a conventional light guide element.
  • the light guide element 300 ′ has a plurality of light guide portions, and each light guide portion includes a metal layer and a transmission layer.
  • the light guide element 300 ′ has a structure in which each light guide is inclined with respect to the light incident surface 301 and the light emitting surface 302.
  • the light incident perpendicularly to the incident surface 301 of the light guide element 300 ' is emitted from the emission surface 302 by repeating reflection in the light guide (arrow R in the figure).
  • the light guide element 300 ′ has an inclination angle ⁇ of 45 degrees, a stacking pitch p of the light guide parts of 0.1 mm, and a thickness d of the light guide element 300 ′ of 1 mm.
  • the transmittance T of the light guide per thickness d is 100% and the reflectance R of the metal layer is 98% (silver)
  • the transmittance of the light guide element 300 ′ is approximately 67%. Become.
  • the transmittance T is 100% and the reflectance R of the metal layer is 90% (aluminum layer)
  • the transmittance of the light guide element 300 ′ is approximately 13%, and there is a large difference in the transmittance. Arise.
  • the loss of light amount due to the light reflection in the metal layer of the light guide portion leads to a large decrease in the transmittance of the light guide element 300 '. If the transmittance of the light guide element 300 ′ is low, it is necessary to compensate for a decrease in the luminance of the liquid crystal display device 100 ′ by increasing the luminance of the backlight device 400. As a result, there is a problem that the power consumption of the liquid crystal display device 100 ′ increases.
  • an object of the present invention is to provide a display device capable of reducing a decrease in transmittance of a light guide element, and an electronic apparatus including the display device. There is.
  • a display device is a display device including a display panel and a light guide element provided on a display surface side of the display panel in order to solve the above problem.
  • the light guide element is configured by repeatedly laminating a reflective layer made of metal and a translucent layer in parallel with each other, and includes a polarizing plate on the display surface side of the display panel, and the reflective layer and the translucent layer.
  • the direction in which the boundary surface with the optical layer extends in the plane direction of the display surface and the direction of the light transmission axis of the polarizing plate are parallel to each other.
  • the boundary surface between the light transmissive layer and the reflective layer is aligned with the direction in which the surface of the display surface extends and the direction of the light transmission axis of the polarizing plate. Since S-polarized light is incident, it is possible to suppress a decrease in reflectance in the reflective layer. That is, a decrease in the reflectance in the reflective layer is suppressed, and the light utilization efficiency can be increased. As a result, the transmittance of the light guide element is improved. Therefore, since the transmittance of the light guide element is low, it is not necessary to compensate for the decrease in luminance of the display device by increasing the luminance of the backlight, thereby eliminating the problem of increasing the power consumption of the display device. be able to.
  • an electronic device includes a plurality of any of the display devices described above, and the plurality of display devices are arranged side by side on the same plane. It is characterized by that.
  • the direction in which the boundary surface between the light-transmitting layer and the reflective layer extends in the surface direction of the display surface matches the direction of the light transmission axis of the polarizing plate, Since S-polarized light is incident on the light guide element, it is possible to suppress a decrease in reflectance in the reflective layer. That is, a decrease in the reflectance in the reflective layer is suppressed, and the light utilization efficiency can be increased. As a result, the transmittance of the light guide element is improved. Therefore, since the transmittance of the light guide element is low, it is not necessary to compensate for the decrease in luminance of the display device by increasing the luminance of the backlight, thereby eliminating the problem of increasing the power consumption of the display device. be able to.
  • (A) in a figure is a top view which shows the liquid crystal display device which concerns on one Embodiment of this invention
  • (b) in a figure is a boundary surface in the liquid crystal display device shown in (a) in the figure It is sectional drawing which shows an inclination direction.
  • (A) in a figure is a top view which shows the liquid crystal display device which concerns on one Embodiment of this invention
  • (b) in a figure is a boundary surface in the liquid crystal display device shown in (a) in the figure It is sectional drawing which shows an inclination direction.
  • (A) to (c) in the figure are schematic configuration diagrams showing an example of an external appearance of an electronic apparatus according to an embodiment of the present invention.
  • (A) in a figure is a top view which shows schematic structure of the principal part of the liquid crystal display device based on one Embodiment of this invention
  • (b) in a figure is the liquid crystal shown to (a) in a figure It is AA arrow directional cross-sectional view of a display apparatus.
  • (A) in a figure is the inclination direction of the boundary line of the light guide parts adjacent in the output surface of each light guide element, when the liquid crystal display device which concerns on one Embodiment of this invention is arrange
  • Is a plan view showing the relationship between the image displayed on each liquid crystal panel when the light guide element and the light guide element are line-symmetric, the image actually visible through the light guide element, and the boundary surface of the light guide unit (B) in the figure is a cross-sectional view showing the inclination direction of the boundary surface of the light guide section in the liquid crystal display device shown in (a) in the figure.
  • (A)-(c) in the figure is a diagram showing a method of manufacturing a light guide element using the sheet laminate shown in FIG.
  • (A) in a figure is a top view which shows the liquid crystal display device which concerns on one Embodiment of this invention
  • (b) in a figure is a boundary surface in the liquid crystal display device shown in (a) in the figure It is sectional drawing which shows an inclination direction.
  • (A) in a figure is a top view which shows the liquid crystal display device which concerns on one Embodiment of this invention
  • (b) in a figure is a boundary surface in the liquid crystal display device shown in (a) in the figure It is sectional drawing which shows an inclination direction. It is sectional drawing which shows schematically the structure of the principal part of a liquid crystal display device provided with the conventional light guide element.
  • Examples of electronic devices provided with the display device according to this embodiment include various electronic devices having a display unit such as a mobile phone, an electronic book, a game machine, a TV (television), or a public bulletin board for outdoor use. Can be mentioned.
  • a display unit such as a mobile phone, an electronic book, a game machine, and a mobile phone will be described as an example of an electronic device including the display device according to this embodiment, but this embodiment is not limited thereto. It is not something.
  • a liquid crystal display device will be described as an example of the display device according to the present embodiment, but the present embodiment is not limited to this.
  • FIGS. 3A to 3C are schematic configuration diagrams showing an example of the external appearance of an electronic apparatus provided with the display device according to the present embodiment.
  • the electronic devices shown in FIGS. 3A to 3C are foldable devices having two display portions. Examples of such an electronic device 1 include an electronic book, a game machine, and a mobile phone as described above, but the present embodiment is not limited to this.
  • the electronic apparatus 1 includes two liquid crystal display devices 100A and 100B provided adjacent to each other as a first display unit and a second display unit. I have.
  • the electronic device 1 is a tiling type device in which two liquid crystal display devices 100A and 100B are arranged (tiled) in a tile shape. In this way, a large screen can be displayed by tiling a plurality of liquid crystal display devices. Tiling can be performed by a known method. Further, in the following description, the case where the electronic apparatus 1 includes two liquid crystal display devices 100A and 100B will be described as an example. However, the number of liquid crystal display devices is not particularly limited, and one or There may be three or more.
  • the liquid crystal display device 100A includes a liquid crystal panel 200A (display panel) and a light guide element 300A provided on the liquid crystal panel 200A.
  • the liquid crystal display device 100B includes a liquid crystal panel 200B (display panel) and a light guide element 300B provided on the liquid crystal panel 200B.
  • the light guide element 300A may be provided on the entire display surface of the liquid crystal panel 200A. As shown by the two-dot chain lines in FIGS. 3A to 3C, one of the adjacent liquid crystal panels 200A and 200B is provided. It may be provided only in the part.
  • the light guide element 300B may be provided on the entire display surface of the liquid crystal panel 200B, and as shown by two-dot chain lines in FIGS. 3A to 3C, adjacent liquid crystal panels 200A. It may be provided only in a part of 200B.
  • the liquid crystal panels 200A and 200B may be provided so that the ends thereof are close to each other, or may be provided in contact with each other.
  • the liquid crystal display devices 100A and 100B are rotatably connected by a movable mechanism such as a hinge 2, for example. Thereby, in the electronic device 1, it can fold in the boundary part 3 of each liquid crystal display device 100A * 100B, and can change the relative angle of the display surface of these liquid crystal display devices 100A * 100B. .
  • a movable mechanism is an example, and may be omitted, and the angle formed by the two display surfaces may be fixed.
  • the configurations of the liquid crystal panels 200A and 200B and the light guide elements 300A and 300B will be described later.
  • FIG. 4 is a plan view showing a schematic configuration of a main part of the liquid crystal display device 100A according to the present embodiment, and (b) in FIG. 4 is shown in (a) in FIG. FIG. 6 is a cross-sectional view taken along line AA of the liquid crystal display device 100A.
  • the configuration of the liquid crystal display devices 100A and 100B will be described using the liquid crystal display device 100A as an example.
  • the liquid crystal display device 100A is a direct-view type display device, and includes a liquid crystal panel 200A and a light guide element 300A stacked on the liquid crystal panel 200A, as shown in FIG.
  • the liquid crystal display device 100A is a transmissive liquid crystal display device, and a backlight 400A is provided on the back side of the liquid crystal display device 100A.
  • the liquid crystal display device 100A performs display by modulating light emitted from the backlight 400A in the liquid crystal panel 200A.
  • liquid crystal panel 200A Various known liquid crystal panels can be used as the liquid crystal panel 200A.
  • An example of the liquid crystal panel 200A is, for example, a TFT type VA mode liquid crystal panel, but is not limited thereto.
  • the liquid crystal panel 200A has a configuration in which a liquid crystal layer 230 is provided as an electro-optical element between the array substrate 210 and the counter substrate 220.
  • the array substrate 210 has a configuration in which a switching element such as a thin film transistor (TFT) and a pixel electrode 212 are formed on an insulating substrate 211 such as glass.
  • optical film portions 240 and 250 including a polarizing plate and a retardation plate are respectively provided on the surfaces of the array substrate 210 and the counter substrate 220 opposite to the liquid crystal layer 230 as necessary.
  • the liquid crystal panel 200A includes a display area 202 and a frame area 203 (non-display area) formed on the periphery of the liquid crystal panel that is outside the display area 202. ).
  • a plurality of pixels 201 are arranged in a matrix along the x-axis direction and the y-axis direction that are parallel to the display surface and orthogonal to each other.
  • the pixels 201 are arranged at an equal pitch in each of the x-axis direction and the y-axis direction.
  • the horizontal direction of the display surface of liquid crystal panel 200A is the x-axis direction
  • the vertical direction of the display surface of liquid crystal panel 200A is the y-axis direction.
  • the color filter layer 222 is formed corresponding to each pixel 201.
  • the color filter layer 222 of each color of RGB (R: red, G: green, B: blue) is used as the color filter layer 222 as shown in FIG.
  • the case where it is provided along the y-axis direction of the panel 200A will be described as an example.
  • the present embodiment is not limited to this.
  • the type of the color filter layer 222 is not limited to three types of RGB, and a plurality of types are arbitrarily selected from RGBYCM (R: red, G: green, B: blue, Y: yellow, C: cyan, M: magenta). It may be a thing.
  • the light guide element 300 ⁇ / b> A has a plurality of light guide portions 310.
  • Each light guide unit 310 includes a light transmitting layer as a light transmitting unit, and includes a metal layer (reflection layer) as a reflecting unit.
  • the light transmitting part and the reflecting part are stacked in parallel with each other. Therefore, in other words, the light guide unit 310A is configured by repeatedly stacking the light transmitting unit and the reflecting unit in parallel with each other.
  • the light incident from the incident surface 301 of the light guide element 300 ⁇ / b> A propagates through the light transmitting portion and is emitted from the emission surface 302. At this time, the light incident on the light transmitting part propagates in the light transmitting part while being reflected by the reflecting part provided between the light transmitting parts. For this reason, a translucent layer functions as a light guide path (light guide layer). Note that the reflection part of the light guide element 300A does not need to be provided on the entire boundary surface of the light transmission part, and is provided so that light incident on the light transmission part can be reflected and propagated by the reflection part. It only has to be.
  • the light guide unit 310 includes a light-transmitting layer as described above, and is provided in parallel to each other in the thickness direction. Therefore, the boundary surface 303 (layer surface, contact surface) of each light guide unit 310 with another light guide unit 310 is provided in parallel with each other. Further, the boundary surfaces (layer surfaces, contact surfaces) of the layers constituting each light guide unit 310 are also provided in parallel to each other.
  • the light guide element 300A has a structure in which a boundary surface 303 is inclined with respect to an incident surface 301 on which light emitted from the liquid crystal panel 200A is incident and an output surface 302 that emits the light. .
  • the incident surface 311 of at least a part of the light guide unit 310 among the plurality of light guide units 310 overlaps a part of the display area 202 of the liquid crystal panel 200A, and the emission surface 312 of the light guide unit 310 is formed.
  • the liquid crystal panel 200 ⁇ / b> A is disposed so as to overlap at least a part of the frame region 203.
  • the inclination angle of the boundary surface 303 in other words, the inclination angle of the boundary surface (layer surface) of each layer constituting the light guide unit 310 is set to an angle that results in the above arrangement.
  • the light guide element 300A is stacked on the liquid crystal panel 200A so that the incident surface 301 and the display surface of the liquid crystal panel 200A are in close contact with each other.
  • the light guide element 300A and the liquid crystal panel 200A may be bonded together via a light-transmitting adhesive (not shown). By doing so, there is an effect that the light guide element 300A can be prevented from being displaced and the light reflection at the interface between the light guide element 300A is reduced and light can be efficiently incident on the light guide element.
  • the light guide element 300A used in the present embodiment has a flat plate shape as shown in FIG.
  • the incident surface 301 and the emission surface 302 of the light guide element 300A are provided in parallel to the display surface of the liquid crystal panel 200A. Therefore, the light guide part 310 of the light guide element 300A is formed so as to extend obliquely from the normal line direction rather than the normal line direction with respect to the display surface of the liquid crystal panel 200A.
  • the light that has entered the light guide element 300A from one end face of each light-transmitting part is reflected by the reflecting part, propagates through the light-transmitting part, and is emitted from the other end face of the light-transmitting part.
  • a part of the light emitted from the display area 202 of the liquid crystal panel 200A by the light guide part 310 provided so as to be inclined with respect to the display surface of the liquid crystal panel 200A in this way is placed on the frame area 203. Lead. Accordingly, when the liquid crystal display device 100A is viewed from above the light guide element 300A, an image can be visually recognized in the areas on the display area 202 and the frame area 203 of the liquid crystal panel 200A.
  • FIG. (A) and (b) in FIG. 5 are the boundaries between the light guide portions 310 adjacent to each other on the emission surface 302 of each light guide element 300A / 300B when the liquid crystal display devices 100A / 100B are arranged adjacent to each other in the horizontal direction.
  • the line tilt direction (in other words, the line tilt direction formed by the boundary surface 303 in plan view) is symmetrical with respect to the light guide element 300A and the light guide element 300B.
  • FIG. 5A is a plan view showing the relationship between the images displayed on the liquid crystal panels 200A and 200B at this time and the images actually visible through the light guide elements 300A and 300B.
  • (B) in FIG. 5 is a cross-sectional view showing the inclination direction of the boundary surface 303 in the liquid crystal display device 100A shown in (a) in FIG.
  • the inclination direction of the boundary surface 303 of each of the light guide elements 300A and 300B in the plan view is the boundary portion 3 of the liquid crystal display devices 100A and 100B (that is, The light guide elements 300A and 300B are arranged so as to be line-symmetric with respect to the boundary 3) of the two screens.
  • FIG. 5B in order to display an image in the frame region 203 adjacent to the liquid crystal display device 100A / 100B with the boundary portion 3 therebetween, in the cross section of each light guide element 300A / 300B.
  • the boundary surface 303 is provided to be inclined toward the boundary portion 3 so as to be line symmetric at the boundary portion 3.
  • any of the liquid crystal display devices 100A and 100B images that are actually visible with respect to the images displayed on the liquid crystal panels 200A and 200B are ⁇ x in the same direction (upward) in the vertical direction. Shift uniformly. Accordingly, the vertical shift amounts of the liquid crystal display devices 100A and 100B coincide with each other, and when the display image is viewed through the light guide elements 300A and 300B, the display image shift (display shift, image shift) that occurs between the liquid crystal display devices 100A and 100B. Offset) is offset. Therefore, since it is possible to display between the liquid crystal display devices 100A and 100B without image displacement, it is difficult to see the frame at the boundary 3.
  • the direction of the boundary line between the adjacent light guide units 310 and the length of the frame region 203 for displaying an image are displayed.
  • the angle ⁇ formed by the pixel rows parallel to the direction is preferably 5 ° ⁇ ⁇ 85 °.
  • the shift direction of the display image is set to the vertical direction. Is not limited to this.
  • the shift of the display image is adjacent to the frame region 203 for displaying the image (that is, the frame region 203 at the boundary portion 3 between the liquid crystal display devices 100A and 100B adjacent to each other when tiling is performed as described above). It occurs along the arrangement pattern of the pixels 201.
  • FIG. 6 is a cross-sectional view showing a light guide element 300A according to the present embodiment.
  • the structure of the light guide elements 300A and 300B will be described using the light guide element 300A as an example.
  • the light guide part 310 of the light guide element 300 ⁇ / b> A has a multilayer structure, and includes a light transmissive part made of a light transmissive layer 324 such as a polymer film and a reflective part made of a metal layer 321. ing. Adjacent light guides 310 are bonded to each other by an adhesive layer 323.
  • FIG. 7 is a cross-sectional view showing an example of the structure of the sheet laminate 320 used in the light guide element 300A.
  • each light guide unit 310 of the light guide element 300 ⁇ / b> A includes a metal layer 321, a light transmissive layer 324, and an adhesive layer 323 as illustrated in FIG. 7.
  • the sheet laminate 320 includes the metal layer 321, the translucent layer 324, and the adhesive layer 323 in the thickness direction (that is, the thickness of the light guides 310 (thickness in the stacking direction) becomes a desired pitch (that is, The layers are stacked repeatedly in this order in parallel with each other in a direction perpendicular to the light propagation direction.
  • the sheet laminate 320 When the sheet laminate 320 is used as the light guide element 300A, the light that has entered the light guide element 300A from the incident surface 301 propagates through the light-transmitting layer 324 and is emitted from the emission surface 302 toward the viewer. At this time, the light incident on the light transmitting layer 324 propagates in the light transmitting layer 324 while being reflected by the adjacent metal layer 321. That is, in the sheet laminate 320, the light-transmitting layer 324 functions as a light guide path (light-transmitting portion), while the boundary surface (layer surface) between the light-transmitting layer 324 and the metal layer 321 functions as a reflecting surface (reflecting portion). To do. Although light is incident on the incident surface 311 from various angles, all light can be guided regardless of the incident angle because the sheet laminate 320 uses metal reflection in the metal layer 321.
  • a sheet laminate 320 in which a plurality of sheets are laminated is prepared.
  • a transparent polymer film (transparent film) to be the light-transmitting layer 324 for example, an acrylic film having a thickness of 75 ⁇ m, a TAC (triacetylcellulose) film, or a COP (cyclo-olefin polymer) is used. Resin) film etc. are prepared. In addition, it is preferable that these films are not extended
  • a silver layer having a thickness of 100 nm is formed on the polymer film as the metal layer 321.
  • the metal layer 321 can be formed by, for example, a vacuum deposition method or the like.
  • an adhesive layer 323 having a thickness of 3 ⁇ m is formed on the silver layer using, for example, a hot-melt adhesive (thermoplastic resin).
  • a hot-melt adhesive thermoplastic resin
  • a plurality of sheets (polymer film, metal layer, and hot melt adhesive) obtained in this manner are stacked and pressure bonded. Thereafter, the plurality of sheets are bonded to each other, for example, by melting the hot melt adhesive in an oven at 140 ° C.
  • the adhesive layer 323 is only required to be a material that is at least light transmissive and that allows films to adhere to each other.
  • a thermosetting adhesive, a photocurable adhesive, or an adhesive can be substituted.
  • the sheet laminate 320 shown in (a) of FIG. 8 is cut along a cutting line (cut plane) that forms a predetermined angle with respect to the boundary surface of the sheet laminate 320.
  • Cut along CL1 and CL2 to cut out a flat sheet laminate 320 having a predetermined thickness from the sheet laminate 320.
  • the sheet laminate 320 can be cut using various known cutting methods. For example, a laser cutting method or the like can be used, but it is particularly preferable to use a multi-wire saw. Since the multi-wire saw is cut using a plurality of wires arranged in parallel to each other, a plurality of flat sheet laminates 320 can be cut out simultaneously.
  • the cut surface of the sheet laminate 320 is subjected to processing such as polishing as necessary, and the surface of the cut sheet laminate 320 is washed and dried as necessary.
  • seat laminated body 320 can be obtained.
  • the surface on which processing such as polishing is performed is appropriately selected as necessary.
  • FIG. 9 is a diagram schematically showing incident light on the metal layer.
  • FIG. 10 is a diagram showing the angle characteristics of the polarization reflectance of the metal layer.
  • angle (phi) shown in FIG. 9 is an incident angle of the incident light to a metal layer.
  • S-polarized light is light polarized parallel to the reflecting surface (metal layer), and P-polarized light is light polarized perpendicular to the reflecting surface (metal layer). It is.
  • 0 °
  • the reflectance of both S-polarized light and P-polarized light is approximately 98%, but as ⁇ increases, the reflectance of S-polarized light increases.
  • the inclination angle ⁇ of the light guide element is 45 °
  • the difference in transmittance is further increased.
  • the liquid crystal display device Since the liquid crystal display device emits light in various directions, there is much light incident on the metal layer at an incident angle of 50 ° to 80 °. Therefore, it can be seen that the polarization state of the light incident on the metal layer has a great influence on the transmittance of the light guide element.
  • the polarizing plate since the polarizing plate is disposed on the outermost surface, the emitted light is basically polarized light. Therefore, it is considered that the transmittance of the light guide element can be improved by adjusting the direction of the polarizing plate so that the polarized light incident on the reflection surface of the light guide element becomes S-polarized light.
  • the arrangement of the polarizing plates of the liquid crystal panels 200A and 200B is adjusted so that the highly polarized S-polarized light is incident on the light guide elements 300A and 300B.
  • the arrangement adjustment of the polarizing plate will be described with reference to FIG. 1 and FIG. 1A is a plan view showing the liquid crystal display device 100A, and FIG. 1B shows the inclination direction of the boundary surface 303 in the liquid crystal display device 100A shown in FIG. It is sectional drawing shown.
  • 2A is a plan view showing the liquid crystal display device 100A
  • FIG. 2B is an inclination of the boundary surface 303 in the liquid crystal display device 100A shown in FIG. It is sectional drawing which shows a direction.
  • the arrangement of the polarizing plates of the liquid crystal display devices 100A and 100B will be described.
  • the direction of the boundary surface 303 of the light guide element 300A and the polarizing plate are arranged so that the directions of the light transmission axis (arrow ⁇ in the figure) are parallel to each other. Therefore, the direction in which the boundary surface 303 extends in the plane direction coincides with the direction of the light transmission axis of the polarizing plate. Accordingly, since S-polarized light is incident on the light guide element 300A, it is possible to suppress a decrease in reflectance in the metal layer 321.
  • the transmittance of the light guide elements 300A and 300B is improved. Therefore, since the transmittance of the light guide elements 300A and 300B is low, it is not necessary to compensate for the decrease in the luminance of the liquid crystal display devices 100A and 100B by increasing the luminance of the backlight device 400, and thus the liquid crystal display devices 100A and 100B. It is possible to solve the problem that the power consumption increases.
  • the direction of the boundary surface 303 between the light guide portions 310 adjacent to each other in plan view that is, when the liquid crystal display device 100A is viewed from above.
  • a pixel row parallel to the longitudinal direction of the frame region 203 for displaying an image is inclined at an angle ⁇ with respect to the longitudinal direction of the frame region 203. It is preferable to set the direction of the light transmission axis. That is, also in this case, the direction in which the boundary surface 303 extends in the surface direction coincides with the direction of the light transmission axis of the polarizing plate. Accordingly, since S-polarized light is incident on the light guide element 300A, it is possible to suppress a decrease in reflectance in the metal layer 321.
  • the material used for the translucent layer 324 has a characteristic (birefringence) that changes the polarization state of light, the polarization state of the light changes as light is guided through the translucent layer 324 (that is, However, the reflectivity of the metal layer also decreases. Therefore, it is preferable to use a material with little birefringence for the light-transmitting layer 324, and it is more preferable to use a material with little birefringence (non-birefringent material).
  • a PET film generally used industrially has a relatively large birefringence, and therefore has a great influence on the reflectance.
  • an acrylic film, a TAC film, a COP film, or the like is preferably used as the light-transmitting layer 324 because of low birefringence and high transmittance.
  • a glass substrate may be used for the light-transmitting layer 324 as a non-birefringent material.
  • stretching with respect to said film, since there exists a possibility that birefringence may arise in an extending
  • a PET film and a PC (polycarbonate) film having a relatively large birefringence have a retardation of about 20 nm or more in a general thickness (for example, 100 ⁇ m).
  • an acrylic film, a TAC film, and a COP film having relatively small birefringence have a retardation of about 10 nm or less at a general thickness (for example, 80 to 100 ⁇ m).
  • the retardation of the TAC film and the COP film is 5 nm or less. Since the glass substrate is basically isotropic, birefringence is zero. From the above, it can be said that the preferable condition for the material used for the light-transmitting layer 324 is a retardation of 10 nm or less, more preferably 5 nm or less.
  • Example 1 and Comparative Example 1 The liquid crystal display device 100A including the light guide element 300A manufactured based on the first embodiment described above is referred to as Example 1, and a liquid crystal display device including the following light guide element is manufactured as Comparative Example 1, and Example 1 is performed. And Comparative Example 1 was examined.
  • FIG. 11 is a cross-sectional view showing a light guide element manufactured as Comparative Example 1.
  • Example 1 a liquid crystal display device 100A including a light guide element 300A as shown in FIG. A light guide element 300A using a silver layer as the metal layer 321 and an acrylic film as the light-transmitting layer 324 was manufactured.
  • Comparative Example 1 a liquid crystal display device including a light guide element 300E using a PET film as the light-transmitting layer 324 was produced.
  • a light guide element 300E using a silver layer as the metal layer 321 was manufactured in the same manner as in Example 1 except that a PET film was used as the light transmissive layer 324.
  • Example 1 The luminance of each liquid crystal display device of Example 1 and Comparative Example 1 was measured using a luminance meter (MB-5A manufactured by Topcon Corporation). When the luminance before and after the light guide element was measured and the ratio was determined as the transmittance, it was as shown in Table 1.
  • Example 1 As shown in Table 1, in Example 1, a very high transmittance was obtained. On the other hand, in Comparative Example 1, the decrease in luminance was remarkably large.
  • Example 1 and Comparative Example 1 will be described in detail.
  • Example 1 Comparative Example 1
  • the transmittance was lowered by using a PET film as the light-transmitting layer.
  • the PET film has a relatively large birefringence and changes the polarization state of light. If the polarization state of the light changes, the light incident on the light guide element is not S-polarized light, which greatly affects the reflectance. Therefore, it was found that the transmittance can be improved by using an acrylic film, a TAC film, a COP film or the like having a small birefringence as the light transmitting layer.
  • FIG. 12 is a plan view showing liquid crystal display devices 100C and 100D manufactured as Comparative Example 2
  • FIG. 12 is a liquid crystal display device 100C shown in (a) in FIG. -It is sectional drawing which shows the inclination direction of the boundary surface 303 in 100D.
  • the direction of the boundary surface 303 of the light guide elements 300C and 300D and the direction of the light transmission axis of the polarizing plate are parallel to each other in plan view (that is, when the liquid crystal display devices 100C and 100D are viewed from above).
  • the polarizing plate is arranged so as not to become. Therefore, the direction in which the boundary surface 303 extends in the surface direction does not match the direction of the light transmission axis of the polarizing plate.
  • Example 2 when the angle between the direction of the boundary surface 303 of the light guide element 300D and the direction of the light transmission axis of the polarizing plate (arrow ⁇ in the figure) is ⁇ ′, the comparison is made.
  • FIG. 13 shows data of transmittance corresponding to the angle ⁇ ′ in the configuration of Comparative Example 2.
  • FIG. 13 is a diagram showing the results of luminance measurement using a luminance meter (MB-5A manufactured by Topcon) from the normal direction of the liquid crystal display devices 100C and 100D.
  • the polarizing plate it is most preferable to dispose the polarizing plate so that the direction of the boundary surface 303 of the light guide elements 300C and 300D is parallel to the direction of the light transmission axis of the polarizing plate.
  • the amount of decrease in transmittance is in the range of about 10%.
  • FIG. 14 is a plan view showing liquid crystal display devices 100A and 100B according to the present embodiment
  • FIG. 14 is liquid crystal display device 100A shown in (a) in FIG. It is sectional drawing which shows the inclination direction of the boundary surface 303 in FIG.
  • the case where the flat light guide elements 300A and 300B are provided on the entire display surface of the liquid crystal panels 200A and 200B has been described as an example.
  • the case where the light guide elements 300 ⁇ / b> A and 300 ⁇ / b> B are provided only in the part area will be described as an example.
  • an image is displayed on the frame region 203 adjacent to each other with the boundary 3 between the liquid crystal display devices 100A and 100B.
  • the light guide elements 300A and 300B are provided only in the frame regions 203 at the ends adjacent to each other in the liquid crystal display devices 100A and 100B and in the vicinity thereof. Is provided. Accordingly, the area where the light guide elements 300A and 300B are provided can be reduced, and the manufacturing cost of the liquid crystal display devices 100A and 100B can be reduced.
  • light guide elements 300A and 300B can be provided as in the liquid crystal display devices 100A and 100B shown in FIG. (A) in FIG. 15 is a plan view showing the liquid crystal display devices 100A and 100B according to the present embodiment, and (b) in FIG. 15 is a liquid crystal display device 100A shown in (a) in FIG. It is sectional drawing which shows the inclination direction of the boundary surface 303 in FIG.
  • the light guide elements 300A and 300B used in the present embodiment have the incident surfaces 301 parallel to the display surfaces of the liquid crystal panels 200A and 200B, but the exit surfaces 302 are in relation to the display surfaces of the liquid crystal panels 200A and 200B. Is inclined. More specifically, the exit surfaces of the light guide elements 300A and 300B have a thickness that increases toward the end facing the adjacent ends of the liquid crystal panels 200A and 200B. It is inclined with respect to the display surface of 200B.
  • the light guide elements 300A and 300B have a rectangular shape (square shape or rectangular shape) in plan view.
  • the incident surfaces 301 of the light guide elements 300A and 300B are formed flat (that is, flat).
  • the liquid crystal display devices 100A and 100B emit light from the display regions 202 of the liquid crystal panels 200A and 200B and the light guide elements 300A and 300B, as indicated by dotted lines in FIG. 14B and FIG. 15B.
  • the translucent cover sheets 350A and 350B are formed, for example, along the shapes of the emission surfaces 302 of the light guide elements 300A and 300B and the display surfaces of the liquid crystal panels 200A and 200B.
  • the light guide elements 300A and 300B and the translucent cover sheets 350A and 350B are bonded to each other through, for example, an adhesive layer.
  • the adhesive layer is not necessarily required, and the light guide elements 300A and 300B and the translucent cover sheets 350A and 350B may be fixed via an air layer.
  • the display surfaces of the light guide elements 300A and 300B and the liquid crystal panels 200A and 200B are protected by bonding the light-transmitting cover sheets 350A and 350B to the light guide elements 300A and 300B to form a flat sheet. can do.
  • the surfaces of the liquid crystal display devices 100A and 100B are flattened, the uncomfortable appearance is reduced.
  • the translucent cover sheets 350A and 350B are formed of a transparent resin such as an acrylic resin, for example. By providing the translucent cover sheets 350A and 350B, the display quality of the liquid crystal display devices 100A and 100B can be improved.
  • the translucent cover sheets 350A and 350B are not always necessary. That is, according to the present embodiment, it is not necessary to use a light guide element having the same size as the liquid crystal panels 200A and 200B. Therefore, it is possible to reduce the weight of the liquid crystal display devices 100A and 100B and the electronic devices using the liquid crystal display devices 100A and 100B, and to manufacture these devices or devices at low cost.
  • the light guide element 300A as described above can be provided, for example, in two opposing frame regions 203 in one liquid crystal panel, and the inclination angle and the inclination direction of the boundary surface 303 of the light guide unit 310. Can be set for each light guide element 300A. Therefore, for example, by providing a light guide element in each of two opposing frame regions 203 in one liquid crystal panel, whether or not a plurality of liquid crystal display devices are used, or a boundary portion between the liquid crystal display devices An image can be displayed in each frame area 203 regardless of whether or not. For this reason, a much larger display screen can be realized.
  • the direction of the boundary surface 303 of the light guide element 300A and the direction of the light transmission axis of the polarizing plate are arranged so that are parallel to each other. Therefore, the direction in which the boundary surface 303 extends in the plane direction coincides with the direction of the light transmission axis of the polarizing plate. Accordingly, since S-polarized light is incident on the light guide element 300A, it is possible to suppress a decrease in reflectance in the metal layer 321.
  • the transmittance of the light guide elements 300A and 300B is improved. Therefore, since the transmittance of the light guide elements 300A and 300B is low, it is not necessary to compensate for the decrease in the luminance of the liquid crystal display devices 100A and 100B by increasing the luminance of the backlight device 400, and thus the liquid crystal display devices 100A and 100B. It is possible to solve the problem that the power consumption increases.
  • the display device As described above, the display device according to one embodiment of the present invention is characterized in that the retardation of the light-transmitting layer is 10 nm or less.
  • the display device is characterized in that the retardation of the light transmitting layer is 5 nm or less.
  • the polarization state of incident light can be prevented from changing due to the characteristics (birefringence) of the light transmitting layer. Therefore, by using a material with low birefringence for the light-transmitting layer, the polarization state of the light incident on the light guide element does not change, and S-polarized light is incident. Therefore, it is possible to suppress a decrease in reflectance in the reflective layer. .
  • the display device is characterized in that the light-transmitting layer is any one of an acrylic film, a triacetyl cellulose film, a cycloolefin resin film, and a glass substrate.
  • acrylic film, triacetyl cellulose film, cycloolefin resin film, and glass substrate are materials with relatively little birefringence, according to the above configuration, the change in the polarization state of light incident on the light guide element can be suppressed. Can do.
  • an incident surface of the light guide element is parallel to the display surface of the display panel, and an output surface of the light guide element is at an end of the display panel.
  • the display panel is inclined with respect to the display surface so as to increase in thickness, and the light guide element has a triangular triangular cross section in a direction perpendicular to the end of the display panel. It is characterized by.
  • the light guide element is provided only in the display area and the vicinity thereof. Accordingly, the area where the light guide element is provided can be reduced, so that the manufacturing cost of the display device can be reduced. Moreover, since it is possible to make it difficult to see the regions on the left and right sides of the display device, a tile display in which display devices having three or more screens are arranged can be configured.
  • the electronic device is characterized in that it can be folded at a boundary portion between the adjacent display devices.
  • the display device can be folded at the boundary between the display devices, and the relative angle of the display surfaces of these display devices can be changed.
  • the present invention can be used for various electronic devices having a display unit such as a mobile phone, an electronic book, a game machine, a TV (television), or a public bulletin board for outdoor use.
  • a display unit such as a mobile phone, an electronic book, a game machine, a TV (television), or a public bulletin board for outdoor use.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

A light guide element (300A) mounted to a liquid crystal display device (100A) that is one embodiment of the present invention has a plurality of light guide sections (310). Also, each light guide section (310) is provided with: a transparent section comprising a transparent layer (324); and a reflective section comprising a metal layer (321). In the liquid crystal display device (100A), a polarizing plate is disposed in a manner so that, in a plan view (in other words, when looking at the liquid crystal display device (100A) from above), the direction of the border surface (303) of the light guide element (300A) and the direction (arrow α in the figure) of the light transmission axis of the polarizing plate are parallel to each other. Consequently, the direction of extension of the border surface (303) in the planar direction and the direction of the light transmission axis of the polarizing plate match.

Description

表示装置、および、該表示装置を備えた電子機器Display device and electronic apparatus including the display device
 本発明は、導光素子の透過率の低下を低減することができる表示装置、および、該表示装置を備えた電子機器に関するものである。 The present invention relates to a display device capable of reducing a decrease in transmittance of a light guide element, and an electronic apparatus including the display device.
 近年、表示装置の大画面化への要望が高まっている。しかしながら、表示装置の大型化には多くの技術的な制約があり、大型の表示装置の開発には時間がかかる。このため、表示装置の大画面化への要望に答えるべく、例えば、複数の表示パネルをタイル状に配列(タイリング)して、それらの表示画面を継ぎ合わせることによって大画面の表示装置を擬似的に実現する試みがなされている。 In recent years, there has been an increasing demand for larger display screens. However, there are many technical limitations in increasing the size of a display device, and it takes time to develop a large display device. For this reason, in order to meet the demand for a larger display device, for example, a plurality of display panels are tiled (tiled), and the display screens are simulated by joining the display screens together. Attempts have been made to achieve this.
 しかしながら、表示パネルは、複数の画素によって構成される表示領域と、表示領域の外側に形成される額縁領域とを有している。額縁領域には、液晶材料等の表示媒体(電気光学素子)を密閉および保持するためのシール部、および、画素を駆動するための駆動回路実装部等が設けられており、表示には寄与しない。 However, the display panel has a display area composed of a plurality of pixels and a frame area formed outside the display area. The frame region is provided with a seal portion for sealing and holding a display medium (electro-optical element) such as a liquid crystal material, a drive circuit mounting portion for driving the pixels, and the like, and does not contribute to display. .
 このため、複数の表示パネルをタイリングして、それらの表示画面を継ぎ合わせるタイリング技術を用いると、複数の表示パネル間の継ぎ目が見えるという問題がある。なお、このような問題は、液晶表示装置(LCD)、プラズマ表示装置(PDP)、および、有機エレクトロルミネッセンス(EL)表示装置等、表示方式(表示媒体)に拘らず、直視型の表示装置に共通の問題である。そこで、近年、タイリング技術において、その継ぎ目を見え難くしたり、表示パネルにおける額縁領域を見え難くすると共に表示面積を拡大したりするために、表示面に導光素子が設けられた表示装置が提案されている。 For this reason, there is a problem that when a tiling technique for tiling a plurality of display panels and joining the display screens is used, a joint between the plurality of display panels can be seen. Note that such a problem occurs in a direct-view display device regardless of the display method (display medium) such as a liquid crystal display device (LCD), a plasma display device (PDP), and an organic electroluminescence (EL) display device. It is a common problem. Therefore, in recent years, in a tiling technique, a display device provided with a light guide element on a display surface has been proposed in order to make it difficult to see the joint, to make it difficult to see the frame area in the display panel and to enlarge the display area. Proposed.
 例えば、特許文献1には、表示パネルの全面を覆う光ファイバフェイスプレートを有し、表示領域から出射される光の一部を光ファイバフェイスプレートによって額縁領域まで導光する液晶表示装置が開示されている。また、特許文献2には、表示パネルの全面に光ファイバフェイスプレート複合体を設け、表示領域から出射される光を光ファイバフェイスプレートによって表示パネルの外郭のサイズに拡大表示するディスプレイユニットおよび複合型ディスプレイが開示されている。 For example, Patent Document 1 discloses a liquid crystal display device that has an optical fiber face plate that covers the entire surface of the display panel and guides part of light emitted from the display area to the frame area by the optical fiber face plate. ing. Patent Document 2 discloses a display unit and a composite type in which an optical fiber face plate composite is provided on the entire surface of the display panel, and the light emitted from the display area is enlarged and displayed on the outer size of the display panel by the optical fiber face plate. A display is disclosed.
 さらに、特許文献3には、表示パネルのほぼ全面に、多数の傾斜薄膜とその傾斜薄膜の間に充填される透明体とからなる光補償手段を有し、表示領域から出射される光の一部を光補償手段によって額縁領域まで導光する表示装置が開示されている。さらに、特許文献4には、額縁領域の付近の領域にのみ、多数の光ファイバを含む拡散部材を配置して、表示領域から出射される光を、光ファイバによって額縁領域まで導光する表示装置が開示されている。これらの特許文献1~4に開示されている技術によって、継ぎ目の無い表示を実現することができる。 Further, Patent Document 3 has light compensation means comprising a large number of inclined thin films and a transparent body filled between the inclined thin films over almost the entire surface of the display panel. A display device is disclosed in which the light is guided to the frame region by light compensation means. Further, Patent Document 4 discloses a display device in which a diffusion member including a large number of optical fibers is disposed only in a region near the frame region, and light emitted from the display region is guided to the frame region by the optical fiber. Is disclosed. By the techniques disclosed in these patent documents 1 to 4, seamless display can be realized.
日本国公開特許公報「特開平7-128652号公報(1995年5月19日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 7-128652 (published May 19, 1995)” 日本国公開特許公報「特開2000-56713号公報(2000年2月25日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2000-56713 (published on February 25, 2000)” 日本国公開特許公報「特開2001-5414号公報(2001年1月12日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2001-5414 (published on January 12, 2001)” 米国特許第5,129,028号明細書(1992年7月7日登録)US Pat. No. 5,129,028 (registered July 7, 1992)
 しかしながら、導光素子は一般的に金属層と透過層とからなり、金属層に入射した光が該金属層内を何度も反射しながら導光するために、金属層における反射による光量の小さなロスが、導光素子の透過率に大きく影響する。以下に、導光素子の透過率の低下について、図16を参照して詳しく説明する。図16は、従来の導光素子を備える液晶表示装置の要部の構成を概略的に示す断面図である。 However, the light guide element generally includes a metal layer and a transmission layer, and light incident on the metal layer is guided while being reflected many times in the metal layer. The loss greatly affects the transmittance of the light guide element. Hereinafter, a decrease in the transmittance of the light guide element will be described in detail with reference to FIG. FIG. 16 is a cross-sectional view schematically showing a configuration of a main part of a liquid crystal display device including a conventional light guide element.
 図16に示すように、液晶表示装置100’にバックライト400Aからの光が入射すると、その光は液晶パネル200’を通って導光素子300’に入射する。ここで、導光素子300’は複数の導光部を有しており、各導光部は金属層と透過層とからなる。導光素子300’は、光の入射面301および出射面302に対して各導光部を傾斜して設けた構造をしている。 As shown in FIG. 16, when light from the backlight 400A enters the liquid crystal display device 100 ', the light enters the light guide element 300' through the liquid crystal panel 200 '. Here, the light guide element 300 ′ has a plurality of light guide portions, and each light guide portion includes a metal layer and a transmission layer. The light guide element 300 ′ has a structure in which each light guide is inclined with respect to the light incident surface 301 and the light emitting surface 302.
 したがって、導光素子300’の入射面301に対して垂直に入射した光は、導光部内において反射を繰り返すことによって、出射面302から出射される(図中の矢印R)。ここで、導光部の傾斜角度θが45度であり、導光部の積層ピッチpが0.1mmであり、導光素子300’の厚みdが1mmである導光素子300’を想定する。例えば、厚みd当たりの導光部の透過率Tが100%であり、金属層の反射率Rが98%(銀)であると仮定すると、導光素子300’の透過率はおよそ67%となる。一方、透過率Tが100%であり、金属層の反射率Rが90%(アルミニウム層)であると仮定すると、導光素子300’の透過率はおよそ13%となり、透過率に大きな違いが生じる。 Therefore, the light incident perpendicularly to the incident surface 301 of the light guide element 300 'is emitted from the emission surface 302 by repeating reflection in the light guide (arrow R in the figure). Here, it is assumed that the light guide element 300 ′ has an inclination angle θ of 45 degrees, a stacking pitch p of the light guide parts of 0.1 mm, and a thickness d of the light guide element 300 ′ of 1 mm. . For example, assuming that the transmittance T of the light guide per thickness d is 100% and the reflectance R of the metal layer is 98% (silver), the transmittance of the light guide element 300 ′ is approximately 67%. Become. On the other hand, assuming that the transmittance T is 100% and the reflectance R of the metal layer is 90% (aluminum layer), the transmittance of the light guide element 300 ′ is approximately 13%, and there is a large difference in the transmittance. Arise.
 このように、導光部の金属層における光反射による光量のロスが、導光素子300’の大きな透過率の低下につながっている。導光素子300’の透過率が低いと、バックライト装置400の輝度を上げることによって液晶表示装置100’の輝度の低下を補う必要がある。その結果、液晶表示装置100’の消費電力が増大してしまうという課題がある。 As described above, the loss of light amount due to the light reflection in the metal layer of the light guide portion leads to a large decrease in the transmittance of the light guide element 300 '. If the transmittance of the light guide element 300 ′ is low, it is necessary to compensate for a decrease in the luminance of the liquid crystal display device 100 ′ by increasing the luminance of the backlight device 400. As a result, there is a problem that the power consumption of the liquid crystal display device 100 ′ increases.
 そこで、本発明は上記課題に鑑みてなされたものであり、その目的は、導光素子の透過率の低下を低減することができる表示装置、および、該表示装置を備えた電子機器を提供することにある。 Accordingly, the present invention has been made in view of the above problems, and an object of the present invention is to provide a display device capable of reducing a decrease in transmittance of a light guide element, and an electronic apparatus including the display device. There is.
 また、本発明の一態様に係る表示装置は、上記の課題を解決するために、表示パネルと、上記表示パネルの表示面側に設けられた導光素子とを備えた表示装置であって、上記導光素子は、金属からなる反射層と、透光層とを互いに平行に繰り返し積層して構成されており、上記表示パネルの上記表示面側に偏光板を備え、上記反射層と上記透光層との境界面が上記表示面の面方向に伸展する方向と、上記偏光板の光透過軸の方向とが互いに平行であることを特徴としている。 In addition, a display device according to one embodiment of the present invention is a display device including a display panel and a light guide element provided on a display surface side of the display panel in order to solve the above problem. The light guide element is configured by repeatedly laminating a reflective layer made of metal and a translucent layer in parallel with each other, and includes a polarizing plate on the display surface side of the display panel, and the reflective layer and the translucent layer. The direction in which the boundary surface with the optical layer extends in the plane direction of the display surface and the direction of the light transmission axis of the polarizing plate are parallel to each other.
 上記の構成によれば、透光層と反射層との境界面が表示面の面方向に伸展する方向と、偏光板の光透過軸の方向とを一致させていることによって、導光素子にはS偏光が入射するので、反射層における反射率の低下を抑えることができる。すなわち、反射層における反射率の低下が抑えられ、光の利用効率を上げることができるので、結果、導光素子の透過率の向上がもたらされる。それ故、導光素子の透過率が低いがためにバックライトの輝度を上げることによって表示装置の輝度の低下を補う必要がないので、表示装置の消費電力が増大してしまうという課題を解消することができる。 According to the above configuration, the boundary surface between the light transmissive layer and the reflective layer is aligned with the direction in which the surface of the display surface extends and the direction of the light transmission axis of the polarizing plate. Since S-polarized light is incident, it is possible to suppress a decrease in reflectance in the reflective layer. That is, a decrease in the reflectance in the reflective layer is suppressed, and the light utilization efficiency can be increased. As a result, the transmittance of the light guide element is improved. Therefore, since the transmittance of the light guide element is low, it is not necessary to compensate for the decrease in luminance of the display device by increasing the luminance of the backlight, thereby eliminating the problem of increasing the power consumption of the display device. be able to.
 また、本発明の一態様に係る電子機器は、上記の課題を解決するために、上述したいずれかの表示装置を複数備えており、上記複数の表示装置が同一平面上に並べて配列されていることを特徴としている。 In order to solve the above problems, an electronic device according to one embodiment of the present invention includes a plurality of any of the display devices described above, and the plurality of display devices are arranged side by side on the same plane. It is characterized by that.
 上記の構成によれば、互いに隣接する表示装置間において画像のずれなしに表示を行うことができるので、各表示装置の境界部における領域を見え難くすることができる。 According to the above configuration, since display can be performed without any image shift between display devices adjacent to each other, it is possible to make it difficult to see the region at the boundary portion of each display device.
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであろう。 Other objects, features, and superior points of the present invention will be fully understood from the following description. The advantages of the present invention will become apparent from the following description with reference to the accompanying drawings.
 本発明の一態様に係る表示装置は、透光層と反射層との境界面が表示面の面方向に伸展する方向と、偏光板の光透過軸の方向とを一致させていることによって、導光素子にはS偏光が入射するので、反射層における反射率の低下を抑えることができる。すなわち、反射層における反射率の低下が抑えられ、光の利用効率を上げることができるので、結果、導光素子の透過率の向上がもたらされる。それ故、導光素子の透過率が低いがためにバックライトの輝度を上げることによって表示装置の輝度の低下を補う必要がないので、表示装置の消費電力が増大してしまうという課題を解消することができる。 In the display device according to one embodiment of the present invention, the direction in which the boundary surface between the light-transmitting layer and the reflective layer extends in the surface direction of the display surface matches the direction of the light transmission axis of the polarizing plate, Since S-polarized light is incident on the light guide element, it is possible to suppress a decrease in reflectance in the reflective layer. That is, a decrease in the reflectance in the reflective layer is suppressed, and the light utilization efficiency can be increased. As a result, the transmittance of the light guide element is improved. Therefore, since the transmittance of the light guide element is low, it is not necessary to compensate for the decrease in luminance of the display device by increasing the luminance of the backlight, thereby eliminating the problem of increasing the power consumption of the display device. be able to.
図中の(a)は、本発明の実施の一形態に係る液晶表示装置を示す平面図であり、図中の(b)は、図中の(a)に示す液晶表示装置における境界面の傾斜方向を示す断面図である。(A) in a figure is a top view which shows the liquid crystal display device which concerns on one Embodiment of this invention, (b) in a figure is a boundary surface in the liquid crystal display device shown in (a) in the figure It is sectional drawing which shows an inclination direction. 図中の(a)は、本発明の実施の一形態に係る液晶表示装置を示す平面図であり、図中の(b)は、図中の(a)に示す液晶表示装置における境界面の傾斜方向を示す断面図である。(A) in a figure is a top view which shows the liquid crystal display device which concerns on one Embodiment of this invention, (b) in a figure is a boundary surface in the liquid crystal display device shown in (a) in the figure It is sectional drawing which shows an inclination direction. 図中の(a)~(c)は、それぞれ、本発明の実施の一形態に係る電子機器の外観の一例を示す概略構成図である。(A) to (c) in the figure are schematic configuration diagrams showing an example of an external appearance of an electronic apparatus according to an embodiment of the present invention. 図中の(a)は、本発明の実施の一形態に係る液晶表示装置の要部の概略構成を示す平面図であり、図中の(b)は、図中の(a)に示す液晶表示装置のA-A線矢視断面図である。(A) in a figure is a top view which shows schematic structure of the principal part of the liquid crystal display device based on one Embodiment of this invention, (b) in a figure is the liquid crystal shown to (a) in a figure It is AA arrow directional cross-sectional view of a display apparatus. 図中の(a)は、本発明の実施の一形態に係る液晶表示装置を水平方向に隣接配置した場合に、各導光素子の出射面において隣り合う導光部同士の境界線の傾斜方向を導光素子と導光素子とで線対称としたときに各液晶パネルに表示している画像と導光素子を通して実際に目に見える画像と導光部の境界面との関係を示す平面図であり、図中の(b)は、図中の(a)に示す液晶表示装置における導光部の境界面の傾斜方向を示す断面図である。(A) in a figure is the inclination direction of the boundary line of the light guide parts adjacent in the output surface of each light guide element, when the liquid crystal display device which concerns on one Embodiment of this invention is arrange | positioned adjacent to a horizontal direction. Is a plan view showing the relationship between the image displayed on each liquid crystal panel when the light guide element and the light guide element are line-symmetric, the image actually visible through the light guide element, and the boundary surface of the light guide unit (B) in the figure is a cross-sectional view showing the inclination direction of the boundary surface of the light guide section in the liquid crystal display device shown in (a) in the figure. 本発明の実施の一形態に係る導光素子を示す断面図である。It is sectional drawing which shows the light guide element which concerns on one Embodiment of this invention. 本発明の実施の一形態に係る導光素子に用いられるシート積層体の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the sheet | seat laminated body used for the light guide element which concerns on one Embodiment of this invention. 図中の(a)~(c)は、図7に示すシート積層体を用いた導光素子の製造方法を、工程順に示す図である。(A)-(c) in the figure is a diagram showing a method of manufacturing a light guide element using the sheet laminate shown in FIG. 7 in the order of steps. 金属層への入射光を概略的に示す図である。It is a figure which shows roughly the incident light to a metal layer. 金属層の偏光反射率の角度特性を示す図である。It is a figure which shows the angle characteristic of the polarization | polarized-light reflectance of a metal layer. 本発明の比較例として作製した導光素子を示す断面図である。It is sectional drawing which shows the light guide element produced as a comparative example of this invention. 図中の(a)は、本発明の比較例として作製した液晶表示装置を示す平面図であり、図中の(b)は、図中の(a)に示す液晶表示装置における境界面の傾斜方向を示す断面図である。(A) in a figure is a top view which shows the liquid crystal display device produced as a comparative example of this invention, (b) in the figure is the inclination of the boundary surface in the liquid crystal display device shown in (a) in the figure It is sectional drawing which shows a direction. 本発明の比較例として作製した液晶表示装置の法線方向から輝度測定を行った結果を示す図である。It is a figure which shows the result of having measured the brightness | luminance from the normal line direction of the liquid crystal display device produced as a comparative example of this invention. 図中の(a)は、本発明の実施の一形態に係る液晶表示装置を示す平面図であり、図中の(b)は、図中の(a)に示す液晶表示装置における境界面の傾斜方向を示す断面図である。(A) in a figure is a top view which shows the liquid crystal display device which concerns on one Embodiment of this invention, (b) in a figure is a boundary surface in the liquid crystal display device shown in (a) in the figure It is sectional drawing which shows an inclination direction. 図中の(a)は、本発明の実施の一形態に係る液晶表示装置を示す平面図であり、図中の(b)は、図中の(a)に示す液晶表示装置における境界面の傾斜方向を示す断面図である。(A) in a figure is a top view which shows the liquid crystal display device which concerns on one Embodiment of this invention, (b) in a figure is a boundary surface in the liquid crystal display device shown in (a) in the figure It is sectional drawing which shows an inclination direction. 従来の導光素子を備える液晶表示装置の要部の構成を概略的に示す断面図である。It is sectional drawing which shows schematically the structure of the principal part of a liquid crystal display device provided with the conventional light guide element.
 以下、本発明の実施の形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 〔実施の形態1〕
 本発明の実施の一形態について図面に基づいて説明すれば、以下の通りである。本実施の形態に係る表示装置を備えた電子機器としては、例えば、携帯電話機、電子ブック、ゲーム機、TV(テレビジョン)、または、アウトドアユースの公共掲示板等、表示部を有する各種電子機器が挙げられる。以下の説明では、本実施の形態に係る表示装置を備えた電子機器の例として、電子ブック、ゲーム機、および、携帯電話機を例に挙げて説明するが、本実施の形態はこれらに限定されるものではない。同様に、以下の説明では、本実施の形態に係る表示装置として、液晶表示装置を例に挙げて説明するが、本実施の形態はこれに限定されるものではない。
[Embodiment 1]
An embodiment of the present invention will be described below with reference to the drawings. Examples of electronic devices provided with the display device according to this embodiment include various electronic devices having a display unit such as a mobile phone, an electronic book, a game machine, a TV (television), or a public bulletin board for outdoor use. Can be mentioned. In the following description, an electronic book, a game machine, and a mobile phone will be described as an example of an electronic device including the display device according to this embodiment, but this embodiment is not limited thereto. It is not something. Similarly, in the following description, a liquid crystal display device will be described as an example of the display device according to the present embodiment, but the present embodiment is not limited to this.
 (表示装置を備えた電子機器の概観)
 図3中の(a)~(c)は、それぞれ、本実施の形態に係る表示装置を備えた電子機器の外観の一例を示す概略構成図である。図3中の(a)~(c)に示す電子機器は、2つの表示部を有する折り畳み式の機器である。そのような電子機器1としては、上述したように、例えば、電子ブック、ゲーム機、または、携帯電話機等が挙げられるが、本実施の形態はこれに限定されるものではない。
(Overview of electronic equipment with display device)
(A) to (c) in FIG. 3 are schematic configuration diagrams showing an example of the external appearance of an electronic apparatus provided with the display device according to the present embodiment. The electronic devices shown in FIGS. 3A to 3C are foldable devices having two display portions. Examples of such an electronic device 1 include an electronic book, a game machine, and a mobile phone as described above, but the present embodiment is not limited to this.
 図3中の(a)~(c)に示すように、電子機器1は、第1の表示部および第2の表示部として、互いに隣接して設けられた2つの液晶表示装置100A・100Bを備えている。上記の電子機器1は、2つの液晶表示装置100A・100Bをタイル状に配列(タイリング)したタイリング型の機器である。このように複数の液晶表示装置をタイリングすることによって大画面の表示を行うことができる。なお、タイリングは公知の方法によって行うことができる。また、以下の説明では、電子機器1が2つの液晶表示装置100A・100Bを備えている場合を例に挙げて説明するが、液晶表示装置の数は特に限定されるものではなく、1つあるいは3つ以上であっても構わない。 As shown in FIGS. 3A to 3C, the electronic apparatus 1 includes two liquid crystal display devices 100A and 100B provided adjacent to each other as a first display unit and a second display unit. I have. The electronic device 1 is a tiling type device in which two liquid crystal display devices 100A and 100B are arranged (tiled) in a tile shape. In this way, a large screen can be displayed by tiling a plurality of liquid crystal display devices. Tiling can be performed by a known method. Further, in the following description, the case where the electronic apparatus 1 includes two liquid crystal display devices 100A and 100B will be described as an example. However, the number of liquid crystal display devices is not particularly limited, and one or There may be three or more.
 液晶表示装置100Aは、液晶パネル200A(表示パネル)と、液晶パネル200A上に設けられた導光素子300Aとを備えている。また、同様に、液晶表示装置100Bは、液晶パネル200B(表示パネル)と、液晶パネル200B上に設けられた導光素子300Bとを備えている。導光素子300Aは、液晶パネル200Aの表示面全面に設けられていてもよく、図3中の(a)~(c)に二点鎖線で示すように、隣り合う液晶パネル200A・200Bの一部のみに設けられていてもよい。同様に、導光素子300Bは、液晶パネル200Bの表示面全面に設けられていてもよく、図3中の(a)~(c)に二点鎖線で示すように、隣り合う液晶パネル200A・200Bの一部のみに設けられていてもよい。 The liquid crystal display device 100A includes a liquid crystal panel 200A (display panel) and a light guide element 300A provided on the liquid crystal panel 200A. Similarly, the liquid crystal display device 100B includes a liquid crystal panel 200B (display panel) and a light guide element 300B provided on the liquid crystal panel 200B. The light guide element 300A may be provided on the entire display surface of the liquid crystal panel 200A. As shown by the two-dot chain lines in FIGS. 3A to 3C, one of the adjacent liquid crystal panels 200A and 200B is provided. It may be provided only in the part. Similarly, the light guide element 300B may be provided on the entire display surface of the liquid crystal panel 200B, and as shown by two-dot chain lines in FIGS. 3A to 3C, adjacent liquid crystal panels 200A. It may be provided only in a part of 200B.
 液晶パネル200A・200Bは、その端部が互いに近接するように設けられていてもよく、互いに接して設けられていてもよい。これら液晶表示装置100A・100Bは、例えば、ヒンジ2等の可動機構により、回動可能に接続されている。これにより、電子機器1では、各液晶表示装置100A・100Bの境界部3において折り畳み可能であると共に、これら液晶表示装置100A・100Bの表示面の相対角度を変化させることができるようになっている。このような可動機構は一例であって、省略されてもよく、2つの表示面のなす角度は固定されていてもよい。なお、液晶パネル200A・200Bおよび導光素子300A・300Bの構成については、後で説明する。 The liquid crystal panels 200A and 200B may be provided so that the ends thereof are close to each other, or may be provided in contact with each other. The liquid crystal display devices 100A and 100B are rotatably connected by a movable mechanism such as a hinge 2, for example. Thereby, in the electronic device 1, it can fold in the boundary part 3 of each liquid crystal display device 100A * 100B, and can change the relative angle of the display surface of these liquid crystal display devices 100A * 100B. . Such a movable mechanism is an example, and may be omitted, and the angle formed by the two display surfaces may be fixed. The configurations of the liquid crystal panels 200A and 200B and the light guide elements 300A and 300B will be described later.
 (液晶表示装置の構成)
 次に、液晶表示装置100A・100Bの構成について、図4を参照して説明する。図4中の(a)は、本実施の形態に係る液晶表示装置100Aの要部の概略構成を示す平面図であり、図4中の(b)は、図4中の(a)に示す液晶表示装置100AのA-A線矢視断面図である。なお、以下の説明では、液晶表示装置100Aを例に挙げて、液晶表示装置100A・100Bの構成について説明する。
(Configuration of liquid crystal display device)
Next, the configuration of the liquid crystal display devices 100A and 100B will be described with reference to FIG. (A) in FIG. 4 is a plan view showing a schematic configuration of a main part of the liquid crystal display device 100A according to the present embodiment, and (b) in FIG. 4 is shown in (a) in FIG. FIG. 6 is a cross-sectional view taken along line AA of the liquid crystal display device 100A. In the following description, the configuration of the liquid crystal display devices 100A and 100B will be described using the liquid crystal display device 100A as an example.
 液晶表示装置100Aは、直視型の表示装置であり、図4中の(b)に示すように、液晶パネル200Aと、液晶パネル200A上に積層された導光素子300Aとを備えている。また、液晶表示装置100Aは透過型の液晶表示装置であり、液晶表示装置100Aの背面側には、バックライト400Aが設けられている。液晶表示装置100Aは、バックライト400Aから出射された光を液晶パネル200Aにおいて変調することによって表示を行う。 The liquid crystal display device 100A is a direct-view type display device, and includes a liquid crystal panel 200A and a light guide element 300A stacked on the liquid crystal panel 200A, as shown in FIG. The liquid crystal display device 100A is a transmissive liquid crystal display device, and a backlight 400A is provided on the back side of the liquid crystal display device 100A. The liquid crystal display device 100A performs display by modulating light emitted from the backlight 400A in the liquid crystal panel 200A.
 まず、液晶パネル200Aの構成について説明する。液晶パネル200Aとしては、公知の各種液晶パネルを用いることができる。液晶パネル200Aの一例としては、例えば、TFT型のVAモードの液晶パネルが挙げられるが、これに限定されるものではない。 First, the configuration of the liquid crystal panel 200A will be described. Various known liquid crystal panels can be used as the liquid crystal panel 200A. An example of the liquid crystal panel 200A is, for example, a TFT type VA mode liquid crystal panel, but is not limited thereto.
 図4中の(b)に示すように、液晶パネル200Aは、アレイ基板210と対向基板220との間に、電気光学素子として液晶層230が設けられた構成を有している。アレイ基板210は、ガラス等の絶縁基板211上に、薄膜トランジスタ(TFT;Thin Film Transistor)等のスイッチング素子および画素電極212等が形成された構成を有している。また、アレイ基板210および対向基板220における液晶層230とは反対側の表面には、偏光板と位相差板とを含む光学フィルム部240・250が必要に応じてそれぞれ設けられている。 As shown in FIG. 4B, the liquid crystal panel 200A has a configuration in which a liquid crystal layer 230 is provided as an electro-optical element between the array substrate 210 and the counter substrate 220. The array substrate 210 has a configuration in which a switching element such as a thin film transistor (TFT) and a pixel electrode 212 are formed on an insulating substrate 211 such as glass. Further, optical film portions 240 and 250 including a polarizing plate and a retardation plate are respectively provided on the surfaces of the array substrate 210 and the counter substrate 220 opposite to the liquid crystal layer 230 as necessary.
 図4中の(a)・(b)に示すように、液晶パネル200Aは、表示領域202と、表示領域202の外側となる、液晶パネルの周縁部に形成された額縁領域203(非表示領域)とを有している。液晶パネル200Aの表示領域202には、表示面に平行であり、かつ、互いに直交するx軸方向およびy軸方向に沿ってマトリクス状に複数の画素201が配置されている。画素201は、x軸方向およびy軸方向それぞれに等ピッチに配列されている。なお、本実施の形態では、液晶パネル200Aの表示面の横方向をx軸方向とし、液晶パネル200Aの表示面の縦方向をy軸方向とする。 As shown in FIGS. 4A and 4B, the liquid crystal panel 200A includes a display area 202 and a frame area 203 (non-display area) formed on the periphery of the liquid crystal panel that is outside the display area 202. ). In the display area 202 of the liquid crystal panel 200A, a plurality of pixels 201 are arranged in a matrix along the x-axis direction and the y-axis direction that are parallel to the display surface and orthogonal to each other. The pixels 201 are arranged at an equal pitch in each of the x-axis direction and the y-axis direction. In the present embodiment, the horizontal direction of the display surface of liquid crystal panel 200A is the x-axis direction, and the vertical direction of the display surface of liquid crystal panel 200A is the y-axis direction.
 カラーフィルタ層222は、各画素201に対応して形成されている。なお、本実施の形態では、カラーフィルタ層222として、RGB(R:赤,G:緑,B:青)の各色のカラーフィルタ層222が、図4中の(a)に示すように、液晶パネル200Aのy軸方向に沿って設けられている場合を例に挙げて説明する。しかしながら、本実施の形態はこれに限定されるものではない。カラーフィルタ層222の種類はRGBの3種類に限らず、RGBYCM(R:赤,G:緑,B:青,Y:黄,C:シアン,M:マゼンタ)の中から任意に複数種類選択したものであってもよい。 The color filter layer 222 is formed corresponding to each pixel 201. In this embodiment, the color filter layer 222 of each color of RGB (R: red, G: green, B: blue) is used as the color filter layer 222 as shown in FIG. The case where it is provided along the y-axis direction of the panel 200A will be described as an example. However, the present embodiment is not limited to this. The type of the color filter layer 222 is not limited to three types of RGB, and a plurality of types are arbitrarily selected from RGBYCM (R: red, G: green, B: blue, Y: yellow, C: cyan, M: magenta). It may be a thing.
 (導光素子の構成)
 次に、導光素子300Aの構成について説明する。導光素子300Aは、複数の導光部310を有している。また、各導光部310は透光部として透光層を有しており、反射部として金属層(反射層)を有している。透光部と反射部とは互いに平行にして積層されている。したがって、換言すれば、導光部310Aは、透光部と反射部とが互いに平行に繰り返し積層されて構成されている。
(Configuration of light guide element)
Next, the configuration of the light guide element 300A will be described. The light guide element 300 </ b> A has a plurality of light guide portions 310. Each light guide unit 310 includes a light transmitting layer as a light transmitting unit, and includes a metal layer (reflection layer) as a reflecting unit. The light transmitting part and the reflecting part are stacked in parallel with each other. Therefore, in other words, the light guide unit 310A is configured by repeatedly stacking the light transmitting unit and the reflecting unit in parallel with each other.
 導光素子300Aの入射面301から入射した光は、透光部内を伝播し、出射面302から出射する。このとき、透光部に入射した光は、透光部間に設けられた反射部によって反射されながら透光部内を伝播する。このため、透光層は導光路(導光層)として機能する。なお、導光素子300Aの反射部は、透光部の境界面全体に設けられている必要はなく、透光部に入射した光が反射部によって反射されて伝播することができるように設けられていればよい。 The light incident from the incident surface 301 of the light guide element 300 </ b> A propagates through the light transmitting portion and is emitted from the emission surface 302. At this time, the light incident on the light transmitting part propagates in the light transmitting part while being reflected by the reflecting part provided between the light transmitting parts. For this reason, a translucent layer functions as a light guide path (light guide layer). Note that the reflection part of the light guide element 300A does not need to be provided on the entire boundary surface of the light transmission part, and is provided so that light incident on the light transmission part can be reflected and propagated by the reflection part. It only has to be.
 導光部310は、上述したように透光層を備えており、その厚み方向に互いに平行に設けられている。したがって、各導光部310における他の導光部310との境界面303(層面,接触面)は互いに平行に設けられている。また、各導光部310を構成する各層の境界面(層面,接触面)も互いに平行に設けられている。 The light guide unit 310 includes a light-transmitting layer as described above, and is provided in parallel to each other in the thickness direction. Therefore, the boundary surface 303 (layer surface, contact surface) of each light guide unit 310 with another light guide unit 310 is provided in parallel with each other. Further, the boundary surfaces (layer surfaces, contact surfaces) of the layers constituting each light guide unit 310 are also provided in parallel to each other.
 導光素子300Aでは、液晶パネル200Aから出射された光を入射する入射面301、および、該光を出射する出射面302に対し、境界面303が傾斜して設けられた構造を有している。導光素子300Aでは、複数の導光部310のうち少なくとも一部の導光部310の入射面311が液晶パネル200Aの表示領域202の一部に重なり、該導光部310の出射面312が液晶パネル200Aの額縁領域203の少なくとも一部に重なるように配置されている。そして、境界面303の傾斜角度、言い換えれば、導光部310を構成する各層の境界面(層面)の傾斜角度は、上記の配置となるような角度に設定されている。 The light guide element 300A has a structure in which a boundary surface 303 is inclined with respect to an incident surface 301 on which light emitted from the liquid crystal panel 200A is incident and an output surface 302 that emits the light. . In the light guide element 300A, the incident surface 311 of at least a part of the light guide unit 310 among the plurality of light guide units 310 overlaps a part of the display area 202 of the liquid crystal panel 200A, and the emission surface 312 of the light guide unit 310 is formed. The liquid crystal panel 200 </ b> A is disposed so as to overlap at least a part of the frame region 203. The inclination angle of the boundary surface 303, in other words, the inclination angle of the boundary surface (layer surface) of each layer constituting the light guide unit 310 is set to an angle that results in the above arrangement.
 導光素子300Aは、その入射面301と液晶パネル200Aの表示面とが密着するように、液晶パネル200Aに重ねて積層されている。導光素子300Aと液晶パネル200Aは、図示しない透光性の接着剤を介して貼り合せてもよい。こうすることにより、導光素子300Aの位置ずれを防止すると共に、密着させた境界面での光反射が低減され、導光素子に効率よく光を入射することができるといった効果がある。 The light guide element 300A is stacked on the liquid crystal panel 200A so that the incident surface 301 and the display surface of the liquid crystal panel 200A are in close contact with each other. The light guide element 300A and the liquid crystal panel 200A may be bonded together via a light-transmitting adhesive (not shown). By doing so, there is an effect that the light guide element 300A can be prevented from being displaced and the light reflection at the interface between the light guide element 300A is reduced and light can be efficiently incident on the light guide element.
 本実施の形態において用いられる導光素子300Aは、図4中の(b)に示すように平板状である。そして、該導光素子300Aにおける入射面301および出射面302は、液晶パネル200Aの表示面に平行に設けられている。したがって、導光素子300Aの導光部310は、液晶パネル200Aの表示面に対して法線方向ではなく、法線方向から斜めに伸びるように形成されている。 The light guide element 300A used in the present embodiment has a flat plate shape as shown in FIG. The incident surface 301 and the emission surface 302 of the light guide element 300A are provided in parallel to the display surface of the liquid crystal panel 200A. Therefore, the light guide part 310 of the light guide element 300A is formed so as to extend obliquely from the normal line direction rather than the normal line direction with respect to the display surface of the liquid crystal panel 200A.
 各透光部の一方の端面から導光素子300Aに入射した光は、反射部によって反射されて透光部内を伝播し、透光部の他方の端面から出射される。導光素子300Aは、このように液晶パネル200Aの表示面に対して傾斜して設けられた導光部310によって液晶パネル200Aの表示領域202から出射された光の一部を額縁領域203上に導く。これによって、液晶表示装置100Aを導光素子300Aの上方から見たときに、液晶パネル200Aの表示領域202上および額縁領域203上の領域において画像を視認することができる。 The light that has entered the light guide element 300A from one end face of each light-transmitting part is reflected by the reflecting part, propagates through the light-transmitting part, and is emitted from the other end face of the light-transmitting part. In the light guide element 300A, a part of the light emitted from the display area 202 of the liquid crystal panel 200A by the light guide part 310 provided so as to be inclined with respect to the display surface of the liquid crystal panel 200A in this way is placed on the frame area 203. Lead. Accordingly, when the liquid crystal display device 100A is viewed from above the light guide element 300A, an image can be visually recognized in the areas on the display area 202 and the frame area 203 of the liquid crystal panel 200A.
 (導光素子の配置)
 続いて、液晶表示装置100A・100Bにおける導光素子300A・300Bの配置について、図5を参照して説明する。図5中の(a)・(b)は、液晶表示装置100A・100Bを水平方向に隣接配置した場合に、各導光素子300A・300Bの出射面302において隣り合う導光部310同士の境界線の傾斜方向(言い換えれば、平面視において境界面303がなす線の傾斜方向)を、導光素子300Aと導光素子300Bとで線対称とした例を示している。図5中の(a)は、このときに各液晶パネル200A・200Bに表示している画像と導光素子300A・300Bを通して実際に目に見える画像との関係を示す平面図である。図5中の(b)は、図5中の(a)に示す液晶表示装置100Aにおける境界面303の傾斜方向を示す断面図である。
(Arrangement of light guide element)
Next, the arrangement of the light guide elements 300A and 300B in the liquid crystal display devices 100A and 100B will be described with reference to FIG. (A) and (b) in FIG. 5 are the boundaries between the light guide portions 310 adjacent to each other on the emission surface 302 of each light guide element 300A / 300B when the liquid crystal display devices 100A / 100B are arranged adjacent to each other in the horizontal direction. In the example, the line tilt direction (in other words, the line tilt direction formed by the boundary surface 303 in plan view) is symmetrical with respect to the light guide element 300A and the light guide element 300B. FIG. 5A is a plan view showing the relationship between the images displayed on the liquid crystal panels 200A and 200B at this time and the images actually visible through the light guide elements 300A and 300B. (B) in FIG. 5 is a cross-sectional view showing the inclination direction of the boundary surface 303 in the liquid crystal display device 100A shown in (a) in FIG.
 本実施の形態では、図5中の(a)に示すように、平面視において各導光素子300A・300Bの境界面303の傾斜方向が、液晶表示装置100A・100Bの境界部3(つまり、2画面の境界部3)に対し線対称となるように各導光素子300A・300Bを配置する。なお、図5中の(b)に示すように、液晶表示装置100A・100Bの境界部3を挟んで隣り合う額縁領域203に画像を表示するために、各導光素子300A・300Bの断面における境界面303は、境界部3において線対称となるように境界部3に向かって傾斜して設けられる。 In the present embodiment, as shown in FIG. 5A, the inclination direction of the boundary surface 303 of each of the light guide elements 300A and 300B in the plan view is the boundary portion 3 of the liquid crystal display devices 100A and 100B (that is, The light guide elements 300A and 300B are arranged so as to be line-symmetric with respect to the boundary 3) of the two screens. In addition, as shown in FIG. 5B, in order to display an image in the frame region 203 adjacent to the liquid crystal display device 100A / 100B with the boundary portion 3 therebetween, in the cross section of each light guide element 300A / 300B. The boundary surface 303 is provided to be inclined toward the boundary portion 3 so as to be line symmetric at the boundary portion 3.
 この結果、いずれの液晶表示装置100A・100Bにおいても、液晶パネル200A・200Bに表示している画像に対し、実際に目に見える画像は、縦方向において、それぞれが同じ方向(上方)にΔxずつ一律にシフトする。よって、液晶表示装置100A・100Bにおける縦方向のシフト量が一致し、導光素子300A・300Bを通して表示画像を見たときに液晶表示装置100A・100B同士に生じる表示画像のずれ(表示ずれ、画像ずれ)が相殺される。したがって、液晶表示装置100A・100B間に画像のずれなしに表示を行うことができるので、境界部3における額縁が見え難くなる。ここで、本実施の形態において、平面視において(つまり、液晶表示装置100Aを上から見たときに)隣り合う導光部310同士の境界線の方向と、画像を表示させる額縁領域203の長手方向に平行な画素列とがなす角度θは、5°<θ<85°であることが好ましい。 As a result, in any of the liquid crystal display devices 100A and 100B, images that are actually visible with respect to the images displayed on the liquid crystal panels 200A and 200B are Δx in the same direction (upward) in the vertical direction. Shift uniformly. Accordingly, the vertical shift amounts of the liquid crystal display devices 100A and 100B coincide with each other, and when the display image is viewed through the light guide elements 300A and 300B, the display image shift (display shift, image shift) that occurs between the liquid crystal display devices 100A and 100B. Offset) is offset. Therefore, since it is possible to display between the liquid crystal display devices 100A and 100B without image displacement, it is difficult to see the frame at the boundary 3. Here, in the present embodiment, in a plan view (that is, when the liquid crystal display device 100A is viewed from above), the direction of the boundary line between the adjacent light guide units 310 and the length of the frame region 203 for displaying an image are displayed. The angle θ formed by the pixel rows parallel to the direction is preferably 5 ° <θ <85 °.
 なお、本実施の形態では、液晶表示装置100A・100Bを横方向に隣接させて配列する場合を例に挙げて説明したことから、表示画像のシフト方向を縦方向としたが、本実施の形態はこれに限定されるものではない。表示画像のシフトは、画像を表示させる額縁領域203(すなわち、上述したようにタイリングを行う場合には、互いに隣接する液晶表示装置100A・100B同士の境界部3における額縁領域203)に隣り合う画素201の配列パターンに沿って生じる。このため、液晶表示装置100A・100Bを水平方向に隣接(すなわち、同一平面上に並べて配列)させる際に、縦方向(上下方向)に液晶表示装置100A・100Bを配列させる場合、画素201の配列方向に沿ったシフト方向は横方向になる。これは、額縁領域203に隣り合う画素201の配列方向が横方向となるためである。したがって、液晶表示装置100A・100Bを縦方向に配列した場合、シフト方向が横方向から縦方向になるだけであり、液晶表示装置100A・100Bを横方向に配列した場合と全く同じことが言える。それ故、この場合には「縦方向」および「上下方向」を、それぞれ「横方向」および「左右方向」と読み替えればよい。 In the present embodiment, the case where the liquid crystal display devices 100A and 100B are arranged adjacent to each other in the horizontal direction has been described as an example, and thus the shift direction of the display image is set to the vertical direction. Is not limited to this. The shift of the display image is adjacent to the frame region 203 for displaying the image (that is, the frame region 203 at the boundary portion 3 between the liquid crystal display devices 100A and 100B adjacent to each other when tiling is performed as described above). It occurs along the arrangement pattern of the pixels 201. For this reason, when the liquid crystal display devices 100A and 100B are arranged in the vertical direction (vertical direction) when the liquid crystal display devices 100A and 100B are adjacent in the horizontal direction (that is, arranged side by side on the same plane), The direction of shift along the direction is the horizontal direction. This is because the arrangement direction of the pixels 201 adjacent to the frame region 203 is the horizontal direction. Therefore, when the liquid crystal display devices 100A and 100B are arranged in the vertical direction, the shift direction only changes from the horizontal direction to the vertical direction, and the same can be said as in the case where the liquid crystal display devices 100A and 100B are arranged in the horizontal direction. Therefore, in this case, “vertical direction” and “vertical direction” may be read as “lateral direction” and “horizontal direction”, respectively.
 (導光素子の構造)
 以下には、本実施の形態に係る導光素子300A・300Bの詳細な構造について、図6を参照して説明する。図6は、本実施の形態に係る導光素子300Aを示す断面図である。なお、以下の説明では、導光素子300Aを例に挙げて、導光素子300A・300Bの構造について説明する。
(Structure of light guide element)
Below, the detailed structure of light guide element 300A * 300B which concerns on this Embodiment is demonstrated with reference to FIG. FIG. 6 is a cross-sectional view showing a light guide element 300A according to the present embodiment. In the following description, the structure of the light guide elements 300A and 300B will be described using the light guide element 300A as an example.
 図6に示すように、導光素子300Aの導光部310は多層構造をしており、高分子フィルム等の透光層324からなる透光部と、金属層321からなる反射部とを備えている。隣り合う導光部310同士は、接着層323によって互いに接着されている。 As shown in FIG. 6, the light guide part 310 of the light guide element 300 </ b> A has a multilayer structure, and includes a light transmissive part made of a light transmissive layer 324 such as a polymer film and a reflective part made of a metal layer 321. ing. Adjacent light guides 310 are bonded to each other by an adhesive layer 323.
 導光素子300Aとしては、例えば、特許文献1および2で用いられているような光ファイバフェイスプレートからなる導光素子を用いることもできるが、図7に示す積層構造を有するシート積層体320からなる導光素子を用いることが好ましい。図7は、導光素子300Aに用いられるシート積層体320の構造の一例を示す断面図である。 As the light guide element 300A, for example, a light guide element made of an optical fiber face plate as used in Patent Documents 1 and 2 can be used, but from the sheet laminate 320 having the laminated structure shown in FIG. It is preferable to use a light guide element. FIG. 7 is a cross-sectional view showing an example of the structure of the sheet laminate 320 used in the light guide element 300A.
 図7に示すシート積層体320は、金属層321、および、透光層324を、この順に互いに平行に繰り返し積層した積層体である。導光素子300Aがシート積層体320からなる場合、導光素子300Aの各導光部310は、図7に示すように、金属層321、透光層324、および、接着層323によって構成される。シート積層体320は、各導光部310のピッチ(積層方向の厚み)が所望のピッチとなるように、金属層321、透光層324、および、接着層323を、その厚み方向(すなわち、光の伝播方向に直交する方向)に互いに平行に、この順に繰り返し積層されている。 7 is a laminated body in which a metal layer 321 and a light transmitting layer 324 are repeatedly laminated in this order in parallel. When the light guide element 300 </ b> A includes the sheet laminate 320, each light guide unit 310 of the light guide element 300 </ b> A includes a metal layer 321, a light transmissive layer 324, and an adhesive layer 323 as illustrated in FIG. 7. . The sheet laminate 320 includes the metal layer 321, the translucent layer 324, and the adhesive layer 323 in the thickness direction (that is, the thickness of the light guides 310 (thickness in the stacking direction) becomes a desired pitch (that is, The layers are stacked repeatedly in this order in parallel with each other in a direction perpendicular to the light propagation direction.
 導光素子300Aとしてシート積層体320を用いた場合、導光素子300Aに入射面301から入射した光は、透光層324内を伝播し、出射面302から観察者側に向けて出射する。このとき、透光層324に入射した光は、隣接する金属層321によって反射されながら、透光層324内を伝播する。すなわち、シート積層体320においては、透光層324が導光路(透光部)として機能する一方、透光層324と金属層321との境界面(層面)が反射面(反射部)として機能する。なお、入射面311には様々な角度から光が入射するが、シート積層体320では、金属層321における金属反射を利用するので、入射角度に拘らずすべての光を導光させることができる。 When the sheet laminate 320 is used as the light guide element 300A, the light that has entered the light guide element 300A from the incident surface 301 propagates through the light-transmitting layer 324 and is emitted from the emission surface 302 toward the viewer. At this time, the light incident on the light transmitting layer 324 propagates in the light transmitting layer 324 while being reflected by the adjacent metal layer 321. That is, in the sheet laminate 320, the light-transmitting layer 324 functions as a light guide path (light-transmitting portion), while the boundary surface (layer surface) between the light-transmitting layer 324 and the metal layer 321 functions as a reflecting surface (reflecting portion). To do. Although light is incident on the incident surface 311 from various angles, all light can be guided regardless of the incident angle because the sheet laminate 320 uses metal reflection in the metal layer 321.
 (シート積層体を用いた導光素子の製造方法)
 次に、シート積層体320を用いた導光素子300Aの製造方法について、図8中の(a)~(c)を参照して説明する。図8中の(a)~(c)は、シート積層体を用いた導光素子300Aの製造方法を、工程順に示す図である。以下の説明では、具体的な数値および材料を用いて導光素子300Aの製造方法について説明するが、これら数値および材料は一例である。したがって、本実施の形態は、以下の具体例に限定されるものではない。
(Production method of light guide element using sheet laminate)
Next, a method of manufacturing the light guide element 300A using the sheet laminate 320 will be described with reference to (a) to (c) in FIG. (A) to (c) in FIG. 8 are diagrams showing a method of manufacturing the light guide element 300A using the sheet laminate in the order of steps. In the following description, the manufacturing method of the light guide element 300A will be described using specific numerical values and materials, but these numerical values and materials are examples. Therefore, the present embodiment is not limited to the following specific examples.
 まず、図8中の(a)に示すように、複数のシートが積層されたシート積層体320を準備する。まず、透光層324となる透明な高分子フィルム(透明フィルム)として、例えば、厚さが75μmのアクリルフィルム、TAC(triacetylcellulose:トリアセチルセルロース)フィルム、または、COP(cyclo-olefin polymer:シクロオレフィン樹脂)フィルム等を用意する。なお、これらのフィルムは、後述の理由で延伸処理されていないことが好ましい。 First, as shown in FIG. 8A, a sheet laminate 320 in which a plurality of sheets are laminated is prepared. First, as a transparent polymer film (transparent film) to be the light-transmitting layer 324, for example, an acrylic film having a thickness of 75 μm, a TAC (triacetylcellulose) film, or a COP (cyclo-olefin polymer) is used. Resin) film etc. are prepared. In addition, it is preferable that these films are not extended | stretched for the reason mentioned later.
 次に、高分子フィルム上に、金属層321として、例えば、厚さが100nmの銀層を形成する。なお、金属層321は、例えば、真空蒸着法等によって形成することができる。 Next, for example, a silver layer having a thickness of 100 nm is formed on the polymer film as the metal layer 321. The metal layer 321 can be formed by, for example, a vacuum deposition method or the like.
 続いて、銀層の上に、例えば、ホットメルト接着剤(熱可塑性樹脂)を用いて、厚さが3μmの接着層323を形成する。このようにして得られたシート(高分子フィルム、金属層、および、ホットメルト接着剤)を複数重ねて圧着する。その後、例えば、140℃のオーブンにおいてホットメルト接着剤を溶融することによって、複数のシートを互いに接着する。なお、接着層323は、少なくとも光透過性があり、フィルム同士を密着させることができる材料であればよく、ホットメルト接着剤の他、熱硬化性接着剤や光硬化性接着剤、または、粘着シート等で代用することもできる。 Subsequently, an adhesive layer 323 having a thickness of 3 μm is formed on the silver layer using, for example, a hot-melt adhesive (thermoplastic resin). A plurality of sheets (polymer film, metal layer, and hot melt adhesive) obtained in this manner are stacked and pressure bonded. Thereafter, the plurality of sheets are bonded to each other, for example, by melting the hot melt adhesive in an oven at 140 ° C. Note that the adhesive layer 323 is only required to be a material that is at least light transmissive and that allows films to adhere to each other. In addition to a hot melt adhesive, a thermosetting adhesive, a photocurable adhesive, or an adhesive. A sheet or the like can be substituted.
 次に、図8中の(b)に示すように、図8中の(a)に示すシート積層体320を、シート積層体320の境界面に対して所定の角度をなす切断線(切断面)CL1およびCL2に沿って切断し、シート積層体320から所定の厚さの平板状のシート積層体320を切り出す。なお、シート積層体320の切断は、公知の種々の切断方法を用いて行うことができる。例えば、レーザーカット法等も用いることができるが、特にマルチワイヤソーを用いることが好ましい。マルチワイヤソーは、互いに平行に配列された複数のワイヤを用いて切断するので、同時に複数の平板状のシート積層体320を切り出すことができる。また、ワイヤソーを用いると、回転刃または帯状刃を用いるよりも、切断に伴うコストを少なくできるという利点がある。なお、マルチワイヤソーとしては、遊離砥粒タイプを用いてもよいし、固定砥粒タイプを用いてもよい。 Next, as shown in (b) of FIG. 8, the sheet laminate 320 shown in (a) of FIG. 8 is cut along a cutting line (cut plane) that forms a predetermined angle with respect to the boundary surface of the sheet laminate 320. ) Cut along CL1 and CL2 to cut out a flat sheet laminate 320 having a predetermined thickness from the sheet laminate 320. The sheet laminate 320 can be cut using various known cutting methods. For example, a laser cutting method or the like can be used, but it is particularly preferable to use a multi-wire saw. Since the multi-wire saw is cut using a plurality of wires arranged in parallel to each other, a plurality of flat sheet laminates 320 can be cut out simultaneously. In addition, when a wire saw is used, there is an advantage that costs associated with cutting can be reduced as compared with the case of using a rotary blade or a belt-like blade. In addition, as a multi-wire saw, a loose abrasive grain type may be used and a fixed abrasive grain type may be used.
 続いて、シート積層体320の切断面を、必要に応じて研磨等の加工をし、切り出したシート積層体320の表面を必要に応じて洗浄および乾燥する。これにより、図8中の(c)に示すように、シート積層体320からなる導光素子300Aを得ることができる。なお、研磨等の加工を行う面は、必要に応じて適宜選択される。 Subsequently, the cut surface of the sheet laminate 320 is subjected to processing such as polishing as necessary, and the surface of the cut sheet laminate 320 is washed and dried as necessary. Thereby, as shown to (c) in FIG. 8, 300 A of light guide elements which consist of the sheet | seat laminated body 320 can be obtained. The surface on which processing such as polishing is performed is appropriately selected as necessary.
 (導光素子における透過率の低下の軽減)
 上述したように、従来では、導光素子の導光部の金属層における光反射による光量のロスが、導光素子の透過率の低下につながるという課題があった。金属層における反射率を低下させる原因としては、反射率の偏光特性がある。そこで、本実施の形態に係る導光素子300A・300Bでは、金属層321の反射率の低下を軽減するべく工夫が、反射率の偏光特性に関してなされている。以下にその工夫を説明する。
(Reduction in reduction of transmittance in light guide element)
As described above, conventionally, there has been a problem that loss of light amount due to light reflection in the metal layer of the light guide portion of the light guide element leads to a decrease in transmittance of the light guide element. As a cause of lowering the reflectance in the metal layer, there is a polarization characteristic of reflectance. Therefore, in the light guide elements 300A and 300B according to the present embodiment, a contrivance is made with respect to the polarization characteristics of the reflectance in order to reduce the decrease in the reflectance of the metal layer 321. The device will be described below.
 金属反射には偏光依存性があることが一般的に知られている。この偏光依存性について、図9および図10を参照して説明する。図9は、金属層への入射光を概略的に示す図である。図10は、金属層の偏光反射率の角度特性を示す図である。なお、図9に示す角度φは、金属層への入射光の入射角である。 It is generally known that metal reflection has polarization dependency. This polarization dependency will be described with reference to FIG. 9 and FIG. FIG. 9 is a diagram schematically showing incident light on the metal layer. FIG. 10 is a diagram showing the angle characteristics of the polarization reflectance of the metal layer. In addition, angle (phi) shown in FIG. 9 is an incident angle of the incident light to a metal layer.
 図9に示すように、S偏光とは、反射面(金属層)に対して平行に偏光された光であり、P偏光とは、反射面(金属層)に対して垂直に偏光された光である。図10に示すように、垂直入射(φ=0°)のときは、S偏光もP偏光もおよそ98%の反射率であるが、φが大きくなるにつれて、S偏光の反射率は大きくなる。これに対してP偏光の反射率は、φが大きくなるにつれて小さくなり、φ=70°付近で最小となり、そしてφ=70°を過ぎるとまた大きくなる。 As shown in FIG. 9, S-polarized light is light polarized parallel to the reflecting surface (metal layer), and P-polarized light is light polarized perpendicular to the reflecting surface (metal layer). It is. As shown in FIG. 10, at the normal incidence (φ = 0 °), the reflectance of both S-polarized light and P-polarized light is approximately 98%, but as φ increases, the reflectance of S-polarized light increases. On the other hand, the reflectance of P-polarized light decreases as φ increases, becomes minimum near φ = 70 °, and increases again after φ = 70 °.
 例えば、導光素子の傾斜角度θが45°である場合には、液晶表示装置の表示面から法線方向に出射した光は、金属層に対して45°の角度で入射する。したがって、φ=45°である。図10に示すグラフによると、φ=45°のときのS偏光とP偏光との反射率には1%以上の差がある。これは、導光素子の透過率に換算すると、およそ15%以上の差に相当する。S偏光とP偏光との反射率の差が特に大きいφ=50°~80°の範囲では、さらに透過率の差が大きくなる。 For example, when the inclination angle θ of the light guide element is 45 °, the light emitted in the normal direction from the display surface of the liquid crystal display device enters the metal layer at an angle of 45 °. Therefore, φ = 45 °. According to the graph shown in FIG. 10, there is a difference of 1% or more in the reflectance between the S-polarized light and the P-polarized light when φ = 45 °. This corresponds to a difference of about 15% or more when converted to the transmittance of the light guide element. In the range of φ = 50 ° to 80 ° where the difference in reflectance between S-polarized light and P-polarized light is particularly large, the difference in transmittance is further increased.
 液晶表示装置からは様々な方位に光が出射するため、50°~80°の入射角で金属層に入射する光も多くある。したがって、金属層に入射する光の偏光状態が、導光素子の透過率に多大な影響を与えていることが分かる。ここで、液晶表示装置では、最表面に偏光板が配置されるため、出射光は基本的に偏光である。したがって、導光素子の反射面に入射する偏光がS偏光となるように偏光板の向きを調整することで、導光素子の透過率を向上させることができると考えられるが、従来ではそのような配置方法を明確に規定した文献がない。 Since the liquid crystal display device emits light in various directions, there is much light incident on the metal layer at an incident angle of 50 ° to 80 °. Therefore, it can be seen that the polarization state of the light incident on the metal layer has a great influence on the transmittance of the light guide element. Here, in the liquid crystal display device, since the polarizing plate is disposed on the outermost surface, the emitted light is basically polarized light. Therefore, it is considered that the transmittance of the light guide element can be improved by adjusting the direction of the polarizing plate so that the polarized light incident on the reflection surface of the light guide element becomes S-polarized light. There is no literature that clearly defines the proper arrangement method.
 そこで、本実施の形態においては、反射率の高いS偏光が導光素子300A・300Bに入射するように、液晶パネル200A・200Bの偏光板の配置を調整している。偏光板の配置調整について、図1および図2を参照して説明する。図1中の(a)は、液晶表示装置100Aを示す平面図であり、図1中の(b)は、図1中の(a)に示す液晶表示装置100Aにおける境界面303の傾斜方向を示す断面図である。また、図2中の(a)は、液晶表示装置100Aを示す平面図であり、図2中の(b)は、図2中の(a)に示す液晶表示装置100Aにおける境界面303の傾斜方向を示す断面図である。以下では、液晶表示装置100Aを例に挙げて、液晶表示装置100A・100Bの偏光板の配置について説明する。 Therefore, in the present embodiment, the arrangement of the polarizing plates of the liquid crystal panels 200A and 200B is adjusted so that the highly polarized S-polarized light is incident on the light guide elements 300A and 300B. The arrangement adjustment of the polarizing plate will be described with reference to FIG. 1 and FIG. 1A is a plan view showing the liquid crystal display device 100A, and FIG. 1B shows the inclination direction of the boundary surface 303 in the liquid crystal display device 100A shown in FIG. It is sectional drawing shown. 2A is a plan view showing the liquid crystal display device 100A, and FIG. 2B is an inclination of the boundary surface 303 in the liquid crystal display device 100A shown in FIG. It is sectional drawing which shows a direction. Below, taking the liquid crystal display device 100A as an example, the arrangement of the polarizing plates of the liquid crystal display devices 100A and 100B will be described.
 図1中の(a)に示すように、液晶表示装置100Aでは、平面視において(つまり、液晶表示装置100Aを上から見たときに)導光素子300Aの境界面303の方向と偏光板の光透過軸の方向(図中の矢印α)とが互いに平行となるように、該偏光板を配置している。したがって、境界面303が面方向に伸展する方向と、偏光板の光透過軸の方向とが一致する。これによって、導光素子300AにはS偏光が入射するので、金属層321における反射率の低下を抑えることができる。すなわち、金属層321における反射率の低下が抑えられ、光の利用効率を上げることができるので、結果、導光素子300A・300Bの透過率の向上がもたらされる。それ故、導光素子300A・300Bの透過率が低いがためにバックライト装置400の輝度を上げることによって液晶表示装置100A・100Bの輝度の低下を補う必要がないので、液晶表示装置100A・100Bの消費電力が増大してしまうという課題を解消することができる。 As shown in FIG. 1A, in the liquid crystal display device 100A, in the plan view (that is, when the liquid crystal display device 100A is viewed from above), the direction of the boundary surface 303 of the light guide element 300A and the polarizing plate The polarizing plates are arranged so that the directions of the light transmission axis (arrow α in the figure) are parallel to each other. Therefore, the direction in which the boundary surface 303 extends in the plane direction coincides with the direction of the light transmission axis of the polarizing plate. Accordingly, since S-polarized light is incident on the light guide element 300A, it is possible to suppress a decrease in reflectance in the metal layer 321. That is, a decrease in reflectance in the metal layer 321 can be suppressed and the light utilization efficiency can be increased. As a result, the transmittance of the light guide elements 300A and 300B is improved. Therefore, since the transmittance of the light guide elements 300A and 300B is low, it is not necessary to compensate for the decrease in the luminance of the liquid crystal display devices 100A and 100B by increasing the luminance of the backlight device 400, and thus the liquid crystal display devices 100A and 100B. It is possible to solve the problem that the power consumption increases.
 なお、図2中の(a)に示す液晶表示装置100Aのように、平面視において(つまり、液晶表示装置100Aを上から見たときに)隣り合う導光部310同士の境界面303の方向と、画像を表示させる額縁領域203の長手方向に平行な画素列とが角度θをなしているような場合においては、額縁領域203の長手方向に対して角度θだけ傾かせて、偏光板の光透過軸の方向を設定することが好ましい。すなわちこの場合も、境界面303が面方向に伸展する方向と、偏光板の光透過軸の方向とが一致する。これによって、導光素子300AにはS偏光が入射するので、金属層321における反射率の低下を抑えることができる。 In addition, like the liquid crystal display device 100A shown in FIG. 2A, the direction of the boundary surface 303 between the light guide portions 310 adjacent to each other in plan view (that is, when the liquid crystal display device 100A is viewed from above). And a pixel row parallel to the longitudinal direction of the frame region 203 for displaying an image is inclined at an angle θ with respect to the longitudinal direction of the frame region 203, It is preferable to set the direction of the light transmission axis. That is, also in this case, the direction in which the boundary surface 303 extends in the surface direction coincides with the direction of the light transmission axis of the polarizing plate. Accordingly, since S-polarized light is incident on the light guide element 300A, it is possible to suppress a decrease in reflectance in the metal layer 321.
 ところで、透光層324に用いる材料に光の偏光状態を変化させる特性(複屈折)があると、透光層324内を光が導光するにつれて光の偏光状態が変化してしまい(すなわち、S偏光ではなくなる)、やはり金属層の反射率は低下してしまう。したがって、透光層324には、複屈折が少ない材料を用いるのが好ましく、複屈折がほとんど無い材料(非複屈折性の材料)を用いるのがより好ましい。工業的に一般的に用いられるPETフィルムは複屈折が比較的大きいため、反射率に与える影響が大きい。一方、アクリルフィルム、TACフィルム、あるいは、COPフィルム等は複屈折が小さく、なおかつ、透過率が大きいため、透光層324として用いるのが好ましい。あるいは、非複屈折性の材料としてガラス基板を透光層324に用いてもよい。なお、上記のフィルムに対して延伸処理を行うと、延伸方向に複屈折が生じる虞があるので、延伸処理は行わないことがより好ましい。 By the way, if the material used for the translucent layer 324 has a characteristic (birefringence) that changes the polarization state of light, the polarization state of the light changes as light is guided through the translucent layer 324 (that is, However, the reflectivity of the metal layer also decreases. Therefore, it is preferable to use a material with little birefringence for the light-transmitting layer 324, and it is more preferable to use a material with little birefringence (non-birefringent material). A PET film generally used industrially has a relatively large birefringence, and therefore has a great influence on the reflectance. On the other hand, an acrylic film, a TAC film, a COP film, or the like is preferably used as the light-transmitting layer 324 because of low birefringence and high transmittance. Alternatively, a glass substrate may be used for the light-transmitting layer 324 as a non-birefringent material. In addition, when extending | stretching with respect to said film, since there exists a possibility that birefringence may arise in an extending | stretching direction, it is more preferable not to perform an extending | stretching process.
 ここで、複屈折は、一般的にリタデーション(=複屈折×厚み)を用いて議論されることが多い。複屈折が比較的大きいPETフィルムおよびPC(polycarbonate:ポリカー
ボネート)フィルムは、一般的な厚み(例えば、100μm)において、およそ20nm以上のリタデーションがある。それに対して、複屈折が比較的小さいアクリルフィルム、TACフィルム、および、COPフィルムは、一般的な厚み(例えば、80~100μm)において、およそ10nm以下のリタデーションである。特に、TACフィルムおよびCOPフィルムのリタデーションは、5nm以下とされている。なお、ガラス基板は基本的に等方相なので、複屈折はゼロである。以上のことから、透光層324に用いる材料として好適な条件は、リタデーションが10nm以下と言え、より好ましくは5nm以下と言える。
Here, birefringence is often discussed using retardation (= birefringence × thickness) in general. A PET film and a PC (polycarbonate) film having a relatively large birefringence have a retardation of about 20 nm or more in a general thickness (for example, 100 μm). On the other hand, an acrylic film, a TAC film, and a COP film having relatively small birefringence have a retardation of about 10 nm or less at a general thickness (for example, 80 to 100 μm). In particular, the retardation of the TAC film and the COP film is 5 nm or less. Since the glass substrate is basically isotropic, birefringence is zero. From the above, it can be said that the preferable condition for the material used for the light-transmitting layer 324 is a retardation of 10 nm or less, more preferably 5 nm or less.
 (実施例1および比較例1)
 上述した実施の形態1に基づいて作製した導光素子300Aを備えた液晶表示装置100Aを実施例1とし、その比較例1として以下の導光素子を備える液晶表示装置を作製し、実施例1および比較例1について検討した。図11は、比較例1として作製した導光素子を示す断面図である。
(Example 1 and Comparative Example 1)
The liquid crystal display device 100A including the light guide element 300A manufactured based on the first embodiment described above is referred to as Example 1, and a liquid crystal display device including the following light guide element is manufactured as Comparative Example 1, and Example 1 is performed. And Comparative Example 1 was examined. FIG. 11 is a cross-sectional view showing a light guide element manufactured as Comparative Example 1.
 まず実施例1として、図6に示したような導光素子300Aを備えた液晶表示装置100Aを作製した。金属層321として銀層を用い、透光層324としてはアクリルフィルムを用いた導光素子300Aを作製した。 First, as Example 1, a liquid crystal display device 100A including a light guide element 300A as shown in FIG. A light guide element 300A using a silver layer as the metal layer 321 and an acrylic film as the light-transmitting layer 324 was manufactured.
 一方、比較例1としては、図11に示すように、透光層324としてPETフィルムを用いた導光素子300Eを備えた液晶表示装置を作製した。透光層324としてPETフィルムを用いている点以外は実施例1と同じであり、金属層321として銀層を用いた導光素子300Eを作製した。 On the other hand, as Comparative Example 1, as shown in FIG. 11, a liquid crystal display device including a light guide element 300E using a PET film as the light-transmitting layer 324 was produced. A light guide element 300E using a silver layer as the metal layer 321 was manufactured in the same manner as in Example 1 except that a PET film was used as the light transmissive layer 324.
 輝度計(トプコン社製MB-5A)を用いて、実施例1および比較例1の各液晶表示装置の輝度測定を行った。導光素子の前後の輝度を測定し、その比を透過率として求めたところ、表1に示す通りであった。 The luminance of each liquid crystal display device of Example 1 and Comparative Example 1 was measured using a luminance meter (MB-5A manufactured by Topcon Corporation). When the luminance before and after the light guide element was measured and the ratio was determined as the transmittance, it was as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1では、非常に高い透過率が得られた。これに対して、比較例1では、輝度の低下が著しく大きかった。以下に、各実施例1および比較例1について詳しくみていく。 As shown in Table 1, in Example 1, a very high transmittance was obtained. On the other hand, in Comparative Example 1, the decrease in luminance was remarkably large. Hereinafter, each Example 1 and Comparative Example 1 will be described in detail.
 まず実施例1および比較例1の結果から、透光層としてPETフィルムを用いることによって透過率が低下することが分かった。これは、上述したように、PETフィルムは複屈折が比較的大きく、光の偏光状態を変化させてしまうためである。光の偏光状態が変化してしまうと、導光素子に入射した光がS偏光ではなくなり、反射率に大きな影響を与えてしまう。したがって、透光層として複屈折が小さいアクリルフィルム、TACフィルム、あるいは、COPフィルム等を用いることによって透過率を向上させることができることが分かった。 First, from the results of Example 1 and Comparative Example 1, it was found that the transmittance was lowered by using a PET film as the light-transmitting layer. As described above, this is because the PET film has a relatively large birefringence and changes the polarization state of light. If the polarization state of the light changes, the light incident on the light guide element is not S-polarized light, which greatly affects the reflectance. Therefore, it was found that the transmittance can be improved by using an acrylic film, a TAC film, a COP film or the like having a small birefringence as the light transmitting layer.
 (比較例2)
 続いて、別の比較例2として以下の構成を備える液晶表示装置について検討した。図12中の(a)は、比較例2として作製した液晶表示装置100C・100Dを示す平面図であり、図12中の(b)は、図12中の(a)に示す液晶表示装置100C・100Dにおける境界面303の傾斜方向を示す断面図である。
(Comparative Example 2)
Then, the liquid crystal display device provided with the following structures as another comparative example 2 was examined. (A) in FIG. 12 is a plan view showing liquid crystal display devices 100C and 100D manufactured as Comparative Example 2, and (b) in FIG. 12 is a liquid crystal display device 100C shown in (a) in FIG. -It is sectional drawing which shows the inclination direction of the boundary surface 303 in 100D.
 比較例2では、平面視において(つまり、液晶表示装置100C・100Dを上から見たときに)導光素子300C・300Dの境界面303の方向と偏光板の光透過軸の方向とが互いに平行とならないように、該偏光板を配置している。したがって、境界面303が面方向に伸展する方向と、偏光板の光透過軸の方向とが一致していない。 In Comparative Example 2, the direction of the boundary surface 303 of the light guide elements 300C and 300D and the direction of the light transmission axis of the polarizing plate are parallel to each other in plan view (that is, when the liquid crystal display devices 100C and 100D are viewed from above). The polarizing plate is arranged so as not to become. Therefore, the direction in which the boundary surface 303 extends in the surface direction does not match the direction of the light transmission axis of the polarizing plate.
 図12中の(a)に示すように、導光素子300Dの境界面303の方向と、偏光板の光透過軸の方向(図中の矢印γ)とがなす角度をθ’とすると、比較例2ではθ’≠0°となっている(実施例1ではθ’=0°)。これは、導光素子300Cについても同様である。なお、偏光板の配置を異ならせている点以外は、実施例1と同様の構成とした。 As shown in FIG. 12A, when the angle between the direction of the boundary surface 303 of the light guide element 300D and the direction of the light transmission axis of the polarizing plate (arrow γ in the figure) is θ ′, the comparison is made. In Example 2, θ ′ ≠ 0 ° (θ ′ = 0 ° in Example 1). The same applies to the light guide element 300C. In addition, it was set as the structure similar to Example 1 except the point which has different arrangement | positioning of a polarizing plate.
 比較例2の構成において、角度θ’に応じた透過率のデータを図13に示す。図13は、液晶表示装置100C・100Dの法線方向から、輝度計(トプコン社製MB-5A)を用いて、輝度測定を行った結果を示す図である。 FIG. 13 shows data of transmittance corresponding to the angle θ ′ in the configuration of Comparative Example 2. FIG. 13 is a diagram showing the results of luminance measurement using a luminance meter (MB-5A manufactured by Topcon) from the normal direction of the liquid crystal display devices 100C and 100D.
 図13に示すように、実施例1の場合(すなわち、θ’=0°(θ’=180°)の場合)において最も透過率が高くなることが分かった。これに対して比較例2の場合(すなわち、θ’≠0°(θ’≠180°)の場合)では透過率が低く、特にθ’=90°付近において最も透過率が低下しているのが分かる。すなわち、導光素子300C・300Dの境界面303の方向と、偏光板の光透過軸の方向とが直交状態に近づくにつれて透過率が低下していくと言える。したがって、導光素子300C・300Dの境界面303の方向と、偏光板の光透過軸の方向とが平行になるように該偏光板を配置するのが最も好ましい。しかし、θ’=0±30°の範囲では透過率の低下量が10%程度の範囲であるため、性能的には許容されると考えられる。 As shown in FIG. 13, it was found that the transmittance was highest in the case of Example 1 (that is, when θ ′ = 0 ° (θ ′ = 180 °)). On the other hand, in the case of Comparative Example 2 (that is, in the case of θ ′ ≠ 0 ° (θ ′ ≠ 180 °)), the transmittance is low, and in particular, the transmittance is the lowest near θ ′ = 90 °. I understand. That is, it can be said that the transmittance decreases as the direction of the boundary surface 303 of the light guide elements 300C and 300D and the direction of the light transmission axis of the polarizing plate approach an orthogonal state. Therefore, it is most preferable to dispose the polarizing plate so that the direction of the boundary surface 303 of the light guide elements 300C and 300D is parallel to the direction of the light transmission axis of the polarizing plate. However, in the range of θ ′ = 0 ± 30 °, the amount of decrease in transmittance is in the range of about 10%.
 〔実施の形態2〕
 本実施の形態について、図14中の(a)・(b)に基づいて説明すれば以下の通りである。なお、本実施の形態では、実施の形態1との相違点について説明するものとし、同じ構成についての説明は省略する。また、実施の形態1と同様の機能を有する構成要素には同一の番号を付し、その説明を省略する。図14中の(a)は、本実施の形態に係る液晶表示装置100A・100Bを示す平面図であり、図14中の(b)は、図14中の(a)に示す液晶表示装置100Aにおける境界面303の傾斜方向を示す断面図である。
[Embodiment 2]
This embodiment will be described as follows based on (a) and (b) in FIG. Note that in this embodiment, differences from Embodiment 1 are described, and description of the same configuration is omitted. Moreover, the same number is attached | subjected to the component which has a function similar to Embodiment 1, and the description is abbreviate | omitted. (A) in FIG. 14 is a plan view showing liquid crystal display devices 100A and 100B according to the present embodiment, and (b) in FIG. 14 is liquid crystal display device 100A shown in (a) in FIG. It is sectional drawing which shows the inclination direction of the boundary surface 303 in FIG.
 実施の形態1では、液晶パネル200A・200Bの表示面全面に平板状の導光素子300A・300Bが設けられている場合を例に挙げて説明したが、本実施の形態では表示領域202の一部の領域にのみ、導光素子300A・300Bが設けられている場合を例に挙げて説明する。本実施の形態では、実施の形態1と同じく、液晶表示装置100A・100Bの境界部3を挟んで隣り合う額縁領域203に画像を表示する。本実施の形態では、図14中の(a)に示すように、液晶表示装置100A・100Bにおいて互いに隣接している端部の額縁領域203、および、その近傍にのみ導光素子300A・300Bが設けられている。これによって、導光素子300A・300Bを設ける領域が少なくて済むので、液晶表示装置100A・100Bの製造コストを低減することができる。 In the first embodiment, the case where the flat light guide elements 300A and 300B are provided on the entire display surface of the liquid crystal panels 200A and 200B has been described as an example. The case where the light guide elements 300 </ b> A and 300 </ b> B are provided only in the part area will be described as an example. In the present embodiment, as in the first embodiment, an image is displayed on the frame region 203 adjacent to each other with the boundary 3 between the liquid crystal display devices 100A and 100B. In the present embodiment, as shown in FIG. 14A, the light guide elements 300A and 300B are provided only in the frame regions 203 at the ends adjacent to each other in the liquid crystal display devices 100A and 100B and in the vicinity thereof. Is provided. Accordingly, the area where the light guide elements 300A and 300B are provided can be reduced, and the manufacturing cost of the liquid crystal display devices 100A and 100B can be reduced.
 また、本実施の形態においては、図15に示す液晶表示装置100A・100Bのように導光素子300A・300Bを設けることも可能である。図15中の(a)は、本実施の形態に係る液晶表示装置100A・100Bを示す平面図であり、図15中の(b)は、図15中の(a)に示す液晶表示装置100Aにおける境界面303の傾斜方向を示す断面図である。 In the present embodiment, light guide elements 300A and 300B can be provided as in the liquid crystal display devices 100A and 100B shown in FIG. (A) in FIG. 15 is a plan view showing the liquid crystal display devices 100A and 100B according to the present embodiment, and (b) in FIG. 15 is a liquid crystal display device 100A shown in (a) in FIG. It is sectional drawing which shows the inclination direction of the boundary surface 303 in FIG.
 図15中の(a)に示すように、液晶表示装置100A・100Bにおいて互いに隣接している端部に対向する端部の額縁領域203、および、その近傍にも導光素子を設けてもよい。このように配置することによって、3画面以上の液晶表示装置を並べたタイルディスプレイを構成することもできる。 As shown to (a) in FIG. 15, you may provide a light guide element also in the frame region 203 of the edge part which opposes the edge part mutually adjacent in liquid crystal display device 100A * 100B, and its vicinity. . By arranging in this manner, a tile display in which liquid crystal display devices having three or more screens are arranged can be configured.
 (導光素子の構成)
 導光素子300A・300Bでは、額縁領域203の長手方向に対して垂直方向の断面が直角三角形状の三角柱である。したがって、本実施の形態において用いられる導光素子300A・300Bは、その入射面301は液晶パネル200A・200Bの表示面に平行であるが、出射面302が液晶パネル200A・200Bの表示面に対して傾斜している。より具体的には、導光素子300A・300Bの出射面は、液晶パネル200A・200Bにおいて互いに隣接している端部に対向する端部に向かって厚みが大きくなるように、該液晶パネル200A・200Bの表示面に対して傾斜している。ただし、導光素子300A・300Bは、平面視において矩形状(正方形状あるいは長方形状)を有している。また、導光素子300A・300Bの入射面301は平ら(すなわち平面)に形成されている。
(Configuration of light guide element)
In the light guide elements 300 </ b> A and 300 </ b> B, a cross section perpendicular to the longitudinal direction of the frame region 203 is a triangular prism having a right triangle shape. Therefore, the light guide elements 300A and 300B used in the present embodiment have the incident surfaces 301 parallel to the display surfaces of the liquid crystal panels 200A and 200B, but the exit surfaces 302 are in relation to the display surfaces of the liquid crystal panels 200A and 200B. Is inclined. More specifically, the exit surfaces of the light guide elements 300A and 300B have a thickness that increases toward the end facing the adjacent ends of the liquid crystal panels 200A and 200B. It is inclined with respect to the display surface of 200B. However, the light guide elements 300A and 300B have a rectangular shape (square shape or rectangular shape) in plan view. In addition, the incident surfaces 301 of the light guide elements 300A and 300B are formed flat (that is, flat).
 なお、液晶表示装置100A・100Bは、図14中の(b)および図15中の(b)に点線で示すように、液晶パネル200A・200Bの表示領域202と導光素子300A・300Bの出射面302とを覆う透光性カバーシート350A・350Bを有していてもよい。透光性カバーシート350A・350Bは、例えば、導光素子300A・300Bの出射面302および液晶パネル200A・200Bの表示面の形状に沿うように形成される。導光素子300A・300Bと透光性カバーシート350A・350Bとは、例えば、接着層を介して互いに貼り合わされている。ただし、接着層は必ずしも必要ではなく、導光素子300A・300Bと透光性カバーシート350A・350Bとは、空気層を介して固定されていてもよい。導光素子300A・300Bに透光性カバーシート350A・350Bを貼り合わせて平坦な表面を有するシート状とすることによって、導光素子300A・300B、および、液晶パネル200A・200Bの表示面を保護することができる。また、液晶表示装置100A・100Bの表面が平坦になるので、見た目の違和感も軽減される。さらに、表面の汚れを拭き取り易いという利点も得られる。透光性カバーシート350A・350Bは、例えば、アクリル樹脂等の透明な樹脂によって形成される。透光性カバーシート350A・350Bを設けることによって、液晶表示装置100A・100Bの表示品位を高くすることができる。 Note that the liquid crystal display devices 100A and 100B emit light from the display regions 202 of the liquid crystal panels 200A and 200B and the light guide elements 300A and 300B, as indicated by dotted lines in FIG. 14B and FIG. 15B. You may have the translucent cover sheet 350A * 350B which covers the surface 302. FIG. The translucent cover sheets 350A and 350B are formed, for example, along the shapes of the emission surfaces 302 of the light guide elements 300A and 300B and the display surfaces of the liquid crystal panels 200A and 200B. The light guide elements 300A and 300B and the translucent cover sheets 350A and 350B are bonded to each other through, for example, an adhesive layer. However, the adhesive layer is not necessarily required, and the light guide elements 300A and 300B and the translucent cover sheets 350A and 350B may be fixed via an air layer. The display surfaces of the light guide elements 300A and 300B and the liquid crystal panels 200A and 200B are protected by bonding the light-transmitting cover sheets 350A and 350B to the light guide elements 300A and 300B to form a flat sheet. can do. In addition, since the surfaces of the liquid crystal display devices 100A and 100B are flattened, the uncomfortable appearance is reduced. Furthermore, there is an advantage that the dirt on the surface can be easily wiped off. The translucent cover sheets 350A and 350B are formed of a transparent resin such as an acrylic resin, for example. By providing the translucent cover sheets 350A and 350B, the display quality of the liquid crystal display devices 100A and 100B can be improved.
 (三角柱状の導光素子を用いることの利点)
 なお、透光性カバーシート350A・350Bは、必ずしも必要ではない。すなわち、本実施の形態によれば、液晶パネル200A・200Bと同程度の大きさを有する導光素子を用いる必要はない。このため、液晶表示装置100A・100B、および、該液晶表示装置100A・100Bを用いた電子機器の軽量化を図ることができると共に、これらの装置あるいは機器を安価に製造することができる。
(Advantages of using a triangular light guide element)
The translucent cover sheets 350A and 350B are not always necessary. That is, according to the present embodiment, it is not necessary to use a light guide element having the same size as the liquid crystal panels 200A and 200B. Therefore, it is possible to reduce the weight of the liquid crystal display devices 100A and 100B and the electronic devices using the liquid crystal display devices 100A and 100B, and to manufacture these devices or devices at low cost.
 また、上記したような導光素子300Aは、例えば、1つの液晶パネルにおける、対向する2つの額縁領域203にそれぞれ設けることが可能であり、導光部310の境界面303の傾斜角度および傾斜方向は、導光素子300Aごとにそれぞれ設定することも可能である。したがって、例えば、1つの液晶パネルにおける、対向する2つの額縁領域203にそれぞれ導光素子を設けることによって、複数の液晶表示装置を用いているか否か、あるいは、液晶表示装置同士の境界部であるか否かに拘らずそれぞれの額縁領域203に画像を表示させることができる。このため、より一層大型の表示画面を実現することができる。 In addition, the light guide element 300A as described above can be provided, for example, in two opposing frame regions 203 in one liquid crystal panel, and the inclination angle and the inclination direction of the boundary surface 303 of the light guide unit 310. Can be set for each light guide element 300A. Therefore, for example, by providing a light guide element in each of two opposing frame regions 203 in one liquid crystal panel, whether or not a plurality of liquid crystal display devices are used, or a boundary portion between the liquid crystal display devices An image can be displayed in each frame area 203 regardless of whether or not. For this reason, a much larger display screen can be realized.
 (導光素子の透過率の向上)
 本実施の形態でも、液晶表示装置100Aでは、平面視において(つまり、液晶表示装置100Aを上から見たときに)導光素子300Aの境界面303の方向と偏光板の光透過軸の方向とが互いに平行となるように、該偏光板を配置している。したがって、境界面303が面方向に伸展する方向と、偏光板の光透過軸の方向とが一致する。これによって、導光素子300AにはS偏光が入射するので、金属層321における反射率の低下を抑えることができる。すなわち、金属層321における反射率の低下が抑えられ、光の利用効率を上げることができるので、結果、導光素子300A・300Bの透過率の向上がもたらされる。それ故、導光素子300A・300Bの透過率が低いがためにバックライト装置400の輝度を上げることによって液晶表示装置100A・100Bの輝度の低下を補う必要がないので、液晶表示装置100A・100Bの消費電力が増大してしまうという課題を解消することができる。
(Improvement of light guide element transmittance)
Also in the present embodiment, in the liquid crystal display device 100A, in plan view (that is, when the liquid crystal display device 100A is viewed from above), the direction of the boundary surface 303 of the light guide element 300A and the direction of the light transmission axis of the polarizing plate The polarizing plates are arranged so that are parallel to each other. Therefore, the direction in which the boundary surface 303 extends in the plane direction coincides with the direction of the light transmission axis of the polarizing plate. Accordingly, since S-polarized light is incident on the light guide element 300A, it is possible to suppress a decrease in reflectance in the metal layer 321. That is, a decrease in reflectance in the metal layer 321 can be suppressed and the light utilization efficiency can be increased. As a result, the transmittance of the light guide elements 300A and 300B is improved. Therefore, since the transmittance of the light guide elements 300A and 300B is low, it is not necessary to compensate for the decrease in the luminance of the liquid crystal display devices 100A and 100B by increasing the luminance of the backlight device 400, and thus the liquid crystal display devices 100A and 100B. It is possible to solve the problem that the power consumption increases.
 本発明は上述した各実施の形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施の形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. Embodiments are also included in the technical scope of the present invention.
 〔実施形態の総括〕
 以上のように、本発明の一態様に係る表示装置は、上記透光層のリタデーションは、10nm以下であることを特徴としている。
[Summary of Embodiment]
As described above, the display device according to one embodiment of the present invention is characterized in that the retardation of the light-transmitting layer is 10 nm or less.
 また、本発明の一態様に係る表示装置は、上記透光層のリタデーションは、5nm以下であることを特徴としている。 The display device according to one embodiment of the present invention is characterized in that the retardation of the light transmitting layer is 5 nm or less.
 上記の構成によれば、透光層が持つ特性(複屈折)によって入射光の偏光状態が変化してしまうのを抑えることができる。したがって、透光層に複屈折が少ない材料を用いることによって、導光素子に入射する光の偏光状態は変化せず、S偏光が入射するので、反射層における反射率の低下を抑えることができる。 According to the above configuration, the polarization state of incident light can be prevented from changing due to the characteristics (birefringence) of the light transmitting layer. Therefore, by using a material with low birefringence for the light-transmitting layer, the polarization state of the light incident on the light guide element does not change, and S-polarized light is incident. Therefore, it is possible to suppress a decrease in reflectance in the reflective layer. .
 また、本発明の一態様に係る表示装置は、上記透光層は、アクリルフィルム、トリアセチルセルロースフィルム、シクロオレフィン樹脂フィルム、および、ガラス基板のいずれかであることを特徴としている。 The display device according to one embodiment of the present invention is characterized in that the light-transmitting layer is any one of an acrylic film, a triacetyl cellulose film, a cycloolefin resin film, and a glass substrate.
 アクリルフィルム、トリアセチルセルロースフィルム、シクロオレフィン樹脂フィルム、および、ガラス基板は比較的に複屈折が少ない材料なので、上記の構成によれば、導光素子に入射する光の偏光状態の変化を抑えることができる。 Since acrylic film, triacetyl cellulose film, cycloolefin resin film, and glass substrate are materials with relatively little birefringence, according to the above configuration, the change in the polarization state of light incident on the light guide element can be suppressed. Can do.
 また、本発明の一態様に係る表示装置は、上記導光素子の入射面は、上記表示パネルの上記表示面に平行であり、上記導光素子の出射面は、上記表示パネルの端部に向かって厚みが大きくなるように上記表示パネルの上記表示面に対して傾斜しており、上記導光素子において、上記表示パネルの上記端部に直交する方向の断面が三角形状の三角柱であることを特徴としている。 In the display device according to one embodiment of the present invention, an incident surface of the light guide element is parallel to the display surface of the display panel, and an output surface of the light guide element is at an end of the display panel. The display panel is inclined with respect to the display surface so as to increase in thickness, and the light guide element has a triangular triangular cross section in a direction perpendicular to the end of the display panel. It is characterized by.
 上記の構成によれば、表示を行う領域、および、その近傍にのみ導光素子が設けられている。これによって、導光素子を設ける領域が少なくて済むので、表示装置の製造コストを低減することができる。また、表示装置の左右2辺の領域を見え難くすることができるので、3画面以上の表示装置を並べたタイルディスプレイを構成することができる。 According to the above configuration, the light guide element is provided only in the display area and the vicinity thereof. Accordingly, the area where the light guide element is provided can be reduced, so that the manufacturing cost of the display device can be reduced. Moreover, since it is possible to make it difficult to see the regions on the left and right sides of the display device, a tile display in which display devices having three or more screens are arranged can be configured.
 また、本発明の一態様に係る電子機器は、隣り合う上記表示装置の境界部において折り畳み可能になっていることを特徴としている。 Further, the electronic device according to one embodiment of the present invention is characterized in that it can be folded at a boundary portion between the adjacent display devices.
 上記の構成によれば、各表示装置の境界部において折り畳み可能であると共に、これら表示装置の表示面の相対角度を変化させることができるようになっている。 According to the above configuration, the display device can be folded at the boundary between the display devices, and the relative angle of the display surfaces of these display devices can be changed.
 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内で、いろいろと変更して実施することができるものである。 The specific embodiments or examples made in the detailed description section of the invention are merely to clarify the technical contents of the present invention, and are limited to such specific examples and are interpreted in a narrow sense. It should be understood that various modifications may be made within the spirit of the invention and the scope of the following claims.
 本発明は、携帯電話機、電子ブック、ゲーム機、TV(テレビジョン)、または、アウトドアユースの公共掲示板等、表示部を有する各種電子機器に用いることができる。 The present invention can be used for various electronic devices having a display unit such as a mobile phone, an electronic book, a game machine, a TV (television), or a public bulletin board for outdoor use.
1  電子機器
2  ヒンジ
3  境界部
100A~100D,100’  液晶表示装置(表示装置)
200A~200D,200’  液晶パネル(表示パネル)
201  画素
202  表示領域
203  額縁領域
210  アレイ基板
211  絶縁基板
212  画素電極
220  対向基板
222  カラーフィルタ層
230  液晶層
240,250  光学フィルム部
300A~300E,300’  導光素子
301,311  入射面
302,312  出射面
303  境界面
310,310A,310B  導光部
320  シート積層体
321  金属層
323  接着層
324  透光層
350  透光性シート
350A  透光性カバーシート
350B  透光性カバーシート
400  バックライト装置
400A  バックライト
DESCRIPTION OF SYMBOLS 1 Electronic device 2 Hinge 3 Boundary part 100A-100D, 100 'Liquid crystal display device (display device)
200A to 200D, 200 'liquid crystal panel (display panel)
201 Pixel 202 Display area 203 Frame area 210 Array substrate 211 Insulating substrate 212 Pixel electrode 220 Counter substrate 222 Color filter layer 230 Liquid crystal layer 240, 250 Optical film portions 300A to 300E, 300 ′ Light guide elements 301, 311 Incident surfaces 302, 312 Outgoing surface 303 Boundary surfaces 310, 310A, 310B Light guide 320 Sheet laminate 321 Metal layer 323 Adhesive layer 324 Translucent layer 350 Translucent sheet 350A Translucent cover sheet 350B Translucent cover sheet 400 Backlight device 400A Back Light

Claims (7)

  1.  表示パネルと、
     上記表示パネルの表示面側に設けられた導光素子とを備えた表示装置であって、
     上記導光素子は、金属からなる反射層と、透光層とを互いに平行に繰り返し積層して構成されており、
     上記表示パネルの上記表示面側に偏光板を備え、
     上記反射層と上記透光層との境界面が上記表示面の面方向に伸展する方向と、上記偏光板の光透過軸の方向とが互いに平行であることを特徴とする表示装置。
    A display panel;
    A display device comprising a light guide element provided on the display surface side of the display panel,
    The light guide element is configured by repeatedly laminating a reflective layer made of metal and a light transmitting layer in parallel with each other,
    A polarizing plate is provided on the display surface side of the display panel,
    A display device characterized in that a direction in which a boundary surface between the reflective layer and the light transmitting layer extends in a plane direction of the display surface and a direction of a light transmission axis of the polarizing plate are parallel to each other.
  2.  上記透光層のリタデーションは、10nm以下であることを特徴とする請求項1に記載の表示装置。 The display device according to claim 1, wherein the retardation of the light transmitting layer is 10 nm or less.
  3.  上記透光層のリタデーションは、5nm以下であることを特徴とする請求項2に記載の表示装置。 The display device according to claim 2, wherein the retardation of the light transmitting layer is 5 nm or less.
  4.  上記透光層は、アクリルフィルム、トリアセチルセルロースフィルム、シクロオレフィン樹脂フィルム、および、ガラス基板のいずれかであることを特徴とする請求項1~3のいずれか1項に記載の表示装置。 The display device according to any one of claims 1 to 3, wherein the light transmitting layer is any one of an acrylic film, a triacetyl cellulose film, a cycloolefin resin film, and a glass substrate.
  5.  上記導光素子の入射面は、上記表示パネルの上記表示面に平行であり、
     上記導光素子の出射面は、上記表示パネルの端部に向かって厚みが大きくなるように上記表示パネルの上記表示面に対して傾斜しており、
     上記導光素子において、上記表示パネルの上記端部に直交する方向の断面が三角形状の三角柱であることを特徴とする請求項1~4のいずれか1項に記載の表示装置。
    The incident surface of the light guide element is parallel to the display surface of the display panel,
    The exit surface of the light guide element is inclined with respect to the display surface of the display panel so that the thickness increases toward the end of the display panel,
    5. The display device according to claim 1, wherein in the light guide element, a cross section in a direction orthogonal to the end portion of the display panel is a triangular prism.
  6.  請求項1~5のいずれか1項に記載の表示装置を複数備えており、
     上記複数の表示装置が同一平面上に並べて配列されていることを特徴とする電子機器。
    A plurality of display devices according to any one of claims 1 to 5,
    An electronic apparatus, wherein the plurality of display devices are arranged side by side on the same plane.
  7.  隣り合う上記表示装置の境界部において折り畳み可能になっていることを特徴とする請求項6に記載の電子機器。 The electronic device according to claim 6, wherein the electronic device can be folded at a boundary portion between the adjacent display devices.
PCT/JP2012/059042 2011-04-06 2012-04-03 Display device and electronic apparatus provided with display device WO2012137762A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011084430 2011-04-06
JP2011-084430 2011-04-06

Publications (1)

Publication Number Publication Date
WO2012137762A1 true WO2012137762A1 (en) 2012-10-11

Family

ID=46969159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059042 WO2012137762A1 (en) 2011-04-06 2012-04-03 Display device and electronic apparatus provided with display device

Country Status (1)

Country Link
WO (1) WO2012137762A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128652A (en) * 1993-10-28 1995-05-19 Hewlett Packard Co <Hp> Liquid crystal display device
JP2000056713A (en) * 1998-08-04 2000-02-25 Sharp Corp Display unit, composite type display and display module
JP2001005414A (en) * 1999-05-31 2001-01-12 Samsung Sdi Co Ltd Multidisplay device
JP2009198688A (en) * 2008-02-20 2009-09-03 Sharp Corp Display
WO2009122691A1 (en) * 2008-03-31 2009-10-08 シャープ株式会社 Display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128652A (en) * 1993-10-28 1995-05-19 Hewlett Packard Co <Hp> Liquid crystal display device
JP2000056713A (en) * 1998-08-04 2000-02-25 Sharp Corp Display unit, composite type display and display module
JP2001005414A (en) * 1999-05-31 2001-01-12 Samsung Sdi Co Ltd Multidisplay device
JP2009198688A (en) * 2008-02-20 2009-09-03 Sharp Corp Display
WO2009122691A1 (en) * 2008-03-31 2009-10-08 シャープ株式会社 Display device

Similar Documents

Publication Publication Date Title
KR102046152B1 (en) Polarizer and liquid crystal display using the same
US8208097B2 (en) Color compensation multi-layered member for display apparatus, optical filter for display apparatus having the same and display apparatus having the same
TWM570442U (en) Display apparatus
WO2018096569A1 (en) Liquid crystal display device
CN107942571B (en) Wire grid polarizer and display panel using the same
WO2013179813A1 (en) Display device
KR20060052259A (en) Liquid crystal display device
JP2014182280A (en) Display device
US20120293744A1 (en) Light guide sheet and display device
JP2007034308A (en) Liquid crystal display device and manufacturing method therefor
US20170018218A1 (en) Display apparatus with transmissive and reflective subpixels
JP2009289592A (en) Display
WO2001033290A1 (en) Reflective lcd, semitransmitting reflective lcd and electronic device
KR20090058992A (en) Multi view display device
CN212461009U (en) Display screen, spliced display screen and display device
KR20150000743A (en) Display apparatus and method of manufacturing the same
US11614644B2 (en) Display device
WO2018181079A1 (en) Liquid crystal display panel and manufacturing method for liquid crystal display panel
WO2015166833A1 (en) Mirror display
JPWO2019116618A1 (en) Image display device
JP5114853B2 (en) Display device
US20050157231A1 (en) Transflective mode liquid crystal display
JP5656194B2 (en) Display panel and display device
WO2012137762A1 (en) Display device and electronic apparatus provided with display device
WO2012137763A1 (en) Display device and electronic apparatus provided with said display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12767794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12767794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP