WO2012137564A1 - Solid oxide fuel cell system and operating method therefor - Google Patents

Solid oxide fuel cell system and operating method therefor Download PDF

Info

Publication number
WO2012137564A1
WO2012137564A1 PCT/JP2012/055134 JP2012055134W WO2012137564A1 WO 2012137564 A1 WO2012137564 A1 WO 2012137564A1 JP 2012055134 W JP2012055134 W JP 2012055134W WO 2012137564 A1 WO2012137564 A1 WO 2012137564A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
temperature
solid oxide
oxide fuel
gas
Prior art date
Application number
PCT/JP2012/055134
Other languages
French (fr)
Japanese (ja)
Inventor
星野 真樹
隆夫 和泉
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2012137564A1 publication Critical patent/WO2012137564A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04328Temperature; Ambient temperature of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04738Temperature of auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a solid oxide fuel cell system that generates electricity by supplying a hydrogen-containing gas and an oxygen-containing gas to a power generation unit, and an operation method thereof.
  • a high-temperature fuel cell such as a solid oxide fuel cell has an operating temperature in the temperature range of about 600 to 1000 ° C., and when it is started, the temperature is gradually raised over a day or more. It was. In addition, the high-temperature fuel cell does not need to be stopped other than for maintenance, etc., and can be stopped for a long time.
  • DSS Dynamic Start and Stop
  • the material in the power generation unit may be damaged.
  • the reason why it takes time to raise the temperature when starting the high-temperature fuel cell is to prevent the temperature distribution in the power generation section of the high-temperature fuel cell from becoming large.
  • a system including a startup combustor that obtains a high-temperature combustion gas has been proposed.
  • the high-temperature combustion gas obtained by the startup combustor is modified.
  • the temperature is only raised in the quality device.
  • the present invention relates to a solid oxide fuel cell system capable of reducing the size without providing a large blower for supplying combustion gas to the startup combustor and shortening the time required for startup, and an operating method thereof.
  • the purpose is to provide.
  • One embodiment of the present invention includes an electrolyte membrane and an anode electrode and a cathode electrode laminated on both sides of the electrolyte membrane, and solid oxide that generates power by flowing anode gas and cathode gas through the anode electrode and cathode electrode, respectively.
  • This system includes a fuel cell temperature determination unit that determines whether or not the temperature of the solid oxide fuel cell has become equal to or lower than a predetermined temperature, and the temperature of the solid oxide fuel cell is determined by the fuel cell temperature determination unit. And a restarting unit that restarts by supplying the cathode gas supplied to the cathode electrode by the startup gas supply unit to the startup combustor when it is determined that the following has occurred.
  • the cathode gas supplied to the cathode electrode is supplied to the startup combustor to perform the restart. This is a method of operating an oxide fuel cell system.
  • FIG. 1 is a schematic block diagram showing the configuration of the solid oxide fuel cell system according to the first embodiment of the present invention.
  • FIG. 2 is a flowchart showing the operation of the solid oxide fuel cell system according to the first embodiment of the present invention.
  • FIG. 3 is a schematic block diagram showing the configuration of the solid oxide fuel cell system according to the second embodiment of the present invention.
  • FIG. 4 is a flowchart showing the operation of the solid oxide fuel cell system according to the second embodiment of the present invention.
  • FIG. 5 is a schematic block diagram showing the configuration of the solid oxide fuel cell system according to the third embodiment of the present invention.
  • FIG. 1 is a schematic block diagram showing the configuration of the solid oxide fuel cell system according to the first embodiment of the present invention.
  • a solid oxide fuel cell system A1 according to the first embodiment of the present invention includes a fuel pump 10, an evaporator 11, a startup combustor 12, a blower 13, a switching valve 14, a heat exchanger 15, and a solid oxide fuel cell. (Hereinafter simply referred to as “fuel cell”) 20, a temperature sensor TS1, a battery 16, and a controller 100.
  • the fuel cell 20 is configured by housing a plurality of cells 24 stacked on each other in a case 25.
  • Each cell 24 includes an electrolyte membrane 23 and an anode electrode 21 and a cathode electrode 22 provided on both sides thereof.
  • the electrolyte membrane 23 and the anode 21 and cathode 22 provided on both sides of the fuel cell 20 include an anode gas (hydrogen-containing gas) and a cathode gas (oxygen-containing) on the anode 21 and cathode 22 of each cell 24. Gas) is separated and circulated.
  • hydrogen-containing gas is described as fuel gas
  • oxygen-containing gas is described as air.
  • the “fuel gas” is not particularly limited, and ethane, butane, natural gas, or the like can be used.
  • an alcohol such as ethanol or butanol
  • a liquid fuel such as gasoline, light oil or light oil can be used.
  • the fuel pump 10 supplies fuel necessary for power generation of the fuel cell 20 to the fuel evaporator 11.
  • the fuel pump 10 and the evaporator 11 are connected by a supply pipe 10a provided between them.
  • the fuel pump 10 is connected to the output port side of the controller 100 and is appropriately driven according to a command from the controller 100.
  • the evaporator 11 vaporizes the fuel supplied by the fuel pump 10 to obtain fuel gas.
  • the evaporator 11 is connected to the startup combustor 12 through a supply pipe 11a.
  • the air blower 13 supplies air necessary for power generation of the fuel cell 20 to the switching valve 14.
  • the air blower 13 is connected to the switching valve 14 via the supply pipe 13a.
  • the air blower 13 is connected to the output port side of the controller 100 and is appropriately driven according to a command from the controller 100.
  • the switching valve 14 switches the air supply destination from the air blower 13 to the heat exchanger 15 or the startup combustor 12.
  • the switching valve 14 is connected to the inlet of the startup combustor 12 via the supply pipe 14a, and is connected to one inlet of the heat exchanger 15 via the supply pipe 14b.
  • the switching valve 14 is connected to the output port side of the controller 100 and is appropriately switched and driven by a command from the controller 100.
  • the air blower 13 and the switching valve 14 constitute a starting gas supply unit B1 for supplying the cathode gas supplied to the cathode electrode 22 to the starting combustor 12.
  • the startup combustor 12 generates high-temperature combustion gas.
  • the outlet of the startup combustor 12 is connected to the supply pipe 14b through the supply pipe 12a.
  • the high-temperature combustion gas generated by the startup combustor 12 is supplied to the fuel cell 20 via the heat exchanger 15.
  • the heat exchanger 15 exchanges heat between the exhaust gas discharged from the anode 21 of the fuel cell 20 and the cathode gas supplied to the cathode 22.
  • One outlet of the heat exchanger 15 is connected to the inlet of the cathode electrode 22 of the fuel cell 20 through a supply pipe 15a.
  • the other inlet of the heat exchanger 15 is connected to the outlet of the anode 21 of the fuel cell 20 via the supply pipe 15b.
  • a discharge pipe 22 a is connected to the outlet of the cathode electrode 22.
  • the exhaust gas discharged from the cathode electrode 22 is discharged to the outside through the discharge pipe 22a.
  • a supply pipe 22b for supplying fuel gas is connected to the inlet of the anode 21. Fuel gas is supplied to the anode 21 through the supply pipe 22b.
  • the temperature sensor TS1 is disposed in the discharge pipe 22a and measures the temperature of the exhaust gas discharged from the cathode electrode 22.
  • the temperature sensor TS1 is connected to the input port side of the controller 100, and can measure the temperature of the exhaust gas and hence the temperature of the fuel cell 20. Note that the installation position of the temperature sensor TS1 is not limited to the discharge pipe 22a, and may be disposed anywhere as long as the temperature of the fuel cell 20 can be measured.
  • the battery 16 is charged with electric power generated when restarting described later.
  • the battery 16 is connected to the fuel cell 20.
  • the controller 100 has a storage unit including a CPU (Central Processing Unit) (not shown), a hard disk, a semiconductor memory, and the like.
  • the controller 100 exhibits the following functions by executing required programs used in the present system stored in the storage unit.
  • the fuel gas to the startup combustor 12 is used as the startup gas supply stop unit 104 And the ability to stop air supply.
  • the above “restart” is performed by supplying air and fuel gas to the start-up combustor 12 at the same time.
  • the supply of air to the startup combustor 12 is performed by switching the supply destination of air from the air blower 13 to the startup combustor 12 by the switching valve 14. Therefore, according to this embodiment, it is not necessary to provide another large-sized blower for supplying air to the startup combustor 12.
  • the predetermined temperature (restart temperature) Tf is a temperature at which the fuel cell 20 can be restarted within a predetermined time Td by the air supplied to the cathode electrode 22 (that is, the time from the start to the end of restart). Temperature which can be kept within a predetermined time Td).
  • the predetermined temperature Tf is, for example, 400 ° C. to 500 ° C., and varies depending on the capacity of the air blower 13, the heat capacity of the part that needs to be heated, and the like.
  • the air blower 13 Since the air blower 13 is selected assuming rated power generation, it takes a long time to raise the temperature of the air supplied by the air blower 13 from room temperature to a high temperature of 600 ° C. or higher.
  • the predetermined temperature Tf is set to 400 ° C., and the restart is started when the temperature of the fuel cell 20 becomes 400 ° C. or lower. Thereby, compared with restart from normal temperature, start time can be reduced to 1/5.
  • restart temperature Tf when the restart temperature Tf is set to 60% or more of the temperature of the power generation unit during power generation, it becomes possible to restart more quickly.
  • the restart temperature Tf when the restart temperature Tf is set to 75% or more of the temperature of the power generation unit during power generation, it is possible to restart in a shorter time. Specifically, it is possible to restart in a time of 1/2 or less when the restart temperature Tf is set to 60% or more of the temperature of the power generation unit during power generation. Furthermore, as the restart temperature Tf is set higher, the temperature distribution of the power generation section is less likely to occur, so that more rapid heating is possible and the startup time can be further shortened.
  • the predetermined time Td that serves as a reference when determining the restart temperature Tf is determined from the capacity of the battery 16 and the required value from the vehicle system side. Therefore, for example, if the capacity of the battery 16 is sufficient and it takes about 20 minutes to start up, the temperature required to start the restart is relatively low. On the other hand, when the capacity of the battery 16 is not sufficient and the start-up can take only one minute, for example, the temperature necessary for starting the restart is relatively close to the temperature at the time of power generation. When considering application to an in-vehicle system, it is desirable that the time required for restarting is shorter, but when the capacity of the battery 16 is sufficient, the restarting temperature Tf may be appropriately changed.
  • the power generation unit of the fuel cell 20 generates power.
  • the power generated here can be used in the next restart by charging the battery 16.
  • the charged power can be used, for example, for keeping the system warm, cleaning the air conditioner, purifying the vehicle interior, regenerating the exhaust purification catalyst (DPF regeneration, S coverage). It can be used as electric power in the vehicle such as detoxification and regeneration of the reforming catalyst. Moreover, when an electroreceptor is nearby, electric power may be supplied to the acceptor. For example, when parked in a garage at home, it can be used for domestic power consumption.
  • FIG. 2 is a flowchart showing the operation of the fuel cell system A1.
  • step S1 the controller 100 measures the temperature of the air discharged from the cathode electrode 22 of the fuel cell 20 by the temperature sensor TS1, that is, the temperature of the fuel cell A1.
  • step S2 the controller 100 determines whether or not the temperature measured by the temperature sensor TS1 has become equal to or lower than a predetermined temperature Tf. If it is determined in step S2 that the temperature has become equal to or lower than the predetermined temperature Tf, the controller 100 proceeds to step S3. If it is determined that the temperature is higher than the predetermined temperature Tf, the process in step S2 is repeated.
  • step S ⁇ b> 3 the controller 100 switches the switching valve 14 so that the air supplied toward the cathode electrode 22 is supplied to the startup combustor 12 and supplies fuel gas to the startup combustor 12. Thereby, the controller 100 supplies the high temperature combustion gas produced
  • step S ⁇ b> 5 the controller 100 supplies fuel gas to the anode 21.
  • step S6 the controller 100 determines whether or not the temperature of the fuel cell 20, and thus the power generation unit, is equal to or higher than the power generation possible temperature Ts. If it is determined in step S6 that the temperature is equal to or higher than the power generation possible temperature Ts, the controller 100 proceeds to step S7. If it is determined that the temperature is lower than the power generation possible temperature Ts, the process in step S6 is repeated.
  • step S7 the controller 100 stops the supply of fuel gas and air to the startup combustor 12.
  • step S ⁇ b> 8 the controller 100 determines whether or not fuel gas is supplied to the anode 21. If it is determined that the power is supplied, the process proceeds to step S9 to start power generation. If it is determined that the power is not supplied, step S8 is repeated.
  • FIG. 3 is a schematic block diagram showing the configuration of the solid oxide fuel cell system according to the second embodiment of the present invention.
  • symbol same as them is attached
  • subjected and description is abbreviate
  • the solid oxide fuel cell system A2 includes a reformer 30, a heater 31, a temperature sensor TS2, an evaporator 32, a fuel pump 33, and A water pump 34 is provided.
  • the reformer 30 includes a reforming catalyst for reforming a raw material for hydrogen production to produce a reformed fuel gas containing hydrogen.
  • the reformer 30 is connected to the inlet of the anode 21 via the supply pipe 22b.
  • the temperature sensor TS2 is disposed in the supply pipe 22b and measures the temperature of the reformed fuel gas supplied from the reformer 30.
  • the temperature sensor TS2 is connected to the input port side of the controller 100, and can measure the temperature of the reformed fuel gas supplied from the reformer 30, and thus the temperature of the reformer 30.
  • the heater 31 is attached to the reformer 30 and heats the reformer 30.
  • the inlet of the heater 31 is connected to the outlet of the cathode electrode 22 through the discharge pipe 22a.
  • the evaporator 32 is connected to the fuel pump 33 via the supply pipe 33a and is connected to the water pump 34 via the supply pipe 34a.
  • the evaporator 32 is connected to the mixer 43 via a supply pipe 32a.
  • the fuel pump 33 and the water pump 34 are respectively connected to the output port side of the controller 100 and are appropriately driven according to commands from the controller 100. Thereby, the evaporator 32 evaporates the fuel supplied from the fuel pump 33 to obtain fuel gas, and also evaporates the water supplied from the water pump 34.
  • the evaporator 32, the fuel pump 33, and the water pump 34 constitute a reformer gas supply unit B2 that supplies a hydrogen-containing gas and an oxygen-containing gas to the reformer 30.
  • the controller 100 in the present embodiment has the following functions in addition to the functions (1) to (4). (5) A function of measuring the temperature of the reformer 30 by the temperature sensor TS2 as the reformer temperature measuring unit 105. (6) A function for determining whether or not the temperature of the reformer 30 has reached a predetermined temperature Tr as the reformer temperature determination unit 106.
  • the predetermined temperature Tr is set to about 300 ° C. If the temperature of the reformer 30 is not equal to or higher than the predetermined temperature Tr, unreacted fuel and oxygen may be supplied to the anode electrode 21 and may affect the anode electrode 21.
  • FIG. 4 is a flowchart showing the operation of the fuel cell system A2.
  • step S11 the controller 100 measures the temperature of the air discharged from the cathode electrode 22 of the fuel cell 20 by the temperature sensor TS1, that is, the temperature of the fuel cell A2.
  • step S12 the controller 100 determines whether or not the temperature measured by the temperature sensor TS1 has become equal to or lower than a predetermined temperature Tf. If it is determined in step S12 that the temperature has become equal to or lower than the predetermined temperature Tf, the controller 100 proceeds to step S13. If it is determined that the temperature is higher than the predetermined temperature Tf, the controller 100 repeats the process in step S12.
  • step S ⁇ b> 13 the controller 100 switches the switching valve 14 so that the air supplied toward the cathode electrode 22 flows to the startup combustor 12 and supplies fuel gas to the startup combustor 12. Thereby, the controller 100 supplies the high temperature combustion gas produced
  • step S15 the controller 100 raises the temperature of the reformer 30 by supplying the exhaust gas discharged from the cathode electrode 22 to the heater 31.
  • step S16 the controller 100 measures the temperature of the reformer 30 with the temperature sensor TS2, and determines whether or not the measured temperature has reached 300 ° C. or higher. If it is determined in step S16 that the temperature is 300 ° C. or higher, the controller 100 proceeds to step S17, and if it is determined that the temperature is lower than 300 ° C., the process returns to step S15.
  • the controller 100 supplies fuel gas and air to the reformer 30, and in the subsequent step S18, the controller 100 supplies the reformed fuel gas to the anode 21.
  • the fuel cell 20 can be heated from both sides of the cathode electrode 22 and the anode electrode 21 by supplying the reformed fuel gas obtained by the reformer 30 to the anode electrode 21. Thereby, the temperature distribution can be reduced and the startup time can be shortened.
  • step S19 the controller 100 determines whether or not the temperature of the fuel cell 20, and hence the power generation unit, is equal to or higher than the power generation possible temperature Ts. If it is determined in step S19 that the temperature of the power generation unit has become equal to or higher than the power generation possible temperature Ts, the controller 100 proceeds to step S20. If it is determined that the temperature is lower than the power generation possible temperature Ts, the process proceeds to step S18. return.
  • step S20 the controller 100 stops the supply of high-temperature combustion gas and air to the startup combustor 12, and in the subsequent step S21, supplies steam to the reformer 30. That is, when the fuel cell 20 reaches a temperature at which power can be generated, the supply of fuel gas and air to the startup combustor 12 is stopped, and the normal operation is started. At that time, steam is also supplied to the reformer 30 to reduce the air supply amount so that the hydrogen-containing gas is mainly generated by the steam reforming reaction. When the generation of the hydrogen-containing gas is confirmed, this is supplied to the anode 21 and power generation is performed, whereby the restart is completed.
  • step S22 the controller 100 determines whether or not the fuel gas is supplied to the anode 21. If it determines with being supplied, a process will be advanced to step S23, and electric power generation will be started, and if it determines with not being supplied, step S22 will be repeated.
  • the reformed fuel gas obtained by the reformer 30 can be used for power generation as a fuel gas.
  • -Since the air supplied to the start-up combustor 12 is supplied from the blower 13 that forms part of the start-up gas supply unit B1, a system that can be restarted in a short time without installing another large blower is provided. can do.
  • the reformer 30 is provided, it is possible to generate electricity by supplying liquid fuel, so the cruising range can be increased, and it is superior to conventional hydrogen fuel cell vehicles and electric vehicles. Can do.
  • the fuel cell is supplied with the hydrogen-containing gas obtained by supplying fuel gas and air to the reformer 30 and utilizing the oxidation reaction Since heating can also be performed from the anode electrode 21 side, activation in a shorter time is possible.
  • the predetermined temperature Tf is set to 500 ° C., and the restart is started when the temperature of the fuel cell 20 becomes 500 ° C. or lower. Thereby, compared with restart from normal temperature, start time can be reduced to 1/10.
  • FIG. 5 is a schematic block diagram showing the configuration of the solid oxide fuel cell system according to the third embodiment of the present invention.
  • symbol same as them is attached
  • subjected and description is abbreviate
  • the solid oxide fuel cell system A3 includes an anode exhaust gas circulation section D in addition to the configuration of the fuel cell system A2.
  • the anode exhaust gas circulation section D includes a circulation pipe 41b that connects the outlet of the anode 21 and the mixer 43, a circulation pipe 43a that connects the mixer 43 and the heat exchanger 44, and a circulation pipe 41b.
  • a blower 40 disposed upstream of the exhaust gas distribution direction and a three-way valve 41 disposed downstream of the blower 40 of the circulation pipe 41b are provided.
  • the blower 40 and the three-way valve 41 are connected to the output port side of the controller 100 and are appropriately driven by commands from the controller 100.
  • the three-way valve 41 is connected to the discharge pipe 22a from the cathode electrode 22 through the supply pipe 41a.
  • a three-way valve 42 is disposed in the discharge pipe 22a.
  • the three-way valve 42 is connected to the evaporator 32 via a supply pipe 42a.
  • the three-way valve 42 is connected to the output port side of the controller 100 and is appropriately driven by a command from the controller 100.
  • the heat exchanger 44 is provided in the reformer 30 and the heater 31 so that the hydrogen-containing gas supplied from the mixer 43 can be heated and heated through the circulation pipe 43a.
  • the supply pipe 43b is connected to the mixer 43.
  • a blower 45 is disposed in the supply pipe 43b.
  • the supply pipe 43b is connected to the heater 31 via the supply pipe 43c.
  • a blower 46 is disposed in the supply pipe 43c.
  • the blowers 45 and 46 are connected to the output port side of the controller 100 and are appropriately driven by commands from the controller 100.
  • a supply pipe 33 a is connected to the mixer 43.
  • An evaporator 32 and a fuel pump 33 are disposed in the supply pipe 33a. As a result, the fuel supplied from the fuel pump 33 is vaporized by the evaporator 32 and supplied to the mixer 43.
  • the evaporator 32, the fuel pump 33, and the blower 45 constitute the reformer gas supply unit B3 that supplies the hydrogen-containing gas and the oxygen-containing gas to the reformer 30.
  • the following effects can be obtained in addition to the effects similar to those described in the first and second embodiments.
  • the fuel cell system A3 By circulating the exhaust gas discharged from the anode 21 through the anode exhaust gas circulation part D, the water vapor generated at the anode 21 by power generation can be used for the reaction in the reformer 30.
  • the fuel cell system A3 can generate power without mounting a water tank, and the in-vehicle system can be further downsized.
  • the time required for restart can be shortened without installing a large blower. . Therefore, in the fuel cell system A3, the system efficiency can be further increased.
  • the fuel cell system A3 in addition to heating by the startup combustor 12, the fuel cell system A3 is started while supplying fuel gas and air to the reformer 30 and circulating the exhaust gas discharged from the anode 21.
  • the startup time can be reduced to 1/20 compared to the case of restarting from room temperature.
  • the restart can be performed with a restart time suitable for the system. -By charging the battery with the electric power generated when restarting, it can be used effectively without wasting the electric power.
  • the time required for restart can be shortened by setting the restart temperature Tf to 60% or more of the temperature of the power generation unit during power generation.
  • the restart can be restarted in a shorter time by setting the restart temperature Tf to 75% or more of the temperature of the power generation unit during power generation.
  • Reactivation can be performed without providing a cathode exhaust heating gas return path for returning a part of the exhaust heating gas discharged from the cathode electrode 22 back to the cathode electrode 22. Thereby, restart can be performed without increasing the temperature distribution in the fuel cell.
  • the switch determination unit for providing a restart allowance switch for allowing the restart and for determining whether or not the restart permitting switch is turned on in the controller 100.
  • the cathode gas supplied to the cathode from the startup gas supply unit can be supplied to the startup combustor only when it is determined that the restart permission switch is turned on. By performing the restart operation only when the restart permission switch is turned on, it is possible to reduce the energy consumed for restart when the use frequency is low.
  • the solid oxide fuel cell system without providing a large blower for supplying combustion gas to the start-up combustor, the solid oxide fuel cell system can be downsized. In addition, the time required for the activation can be shortened.

Abstract

A solid oxide fuel cell system (A1, A2, A3) is provided with solid oxide fuel cell (20) that generates electric power by separating from each other and circulating an anode gas and a cathode gas at an anode (21) and cathode (22) that are stacked on the two sides of an electrolyte membrane (23) and with a startup combustor (12) that generates high temperature combustion gas for raising the temperature of the solid oxide fuel cell (20). When the temperature of the solid oxide fuel cell (20) is determined to be a prescribed temperature (Tf) or less, restarting is carried out by the cathode gas that is supplied to the cathode (21) being supplied to the startup combustor (12).

Description

固体酸化物型燃料電池システム及びその運転方法Solid oxide fuel cell system and operation method thereof
 本発明は、水素含有ガス及び酸素含有ガスを発電部に供給して発電する固体酸化物型燃料電池システム及びその運転方法に関する。 The present invention relates to a solid oxide fuel cell system that generates electricity by supplying a hydrogen-containing gas and an oxygen-containing gas to a power generation unit, and an operation method thereof.
 固体酸化物型燃料電池等の高温型燃料電池は、その動作温度が約600~1000℃の温度帯域であり、これを起動する際には、一日以上の時間をかけて徐々に昇温させていた。また、高温型燃料電池は、メンテナンス等以外に停止させる必要がなく、停止にも長い時間をかけることができた。 A high-temperature fuel cell such as a solid oxide fuel cell has an operating temperature in the temperature range of about 600 to 1000 ° C., and when it is started, the temperature is gradually raised over a day or more. It was. In addition, the high-temperature fuel cell does not need to be stopped other than for maintenance, etc., and can be stopped for a long time.
 近年、家庭用システムの普及にあたり、DSS(Daily Start and Stop)運転をするための方法が提案されている。DSS運転では、一日一回起動停止を行う。この起動停止にかかる時間及びエネルギーを減少させるための提案がなされている(特許文献1)。 In recent years, a method for DSS (Daily Start and Stop) operation has been proposed with the spread of household systems. In DSS operation, start / stop is performed once a day. Proposals have been made to reduce the time and energy required for starting and stopping (Patent Document 1).
特開2006-86016号公報JP 2006-86016 A
 高温型燃料電池では、発電部内の温度分布が大きくなると、発電部内の材料が破損する虞がある。高温型燃料電池を起動する際、昇温に時間を要するのは、高温型燃料電池の発電部内の温度分布を大きくさせないためである。 In a high-temperature fuel cell, if the temperature distribution in the power generation unit becomes large, the material in the power generation unit may be damaged. The reason why it takes time to raise the temperature when starting the high-temperature fuel cell is to prevent the temperature distribution in the power generation section of the high-temperature fuel cell from becoming large.
 このように高温型燃料電池は、起動に長時間を要するため、高温型燃料電池システムを車載するための検討は、ほとんど行われていないのが現状である。高温型燃料電池システムを車載する場合には、起動時間を短くする必要があるが、起動のために大型のブロワ等を搭載することは、車室内の容積に限りがあるため困難である。 As described above, since a high-temperature fuel cell requires a long time to start up, there is almost no investigation for mounting a high-temperature fuel cell system on a vehicle. When the high-temperature fuel cell system is mounted on the vehicle, it is necessary to shorten the start-up time, but it is difficult to mount a large blower or the like for the start-up because the volume in the vehicle compartment is limited.
 一方、固体高分子膜型燃料電池システムにおいては、高温の燃焼ガスを得る起動燃焼器を備えたシステムが提案されているが、当該システムでは、起動燃焼器で得られた高温の燃焼ガスで改質器を昇温しているにすぎない。 On the other hand, in a polymer electrolyte membrane fuel cell system, a system including a startup combustor that obtains a high-temperature combustion gas has been proposed. In this system, the high-temperature combustion gas obtained by the startup combustor is modified. The temperature is only raised in the quality device.
 これに対して、固体酸化物型燃料電池システムを車載する場合には、特に高温で作動する固体酸化物型燃料電池本体を短時間で起動する必要があるために、起動燃焼器に空気を供給するための大型ブロワを搭載しなければならない。 On the other hand, when a solid oxide fuel cell system is mounted on the vehicle, air must be supplied to the startup combustor because it is necessary to start the solid oxide fuel cell main body operating at high temperatures in a short time. A large blower must be installed.
 本発明は、起動燃焼器に燃焼用ガスを供給するための大型ブロワを設けることなく小型化を図り、かつ、起動に要する時間を短くすることができる固体酸化物型燃料電池システム及びその運転方法を提供することを目的としている。 The present invention relates to a solid oxide fuel cell system capable of reducing the size without providing a large blower for supplying combustion gas to the startup combustor and shortening the time required for startup, and an operating method thereof. The purpose is to provide.
 本発明の一態様は、電解質膜と、該電解質膜の両側に積層したアノード極およびカソード極とを備え、アノード極およびカソード極にそれぞれアノードガスおよびカソードガスを流通させることにより発電を行う固体酸化物型燃料電池と、固体酸化物型燃料電池を昇温するための高温の燃焼ガスを生成する起動燃焼器と、カソード極に供給されるカソードガスを起動燃焼器に供給する起動用ガス供給部と、を備えた固体酸化物型燃料電池システムである。このシステムは、固体酸化物型燃料電池の温度が所定の温度以下になったか否かを判定する燃料電池温度判定部と、燃料電池温度判定部により固体酸化物型燃料電池の温度が所定の温度以下になったと判定された場合に、起動用ガス供給部によりカソード極に供給されるカソードガスを起動燃焼器に供給することで、再起動を行う再起動部と、を備える。 One embodiment of the present invention includes an electrolyte membrane and an anode electrode and a cathode electrode laminated on both sides of the electrolyte membrane, and solid oxide that generates power by flowing anode gas and cathode gas through the anode electrode and cathode electrode, respectively. A physical fuel cell, a start-up combustor that generates high-temperature combustion gas for raising the temperature of the solid oxide fuel cell, and a start-up gas supply unit that supplies the start-up combustor with the cathode gas supplied to the cathode electrode And a solid oxide fuel cell system. This system includes a fuel cell temperature determination unit that determines whether or not the temperature of the solid oxide fuel cell has become equal to or lower than a predetermined temperature, and the temperature of the solid oxide fuel cell is determined by the fuel cell temperature determination unit. And a restarting unit that restarts by supplying the cathode gas supplied to the cathode electrode by the startup gas supply unit to the startup combustor when it is determined that the following has occurred.
 本発明の他の態様は、上記固体酸化物型燃料電池の温度が所定の温度以下になったとき、カソード極に供給されるカソードガスを起動燃焼器に供給することで、再起動を行う固体酸化物型燃料電池システムの運転方法である。 According to another aspect of the present invention, when the temperature of the solid oxide fuel cell becomes equal to or lower than a predetermined temperature, the cathode gas supplied to the cathode electrode is supplied to the startup combustor to perform the restart. This is a method of operating an oxide fuel cell system.
図1は、本発明の第1実施形態に係る固体酸化物型燃料電池システムの構成を示す概略ブロック図である。FIG. 1 is a schematic block diagram showing the configuration of the solid oxide fuel cell system according to the first embodiment of the present invention. 図2は、本発明の第1実施形態に係る固体酸化物型燃料電池システムの動作を示すフローチャートである。FIG. 2 is a flowchart showing the operation of the solid oxide fuel cell system according to the first embodiment of the present invention. 図3は、本発明の第2実施形態に係る固体酸化物型燃料電池システムの構成を示す概略ブロック図である。FIG. 3 is a schematic block diagram showing the configuration of the solid oxide fuel cell system according to the second embodiment of the present invention. 図4は、本発明の第2実施形態に係る固体酸化物型燃料電池システムの動作を示すフローチャートである。FIG. 4 is a flowchart showing the operation of the solid oxide fuel cell system according to the second embodiment of the present invention. 図5は、本発明の第3実施形態に係る固体酸化物型燃料電池システムの構成を示す概略ブロック図である。FIG. 5 is a schematic block diagram showing the configuration of the solid oxide fuel cell system according to the third embodiment of the present invention.
 <第1実施形態>
 以下に、本発明を実施するための形態について、図面を参照して説明する。図1は、本発明の第1実施形態に係る固体酸化物型燃料電池システムの構成を示す概略ブロック図である。
 本発明の第1実施形態に係る固体酸化物型燃料電池システムA1は、燃料ポンプ10、蒸発器11、起動燃焼器12、ブロワ13、切替弁14、熱交換器15、固体酸化物型燃料電池(以下、単に「燃料電池」という)20、温度センサTS1、バッテリ16、及びコントローラ100を有して構成されている。
<First Embodiment>
EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated with reference to drawings. FIG. 1 is a schematic block diagram showing the configuration of the solid oxide fuel cell system according to the first embodiment of the present invention.
A solid oxide fuel cell system A1 according to the first embodiment of the present invention includes a fuel pump 10, an evaporator 11, a startup combustor 12, a blower 13, a switching valve 14, a heat exchanger 15, and a solid oxide fuel cell. (Hereinafter simply referred to as “fuel cell”) 20, a temperature sensor TS1, a battery 16, and a controller 100.
 燃料電池20は、互いに積層された複数のセル24をケース25内に収容して構成されている。各セル24は、電解質膜23と、その両側に各々設けられたアノード極21とカソード極22とから構成されている。電解質膜23と、その両側に設けられたアノード極21とカソード極22燃料電池20は、各セル24のアノード極21とカソード極22とに、アノードガス(水素含有ガス)とカソードガス(酸素含有ガス)とを互いに分離して流通させることにより発電を行う。本実施形態では、「水素含有ガス」を燃料ガス、また、「酸素含有ガス」を空気として説明する。 The fuel cell 20 is configured by housing a plurality of cells 24 stacked on each other in a case 25. Each cell 24 includes an electrolyte membrane 23 and an anode electrode 21 and a cathode electrode 22 provided on both sides thereof. The electrolyte membrane 23 and the anode 21 and cathode 22 provided on both sides of the fuel cell 20 include an anode gas (hydrogen-containing gas) and a cathode gas (oxygen-containing) on the anode 21 and cathode 22 of each cell 24. Gas) is separated and circulated. In the present embodiment, “hydrogen-containing gas” is described as fuel gas, and “oxygen-containing gas” is described as air.
 「燃料ガス」は、特に限定されないが、エタン、ブタン、天然ガス等を用いることができる。特に、自動車等に搭載される車載用の固体酸化物型燃料電池システムにおいては、エタノール、ブタノール等のアルコール、ガソリン、軽油若しくは軽質油等の液体燃料を用いることができる。 The “fuel gas” is not particularly limited, and ethane, butane, natural gas, or the like can be used. In particular, in an in-vehicle solid oxide fuel cell system mounted on an automobile or the like, an alcohol such as ethanol or butanol, or a liquid fuel such as gasoline, light oil or light oil can be used.
 燃料ポンプ10は、燃料電池20の発電に必要な燃料を燃料蒸発器11に供給する。燃料ポンプ10と蒸発器11とは、それらの間に設けられた供給パイプ10aによって接続されている。燃料ポンプ10は、コントローラ100の出力ポート側に接続されて、コントローラ100からの指令によって適宜駆動されるようになっている。 The fuel pump 10 supplies fuel necessary for power generation of the fuel cell 20 to the fuel evaporator 11. The fuel pump 10 and the evaporator 11 are connected by a supply pipe 10a provided between them. The fuel pump 10 is connected to the output port side of the controller 100 and is appropriately driven according to a command from the controller 100.
 蒸発器11は、燃料ポンプ10によって供給された燃料を蒸気化して燃料ガスを得る。蒸発器11は、供給パイプ11aを介して起動燃焼器12に接続されている。 The evaporator 11 vaporizes the fuel supplied by the fuel pump 10 to obtain fuel gas. The evaporator 11 is connected to the startup combustor 12 through a supply pipe 11a.
 空気ブロワ13は、燃料電池20の発電に必要な空気を切替弁14に供給する。空気ブロワ13は、供給パイプ13aを介して切替弁14に接続されている。空気ブロワ13は、コントローラ100の出力ポート側に接続されて、コントローラ100からの指令によって適宜駆動されるようになっている。 The air blower 13 supplies air necessary for power generation of the fuel cell 20 to the switching valve 14. The air blower 13 is connected to the switching valve 14 via the supply pipe 13a. The air blower 13 is connected to the output port side of the controller 100 and is appropriately driven according to a command from the controller 100.
 切替弁14は、空気ブロワ13からの空気の供給先を熱交換器15又は起動燃焼器12に切り替える。切替弁14は、供給パイプ14aを介して起動燃焼器12の入口に接続され、また、供給パイプ14bを介して熱交換器15の一方の入口に接続されている。切替弁14は、コントローラ100の出力ポート側に接続されて、コントローラ100からの指令によって適宜切替え駆動されるようになっている。 The switching valve 14 switches the air supply destination from the air blower 13 to the heat exchanger 15 or the startup combustor 12. The switching valve 14 is connected to the inlet of the startup combustor 12 via the supply pipe 14a, and is connected to one inlet of the heat exchanger 15 via the supply pipe 14b. The switching valve 14 is connected to the output port side of the controller 100 and is appropriately switched and driven by a command from the controller 100.
 本実施形態においては、空気ブロワ13と切替弁14とが、カソード極22に供給されるカソードガスを起動燃焼器12に供給するための起動用ガス供給部B1を構成している。 In the present embodiment, the air blower 13 and the switching valve 14 constitute a starting gas supply unit B1 for supplying the cathode gas supplied to the cathode electrode 22 to the starting combustor 12.
 起動燃焼器12は、高温の燃焼ガスを生成する。起動燃焼器12の出口は、供給パイプ12aを介して供給パイプ14bに接続されている。起動燃焼器12で生成された高温の燃焼ガスは、熱交換器15を介して燃料電池20に供給される。 The startup combustor 12 generates high-temperature combustion gas. The outlet of the startup combustor 12 is connected to the supply pipe 14b through the supply pipe 12a. The high-temperature combustion gas generated by the startup combustor 12 is supplied to the fuel cell 20 via the heat exchanger 15.
 熱交換器15は、燃料電池20のアノード極21から排出された排ガスと、カソード極22に供給されるカソードガスとの間で熱交換を行う。熱交換器15の一方の出口は、供給パイプ15aを介して燃料電池20のカソード極22の入口に接続されている。熱交換器15の他方の入口は、供給パイプ15bを介して燃料電池20のアノード極21の出口に接続されている。 The heat exchanger 15 exchanges heat between the exhaust gas discharged from the anode 21 of the fuel cell 20 and the cathode gas supplied to the cathode 22. One outlet of the heat exchanger 15 is connected to the inlet of the cathode electrode 22 of the fuel cell 20 through a supply pipe 15a. The other inlet of the heat exchanger 15 is connected to the outlet of the anode 21 of the fuel cell 20 via the supply pipe 15b.
 カソード極22の出口には、排出パイプ22aが接続されている。カソード極22から排出された排気ガスは、排出パイプ22aを通じて外部に排出される。また、アノード極21の入口には、燃料ガスを供給するための供給パイプ22bが接続されている。アノード極21には、供給パイプ22bを通じて燃料ガスが供給される。 A discharge pipe 22 a is connected to the outlet of the cathode electrode 22. The exhaust gas discharged from the cathode electrode 22 is discharged to the outside through the discharge pipe 22a. A supply pipe 22b for supplying fuel gas is connected to the inlet of the anode 21. Fuel gas is supplied to the anode 21 through the supply pipe 22b.
 温度センサTS1は、排出パイプ22aに配設され、カソード極22から排出される排ガスの温度を測定する。温度センサTS1は、コントローラ100の入力ポート側に接続されて、排気ガスの温度、従ってまた、燃料電池20の温度を測定できるようになっている。なお、温度センサTS1の設置位置は、排出パイプ22aに限らず、燃料電池20の温度を測定できる場所であれば、どこに配設してもよい。 The temperature sensor TS1 is disposed in the discharge pipe 22a and measures the temperature of the exhaust gas discharged from the cathode electrode 22. The temperature sensor TS1 is connected to the input port side of the controller 100, and can measure the temperature of the exhaust gas and hence the temperature of the fuel cell 20. Note that the installation position of the temperature sensor TS1 is not limited to the discharge pipe 22a, and may be disposed anywhere as long as the temperature of the fuel cell 20 can be measured.
 バッテリ16は、後述する再起動を行ったときに発電される電力を充電する。バッテリ16は、燃料電池20に接続されている。 The battery 16 is charged with electric power generated when restarting described later. The battery 16 is connected to the fuel cell 20.
 コントローラ100は、図示しないCPU(Central Processing Unit)や、ハードディスク、半導体メモリ等からなる記憶部を有している。コントローラ100は、記憶部に記憶されている本システムに用いる所要のプログラムの実行により、下記の各機能を発揮する。 The controller 100 has a storage unit including a CPU (Central Processing Unit) (not shown), a hard disk, a semiconductor memory, and the like. The controller 100 exhibits the following functions by executing required programs used in the present system stored in the storage unit.
(1)燃料電池温度判定部101として、温度センサTS1により測定した燃料電池20の温度が所定の温度Tf以下になったか否かを判定する機能。
(2)燃料電池温度判定部101によって燃料電池20の温度が所定の温度Tf以下になったと判定された場合に、再起動部102として、燃料電池20の再起動を行う機能。
(3)発電可能温度判定部103として、燃料電池20の発電部の温度が発電可能温度Ts以上になったか否かを判定する機能。
(4)発電可能温度判定部103によって燃料電池20の発電部の温度が発電可能温度Ts以上になったと判定されたときに、起動用ガス供給停止部104として、起動燃焼器12への燃料ガスおよび空気の供給を停止する機能。
(1) A function of determining whether or not the temperature of the fuel cell 20 measured by the temperature sensor TS1 has become equal to or lower than a predetermined temperature Tf as the fuel cell temperature determination unit 101.
(2) A function of restarting the fuel cell 20 as the restarting unit 102 when the fuel cell temperature determining unit 101 determines that the temperature of the fuel cell 20 has become equal to or lower than the predetermined temperature Tf.
(3) A function for determining whether the temperature of the power generation unit of the fuel cell 20 is equal to or higher than the power generation possible temperature Ts as the power generation possible temperature determination unit 103.
(4) When the power generation possible temperature determination unit 103 determines that the temperature of the power generation unit of the fuel cell 20 is equal to or higher than the power generation possible temperature Ts, the fuel gas to the startup combustor 12 is used as the startup gas supply stop unit 104 And the ability to stop air supply.
 上記「再起動」は、起動燃焼器12に空気と燃料ガスを同時に供給することにより行う。本実施形態では、起動燃焼器12への空気の供給は、空気ブロワ13からの空気の供給先を切替弁14で起動燃焼器12に切り替えることで行っている。従って、本実施形態によれば、起動燃焼器12に空気を供給するための別の大型ブロワを設ける必要がない。 The above “restart” is performed by supplying air and fuel gas to the start-up combustor 12 at the same time. In the present embodiment, the supply of air to the startup combustor 12 is performed by switching the supply destination of air from the air blower 13 to the startup combustor 12 by the switching valve 14. Therefore, according to this embodiment, it is not necessary to provide another large-sized blower for supplying air to the startup combustor 12.
 また、所定の温度(再起動温度)Tfとは、カソード極22に供給される空気によって、燃料電池20を所定時間Td内に再起動できる温度(つまり、再起動の開始から終了までの時間を所定時間Td内に収めることができる温度)をいう。具体的には、所定の温度Tfは、例えば400℃~500℃であり、空気ブロワ13の能力、暖める必要がある部位の熱容量等によって変動する。 The predetermined temperature (restart temperature) Tf is a temperature at which the fuel cell 20 can be restarted within a predetermined time Td by the air supplied to the cathode electrode 22 (that is, the time from the start to the end of restart). Temperature which can be kept within a predetermined time Td). Specifically, the predetermined temperature Tf is, for example, 400 ° C. to 500 ° C., and varies depending on the capacity of the air blower 13, the heat capacity of the part that needs to be heated, and the like.
 空気ブロワ13は、定格発電時を想定して選定されているため、空気ブロワ13によって供給される空気の温度を、常温から600℃以上の高温まで昇温するには長時間を有する。本実施形態では、所定の温度Tfを400℃に設定し、燃料電池20の温度が400℃以下になったら再起動を開始している。これにより、常温からの再起動と比較して、起動時間を1/5に減らすことができる。 Since the air blower 13 is selected assuming rated power generation, it takes a long time to raise the temperature of the air supplied by the air blower 13 from room temperature to a high temperature of 600 ° C. or higher. In the present embodiment, the predetermined temperature Tf is set to 400 ° C., and the restart is started when the temperature of the fuel cell 20 becomes 400 ° C. or lower. Thereby, compared with restart from normal temperature, start time can be reduced to 1/5.
 なお、再起動温度Tfを発電時の発電部の温度の60%以上に設定した場合は、より速やかに再起動を行うことが可能となる。また、再起動温度Tfを発電時の発電部の温度の75%以上に設定した場合には、さらに短時間で再起動することが可能になる。具体的には、再起動温度Tfを発電時の発電部の温度の60%以上に設定した場合の1/2以下の時間で再起動することが可能になる。さらに、再起動温度Tfを高く設定するほど、発電部の温度分布が生じにくいので、より急速な加熱が可能となり、さらに起動時間を短くすることができる。 In addition, when the restart temperature Tf is set to 60% or more of the temperature of the power generation unit during power generation, it becomes possible to restart more quickly. In addition, when the restart temperature Tf is set to 75% or more of the temperature of the power generation unit during power generation, it is possible to restart in a shorter time. Specifically, it is possible to restart in a time of 1/2 or less when the restart temperature Tf is set to 60% or more of the temperature of the power generation unit during power generation. Furthermore, as the restart temperature Tf is set higher, the temperature distribution of the power generation section is less likely to occur, so that more rapid heating is possible and the startup time can be further shortened.
 ここで、再起動温度Tfを決める際の基準となる所定時間Tdは、バッテリ16の容量と車両システム側からの要求値とから決定される。従って、例えば、バッテリ16の容量が十分にあり、起動に20分程度かけられるのであれば、再起動開始に必要な温度は比較的低温となる。一方、バッテリ16の容量が十分になく、起動に例えば1分しかかけられない場合には、再起動開始に必要な温度は、比較的発電時の温度に近い温度となる。車載システムに適用することを考えた場合、再起動に要する時間は短い方が望ましいが、バッテリ16の容量に余裕がある場合には、適宜、再起動温度Tfを変更してもよい。 Here, the predetermined time Td that serves as a reference when determining the restart temperature Tf is determined from the capacity of the battery 16 and the required value from the vehicle system side. Therefore, for example, if the capacity of the battery 16 is sufficient and it takes about 20 minutes to start up, the temperature required to start the restart is relatively low. On the other hand, when the capacity of the battery 16 is not sufficient and the start-up can take only one minute, for example, the temperature necessary for starting the restart is relatively close to the temperature at the time of power generation. When considering application to an in-vehicle system, it is desirable that the time required for restarting is shorter, but when the capacity of the battery 16 is sufficient, the restarting temperature Tf may be appropriately changed.
 また、再起動を行う間、燃料電池20の発電部では発電が行われる。ここで発電した電力は、バッテリ16に充電しておくことにより、次の再起動の際に使用することが可能となる。 Further, during the restart, the power generation unit of the fuel cell 20 generates power. The power generated here can be used in the next restart by charging the battery 16.
 バッテリ16が満充電されており、それ以上充電できない場合には、充電された電力を、例えば、本システムの保温、エアコンの清掃、車内空気清浄化、排気浄化触媒の再生(DPF再生、S被毒解除)、改質触媒の再生等車両内の電力として使用することができる。また、電気受容体が近くにある場合には、その受容体に電力を供給してもよい。例えば、自宅の車庫に駐車している場合には、家庭内の電力消費に使用できる。 If the battery 16 is fully charged and cannot be charged any more, the charged power can be used, for example, for keeping the system warm, cleaning the air conditioner, purifying the vehicle interior, regenerating the exhaust purification catalyst (DPF regeneration, S coverage). It can be used as electric power in the vehicle such as detoxification and regeneration of the reforming catalyst. Moreover, when an electroreceptor is nearby, electric power may be supplied to the acceptor. For example, when parked in a garage at home, it can be used for domestic power consumption.
 燃料電池システムA1の動作について、図2を参照して説明する。図2は、燃料電池システムA1の動作を示すフローチャートである。 The operation of the fuel cell system A1 will be described with reference to FIG. FIG. 2 is a flowchart showing the operation of the fuel cell system A1.
 まず、ステップS1において、コントローラ100は、温度センサTS1によって燃料電池20のカソード極22から排出された空気の温度、すなわち、燃料電池A1の温度を測定する。 First, in step S1, the controller 100 measures the temperature of the air discharged from the cathode electrode 22 of the fuel cell 20 by the temperature sensor TS1, that is, the temperature of the fuel cell A1.
 続くステップS2では、コントローラ100は、温度センサTS1により測定した温度が所定の温度Tf以下になったか否かを判定する。ステップS2で、所定の温度Tf以下になったと判定されれば、コントローラ100は、ステップS3に処理を進め、所定の温度Tfより高いと判定されれば、ステップS2の処理を繰り返す。 In subsequent step S2, the controller 100 determines whether or not the temperature measured by the temperature sensor TS1 has become equal to or lower than a predetermined temperature Tf. If it is determined in step S2 that the temperature has become equal to or lower than the predetermined temperature Tf, the controller 100 proceeds to step S3. If it is determined that the temperature is higher than the predetermined temperature Tf, the process in step S2 is repeated.
 続くステップS3では、コントローラ100は、カソード極22に向けて供給される空気が起動燃焼器12に供給されるように切替弁14を切り替えるとともに、起動燃焼器12に燃料ガスを供給する。これにより、コントローラ100は、ステップS4において、起動燃焼器12で生成した高温の燃焼ガスを燃料電池20のカソード極22に供給する。 In the subsequent step S <b> 3, the controller 100 switches the switching valve 14 so that the air supplied toward the cathode electrode 22 is supplied to the startup combustor 12 and supplies fuel gas to the startup combustor 12. Thereby, the controller 100 supplies the high temperature combustion gas produced | generated by the starting combustor 12 to the cathode electrode 22 of the fuel cell 20 in step S4.
 このように起動燃焼器12に燃料ガスおよび空気を供給することによって高温の燃焼ガスを生成し、生成した高温の燃焼ガスを燃料電池20のカソード極22に供給することにより、燃料電池20本体を昇温できる。 Thus, by supplying the fuel gas and air to the startup combustor 12, a high-temperature combustion gas is generated, and the generated high-temperature combustion gas is supplied to the cathode electrode 22 of the fuel cell 20, thereby The temperature can be raised.
 ステップS5では、コントローラ100は、燃料ガスをアノード極21に供給する。
 続くステップS6では、コントローラ100は、燃料電池20、従ってまた、発電部の温度が発電可能温度Ts以上になったか否かを判定する。ステップS6で、発電可能温度Ts以上になったと判定されれば、コントローラ100は、ステップS7に処理を進め、発電可能温度Tsより低いと判定されれば、ステップS6の処理を繰り返す。
In step S <b> 5, the controller 100 supplies fuel gas to the anode 21.
In the subsequent step S6, the controller 100 determines whether or not the temperature of the fuel cell 20, and thus the power generation unit, is equal to or higher than the power generation possible temperature Ts. If it is determined in step S6 that the temperature is equal to or higher than the power generation possible temperature Ts, the controller 100 proceeds to step S7. If it is determined that the temperature is lower than the power generation possible temperature Ts, the process in step S6 is repeated.
 ステップS7では、コントローラ100は、起動燃焼器12への燃料ガスおよび空気の供給を停止する。続くステップS8では、コントローラ100は、燃料ガスがアノード極21に供給されているか否かを判定する。供給されていると判定されれば、処理をステップS9に進めて発電を開始し、供給されていないと判定されれば、ステップS8を繰り返す。 In step S7, the controller 100 stops the supply of fuel gas and air to the startup combustor 12. In subsequent step S <b> 8, the controller 100 determines whether or not fuel gas is supplied to the anode 21. If it is determined that the power is supplied, the process proceeds to step S9 to start power generation. If it is determined that the power is not supplied, step S8 is repeated.
 <第2実施形態>
 次に、本発明の第2実施形態に係る固体酸化物型燃料電池システムについて説明する。図3は、本発明の第2実施形態に係る固体酸化物型燃料電池システムの構成を示す概略ブロック図である。なお、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
Second Embodiment
Next, a solid oxide fuel cell system according to a second embodiment of the present invention will be described. FIG. 3 is a schematic block diagram showing the configuration of the solid oxide fuel cell system according to the second embodiment of the present invention. In addition, about the thing equivalent to what was demonstrated in embodiment mentioned above, the code | symbol same as them is attached | subjected and description is abbreviate | omitted.
 本発明の第2実施形態に係る固体酸化物型燃料電池システムA2は、上記燃料電池システムA1の構成に加え、改質器30、加熱器31、温度センサTS2、蒸発器32、燃料ポンプ33及び水ポンプ34を備えている。 In addition to the configuration of the fuel cell system A1, the solid oxide fuel cell system A2 according to the second embodiment of the present invention includes a reformer 30, a heater 31, a temperature sensor TS2, an evaporator 32, a fuel pump 33, and A water pump 34 is provided.
 改質器30は、水素製造用原料を改質して水素を含む改質燃料ガスを製造するための改質触媒を備えている。改質器30は、供給パイプ22bを介してアノード極21の入口に接続されている。 The reformer 30 includes a reforming catalyst for reforming a raw material for hydrogen production to produce a reformed fuel gas containing hydrogen. The reformer 30 is connected to the inlet of the anode 21 via the supply pipe 22b.
 温度センサTS2は、供給パイプ22bに配設され、改質器30から供給される改質燃料ガスの温度を測定する。温度センサTS2は、コントローラ100の入力ポート側に接続されて、改質器30から供給される改質燃料ガスの温度、従ってまた、改質器30の温度を測定できるようになっている。 The temperature sensor TS2 is disposed in the supply pipe 22b and measures the temperature of the reformed fuel gas supplied from the reformer 30. The temperature sensor TS2 is connected to the input port side of the controller 100, and can measure the temperature of the reformed fuel gas supplied from the reformer 30, and thus the temperature of the reformer 30.
 加熱器31は、改質器30に併設されて改質器30を加熱する。加熱器31の入口は、排出パイプ22aを介して、カソード極22の出口に接続されている。 The heater 31 is attached to the reformer 30 and heats the reformer 30. The inlet of the heater 31 is connected to the outlet of the cathode electrode 22 through the discharge pipe 22a.
 蒸発器32は、供給パイプ33aを介して燃料ポンプ33に接続されるとともに、供給パイプ34aを介して水ポンプ34に接続されている。また、蒸発器32は、供給パイプ32aを介して混合器43に接続されている。燃料ポンプ33および水ポンプ34は、それぞれコントローラ100の出力ポート側に接続されて、コントローラ100からの指令によって適宜駆動されるようになっている。これにより、蒸発器32は、燃料ポンプ33から供給された燃料を蒸気化して燃料ガスを得るとともに、水ポンプ34から供給された水を蒸気化する。 The evaporator 32 is connected to the fuel pump 33 via the supply pipe 33a and is connected to the water pump 34 via the supply pipe 34a. The evaporator 32 is connected to the mixer 43 via a supply pipe 32a. The fuel pump 33 and the water pump 34 are respectively connected to the output port side of the controller 100 and are appropriately driven according to commands from the controller 100. Thereby, the evaporator 32 evaporates the fuel supplied from the fuel pump 33 to obtain fuel gas, and also evaporates the water supplied from the water pump 34.
 本実施形態においては、蒸発器32、燃料ポンプ33及び水ポンプ34により、改質器30に水素含有ガスおよび酸素含有ガスを供給する改質器ガス供給部B2を構成している。 In this embodiment, the evaporator 32, the fuel pump 33, and the water pump 34 constitute a reformer gas supply unit B2 that supplies a hydrogen-containing gas and an oxygen-containing gas to the reformer 30.
 本実施形態におけるコントローラ100は、上記(1)~(4)の機能とともに下記の各機能を有している。
(5)改質器温度測定部105として、温度センサTS2によって改質器30の温度を測定する機能。
(6)改質器温度判定部106として、改質器30の温度が所定の温度Trになったか否かを判定する機能。
The controller 100 in the present embodiment has the following functions in addition to the functions (1) to (4).
(5) A function of measuring the temperature of the reformer 30 by the temperature sensor TS2 as the reformer temperature measuring unit 105.
(6) A function for determining whether or not the temperature of the reformer 30 has reached a predetermined temperature Tr as the reformer temperature determination unit 106.
 一般的に、改質触媒上に燃料ガスおよび空気を供給して酸化反応により水素含有ガスを得るためには、300℃以上の温度が必要であるといわれている。そのため、改質触媒の温度が300℃以上であることを確認した後に、改質器30に燃料ガス及び空気を供給するのが望ましい。本実施形態では、所定の温度Trを約300℃に設定している。改質器30の温度が所定の温度Tr以上になっていないと、未反応の燃料や酸素がアノード極21に供給され、アノード極21に影響を与える可能性がある。 Generally, it is said that a temperature of 300 ° C. or higher is required to obtain a hydrogen-containing gas by an oxidation reaction by supplying fuel gas and air onto a reforming catalyst. Therefore, it is desirable to supply fuel gas and air to the reformer 30 after confirming that the temperature of the reforming catalyst is 300 ° C. or higher. In the present embodiment, the predetermined temperature Tr is set to about 300 ° C. If the temperature of the reformer 30 is not equal to or higher than the predetermined temperature Tr, unreacted fuel and oxygen may be supplied to the anode electrode 21 and may affect the anode electrode 21.
 燃料電池システムA2の動作について、図4を参照して説明する。図4は、燃料電池システムA2の動作を示すフローチャートである。 The operation of the fuel cell system A2 will be described with reference to FIG. FIG. 4 is a flowchart showing the operation of the fuel cell system A2.
 まず、ステップS11において、コントローラ100は、温度センサTS1によって燃料電池20のカソード極22から排出された空気の温度、すなわち、燃料電池A2の温度を測定する。 First, in step S11, the controller 100 measures the temperature of the air discharged from the cathode electrode 22 of the fuel cell 20 by the temperature sensor TS1, that is, the temperature of the fuel cell A2.
 続くステップS12では、コントローラ100は、温度センサTS1により測定した温度が所定の温度Tf以下になったか否かを判定する。ステップS12で、所定の温度Tf以下になったと判定されれば、コントローラ100は、処理をステップS13に進め、所定の温度Tfより高いと判定されれば、ステップS12の処理を繰り返す。 In subsequent step S12, the controller 100 determines whether or not the temperature measured by the temperature sensor TS1 has become equal to or lower than a predetermined temperature Tf. If it is determined in step S12 that the temperature has become equal to or lower than the predetermined temperature Tf, the controller 100 proceeds to step S13. If it is determined that the temperature is higher than the predetermined temperature Tf, the controller 100 repeats the process in step S12.
 ステップS13では、コントローラ100は、カソード極22に向けて供給される空気が起動燃焼器12に流通するように切替弁14を切り替えるとともに、その起動燃焼器12に燃料ガスを供給する。これにより、コントローラ100は、ステップS14において、起動燃焼器12で生成した高温の燃焼ガスを燃料電池20のカソード極22に供給する。 In step S <b> 13, the controller 100 switches the switching valve 14 so that the air supplied toward the cathode electrode 22 flows to the startup combustor 12 and supplies fuel gas to the startup combustor 12. Thereby, the controller 100 supplies the high temperature combustion gas produced | generated by the starting combustor 12 to the cathode electrode 22 of the fuel cell 20 in step S14.
 このように起動燃焼器12に燃料ガスおよび空気を供給することによって高温の燃焼ガスを生成し、生成した高温の燃焼ガスを燃料電池20のカソード極22に供給することにより、燃料電池20本体を昇温できる。 Thus, by supplying the fuel gas and air to the startup combustor 12, a high-temperature combustion gas is generated, and the generated high-temperature combustion gas is supplied to the cathode electrode 22 of the fuel cell 20, thereby The temperature can be raised.
 ステップS15では、コントローラ100は、カソード極22から排出された排ガスを加熱器31に供給することにより、改質器30を昇温させる。 In step S15, the controller 100 raises the temperature of the reformer 30 by supplying the exhaust gas discharged from the cathode electrode 22 to the heater 31.
 続くステップS16では、コントローラ100は、温度センサTS2によって改質器30の温度を測定し、測定した温度が300℃以上になったか否かを判定する。ステップS16で、300℃以上になったと判定されれば、コントローラ100は、ステップS17に処理を進め、300℃より低いと判定されれば、ステップS15に処理を戻す。 In subsequent step S16, the controller 100 measures the temperature of the reformer 30 with the temperature sensor TS2, and determines whether or not the measured temperature has reached 300 ° C. or higher. If it is determined in step S16 that the temperature is 300 ° C. or higher, the controller 100 proceeds to step S17, and if it is determined that the temperature is lower than 300 ° C., the process returns to step S15.
 続くステップS17では、コントローラ100は、改質器30に燃料ガスおよび空気を供給し、続くステップS18では、コントローラ100は、改質燃料ガスをアノード極21に供給する。このように、改質器30で得られた改質燃料ガスをアノード極21に供給することにより、燃料電池20をカソード極22とアノード極21の両側から加熱することができる。これにより、温度分布を小さくできるとともに起動時間を短くすることができる。 In the subsequent step S17, the controller 100 supplies fuel gas and air to the reformer 30, and in the subsequent step S18, the controller 100 supplies the reformed fuel gas to the anode 21. Thus, the fuel cell 20 can be heated from both sides of the cathode electrode 22 and the anode electrode 21 by supplying the reformed fuel gas obtained by the reformer 30 to the anode electrode 21. Thereby, the temperature distribution can be reduced and the startup time can be shortened.
 続くステップS19では、コントローラ100は、燃料電池20、従ってまた、発電部の温度が発電可能温度Ts以上になったか否かを判定する。ステップS19で、発電部の温度が発電可能温度Ts以上になったと判定されれば、コントローラ100は、ステップS20に処理を進め、発電可能温度Tsより低いと判定されれば、ステップS18に処理を戻す。 In subsequent step S19, the controller 100 determines whether or not the temperature of the fuel cell 20, and hence the power generation unit, is equal to or higher than the power generation possible temperature Ts. If it is determined in step S19 that the temperature of the power generation unit has become equal to or higher than the power generation possible temperature Ts, the controller 100 proceeds to step S20. If it is determined that the temperature is lower than the power generation possible temperature Ts, the process proceeds to step S18. return.
 ステップS20では、コントローラ100は、起動燃焼器12への高温の燃焼ガスおよび空気の供給を停止し、続くステップS21で、改質器30に水蒸気を供給する。
 すなわち、燃料電池20が発電可能な温度になったら、起動燃焼器12への燃料ガスおよび空気の供給を停止し、通常運転に移行する。その際、改質器30には、水蒸気も供給して空気供給量を減らし、主に水蒸気改質反応による水素含有ガスの生成が行われるようにする。水素含有ガスの生成が確認されたら、これをアノード極21に供給、発電することにより再起動が完了する。
In step S20, the controller 100 stops the supply of high-temperature combustion gas and air to the startup combustor 12, and in the subsequent step S21, supplies steam to the reformer 30.
That is, when the fuel cell 20 reaches a temperature at which power can be generated, the supply of fuel gas and air to the startup combustor 12 is stopped, and the normal operation is started. At that time, steam is also supplied to the reformer 30 to reduce the air supply amount so that the hydrogen-containing gas is mainly generated by the steam reforming reaction. When the generation of the hydrogen-containing gas is confirmed, this is supplied to the anode 21 and power generation is performed, whereby the restart is completed.
 ステップS22では、コントローラ100は、燃料ガスがアノード極21に供給されているか否かを判定する。供給されていると判定されれば、処理をステップS23に進めて発電を開始し、供給されていないと判定されれば、ステップS22を繰り返す。 In step S22, the controller 100 determines whether or not the fuel gas is supplied to the anode 21. If it determines with being supplied, a process will be advanced to step S23, and electric power generation will be started, and if it determines with not being supplied, step S22 will be repeated.
 本実施形態に係る燃料電池システムA2によれば、上記第1実施形態で述べた効果と同様の効果に加え、次の効果を得ることができる。
・改質器30で得られた改質燃料ガスを燃料ガスとして発電に用いることができる。
・起動燃焼器12に供給する空気が、起動用ガス供給部B1の一部をなすブロワ13から供給されるので、別の大型ブロワを搭載することなく、短時間に再起動可能なシステムを提供することができる。
・改質器30を備えているので、液体燃料を供給することによって発電可能となるため、航続運転距離を長くとることができ、これまでの水素燃料電池車や電気自動車よりも優位に立つことができる。
・再起動の際、起動燃焼器12による燃料電池のカソード極22側の加熱に加え、改質器30に燃料ガスおよび空気を供給し、酸化反応を利用して得た水素含有ガスで燃料電池のアノード極21側からも加熱が可能になるため、より短時間での起動が可能となる。
According to the fuel cell system A2 according to the present embodiment, in addition to the same effects as those described in the first embodiment, the following effects can be obtained.
The reformed fuel gas obtained by the reformer 30 can be used for power generation as a fuel gas.
-Since the air supplied to the start-up combustor 12 is supplied from the blower 13 that forms part of the start-up gas supply unit B1, a system that can be restarted in a short time without installing another large blower is provided. can do.
・ Because the reformer 30 is provided, it is possible to generate electricity by supplying liquid fuel, so the cruising range can be increased, and it is superior to conventional hydrogen fuel cell vehicles and electric vehicles. Can do.
At the time of restart, in addition to the heating of the cathode 22 side of the fuel cell by the startup combustor 12, the fuel cell is supplied with the hydrogen-containing gas obtained by supplying fuel gas and air to the reformer 30 and utilizing the oxidation reaction Since heating can also be performed from the anode electrode 21 side, activation in a shorter time is possible.
 本実施形態では、所定の温度Tfを500℃に設定し、燃料電池20の温度が500℃以下になったら再起動を開始している。これにより、常温からの再起動と比較して、起動時間を1/10に減らすことができる。 In the present embodiment, the predetermined temperature Tf is set to 500 ° C., and the restart is started when the temperature of the fuel cell 20 becomes 500 ° C. or lower. Thereby, compared with restart from normal temperature, start time can be reduced to 1/10.
 <第3実施形態>
 次に、本発明の第3実施形態に係る固体酸化物型燃料電池システムについて説明する。図5は、本発明の第3実施形態に係る固体酸化物型燃料電池システムの構成を示す概略ブロック図である。なお、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
<Third Embodiment>
Next, a solid oxide fuel cell system according to a third embodiment of the present invention will be described. FIG. 5 is a schematic block diagram showing the configuration of the solid oxide fuel cell system according to the third embodiment of the present invention. In addition, about the thing equivalent to what was demonstrated in embodiment mentioned above, the code | symbol same as them is attached | subjected and description is abbreviate | omitted.
 本発明の第3実施形態に係る固体酸化物型燃料電池システムA3は、上記燃料電池システムA2の構成に加え、アノード排ガス循環部Dを備えている。 
 アノード排ガス循環部Dは、アノード極21の出口と混合器43との間を接続する循環パイプ41bと、混合器43と熱交換器44との間を接続した循環パイプ43aと、循環パイプ41bの排ガス流通方向の上流側に配設したブロワ40と、循環パイプ41bのブロワ40の下流側に配設した三方弁41とを備えている。なお、ブロワ40および三方弁41は、コントローラ100の出力ポート側に接続されて、コントローラ100からの指令によって適宜駆動されるようになっている。
The solid oxide fuel cell system A3 according to the third embodiment of the present invention includes an anode exhaust gas circulation section D in addition to the configuration of the fuel cell system A2.
The anode exhaust gas circulation section D includes a circulation pipe 41b that connects the outlet of the anode 21 and the mixer 43, a circulation pipe 43a that connects the mixer 43 and the heat exchanger 44, and a circulation pipe 41b. A blower 40 disposed upstream of the exhaust gas distribution direction and a three-way valve 41 disposed downstream of the blower 40 of the circulation pipe 41b are provided. The blower 40 and the three-way valve 41 are connected to the output port side of the controller 100 and are appropriately driven by commands from the controller 100.
 三方弁41は、供給パイプ41aを介してカソード極22からの排出パイプ22aに接続されている。排出パイプ22aには、三方弁42が配設されている。三方弁42は、供給パイプ42aを介して蒸発器32に接続されている。これにより、カソード極22から排出された排気ガスを、供給パイプ42aを介して蒸発器32に供給し、供給パイプ33aを介して蒸発器32に供給された燃料を加熱昇温できるようにしている。なお、三方弁42は、コントローラ100の出力ポート側に接続されて、コントローラ100からの指令によって適宜駆動されるようになっている。 The three-way valve 41 is connected to the discharge pipe 22a from the cathode electrode 22 through the supply pipe 41a. A three-way valve 42 is disposed in the discharge pipe 22a. The three-way valve 42 is connected to the evaporator 32 via a supply pipe 42a. As a result, the exhaust gas discharged from the cathode electrode 22 is supplied to the evaporator 32 via the supply pipe 42a, and the fuel supplied to the evaporator 32 via the supply pipe 33a can be heated and heated. . The three-way valve 42 is connected to the output port side of the controller 100 and is appropriately driven by a command from the controller 100.
 熱交換器44は、改質器30と加熱器31に併設されており、循環パイプ43aを通じて混合器43から供給される水素含有ガスを加熱昇温できるようにしている。 The heat exchanger 44 is provided in the reformer 30 and the heater 31 so that the hydrogen-containing gas supplied from the mixer 43 can be heated and heated through the circulation pipe 43a.
 混合器43には、供給パイプ43bが接続されている。供給パイプ43bには、ブロワ45が配設されている。供給パイプ43bは、供給パイプ43cを介して加熱器31に接続されている。供給パイプ43cには、ブロワ46が配設されている。なお、ブロワ45,46は、コントローラ100の出力ポート側に接続されて、コントローラ100からの指令によって適宜駆動されるようになっている。 The supply pipe 43b is connected to the mixer 43. A blower 45 is disposed in the supply pipe 43b. The supply pipe 43b is connected to the heater 31 via the supply pipe 43c. A blower 46 is disposed in the supply pipe 43c. The blowers 45 and 46 are connected to the output port side of the controller 100 and are appropriately driven by commands from the controller 100.
 また、混合器43には、供給パイプ33aが接続されている。供給パイプ33aには、蒸発器32および燃料ポンプ33が配設されている。これにより、燃料ポンプ33から供給された燃料は、蒸発器32によって蒸気化され、混合器43に供給される。 Further, a supply pipe 33 a is connected to the mixer 43. An evaporator 32 and a fuel pump 33 are disposed in the supply pipe 33a. As a result, the fuel supplied from the fuel pump 33 is vaporized by the evaporator 32 and supplied to the mixer 43.
 本実施形態においては、蒸発器32、燃料ポンプ33及びブロワ45により、改質器30に水素含有ガスおよび酸素含有ガスを供給する改質器ガス供給部B3を構成している。 In this embodiment, the evaporator 32, the fuel pump 33, and the blower 45 constitute the reformer gas supply unit B3 that supplies the hydrogen-containing gas and the oxygen-containing gas to the reformer 30.
 本実施形態に係る燃料電池システムA3によれば、上記第1および第2実施形態で述べた効果と同様の効果に加え、次の効果を得ることができる。
・アノード極21から排出された排ガスを、アノード排ガス循環部Dを通じて循環させることにより、発電によりアノード極21で生成した水蒸気を、改質器30での反応に利用することができる。
・これにより燃料電池システムA3は、水タンクを搭載することなく発電可能となり、車載用システムをより小型化することができる。
・これらに加え、燃料電池システムA3でも、起動燃焼器12に供給する空気を起動用ガス供給部B1から供給することにより大型のブロワを搭載せずに再起動にかかる時間を短くすることができる。従って、燃料電池システムA3では、システム効率を更に高めることができる。
According to the fuel cell system A3 according to the present embodiment, the following effects can be obtained in addition to the effects similar to those described in the first and second embodiments.
By circulating the exhaust gas discharged from the anode 21 through the anode exhaust gas circulation part D, the water vapor generated at the anode 21 by power generation can be used for the reaction in the reformer 30.
-Thereby, the fuel cell system A3 can generate power without mounting a water tank, and the in-vehicle system can be further downsized.
In addition to these, also in the fuel cell system A3, by supplying the air supplied to the startup combustor 12 from the startup gas supply unit B1, the time required for restart can be shortened without installing a large blower. . Therefore, in the fuel cell system A3, the system efficiency can be further increased.
 本実施形態に係る燃料電池システムA3では、起動燃焼器12による加熱に加え、改質器30への燃料ガスおよび空気の供給、及びアノード極21から排出した排ガスの循環を行いながら起動することにより、常温から再起動した場合と比較して、起動時間を1/20にすることができる。 In the fuel cell system A3 according to the present embodiment, in addition to heating by the startup combustor 12, the fuel cell system A3 is started while supplying fuel gas and air to the reformer 30 and circulating the exhaust gas discharged from the anode 21. The startup time can be reduced to 1/20 compared to the case of restarting from room temperature.
 なお、上述した各実施形態においては、高温になる部分の断熱を十分に行うことが必要である。放熱を防ぐことで、高温部の温度低下を少なくすることが可能となり、再起動開始までの時間を長く保つことができる。最も断熱に優れるのは、真空断熱であるが、真空断熱が困難な場合には、熱伝導度0.1W/m・K以下の断熱材を用い、放熱を防ぐ構造とすることが望ましい。 In each of the above-described embodiments, it is necessary to sufficiently insulate a portion that becomes hot. By preventing heat dissipation, it is possible to reduce the temperature drop in the high temperature part, and the time until the start of restart can be kept long. The most excellent heat insulation is vacuum heat insulation, but when vacuum heat insulation is difficult, it is desirable to use a heat insulating material having a thermal conductivity of 0.1 W / m · K or less to prevent heat radiation.
 上記各実施形態によれば、少なくとも次の各効果を得ることができる。
・起動燃焼器12に供給する空気を、起動用ガス供給部B1から供給することにより、起動用に大型ブロワを搭載せずに済む。
・これによりシステム構造の高さを小さくすることが可能であり、車両の床下への搭載性に優れたシステムを得ることができると共に、燃料ガスの循環速度が小さいシステムでも良好な排水機能を得ることができる。
・燃料電池20の温度が所定の温度Tf以下になったときに再起動を行っているので、再起動にかかる時間を短くすることができる。
・起動用ガス供給部B1により所定時間Td内に起動可能な温度で再起動することにより、そのシステムに適した再起動時間で再起動を行うことができる。
・再起動を行った際に発電される電力をバッテリに充電することにより、電力を無駄にすることなく、有効に使用することができる。
・再起動温度Tfを発電時における発電部の温度の60%以上にすることにより、再起動にかかる時間を短くすることができる。
・再起動温度Tfを発電時における発電部の温度の75%以上にすることにより、より短時間で再起動することができる。
・カソード極22から排出された排加熱用ガスの一部をカソード極22に返戻送給するためのカソード排加熱用ガス返戻路を設けることなく再起動を行なえる。これにより、燃料電池内の温度分布が大きくすることなく、再起動を行なうことができる。
According to the above embodiments, at least the following effects can be obtained.
-By supplying the air supplied to the startup combustor 12 from the startup gas supply unit B1, it is not necessary to mount a large blower for startup.
・ This makes it possible to reduce the height of the system structure, and to obtain a system that is excellent in mountability under the floor of a vehicle, as well as obtaining a good drainage function even in a system with a low fuel gas circulation speed. be able to.
Since the restart is performed when the temperature of the fuel cell 20 becomes equal to or lower than the predetermined temperature Tf, the time required for the restart can be shortened.
By restarting at a temperature that can be started within the predetermined time Td by the startup gas supply unit B1, the restart can be performed with a restart time suitable for the system.
-By charging the battery with the electric power generated when restarting, it can be used effectively without wasting the electric power.
The time required for restart can be shortened by setting the restart temperature Tf to 60% or more of the temperature of the power generation unit during power generation.
-The restart can be restarted in a shorter time by setting the restart temperature Tf to 75% or more of the temperature of the power generation unit during power generation.
Reactivation can be performed without providing a cathode exhaust heating gas return path for returning a part of the exhaust heating gas discharged from the cathode electrode 22 back to the cathode electrode 22. Thereby, restart can be performed without increasing the temperature distribution in the fuel cell.
 以上、本発明の実施形態について説明したが、これらの実施形態は本発明の理解を容易にするために記載された単なる例示に過ぎず、本発明は当該実施形態に限定されるものではない。本発明の技術的範囲は、上記実施形態で開示した具体的な技術事項に限らず、そこから容易に導きうる様々な変形、変更、代替技術なども含むものである。例えば、上記実施形態において、再起動を許容するための再起動許容スイッチ(ディリーユーザーボタン)を設けるとともに、コントローラ100に再起動許容スイッチがオン操作されているか否かを判定するためのスイッチ判定部を設け、再起動許容スイッチがオン操作されていると判定されたときのみに、起動用ガス供給部からカソードに供給されるカソードガスを起動燃焼器に供給するように構成することができる。再起動許容スイッチがオン操作されているときにのみ再起動運転を行うことにより、使用頻度が低い場合の再起動の消費エネルギーを減少させることができる。 As mentioned above, although embodiment of this invention was described, these embodiment is only the mere illustration described in order to make an understanding of this invention easy, and this invention is not limited to the said embodiment. The technical scope of the present invention is not limited to the specific technical matters disclosed in the above embodiment, but includes various modifications, changes, alternative techniques, and the like that can be easily derived therefrom. For example, in the above-described embodiment, the switch determination unit for providing a restart allowance switch (daily user button) for allowing the restart and for determining whether or not the restart permitting switch is turned on in the controller 100. The cathode gas supplied to the cathode from the startup gas supply unit can be supplied to the startup combustor only when it is determined that the restart permission switch is turned on. By performing the restart operation only when the restart permission switch is turned on, it is possible to reduce the energy consumed for restart when the use frequency is low.
 本出願は、2011年4月4日に出願された日本国特許願第2011-082600号に基づく優先権を主張しており、これらの出願の全内容が参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2011-082600 filed on April 4, 2011, the entire contents of which are incorporated herein by reference.
 本発明の固体酸化物型燃料電池システム及びその運転方法によれば、起動燃焼器に燃焼用ガスを供給するための大型ブロワを設けることなく、固体酸化物型燃料電池システムの小型化を図り、かつ、その起動に要する時間を短くすることができる。 According to the solid oxide fuel cell system and the operation method thereof of the present invention, without providing a large blower for supplying combustion gas to the start-up combustor, the solid oxide fuel cell system can be downsized. In addition, the time required for the activation can be shortened.
12 起動燃焼器
16 バッテリ
20 固体酸化物型燃料電池(燃料電池)
21 アノード極
22 カソード極
30 改質器
A1,A2,A3 固体酸化物型燃料電池システム
B1 起動用ガス供給部
B2,B3 改質器ガス供給部
101 燃料電池温度判定部
102 再起動部
103 発電可能温度判定部
104 起動用ガス供給停止部
105 改質器温度測定部
106 改質器温度判定部
12 Start Combustor 16 Battery 20 Solid Oxide Fuel Cell (Fuel Cell)
21 Anode electrode 22 Cathode electrode 30 Reformers A1, A2, A3 Solid oxide fuel cell system B1 Start gas supply unit B2, B3 Reformer gas supply unit 101 Fuel cell temperature determination unit 102 Restart unit 103 Power generation possible Temperature determination unit 104 Start gas supply stop unit 105 Reformer temperature measurement unit 106 Reformer temperature determination unit

Claims (9)

  1.  電解質膜と、該電解質膜の両側に積層したアノード極およびカソード極とを備え、前記アノード極およびカソード極にそれぞれアノードガスおよびカソードガスを流通させることにより発電を行う固体酸化物型燃料電池と、
     前記固体酸化物型燃料電池を昇温するための高温の燃焼ガスを生成する起動燃焼器と、
     前記カソード極に供給されるカソードガスを前記起動燃焼器に供給する起動用ガス供給部と、
     前記固体酸化物型燃料電池の温度が所定の温度以下になったか否かを判定する燃料電池温度判定部と、
     前記燃料電池温度判定部により前記固体酸化物型燃料電池の温度が所定の温度以下になったと判定された場合に、前記起動用ガス供給部により前記カソード極に供給されるカソードガスを前記起動燃焼器に供給することで、再起動を行う再起動部と、
     を備えたことを特徴とする固体酸化物型燃料電池システム。
    A solid oxide fuel cell comprising an electrolyte membrane, and an anode electrode and a cathode electrode laminated on both sides of the electrolyte membrane, and generating electricity by flowing an anode gas and a cathode gas to the anode electrode and the cathode electrode, respectively;
    A start-up combustor for generating a high-temperature combustion gas for raising the temperature of the solid oxide fuel cell;
    A starting gas supply unit that supplies the cathode gas supplied to the cathode electrode to the starting combustor;
    A fuel cell temperature determination unit for determining whether or not the temperature of the solid oxide fuel cell is equal to or lower than a predetermined temperature;
    When the fuel cell temperature determination unit determines that the temperature of the solid oxide fuel cell has become equal to or lower than a predetermined temperature, the start combustion of the cathode gas supplied to the cathode electrode by the start gas supply unit A restarting unit for restarting by supplying to the container,
    A solid oxide fuel cell system comprising:
  2.  前記所定の温度が、前記再起動を所定時間内に終了することを可能とする温度であることを特徴とする請求項1に記載の固体酸化物型燃料電池システム。 The solid oxide fuel cell system according to claim 1, wherein the predetermined temperature is a temperature that allows the restart to be completed within a predetermined time.
  3.  前記所定の温度が、前記固体酸化物型燃料電池の発電時における温度の60%以上であることを特徴とする請求項1又は2に記載の固体酸化物型燃料電池システム。 3. The solid oxide fuel cell system according to claim 1 or 2, wherein the predetermined temperature is 60% or more of a temperature during power generation of the solid oxide fuel cell.
  4.  前記所定の温度が、前記固体酸化物型燃料電池の発電時における温度の75%以上であることを特徴とする請求項1~3のいずれか1項に記載の固体酸化物型燃料電池システム。 The solid oxide fuel cell system according to any one of claims 1 to 3, wherein the predetermined temperature is 75% or more of a temperature during power generation of the solid oxide fuel cell.
  5.  前記再起動を行った際に発電される電力を充電するバッテリを更に備えたことを特徴とする請求項1~4のいずれか1項に記載の固体酸化物型燃料電池システム。 The solid oxide fuel cell system according to any one of claims 1 to 4, further comprising a battery for charging electric power generated when the restart is performed.
  6.  前記アノード極に供給する蒸気化した水素含有ガスを改質する改質器を更に備えたことを特徴とする請求項1~5のいずれか1項に記載の固体酸化物型燃料電池システム。 The solid oxide fuel cell system according to any one of claims 1 to 5, further comprising a reformer that reforms the vaporized hydrogen-containing gas supplied to the anode electrode.
  7.  前記改質器に水素含有ガスおよび酸素含有ガスを供給する改質器ガス供給部を更に備えたことを特徴とする請求項6に記載の固体酸化物型燃料電池システム。 The solid oxide fuel cell system according to claim 6, further comprising a reformer gas supply unit that supplies a hydrogen-containing gas and an oxygen-containing gas to the reformer.
  8.  前記再起動を許容するための再起動許容スイッチと、
     前記再起動許容スイッチがオン操作されているか否かを判定するスイッチ判定部と、
     前記スイッチ判定部により前記再起動許容スイッチがオン操作されていると判定されたときに、前記起動用ガス供給部により前記カソード極に供給されるカソードガスを前記起動燃焼器に供給することを特徴とする請求項1~7のいずれか1項に記載の固体酸化物型燃料電池システム。
    A restart permission switch for allowing the restart;
    A switch determination unit that determines whether or not the restart permission switch is turned on;
    When the switch determination unit determines that the restart permission switch is turned on, the starter gas supply unit supplies the cathode gas supplied to the cathode electrode to the starter combustor. The solid oxide fuel cell system according to any one of claims 1 to 7.
  9.  電解質膜と、該電解質膜の両側に積層したアノード極およびカソード極とを備え、前記アノード極およびカソード極にそれぞれアノードガスおよびカソードガスを流通させることにより発電を行う固体酸化物型燃料電池と、
     前記固体酸化物型燃料電池を昇温するための高温の燃焼ガスを生成する起動燃焼器と、
     を設け、
     前記固体酸化物型燃料電池の温度が所定の温度以下になったとき、前記カソード極に供給されるカソードガスを前記起動燃焼器に供給することで、再起動を行うことを特徴とする固体酸化物型燃料電池システムの運転方法。
    A solid oxide fuel cell comprising an electrolyte membrane, and an anode electrode and a cathode electrode laminated on both sides of the electrolyte membrane, and generating electricity by flowing an anode gas and a cathode gas to the anode electrode and the cathode electrode, respectively;
    A start-up combustor that generates a high-temperature combustion gas for raising the temperature of the solid oxide fuel cell;
    Provided,
    When the temperature of the solid oxide fuel cell becomes equal to or lower than a predetermined temperature, the cathode gas supplied to the cathode electrode is supplied to the startup combustor to perform restarting. Operation method of physical fuel cell system.
PCT/JP2012/055134 2011-04-04 2012-02-29 Solid oxide fuel cell system and operating method therefor WO2012137564A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-082600 2011-04-04
JP2011082600A JP5846537B2 (en) 2011-04-04 2011-04-04 Solid oxide fuel cell system

Publications (1)

Publication Number Publication Date
WO2012137564A1 true WO2012137564A1 (en) 2012-10-11

Family

ID=46968968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055134 WO2012137564A1 (en) 2011-04-04 2012-02-29 Solid oxide fuel cell system and operating method therefor

Country Status (2)

Country Link
JP (1) JP5846537B2 (en)
WO (1) WO2012137564A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180375127A1 (en) * 2015-12-25 2018-12-27 Nissan Motor Co., Ltd. Solid oxide fuel cell system and method of controlling the same
CN111987336A (en) * 2020-08-24 2020-11-24 安徽江淮汽车集团股份有限公司 Vehicle low-temperature starting method, device, storage medium and device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6102301B2 (en) * 2013-02-12 2017-03-29 日産自動車株式会社 Fuel cell system
JP2015127999A (en) * 2013-12-27 2015-07-09 Toto株式会社 Solid oxide fuel cell system
JP6361910B2 (en) * 2014-04-07 2018-07-25 日産自動車株式会社 Fuel cell system and operation method thereof
JP6394875B2 (en) * 2014-09-17 2018-09-26 日産自動車株式会社 Fuel cell system
WO2017110367A1 (en) 2015-12-25 2017-06-29 日産自動車株式会社 Fuel cell system and fuel cell system control method
JP6237861B1 (en) * 2016-11-04 2017-11-29 富士電機株式会社 Fuel cell system and operation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103287A (en) * 2002-09-05 2004-04-02 Daikin Ind Ltd Solid electrolyte type fuel cell system
JP2004152598A (en) * 2002-10-30 2004-05-27 Nissan Motor Co Ltd Control device for fuel cell vehicle
JP2010153063A (en) * 2008-12-24 2010-07-08 Kyocera Corp Fuel battery device
JP2011009196A (en) * 2009-05-28 2011-01-13 Toto Ltd Solid electrolyte fuel cell
JP2011034715A (en) * 2009-07-30 2011-02-17 Nissan Motor Co Ltd Fuel cell system and temperature-raising method of fuel cell used for this fuel cell system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509470A (en) * 2003-10-21 2007-04-12 アルバータ リサーチ カウンシル インコーポレイテッド Operation control of solid oxide fuel cells
JP4330434B2 (en) * 2003-12-08 2009-09-16 東京瓦斯株式会社 Fuel cell system
JP2006032262A (en) * 2004-07-21 2006-02-02 Tokyo Gas Co Ltd Fuel cell system and control method
JP2006086016A (en) * 2004-09-16 2006-03-30 Kyocera Corp Operation method of solid oxide fuel cell
JP5406426B2 (en) * 2006-09-28 2014-02-05 アイシン精機株式会社 Fuel cell system
JP2009277621A (en) * 2008-05-19 2009-11-26 Nissan Motor Co Ltd Fuel-cell system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103287A (en) * 2002-09-05 2004-04-02 Daikin Ind Ltd Solid electrolyte type fuel cell system
JP2004152598A (en) * 2002-10-30 2004-05-27 Nissan Motor Co Ltd Control device for fuel cell vehicle
JP2010153063A (en) * 2008-12-24 2010-07-08 Kyocera Corp Fuel battery device
JP2011009196A (en) * 2009-05-28 2011-01-13 Toto Ltd Solid electrolyte fuel cell
JP2011034715A (en) * 2009-07-30 2011-02-17 Nissan Motor Co Ltd Fuel cell system and temperature-raising method of fuel cell used for this fuel cell system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180375127A1 (en) * 2015-12-25 2018-12-27 Nissan Motor Co., Ltd. Solid oxide fuel cell system and method of controlling the same
US10547068B2 (en) * 2015-12-25 2020-01-28 Nissan Motor Co., Ltd. Solid oxide fuel cell system and method of controlling the same
CN111987336A (en) * 2020-08-24 2020-11-24 安徽江淮汽车集团股份有限公司 Vehicle low-temperature starting method, device, storage medium and device

Also Published As

Publication number Publication date
JP5846537B2 (en) 2016-01-20
JP2012221563A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
WO2012137564A1 (en) Solid oxide fuel cell system and operating method therefor
JP4045755B2 (en) Fuel cell system
JP2004311218A (en) Warming-up device of fuel cell system
JP2009054404A (en) Fuel cell system
JP2013105612A (en) Fuel cell system and method for controlling fuel cell system
EP2608302B1 (en) Fuel cell system
JP6814969B2 (en) Solid oxide fuel cell system
US9553322B2 (en) Fuel cell system and operation method thereof
JP6446949B2 (en) Fuel cell system
JP2006219328A (en) Hydrogen generation apparatus and fuel cell system using the same
US9620794B2 (en) Fuel cell system and method of operating the same
JP4845899B2 (en) Fuel cell system
JP2007213942A (en) Fuel cell system and starting method of fuel cell system
JP4087840B2 (en) Fuel cell system
JP2009026563A (en) Control device and control method
JP6226922B2 (en) Starting method and operating method of fuel cell cogeneration system
JP2008081331A (en) Reformer
JP2019046696A (en) Fuel cell system and start-up control method
JP2010080251A (en) Fuel cell system and method for controlling the same
JP4939052B2 (en) Fuel cell system
JP2008004370A (en) Fuel reforming system
JP7120323B2 (en) Combustion system and method of controlling combustion system
JP5266782B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
JP2008293755A (en) Fuel cell system and its operation method
JP2006040804A (en) Fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12767822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12767822

Country of ref document: EP

Kind code of ref document: A1