WO2012137430A1 - Rotor core steel plate and method for manufacturing same - Google Patents

Rotor core steel plate and method for manufacturing same Download PDF

Info

Publication number
WO2012137430A1
WO2012137430A1 PCT/JP2012/001948 JP2012001948W WO2012137430A1 WO 2012137430 A1 WO2012137430 A1 WO 2012137430A1 JP 2012001948 W JP2012001948 W JP 2012001948W WO 2012137430 A1 WO2012137430 A1 WO 2012137430A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor core
core steel
crushing
steel sheet
steel plate
Prior art date
Application number
PCT/JP2012/001948
Other languages
French (fr)
Japanese (ja)
Inventor
一夫 岩田
平原 誠
洋平 亀田
和洋 榊田
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Publication of WO2012137430A1 publication Critical patent/WO2012137430A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Definitions

  • the present invention relates to a rotor core steel plate and a manufacturing method.
  • FIGS. 24 and 25 are perspective views of the rotor
  • FIG. 25 is a conceptual diagram of magnetic field formation.
  • the rotor 101 of the electric motor is formed by laminating a rotor core steel plate 103.
  • the rotor 101 is inserted into a stator (not shown) that forms a rotating magnetic field, and the rotor 101 is rotated by a repulsive attractive action between the rotating magnetic field in the stator that is rotated by supplied power and the magnet 105.
  • the rotor 101A of FIG. 26 forms a nonmagnetic region 113 by diffusing and penetrating the nonmagnetic paint by applying and heating a nonmagnetic paint to the bridge portion 111A and its periphery.
  • JP 2003-304670 A Japanese Patent Laid-Open No. 2005-39963
  • the problem to be solved is that productivity is lowered due to the suppression of invalid magnetic field at the bridge and strengthening to cope with centrifugal force.
  • the present invention is for incorporating a magnet inside the outer peripheral edge.
  • a rotor-core steel plate provided with a magnet slot characterized in that a crushing portion for applying compressive residual stress is provided at a bridge portion between the magnet slot and the outer peripheral edge.
  • the present invention is a method of manufacturing a rotor core steel plate having a magnet slot for incorporating a magnet, wherein a bridge portion between the magnet slot and the outer peripheral edge of the rotor core steel plate is formed in a plate thickness direction.
  • a feature of the method for producing a rotor core steel sheet is that a crushing portion that imparts compressive residual stress by crushing is formed.
  • the rotor core steel sheet of the present invention has the above-described configuration, it has a function of reducing leakage magnetic flux by deteriorating magnetization characteristics by a crushing portion that applies compressive residual stress, and opposing centrifugal force by compressive residual stress. .
  • the method for producing a rotor / core steel sheet according to the present invention can provide a rotor / core steel sheet having a crushing portion that imparts compressive residual stress.
  • Example 1 It is a principal part front view of a rotor core.
  • Example 1 It is a principal part enlarged front view of a rotor core steel plate.
  • Example 1 FIG. 3 is an explanatory view showing a crushing process in a cross section taken along line III-III in FIG. (Example 1)
  • (A) is the minimum principal stress distribution figure by the crushing process with the gradient of a bridge part
  • (B) is the minimum principal stress distribution figure by the flat crushing process of a bridge part.
  • Example 1 (A) is a graph which shows the change of the magnetic flux density with respect to the magnetic field by the change of compressive stress
  • (B) is a graph which shows the change of the magnetic permeability with respect to magnetic flux density.
  • Example 1 It is a principal part front view of a rotor core.
  • Example 1 It is a principal part front view of a rotor core.
  • Example 1 It is a front view of a rotor core steel plate.
  • Example 2 It is explanatory drawing which shows the crushing process corresponding to FIG.
  • Example 3 It is a principal part enlarged front view of a rotor core steel plate.
  • FIG. 11 is an explanatory diagram showing a crushing process in a cross section taken along line XI-XI in FIG. 10.
  • Example 4) It is a principal part enlarged front view of a rotor core steel plate.
  • FIG. 13 is an explanatory view showing a crushing process in a cross section taken along line XIII-XIII in FIG. 12.
  • FIG. 17 is an explanatory diagram showing a crushing process in a cross section taken along line XVII-XVII in FIG. 16.
  • Example 8) It is a principal part enlarged front view of a rotor core steel plate.
  • FIG. 19 is an explanatory diagram showing a crushing process in a cross section taken along line XIX-XIX in FIG.
  • Example 9 It is a principal part enlarged front view of a rotor core steel plate.
  • FIG. 19 is an explanatory diagram showing a crushing process in a cross section taken along line XXI-XXI in FIG. (Example 10) It is a principal part enlarged front view of a rotor core steel plate.
  • FIG. 23 is an explanatory view showing a crushing process in a cross-section taken along line XXIII-XXIII in FIG. (Example 11) It is a perspective view of a rotor core.
  • (Conventional example) It is a principal part top view of the rotor core which shows magnetic field formation.
  • the purpose of enabling the suppression of invalid magnetic field at the bridge part and strengthening to cope with the centrifugal force while suppressing the decrease in productivity is to be realized between the magnet slot and the outer periphery of the rotor core steel plate. This was realized by crushing the bridge portion to form a crushing portion that imparts compressive residual stress.
  • FIG. 1 is a front view of the main part of the rotor core.
  • the rotor core 1 of the rotor for the electric motor is formed by laminating a plurality of disk-shaped rotor core steel plates 3.
  • Each rotor core steel plate 3 is made of a high magnetic permeability material, for example, a soft magnetic material, and has a cylindrical shaft hole 5 formed in the center by press working or the like, and a cut portion formed in the outer peripheral edge at a predetermined interval in the circumferential direction. 7 is formed.
  • a set of two magnet slots 9 are formed on the outer peripheral side so as to surround the axial hole 5 between the circumferential directions of the notches 7, and a magnet 10 is attached to each magnet slot 9.
  • FIG. 2 is an enlarged front view of the main part of the rotor core steel plate.
  • the magnet slot 9 includes a magnet region 11 and an adhesive region 13 defined by a one-dot chain line.
  • the adhesive region 13 is adjacent to the bridge portion 15, and the bridge portion 15 includes the magnet slot 9 and the rotor. It is located between the outer peripheral edge of the core steel plate 3 and the cut portion 7 side.
  • the range of the bridge portion 15 generally includes the portion 23 on the outer peripheral side between the magnet region 11 and the adhesive region 13 and the thickness in the adhesive region 13 from a portion near the portion 23 of the outer peripheral portion 3a of the magnet region 11. They say up to about changing part 25.
  • the bridge portion 15 is entirely crushed in the thickness direction and is a crushed portion 17 in the hatched range. However, the crushing portion 17 can be further enlarged and formed. On the other hand, since the centrifugal force at the time of rotation concentrates in the vicinity of the portions 23 and 25, it is a good idea to secure the thickness and maintain the rigidity of this portion.
  • the crushing portion 17 can apply compressive residual stress over the portion 23 of the bridge portion 15.
  • FIG. 3 is an explanatory diagram showing crushing in the cross-sectional view taken along the line III-III in FIG.
  • the crushing of the crushing portion 17 is performed so that the width direction outer edge 19 side that is the cut portion 7 side of the bridge portion 15 is crushed more than the width direction inner edge 21 side that is the adhesive region 13 side. Provided.
  • FIG. 4A is a minimum principal stress distribution diagram by crushing with a gradient in the bridge portion
  • FIG. 4B is a minimum principal stress distribution diagram by flat crushing of the bridge portion.
  • the crushing portion 17 can be formed without having a gradient.
  • FIG. 5A is a graph showing a change in magnetic flux density with respect to a magnetic field due to a change in compressive stress
  • FIG. 5B is a graph showing a change in relative permeability with respect to the magnetic flux density.
  • the leakage flux countermeasure becomes a strengthening countermeasure for the centrifugal force as it is, and the reduction in productivity can be suppressed.
  • the magnet 10 is inserted into the magnet slot 9 of the laminated rotor-core steel plate 3 and bonded to form the rotor core 1.
  • the close contact between the rotor and the core steel plate 3 can be selected depending on the application, such as welding or adhesion.
  • the magnetic field formation energy of the magnet 10 is mainly spent on an effective magnetic field that contributes to the rotational torque.
  • FIG. 6 and 7 are front views of the main part of the rotor core.
  • A a component corresponding to FIG. 1
  • B the same B is denoted and description is omitted.
  • the rotor cores 1A and 1B in FIGS. 6 and 7 are obtained by changing the arrangement of the magnets 10A and 10B. Even in the rotor core steel plates 3A and 3B applied to the rotor cores 1A and 1B, the bridge portion 15A and The crushing portions 17A and 17B having a set range by the crushing process similar to the above can be formed on 15B, and compressive residual stress can be applied.
  • the bridge portions 15 ⁇ / b> A and 15 ⁇ / b> B have a circular arc range in the circumferential direction between the adhesive regions 13 ⁇ / b> A and 13 ⁇ / b> B and the outer peripheral edges of the rotor cores 1 ⁇ / b> A and 1 ⁇ / b> B.
  • a gradient can be applied so as to crush more toward the outer peripheral edge on the radius of the rotor core steel plates 3A and 3B.
  • FIG. 8 is a front view of the rotor core steel plate according to the second embodiment.
  • the basic configuration is the same as that of the first embodiment, and the same components are denoted by the same reference numerals, and the corresponding components are described by adding the same symbols to C, and redundant descriptions are omitted. .
  • the rotor core steel plate 3 of this example was subjected to the crushing of the crushing portion 17 ⁇ / b> C only at the intermediate portion of the bridge portion 15.
  • FIG. 9 is an explanatory diagram showing a crushing process corresponding to FIG. 3 according to the third embodiment. Note that components corresponding to those in the first embodiment are described with D, and redundant description is omitted.
  • Example 2 the crushing process as in Example 1 was performed by restraining the bridge portion 15D from the width direction.
  • a concave portion 27Da having a rectangular cross section is formed on the punch 27D, and a crushing portion 17D is formed between the die 29D and the width direction outer edge side 19D and the width direction inner edge side 21D.
  • FIGS. 10 and 11 relate to Embodiment 4 of the present invention
  • FIG. 10 is an enlarged front view of the main part of the rotor core steel plate
  • FIG. 11 is a crushing process in the cross section taken along line XI-XI in FIG. It is explanatory drawing shown.
  • the basic configuration is the same as that of the first embodiment, and the same components are denoted by the same reference numerals, and the corresponding components are described by adding E to the same symbols, and redundant descriptions are omitted. To do.
  • the rotor core steel plate 3 of the present embodiment includes a step 17Ea in which the crushing portion 17E crushes the width direction outer edge 19 side of the bridge portion 15 more than the width direction inner edge 21 side.
  • the crushing portion 17E forms a compressive residual stress ⁇ as described above.
  • the crushing process with the step 17Ea of the crushing portion 17E is performed by lowering the punch 27E having a step corresponding to the width direction of the bridge portion 15 with respect to the flat die 29 as shown in FIG.
  • the widthwise outer edge portion 17Eab may be crushed with a flat die.
  • the degree of compression of the width direction inner edge portion 17Eaa and the width direction outer edge portion 17Eab of the step 17Ea is changed, and the compressive residual stress ⁇ over the portion 23 of the bridge portion 15 is surely applied.
  • the inner edge portion 17Eaa in the width direction is lightly crushed to ensure rigidity.
  • the rigidity by securing the plate thickness at the portions 23 and 25 and the width direction inner edge portion 17Eaa against the centrifugal force acting on the portions 23 and 25 whose front face widths change on both sides of the bridge portion 15 It can be made to face by securing.
  • FIGS. 12 and 13 relate to Embodiment 5 of the present invention
  • FIG. 12 is an enlarged front view of the main part of the rotor core steel plate
  • FIG. 13 is a crushing process in the cross section taken along line XIII-XIII in FIG. It is explanatory drawing shown.
  • the basic configuration is the same as that of the first embodiment, and the same components are denoted by the same reference numerals, and the corresponding components are described by adding the same symbols to F, and redundant descriptions are omitted. To do.
  • the rotor core steel plate 3 of the present embodiment has the crushing portion 17 ⁇ / b> F only on the width direction outer edge 19 side of the bridge portion 15, and forms a step 17 ⁇ / b> Fa in the width direction of the bridge portion 15.
  • the crushing portion 17F forms a compressive residual stress ⁇ as described above.
  • the crushing process of the crushing part 17F is performed by lowering the punch 27F with respect to the flat die 29 on the width direction outer edge 19 side of the bridge part 15 as shown in FIG.
  • This crushing process compresses the outer edge 19 in the width direction and reliably applies the compressive residual stress ⁇ over the portion 23 of the bridge portion 15.
  • rigidity can be secured, and in addition to the compressive residual stress ⁇ , the centrifugal force acting on the portions 23 and 25 whose front width changes on both sides of the bridge portion 15, The portions 23 and 25 and the inner edge 21 in the width direction can be opposed to each other by securing the rigidity by securing the plate thickness.
  • FIG. 14 is an enlarged front view of the main part of the rotor core steel plate according to the sixth embodiment of the present invention.
  • the basic configuration is the same as that of the first embodiment, and the same components are denoted by the same reference numerals, and the corresponding components are described by adding the same symbols to G, and redundant descriptions are omitted. To do.
  • the crushed portion 17G is formed wide on the width direction outer edge 19 side of the bridge portion 15 and narrowly on the width direction inner edge 21 side.
  • the crushing portion 17G forms a compressive residual stress ⁇ as described above.
  • the crushing process of the crushing part 17G is performed by a flat punch and die according to the shape of the crushing part 17G.
  • Compressive residual stress ⁇ over the portion 23 of the bridge portion 15 is surely applied by this crushing process.
  • FIG. 15 is an enlarged front view of a main part of a rotor core steel plate according to Example 7 of the present invention.
  • the basic configuration is the same as that of the first embodiment, and the same components are denoted by the same reference numerals, and the corresponding components are described by adding the same symbols to H, and redundant descriptions are omitted. To do.
  • the rotor core steel plate 3 of the present embodiment is formed almost entirely by leaving the crushing portion 17 ⁇ / b> H so as to surround a part 15 a of the bridge portion 15.
  • This part 15a is a part to which the compressive residual stress ⁇ is to be applied, and the compressive residual stress ⁇ is formed by the crushed portion 17H in the same manner as described above. Note that the crushed portion 17H does not need to be formed on almost the entire bridge portion 15 as long as compressive residual stress can be formed in the portion 15a surrounded by the crushed portion.
  • the crushing process of the crushing part 17H is performed by a flat punch and die according to the shape of the crushing part 17H.
  • FIG. 16 and FIG. 17 relate to Example 8 of the present invention
  • FIG. 16 is an enlarged front view of the main part of the rotor core steel plate
  • FIG. 17 is a crushing process in the section taken along line XVII-XVII in FIG. It is explanatory drawing shown.
  • the basic configuration is the same as that of the first embodiment, and the same components are denoted by the same reference numerals, and the corresponding components are described by adding I to the same symbols, and redundant description is omitted. To do.
  • the rotor core steel plate 3 of the present example was provided with a concave cross-section 17Ib in which the crushed portion 17I was deepened in the middle in the direction along the bridge portion 15.
  • the concave cross section 17Ib is composed of inclined surfaces 17Iba and 17Ibb.
  • the crushing portion 17I forms a compressive residual stress ⁇ as described above.
  • the crushing process of the crushing portion 17 ⁇ / b> I having the concave cross section 17 ⁇ / b> Ib is performed by applying a punch 27 ⁇ / b> I having inclined surfaces corresponding to the inclined surfaces 17 ⁇ / b> Iba and 17 ⁇ / b> Ibb in the direction along the bridge portion 15 to the flat die 29. To lower.
  • a crushing part 17I having a concave cross section 17Ib in which the intermediate part in the direction along the bridge part 15 is deep is formed, and the compressive residual stress ⁇ over the part 23 of the bridge part 15 is surely applied.
  • the crushing portion 17I has a concave cross section 17Ib in which the intermediate portion in the direction along the bridge portion 15 is deep, and the plate thickness at the portions 23 and 25 can be secured.
  • the centrifugal force acting on the portions 23 and 25 whose front width changes on both sides of the bridge portion 15 can be opposed to each other by securing rigidity by securing the plate thickness at the portions 23 and 25 in addition to the compressive residual stress ⁇ . .
  • FIG. 18 and 19 relate to Embodiment 9 of the present invention
  • FIG. 18 is an enlarged front view of the main part of the rotor core steel plate
  • FIG. 19 is a crushing process in the cross section taken along line XIX-XIX in FIG. It is explanatory drawing shown.
  • the basic configuration is the same as that of the first embodiment, and the same components are denoted by the same reference numerals, and the corresponding components are denoted by the same reference numerals with J, and duplicate descriptions are omitted. To do.
  • the rotor core steel plate 3 of the present embodiment includes a concave cross-section 17Jb in which the crushed portion 17J is deep in the middle in the direction along the bridge portion 15, and the crushed portion 17J is in the width direction. It was provided only on the outer edge 19 side.
  • the crushed portion 17J has a concave cross section 17Ib composed of inclined surfaces 17Iba and 17Ibb, and forms a concave shape in the direction along the bridge portion 15 and a step in the width direction.
  • the crushing portion 17J forms a compressive residual stress ⁇ as described above.
  • the crushing process with the concave cross section 17Jb of the crushing part 17I is performed only on the outer edge 19 side in the width direction of the bridge part 15 as shown in FIG.
  • This crushing process is performed by lowering a punch 27J having an inclined surface corresponding to the inclined surfaces 17Jba and 17Jbb in a direction along the bridge portion 15 with respect to the flat die 29.
  • a crushing portion 17J having a concave cross section 17Jb in which the intermediate portion in the direction along the bridge portion 15 is deep is formed, and the compressive residual stress ⁇ over the portion 23 of the bridge portion 15 is surely applied.
  • the crushing portion 17J is provided with a concave cross section 17Jb in which the middle portion in the direction along the bridge portion 15 is deep only on the width direction outer edge 19 side, and the plate thicknesses on the portions 23 and 25 and the width direction inner edge 21 side can be secured.
  • the rigidity is ensured by securing the plate thickness on the side of the portions 23 and 25 and the width direction inner edge 21 against the centrifugal force acting on the portions 23 and 25 whose front width changes on both sides of the bridge portion 15. Can be opposed.
  • FIG. 20 and FIG. 21 relate to Example 10 of the present invention
  • FIG. 20 is an enlarged front view of the main part of the rotor core steel plate
  • FIG. 21 is a crushing process in the cross section taken along the line XXI-XXI in FIG. It is explanatory drawing shown.
  • the basic configuration is the same as that of the first embodiment, and the same components are denoted by the same reference numerals, and the corresponding components are described by adding the same symbols to K, and redundant descriptions are omitted. To do.
  • the rotor core steel plate 3 of the present example was provided with a concave cross-section 17 Kb in which the crushed portion 17 ⁇ / b> K was deepened in the middle portion along the bridge portion 15.
  • the concave cross section 17Kb was composed of curved surfaces 17Kba and 17Kbb.
  • the crushing portion 17K forms a compressive residual stress ⁇ as described above.
  • a punch 27K having a convex curved surface corresponding to the curved surfaces 17Kba and 17Kbb in the direction along the bridge portion 15 is applied to the flat die 29 as shown in FIG. This is done by lowering.
  • the crushing portion 17K includes a concave cross section 17Kb in which the intermediate portion in the direction along the bridge portion 15 is deep, and the plate thickness at the portions 23 and 25 can be secured.
  • the centrifugal force acting on the portions 23 and 25 whose front width changes on both sides of the bridge portion 15 can be opposed to each other by securing rigidity by securing the plate thickness at the portions 23 and 25 in addition to the compressive residual stress ⁇ . .
  • FIG. 22 and FIG. 23 relate to Example 11 of the present invention
  • FIG. 22 is an enlarged front view of the main part of the rotor core steel plate
  • FIG. 23 is a crushing process in FIG. 22 taken along the line XXIII-XXIII. It is explanatory drawing shown.
  • the basic configuration is the same as that of the first embodiment, and the same components are denoted by the same reference numerals, and the corresponding components are described by adding the L to the same symbols, and redundant descriptions are omitted. To do.
  • the rotor core steel plate 3 of the present example was provided with a concave cross section 17Lb in which the crushed portion 17L was deep in the middle in the direction along the bridge portion 15.
  • the concave cross section 17Lb is composed of multi-step surfaces 17Lba and 17Lbb.
  • the crushing portion 17L forms a compressive residual stress ⁇ as described above.
  • the crushing process of the crushing portion 17L having the concave cross section 17Lb is performed by applying a punch 27L having a multi-section corresponding to the multistage surfaces 17Lba and 17Lbb in the direction along the bridge portion 15 to the flat die 29. To lower.
  • the crushed portion 17L includes a concave cross section 17Lb in which the intermediate portion in the direction along the bridge portion 15 is deep, and the plate thickness at the portions 23 and 25 can be secured.
  • the centrifugal force acting on the portions 23 and 25 whose front width changes on both sides of the bridge portion 15 is opposed to the compressive residual stress ⁇ and the rigidity secured by securing the plate thickness at the portions 23 and 25. be able to.
  • the crushing portion 17F in the fifth embodiment can be inclined to be inclined downward toward the outer edge 19 in the width direction of the bridge portion 15.
  • the crushing process uses a punch having a slope corresponding to the slope.
  • the magnet slot is not limited to a rectangular parallelepiped, and may be, for example, an arc shape, and the arrangement and number of magnet slots are appropriately selected according to the use of the electric motor.
  • the method of performing the crushing process of the third embodiment while restraining the bridge portion 15D from the width direction can be similarly applied to the other embodiments.

Abstract

Provided is a rotor core steel plate and a method for manufacturing the same wherein reinforcement for preventing an ineffective magnetic field and dealing with centrifugal force at a bridge part can be achieved with high productivity. According to the method of the present invention for manufacturing a rotor core steel plate (3) comprising a magnetic slot (9) for a built-in magnet, a bridge part (15) between an outer circumferential edge of the rotor core steel plate (3) and the magnetic slot (9) is flattened in the plate thickness direction to form a flattened part (17) which provides a compressive residual stress. The flattened part (17) reduces flux leakage by worsening magnetizing properties, and has the function of countering centrifugal force, and a magnetic field is generated mainly in a vertical direction on a long side of the magnet. An ineffective magnetic field at the bridge part (15) is reduced, and therefore a magnetic field effective for rotor rotation is increased.

Description

ロータ・コア鋼板及び製造方法Rotor core steel plate and manufacturing method
 この発明は、ロータ・コア鋼板及び製造方法に関する。 The present invention relates to a rotor core steel plate and a manufacturing method.
 従来より、この種のロータ・コア鋼板を積層したロータとして、特許文献1に記載された図24、図25に記載されたものがある。図24は、ロータの斜視図、図25は、磁界形成の概念図である。 Conventionally, as a rotor in which this kind of rotor / core steel sheet is laminated, there is one described in FIGS. 24 and 25 described in Patent Document 1. FIG. FIG. 24 is a perspective view of the rotor, and FIG. 25 is a conceptual diagram of magnetic field formation.
 図24、図25のように、電動モータのロータ101は、ロータ・コア鋼板103が積層されたものである。このロータ101が、回転磁界を形成する図示しないステータの中に挿入され、供給電力により回転するステータ内の回転磁界と、磁石105との反発吸引作用によりロータ101が回転する。 24 and 25, the rotor 101 of the electric motor is formed by laminating a rotor core steel plate 103. The rotor 101 is inserted into a stator (not shown) that forms a rotating magnetic field, and the rotor 101 is rotated by a repulsive attractive action between the rotating magnetic field in the stator that is rotated by supplied power and the magnet 105.
 しかし、かかるロータ101では、磁石角部周辺107において、ロータ回転トルクに寄与しない、無効な磁界109が形成されてしまうものとなっていた。特にロータ101外周部と磁石角部の間の領域であるブリッジ部111でこの現象が顕著となっていた。 However, in such a rotor 101, an invalid magnetic field 109 that does not contribute to the rotor rotational torque is formed around the magnet corner portion 107. In particular, this phenomenon is prominent in the bridge portion 111 that is a region between the outer peripheral portion of the rotor 101 and the magnet corner.
 これに対し、図26のロータ101Aは、ブリッジ部111A及びその周辺に非磁性塗料を塗布し加熱することで非磁性塗料を拡散浸透させ、非磁性領域113を形成している。 On the other hand, the rotor 101A of FIG. 26 forms a nonmagnetic region 113 by diffusing and penetrating the nonmagnetic paint by applying and heating a nonmagnetic paint to the bridge portion 111A and its periphery.
 したがって、ブリッジ部111Aでの無効な磁界形成がなく、電動モータに内蔵する磁石量を低減することができる。 Therefore, there is no invalid magnetic field formation in the bridge portion 111A, and the amount of magnets built in the electric motor can be reduced.
 しかし、非磁性塗料を塗布した後加熱する工程を必要とするため、非磁性領域113の形成に時間を要し、生産性の低下を招いてた。 However, since a step of heating after applying the nonmagnetic paint is required, it takes time to form the nonmagnetic region 113, resulting in a decrease in productivity.
 また、ロータ101,101Aが回転するときには、ブリッジ部111,111Aに遠心力により大きな引張力が発生するため、この部分を強化する必要もある。 Further, when the rotor 101, 101A rotates, a large tensile force is generated by the centrifugal force in the bridge portions 111, 111A, so that it is necessary to strengthen this portion.
 これに対し、特許文献2のロータでは、ブリッジ部の一部を加工硬化させてブリッジ部を強化し、回転時の遠心力に耐えるようにしている。 On the other hand, in the rotor of Patent Document 2, a part of the bridge portion is work-hardened to strengthen the bridge portion so as to withstand centrifugal force during rotation.
 しかし、ブリッジ部での無効な磁界の形成は避けられず、特許文献1の技術を合体させる必要があり、生産性が益々低下するという問題がある。 However, the formation of an invalid magnetic field in the bridge portion is unavoidable, and it is necessary to combine the techniques of Patent Document 1 and there is a problem that productivity is further reduced.
特開2003-304670号公報JP 2003-304670 A 特開2005-39963号公報Japanese Patent Laid-Open No. 2005-39963
 解決しようとする問題点は、ブリッジ部での無効な磁界抑制及び遠心力対応のための強化のために、生産性が低下する点である。 The problem to be solved is that productivity is lowered due to the suppression of invalid magnetic field at the bridge and strengthening to cope with centrifugal force.
 本発明は、ブリッジ部での無効な磁界抑制及び遠心力対応のための強化を、生産性の低下を抑制して実現することを可能とするため、外周縁の内側に磁石を内蔵するための磁石スロットを備えたロータ・コア鋼板であって、前記磁石スロットと前記外周縁との間のブリッジ部に、圧縮残留応力を付与する潰し部を備えたことをロータ・コア鋼板の特徴とする。 In order to enable the suppression of invalid magnetic field suppression and centrifugal force response at the bridge portion while suppressing the decrease in productivity, the present invention is for incorporating a magnet inside the outer peripheral edge. A rotor-core steel plate provided with a magnet slot, characterized in that a crushing portion for applying compressive residual stress is provided at a bridge portion between the magnet slot and the outer peripheral edge.
 本発明は、磁石を内蔵するための磁石スロットを備えたロータ・コア鋼板の製造方法であって、前記磁石スロットと前記ロータ・コア鋼板の外周縁との間のブリッジ部を、板厚方向に潰し加工して圧縮残留応力を付与する潰し部を形成したことをロータ・コア鋼板の製造方法の特徴とする。 The present invention is a method of manufacturing a rotor core steel plate having a magnet slot for incorporating a magnet, wherein a bridge portion between the magnet slot and the outer peripheral edge of the rotor core steel plate is formed in a plate thickness direction. A feature of the method for producing a rotor core steel sheet is that a crushing portion that imparts compressive residual stress by crushing is formed.
 本発明のロータ・コア鋼板は、上記構成であるから、圧縮残留応力を付与する潰し部により、磁化特性を劣化させて漏れ磁束を低減させ、且つ圧縮残留応力により遠心力に対向する機能を有する。 Since the rotor core steel sheet of the present invention has the above-described configuration, it has a function of reducing leakage magnetic flux by deteriorating magnetization characteristics by a crushing portion that applies compressive residual stress, and opposing centrifugal force by compressive residual stress. .
 本発明のロータ・コア鋼板の製造方法は、圧縮残留応力を付与する潰し部を備えたロータ・コア鋼板を得ることができる。 The method for producing a rotor / core steel sheet according to the present invention can provide a rotor / core steel sheet having a crushing portion that imparts compressive residual stress.
ロータ・コアの要部正面図である。(実施例1)It is a principal part front view of a rotor core. Example 1 ロータ・コア鋼板の要部拡大正面図である。(実施例1)It is a principal part enlarged front view of a rotor core steel plate. Example 1 ブリッジ部の図2のIII-III線矢視断面における潰し加工を示す説明図である。(実施例1)FIG. 3 is an explanatory view showing a crushing process in a cross section taken along line III-III in FIG. (Example 1) (A)は、ブリッジ部の勾配を持った潰し加工による最小主応力分布図、(B)は、ブリッジ部の均平な潰し加工による最小主応力分布図である。(実施例1)(A) is the minimum principal stress distribution figure by the crushing process with the gradient of a bridge part, (B) is the minimum principal stress distribution figure by the flat crushing process of a bridge part. Example 1 (A)は、圧縮応力の変化による磁場に対する磁束密度の変化を示すグラフ、(B)は、磁束密度に対する透磁率の変化を示すグラフである。(実施例1)(A) is a graph which shows the change of the magnetic flux density with respect to the magnetic field by the change of compressive stress, (B) is a graph which shows the change of the magnetic permeability with respect to magnetic flux density. Example 1 ロータ・コアの要部正面図である。(実施例1)It is a principal part front view of a rotor core. Example 1 ロータ・コアの要部正面図である。(実施例1)It is a principal part front view of a rotor core. Example 1 ロータ・コア鋼板の正面図である。(実施例2)It is a front view of a rotor core steel plate. (Example 2) 図3に対応し潰し加工を示す説明図である。(実施例3)It is explanatory drawing which shows the crushing process corresponding to FIG. Example 3 ロータ・コア鋼板の要部拡大正面図である。(実施例4)It is a principal part enlarged front view of a rotor core steel plate. (Example 4) 図10のXI-XI線矢視断面における潰し加工を示す説明図である。(実施例4)FIG. 11 is an explanatory diagram showing a crushing process in a cross section taken along line XI-XI in FIG. 10. (Example 4) ロータ・コア鋼板の要部拡大正面図である。(実施例5)It is a principal part enlarged front view of a rotor core steel plate. (Example 5) 図12のXIII-XIII線矢視断面における潰し加工を示す説明図である。(実施例5)FIG. 13 is an explanatory view showing a crushing process in a cross section taken along line XIII-XIII in FIG. 12. (Example 5) ロータ・コア鋼板の要部拡大正面図である。(実施例6)It is a principal part enlarged front view of a rotor core steel plate. (Example 6) ロータ・コア鋼板の要部拡大正面図である。(実施例7)It is a principal part enlarged front view of a rotor core steel plate. (Example 7) ロータ・コア鋼板の要部拡大正面図である。(実施例8)It is a principal part enlarged front view of a rotor core steel plate. (Example 8) 図16のXVII-XVII線矢視断面における潰し加工を示す説明図である。(実施例8)FIG. 17 is an explanatory diagram showing a crushing process in a cross section taken along line XVII-XVII in FIG. 16. (Example 8) ロータ・コア鋼板の要部拡大正面図である。(実施例9)It is a principal part enlarged front view of a rotor core steel plate. Example 9 図18のXIX-XIX線矢視断面における潰し加工を示す説明図である。(実施例9)FIG. 19 is an explanatory diagram showing a crushing process in a cross section taken along line XIX-XIX in FIG. Example 9 ロータ・コア鋼板の要部拡大正面図である。(実施例10)It is a principal part enlarged front view of a rotor core steel plate. (Example 10) 図18のXXI-XXI線矢視断面における潰し加工を示す説明図である。(実施例10)FIG. 19 is an explanatory diagram showing a crushing process in a cross section taken along line XXI-XXI in FIG. (Example 10) ロータ・コア鋼板の要部拡大正面図である。(実施例11)It is a principal part enlarged front view of a rotor core steel plate. (Example 11) 図22のXXIII-XXIII線矢視断面における潰し加工を示す説明図である。(実施例11)FIG. 23 is an explanatory view showing a crushing process in a cross-section taken along line XXIII-XXIII in FIG. (Example 11) ロータ・コアの斜視図である。(従来例)It is a perspective view of a rotor core. (Conventional example) 磁界形成を示すロータ・コアの要部平面図である。(従来例)It is a principal part top view of the rotor core which shows magnetic field formation. (Conventional example) 磁界形成を示すロータ・コアの要部平面図である。(従来例)It is a principal part top view of the rotor core which shows magnetic field formation. (Conventional example)
 ブリッジ部での無効な磁界抑制及び遠心力対応のための強化を、生産性の低下を抑制して実現することを可能にするという目的を、磁石スロットとロータ・コア鋼板の外周縁との間のブリッジ部を、潰し加工して圧縮残留応力を付与する潰し部を形成することで実現した。 The purpose of enabling the suppression of invalid magnetic field at the bridge part and strengthening to cope with the centrifugal force while suppressing the decrease in productivity is to be realized between the magnet slot and the outer periphery of the rotor core steel plate. This was realized by crushing the bridge portion to form a crushing portion that imparts compressive residual stress.
 図1は、ロータ・コアの要部正面図である。 FIG. 1 is a front view of the main part of the rotor core.
 図1のように、電動モータ用ロータのロータ・コア1は、円盤状のロータ・コア鋼板3を複数枚積層して形成されている。各ロータ・コア鋼板3は、高透磁率材料、例えば軟磁性材料等で構成され、プレス加工等によって中心部に円筒状の軸穴5が形成され、外周縁に、周方向所定間隔で切込み部7が形成されている。 As shown in FIG. 1, the rotor core 1 of the rotor for the electric motor is formed by laminating a plurality of disk-shaped rotor core steel plates 3. Each rotor core steel plate 3 is made of a high magnetic permeability material, for example, a soft magnetic material, and has a cylindrical shaft hole 5 formed in the center by press working or the like, and a cut portion formed in the outer peripheral edge at a predetermined interval in the circumferential direction. 7 is formed.
 各切込み部7の周方向間において、外周側に2個一組の磁石スロット9が軸穴5へ指向して囲むように形成され、各磁石スロット9に、磁石10が取り付けられている。 A set of two magnet slots 9 are formed on the outer peripheral side so as to surround the axial hole 5 between the circumferential directions of the notches 7, and a magnet 10 is attached to each magnet slot 9.
 図2は、ロータ・コア鋼板の要部拡大正面図である。 FIG. 2 is an enlarged front view of the main part of the rotor core steel plate.
 図2のように、磁石スロット9は、一点鎖線で区画された磁石領域11及び接着剤領域13を備え、接着剤領域13がブリッジ部15に隣接し、ブリッジ部15は、磁石スロット9とロータ・コア鋼板3の外周縁の切込み部7側との間に位置している。ブリッジ部15の範囲は、概ね磁石領域11及び接着剤領域13間の外周側の部分23を含め、磁石領域11の外周部3aの部分23寄りの一部から接着剤領域13での太さが変化する部分25ぐらいまでを言っている。 As shown in FIG. 2, the magnet slot 9 includes a magnet region 11 and an adhesive region 13 defined by a one-dot chain line. The adhesive region 13 is adjacent to the bridge portion 15, and the bridge portion 15 includes the magnet slot 9 and the rotor. It is located between the outer peripheral edge of the core steel plate 3 and the cut portion 7 side. The range of the bridge portion 15 generally includes the portion 23 on the outer peripheral side between the magnet region 11 and the adhesive region 13 and the thickness in the adhesive region 13 from a portion near the portion 23 of the outer peripheral portion 3a of the magnet region 11. They say up to about changing part 25.
 ブリッジ部15は、そのハッチングの範囲である全体が板厚方向に潰し加工され、潰し部17となっている。但し、潰し部17は、さらに拡大して形成することもできる。反面、部分23,25近辺には、回転時の遠心力が集中するため、この部分は、肉厚を確保して剛性を維持するのが得策である。潰し部17により、ブリッジ部15の部分23に渡る圧縮残留応力を付与することができる。 The bridge portion 15 is entirely crushed in the thickness direction and is a crushed portion 17 in the hatched range. However, the crushing portion 17 can be further enlarged and formed. On the other hand, since the centrifugal force at the time of rotation concentrates in the vicinity of the portions 23 and 25, it is a good idea to secure the thickness and maintain the rigidity of this portion. The crushing portion 17 can apply compressive residual stress over the portion 23 of the bridge portion 15.
 図3は、図2のIII-III線矢視断面図における潰し加工を示す説明図である。 FIG. 3 is an explanatory diagram showing crushing in the cross-sectional view taken along the line III-III in FIG.
 図3のように、潰し部17の潰し加工は、ブリッジ部15の切込み部7側である幅方向外縁19側を接着剤領域13側である幅方向内縁21側よりも多く潰すように勾配を設けている。 As shown in FIG. 3, the crushing of the crushing portion 17 is performed so that the width direction outer edge 19 side that is the cut portion 7 side of the bridge portion 15 is crushed more than the width direction inner edge 21 side that is the adhesive region 13 side. Provided.
 図3のような潰し部17の勾配を持った潰し加工は、ブリッジ部15の幅方向の勾配に対応する勾配を持ったパンチ27を平坦なダイ29に対して下降させることにより行う。 3 is performed by lowering the punch 27 having a gradient corresponding to the gradient in the width direction of the bridge portion 15 with respect to the flat die 29. As shown in FIG.
 潰し部17の勾配を持った潰し加工時に、自由状態となるブリッジ部15の幅方向外縁19側で外側へ変形が進むと圧縮残留応力が小さくなるか、形成されない。このため、上記のように勾配を持った潰し加工により、潰し加工時の外側への変形を規制し、ブリッジ部15の部分23に渡る圧縮残留応力を確実に付与する。 At the time of crushing with the crushing portion 17 having a gradient, if the deformation progresses outward on the outer edge 19 side in the width direction of the bridge portion 15 in a free state, the compressive residual stress is reduced or not formed. For this reason, by the crushing process with the gradient as described above, the outward deformation during the crushing process is restricted, and the compressive residual stress over the portion 23 of the bridge portion 15 is surely applied.
 図4(A)は、ブリッジ部の勾配を持った潰し加工による最小主応力分布図、(B)は、ブリッジ部の均平な潰し加工による最小主応力分布図である。 4A is a minimum principal stress distribution diagram by crushing with a gradient in the bridge portion, and FIG. 4B is a minimum principal stress distribution diagram by flat crushing of the bridge portion.
 図4(A)(B)を比較すれば明らかなように、(A)の勾配を持った潰し加工では、(B)の均平な潰し加工に対して、圧縮残留応力をより均一に、且つ高く与えることができた。但し、(B)のように均平な潰し加工でも、ブリッジ部15に潰し部を形成して圧縮残留応力を与えることはできる。 4A and 4B, as is clear from the crushing process with the gradient of (A), the compressive residual stress is more uniform than the flat crushing process of (B). And it could be given high. However, even with a flat crushing process as shown in (B), a crushing part can be formed in the bridge part 15 to give a compressive residual stress.
 したがって、勾配を持たせずに潰し部17を形成することもできる。 Therefore, the crushing portion 17 can be formed without having a gradient.
 図5(A)は、圧縮応力の変化による磁場に対する磁束密度の変化を示すグラフ、(B)は、磁束密度に対する比透磁率の変化を示すグラフである。 FIG. 5A is a graph showing a change in magnetic flux density with respect to a magnetic field due to a change in compressive stress, and FIG. 5B is a graph showing a change in relative permeability with respect to the magnetic flux density.
 図5のように、圧縮残留応力が0~-48MPaへ増大すると磁化特性が悪化し、透磁率の低下がある。なお、さらに-100MPa程度までの圧縮残留応力で有効である。 As shown in FIG. 5, when the compressive residual stress is increased to 0 to −48 MPa, the magnetic properties are deteriorated and the permeability is lowered. Further, it is effective at a compressive residual stress of about −100 MPa.
 したがって、ブリッジ部15の部分23に渡る漏れ磁束を低減させることができる。 Therefore, leakage magnetic flux over the portion 23 of the bridge portion 15 can be reduced.
 しかも、回転時にブリッジ部15に働く遠心力に圧縮残留応力が対向するから、漏れ磁束対策がそのまま遠心力対応のための強化対策となり、生産性の低下を抑制することができる。 Moreover, since the compressive residual stress opposes the centrifugal force acting on the bridge portion 15 during rotation, the leakage flux countermeasure becomes a strengthening countermeasure for the centrifugal force as it is, and the reduction in productivity can be suppressed.
 潰し部17の形成後、積層されたロータ・コア鋼板3の磁石スロット9に、磁石10が挿入、接着され、ロータ・コア1が形成される。ロータ・コア鋼板3相互の密着固定は、溶接あるいは接着等、用途に応じて選択可能である。 After the crushing portion 17 is formed, the magnet 10 is inserted into the magnet slot 9 of the laminated rotor-core steel plate 3 and bonded to form the rotor core 1. The close contact between the rotor and the core steel plate 3 can be selected depending on the application, such as welding or adhesion.
 図1のように、長辺の外周側をN極、内周側をS極とする磁石10を埋設した場合、ブリッジ部15にのみ潰し部17が形成されて磁気特性の低下を図っているため、磁界は主に磁石10長辺の垂直方向に多く発生し、ブリッジ部15における無効な磁界形成を少なくし、つまりロータ回転に有効となる磁界をより多くすることが出来る。 As shown in FIG. 1, when a magnet 10 having an N-pole on the outer peripheral side of the long side and an S-pole on the inner peripheral side is embedded, a crushed portion 17 is formed only in the bridge portion 15 to reduce the magnetic characteristics. Therefore, a large amount of magnetic field is generated mainly in the vertical direction of the long side of the magnet 10, and invalid magnetic field formation in the bridge portion 15 can be reduced, that is, the magnetic field effective for rotor rotation can be increased.
 したがって、磁石10の持つ磁界形成のエネルギーが主に回転トルクに寄与する有効な磁界にのみ費やされる。 Therefore, the magnetic field formation energy of the magnet 10 is mainly spent on an effective magnetic field that contributes to the rotational torque.
 図6、図7は、ロータ・コアの要部正面図である。なお、図6では、図1と対応する構成部分にAを付し、図7では、同Bを付して説明し、重複した説明は省略する。 6 and 7 are front views of the main part of the rotor core. In FIG. 6, a component corresponding to FIG. 1 is denoted by A, and in FIG. 7, the same B is denoted and description is omitted.
 図6、図7のロータ・コア1A,1Bは、磁石10A,10Bの配置を変更したものであり、各ロータ・コア1A,1Bに適用するロータ・コア鋼板3A,3Bでも、ブリッジ部15A,15Bに、前記同様の潰し加工による設定範囲の潰し部17A,17Bを形成して、圧縮残留応力を付与することができる。 The rotor cores 1A and 1B in FIGS. 6 and 7 are obtained by changing the arrangement of the magnets 10A and 10B. Even in the rotor core steel plates 3A and 3B applied to the rotor cores 1A and 1B, the bridge portion 15A and The crushing portions 17A and 17B having a set range by the crushing process similar to the above can be formed on 15B, and compressive residual stress can be applied.
 図6、図7でのブリッジ部15A,15Bは、接着剤領域13A,13Bとロータ・コア1A,1Bの外周縁との半径方向間で周方向では、円弧の範囲となっている。 6 and 7, the bridge portions 15 </ b> A and 15 </ b> B have a circular arc range in the circumferential direction between the adhesive regions 13 </ b> A and 13 </ b> B and the outer peripheral edges of the rotor cores 1 </ b> A and 1 </ b> B.
 潰し加工では、ロータ・コア鋼板3A,3Bの半径上で外周縁に向かってより多く潰すように勾配をつけることもできる。 In the crushing process, a gradient can be applied so as to crush more toward the outer peripheral edge on the radius of the rotor core steel plates 3A and 3B.
 図8は、実施例2に係り、ロータ・コア鋼板の正面図である。なお、基本的な構成は実施例1と同様であり、同一構成部分には同符号を付し、対応する構成部分には、同符号にCを付して説明し、重複した説明は省略する。 FIG. 8 is a front view of the rotor core steel plate according to the second embodiment. The basic configuration is the same as that of the first embodiment, and the same components are denoted by the same reference numerals, and the corresponding components are described by adding the same symbols to C, and redundant descriptions are omitted. .
 図8のように、本実施例のロータ・コア鋼板3は、ブリッジ部15の中間部にのみ潰し部17Cの潰し加工を行った。 As shown in FIG. 8, the rotor core steel plate 3 of this example was subjected to the crushing of the crushing portion 17 </ b> C only at the intermediate portion of the bridge portion 15.
 この場合は、ブリッジ部15の両側部でその正面幅が変化する部分に働く遠心力に対し、圧縮残留応力に加え、板厚の確保による剛性確保で対向させることができる。 In this case, it is possible to oppose the centrifugal force acting on the part where the front width changes on both sides of the bridge portion 15 by securing rigidity by securing the plate thickness in addition to the compressive residual stress.
 図9は、実施例3に係り、図3に対応した潰し加工を示す説明図である。なお、実施例1と対応する構成部分にはDを付して説明し、重複した説明は省略する。 FIG. 9 is an explanatory diagram showing a crushing process corresponding to FIG. 3 according to the third embodiment. Note that components corresponding to those in the first embodiment are described with D, and redundant description is omitted.
 本実施例では、実施例1のような潰し加工を、ブリッジ部15Dを幅方向から拘束して行った。 In this example, the crushing process as in Example 1 was performed by restraining the bridge portion 15D from the width direction.
 この場合、パンチ27Dに断面矩形の凹部27Daを形成し、ダイ29Dとの間で、幅方向外縁側19D及び幅方向内縁側21Dを拘束しながら潰し部17Dを形成している。 In this case, a concave portion 27Da having a rectangular cross section is formed on the punch 27D, and a crushing portion 17D is formed between the die 29D and the width direction outer edge side 19D and the width direction inner edge side 21D.
 したがって、実施例1のように勾配をつけなくても均一で高い圧縮残留応力を確実に付与することができる。 Therefore, a uniform and high compressive residual stress can be reliably applied without providing a gradient as in the first embodiment.
 図10、図11は、本発明の実施例4に係り、図10は、ロータ・コア鋼板の要部拡大正面図、図11は、図10の、XI-XI線矢視断面における潰し加工を示す説明図である。なお、基本的な構成は、実施例1と同様であり、同一構成部分には同符号を付し、対応する構成部分には、同符号にEを付して説明し、重複した説明は省略する。 FIGS. 10 and 11 relate to Embodiment 4 of the present invention, FIG. 10 is an enlarged front view of the main part of the rotor core steel plate, and FIG. 11 is a crushing process in the cross section taken along line XI-XI in FIG. It is explanatory drawing shown. The basic configuration is the same as that of the first embodiment, and the same components are denoted by the same reference numerals, and the corresponding components are described by adding E to the same symbols, and redundant descriptions are omitted. To do.
 図10のように、本実施例のロータ・コア鋼板3は、潰し部17Eがブリッジ部15の幅方向外縁19側を幅方向内縁21側よりも多く潰した段差17Eaを備えている。この潰し部17Eにより、上記同様に圧縮残留応力σが形成される。 As shown in FIG. 10, the rotor core steel plate 3 of the present embodiment includes a step 17Ea in which the crushing portion 17E crushes the width direction outer edge 19 side of the bridge portion 15 more than the width direction inner edge 21 side. The crushing portion 17E forms a compressive residual stress σ as described above.
 潰し部17Eの段差17Eaを持った潰し加工は、図11のように、ブリッジ部15の幅方向に対応する段差を持ったパンチ27Eを平坦なダイ29に対して下降させることにより行う。 The crushing process with the step 17Ea of the crushing portion 17E is performed by lowering the punch 27E having a step corresponding to the width direction of the bridge portion 15 with respect to the flat die 29 as shown in FIG.
 また、ブリッジ部15の全域を平坦なダイで潰した後、幅方向外縁部17Eabをさらに平坦なダイで潰し加工する場合もある。 Also, after the entire bridge portion 15 is crushed with a flat die, the widthwise outer edge portion 17Eab may be crushed with a flat die.
 この潰し加工により、段差17Eaの幅方向内縁部17Eaaと幅方向外縁部17Eabとの圧縮の程度を変えて、ブリッジ部15の部分23に渡る圧縮残留応力σを確実に付与する。また、幅方向内縁部17Eaaは潰しを軽度にして剛性を確保する。ブリッジ部15の両側部でその正面幅が変化する部分23、25に働く遠心力に対し、圧縮残留応力σに加え、部分23、25及び、幅方向内縁部17Eaaでの板厚の確保による剛性確保で対向させることができる。 By this crushing process, the degree of compression of the width direction inner edge portion 17Eaa and the width direction outer edge portion 17Eab of the step 17Ea is changed, and the compressive residual stress σ over the portion 23 of the bridge portion 15 is surely applied. Further, the inner edge portion 17Eaa in the width direction is lightly crushed to ensure rigidity. In addition to the compressive residual stress σ, the rigidity by securing the plate thickness at the portions 23 and 25 and the width direction inner edge portion 17Eaa against the centrifugal force acting on the portions 23 and 25 whose front face widths change on both sides of the bridge portion 15 It can be made to face by securing.
 図12、図13は、本発明の実施例5に係り、図12は、ロータ・コア鋼板の要部拡大正面図、図13は、図12の、XIII-XIII線矢視断面における潰し加工を示す説明図である。なお、基本的な構成は、実施例1と同様であり、同一構成部分には同符号を付し、対応する構成部分には、同符号にFを付して説明し、重複した説明は省略する。 FIGS. 12 and 13 relate to Embodiment 5 of the present invention, FIG. 12 is an enlarged front view of the main part of the rotor core steel plate, and FIG. 13 is a crushing process in the cross section taken along line XIII-XIII in FIG. It is explanatory drawing shown. Note that the basic configuration is the same as that of the first embodiment, and the same components are denoted by the same reference numerals, and the corresponding components are described by adding the same symbols to F, and redundant descriptions are omitted. To do.
 図12のように、本実施例のロータ・コア鋼板3は、潰し部17Fがブリッジ部15の幅方向外縁19側のみに備えられ、ブリッジ部15の幅方向に段差17Faを形成する。この潰し部17Fにより、上記同様に圧縮残留応力σが形成される。 As shown in FIG. 12, the rotor core steel plate 3 of the present embodiment has the crushing portion 17 </ b> F only on the width direction outer edge 19 side of the bridge portion 15, and forms a step 17 </ b> Fa in the width direction of the bridge portion 15. The crushing portion 17F forms a compressive residual stress σ as described above.
 潰し部17Fの潰し加工は、図13のように、ブリッジ部15の幅方向外縁19側でパンチ27Fを平坦なダイ29に対して下降させることにより行う。 The crushing process of the crushing part 17F is performed by lowering the punch 27F with respect to the flat die 29 on the width direction outer edge 19 side of the bridge part 15 as shown in FIG.
 この潰し加工により、幅方向外縁19側を圧縮し、ブリッジ部15の部分23に渡る圧縮残留応力σを確実に付与する。また、幅方向内縁21側は潰さないので剛性を確保することができ、ブリッジ部15の両側部でその正面幅が変化する部分23、25に働く遠心力に対し、圧縮残留応力σに加え、部分23、25及び幅方向内縁21側での板厚の確保による剛性確保で対向させることができる。 This crushing process compresses the outer edge 19 in the width direction and reliably applies the compressive residual stress σ over the portion 23 of the bridge portion 15. In addition, since the width direction inner edge 21 side is not crushed, rigidity can be secured, and in addition to the compressive residual stress σ, the centrifugal force acting on the portions 23 and 25 whose front width changes on both sides of the bridge portion 15, The portions 23 and 25 and the inner edge 21 in the width direction can be opposed to each other by securing the rigidity by securing the plate thickness.
 図14は、本発明の実施例6に係り、ロータ・コア鋼板の要部拡大正面図である。なお、基本的な構成は、実施例1と同様であり、同一構成部分には同符号を付し、対応する構成部分には、同符号にGを付して説明し、重複した説明は省略する。 FIG. 14 is an enlarged front view of the main part of the rotor core steel plate according to the sixth embodiment of the present invention. The basic configuration is the same as that of the first embodiment, and the same components are denoted by the same reference numerals, and the corresponding components are described by adding the same symbols to G, and redundant descriptions are omitted. To do.
 図14のように、本実施例のロータ・コア鋼板3は、潰し部17Gをブリッジ部15の幅方向外縁19側で広く、幅方向内縁21側で狭く形成した。この潰し部17Gにより、上記同様に圧縮残留応力σが形成される。 As shown in FIG. 14, in the rotor core steel plate 3 of this example, the crushed portion 17G is formed wide on the width direction outer edge 19 side of the bridge portion 15 and narrowly on the width direction inner edge 21 side. The crushing portion 17G forms a compressive residual stress σ as described above.
 潰し部17Gの潰し加工は、潰し部17Gの形状に応じ、平坦なパンチ及びダイにより行う。 The crushing process of the crushing part 17G is performed by a flat punch and die according to the shape of the crushing part 17G.
 この潰し加工により、ブリッジ部15の部分23に渡る圧縮残留応力σを確実に付与する。 Compressive residual stress σ over the portion 23 of the bridge portion 15 is surely applied by this crushing process.
 図15は、本発明の実施例7に係り、ロータ・コア鋼板の要部拡大正面図である。なお、基本的な構成は、実施例1と同様であり、同一構成部分には同符号を付し、対応する構成部分には、同符号にHを付して説明し、重複した説明は省略する。 FIG. 15 is an enlarged front view of a main part of a rotor core steel plate according to Example 7 of the present invention. The basic configuration is the same as that of the first embodiment, and the same components are denoted by the same reference numerals, and the corresponding components are described by adding the same symbols to H, and redundant descriptions are omitted. To do.
 図15のように、本実施例のロータ・コア鋼板3は、潰し部17Hがブリッジ部15の一部15aを囲むように残しその周りを潰してほぼ全体に形成されている。この一部15aは、圧縮残留応力σを付与したい部分であり、潰し部17Hにより、上記同様に圧縮残留応力σが形成される。なお、潰し部で囲まれる一部15aに圧縮残留応力が形成できる限り、潰し部17Hは、ブリッジ部15のほぼ全体に形成される必要はない。 As shown in FIG. 15, the rotor core steel plate 3 of the present embodiment is formed almost entirely by leaving the crushing portion 17 </ b> H so as to surround a part 15 a of the bridge portion 15. This part 15a is a part to which the compressive residual stress σ is to be applied, and the compressive residual stress σ is formed by the crushed portion 17H in the same manner as described above. Note that the crushed portion 17H does not need to be formed on almost the entire bridge portion 15 as long as compressive residual stress can be formed in the portion 15a surrounded by the crushed portion.
 潰し部17Hの潰し加工は、潰し部17Hの形状に応じ、平坦なパンチ及びダイにより行う。 The crushing process of the crushing part 17H is performed by a flat punch and die according to the shape of the crushing part 17H.
 この潰し加工により、磁石領域11及び接着剤領域13間の部分23に渡り、圧縮残留応力σを確実に付与する。 By this crushing process, the compressive residual stress σ is surely applied across the portion 23 between the magnet region 11 and the adhesive region 13.
 図16、図17は、本発明の実施例8に係り、図16は、ロータ・コア鋼板の要部拡大正面図、図17は、図16の、XVII-XVII線矢視断面における潰し加工を示す説明図である。なお、基本的な構成は、実施例1と同様であり、同一構成部分には同符号を付し、対応する構成部分には、同符号にIを付して説明し、重複した説明は省略する。 16 and FIG. 17 relate to Example 8 of the present invention, FIG. 16 is an enlarged front view of the main part of the rotor core steel plate, and FIG. 17 is a crushing process in the section taken along line XVII-XVII in FIG. It is explanatory drawing shown. The basic configuration is the same as that of the first embodiment, and the same components are denoted by the same reference numerals, and the corresponding components are described by adding I to the same symbols, and redundant description is omitted. To do.
 図16、図17のように、本実施例のロータ・コア鋼板3は、潰し部17Iがブリッジ部15に沿った方向の中間部で深くなる凹状断面17Ibを備えた。凹状断面17Ibは、傾斜面17Iba、17Ibbで構成した。この潰し部17Iにより、上記同様に圧縮残留応力σが形成される。 As shown in FIGS. 16 and 17, the rotor core steel plate 3 of the present example was provided with a concave cross-section 17Ib in which the crushed portion 17I was deepened in the middle in the direction along the bridge portion 15. The concave cross section 17Ib is composed of inclined surfaces 17Iba and 17Ibb. The crushing portion 17I forms a compressive residual stress σ as described above.
 潰し部17Iの凹状断面17Ibを持った潰し加工は、図17のように、ブリッジ部15に沿った方向で傾斜面17Iba、17Ibbに対応する傾斜面を備えたパンチ27Iを平坦なダイ29に対して下降させることにより行う。 As shown in FIG. 17, the crushing process of the crushing portion 17 </ b> I having the concave cross section 17 </ b> Ib is performed by applying a punch 27 </ b> I having inclined surfaces corresponding to the inclined surfaces 17 </ b> Iba and 17 </ b> Ibb in the direction along the bridge portion 15 to the flat die 29. To lower.
 この潰し加工により、ブリッジ部15に沿った方向の中間部が深くなる凹状断面17Ibを備えた潰し部17Iを形成し、ブリッジ部15の部分23に渡る圧縮残留応力σを確実に付与する。 By this crushing process, a crushing part 17I having a concave cross section 17Ib in which the intermediate part in the direction along the bridge part 15 is deep is formed, and the compressive residual stress σ over the part 23 of the bridge part 15 is surely applied.
 潰し部17Iは、ブリッジ部15に沿った方向の中間部が深くなる凹状断面17Ibを備えたものであり、部分23、25での板厚は確保できる。ブリッジ部15の両側部でその正面幅が変化する部分23、25に働く遠心力に対し、圧縮残留応力σに加え、部分23、25での板厚の確保による剛性確保で対向させることができる。 The crushing portion 17I has a concave cross section 17Ib in which the intermediate portion in the direction along the bridge portion 15 is deep, and the plate thickness at the portions 23 and 25 can be secured. The centrifugal force acting on the portions 23 and 25 whose front width changes on both sides of the bridge portion 15 can be opposed to each other by securing rigidity by securing the plate thickness at the portions 23 and 25 in addition to the compressive residual stress σ. .
 図18、図19は、本発明の実施例9に係り、図18は、ロータ・コア鋼板の要部拡大正面図、図19は、図18の、XIX-XIX線矢視断面における潰し加工を示す説明図である。なお、基本的な構成は、実施例1と同様であり、同一構成部分には同符号を付し、対応する構成部分には、同符号にJを付して説明し、重複した説明は省略する。 18 and 19 relate to Embodiment 9 of the present invention, FIG. 18 is an enlarged front view of the main part of the rotor core steel plate, and FIG. 19 is a crushing process in the cross section taken along line XIX-XIX in FIG. It is explanatory drawing shown. The basic configuration is the same as that of the first embodiment, and the same components are denoted by the same reference numerals, and the corresponding components are denoted by the same reference numerals with J, and duplicate descriptions are omitted. To do.
 図18、図19のように、本実施例のロータ・コア鋼板3は、潰し部17Jがブリッジ部15に沿った方向の中間部で深くなる凹状断面17Jbを備え、この潰し部17Jが幅方向外縁19側のみに備えられた。潰し部17Jは、凹状断面17Ibは、傾斜面17Iba、17Ibbで構成し、ブリッジ部15に沿った方向の凹状と幅方向の段差とを形成する。この潰し部17Jにより、上記同様に圧縮残留応力σが形成される。 As shown in FIGS. 18 and 19, the rotor core steel plate 3 of the present embodiment includes a concave cross-section 17Jb in which the crushed portion 17J is deep in the middle in the direction along the bridge portion 15, and the crushed portion 17J is in the width direction. It was provided only on the outer edge 19 side. The crushed portion 17J has a concave cross section 17Ib composed of inclined surfaces 17Iba and 17Ibb, and forms a concave shape in the direction along the bridge portion 15 and a step in the width direction. The crushing portion 17J forms a compressive residual stress σ as described above.
 潰し部17Iの凹状断面17Jbを持った潰し加工は、図19のように、ブリッジ部15の幅方向外縁19側でのみ行う。この潰し加工は、ブリッジ部15に沿った方向で傾斜面17Jba、17Jbbに対応する傾斜面を備えたパンチ27Jを平坦なダイ29に対して下降させることにより行う。 The crushing process with the concave cross section 17Jb of the crushing part 17I is performed only on the outer edge 19 side in the width direction of the bridge part 15 as shown in FIG. This crushing process is performed by lowering a punch 27J having an inclined surface corresponding to the inclined surfaces 17Jba and 17Jbb in a direction along the bridge portion 15 with respect to the flat die 29.
 この潰し加工により、ブリッジ部15に沿った方向の中間部が深くなる凹状断面17Jbを備えた潰し部17Jを形成し、ブリッジ部15の部分23に渡る圧縮残留応力σを確実に付与する。 By this crushing process, a crushing portion 17J having a concave cross section 17Jb in which the intermediate portion in the direction along the bridge portion 15 is deep is formed, and the compressive residual stress σ over the portion 23 of the bridge portion 15 is surely applied.
 潰し部17Jは、ブリッジ部15に沿った方向の中間部が深くなる凹状断面17Jbを幅方向外縁19側のみで備え、部分23、25及び幅方向内縁21側での板厚は確保できる。ブリッジ部15の両側部でその正面幅が変化する部分23、25に働く遠心力に対し、圧縮残留応力σに加え、部分23、25及び幅方向内縁21側での板厚の確保による剛性確保で対向させることができる。 The crushing portion 17J is provided with a concave cross section 17Jb in which the middle portion in the direction along the bridge portion 15 is deep only on the width direction outer edge 19 side, and the plate thicknesses on the portions 23 and 25 and the width direction inner edge 21 side can be secured. In addition to the compressive residual stress σ, the rigidity is ensured by securing the plate thickness on the side of the portions 23 and 25 and the width direction inner edge 21 against the centrifugal force acting on the portions 23 and 25 whose front width changes on both sides of the bridge portion 15. Can be opposed.
 図20、図21は、本発明の実施例10に係り、図20は、ロータ・コア鋼板の要部拡大正面図、図21は、図20の、XXI-XXI線矢視断面における潰し加工を示す説明図である。なお、基本的な構成は、実施例1と同様であり、同一構成部分には同符号を付し、対応する構成部分には、同符号にKを付して説明し、重複した説明は省略する。 20 and FIG. 21 relate to Example 10 of the present invention, FIG. 20 is an enlarged front view of the main part of the rotor core steel plate, and FIG. 21 is a crushing process in the cross section taken along the line XXI-XXI in FIG. It is explanatory drawing shown. Note that the basic configuration is the same as that of the first embodiment, and the same components are denoted by the same reference numerals, and the corresponding components are described by adding the same symbols to K, and redundant descriptions are omitted. To do.
 図20、図21のように、本実施例のロータ・コア鋼板3は、潰し部17Kがブリッジ部15に沿った方向の中間部で深くなる凹状断面17Kbを備えた。凹状断面17Kbは、曲面17Kba、17Kbbで構成した。この潰し部17Kにより、上記同様に圧縮残留応力σが形成される。 As shown in FIGS. 20 and 21, the rotor core steel plate 3 of the present example was provided with a concave cross-section 17 Kb in which the crushed portion 17 </ b> K was deepened in the middle portion along the bridge portion 15. The concave cross section 17Kb was composed of curved surfaces 17Kba and 17Kbb. The crushing portion 17K forms a compressive residual stress σ as described above.
 潰し部17Kの凹状断面17Kbを持った潰し加工は、図21のように、ブリッジ部15に沿った方向で曲面17Kba、17Kbbに対応する凸曲面を備えたパンチ27Kを平坦なダイ29に対して下降させることにより行う。 In the crushing process of the crushing portion 17K having the concave cross section 17Kb, a punch 27K having a convex curved surface corresponding to the curved surfaces 17Kba and 17Kbb in the direction along the bridge portion 15 is applied to the flat die 29 as shown in FIG. This is done by lowering.
 この潰し加工により、ブリッジ部15に沿った方向の中間部が深くなる凹状断面17Kbを備えた潰し部17Kを形成し、ブリッジ部15の部分23に渡る圧縮残留応力σを確実に付与する。 By this crushing process, a crushing portion 17K having a concave cross section 17Kb in which the intermediate portion in the direction along the bridge portion 15 is deep is formed, and the compressive residual stress σ over the portion 23 of the bridge portion 15 is surely applied.
 潰し部17Kは、ブリッジ部15に沿った方向の中間部が深くなる凹状断面17Kbを備え、部分23、25での板厚は確保できる。ブリッジ部15の両側部でその正面幅が変化する部分23、25に働く遠心力に対し、圧縮残留応力σに加え、部分23、25での板厚の確保による剛性確保で対向させることができる。 The crushing portion 17K includes a concave cross section 17Kb in which the intermediate portion in the direction along the bridge portion 15 is deep, and the plate thickness at the portions 23 and 25 can be secured. The centrifugal force acting on the portions 23 and 25 whose front width changes on both sides of the bridge portion 15 can be opposed to each other by securing rigidity by securing the plate thickness at the portions 23 and 25 in addition to the compressive residual stress σ. .
 図22、図23は、本発明の実施例11に係り、図22は、ロータ・コア鋼板の要部拡大正面図、図23は、図22の、XXIII-XXIII線矢視断面における潰し加工を示す説明図である。なお、基本的な構成は、実施例1と同様であり、同一構成部分には同符号を付し、対応する構成部分には、同符号にLを付して説明し、重複した説明は省略する。 22 and FIG. 23 relate to Example 11 of the present invention, FIG. 22 is an enlarged front view of the main part of the rotor core steel plate, and FIG. 23 is a crushing process in FIG. 22 taken along the line XXIII-XXIII. It is explanatory drawing shown. The basic configuration is the same as that of the first embodiment, and the same components are denoted by the same reference numerals, and the corresponding components are described by adding the L to the same symbols, and redundant descriptions are omitted. To do.
 図22、図23のように、本実施例のロータ・コア鋼板3は、潰し部17Lがブリッジ部15に沿った方向の中間部が深くなる凹状断面17Lbを備えた。凹状断面17Lbは、多段面17Lba、17Lbbで構成した。この潰し部17Lにより、上記同様に圧縮残留応力σが形成される。 As shown in FIGS. 22 and 23, the rotor core steel plate 3 of the present example was provided with a concave cross section 17Lb in which the crushed portion 17L was deep in the middle in the direction along the bridge portion 15. The concave cross section 17Lb is composed of multi-step surfaces 17Lba and 17Lbb. The crushing portion 17L forms a compressive residual stress σ as described above.
 潰し部17Lの凹状断面17Lbを持った潰し加工は、図23のように、ブリッジ部15に沿った方向で多段面17Lba、17Lbbに対応する多断面を備えたパンチ27Lを平坦なダイ29に対して下降させることにより行う。 As shown in FIG. 23, the crushing process of the crushing portion 17L having the concave cross section 17Lb is performed by applying a punch 27L having a multi-section corresponding to the multistage surfaces 17Lba and 17Lbb in the direction along the bridge portion 15 to the flat die 29. To lower.
 この潰し加工により、ブリッジ部15に沿った方向の中間部が深くなる凹状断面17Lbを備えた潰し部17Lを形成し、ブリッジ部15の部分23に渡る圧縮残留応力σを確実に付与する。 By this crushing process, a crushing portion 17L having a concave cross section 17Lb in which the intermediate portion in the direction along the bridge portion 15 is deep is formed, and the compressive residual stress σ over the portion 23 of the bridge portion 15 is surely applied.
 潰し部17Lは、ブリッジ部15に沿った方向の中間部が深くなる凹状断面17Lbを備え、部分23、25での板厚は確保できる。この場合は、ブリッジ部15の両側部でその正面幅が変化する部分23、25に働く遠心力に対し、圧縮残留応力σに加え、部分23、25での板厚確保による剛性確保で対向させることができる。 The crushed portion 17L includes a concave cross section 17Lb in which the intermediate portion in the direction along the bridge portion 15 is deep, and the plate thickness at the portions 23 and 25 can be secured. In this case, the centrifugal force acting on the portions 23 and 25 whose front width changes on both sides of the bridge portion 15 is opposed to the compressive residual stress σ and the rigidity secured by securing the plate thickness at the portions 23 and 25. be able to.
 実施例5における潰し部17Fは、ブリッジ部15の幅方向外縁19側へ下降傾斜する勾配にすることもできる。この場合、潰し加工は、勾配に応じた傾斜を有するパンチを使用する。
[その他]
 なお、磁石スロットは直方体に限定されるものではなく、例えば円弧状のものでもよく、また磁石スロットの配置や数も電動モータの用途に応じて適宜選択することになる。
The crushing portion 17F in the fifth embodiment can be inclined to be inclined downward toward the outer edge 19 in the width direction of the bridge portion 15. In this case, the crushing process uses a punch having a slope corresponding to the slope.
[Others]
The magnet slot is not limited to a rectangular parallelepiped, and may be, for example, an arc shape, and the arrangement and number of magnet slots are appropriately selected according to the use of the electric motor.
 実施例2のブリッジ部15Cの中間部にのみ潰し部17Cを形成する方法、ブリッジ部15Cの中間部にのみ潰し部17Cを有するロータ・コア鋼板3は、実施例4~6、実施例8~11にも同様に適用することができる。 The method of forming the crushed portion 17C only at the intermediate portion of the bridge portion 15C of the second embodiment, and the rotor core steel plate 3 having the crushed portion 17C only at the intermediate portion of the bridge portion 15C are described in the fourth to sixth embodiments. 11 can be similarly applied.
 実施例3の潰し加工を、ブリッジ部15Dを幅方向から拘束して行なう方法は、他の実施例にも同様に適用することができる。 The method of performing the crushing process of the third embodiment while restraining the bridge portion 15D from the width direction can be similarly applied to the other embodiments.
 1,1A,1B ロータ・コア
 3,3A,3B ロータ・コア鋼板
 9,9A,9B 磁石スロット
 10,10A,10B 磁石
 15,15A,15B,15D ブリッジ部
 17,17A,17B,17C,17D,17E,17F,17G,17H,17I,17J,17K,17L 潰し部
 17Ea 段差
 17Ib,17Jb,17Kb,17Lb  凹状断面
 17Iba,17Ibb,17Jba,17Jbb 傾斜面
 17Kba、17Kbb 曲面
 17Lba、17Lbb 多段面
 19 幅方向外縁
 21 幅方向内縁
 23,25 部分
1, 1A, 1B Rotor core 3, 3A, 3B Rotor core steel plate 9, 9A, 9B Magnet slot 10, 10A, 10B Magnet 15, 15A, 15B, 15D Bridge portion 17, 17A, 17B, 17C, 17D, 17E , 17F, 17G, 17H, 17I, 17J, 17K, 17L Collapsed portion 17Ea Step 17Ib, 17Jb, 17Kb, 17Lb Concave section 17Iba, 17Ibb, 17Jba, 17Jbb Inclined surface 17Kba, 17Kbb Curved surface 17Lba, 17Lb Width direction inner edge 23,25 part

Claims (10)

  1.  外周縁の内側に磁石を内蔵するための磁石スロットを備えたロータ・コア鋼板であって、
     前記磁石スロットと前記外周縁との間のブリッジ部に、圧縮残留応力を付与する潰し部を備えた、
     ことを特徴とするロータ・コア鋼板。
    A rotor core steel plate having a magnet slot for incorporating a magnet inside the outer periphery,
    The bridge portion between the magnet slot and the outer peripheral edge has a crushing portion that applies compressive residual stress,
    Rotor core steel sheet characterized by that.
  2.  請求項1記載のロータ・コア鋼板であって、
     前記潰し部は、前記ブリッジ部の幅方向外縁側を幅方向内縁側よりも多く潰したブリッジ部の幅方向の勾配又は段差を有する、
     ことを特徴とするロータ・コア鋼板。
    The rotor core steel sheet according to claim 1,
    The crushing portion has a gradient or step in the width direction of the bridge portion in which the width direction outer edge side of the bridge portion is crushed more than the width direction inner edge side,
    Rotor core steel sheet characterized by that.
  3.  請求項1項記載のロータ・コア鋼板であって、
     前記潰し部は、前記ブリッジ部の幅方向外縁側のみに備えた、
     ことを特徴とするロータ・コア鋼板。
    The rotor core steel sheet according to claim 1,
    The crushing portion is provided only on the outer edge side in the width direction of the bridge portion.
    Rotor core steel sheet characterized by that.
  4.  請求項1~3の何れか1項記載のロータ・コア鋼板であって、
     前記潰し部は、前記ブリッジ部に沿った方向の中間部が深くなる凹状断面を備えた、
     ことを特徴とするロータ・コア鋼板。
    The rotor core steel sheet according to any one of claims 1 to 3,
    The crushing part has a concave cross section in which an intermediate part in a direction along the bridge part is deep,
    Rotor core steel sheet characterized by that.
  5.  請求項4項記載のロータ・コア鋼板であって、
     前記凹状断面は、傾斜面、曲面、多段面の何れかで構成する、
     ことを特徴とするロータ・コア鋼板。
    The rotor core steel sheet according to claim 4,
    The concave cross section is configured by any one of an inclined surface, a curved surface, and a multistage surface.
    Rotor core steel sheet characterized by that.
  6.  請求項1~5の何れか1項記載のロータ・コア鋼板であって、
     前記潰し部は、前記ブリッジ部の幅方向外縁側で広く、幅方向内縁側で狭く形成された、
     ことを特徴とするロータ・コア鋼板。
    The rotor core steel sheet according to any one of claims 1 to 5,
    The crushing part is formed wide on the outer edge side in the width direction of the bridge part, and narrowly formed on the inner edge side in the width direction.
    Rotor core steel sheet characterized by that.
  7.  請求項1~6の何れか1項記載のロータ・コア鋼板であって、
     前記潰し部を、前記ブリッジ部に沿った方向の中間部に有する、
     ことを特徴とするロータ・コア鋼板。
    The rotor core steel sheet according to any one of claims 1 to 6,
    The crushing portion has an intermediate portion in a direction along the bridge portion,
    Rotor core steel sheet characterized by that.
  8.  請求項1記載のロータ・コア鋼板であって、
     前記潰し部は、前記圧縮残留応力を付与したい部分を囲むように残しその周りを潰して備えられた、
     ことを特徴とするロータ・コア鋼板。
    The rotor core steel sheet according to claim 1,
    The crushing part was provided by crushing the surroundings so as to surround the part where the compressive residual stress is to be applied,
    Rotor core steel sheet characterized by that.
  9.  請求項1~8の何れか1項記載のロータ・コア鋼板であって、
     前記潰し加工は、前記ブリッジ部を幅方向から拘束して行った、
     ことを特徴とするロータ・コア鋼板。
    A rotor core steel sheet according to any one of claims 1 to 8,
    The crushing process was performed by restraining the bridge portion from the width direction.
    Rotor core steel sheet characterized by that.
  10.  磁石を内蔵するための磁石スロットを備えたロータ・コア鋼板の製造方法であって、
     前記磁石スロットと前記ロータ・コア鋼板の外周縁との間のブリッジ部を、板厚方向に潰し加工して圧縮残留応力を付与する潰し部を形成した、
     ことを特徴とするロータ・コア鋼板の製造方法。
    A method of manufacturing a rotor core steel plate having a magnet slot for incorporating a magnet,
    The bridge portion between the magnet slot and the outer peripheral edge of the rotor core steel plate was crushed in the plate thickness direction to form a crushed portion that gave compressive residual stress,
    A method for producing a rotor-core steel sheet.
PCT/JP2012/001948 2011-04-06 2012-03-21 Rotor core steel plate and method for manufacturing same WO2012137430A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-084546 2011-04-06
JP2011084546 2011-04-06

Publications (1)

Publication Number Publication Date
WO2012137430A1 true WO2012137430A1 (en) 2012-10-11

Family

ID=46968846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001948 WO2012137430A1 (en) 2011-04-06 2012-03-21 Rotor core steel plate and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2012137430A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150055892A (en) * 2013-11-14 2015-05-22 현대자동차주식회사 Rotor of interior permanent magnet synchronous motor
JP2016007136A (en) * 2013-03-25 2016-01-14 パナソニックIpマネジメント株式会社 Permanent magnet embedded electric motor and manufacturing method thereof
JP2017093191A (en) * 2015-11-12 2017-05-25 株式会社三井ハイテック Laminated iron core and manufacturing method thereof
EP2768119A3 (en) * 2013-02-19 2018-03-07 Mitsui High-Tec, Inc. Method for producing a laminated rotor core

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1118324A (en) * 1997-06-19 1999-01-22 Toyota Motor Corp Rotating machine and its manufacture
JP2002252938A (en) * 2001-02-26 2002-09-06 Denso Corp Armature core of dynamo electric machine
JP2006325297A (en) * 2005-05-17 2006-11-30 Denso Corp Rotor core for reluctance motor and its manufacturing method
JP2011135726A (en) * 2009-12-25 2011-07-07 Aisin Seiki Co Ltd Rotating electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1118324A (en) * 1997-06-19 1999-01-22 Toyota Motor Corp Rotating machine and its manufacture
JP2002252938A (en) * 2001-02-26 2002-09-06 Denso Corp Armature core of dynamo electric machine
JP2006325297A (en) * 2005-05-17 2006-11-30 Denso Corp Rotor core for reluctance motor and its manufacturing method
JP2011135726A (en) * 2009-12-25 2011-07-07 Aisin Seiki Co Ltd Rotating electric machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2768119A3 (en) * 2013-02-19 2018-03-07 Mitsui High-Tec, Inc. Method for producing a laminated rotor core
JP2016007136A (en) * 2013-03-25 2016-01-14 パナソニックIpマネジメント株式会社 Permanent magnet embedded electric motor and manufacturing method thereof
US9893575B2 (en) 2013-03-25 2018-02-13 Panasonic Intellectual Property Management Co., Ltd. Permanent-magnet-embedded electric motor and method for manufacturing same
KR20150055892A (en) * 2013-11-14 2015-05-22 현대자동차주식회사 Rotor of interior permanent magnet synchronous motor
JP2017093191A (en) * 2015-11-12 2017-05-25 株式会社三井ハイテック Laminated iron core and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP6273499B2 (en) Permanent magnet embedded motor and method for manufacturing the same
JP5278551B2 (en) Rotor core for rotating electrical machine and manufacturing method thereof
JP4110146B2 (en) Magnetic material, rotor, electric motor
JP2016007136A5 (en)
JPWO2017216995A1 (en) Permanent magnet type synchronous machine and method of manufacturing stator of permanent magnet type synchronous machine
WO2013069076A1 (en) Rotor in permanent magnet embedded motor, motor using said rotor, compressor using said motor, and air conditioner using said compressor
JP6573031B2 (en) Rotor
JP5904293B2 (en) Permanent magnet embedded rotary electric machine
WO2012137430A1 (en) Rotor core steel plate and method for manufacturing same
WO2010116921A1 (en) Magnetic circuit structure
JP6315086B2 (en) Permanent magnet embedded rotary electric machine
JP6573032B2 (en) Rotor
CN109792171B (en) Iron core and motor using the same
JP6156122B2 (en) Rotor structure of embedded magnet motor
CN211456822U (en) Stator core of motor and motor
JP2005184968A (en) Dynamo-electric machine rotor
JP2007159308A (en) Rotor
JP2017042014A (en) Rotor of rotary electric machine
JP2013074694A (en) Permanent magnet buried electric motor
CN110556929A (en) Laminated core and stator core
JP2011055688A (en) Rotor
WO2016035191A1 (en) Rotating electric machine and method for manufacturing rotor core
JP5359239B2 (en) Electric motor rotor
JP5619213B2 (en) Permanent magnet embedded rotor
JP6713026B2 (en) Rotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12768623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12768623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP