WO2012136872A2 - Distributed, hyrbird energy storage system - Google Patents

Distributed, hyrbird energy storage system Download PDF

Info

Publication number
WO2012136872A2
WO2012136872A2 PCT/ES2012/070233 ES2012070233W WO2012136872A2 WO 2012136872 A2 WO2012136872 A2 WO 2012136872A2 ES 2012070233 W ES2012070233 W ES 2012070233W WO 2012136872 A2 WO2012136872 A2 WO 2012136872A2
Authority
WO
WIPO (PCT)
Prior art keywords
hybrid
energy
storage system
power
energy storage
Prior art date
Application number
PCT/ES2012/070233
Other languages
Spanish (es)
French (fr)
Other versions
WO2012136872A3 (en
Inventor
Eugenio DOMÍNGUEZ AMARILLO
Antonio Jesús GUILLÉN LÓPEZ
Oliver MARTÍNEZ VITORIANO
Original Assignee
Windinertia Technologies, S. L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Windinertia Technologies, S. L. filed Critical Windinertia Technologies, S. L.
Publication of WO2012136872A2 publication Critical patent/WO2012136872A2/en
Publication of WO2012136872A3 publication Critical patent/WO2012136872A3/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means

Definitions

  • the present invention aims at a hybrid and distributed energy storage system that has high energy and power densities to allow the distribution of energy within the system itself, between different micro-networks of electrical energy and with the electrical network itself, where
  • the hybrid and distributed energy storage system allows the proper management of consumption peaks, power balances and a flattening of the demand curve, as well as the compensation of voltage dips, all for managing energy Electric efficiently and reliably.
  • An electrochemical battery is an electric accumulator element that stores electrical energy through electrochemical processes. It does not produce electricity itself, but releases what it has previously stored during charging.
  • the main virtue of electrochemical batteries is the higher energy density (kwh / kg) they have compared to many other electrical storage devices. However, in order to safeguard their useful life, loading and unloading cycles must be performed at low speed, so that the power density is generally low. In addition, the yield is not very high and the heavy metals that form it are highly toxic.
  • Supercapacitors are electrical energy storage devices in the form of electrostatic charges, using pairs of conductive plates separated by a dielectric medium.
  • supercapacitors can be charged and unloaded in short periods of time, which gives a high power of loading and unloading, and makes them especially appropriate to respond to the needs of electricity consumption peaks or short-term supply interruptions.
  • they allow a very high number of loading and unloading cycles without affecting their useful life.
  • they have a low energy storage density.
  • the operation of the current electricity network is based on the balance of generation and consumption, as there is no energy storage capacity. This requires that the generation adapt to the demand curve, and during the hours of low consumption, it causes the disconnection of power generation centers, resulting in the loss of power generation capacity, especially of a renewable nature.
  • the managing bodies of the electricity market act as a regulator of the energy generated based on an estimate of daily consumption, often resulting in the loss of generation points of a renewable nature due to its rapid dynamics and ease of disconnection causing considerable energy losses.
  • any mismatch between generation and consumption such as demand spikes or failures in the generation or electrical infrastructure, can cause damage to the power grid and the elements connected to it.
  • the hybrid and distributed energy storage system of the present invention is capable of storing the energy that is currently wasted providing greater stability and reliability against mismatches between the generation and consumption of the electricity grid.
  • the present invention relates to a hybrid and distributed energy storage system that has a high capacity to solve the problem described above in the background section.
  • This system due to its own storage nature, allows energy management to be carried out, generating electricity generation and consumption to some extent, and that without its existence would not be possible. This leads to the promotion of flattening the demand curve, and greater integration of renewable energies within the local scope of a micro network.
  • a scaled design allows the reduction of its volume, which also implies a reduction in its weight and cost, implying a greater penetration of technology and therefore greater storage capacities. This last one favors that the user of the technology approaches the project of energetic storage with a smaller investment.
  • the hybrid and distributed energy storage system comprises at least one hybrid storage subsystem that is controlled through a coordination and management subsystem or central operator, thereby obtaining a large-capacity global storage system, but without requiring large infrastructure for your shelter, expensive and on the other hand of great maintenance needs.
  • the distribution of storage points allows a greater integration of renewable energy, since its installation can be carried out in a more localized way and with better adaptation to specific needs. All this makes the hybrid and distributed energy storage system, from the point of view of the electrical system, act as a primary consumer / generator.
  • the hybrid storage subsystem comprises at least one supercapacitor and a battery that allow the system to have high energy and power densities.
  • This great capacity to absorb or yield high amounts of energy in short periods of time allows to perform the damping or elimination of a phenomenon of great impact on electrical systems, power peaks, which in addition to deteriorating the system force have it oversized or with contracted powers greater than the nominal.
  • the hybrid and distributed storage system of the present invention can cope with large energy variations of rapid dynamics, thanks to supercapacitors, and provide energy continuously or for long periods of time thanks to the batteries.
  • the coordination and management subsystem between the different hybrid storage subsystems and / or among other distributed storage systems allows the sum of them to make a whole of greater energy storage capacity.
  • the control is specific to each of the hybrid storage subsystems
  • the management of the entire system is the responsibility of the coordination and management subsystem.
  • two new concepts arise in the coordination of the hybrid storage system and distributed by the coordination and management subsystem, which are, "Energy to share” or “energy to share” and “Energy to use” or “energy to use”.
  • the first refers to the amount of energy existing in the hybrid storage system and distributed to be able to be shared between the different hybrid storage subsystems that make up, or even with the electricity grid itself.
  • the second refers to the energy that each of the hybrid storage subsystems possesses to ensure the supply of on-site consumption.
  • Each hybrid storage subsystem comprises, in addition to at least one battery and a supercapacitor of those described above, one or more power converters, in addition to a communication subsystem with the coordination and management subsystem.
  • the connection between these elements can be made through different configurations and technologies.
  • the batteries preferably electrochemical, provide high energy storage capacity. However, they have a low load and discharge power, as well as a high response time. In addition, the realization of the loading and unloading cycles, and even more the failure to carry them out according to the manufacturer's instructions, shorten their useful life, so the number of cycles must be minimized and performed true to their characteristic curve. The responsibility for this to happen, partly lies with the presence of supercapacitors in the storage system and partly with control algorithms implemented in the power converters.
  • Supercapacitors provide low energy storage capacity, but with a high power density, which results in extremely low response times, of the order of seconds or milliseconds. In addition, due to their nature the loading and unloading cycles they support are very high, of the order of one million.
  • the joint operation of electrochemical batteries and supercapacitors, in this invention is complementary.
  • the supercapacitors will allow to act before energetic changes of fast dynamics, and the batteries will be able to contribute energy during long periods of time.
  • the power converters transform the output current of the supercapacitors and electrochemical batteries (direct current), into injectable intensity to the power grid (alternating current). These power converters also transform in the reverse direction, absorbing energy from the power grid and transforming it to the appropriate voltage and current values for the recharge of batteries and supercapacitors. Additionally, power converters are communicated with the coordination and management subsystem.
  • the coordination and management subsystem being connected to the power converters of all hybrid storage subsystems, receives information on the energy status of each hybrid storage subsystem and the generation and consumption centers of the power grid. This evaluates the general state of the hybrid and distributed energy storage system, the micro network generated with said system and the electricity network; and sends operating instructions to each power converter. It also monitors other characteristic parameters of the system and the power grid.
  • the invention relates to a hybrid and distributed energy storage system comprising
  • At least one hybrid storage subsystem that includes:
  • a coordination and management subsystem to receive information on the energy status of each hybrid storage subsystem and the electrical network and manage the energy needs of the system, being connected to each power converter through a communication subsystem.
  • FIG. 1 An example of a hybrid and distributed energy storage system of the present invention comprising three hybrid storage subsystems is depicted in Figure 1.
  • the hybrid and distributed energy storage system comprises a set of hybrid storage subsystems, comprising an electrochemical battery (1), a set of supercapacitors (2), a first power converter ( 3) at the output of the electrochemical battery (1), a second power converter (4) at the output of the supercapacitor assembly (2), and a third power converter (5) that connects the output of the first and second converters of power (3, 4) with the power grid (6).
  • the hybrid and distributed energy storage system also comprises a coordination and management subsystem (7) and a communication subsystem (8) between each power converter (3, 4, 5) and the coordination and management subsystem (7).
  • Each hybrid storage subsystem comprises one or more electrochemical batteries (1) of lithium-ion, a set of supercapacitors (2) and three power converters (3, 4, 5), with the following example configuration:
  • Lithium-ion electrochemical batteries (1) that are connected to a first power converter (3), which raises the output voltage of the same to 400 Vdc.
  • the supercapacitor assembly (2) is connected to a second power converter (4), which raises the output voltage of the same to 400 Vdc.
  • the three power converters (3, 4, 5) mentioned can work both ways, that is, they are bidirectional, allowing two types of operations:
  • the power converters (3, 4, 5) communicate with a coordination and management subsystem (7), via PLC interface and protocol, or some kind of wireless communication.
  • the coordination and management subsystem (7) consists of a calculation processing system, where appropriate control algorithms have been implemented for the overall coordination of the hybrid and distributed energy storage system.
  • the coordination and management subsystem receives real-time information on the status and operation of each power converter (3, 4, 5) and the generation and consumption centers, evaluates the general state of the hybrid and distributed energy storage system of the microred or subsystem of hybrid storage and the electrical network (6), as well as the existing load in each house and sends operating instructions to each power converter (3, 4, 5).
  • This example of the application of the distributed hybrid storage system gives the microred generated high versatility when carrying out the energy management of the system.
  • the hybrid and distributed energy storage system is installed in the different charging points of electric vehicles, with extra power generation.
  • charging points can be located in a large car park whose roof houses an extended photovoltaic installation.
  • a hybrid storage subsystem comprising an electrochemical battery (1), a set of supercapacitors (2) and three power converters (3, 4, 5), with the following configuration:
  • the supercapacitor assembly (2) is connected to a second power converter (4), which raises the output voltage of the same to 400 Vdc.
  • the outputs of the first (3) and second (4) power converters mentioned in the previous two points are connected to a third power converter (5).
  • This third power converter (5) transforms the input current to be injectable in the mains (6) (220 Vac), or depending on whether the recharging service is performed in DC or AC, the corresponding converter will be connected of power (3, 4, 5).
  • the three power converters (3, 4, 5) mentioned can work both ways, that is, they are bidirectional, allowing two types of operations:
  • Each power converter (3, 4, 5) of each hybrid storage subsystem communicates with a coordination and management subsystem (7), via radio frequency connection and industrial communication protocol.
  • the coordination and management subsystem (7) consists of a calculation processor system, where appropriate control algorithms have been implemented for the overall coordination of the distributed hybrid energy storage system.
  • the coordination and management subsystem (7) receives real-time information on the status and operation of each power converter (3, 4, 5) and the generation and consumption centers, evaluates the general state of the hybrid energy storage system and distributed and the power grid (6) and sends operating instructions to each power converter (3, 4, 5).
  • This example of the application of the hybrid and distributed energy storage system allows fast recharging of electric vehicles without absorbing excessive power from the electricity network (6), allowing on the other hand to increase the number of simultaneous recharges, whether fast or standard.
  • the coordination and management subsystem will allow the charging points to exchange energy with each other (each hybrid storage subsystem will have an amount of energy available for sharing and another amount of energy for use at the charging point in question), and even with the electrical network (6), allowing greater flexibility in the operation of the system.
  • the useful life of the batteries (1) can be increased to a greater extent with proper management of the charge and discharge of the supercapacitors ( 2) (whose useful life is estimated in millions of cycles).
  • the hybrid and distributed energy storage system may comprise several coordination and management subsystems (7) coordinated with each other, regardless of the organizational hierarchy establish between the different coordination and management subsystems (7), since in this case one of these coordination and management subsystems (7) would coordinate the rest.

Abstract

The invention relates to a distributed, hybrid energy storage system having high energy and power densities in order to allow the distribution of energy within the system, between different electric power micro-networks and with the electrical grid. According to the invention, the distributed, hybrid energy storage system allows consumption peaks to be managed adequately, power balances to be performed and the demand curve to be smoothed, as well as allowing voltage dips to be compensated, so that electric power can be managed in an efficient and reliable manner.

Description

SISTEMA DE ALMACENAMIENTO ENERGÉTICO HIBRIDO Y DISTRIBUIDO- DESCRIPCIÓN OBJETO DE LA INVENCIÓN  HYBRID AND DISTRIBUTED ENERGY STORAGE SYSTEM- DESCRIPTION OBJECT OF THE INVENTION
La presente invención tiene por objeto un sistema de almacenamiento energético híbrido y distribuido que presenta unas altas densidades energéticas y de potencia para permitir la distribución de la energía dentro del propio sistema, entre diferentes microredes de energía eléctrica y con la red eléctrica en sí, donde el sistema de almacenamiento energético híbrido y distribuido permite llevar a cabo la adecuada gestión de picos de consumo, llevar a cabo balances de potencia y un aplanamiento de la curva de demanda, así como la compensación de huecos de tensión, todo ello para gestionar la energía eléctrica de manera eficiente y fiable. The present invention aims at a hybrid and distributed energy storage system that has high energy and power densities to allow the distribution of energy within the system itself, between different micro-networks of electrical energy and with the electrical network itself, where The hybrid and distributed energy storage system allows the proper management of consumption peaks, power balances and a flattening of the demand curve, as well as the compensation of voltage dips, all for managing energy Electric efficiently and reliably.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
La integración de sistemas de almacenamiento y/o centros de generación eléctrica dentro del sistema eléctrico convencional conlleva a la formación de pequeños sistemas eléctricos denominados microredes eléctricas. Éstas se rigen por las mismas pautas que los sistemas convencionales, y de la correcta gestionabilidad de su energía depende su mayor o menor integración en el sistema eléctrico global. Un pilar fundamental en dicha gestión energética es la capacidad de poder almacenar energía, permitiendo desacoplar las curvas de generación y consumo eléctrico. Por otro lado la generación eléctrica in-situ, generación distribuida, favorece la obtención de una red eléctrica global más eficiente (al no tener que distribuir la energía a lo largo de grandes distancias) fiable y robusta. The integration of storage systems and / or power generation centers within the conventional electrical system leads to the formation of small electrical systems called electrical micro networks. These are governed by the same guidelines as conventional systems, and their greater or lesser integration depends on the global electrical system. A fundamental pillar in this energy management is the ability to store energy, allowing to decouple the power generation and consumption curves. On the other hand, in-situ power generation, distributed generation, favors obtaining a more efficient global electricity network (by not having to distribute energy over long distances) reliable and robust.
Actualmente, existen distintas tecnologías de almacenamiento energético, que permiten una conversión relativamente rápida de la energía almacenada en electricidad útil. Entre ellas, se encuentran las baterías electroquímicas y los supercondensadores. Currently, there are different energy storage technologies, which allow a relatively rapid conversion of stored energy into useful electricity. Among them are electrochemical batteries and supercapacitors.
Una batería electroquímica es un elemento acumulador eléctrico que almacena energía eléctrica mediante procesos electroquímicos. No produce energía eléctrica en sí, sino que libera la que anteriormente ha almacenado durante su carga. La principal virtud de las baterías electroquímicas es la mayor densidad de energía (kwh/kg) que poseen frente a muchos otros almacenadores eléctricos. Sin embargo, para salvaguardar la vida útil de las mismas, los ciclos de carga y descarga se deben realizar a baja velocidad, por lo que la densidad de potencia es generalmente baja. Además, el rendimiento no es muy elevado y los metales pesados que la forman son altamente tóxicos. An electrochemical battery is an electric accumulator element that stores electrical energy through electrochemical processes. It does not produce electricity itself, but releases what it has previously stored during charging. The main virtue of electrochemical batteries is the higher energy density (kwh / kg) they have compared to many other electrical storage devices. However, in order to safeguard their useful life, loading and unloading cycles must be performed at low speed, so that the power density is generally low. In addition, the yield is not very high and the heavy metals that form it are highly toxic.
Los supercondensadores son dispositivos de almacenamiento de energía eléctrica en forma de cargas electroestáticas, mediante pares de placas conductivas separadas por un medio dieléctrico. Supercapacitors are electrical energy storage devices in the form of electrostatic charges, using pairs of conductive plates separated by a dielectric medium.
A nivel funcional, los supercondensadores pueden ser cargados y descargados en cortos períodos de tiempo, lo que concede una alta potencia de carga y descarga, y los hace especialmente apropiados para responder ante necesidades de picos de consumo eléctrico o interrupciones de suministro de poca duración. Además, permiten un número muy elevado de ciclos de carga y descarga sin que afecte a su vida útil. Sin embargo, presentan una baja densidad de almacenamiento energético. On a functional level, supercapacitors can be charged and unloaded in short periods of time, which gives a high power of loading and unloading, and makes them especially appropriate to respond to the needs of electricity consumption peaks or short-term supply interruptions. In addition, they allow a very high number of loading and unloading cycles without affecting their useful life. However, they have a low energy storage density.
El funcionamiento de la red eléctrica actual se basa en el equilibrio de generación y consumo, al no disponer de capacidad de almacenamiento energético. Esto requiere que la generación se adapte a la curva de demanda, y durante las horas de bajo consumo, provoca la desconexión de centros de generación eléctrica, dando lugar a la pérdida de capacidad de generación eléctrica, especialmente de carácter renovable. Los organismos gestores del mercado eléctrico actúan como un regulador de la energía generada en base a una estimación del consumo diario, llegándose en muchas ocasiones a desaprovechar puntas de generación de naturaleza renovable debido a su rápida dinámica y facilidad de desconexión provocando pérdidas energéticas considerables. Por otro lado, cualquier desajuste producido entre la generación y el consumo, como puedan ser picos de demanda o fallos en la generación o la infraestructura eléctrica, pueden provocar daños a la red eléctrica y los elementos conectados a la misma. The operation of the current electricity network is based on the balance of generation and consumption, as there is no energy storage capacity. This requires that the generation adapt to the demand curve, and during the hours of low consumption, it causes the disconnection of power generation centers, resulting in the loss of power generation capacity, especially of a renewable nature. The managing bodies of the electricity market act as a regulator of the energy generated based on an estimate of daily consumption, often resulting in the loss of generation points of a renewable nature due to its rapid dynamics and ease of disconnection causing considerable energy losses. On the other hand, any mismatch between generation and consumption, such as demand spikes or failures in the generation or electrical infrastructure, can cause damage to the power grid and the elements connected to it.
El sistema de almacenamiento energético híbrido y distribuido de la presente invención es capaz de almacenar la energía que actualmente se desaprovecha proporcionando mayor estabilidad y fiabilidad ante desajustes entre la generación y el consumo de la red eléctrica. DESCRIPCIÓN DE LA INVENCIÓN The hybrid and distributed energy storage system of the present invention is capable of storing the energy that is currently wasted providing greater stability and reliability against mismatches between the generation and consumption of the electricity grid. DESCRIPTION OF THE INVENTION
La presente invención se refiere a un sistema de almacenamiento energético híbrido y distribuido que presenta una elevada capacidad para solventar la problemática anteriormente descrita en el apartado de antecedentes. Este sistema, por su propia naturaleza almacenadora, permite llevar a cabo una gestionabilidad energética, independizando en cierta medida la generación y el consumo eléctrico, y que sin su existencia no sería posible. Esto lleva consigo el fomento del aplanamiento de la curva de demanda, y una mayor integración de energías renovables dentro del ámbito local de una microred. The present invention relates to a hybrid and distributed energy storage system that has a high capacity to solve the problem described above in the background section. This system, due to its own storage nature, allows energy management to be carried out, generating electricity generation and consumption to some extent, and that without its existence would not be possible. This leads to the promotion of flattening the demand curve, and greater integration of renewable energies within the local scope of a micro network.
Al ser distribuido, el sistema conlleva mejoras en lo que a la integración y necesidades estructurales del sistema de almacenamiento se refiere. Un diseño escalado, permite la reducción de volumen del mismo, lo que también conlleva una reducción en el peso y el coste del mismo, implicando una mayor penetración de la tecnología y por ende mayores capacidades de almacenamiento. Esto último favorece que el usuario de la tecnología aborde el proyecto de almacenamiento energético con una menor inversión. When distributed, the system entails improvements in the integration and structural needs of the storage system. A scaled design allows the reduction of its volume, which also implies a reduction in its weight and cost, implying a greater penetration of technology and therefore greater storage capacities. This last one favors that the user of the technology approaches the project of energetic storage with a smaller investment.
El sistema de almacenamiento energético híbrido y distribuido comprende al menos un subsistema de almacenamiento híbrido que es controlado a través de un subsistema de coordinación y gestión u operador central, con lo que se obtiene un sistema de almacenamiento global de gran capacidad, pero sin requerir grandes infraestructuras para su albergo, costosas y por otra parte de grandes necesidades de mantenimiento. Por otro lado, la distribución de los puntos de almacenamiento permite una integración mayor de las energías renovables, ya que su instalación se puede llevar a cabo de forma más localizada y con mejor adaptación a unas necesidades concretas. Todo ello hace que el sistema de almacenamiento energético híbrido y distribuido, desde el punto de vista del sistema eléctrico, actúe como un consumidor/generador primario. Por su parte, el subsistema de almacenamiento híbrido comprende al menos un supercondensador y una batería que permiten que el sistema presente altas densidades energéticas y de potencia. Es precisamente la alta densidad de potencia lo que aporta nuevas prestaciones al sistema de almacenamiento de la presente invención. Por un lado, permite una mayor gestionabilidad de la energía, permitiendo aportar o absorber grandes picos de potencia en cortísimos periodos de tiempo (segundos o milisegundos). La tecnología responsable de esta característica son los supercondensadores, que evitan que se produzca el envejecimiento prematuro de la instalación y de las tecnologías almacenadoras de menor densidad de potencia, como es el caso de las baterías. Además, controlando la cesión y absorción de energía por parte de los supercondensadores se pueden evitar que las baterías realicen ciclos de carga y descarga innecesarios. Todo ello ayuda a alargar la vida útil de las mismas. The hybrid and distributed energy storage system comprises at least one hybrid storage subsystem that is controlled through a coordination and management subsystem or central operator, thereby obtaining a large-capacity global storage system, but without requiring large infrastructure for your shelter, expensive and on the other hand of great maintenance needs. On the other hand, the distribution of storage points allows a greater integration of renewable energy, since its installation can be carried out in a more localized way and with better adaptation to specific needs. All this makes the hybrid and distributed energy storage system, from the point of view of the electrical system, act as a primary consumer / generator. For its part, the hybrid storage subsystem comprises at least one supercapacitor and a battery that allow the system to have high energy and power densities. It is precisely the high power density that brings new features to the storage system of the present invention. On the one hand, it allows greater manageability of energy, allowing to provide or absorb large power peaks in very short periods of time (seconds or milliseconds). The technology responsible for this feature is supercapacitors, which prevent premature aging of the installation and storage technologies with lower power density, such as batteries. In addition, controlling the transfer and absorption of energy by supercapacitors can prevent batteries from performing unnecessary charge and discharge cycles. All this helps to extend their useful life.
Esta gran capacidad de absorber o ceder elevadas cantidades de energía en cortos periodos de tiempo, permite llevar a cabo el amortiguamiento o eliminación de un fenómeno de gran impacto en los sistemas eléctricos, los picos de potencia, los cuales además de deteriorar al sistema obligan a tenerlo sobredimensionado o con potencias contratadas mayores a la nominal. This great capacity to absorb or yield high amounts of energy in short periods of time, allows to perform the damping or elimination of a phenomenon of great impact on electrical systems, power peaks, which in addition to deteriorating the system force have it oversized or with contracted powers greater than the nominal.
Hacer frente a la problemática de los huecos de tensión es otra de las virtudes del sistema de la presente invención. Se ha hablado del aplanamiento de la curva de demanda y de la eliminación de picos, dos de las operaciones propias del "energy dispatching" o reparto de energía. Existe una tercera, balance de potencia, que también es posible llevar a cabo con el sistema de almacenamiento híbrido y distribuido de la presente invención debido a la capacidad de cesión o absorción de energía reactiva por parte de los supercondensadores. Addressing the problem of voltage gaps is another virtue of the system of the present invention. There has been talk of the flattening of the demand curve and the elimination of peaks, two of the operations of energy dispatching or distribution of energy. There is a third, power balance, which is also possible to carry out with the hybrid and distributed storage system of the present invention due to the ability to transfer or absorb reactive energy by the supercapacitors.
De esta manera, el sistema de almacenamiento híbrido y distribuido de la presente invención puede hacer frente a grandes variaciones energéticas de dinámica rápida, gracias a los supercondensadores, y aportar energía de manera continua o durante largos periodos de tiempo gracias a las baterías. In this way, the hybrid and distributed storage system of the present invention can cope with large energy variations of rapid dynamics, thanks to supercapacitors, and provide energy continuously or for long periods of time thanks to the batteries.
El subsistema de coordinación y gestión entre los diferentes subsistemas de almacenamiento híbrido y/o entre otros sistemas de almacenamiento distribuido permite que la suma de ellos haga un todo de mayor capacidad de almacenamiento energético. Aunque el control es propio de cada uno de los subsistemas de almacenamiento híbrido, la gestión del sistema completo es responsabilidad del subsistema de coordinación y gestión. Bajo esta idea surgen dos nuevos conceptos presentes en la coordinación del sistema de almacenamiento híbrido y distribuido por parte del subsistema de coordinación y gestión, que son, "Energy to share" o "energía a compartir" y "Energy to use" o "energía a usar". El primero, se refiere a la cantidad de energía existente en el sistema de almacenamiento híbrido y distribuido para poder ser compartida entre los distintos subsistemas de almacenamiento híbrido que lo conforman, o incluso con la propia red eléctrica. El segundo, hace referencia a la energía que posee cada uno de los subsistemas de almacenamiento híbrido para asegurar el abastecimiento del consumo in-situ. Cada subsistema de almacenamiento híbrido comprende, además de al menos una batería y un supercondensador de los descritos anteriormente, uno o más convertidores de potencia, además de un subsistema de comunicación con el subsistema de coordinación y gestión. La conexión entre estos elementos puede realizarse mediante distintas configuraciones y tecnologías. The coordination and management subsystem between the different hybrid storage subsystems and / or among other distributed storage systems allows the sum of them to make a whole of greater energy storage capacity. Although the control is specific to each of the hybrid storage subsystems, the management of the entire system is the responsibility of the coordination and management subsystem. Under this idea, two new concepts arise in the coordination of the hybrid storage system and distributed by the coordination and management subsystem, which are, "Energy to share" or "energy to share" and "Energy to use" or "energy to use". The first refers to the amount of energy existing in the hybrid storage system and distributed to be able to be shared between the different hybrid storage subsystems that make up, or even with the electricity grid itself. The second refers to the energy that each of the hybrid storage subsystems possesses to ensure the supply of on-site consumption. Each hybrid storage subsystem comprises, in addition to at least one battery and a supercapacitor of those described above, one or more power converters, in addition to a communication subsystem with the coordination and management subsystem. The connection between these elements can be made through different configurations and technologies.
Las baterías, preferentemente electroquímicas, proporcionan almacenamiento de gran capacidad energética. No obstante, presentan una baja potencia de carga y descarga, así como un elevado tiempo de respuesta. Además, la realización de los ciclos de carga y descarga, y aún más el no llevarlos a cabo según las indicaciones del fabricante, acortan su vida útil, por lo que el número de ciclos debe ser minimizado y realizarse fiel a su curva característica. La responsabilidad de que esto suceda así, en parte recae sobre la presencia de supercondensadores en el sistema de almacenamiento y en parte sobre unos algoritmos de control implementados en los convertidores de potencia. The batteries, preferably electrochemical, provide high energy storage capacity. However, they have a low load and discharge power, as well as a high response time. In addition, the realization of the loading and unloading cycles, and even more the failure to carry them out according to the manufacturer's instructions, shorten their useful life, so the number of cycles must be minimized and performed true to their characteristic curve. The responsibility for this to happen, partly lies with the presence of supercapacitors in the storage system and partly with control algorithms implemented in the power converters.
Los supercondensadores proporcionan almacenamiento de baja capacidad energética, pero con una alta densidad de potencia, lo que conlleva tiempos de respuesta extraordinariamente bajos, del orden de segundos o milisegundos. Además, debido a su naturaleza los ciclos de carga y descarga que soportan son muy elevados, del orden del millón. Supercapacitors provide low energy storage capacity, but with a high power density, which results in extremely low response times, of the order of seconds or milliseconds. In addition, due to their nature the loading and unloading cycles they support are very high, of the order of one million.
Por tanto, el funcionamiento conjunto de baterías electroquímicas y supercondensadores, en esta invención, es complementario. Los supercondensadores permitirán actuar ante cambios energéticos de dinámica rápida, y las baterías podrán aportar energía durante largos periodos de tiempo. Therefore, the joint operation of electrochemical batteries and supercapacitors, in this invention, is complementary. The supercapacitors will allow to act before energetic changes of fast dynamics, and the batteries will be able to contribute energy during long periods of time.
Los convertidores de potencia transforman la corriente de salida de los supercondensadores y las baterías electroquímicas (corriente continua), en intensidad inyectable a la red eléctrica (corriente alterna). Estos convertidores de potencia también transforman en el sentido inverso, absorbiendo energía de la red eléctrica y transformándola a los valores de tensión e intensidad adecuados para la recarga de baterías y supercondensadores. Adicionalmente, los convertidores de potencia están comunicados con el subsistema de coordinación y gestión. The power converters transform the output current of the supercapacitors and electrochemical batteries (direct current), into injectable intensity to the power grid (alternating current). These power converters also transform in the reverse direction, absorbing energy from the power grid and transforming it to the appropriate voltage and current values for the recharge of batteries and supercapacitors. Additionally, power converters are communicated with the coordination and management subsystem.
El subsistema de coordinación y gestión, al estar comunicado con los convertidores de potencia de todos los subsistemas de almacenamiento híbrido, recibe información del estado energético de cada subsistema de almacenamiento híbrido y de los centros de generación y consumo de la red eléctrica. Con ello evalúa el estado general del sistema de almacenamiento energético híbrido y distribuido, la microred generada con dicho sistema y la red eléctrica; y envía consignas de funcionamiento a cada convertidor de potencia. También monitoriza otros parámetros característicos del sistema y la red eléctrica. The coordination and management subsystem, being connected to the power converters of all hybrid storage subsystems, receives information on the energy status of each hybrid storage subsystem and the generation and consumption centers of the power grid. This evaluates the general state of the hybrid and distributed energy storage system, the micro network generated with said system and the electricity network; and sends operating instructions to each power converter. It also monitors other characteristic parameters of the system and the power grid.
En resumen, la invención se refiere a un sistema de almacenamiento energético híbrido y distribuido que comprende In summary, the invention relates to a hybrid and distributed energy storage system comprising
· al menos un subsistema de almacenamiento híbrido que comprende a su vez:  · At least one hybrid storage subsystem that includes:
o al menos una batería y al menos un supercondensador para hacer frente a variaciones energéticas de dinámica rápida a la vez que para hacer aporte de energía de manera continua,  or at least one battery and at least one supercapacitor to cope with fast dynamic energy variations while simultaneously providing energy,
o al menos un convertidor de potencia dispuesto entre la batería y/o el supercondensador y la red eléctrica, y  or at least one power converter arranged between the battery and / or the supercapacitor and the mains, and
• un subsistema de coordinación y gestión para recibir información del estado energético de cada subsistema de almacenamiento híbrido y de la red eléctrica y gestionar las necesidades energéticas del sistema, estando conectado con cada convertidor de potencia a través de un subsistema de comunicación.  • a coordination and management subsystem to receive information on the energy status of each hybrid storage subsystem and the electrical network and manage the energy needs of the system, being connected to each power converter through a communication subsystem.
Entre las posibles aplicaciones del sistema de almacenamiento energético híbrido y distribuido, con carácter no limitativo, se encuentran: Among the possible applications of the hybrid and distributed energy storage system, on a non-limiting basis, are:
• Generación de microredes eléctricas, con alta gestionabilidad de la energía eléctrica, aportando fiabilidad y robustez al sistema eléctrico.  • Generation of electric micro-networks, with high manageability of electric energy, providing reliability and robustness to the electrical system.
· Creación de sistemas de almacenamiento de gran envergadura, a partir de la unión de múltiples sistemas de almacenamiento distribuidos, que permitan llevar a cabo operaciones típicas del "energy dispatching".  · Creation of large-scale storage systems, based on the union of multiple distributed storage systems, which allow typical energy dispatching operations to be carried out.
• Generación de microredes aisladas autosuficientes.  • Generation of self-sufficient isolated micro networks.
• Sistemas integradores de energías renovables. • Integración en la infraestructura eléctrica los servicios derivados de las necesidades creadas en el ámbito de la electromovilidad. Mayor número de recargas simultáneas y mayor número de puntos de recarga rápida. • Integrative renewable energy systems. • Integration into the electrical infrastructure services derived from the needs created in the field of electromobility. Greater number of simultaneous recharges and greater number of fast recharging points.
• Sistema compensador de huecos de tensión.  • Voltage gap compensation system.
DESCRIPCIÓN DE LOS DIBUJOS DESCRIPTION OF THE DRAWINGS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente: To complement the description that is being made and in order to help a better understanding of the characteristics of the invention, according to a preferred example of practical implementation thereof, a set of drawings is attached as an integral part of said description. where, for illustrative and non-limiting purposes, the following has been represented:
En la figura 1 se representa un ejemplo de sistema de almacenamiento energético híbrido y distribuido de la presente invención que comprende tres subsistemas de almacenamiento híbrido. An example of a hybrid and distributed energy storage system of the present invention comprising three hybrid storage subsystems is depicted in Figure 1.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN PREFERRED EMBODIMENT OF THE INVENTION
En la realización preferente mostrada en la Figura 1 , el sistema de almacenamiento energético híbrido y distribuido comprende un conjunto de subsistemas de almacenamiento híbrido, que comprenden una batería electroquímica (1 ), un conjunto de supercondensadores (2), un primer convertidor de potencia (3) a la salida de la batería electroquímica (1 ), un segundo convertidor de potencia (4) a la salida del conjunto de supercondensadores (2), y un tercer convertidor de potencia (5) que conecta la salida del primer y segundo convertidores de potencia (3, 4) con la red eléctrica (6). In the preferred embodiment shown in Figure 1, the hybrid and distributed energy storage system comprises a set of hybrid storage subsystems, comprising an electrochemical battery (1), a set of supercapacitors (2), a first power converter ( 3) at the output of the electrochemical battery (1), a second power converter (4) at the output of the supercapacitor assembly (2), and a third power converter (5) that connects the output of the first and second converters of power (3, 4) with the power grid (6).
El sistema de almacenamiento energético híbrido y distribuido comprende además un subsistema de coordinación y gestión (7) y un subsistema de comunicación (8) entre cada convertidor de potencia (3, 4, 5) y el subsistema de coordinación y gestión (7). The hybrid and distributed energy storage system also comprises a coordination and management subsystem (7) and a communication subsystem (8) between each power converter (3, 4, 5) and the coordination and management subsystem (7).
Ejemplo 1 Example 1
Se supone un sistema de viviendas unifamiliares, 15 unidades, donde en cada una de ellas se pretende llevar a cabo una instalación de fotovoltaica, según sus necesidades. Para favorecer el uso de dicha energía, y dotar de mayor autonomía eléctrica a cada vivienda se pretende instalar un sistema de almacenamiento híbrido distribuido (un sistema de almacenamiento por casa). It is assumed a system of single-family homes, 15 units, where in each of them it is intended to carry out a photovoltaic installation, according to their needs. To favor the use of said energy, and provide greater electrical autonomy to each Housing is intended to install a distributed hybrid storage system (a storage system per home).
Cada subsistema de almacenamiento híbrido comprende una o varias baterías electroquímicas (1 ) de ión-litio, un conjunto de supercondensadores (2) y tres convertidores de potencia (3, 4, 5), con la siguiente configuración a modo de ejemplo:Each hybrid storage subsystem comprises one or more electrochemical batteries (1) of lithium-ion, a set of supercapacitors (2) and three power converters (3, 4, 5), with the following example configuration:
• Baterías electroquímicas (1 ) de ión-litio que se conectan a un primer convertidor de potencia (3), que eleva la tensión de salida de la misma a 400 Vcc. • Lithium-ion electrochemical batteries (1) that are connected to a first power converter (3), which raises the output voltage of the same to 400 Vdc.
• El conjunto de supercondensadores (2) se conecta a un segundo convertidor de potencia (4), que eleva la tensión de salida de los mismos a 400 Vcc.  • The supercapacitor assembly (2) is connected to a second power converter (4), which raises the output voltage of the same to 400 Vdc.
• Las salidas del primer (3) y segundo (4) convertidores de potencia mencionados en los dos puntos anteriores, se conectan a un tercer convertidor de potencia (5). Este tercer convertidor de potencia (5) transforma la corriente de entrada para que sea inyectable en la red eléctrica (6) (220 Vac).  • The outputs of the first (3) and second (4) power converters mentioned in the previous two points are connected to a third power converter (5). This third power converter (5) transforms the input current to be injectable in the power grid (6) (220 Vac).
• Los tres convertidores de potencia (3, 4, 5) mencionados pueden funcionar en ambos sentidos, es decir, son bidireccionales, permitiendo dos tipos de operaciones:  • The three power converters (3, 4, 5) mentioned can work both ways, that is, they are bidirectional, allowing two types of operations:
o Descarga de energía de las baterías electroquímicas (1 ) y los supercondensadores (2) e inyección de corriente en la red eléctrica (6). o Extracción de corriente de la red eléctrica (6) y recarga energética de las baterías electroquímicas (1 ) y los supercondensadores (2).  o Discharge of energy from electrochemical batteries (1) and supercapacitors (2) and current injection into the mains (6). o Extraction of power from the mains (6) and energy recharge of electrochemical batteries (1) and supercapacitors (2).
Los convertidores de potencia (3, 4, 5) se comunican con un subsistema de coordinación y gestión (7), mediante interfaz y protocolo PLC, o algún tipo de comunicación inalámbrica. El subsistema de coordinación y gestión (7) consiste en un sistema de procesamiento de cálculo, donde se han implementado los algoritmos de control adecuados para la coordinación global del sistema de almacenamiento energético híbrido y distribuido. El subsistema de coordinación y gestión recibe información en tiempo real sobre el estado y funcionamiento de cada convertidor de potencia (3, 4, 5) y de los centros de generación y consumo, evalúa el estado general del sistema de almacenamiento energético híbrido y distribuido de la microred o subsistema de almacenamiento híbrido y de la red eléctrica (6), así como las carga existente en cada vivienda y envía consignas de funcionamiento a cada convertidor de potencia (3, 4, 5). Este ejemplo de aplicación del sistema de almacenamiento híbrido distribuido dota a la microred generada, de una alta versatilidad a la hora de llevar a cabo la gestión energética del sistema. Al integrar un sistema generador de energía adicional de naturaleza renovable, es importante tener presente el adjetivo híbrido, pues gracias a este puede llevarse a cabo la absorción de picos elevados de generación durante cortos periodos de tiempo. Por otro lado, el hecho de que sea distribuido, al igual que en el apartado anterior permite que el almacenamiento global de energía del que dispone potencialmente cada vivienda sea mucho mayor que la capacidad que tiene instalada. The power converters (3, 4, 5) communicate with a coordination and management subsystem (7), via PLC interface and protocol, or some kind of wireless communication. The coordination and management subsystem (7) consists of a calculation processing system, where appropriate control algorithms have been implemented for the overall coordination of the hybrid and distributed energy storage system. The coordination and management subsystem receives real-time information on the status and operation of each power converter (3, 4, 5) and the generation and consumption centers, evaluates the general state of the hybrid and distributed energy storage system of the microred or subsystem of hybrid storage and the electrical network (6), as well as the existing load in each house and sends operating instructions to each power converter (3, 4, 5). This example of the application of the distributed hybrid storage system gives the microred generated high versatility when carrying out the energy management of the system. When integrating an additional energy generating system of a renewable nature, it is important to keep in mind the hybrid adjective, because thanks to this the absorption of high generation peaks can be carried out for short periods of time. On the other hand, the fact that it is distributed, as in the previous section, allows the global energy storage potentially available to each home to be much greater than the capacity it has installed.
Un ejemplo claro de este, se puede dar durante un periodo vacacional, donde un número de vecinos considerables se ausente de su vivienda. En ese caso, sus sistemas de generación y energía podrían ser usados por los vecinos que permanecen en sus hogares, aumentando la característica de autonomía de la red. A clear example of this, can be given during a holiday period, where a number of considerable neighbors are absent from your home. In that case, their generation and energy systems could be used by neighbors who remain in their homes, increasing the autonomy characteristic of the network.
Ejemplo 2 Example 2
El sistema de almacenamiento energético híbrido y distribuido se instala en los distintos puntos de recarga de vehículos eléctricos, con generación extra de energía. The hybrid and distributed energy storage system is installed in the different charging points of electric vehicles, with extra power generation.
Por ejemplo, se pueden ubicar varios puntos de recarga en un gran parking cuya cubierta albergue una extendida instalación fotovoltaica. For example, several charging points can be located in a large car park whose roof houses an extended photovoltaic installation.
En concreto, por cada punto de recarga se conecta un subsistema de almacenamiento híbrido, que comprende una batería electroquímica (1 ), un conjunto de supercondensadores (2) y tres convertidores de potencia (3, 4, 5), con la siguiente configuración: Specifically, for each charging point a hybrid storage subsystem is connected, comprising an electrochemical battery (1), a set of supercapacitors (2) and three power converters (3, 4, 5), with the following configuration:
• Batería electroquímica (1 ) de ión-litio que se conectan a un primer convertidor de potencia (3), que eleva la tensión de salida de la misma a 400 Vcc.  • Electrochemical battery (1) lithium-ion that are connected to a first power converter (3), which raises the output voltage of the same to 400 Vdc.
• El conjunto de supercondensadores (2) se conecta a un segundo convertidor de potencia (4), que eleva la tensión de salida de los mismos a 400 Vcc.  • The supercapacitor assembly (2) is connected to a second power converter (4), which raises the output voltage of the same to 400 Vdc.
• Las salidas del primer (3) y segundo (4) convertidores de potencia mencionados en los dos puntos anteriores, se conectan a un tercer convertidor de potencia (5). Este tercer convertidor de potencia (5) transforma la corriente de entrada para que sea inyectable en la red eléctrica (6) (220 Vac), o bien dependiendo de si el servicio de recarga se realiza en CC o CA, se conectará el correspondiente convertidor de potencia (3, 4, 5). • Los tres convertidores de potencia (3, 4, 5) mencionados pueden funcionar en ambos sentidos, es decir son bidireccionales, permitiendo dos tipos de operaciones: • The outputs of the first (3) and second (4) power converters mentioned in the previous two points are connected to a third power converter (5). This third power converter (5) transforms the input current to be injectable in the mains (6) (220 Vac), or depending on whether the recharging service is performed in DC or AC, the corresponding converter will be connected of power (3, 4, 5). • The three power converters (3, 4, 5) mentioned can work both ways, that is, they are bidirectional, allowing two types of operations:
o Descarga de energía de las baterías electroquímicas (1 ) y los supercondensadores (2) e inyección de corriente en la red eléctrica (6). o Extracción de corriente de la red eléctrica (6) y recarga energética de las baterías electroquímicas (1 ) y los supercondensadores (2).  o Discharge of energy from electrochemical batteries (1) and supercapacitors (2) and current injection into the mains (6). o Extraction of power from the mains (6) and energy recharge of electrochemical batteries (1) and supercapacitors (2).
Cada convertidor de potencia (3, 4, 5) de cada subsistema de almacenamiento híbrido se comunica con un subsistema de coordinación y gestión (7), mediante conexión por radiofrecuencia y protocolo de comunicación industrial. El subsistema de coordinación y gestión (7) consiste en un sistema procesador de cálculo, donde se han implementado los algoritmos de control adecuados para la coordinación global del sistema de almacenamiento energético híbrido distribuido. El subsistema de coordinación y gestión (7) recibe información en tiempo real sobre el estado y funcionamiento de cada convertidor de potencia (3, 4 ,5) y de los centros de generación y consumo, evalúa el estado general del sistema de almacenamiento energético híbrido y distribuido y la red eléctrica (6) y envía consignas de funcionamiento a cada convertidor de potencia (3, 4, 5). Each power converter (3, 4, 5) of each hybrid storage subsystem communicates with a coordination and management subsystem (7), via radio frequency connection and industrial communication protocol. The coordination and management subsystem (7) consists of a calculation processor system, where appropriate control algorithms have been implemented for the overall coordination of the distributed hybrid energy storage system. The coordination and management subsystem (7) receives real-time information on the status and operation of each power converter (3, 4, 5) and the generation and consumption centers, evaluates the general state of the hybrid energy storage system and distributed and the power grid (6) and sends operating instructions to each power converter (3, 4, 5).
Este ejemplo de aplicación del sistema de almacenamiento energético híbrido y distribuido permite realizar recargas rápidas de los vehículos eléctricos sin absorber una potencia excesiva de la red eléctrica (6), permitiendo por otro lado aumentar el número de recargas simultáneas ya sean rápidas o estándares. El subsistema de coordinación y gestión permitirá que los puntos de recarga intercambien energía entre sí (cada subsistema de almacenamiento híbrido dispondrá una cantidad de energía disponible para compartir y otra cantidad de energía para su uso en el punto de recarga en cuestión), e incluso con la red eléctrica (6), permitiendo una mayor flexibilidad en el funcionamiento del sistema. En este caso, además, debido al gran número de ciclos de carga y descarga que sufrirá el sistema de almacenamiento, puede aumentarse en mayor medida la vida útil de las baterías (1 ) con una correcta gestión de la carga y descarga de los supercondensadores (2) (cuya vida útil se estima en millones de ciclos). En otros ejemplos de realización, el sistema de almacenamiento energético híbrido y distribuido puede comprender varios subsistemas de coordinación y gestión (7) coordinados entre sí, con independencia de la jerarquía organizativa que se establezca entre los distintos subsistema de coordinación y gestión (7), ya que en este caso uno de dichos subsistemas de coordinación y gestión (7) coordinaría al resto. This example of the application of the hybrid and distributed energy storage system allows fast recharging of electric vehicles without absorbing excessive power from the electricity network (6), allowing on the other hand to increase the number of simultaneous recharges, whether fast or standard. The coordination and management subsystem will allow the charging points to exchange energy with each other (each hybrid storage subsystem will have an amount of energy available for sharing and another amount of energy for use at the charging point in question), and even with the electrical network (6), allowing greater flexibility in the operation of the system. In this case, in addition, due to the large number of charge and discharge cycles that the storage system will suffer, the useful life of the batteries (1) can be increased to a greater extent with proper management of the charge and discharge of the supercapacitors ( 2) (whose useful life is estimated in millions of cycles). In other exemplary embodiments, the hybrid and distributed energy storage system may comprise several coordination and management subsystems (7) coordinated with each other, regardless of the organizational hierarchy establish between the different coordination and management subsystems (7), since in this case one of these coordination and management subsystems (7) would coordinate the rest.

Claims

R E I V I N D I C A C I O N E S R E I V I N D I C A C I O N E S
/\ - Sistema de almacenamiento energético híbrido y distribuido caracterizado porque comprende / \ - Hybrid and distributed energy storage system characterized by comprising
« al menos un subsistema de almacenamiento híbrido que comprende a su vez:  «At least one hybrid storage subsystem that includes:
o al menos una batería (1 ) y al menos un supercondensador (2) para hacer frente a variaciones energéticas de dinámica rápida a la vez que para hacer aporte de energía de manera continua,  or at least one battery (1) and at least one supercapacitor (2) to cope with energy dynamics of rapid dynamics as well as to provide energy continuously,
o al menos un convertidor de potencia (3, 4, 5) dispuesto entre la batería (1 ) y/o el supercondensador (2) y la red eléctrica (6), y  or at least one power converter (3, 4, 5) disposed between the battery (1) and / or the supercapacitor (2) and the power grid (6), and
• al menos un subsistema de coordinación y gestión (7) para recibir información del estado energético de cada subsistema de almacenamiento híbrido y de la red eléctrica (6) y gestionar las necesidades energéticas del sistema, estando conectado con cada convertidor de potencia (3, 4, 5) a través de un subsistema de comunicación (8).  • at least one coordination and management subsystem (7) to receive information on the energy status of each hybrid storage subsystem and the electrical network (6) and manage the energy needs of the system, being connected to each power converter (3, 4, 5) through a communication subsystem (8).
2. - Sistema de almacenamiento energético híbrido y distribuido según reivindicación 1 caracterizado porque cada subsistema de almacenamiento híbrido comprende un primer convertidor de potencia (3) a la salida de la batería (1 ) y un segundo convertidor de potencia (4) a la salida del supercondensador (2). 2. - Hybrid and distributed energy storage system according to claim 1 characterized in that each hybrid storage subsystem comprises a first power converter (3) at the output of the battery (1) and a second power converter (4) at the output of the supercapacitor (2).
3. - Sistema de almacenamiento energético híbrido y distribuido según reivindicación 2 caracterizado porque comprende un tercer convertidor de potencia (5) que conecta la salida del primer y segundo convertidores de potencia (3, 4) con la red eléctrica (6). 3. - Hybrid and distributed energy storage system according to claim 2 characterized in that it comprises a third power converter (5) that connects the output of the first and second power converters (3, 4) with the power grid (6).
4. - Sistema de almacenamiento energético híbrido y distribuido según cualquiera de las reivindicaciones anteriores caracterizado porque los convertidores de potencia (3, 4, 5) son bidireccionales para llevar a cabo tanto 4. - Hybrid and distributed energy storage system according to any of the preceding claims characterized in that the power converters (3, 4, 5) are bidirectional to carry out both
o la descarga de energía de las baterías (1 ) y los supercondensadores (2) y la inyección de corriente en la red eléctrica (6), como  or the discharge of energy from the batteries (1) and the supercapacitors (2) and the injection of current in the mains (6), such as
o la extracción de corriente de la red eléctrica (6) y la recarga energética de las baterías (1 ) y los supercondensadores (2).  or the extraction of power from the mains (6) and the energy recharge of the batteries (1) and the supercapacitors (2).
5. - Sistema de almacenamiento energético híbrido y distribuido según cualquiera de las reivindicaciones anteriores caracterizado porque comprende varios subsistemas de coordinación y gestión (7) coordinados entre sí. 5. - Hybrid and distributed energy storage system according to any of the preceding claims characterized in that it comprises several coordination and management subsystems (7) coordinated with each other.
6.- Sistema de almacenamiento energético híbrido y distribuido según cualquiera de las reivindicaciones anteriores caracterizado porque comprende además un sistema integrador de energía renovable. 6. Hybrid and distributed energy storage system according to any of the preceding claims characterized in that it also comprises a renewable energy integrator system.
7.- Sistema de almacenamiento energético híbrido y distribuido según cualquiera de las reivindicaciones anteriores caracterizado porque comprende además cualquier otro sistema de almacenamiento energético. 7. Hybrid and distributed energy storage system according to any of the preceding claims characterized in that it also comprises any other energy storage system.
PCT/ES2012/070233 2011-04-04 2012-04-04 Distributed, hyrbird energy storage system WO2012136872A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201100429A ES2405538B1 (en) 2011-04-04 2011-04-04 HYBRID AND DISTRIBUTED ENERGY STORAGE SYSTEM
ESP201100429 2011-04-04

Publications (2)

Publication Number Publication Date
WO2012136872A2 true WO2012136872A2 (en) 2012-10-11
WO2012136872A3 WO2012136872A3 (en) 2012-11-29

Family

ID=46208092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070233 WO2012136872A2 (en) 2011-04-04 2012-04-04 Distributed, hyrbird energy storage system

Country Status (2)

Country Link
ES (1) ES2405538B1 (en)
WO (1) WO2012136872A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103257299A (en) * 2013-05-20 2013-08-21 国家电网公司 Microgrid technical verification platform device based on hybrid energy storage

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037972A2 (en) * 2005-09-23 2007-04-05 Afs Trinity Power Corporation Method and apparatus for power electronics and control of plug-in hybrid propulsion with fast energy storage
CN101309017B (en) * 2008-07-11 2012-05-30 中国科学院电工研究所 Wind power and photovoltaic power complementary power supply system based on mixed energy accumulation of super capacitor accumulator
US8245801B2 (en) * 2009-11-05 2012-08-21 Bluways Usa, Inc. Expandable energy storage control system architecture
KR20110112678A (en) * 2010-04-07 2011-10-13 엘에스전선 주식회사 Power control system by using distributed generation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103257299A (en) * 2013-05-20 2013-08-21 国家电网公司 Microgrid technical verification platform device based on hybrid energy storage

Also Published As

Publication number Publication date
ES2405538B1 (en) 2014-04-25
WO2012136872A3 (en) 2012-11-29
ES2405538R1 (en) 2013-06-20
ES2405538A2 (en) 2013-05-31

Similar Documents

Publication Publication Date Title
ES2665979T3 (en) Elevator system with an energy storage device
KR20150011301A (en) Power control device for ship
US11581847B2 (en) Photovoltaic and electromagnetic powered mobile electric vehicle charging station
MX2022002724A (en) Back-up generator and associated electric power systems.
CN104795881A (en) Wind-light complementary power supply controller, microgrid system and microgrid system power supply method
US10110056B2 (en) Energy banking system and method using rapidly rechargeable batteries
CN110816285A (en) Light stores up complementary guarantee car system of firewood
KR20150085227A (en) The control device and method for Energy Storage System
ES2812301T3 (en) Power supply unit and corresponding control
ES2405538B1 (en) HYBRID AND DISTRIBUTED ENERGY STORAGE SYSTEM
CN103001311A (en) Energy-storage emergency direct- and alternating-current power supply system
CN108199469A (en) A kind of mobile charging accumulator shared system of combination solar energy power generating
KR102257906B1 (en) An energy storage system
CN202997587U (en) Intelligent micro-network distributed power supply
TWI686564B (en) Hybrid green-energy street light apparatus
BR102016009787B1 (en) METHOD FOR CONTROLLING THE POWER FLOW OF A HYBRID ELECTRIC ENERGY STORAGE SYSTEM, ASSOCIATED DEVICE AND USES
TW201941515A (en) Electrical energy dispensing system
CN104201975A (en) Photovoltaic power source
CN204559220U (en) Wind light mutual complementing power-supply controller and micro-grid system
KR20120077941A (en) A dual charging apparatus using photovoltaic and a method thereof
RU2524355C1 (en) Uninterrupted power supply system
JP2013201795A (en) Photovoltaic power generation system with power storage device
US9768634B2 (en) Facility for controlling charge current for storage units in electrical energy supply grids connecting distributed generators and distributed storage units, among others
ES2536603B1 (en) Dynamic supercapacitor control system with optimization of loading and unloading.
GR1009796B (en) Transportable hybrid power-supplying system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12725472

Country of ref document: EP

Kind code of ref document: A2