WO2012136030A1 - 一种调整led电流的电路 - Google Patents

一种调整led电流的电路 Download PDF

Info

Publication number
WO2012136030A1
WO2012136030A1 PCT/CN2011/077435 CN2011077435W WO2012136030A1 WO 2012136030 A1 WO2012136030 A1 WO 2012136030A1 CN 2011077435 W CN2011077435 W CN 2011077435W WO 2012136030 A1 WO2012136030 A1 WO 2012136030A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
resistor
adjustment
current
output
Prior art date
Application number
PCT/CN2011/077435
Other languages
English (en)
French (fr)
Inventor
葛良安
姚晓莉
Original Assignee
英飞特电子(杭州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英飞特电子(杭州)有限公司 filed Critical 英飞特电子(杭州)有限公司
Priority to US14/000,501 priority Critical patent/US9018845B2/en
Publication of WO2012136030A1 publication Critical patent/WO2012136030A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/24Controlling the colour of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/35Balancing circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/46Details of LED load circuits with an active control inside an LED matrix having LEDs disposed in parallel lines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to the field of electrical equipment, and more particularly to a circuit for adjusting LED current.
  • the temperature of the ideal black body is the color temperature of the light source.
  • the color temperature has a stable atmosphere below 3300K, and the feeling of warmth; the color temperature is 3000-5000K for the intermediate color temperature, which has a refreshing feeling; the color temperature has a cold feeling above 5000K.
  • Different application scenarios require light sources of different color temperatures.
  • the conventional technical solution is to adjust the current of each channel by using a constant voltage module + multi-channel constant current DC-DC power supply DC/DC circuit.
  • the DC/DC constant current circuit can be a high frequency conversion circuit.
  • the output of the constant voltage module is used as the input of the multi-channel constant current circuit.
  • Each DC/DC constant current circuit independently performs constant current control.
  • the current of each channel can be independently set according to the needs, thereby adjusting the LEDs of different colors or different color temperatures.
  • the brightness of the lamp which adjusts the color or color temperature of the light source.
  • a circuit for adjusting LED current comprising: a single output constant current source, a multi-channel LED output circuit, a control bus connected to the multi-channel LED output circuit, and any one of the LED output circuits includes: a load circuit, an adjustment circuit, a current adjustment circuit, and an adjustment control circuit, wherein:
  • the load circuit includes a plurality of LEDs connected in series, one end of the load circuit is connected to a first output end of the single output constant current source, and the other end of the load circuit is connected to an input end of the adjustment circuit;
  • the adjustment circuit includes: an adjustment tube connected to the load circuit, and a current sampling circuit connected to the adjustment tube at one end, and the other end of the current sampling circuit and the second output end of the single output constant current source Connected, the output end of the adjusting circuit is connected to the input end of the current regulating circuit;
  • An output end of the current adjustment circuit is connected to a first input end of the adjustment control circuit, and the current adjustment circuit adjusts a sampling current output by the adjustment circuit as needed to be converted into a control corresponding to the sampling current a signal input to the adjustment control circuit;
  • a second input end of the adjustment control circuit is connected to the control bus, and an output end is connected to the adjustment tube, and the adjustment control circuit compares the control signal with a voltage of the control bus, and adjusts according to a comparison result.
  • the impedance of the tube is adjusted to achieve adjustment of the current of the LED output circuit of the path.
  • the current sampling circuit is a first adjustable resistor Rsl
  • the current regulating circuit is a wire connected to the first adjustable resistor Rs1.
  • the current sampling circuit is a first resistor R1.
  • the current regulating circuit includes: a second resistor R2 connected to the output end of the adjusting circuit at one end, and the other end of the second resistor R2 is respectively connected to the input end of the first switch S1 and the filter circuit, respectively The other end of the first switch S1 is grounded, and the switch is closed and opened under the control of the pulse signal, and the output end of the filter circuit is connected to the input end of the adjustment control circuit.
  • the filter circuit comprises: a third resistor R3, a fourth resistor R4, a first capacitor C1, a first operational amplifier U1 and a second capacitor C2, wherein one end of the third resistor R3 is connected to the second resistor R2, and the other end of the third resistor R3 is respectively connected to the first capacitor C1 and the fourth capacitor
  • the resistor R4 is connected, the other end of the first capacitor C1 is connected to the inverting input end of the first operational amplifier U1, and the other end of the fourth resistor R4 is connected to the non-inverting input end of the first operational amplifier U1.
  • the non-inverting input terminal of the first operational amplifier U1 and the fourth resistor R4 are grounded through the second capacitor, and the inverting input end of the first operational amplifier U1 is connected to the output end thereof, the first operational amplifier The output of U1 is coupled to the input of the adjustment control circuit.
  • the adjustment control circuit comprises: a fifth resistor R5, a second operational amplifier U2, and a compensation network;
  • One end of the fifth resistor R5 is connected to the output end of the current regulating circuit, and the other end is connected to the control bus;
  • An inverting input end of the second operational amplifier U2 is connected to an output end of the current regulating circuit, and a non-inverting input end of the second operational amplifier U2 is connected to the control bus;
  • the compensation network is connected in parallel between the inverting input end and the output end of the second operational amplifier U2; the output end of the second operational amplifier U2 is connected to the adjustment tube.
  • the current adjustment circuit includes: a sixth resistor R6 and a second adjustable resistor Rs2; one end of the sixth resistor R6 is connected to a high potential end of the first resistor R1, and the other end is connected to the adjustment control The input terminals of the circuit are connected;
  • One end of the second adjustable resistor Rs2 is connected to the input end of the adjustment control circuit, and the other end is connected to the low potential end of the first resistor R1.
  • the current adjustment circuit further includes: an impedance matching circuit, wherein the impedance matching circuit is a voltage follower composed of an operational amplifier, and an inverting input end of the operational amplifier is connected to the output end, and the operation The non-inverting input terminal is connected to a common connection point of the sixth resistor R6 and the second adjustable resistor Rs2, and an output end of the operational amplifier is connected to the input end of the adjustment control circuit.
  • the impedance matching circuit is a voltage follower composed of an operational amplifier, and an inverting input end of the operational amplifier is connected to the output end, and the operation
  • the non-inverting input terminal is connected to a common connection point of the sixth resistor R6 and the second adjustable resistor Rs2, and an output end of the operational amplifier is connected to the input end of the adjustment control circuit.
  • the adjustment control circuit comprises: an eighth resistor R8, a ninth resistor R9, a tenth resistor R10, a diode D1, a fourth operational amplifier U4, a fifth operational amplifier U5, and a compensation network;
  • One end of the eighth resistor R8 is connected to the output end of the current regulating circuit, and the other end is connected to the inverting input end of the fourth operational amplifier U4;
  • One end of the ninth resistor R9 is connected to the non-inverting input terminal of the fourth operational amplifier U4, and the other end is connected to the power source Vcc;
  • the non-inverting input terminal of the fourth operational amplifier U4 is connected to the control bus through the tenth resistor R10;
  • the compensation network is connected in parallel between the inverting input end and the output end of the fourth operational amplifier U4; the output end of the fourth operational amplifier U4 is connected to the adjusting tube;
  • the non-inverting input end of the fifth operational amplifier U5 is connected to the output end of the current regulating circuit; the inverting input end of the fifth operational amplifier U5 is connected to the control bus;
  • the anode of the diode D1 is connected to the inverting input terminal of the fifth operational amplifier U5, the diode
  • the cathode of D1 is connected to the output of the operational amplifier U5.
  • the adjustment tube is an N-channel enhancement type MOS transistor, a drain of the MOS transistor is connected to the load circuit, a source is connected to an input end of the current sampling circuit, and a gate is The output terminals of the adjustment control circuit are connected.
  • the adjusting tube is the first NPN tube Qn1
  • the collector of Qn1 is connected to the load circuit
  • the emitter is connected to the input end of the current sampling circuit
  • the base and the output of the adjustment control circuit are connected.
  • the adjusting control circuit further includes: connecting to the output end of the third operational amplifier U3 An eleventh resistor R11 between the base of the first NPN tube Q1;
  • the adjustment control circuit further includes: a twelfth resistor R12 and a second NPN transistor Qn2, one end of the twelfth resistor R12 is connected to the output end of the third operational amplifier U3, and the other end is connected to the second NPN
  • the collector of the second NPN transistor Qn2 is connected to the base of the first PNP transistor Qpl, and the emitter of the second NPN transistor Qn2 is grounded.
  • the adjusting tube is the third NPN tube Qn3, the collector of Qn3 is connected to the load circuit, the emitter is connected to the input end of the current sampling circuit, and the base and the output of the adjustment control circuit are connected.
  • the adjustment control circuit further includes: a thirteenth resistor R13 connected between the output terminal of the fourth operational amplifier U4 and the base of the third NPN transistor Qn3;
  • the adjustment control circuit further includes: a fourteenth resistor R14 and a fourth NPN transistor Qn4, one end of the fourteenth resistor R14 is connected to the output end of the fourth operational amplifier U4, and the other end is connected to the fourth NPN
  • the base of the transistor Qn4 the collector of the fourth NPN transistor Qn4 is connected to the base of the second PNP transistor Qp2, and the emitter of the fourth NPN transistor Qn4 is grounded.
  • control bus is connected to the power source Vcc through a resistor R.
  • the LED lights of different paths are LED lights of different colors or white LED lights of different color temperatures.
  • the output current of the single output constant current source is adjustable, and the brightness of the light source composed of the LED changes according to the output current of the single output constant current source.
  • the circuit for adjusting the LED current disclosed in the present invention adjusts the current of each LED output circuit through the load circuit, the adjustment circuit, the current adjustment circuit and the adjustment control circuit, thereby realizing the color and color temperature of the LED light source.
  • the adjustment of characteristic parameters such as color rendering index and brightness avoids the problem of high cost due to the regulation of current by a constant current DC/DC circuit.
  • FIG. 1 is a schematic structural diagram of a circuit for adjusting LED current in the prior art
  • FIG. 2 is a schematic structural diagram of a circuit for adjusting LED current according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of another circuit for adjusting LED current according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of another circuit for adjusting LED current according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of another circuit for adjusting LED current according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of another circuit for adjusting LED current according to an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of another circuit for adjusting LED current according to an embodiment of the present invention
  • FIG. 10 is a circuit structure for adjusting LED current according to an embodiment of the present invention
  • FIG. 11 is a schematic structural diagram of another circuit for adjusting LED current according to an embodiment of the present invention
  • FIG. FIG. 12 is a schematic structural diagram of another circuit for adjusting LED current according to an embodiment of the present invention.
  • the invention discloses a circuit for adjusting the LED current.
  • the specific structure is shown in FIG. 2, comprising: a single output constant current source 21, a multi-channel LED output circuit 22 and a control bus 20, wherein the input end of the LED output circuit is The single-output constant current source is connected, and the control bus 20 is connected to the multi-channel LED output circuit.
  • the multi-channel LED output circuit in this embodiment has the same structure, and the first LED output circuit is taken as an example to analyze its structure, including: The circuit 23, the adjustment circuit 24, the current adjustment circuit 25, and the adjustment control circuit 26, wherein:
  • the load circuit 23 includes a plurality of LEDs connected in series, one end of the load circuit 23 is connected to the first output end of the single output constant current source 21, and the other end of the load circuit 23 is connected to the input end of the adjustment circuit 24;
  • the adjustment circuit 24 includes: The adjusting tube 241 connected to the circuit 23 and the current sampling circuit 242 connected to the adjusting tube 241 at one end, the other end of the current sampling circuit 242 is connected to the second output end of the single output constant current source 21, and the second output of the single output constant current source
  • the terminal is 0 potential reference ground.
  • the output of the regulating circuit 24 is connected to the input of the current regulating circuit 25;
  • the output end of the current regulating circuit 25 is connected to the first input end of the adjustment control circuit 26.
  • the current adjusting circuit 25 adjusts the sampling current outputted by the adjusting circuit 24 as needed, converts it into a control signal corresponding to the sampling current, and inputs it to the adjustment control.
  • the second input end of the adjustment control circuit 26 is connected to the control bus 20, and the output end is connected to the adjustment tube 241.
  • the adjustment control circuit 26 compares the control signal with the total control signal Vshare of the control bus, and adjusts the impedance of the adjustment tube 241 according to the comparison result. , to achieve the adjustment of the current of the LED output circuit of the road.
  • the adjustment tube 241 in this embodiment may be a MOS tube or a PNP transistor or an NPN transistor.
  • the drain of the MOS transistor is connected to the load circuit 23, the source thereof is connected to the input end of the current sampling circuit 242, and the gate thereof is connected to the output end of the adjustment control circuit 26;
  • the adjusting tube 241 is a PNP transistor
  • the emitter of the triode is connected to the load circuit 23, and the collector is connected to the current sampling circuit 242, and the base thereof is connected to the output end of the adjustment control circuit 26;
  • the adjusting tube 241 is an NPN transistor
  • the collector of the triode is connected to the load circuit 23
  • the emitter is connected to the current sampling circuit 242
  • the base thereof is connected to the output end of the adjustment control circuit 26.
  • the total control signal Vshare on the control bus in this embodiment is provided by multiple LED output circuits. Further, the control bus can also be connected to the power supply Vcc through the resistor R, thereby sharing the power supply Vcc with the multiple LED output circuits. Role, get Vshare.
  • the LEDs of different paths may be LEDs of different colors, such as red LEDs, green LEDs, blue LEDs, or LEDs of different color temperatures, such as cool white LEDs, warm white LEDs.
  • the current distribution ratio in each LED output circuit is determined by the adjustment circuit, the current adjustment circuit, and the adjustment control circuit in each LED output circuit, and the current distribution ratio of each LED output circuit is adjusted to achieve more
  • the color or color temperature of the light source composed of LEDs in the LED output circuit is adjusted. For example, there are two LED output circuits, one LED is warm The white LED, the other LED is a cool white LED. By adjusting the current distribution ratio in the two LED output circuits, the color temperature of the light source composed of the two LEDs can be adjusted.
  • the types of LED light sources in different LED output circuits are selected according to actual application scenarios.
  • the output current of the single-output constant current source 21 is adjustable, that is, the total current of the multi-channel LED output circuit is variable, and the LED in the multi-channel LED output circuit can be adjusted by adjusting the current of the single-output constant current source 21.
  • the circuit for adjusting the LED current disclosed in the embodiment adjusts the current of each channel through the load circuit, the adjustment circuit, the current adjustment circuit and the adjustment control circuit, thereby realizing the adjustment of the characteristic parameters such as color, color temperature, color rendering index and brightness of the LED light source.
  • the current sampling circuit can have various implementation forms.
  • the current sampling circuit is the first adjustable resistor Rsl, and the current of the current can be adjusted by adjusting the resistance of Rsl.
  • the first adjustable resistor Rsl at this time can be used as a sampling resistor in the current sampling current to realize the function of sampling current, and can also realize the effect of adjusting the current in the current regulating circuit, so at this time, the current regulating circuit 25 can be tubular into a wire connected to the first adjustable resistor Rs1, but does not limit the current regulating circuit 25 to be a wire, and can be any of the current regulating circuit structures mentioned below.
  • the first LED output circuit As an example to illustrate the working principle of the adjustment current: To reduce the current of the LED circuit, as long as the resistance of the first sliding varistor Rsl is increased, The current sampling signal Vsl is increased, and Vsl and the total control signal Vshare are compared and adjusted inside the adjustment control circuit, so that the impedance of the output signal control adjustment tube is increased, thereby reducing the LED circuit of the circuit.
  • the adjustable resistor in this embodiment may be a sliding varistor, or other circuit that can realize adjustable resistance.
  • the current sampling circuit of each circuit in the LED output circuit is not limited, and the current sampling circuit of each of the channels is an adjustable resistor, and the current sampling circuits of the remaining channels are fixed resistors.
  • FIG. 4 is a schematic structural diagram of another circuit for adjusting LED current according to an embodiment of the present invention.
  • the basic structure is the same as the circuit shown in FIG. 2, and includes: a load circuit 43, an adjustment circuit 44, a current adjustment circuit 45, and an adjustment control circuit 46.
  • the current adjustment circuit 45 includes: a second resistor R2 connected to the output end of the adjustment circuit 44 at one end, and the other end of the second resistor R2 is respectively connected to one end of the first switch S1 and the input end of the filter circuit L.
  • the other end of the first switch S1 is grounded, and the switch is closed and opened under the control of the pulse signal, and the output end of the filter circuit L is connected to the input end of the adjustment control circuit 46.
  • the current sampling signal Vsl is affected by the on/off of the switch S1, and is changed from the original level signal to a pulse level signal and then input to the filter circuit L.
  • the level signal amplitude obtained by the filter circuit L is flattened and pulsed.
  • the average value of the flat signal is output to the adjustment control circuit, and the total control signal Vshare is compared and adjusted inside the adjustment control circuit, and then the signal obtained after the comparison is output to the adjustment circuit for controlling the impedance of the adjustment tube.
  • the current of each LED output circuit is adjusted, and the characteristic parameters such as color, color temperature and color rendering index of the LED light source are adjusted.
  • FIG. 5 a schematic structural diagram of another circuit for adjusting LED current disclosed in the present invention is shown in FIG. 5.
  • This embodiment takes an output circuit with the same LED structure as an example, wherein the basic structure and diagram of any one of the LED output circuits is shown.
  • the structure shown in FIG. 4 is similar, and includes: a load circuit 53, an adjustment circuit 54, a current adjustment circuit 55, and an adjustment control circuit 56.
  • the current sampling circuit in this embodiment is the first resistor R1.
  • the high potential end of the first resistor R1 is the output end of the adjusting circuit 54, and the switch S1 and the adjusting tube are both enhanced N-channel MOS tubes.
  • the structure of the filter circuit L in this embodiment is as shown in the figure, including: a third resistor R3, a fourth resistor R4, a first capacitor C1, a first operational amplifier U1 and a second capacitor C2, wherein the third resistor R3 One end is connected to the second resistor R2, and the other end of the third resistor R3 is connected to the first capacitor C1 and the fourth resistor R4, respectively, and the other end of the first capacitor C1 is connected to the inverting input end of the first operational amplifier U1, and the fourth The other end of the resistor R4 is connected to the non-inverting input end of the first operational amplifier U1.
  • the non-inverting input terminal of the first operational amplifier U1 and the fourth resistor R4 are grounded through the second capacitor C2, and the output end of the first operational amplifier U1 is first.
  • the inverting input of the operational amplifier U1 is connected, and the output of the first operational amplifier U1 is connected to the input of the adjustment control circuit.
  • the present embodiment does not limit the configuration of the filter circuit as shown above, and any circuit capable of filtering the pulse level signal generated by the switch S1 under the control of the pulse signal to obtain an average value is a range protected by the present embodiment. Similarly, this embodiment does not limit the switch to an enhancement type N-channel MOS transistor, and a triode can also be selected.
  • the adjustment control circuit 56 in this embodiment includes: a fifth resistor R5, a second operational amplifier U2, and a compensation network N.
  • the compensation network is usually a series connection of a resistor and a capacitor.
  • One end of the fifth resistor R5 is connected to the output end of the first operational amplifier U1, and the other end is connected to the control bus; the inverting input end of the second operational amplifier U2 is connected to the output end of the first operational amplifier U1, and the second operational amplifier U2 The non-inverting input is connected to the control bus; the compensation network is connected in parallel to the inverting input of the second operational amplifier U2 and Between the outputs; the output of the second op amp U2 is connected to the adjustment tube.
  • the control line is connected to Vcc through resistor R.
  • D1 is the switch S1 that controls the first LED output circuit
  • D2 is the duty cycle of the pulse signal that controls the switch S1 in the second LED output circuit. Therefore, after the resistance of the first resistor R1 in the first LED output circuit and the first resistor R1 in the second LED output circuit are determined, to adjust the ratio of each current, it is only necessary to adjust the pulse in each channel.
  • the duty cycle of the signal is sufficient.
  • the specific adjustment method can adjust the duty ratio of one of the pulse signals, or adjust the duty ratio of the two pulse signals at the same time.
  • the LED in the first LED output circuit selects a warm white LED
  • the LED in the second LED output circuit selects a cool white LED
  • the pulse signal of the switch S1 in the first LED output circuit is controlled to be occupied.
  • the ratio D1 0.5
  • the total control signal Vshare is determined by the output voltages VI and V2 of the two output circuits.
  • the value of the total control signal is:
  • V share yi x R5 2x R5 formula ( 2 )
  • the resistance values of the fifth resistor R5 in the first LED output circuit and the fifth resistor R5 in the second LED output circuit may be equal or unequal.
  • the total control signal Vshare is compared with the output signals (VI, V2) of the current regulating circuit in the first LED output circuit and the second LED output circuit respectively. If the output signal of the current regulating circuit of a certain channel is smaller than the total control signal Vshare, The output voltage of the op amp is increased, and the conduction resistance of the adjustment tube is decreased.
  • the current of the current is gradually increased until the current is close to the average current (the output signal of a current regulation circuit is equal to When the total control signal Vshare corresponds to the current in the LED output circuit of the circuit); if the output signal of the current regulation circuit of a certain channel is greater than the total control signal Vshare, the output voltage of the operational amplifier is gradually decreased, so that the conduction impedance of the adjustment tube is made.
  • the LED current is gradually reduced until it is close to the average current; after adjustment, when the current in each LED output circuit is stable, due to the bias of the resistor R, the voltage of the non-inverting terminal of the op amp is always slightly larger than the voltage of the inverting input terminal.
  • This embodiment does not limit the LED output circuit to only two paths, which may be multiple channels. According to the specific number of circuits, the above formula is adjusted accordingly to achieve the purpose of determining the control signal Vshare according to all circuits, for example, when When there are 3 output circuits, the total control signal Vshare is
  • this embodiment does not limit the current adjustment circuit or the adjustment control circuit of each LED output circuit to be the same, and may be in different combinations.
  • This embodiment does not limit the structure of the above adjustment control circuit can only be applied to the current sampling circuit.
  • the same can be applied to the circuit in which the current sampling circuit is the first sliding varistor Rs1, and its structure is as shown in FIG. 6.
  • the structure of the adjustment control circuit disclosed in this embodiment can be applied to any type of current adjustment circuit.
  • one end of the fifth resistor R5 is connected to the output end of the current regulating circuit, and the other end is connected to the control bus;
  • the inverting input end of the second operational amplifier U2 is connected to the output end of the current regulating circuit, the second operation
  • the non-inverting input terminal of U2 is connected to the control bus;
  • the compensation network is connected in parallel between the inverting input end and the output end of the second operational amplifier U2; the output end of the second operational amplifier U2 is connected to the adjusting tube.
  • the first sliding varistor Rsl in the first LED output circuit and the second sliding varistor Rsl in the second LED output circuit are adjustable resistors. To adjust the ratio of the currents, just adjust Rsl and Rsl. The resistance value can be adjusted, and the resistance value of Rsl or Rsl can be adjusted, and the resistance value of Rsl or Rsl can be adjusted at the same time.
  • the specific principle is the same as that shown in FIG. 5, and details are not described herein again.
  • Another schematic diagram of the circuit for adjusting the LED current disclosed in the embodiment of the present invention is shown in FIG. 7.
  • the LED output circuit with the same structure is taken as an example.
  • the structure of one of the paths includes: the load circuit 73, the adjustment circuit 74, and the current. Adjustment circuit 75 and adjustment control circuit 76.
  • the adjusting tube 741 is an enhanced N-channel MOS transistor, and the current sampling circuit 742 is a first resistor R1.
  • the current regulating circuit 75 in this embodiment includes: a sixth resistor R6 and a second adjustable resistor Rs2; one end of the sixth resistor R6 is connected to the high potential end of the first resistor R1, and the other end is connected to the input end of the adjustment control circuit; One end of the second adjustable resistor Rs2 is connected to the input end of the adjustment control circuit, and the other end is connected to the low potential end of the first resistor R1. Further, the current regulating circuit 75 further includes an impedance matching circuit Z, and the sixth resistor R6 and the second adjustable resistor Rs2 are connected to the input of the adjustment control circuit through the impedance matching circuit.
  • the impedance matching circuit Z in this embodiment is a voltage follower composed of an operational amplifier.
  • the inverting input terminal of the operational amplifier is connected to the output terminal, and the non-inverting input terminal of the operational amplifier is connected to the sixth resistor R6 and the second The common connection point of the resistor Rs2, the output of the op amp is connected to the input of the adjustment control circuit.
  • the adjustment control circuit includes: a seventh resistor R7, a third operational amplifier U3, and a compensation network N; the seventh resistor is connected in parallel between the inverting input terminal of the third operational amplifier U3 and the non-inverting input terminal; the compensation network is connected in parallel
  • the output terminal of the third operational amplifier U3 is connected to the adjustment tube; the non-inverting input terminal of the third operational amplifier U3 is connected to the control bus, and the third operational amplifier U3 is inverted.
  • the input is connected to the output of the current regulating circuit.
  • the voltage drop Vsl of the first resistor R1 is divided by the second adjustable resistor Rs2 and the sixth resistor R6, and then input to the impedance matching circuit; the output of the impedance matching circuit is connected to the adjustment control circuit;
  • the resistance value of the adjustable resistor Rs2 changes the voltage drop of the second adjustable resistor Rs2 to Vsl, and the output signal VI of the impedance matching circuit also changes accordingly.
  • the output signal VI of the impedance matching circuit and the total control signal Vshare are in the adjustment control circuit. After the internal comparison adjustment, the output signal is sent to the adjustment circuit for controlling the impedance of the adjustment tube, thereby adjusting the current of the LED output circuit of the circuit.
  • the second adjustable resistor Rs2 can be the impedance.
  • Variable linear adjustment tubes such as MOS and triode, MOS tube gate and triode base external level, adjust the impedance of the linear adjustment tube by adjusting the level to adjust the current in the LED output circuit size.
  • it is not limited to include an impedance matching circuit. When there is no impedance mismatch in the circuit, the impedance matching circuit may be omitted, so that the structure of the circuit is more compact.
  • This embodiment does not limit the current regulating circuit disclosed in this embodiment to be applicable only to the embodiment, and it can be used in combination with the adjustment control circuit of any structure.
  • This embodiment does not limit the LED output circuit to only two paths, which may be multi-channel. According to the specific number of circuits, the above formula is adjusted accordingly to achieve the purpose of determining the control signal Vshare according to all the circuits.
  • the adjusting tube in this embodiment may be an enhanced N-channel MOS tube or an NPN tube, and the adjustment control circuit is based on FIG. 7 , as shown in FIG. 8 , the adjusting tube is the first NPN.
  • the adjustment control circuit further includes: an eleventh resistor Rl 1 connected between the output end of the third operational amplifier U3 and the base of the first NPN tube Q1, and the adjustment control circuit
  • the output voltage value is converted into a current value, and its working principle is the same as that shown in FIG.
  • This embodiment does not limit the structure of the above-mentioned adjustment control circuit can only be applied to the circuit shown in FIG. 7, which can also be applied to the circuit for adjusting the diode current of the diode with the NPN tube as the adjustment tube disclosed in the present invention.
  • the current regulation circuit and the current sampling circuit are not limited as shown in FIG.
  • the same adjustment tube can also be a PNP tube, the circuit structure is shown in FIG. 9, the adjustment tube is the first PNP tube Qpl, and the adjustment control circuit is based on the diagram shown in FIG. 7, and further includes: a twelfth resistor R12 and a second NPN tube Qn2, one end of the twelfth resistor R12 is connected to the output end of the third operational amplifier U3, the other end is connected to the base of the second NPN tube Qn2, the collector of the second NPN tube Qn2 and the base of the first PNP tube Qpl The poles are connected, and the emitter of the second NPN transistor Qn2 is connected to the ground.
  • the embodiment does not limit the structure of the above-mentioned adjustment control circuit can only be applied to the circuit shown in FIG. 7, and can also be applied to any circuit for adjusting the diode current of the diode with the PNP tube as the adjustment tube disclosed in the present invention.
  • the current regulation circuit and the current sampling circuit are not limited as shown in FIG.
  • Another schematic diagram of the circuit for adjusting the LED current disclosed in the embodiment of the present invention is shown in FIG. 10 , and the two LED output circuits are taken as an example.
  • the structure of one of the paths includes: a load circuit 103 , an adjustment circuit 104 , and a current adjustment circuit 105 . And adjusting the control circuit 106.
  • the adjustment control circuit 106 includes: an eighth resistor R8, a ninth resistor R9, a tenth resistor R10, a diode D1, a fourth operational amplifier U4, a fifth operational amplifier U5, and a compensation network; One end is connected to the output end of the current regulating circuit, and the other end is connected to the inverting input end of the fourth operational amplifier U4; one end of the ninth resistor R9 is connected to the non-inverting input end of the fourth operational amplifier U4, and the other end is connected to the power supply Vcc;
  • the non-inverting input terminal of the fourth operational amplifier U4 is connected to the control bus through the tenth resistor R10; the compensation network is connected in parallel between the inverting input terminal and the output terminal of the fourth operational amplifier U4; the output terminal and the adjusting tube of the fourth operational amplifier U4 Connected; the non-inverting input of the fifth operational amplifier U5 is connected to the output of the current regulating circuit; the inverting input of the
  • the output signals of the current regulating circuit in the first LED output circuit and the second LED output circuit are respectively recorded as VI and V2.
  • VI is greater than Vshare in the first way
  • the output of the fifth operational amplifier U5 is high, the diode D1 is unreachable, Vshare remains unchanged.
  • the output of the fifth operational amplifier U5 is low, and the diode D1 is turned on.
  • the function of the fifth operational amplifier U5 is Voltage follower, Vshare becomes VI;
  • Vshare becomes VI;
  • the output signal of the current regulating circuit of a certain channel is greater than the total control signal Vshare, the output voltage of the operational amplifier is gradually reduced, so that the adjusting tube of the circuit works in a linear state, and the LED current is gradually reduced until it is close to Vshare; after adjustment, each LED output circuit
  • the medium current reaches a stable state
  • the voltage of the non-inverting terminal of the fourth operational amplifier is always slightly larger than the voltage of the inverting input terminal due to the biasing action of the ninth resistor R9, so that the voltage of the output terminal of the fourth operational amplifier is raised, and the LED load voltage is increased.
  • the adjustment tube in the largest LED output circuit is saturated and turned on.
  • the output voltage of the single output constant current source is equal to or close to the voltage drop of the LED load in the LED output circuit of the circuit, and the adjustment tubes of the other LED output circuits are The impedance is also reduced. Therefore, after the control bus Vshare is connected to Vcc via the bias ninth resistor R9, the power consumption of the adjusting tube in each LED output circuit is reduced, and the efficiency of the embodiment is improved.
  • the input signal Vshare of the inverting input terminal of the fifth operational amplifier U5 is 0, and the input signal VI of the non-inverting input terminal is also 0, which cannot work normally at this time.
  • the total control signal of the control bus will be Vshare is connected to Vcc through resistor R, which ensures that Vshare is not 0 when it starts working, and the circuit can work normally.
  • the structure of the current sampling circuit and the current adjustment circuit in this embodiment may be as shown in any of the above figures. Moreover, the structure of the two-way LED output circuit disclosed in this embodiment may be different. As shown in FIG. 10, the structure of the current adjustment circuit and the current sampling circuit in the second LED output circuit can be as shown in FIG. 9, and the current sampling current and current adjustment circuit are not limited in the first LED output circuit. The structure can be the same as or different from the second LED output circuit.
  • the adjustment tube in this embodiment is an enhanced N-channel MOS transistor, which can also be an NPN tube.
  • the circuit structure is as shown in FIG. 11, the adjustment tube is a third NPN tube Qn3, and the adjustment control circuit further includes: The thirteenth resistor R13 between the output terminal of the fourth operational amplifier U4 and the base of the third NPN transistor Qn3 converts the output voltage signal into a current signal to realize control of the third NPN transistor Qn3.
  • the adjustment tube is the second PNP tube Qp2.
  • the adjustment control circuit further includes: a fourteenth resistor R14 and a fourth NPN tube Qn4, and a fourteenth resistor R14. One end is connected to the output terminal of the fourth operational amplifier U4, the other end is connected to the base of the fourth NPN tube Qn4, the collector of the fourth NPN tube Qn4 is connected to the base of the second PNP tube Qp2, and the emission of the fourth NPN tube Qn4 Extremely connected to the ground.

Description

一种调整 LED电流的电路
本申请要求于 2011年 4月 2日提交中国专利局、 申请号为 201110083757.8、 发明名称为"一种调整 LED电流的电路"的中国专利申请的优先权,其全部内容 通过引用结合在本申请中。
技术领域
本发明涉及电器设备领域, 尤其涉及一种调整 LED电流的电路。
背景技术
光源发射光的颜色与理想黑体在某一温度下辐射的光色相同时,理想黑体 的温度即该光源的色温。 光色愈偏蓝, 色温愈高; 光色愈偏红, 则色温愈低。 色温在 3300K以下有稳重的气氛,温暖的感觉; 色温在 3000-5000K为中间色温, 有爽快的感觉; 色温在 5000K以上有冷的感觉。 不同的应用场景, 需要不同色 温的光源。
常规的技术方案是采用恒压模块 +多路恒流直流转直流电源 DC/DC电路 对每一路电流进行调整, 如图 1所示, DC/DC恒流电路可以为高频变换电路。 恒压模块的输出作为多路恒流电路的输入,每路 DC/DC恒流电路独立做恒流控 制, 可以根据需要独立设置每路的电流大小,从而调节不同颜色或不同色温的 发光二极管 LED灯的亮度, 实现光源的颜色或色温的调节。
由于上述方案中,每路调整 LED的电流的电路都需要使用一个单独的恒流 DC/DC电路, 因此成本高。 发明内容
有鉴于此, 本发明提供一种调整 LED电流的电路。 其具体方案如下: 一种调整 LED电流的电路, 包括: 单输出恒流源、 多路 LED输出电路, 与所述多路 LED输出电路相连的控制总线, 任意一路 LED输出电路包括: 负 载电路、 调整电路、 电流调节电路和调整控制电路, 其中:
所述负载电路包含多个串联的 LED, 所述负载电路的一端与所述单输出 恒流源的第一输出端相连, 所述负载电路的另一端与所述调整电路输入端相 连;
所述调整电路包括: 与所述负载电路相连的调整管, 和一端与所述调整管 相连的电流取样电路,所述电流取样电路的另一端与所述单输出恒流源的第二 输出端相连, 所述调整电路的输出端与所述电流调节电路的输入端相连;
所述电流调节电路的输出端与所述调整控制电路的第一输入端相连,所述 电流调节电路将所述调整电路输出的取样电流根据需要进行调整,转换为与所 述取样电流对应的控制信号, 输入到所述调整控制电路;
所述调整控制电路的第二输入端与所述控制总线相连,输出端与所述调整 管相连, 所述调整控制电路将所述控制信号与所述控制总线的电压进行比较, 根据比较结果调整所述调整管的阻抗, 以实现对该路 LED输出电路电流的调 节。
优选的, 所述电流取样电路为第一可调电阻 Rsl , 所述电流调节电路为与 所述第一可调电阻 Rsl相连的导线。
优选的, 所述电流取样电路为第一电阻 R1。
优选的, 所述电流调节电路包括: 一端与所述调整电路输出端相连的第二 电阻 R2 , 所述第二电阻 R2的另一端分别与第一开关 S 1和滤波电路的输入端 相连, 所述第一开关 S1的另一端接地, 在脉沖信号的控制下实现开关的闭合 和开启, 所述滤波电路的输出端与所述调整控制电路输入端相连。
优选的, 所述滤波电路包括: 第三电阻 R3、 第四电阻 R4、 第一电容 Cl、 第一运算放大器 Ul和第二电容 C2, 其中, 所述第三电阻 R3的一端与所述第 二电阻 R2相连,所述第三电阻 R3的另一端分别于所述第一电容 C1和第四电 阻 R4相连,所述第一电容 C1的另一端与所述第一运放 U1的反相输入端相连, 所述第四电阻 R4的另一端与所述第一运放 U1的同相输入端相连, 所述第一 运放 U1的同相输入端与所述第四电阻 R4通过所述第二电容接地, 所述第一 运放 U1的反相输入端与其输出端相连, 所述第一运放 U1的输出端与所述调 整控制电路输入端相连。
优选的, 所述调整控制电路包括: 第五电阻 R5、 第二运放 U2和补偿网 络;
所述第五电阻 R5的一端与所述电流调节电路的输出端相连, 另一端与所 述控制总线相连;
所述第二运放 U2的反相输入端与所述电流调节电路的输出端相连, 所述 第二运放 U2的同相输入端与所述控制总线相连;
所述补偿网络并联于所述第二运放 U2的反相输入端和输出端之间; 所述第二运放 U2的输出端与所述调整管相连。
优选的, 所述电流调节电路包括: 第六电阻 R6和第二可调电阻 Rs2; 所述第六电阻 R6的一端与所述第一电阻 R1的高电位端相连, 另一端与 所述调整控制电路输入端相连;
所述第二可调电阻 Rs2的一端与所述调整控制电路输入端相连,另一端与 所述第一电阻 R1的低电位端相连。
优选的, 所述电流调节电路还包括: 阻抗匹配电路, 所述的阻抗匹配电路 为由一运放组成的电压跟随器, 所述运放的反相输入端与输出端相连, 所述运 放的同相输入端连接至所述第六电阻 R6和所述第二可调电阻 Rs2的公共连接 点, 所述运放的输出端连接至所述调整控制电路输入端相连。
优选的, 所述调整控制电路包括: 第八电阻 R8、 第九电阻 R9、 第十电阻 R10、 二极管 Dl、 第四运放 U4、 第五运放 U5和补偿网络;
所述第八电阻 R8的一端与所述电流调节电路的输出端相连, 另一端与所 述第四运放 U4 的反相输入端相连;
所述第九电阻 R9的一端与所述第四运放 U4的同相输入端相连, 另一端 与电源 Vcc相连;
所述第四运放 U4的同相输入端通过所述第十电阻 R10与所述控制总线相 连;
所述补偿网络并联于所述第四运放 U4的反相输入端和输出端之间; 所述第四运放 U4的输出端与所述调整管相连;
所述第五运放 U5的同相输入端与所述电流调节电路的输出端相连; 所述第五运放 U5的反相输入端与所述控制总线相连;
所述二极管 D1的阳极连接所述第五运放 U5的反相输入端, 所述二极管
D1的阴极连接所述运放 U5的输出端。
优选的, 其特征在于, 所述调整管为 N沟道增强型 MOS管, 所述 MOS 管的漏极与所述负载电路相连, 源极与所述电流取样电路的输入端相连,栅极 与所述调整控制电路的输出端相连。
优选的, 当所述调整管为第一 NPN管 Qnl时, Qnl的集电极与所述负载 电路相连,发射极与所述电流取样电路的输入端相连,基极与所述调整控制电 路的输出端相连, 所述调整控制电路还包括: 连接于所述第三运放 U3输出端 与所述第一 NPN管 Ql基极间的第十一电阻 Rll;
当所述调整管为第一 PNP管 Qpl时, Qpl的发射极与所述负载电路相连, 集电极与所述电流取样电路的输入端相连,基极与所述调整控制电路的输出端 相连, 所述调整控制电路还包括: 第十二电阻 R12和第二 NPN管 Qn2, 所述 第十二电阻 R12的一端连接于所述第三运放 U3输出端,另一端连接于所述第 二 NPN管 Qn2的基极, 所述第二 NPN管 Qn2的集电极与所述第一 PNP管 Qpl的基极相连, 所述第二 NPN管 Qn2的发射极接地。
优选的, 当所述调整管为第三 NPN管 Qn3时, Qn3的集电极与所述负载 电路相连,发射极与所述电流取样电路的输入端相连,基极与所述调整控制电 路的输出端相连, 所述调整控制电路还包括: 连接于所述第四运放 U4输出端 与所述第三 NPN管 Qn3基极间的第十三电阻 R13;
当所述调整管为第二 PNP管 Qp2时, Qp2的发射极与所述负载电路相连, 集电极与所述电流取样电路的输入端相连,基极与所述调整控制电路的输出端 相连, 所述调整控制电路还包括: 第十四电阻 R14和第四 NPN管 Qn4, 所述 第十四电阻 R14的一端连接于所述第四运放 U4输出端,另一端连接于所述第 四 NPN管 Qn4的基极, 所述第四 NPN管 Qn4的集电极与所述第二 PNP管 Qp2的基极相连, 所述第四 NPN管 Qn4的发射极接地。
优选的, 所述控制总线通过电阻 R与电源 Vcc相连。
优选的,所述多路 LED输出电路中,不同路的 LED灯为颜色不同的 LED 灯或色温不同的白光 LED灯。
优选的, 所述单输出恒流源的输出电流可调, 所述 LED组成的光源的亮 度随着所述单输出恒流源的输出电流变化而变化。 由上述方案可以看出, 本发明公开的调整 LED电流的电路, 通过负载电 路、 调整电路、 电流调节电路和调整控制电路调整每一路 LED输出电路的电 流, 从而实现对 LED光源的颜色、 色温、 显色指数、 亮度等特性参数的调节, 避免了由于采用恒流 DC/DC电路对电流进行调节造成的成本高的问题。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术中调整 LED电流的电路结构示意图;
图 2为本发明实施例公开的调整 LED电流的电路结构示意图;
图 3为本发明实施例公开的又一调整 LED电流的电路结构示意图; 图 4为本发明实施例公开的又一调整 LED电流的电路结构示意图; 图 5为本发明实施例公开的又一调整 LED电流的电路结构示意图; 图 6为本发明实施例公开的又一调整 LED电流的电路结构示意图; 图 7为本发明实施例公开的又一调整 LED电流的电路结构示意图; 图 8为本发明实施例公开的又一调整 LED电流的电路结构示意图; 图 9为本发明实施例公开的又一调整 LED电流的电路结构示意图; 图 10为本发明实施例公开的又一调整 LED电流的电路结构示意图; 图 11为本发明实施例公开的又一调整 LED电流的电路结构示意图; 图 12为本发明实施例公开的又一调整 LED电流的电路结构示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明公开了一种调整 LED电流的电路, 其具体结构如图 2所示, 包括: 单输出恒流源 21、 多路 LED输出电路 22和控制总线 20, 其中, LED输出电 路的输入端与单输出恒流源相连, 控制总线 20与多路 LED输出电路相连, 本 实施例中的多路 LED输出电路的结构相同,以第一路 LED输出电路为例对其 结构进行分析, 包括: 负载电路 23、 调整电路 24、 电流调节电路 25和调整控 制电路 26, 其中:
负载电路 23包含多个串联的 LED, 负载电路 23的一端与单输出恒流源 21的第一输出端相连, 负载电路 23的另一端与调整电路 24输入端相连; 调整电路 24包括:与负载电路 23相连的调整管 241 ,和一端与调整管 241 相连的电流取样电路 242, 电流取样电路 242的另一端连接单输出恒流源 21 的第二输出端, 单输出恒流源的第二输出端为 0电位参考地。
调整电路 24的输出端与电流调节电路 25的输入端相连;
电流调节电路 25的输出端与调整控制电路 26的第一输入端相连,电流调 节电路 25将调整电路 24输出的取样电流根据需要进行调整,转换为与取样电 流对应的控制信号, 输入到调整控制电路 26; 调整控制电路 26的第二输入端与控制总线 20相连, 输出端与调整管 241 相连,调整控制电路 26将控制信号与控制总线的总控制信号 Vshare进行比较, 根据比较结果调整调整管 241的阻抗, 以实现对该路 LED输出电路电流的调 节。
本实施例中的调整管 241可以为 MOS管, 也可以为 PNP三极管或 NPN 三极管。
当调整管 241为增强型 N沟道的 MOS管时, MOS管的漏极接负载电路 23, 其源极接电流取样电路 242的输入端, 其栅极接调整控制电路 26的输出 端;
当调整管 241为 PNP三极管时, 三极管的发射极接负载电路 23, 其集电 极接电流取样电路 242, 其基极接调整控制电路 26的输出端;
当调整管 241为 NPN三极管时, 三极管的集电极接负载电路 23, 其发射 极接电流取样电路 242, 其基极接调整控制电路 26的输出端。
本实施例中的控制总线上的总控制信号 Vshare由多路 LED输出电路共同 作用提供, 进一步的, 控制总线还可以通过电阻 R与电源 Vcc相连, 从而通 过电源 Vcc , 与多路 LED输出电路共同作用, 得到 Vshare。
本实施例中的多路 LED输出电路中, 不同路的 LED可以为颜色不同的 LED, 如红色 LED、 绿色 LED、 蓝色 LED, 也可以是不同色温的 LED, 如冷 白 LED , 暖白 LED, 其中, 各路 LED输出电路中的电流分配比例由各路 LED 输出电路中的调整电路、 电流调节电路、调整控制电路共同决定, 通过调节各 路 LED输出电路的电流分配比例, 实现对由多路 LED输出电路中的 LED组 成的光源的颜色或色温的调节。 例如, 有两路 LED输出电路, 一路 LED为暖 白 LED, 另一路 LED为冷白 LED, 调节两路 LED输出电路中的电流分配比 例, 就能调节由这两路 LED组成的光源的色温。
具体情况中, 根据实际的应用场景来选择不同路 LED输出电路中的 LED 光源种类。
本实施例中的单输出恒流源 21输出电流可调,即多路 LED输出电路的总 电流可变,则可通过调整单输出恒流源 21的电流调节由多路 LED输出电路中 的 LED组成的光源的亮度。 本实施例公开的调整 LED电流的电路, 通过负载电路、 调整电路、 电流 调节电路和调整控制电路调整每一路的电流, 实现对 LED光源的颜色、 色温、 显色指数、 亮度等特性参数的调节, 避免了由于采用多路恒流 DC/DC电路调 节电流造成的成本高的问题, 并且, 本发明能实现 LED光源亮度、 颜色或色 温的独立调节, 从而使控制更筒单。 本实施例公开的电路中, 电流取样电路可以有多种实现形式, 例如如图 3 所示, 电流取样电路为第一可调电阻 Rsl , 通过调整 Rsl的阻值可实现调节该 路电流的作用, 因此,此时的第一可调电阻 Rsl既可以作为电流取样电流中的 采样电阻, 实现采样电流的作用, 又可以实现电流调节电路中, 调节电流大小 的作用, 所以此时, 电流调节电路 25可以筒化为一条与第一可调电阻 Rsl相 连的导线, 但并不限制电流调节电路 25—定为导线, 可以是接下来提及的任 意一种电流调节电路结构。 以第 1路 LED输出电路为例说明其调整电流的工 作原理: 若要减小该路 LED电路电流, 只要增大第一滑动变阻器 Rsl的阻值, 使得该路电流采样信号 Vsl增大, Vsl和总控制信号 Vshare在调整控制电路 内部进行比较调节后,使输出信号控制调整管的阻抗增大,从而减小该路 LED 电路。
本实施例中的可调电阻可以为滑动变阻器,或其他可以实现电阻可调的电 路。
本实施例并不限定每路 LED输出电路中路的电流取样电路都为可调电 阻, 可以是其中几路的电流取样电路为可调电阻, 剩余各路的电流取样电路为 固定电阻。
图 4为本发明实施例公开的又一调整 LED电流的电路的结构示意图, 其 基本结构与图 2所示电路相同, 包括: 负载电路 43、 调整电路 44、 电流调节 电路 45和调整控制电路 46, 本实施例中, 电流调节电路 45 包括: 一端与调 整电路 44的输出端相连的第二电阻 R2, 第二电阻 R2的另一端分别与第一开 关 S1的一端、 滤波电路 L的输入端相连, 第一开关 S1的另一端接地, 在脉 沖信号的控制下实现开关的闭合和开启,滤波电路 L的输出端与调整控制电路 46的输入端相连。
电流采样信号 Vsl受开关 S1的通断影响, 由原来的电平信号变为一个脉 沖电平信号后输入至滤波电路 L,滤波电路 L将其滤平后得到的电平信号幅值 为脉沖电平信号的平均值, 将该平均值输出到调整控制电路, 和总控制信号 Vshare在调整控制电路内部进行比较调节后,输出比较后得到的信号至调整电 路, 用于控制调整管的阻抗大小, 从而实现调节各路 LED输出电路的电流大 小, 实现 LED光源的颜色、 色温、 显色指数等特性参数的调节。 进一步的, 本发明公开的又一调整 LED电流的电路的结构示意图如图 5 所示, 本实施例以两路 LED结构相同的输出电路为例, 其中, 任意一路 LED 输出电路的基本结构与图 4所示结构相近, 包括: 负载电路 53、 调整电路 54、 电流调节电路 55和调整控制电路 56。 本实施例中的电流取样电路为第一电阻 R1 , 此时, 第一电阻 R1的高电位端为调整电路 54的输出端, 开关 S1和调整 管均为增强型 N沟道 MOS管。
本实施例中的滤波电路 L的结构如图所示, 包括: 第三电阻 R3、 第四电 阻 R4、 第一电容 Cl、 第一运算放大器 U1和第二电容 C2, 其中, 第三电阻 R3的一端与第二电阻 R2相连, 第三电阻 R3的另一端分别于第一电容 C1和 第四电阻 R4相连, 第一电容 C1的另一端与第一运放 U1的反相输入端相连, 第四电阻 R4的另一端与第一运放 U1的同相输入端相连,第一运放 U1的同相 输入端与第四电阻 R4通过第二电容 C2接地,第一运放 U 1的输出端与第一运 放 U1的反相输入端相连,第一运放 U1的输出端与调整控制电路输入端相连。
本实施例并不限定滤波电路的结构如上所示,只要能够实现将在脉沖信号 控制下的开关 S1产生的脉沖电平信号进行滤平得到平均值的电路都是本实施 例保护的范围。 同样, 本实施例也并不限定开关为增强型 N沟道 MOS管, 其 同样可以选用三极管。
进一步的, 本实施例中的调整控制电路 56包括: 第五电阻 R5、 第二运放 U2和补偿网络 N , 补偿网络通常为一电阻和一电容的串联。
第五电阻 R5的一端与第一运放 U1的输出端相连, 另一端与控制总线相 连; 第二运放 U2的反相输入端与第一运放 U1 的输出端相连, 第二运放 U2 的同相输入端与控制总线相连; 补偿网络并联于第二运放 U2的反相输入端和 输出端之间; 第二运放 U2的输出端与调整管相连。
该电路的原理如下:
控制线通过电阻 R连接至 Vcc。 两路 LED输出电路的电流 II和 12满足 以下公式: /l x Rl x Z)l = /2 x Rl'x Z)2 公式( 1 ) 其中, D1为控制第一路 LED输出电路中的开关 S1通断的脉沖信号占空 比, D2为控制第二路 LED输出电路中的开关 S1,通断的脉沖信号占空比。 因 此, 当第一路 LED输出电路中的第一电阻 R1和第二路 LED输出电路中的第 一电阻 R1,的阻值确定之后, 若要调整各路电流之比, 只要调整各路中脉沖信 号的占空比即可。 具体的调整方式, 可调整其中一路脉沖信号的占空比, 或同 时调整两路脉沖信号的占空比。
比如, 第 1路 LED输出电路中的 LED选用暖白 LED, 第 2路 LED输出 电路中的 LED选用冷白 LED; 假设, 控制第 1路 LED输出电路中的开关 S1 通断的脉沖信号占空比 Dl=0.5, 控制第 2路 LED输出电路中的开关 S1,通断 的脉沖信号占空比 D2=l; 假设第 1路和第 2路电流取样电路中的电阻相等, R1=R1,; 由公式( 1 )得 η = 2χ/2 , 因此, 由暖白 LED和冷白 LED组成 LED 光源的色温介于两者之间。
通过两个输出电路的输出电压 VI和 V2来决定总控制信号 Vshare的大小。 总控制信号的值为:
Vshare= yi x R5 2x R5 公式(2 )
R5 + R5 '
第一路 LED输出电路中的第五电阻 R5和第二路 LED输出电路中的第五 电阻 R5,的阻值可以相等也可以不相等。 总控制信号 Vshare分别与第一路 LED输出电路、 第二路 LED输出电路 中电流调节电路的输出信号 (VI , V2)进行比较,若某路的电流调节电路的输出 信号小于总控制信号 Vshare, 则运放输出电压升高, 减小调整管导通阻抗, 当 其它电流较大路经调整使电流逐步减小时,该路电流自动逐步增大直到接近平 均电流(某路电流调节电路的输出信号等于总控制信号 Vshare时对应的该路 LED输出电路中的电流 ); 若某路的电流调节电路的输出信号大于总控制信号 Vshare, 则运放输出电压逐步降低, 使该路调整管的导通阻抗增大, LED电流 逐步降低直到接近平均电流; 经调节, 各路 LED输出电路中电流达到稳定时, 由于电阻 R的偏置作用, 使得运放的同相端电压总是略大于反相输入端电压, 从而运放的输出端电压抬高, LED负载压降最大的一路 LED输出电路中的调 整管饱和导通, 此时, 单输出恒流源的输出电压等于或接近该路 LED输出电 路中 LED负载的压降,其他各路 LED输出电路中调整管的阻抗也减小。因此, 控制总线 Vshare经偏置电阻 R连接 Vcc后,减小了各路 LED输出电路中调整 管的功耗, 提高了本实施例的效率。
本实施例并不限定 LED输出电路只有两路, 其可以为多路, 根据具体的 电路数量的不同, 上述公式相应的进行调整, 以实现根据全部的电路决定控制 信号 Vshare的目的, 例如, 当有 3路输出电路时, 总控制信号 Vshare为
VI V2 V3
- +—— + -
Vshare: R 公式( 3 )
R5 + R5 , + R5 n
同样, 本实施例也并不限定每一路 LED输出电路的电流调节电路或调整 控制电路都相同, 可以为不同的组合形式。
本实施例并不限定上述调整控制电路的结构只能应用于电流取样电路为 第一电阻 Rl的情况,其同样可以应用于,电流取样电路为第一滑动变阻器 Rsl 的电路中, 其结构如图 6所示。
同理,本实施例所公开的调整控制电路的结构可以应用在任意一种类型的 电流调节电路的情况下。 只要保证在连接时, 第五电阻 R5的一端与电流调节 电路的输出端相连, 另一端与控制总线相连; 第二运放 U2的反相输入端与电 流调节电路的输出端相连, 第二运放 U2的同相输入端与控制总线相连; 补偿 网络并联于第二运放 U2的反相输入端和输出端之间; 第二运放 U2的输出端 与调整管相连即可。
两路 LED输出电路的电流 II和 12满足以下公式: /l x M = /2 x ¾r 。 由 于第一路 LED输出电路中的第一滑动变阻器 Rsl和第二路 LED输出电路中的 第二滑动变阻器 Rsl,均为可调电阻, 若要调整各路电流之比, 只要调整 Rsl 和 Rsl,的阻值即可, 可调整其中 Rsl或 Rsl,的阻值也可以是同时调整 Rsl或 Rsl,两个的阻值。 具体的原理与图 5所示电路相同, 在此不再赘述。 本发明实施例公开的又一调整 LED电流的电路的结构示意图如图 7所示, 同样以两路结构相同的 LED输出电路为例, 其中一路的结构包括: 负载电路 73、 调整电路 74、 电流调节电路 75和调整控制电路 76。 其中, 调整管 741 为增强型 N沟道 MOS管, 电流取样电路 742为第一电阻 Rl。
本实施例中的电流调节电路 75包括: 第六电阻 R6和第二可调电阻 Rs2; 第六电阻 R6的一端与第一电阻 Rl的高电位端相连, 另一端与调整控制电路 输入端相连; 第二可调电阻 Rs2的一端与调整控制电路输入端相连, 另一端与 第一电阻 R1的低电位端相连。 进一步的, 电流调节电路 75还包括阻抗匹配电路 Z, 第六电阻 R6和第二 可调电阻 Rs2通过阻抗匹配电路与调整控制电路输入端相连。本实施例中的阻 抗匹配电路 Z 为一由运放组成的电压跟随器, 运放的反相输入端与输出端相 连, 运放的同相输入端连接至第六电阻 R6和所述第二可调电阻 Rs2的公共连 接点, 运放的输出端连接至调整控制电路输入端相连。
进一步的,调整控制电路包括:第七电阻 R7、第三运放 U3和补偿网络 N; 第七电阻并联于第三运放 U3的反相输入端和同相输入端之间; 补偿网络并联 于第三运放 U3的反相输入端和输出端之间; 第三运放 U3的输出端与调整管 相连; 第三运放 U3的同相输入端与控制总线相连, 第三运放 U3的反相输入 端与电流调节电路的输出端相连。
图 7所示电路中,第一电阻 R1的压降 Vsl经第二可调电阻 Rs2和第六电 阻 R6分压后输入至阻抗匹配电路;阻抗匹配电路的输出端连接调整控制电路; 改变第二可调电阻 Rs2的阻值, 则改变第二可调电阻 Rs2对 Vsl的分压降, 阻抗匹配电路的输出信号 VI也相应改变, 阻抗匹配电路的输出信号 VI和总 控制信号 Vshare在调整控制电路内部进行比较调节后,输出信号至调整电路, 用于控制调整管的阻抗大小, 从而调节该路 LED输出电路的电流大小。
图中所示两路 LED 输出电路的电流 II 和 12 满足以下公式:
Il x Rslx Rl _ Ilx Rs RY 公弋(4 )
R6 + Rs2 ~ Rs2 '+ R6 ' " ^ 若需要调整各路电流之比, 只需调整各个电路中的第二可调电阻的阻值。 本实施例中,第二可调电阻 Rs2可以为阻抗可变的线性调整管,比如 MOS 管和三极管, MOS管的栅极和三极管的基极外接电平, 通过调整电平的高低 来调节线性调整管的阻抗大小, 从而调节 LED输出电路中的电流大小。 本实施例中并不限定必须包含阻抗匹配电路,当电路中不存在阻抗不匹配 的情况时, 可以省略阻抗匹配电路, 使得电路的结构更加筒单。
本实施例并不限定本实施例公开的电流调节电路只能应用该实施例中,其 可以与任何一种结构的调整控制电路进行配合使用。
本实施例并不限定 LED输出电路只有两路, 其可以为多路, 根据具体的 电路数量的不同, 上述公式相应的进行调整, 以实现根据全部的电路决定控制 信号 Vshare的目的。 进一步的, 本实施例中的调整管既可以为增强型 N沟道 MOS管,还可以 为 NPN管,调整控制电路在图 7所示基础上,如图 8所示,调整管为第一 NPN 管 Qnl , 此时, 由于三极管是电流型驱动管, 调整控制电路还包括: 连接于第 三运放 U3输出端与第一 NPN管 Q1基极间的第十一电阻 Rl 1 ,将调整控制电 路输出的电压值转化为电流值, 其工作原理与图 7所示电路原理相同。
本实施例并不限定上述调整控制电路的结构只能应用在图 7所示电路中, 其同样可以应用在本发明所公开的, 任何一种以 NPN管作为调整管的调整二 极管 LED电流的电路中, 而并不限定电流调节电路和电流采样电路如图 7中 所示。
同理调整管还可以为 PNP管,其电路结构如图 9所示,调整管为第一 PNP 管 Qpl , 调整控制电路在图 7所示基础上, 还包括: 第十二电阻 R12和第二 NPN管 Qn2,第十二电阻 R12的一端连接于第三运放 U3输出端,另一端连接 于第二 NPN管 Qn2的基极, 第二 NPN管 Qn2的集电极与第一 PNP管 Qpl 的基极相连, 第二 NPN管 Qn2的发射极接参考地。 当第三运放 U3的输出信 号越大时, 第二 NPN管 Qn2的导通阻抗越小, 第一 PNP管 Qpl的基极电流 越大, 则第一 PNP管 Qpl的导通阻抗减小。
本实施例并不限定上述调整控制电路的结构只能应用在图 7所示电路中, 其同样可以应用在本发明所公开的任何一种以 PNP管作为调整管的调整二极 管 LED电流的电路中, 而并不限定电流调节电路和电流采样电路如图 7中所 示。 本发明实施例公开的又一调整 LED 电流的电路的结构示意图如图 10所 示, 同样以两路 LED输出电路为例, 其中一路的结构包括: 负载电路 103、 调 整电路 104、 电流调节电路 105和调整控制电路 106。 以其中一路为例, 调整 控制电路 106包括: 第八电阻 R8、 第九电阻 R9、 第十电阻 R10、 二极管 Dl、 第四运放 U4、 第五运放 U5和补偿网络; 第八电阻 R8的一端与电流调节电路 的输出端相连, 另一端与第四运放 U4 的反相输入端相连; 第九电阻 R9的一 端与第四运放 U4的同相输入端相连, 另一端与电源 Vcc相连; 第四运放 U4 的同相输入端通过第十电阻 R10 与控制总线相连; 补偿网络并联于第四运放 U4的反相输入端和输出端之间; 第四运放 U4的输出端与调整管相连; 第五 运放 U5的同相输入端与电流调节电路的输出端相连; 第五运放 U5的反相输 入端与控制总线相连; 二极管 D1并联于第五运放 U5的反相输入端和输出端 之间, 二极管 D1的阳极连接第五运放的反相输入端, 二极管 D1的阴极连接 第五运放的输出端。
本实施例公开的电路,第一路 LED输出电路和第二路 LED输出电路中电 流调节电路的输出信号分别记为 VI和 V2。 第一路中当 VI大于 Vshare时, 第五运放 U5输出端为高,二极管 D1不通, Vshare保持不变,当 VI小于 Vshare 时, 第五运放 U5输出端为低, 二极管 D1导通, 此时第五运放 U5的功能为 电压跟随器, Vshare变为 VI; 另一路中当 V2大于 Vshare时, U5,输出端为 高, 二极管 D1,不通, Vshare保持不变, 当 V2小于 Vshare时, U5,输出端为 低, 二极管 D1,导通, 此时 U5变为电压跟随器, Vshare变为 V2; 因此, 可以 看出,第五运放 U5、二极管 D1组成了最小电压值筛选电路,以保证 Vshare=Min ( VI , V2 ), Vshare和每路电流调节电路的输出信号 (VI , V2)进行比较。 若 某路的电流调节电路的输出信号大于总控制信号 Vshare,则运放输出电压逐步 降低, 使该路调整管工作在线性状态, LED 电流逐步降低直到接近 Vshare; 经调节,各路 LED输出电路中电流达到稳定时,由于第九电阻 R9的偏置作用, 使得第四运放的同相端电压总是略大于反相输入端电压,从而第四运放的输出 端电压抬高, LED负载压降最大的一路 LED输出电路中的调整管饱和导通, 此时,单输出恒流源的输出电压等于或接近该路 LED输出电路中 LED负载的 压降,其他各路 LED输出电路中调整管的阻抗也减小。因此,控制总线 Vshare 经偏置第九电阻 R9连接 Vcc后, 减小了各路 LED输出电路中调整管的功耗, 提高了本实施例的效率。
在电路起机时第五运放 U5的反相输入端的输入信号 Vshare为 0, 其同相 输入端的输入信号 VI也为 0, 此时无法正常工作, 为了解决该问题, 将控制 总线的总控制信号 Vshare通过电阻 R接至 Vcc, 保证了 Vshare在开始工作时 不为 0, 电路可以正常工作。
本实施例中的电流取样电路和电流调节电路的结构可以如上述任一图中 所示的结构。 并且, 本实施例公开的两路 LED输出电路的结构可以为不同, 如图 10中所示,第二路 LED输出电路中的电流调节电路和电流取样电路的结 构可以如图 9中所示, 而第一路 LED输出电路中并不限定电流取样电流和电 流调节电路的结构, 其可以与第二路 LED输出电路相同, 也可以与其不同。
本实施例中的调整管为增强型 N沟道 MOS管, 其同样可以为 NPN管, 此时, 电路结构如图 11所示, 调整管为第三 NPN管 Qn3 , 调整控制电路还包 括: 连接于第四运放 U4输出端与第三 NPN管 Qn3基极间的第十三电阻 R13 , 将输出的电压信号转化为电流信号, 实现对第三 NPN管 Qn3的控制。
还可以为 PNP管, 其电路结构如图 12所示, 调整管为第二 PNP管 Qp2, 此时调整控制电路还包括: 第十四电阻 R14和第四 NPN管 Qn4 , 第十四电阻 R14的一端连接于第四运放 U4输出端, 另一端连接于第四 NPN管 Qn4的基 极, 第四 NPN管 Qn4的集电极与第二 PNP管 Qp2的基极相连, 第四 NPN管 Qn4的发射极接参考地。 当第四运放 U4的输出信号越大时, 第四 PNP管 Qp2 的导通阻抗越小,第三 PNP管 Qpl的基极电流越大,则第三 PNP管 Qpl的导 通阻抗减小。 本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是 与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于 实施例公开的装置而言, 由于其与实施例公开的方法相对应, 所以描述的比较 筒单, 相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本 发明。 对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见 的, 本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下, 在 其它实施例中实现。 因此, 本发明将不会被限制于本文所示的这些实施例, 而 是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims

权 利 要 求
1、 一种调整发光二极管 LED电流的电路, 其特征在于, 包括: 单输出恒 流源、 多路 LED输出电路, 与所述多路 LED输出电路相连的控制总线, 任意 一路 LED输出电路包括: 负载电路、 调整电路、 电流调节电路和调整控制电 路, 其中:
所述负载电路包含多个串联的 LED, 所述负载电路的一端与所述单输出 恒流源的第一输出端相连, 所述负载电路的另一端与所述调整电路输入端相 连;
所述调整电路包括: 与所述负载电路相连的调整管, 和一端与所述调整管 相连的电流取样电路,所述电流取样电路的另一端与所述单输出恒流源的第二 输出端相连, 所述调整电路的输出端与所述电流调节电路的输入端相连; 所述电流调节电路的输出端与所述调整控制电路的第一输入端相连,所述 电流调节电路将所述调整电路输出的取样电流根据需要进行调整,转换为与所 述取样电流对应的控制信号, 输入到所述调整控制电路;
所述调整控制电路的第二输入端与所述控制总线相连,输出端与所述调整 管相连, 所述调整控制电路将所述控制信号与所述控制总线的电压进行比较, 根据比较结果调整所述调整管的阻抗, 以实现对该路 LED输出电路电流的调 节。
2、 根据权利要求 1所述的电路, 其特征在于, 所述电流取样电路为第一 可调电阻 Rsl , 所述电流调节电路为与所述第一可调电阻 Rsl相连的导线。
3、 根据权利要求 1所述的电路, 其特征在于, 所述电流取样电路为第一 电阻 Rl。
4、 根据权利要求 1所述的电路, 其特征在于, 所述电流调节电路包括: 一端与所述调整电路输出端相连的第二电阻 R2,所述第二电阻 R2的另一端分 别与第一开关 S1和滤波电路的输入端相连, 所述第一开关 S1的另一端接地, 在脉沖信号的控制下实现开关的闭合和开启,所述滤波电路的输出端与所述调 整控制电路输入端相连。
5、 根据权利要求 4所述的电路, 其特征在于, 所述滤波电路包括: 第三 电阻 R3、 第四电阻 R4、 第一电容 Cl、 第一运算放大器 U1和第二电容 C2, 其中, 所述第三电阻 R3 的一端与所述第二电阻 R2相连, 所述第三电阻 R3 的另一端分别于所述第一电容 C1和第四电阻 R4相连,所述第一电容 C1的另 一端与所述第一运放 U1的反相输入端相连, 所述第四电阻 R4的另一端与所 述第一运放 U1的同相输入端相连, 所述第一运放 U1的同相输入端与所述第 四电阻 R4通过所述第二电容接地, 所述第一运放 U1的反相输入端与其输出 端相连, 所述第一运放 U1的输出端与所述调整控制电路输入端相连。
6、 根据权利要求 1所述的电路, 其特征在于, 所述调整控制电路包括: 第五电阻 R5、 第二运放 U2和补偿网络;
所述第五电阻 R5的一端与所述电流调节电路的输出端相连, 另一端与所 述控制总线相连;
所述第二运放 U2的反相输入端与所述电流调节电路的输出端相连, 所述 第二运放 U2的同相输入端与所述控制总线相连;
所述补偿网络并联于所述第二运放 U2的反相输入端和输出端之间; 所述第二运放 U2的输出端与所述调整管相连。
7、 根据权利要求 3所述的电路, 其特征在于, 所述电流调节电路包括: 第六电阻 R6和第二可调电阻 Rs2;
所述第六电阻 R6的一端与所述第一电阻 R1的高电位端相连, 另一端与 所述调整控制电路输入端相连;
所述第二可调电阻 Rs2的一端与所述调整控制电路输入端相连,另一端与 所述第一电阻 R1的低电位端相连。
8、根据权利要求 7所述的电路, 其特征在于, 所述电流调节电路还包括: 阻抗匹配电路, 所述的阻抗匹配电路为由一运放组成的电压跟随器, 所述运放 的反相输入端与输出端相连, 所述运放的同相输入端连接至所述第六电阻 R6 和所述第二可调电阻 Rs2的公共连接点,所述运放的输出端连接至所述调整控 制电路输入端相连。
9、 根据权利要求 1所述的电路, 其特征在于, 所述调整控制电路包括: 第八电阻 R8、 第九电阻 R9、 第十电阻 R10、 二极管 Dl、 第四运放 U4、 第五 运放 U5和补偿网络;
所述第八电阻 R8的一端与所述电流调节电路的输出端相连, 另一端与所 述第四运放 U4 的反相输入端相连;
所述第九电阻 R9的一端与所述第四运放 U4的同相输入端相连, 另一端 与电源 Vcc相连;
所述第四运放 U4的同相输入端通过所述第十电阻 R10与所述控制总线相 连;
所述补偿网络并联于所述第四运放 U4的反相输入端和输出端之间; 所述第四运放 U4的输出端与所述调整管相连;
所述第五运放 U5的同相输入端与所述电流调节电路的输出端相连; 所述第五运放 U5的反相输入端与所述控制总线相连;
所述二极管 D1的阳极连接所述第五运放 U5的反相输入端, 所述二极管 D1的阴极连接所述运放 U5的输出端。
10、 根据权利要求 1至 9中任意一项所述的电路, 其特征在于, 所述调整 管为 N沟道增强型 MOS管, 所述 MOS管的漏极与所述负载电路相连, 源极 与所述电流取样电路的输入端相连, 栅极与所述调整控制电路的输出端相连。
11、根据权利要求 6所述的电路, 其特征在于, 当所述调整管为第一 NPN 管 Qnl 时, Qnl 的集电极与所述负载电路相连, 发射极与所述电流取样电路 的输入端相连,基极与所述调整控制电路的输出端相连, 所述调整控制电路还 包括:连接于所述第三运放 U3输出端与所述第一 NPN管 Q1基极间的第十一 电阻 R11;
当所述调整管为第一 PNP管 Qpl时, Qpl的发射极与所述负载电路相连, 集电极与所述电流取样电路的输入端相连,基极与所述调整控制电路的输出端 相连, 所述调整控制电路还包括: 第十二电阻 R12和第二 NPN管 Qn2, 所述 第十二电阻 R12的一端连接于所述第三运放 U3输出端,另一端连接于所述第 二 NPN管 Qn2的基极, 所述第二 NPN管 Qn2的集电极与所述第一 PNP管 Qpl的基极相连, 所述第二 NPN管 Qn2的发射极接地。
12、根据权利要求 9所述的电路,其特征在于, 当所述调整管为第三 NPN 管 Qn3时, Qn3的集电极与所述负载电路相连, 发射极与所述电流取样电路 的输入端相连,基极与所述调整控制电路的输出端相连, 所述调整控制电路还 包括: 连接于所述第四运放 U4输出端与所述第三 NPN管 Qn3基极间的第十 三电阻 R13; 当所述调整管为第二 PNP管 Qp2时, Qp2的发射极与所述负载电路相连, 集电极与所述电流取样电路的输入端相连,基极与所述调整控制电路的输出端 相连, 所述调整控制电路还包括: 第十四电阻 R14和第四 NPN管 Qn4, 所述 第十四电阻 R14的一端连接于所述第四运放 U4输出端,另一端连接于所述第 四 NPN管 Qn4的基极, 所述第四 NPN管 Qn4的集电极与所述第二 PNP管 Qp2的基极相连, 所述第四 NPN管 Qn4的发射极接地。
13、 根据权利要求 1所述的电路, 其特征在于, 所述控制总线通过电阻 R 与电源 Vcc相连。
14、 根据权利要求 1所述的电路, 其特征在于, 所述多路 LED输出电路 中, 不同路的 LED灯为颜色不同的 LED灯或色温不同的白光 LED灯。
15、 根据权利要求 1所述的电路, 其特征在于, 所述单输出恒流源的输出 电流可调, 所述 LED组成的光源的亮度随着所述单输出恒流源的输出电流变 化而变化。
PCT/CN2011/077435 2011-04-02 2011-07-21 一种调整led电流的电路 WO2012136030A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/000,501 US9018845B2 (en) 2011-04-02 2011-07-21 Circuit for adjusting LED current

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110083757.8 2011-04-02
CN201110083757.8A CN102752899B (zh) 2011-04-02 2011-04-02 一种调整led电流的电路

Publications (1)

Publication Number Publication Date
WO2012136030A1 true WO2012136030A1 (zh) 2012-10-11

Family

ID=46968547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077435 WO2012136030A1 (zh) 2011-04-02 2011-07-21 一种调整led电流的电路

Country Status (3)

Country Link
US (1) US9018845B2 (zh)
CN (1) CN102752899B (zh)
WO (1) WO2012136030A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104010423A (zh) * 2014-06-16 2014-08-27 新昌县博阳照明有限公司 一种led线性无极调光电路
CN104144540A (zh) * 2013-05-10 2014-11-12 深圳市海洋王照明工程有限公司 一种电压调光电路
CN108055728A (zh) * 2017-12-27 2018-05-18 生迪智慧科技有限公司 多路发光二极管led驱动电路及驱动方法
CN113498227A (zh) * 2021-07-09 2021-10-12 西安和其光电科技股份有限公司 一种可调微安级恒流源电路、激发光源及其控制方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPD20120025A1 (it) * 2012-02-01 2013-08-02 Automotive Lighting Italia S P A A Socio Unico Circuito di pilotaggio di led, metodo di pilotaggio e fanale automobilistico
EP2850917B1 (en) * 2012-05-15 2017-02-22 Philips Lighting Holding B.V. Light source circuitry
CN102981482B (zh) * 2012-11-29 2015-01-21 华为技术有限公司 一种供电电路及方法
TWI486602B (zh) * 2013-10-08 2015-06-01 Wistron Corp 檢測用負載裝置
EP3161935B1 (en) * 2014-06-30 2020-04-08 Hewlett-Packard Development Company, L.P. Cancel voltage offset of operational amplifier
DE102015104973B3 (de) * 2015-03-31 2016-08-18 Varroc Lighting Systems, s.r.o. Anordnung und Verfahren zur Ansteuerung von mehreren in einer Reihenschaltung angeordneten Leuchtdioden
DE202015103127U1 (de) * 2015-06-15 2016-09-19 Tridonic Gmbh & Co Kg LED-Modul mit veränderbarem Farbort und Beleuchtungsgerät mit einem solchen LED-Modul
CN105491761B (zh) * 2015-12-29 2018-08-14 生迪智慧科技有限公司 可调节色温的led灯和led灯的色温调节方法
FR3047380B1 (fr) * 2016-01-29 2018-05-18 STMicroelectronics (Alps) SAS Detection d'un branchement analogique dans un decodeur video
CN105554965B (zh) * 2016-02-24 2017-06-13 西南交通大学 一种母线电流互补式分时复用多路恒流输出led驱动器及其控制方法
DE202016004805U1 (de) * 2016-08-05 2017-11-07 Zumtobel Lighting Gmbh LED Schaltungsanordnung zur Parameterkompensation
JP6998565B2 (ja) * 2017-03-01 2022-01-18 パナソニックIpマネジメント株式会社 点灯装置、照明器具及び電子機器
DE102017203801B3 (de) * 2017-03-08 2018-03-08 Karlsruher Institut für Technologie Vorrichtung und Verfahren zur Ansteuerung einer Vielzahl von Leuchtdioden
US10297584B2 (en) * 2017-03-21 2019-05-21 Light To Form, Llc Chip on board LED device and method
DE102018209561B3 (de) 2018-06-14 2019-09-26 H4X E.U. Ansteuervorrichtung für eine led-leuchte und verfahren zur ansteuerung einer led-leuchte
CN110602832A (zh) * 2019-10-09 2019-12-20 杰华特微电子(杭州)有限公司 Led控制电路及控制方法
WO2023110503A1 (en) * 2021-12-13 2023-06-22 Signify Holding B.V. Driver arrangement for a light emitting arrangement
KR20230099316A (ko) 2021-12-27 2023-07-04 삼성전자주식회사 Led 제어 장치 및 이를 포함하는 조명 장치
CN114420063B (zh) * 2022-02-07 2022-09-02 北京芯格诺微电子有限公司 基于低电势端开关控制的led背光驱动电路的驱动方法
CN115835449B (zh) * 2023-02-16 2023-05-16 东莞锐视光电科技有限公司 一种led光源的电流稳定性控制方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201550320U (zh) * 2009-10-01 2010-08-11 英飞特电子(杭州)有限公司 一种适用于led驱动器的多路恒流控制电路
CN201557302U (zh) * 2009-11-12 2010-08-18 英飞特电子(杭州)有限公司 一种适用于led驱动器的多路pwm斩波均流电路
CN101929632A (zh) * 2009-06-26 2010-12-29 快捷韩国半导体有限公司 Led发光装置及其驱动方法
CN201781658U (zh) * 2010-06-01 2011-03-30 浙江红剑集团有限公司 直流高压恒流源电路
CN201967183U (zh) * 2010-10-22 2011-09-07 英飞特电子(杭州)有限公司 一种led多路输出均流电路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI236169B (en) * 2004-11-19 2005-07-11 Quanta Comp Inc Driving device for light emitted diode
DE102005028403B4 (de) * 2005-06-20 2013-11-21 Austriamicrosystems Ag Stromquellenanordnung und Verfahren zum Betreiben einer elektrischen Last
CN2826895Y (zh) * 2005-09-16 2006-10-11 谭泽民 一种变色led灯具恒定电流驱动器控制电路
TWI383709B (zh) * 2008-02-21 2013-01-21 Chunghwa Picture Tubes Ltd 光源驅動模組及電路
US8044609B2 (en) * 2008-12-31 2011-10-25 02Micro Inc Circuits and methods for controlling LCD backlights
CN101674693B (zh) * 2009-10-01 2012-07-18 英飞特电子(杭州)有限公司 一种适用于led驱动器的多路恒流控制电路
CN101702849B (zh) * 2009-11-12 2012-12-12 英飞特电子(杭州)股份有限公司 一种适用于led驱动器的多路pwm斩波均流电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101929632A (zh) * 2009-06-26 2010-12-29 快捷韩国半导体有限公司 Led发光装置及其驱动方法
CN201550320U (zh) * 2009-10-01 2010-08-11 英飞特电子(杭州)有限公司 一种适用于led驱动器的多路恒流控制电路
CN201557302U (zh) * 2009-11-12 2010-08-18 英飞特电子(杭州)有限公司 一种适用于led驱动器的多路pwm斩波均流电路
CN201781658U (zh) * 2010-06-01 2011-03-30 浙江红剑集团有限公司 直流高压恒流源电路
CN201967183U (zh) * 2010-10-22 2011-09-07 英飞特电子(杭州)有限公司 一种led多路输出均流电路

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104144540A (zh) * 2013-05-10 2014-11-12 深圳市海洋王照明工程有限公司 一种电压调光电路
CN104010423A (zh) * 2014-06-16 2014-08-27 新昌县博阳照明有限公司 一种led线性无极调光电路
CN108055728A (zh) * 2017-12-27 2018-05-18 生迪智慧科技有限公司 多路发光二极管led驱动电路及驱动方法
CN108055728B (zh) * 2017-12-27 2024-04-09 生迪智慧科技有限公司 多路发光二极管led驱动电路及驱动方法
CN113498227A (zh) * 2021-07-09 2021-10-12 西安和其光电科技股份有限公司 一种可调微安级恒流源电路、激发光源及其控制方法

Also Published As

Publication number Publication date
US20140191670A1 (en) 2014-07-10
US9018845B2 (en) 2015-04-28
CN102752899A (zh) 2012-10-24
CN102752899B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
WO2012136030A1 (zh) 一种调整led电流的电路
TWI444093B (zh) 用以調節負載電流的裝置、方法以及發光系統
TW200918997A (en) Light emitting diode driving device
US20210022216A1 (en) Circuit for linearly driving led illumination based on mcu-controlled color temperature switching
CN106163008B (zh) 一种用于led自动调光的智能光感应和调光电路
CN212064441U (zh) 一种三合一调光电路及led灯具
JP7330244B2 (ja) ランプ制御システム及びその制御方法
CN205160868U (zh) Led电路以及led灯具
CN104113961A (zh) 对半导体发光元件的驱控
WO2012092781A1 (zh) 一种多输出的发光二极管恒流驱动电路
CN103561503B (zh) 一种适用于ac切相调光的led驱动电源
CN106793317B (zh) 调光电路、调光方法及led驱动电路
CN115734432B (zh) 一种可切换输出模式多路输出调光电源及其使用方法
CN213960367U (zh) 车大灯照明控制装置
US11653430B2 (en) Lamp control system
CN210157440U (zh) 一种可调色温的led灯电路装置
KR20110049519A (ko) Led 구동회로 및 이를 포함하는 led용 전원 장치
CN114885476A (zh) 一种颜色和亮度独立调节的灯光系统和灯光调节方法
CN209593283U (zh) 双芯片电源电路
CN210225838U (zh) 一种调光调色电路
CN103108434B (zh) 负载驱动电路
CN112672479B (zh) 车大灯照明控制装置
CN211930924U (zh) 变频调光调色电路
CN203984748U (zh) Led灯具驱动控制电路及led灯具
CN217606536U (zh) 一种背光驱动电路、背光驱动装置以及背光组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862860

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14000501

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862860

Country of ref document: EP

Kind code of ref document: A1