WO2012135871A1 - Multi-component filters for emissions control - Google Patents
Multi-component filters for emissions control Download PDFInfo
- Publication number
- WO2012135871A1 WO2012135871A1 PCT/US2012/033802 US2012033802W WO2012135871A1 WO 2012135871 A1 WO2012135871 A1 WO 2012135871A1 US 2012033802 W US2012033802 W US 2012033802W WO 2012135871 A1 WO2012135871 A1 WO 2012135871A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- catalytic article
- oxidation catalyst
- ammonia
- soot
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2882—Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9445—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9459—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
- B01D53/9463—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9459—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
- B01D53/9463—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
- B01D53/9468—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick in different layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/022—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
- F01N3/0222—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/101—Three-way catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/105—General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
- F01N3/106—Auxiliary oxidation catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/915—Catalyst supported on particulate filters
- B01D2255/9155—Wall flow filters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
- B01D2258/012—Diesel engines and lean burn gasoline engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9418—Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9436—Ammonia
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/944—Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/40—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a hydrolysis catalyst
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2370/00—Selection of materials for exhaust purification
- F01N2370/02—Selection of materials for exhaust purification used in catalytic reactors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2510/00—Surface coverings
- F01N2510/06—Surface coverings for exhaust purification, e.g. catalytic reaction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2510/00—Surface coverings
- F01N2510/06—Surface coverings for exhaust purification, e.g. catalytic reaction
- F01N2510/068—Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
- F01N2510/0682—Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having a discontinuous, uneven or partially overlapping coating of catalytic material, e.g. higher amount of material upstream than downstream or vice versa
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2570/00—Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
- F01N2570/18—Ammonia
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to catalytic articles, emissions treatment systems including catalytic articles, and methods for reducing contaminants in exhaust gas streams. More specifically, the present invention is concerned with multi-component filters, systems and methods for their use with lean burn engines, including diesel engines and lean burn gasoline engines.
- lean burn engines e.g., diesel engines and lean burn gasoline engines
- Diesel engines in particular, also offer significant advantages over gasoline engines in terms of their durability, and their ability to generate high torque at low speed.
- Diesel engine exhaust is a heterogeneous mixture that contains particulate emissions such as soot and gaseous emissions such as carbon monoxide, unburned or partially burned hydrocarbons, and nitrogen oxides (collectively referred to as NO x ), but also condensed phase materials (liquids and solids) which constitute the so-called particulates or particulate matter.
- particulate emissions such as soot and gaseous emissions such as carbon monoxide, unburned or partially burned hydrocarbons, and nitrogen oxides (collectively referred to as NO x ), but also condensed phase materials (liquids and solids) which constitute the so-called particulates or particulate matter.
- Catalyst compositions are placed in engine exhaust systems to convert certain or all of these exhaust components to innocuous compounds.
- diesel exhaust systems can contain one or more of a diesel oxidation catalyst, a soot filter and a catalyst for the reduction of NO x . These components are costly and take up considerable space on the vehicle.
- Embodiments of the invention are directed to catalytic articles to remove emissions from a gas stream containing soot, ammonia, an ammonia precursor NO x , CO and hydrocarbons.
- the catalytic article comprises a wall-flow filter for trapping soot in the gas stream.
- the filter has an inlet end and an outlet end defining an overall length.
- the filter has gas permeable walls having a thickness formed into a plurality of axially extending inlet channels and outlet channels.
- Each inlet channel has inlet walls, an open inlet end and a plugged outlet end and each outlet channel has outlet walls, a plugged inlet end and an open outlet end.
- Each inlet channel has adjacent outlet channels.
- the article includes an optional hydrolysis catalyst that promotes the hydrolysis of the ammonia precursor.
- the hydrolysis catalyst is coated on a portion of the inlet walls of the inlet channels extending from the inlet end.
- a selective catalytic reduction catalyst permeates the gas permeable walls to promote the conversion of NO x in the gas stream to N 2 in the presence of excess oxygen.
- An ammonia oxidation catalyst coats a length of the outlet walls of the outlet channels to promote the selective oxidation of ammonia to N 2 in the gas stream.
- An oxidation catalyst is coated on a portion of the outlet walls of the outlet channels extending from the outlet end toward the inlet end to promote the oxidation of CO and hydrocarbons to C0 2 .
- the wall flow filter is a high efficiency filter.
- the hydrolysis catalyst is present and extends from the inlet end to about 50% of the length of the wall flow filter, and arranged so that the gas stream encounters the hydrolysis catalyst first.
- the hydrolysis catalyst is present and extends from the inlet end to a length in the range of about one quarter inch to about 10% of the length of the wall flow filter.
- the hydrolysis catalyst is present and comprises titania.
- the selective catalytic reduction catalyst extends along the entire length of the wall flow filter. In some embodiments, the selective catalytic reduction catalyst has a loading in the range of about 0.25 g/in 3 to about 2.5 g/in 3. In one or more embodiments, the selective catalytic reduction catalyst comprises a metal promoted molecular sieve.
- the catalytic article further comprise a soot oxidation catalyst before the SCR catalyst.
- the soot oxidation catalyst permeates the gas permeable walls.
- the soot oxidation catalyst comprises a layer permeating an inlet side of the gas permeable walls.
- the layer permeates the gas permeable walls to a depth up to about 50% of the wall thickness.
- the soot oxidation catalyst comprises a layer on the inlet walls.
- the soot oxidation catalyst of one or more embodiments comprises zirconia stabilized cerium oxide.
- the ammonia oxidation catalyst extends up to about 50% of the overall length of the catalytic article. In some embodiments, the ammonia oxidation catalyst extends from the oxidation catalyst up to about 50% of the overall length of the catalytic article.
- the oxidation catalyst extends from the outlet end of outlet channels up to a length of about two inches. In some embodiments, the oxidation catalyst overlaps a portion of the ammonia oxidation catalyst. In one or more embodiments, there is substantially no overlap of the oxidation catalyst on the ammonia oxidation catalyst.
- the oxidation catalyst of some embodiments comprises a platinum group metal on a high surface area support.
- Additional embodiments of the invention are directed to methods of treating an exhaust gas stream comprising soot, urea, ammonia, NO x , CO and hydrocarbons.
- a hydrolysis catalyst located at an inlet end of inlet channels of a catalytic article promotes the hydrolysis of urea.
- the soot is filtered from the gas stream after the hydrolysis catalyst by passing the gas stream through a gas permeable wall in the catalytic article and forming a filter cake on the wall of the inlet channels.
- the ammonia and NO x is reacted to form N 2 by promotion with a selective catalytic reduction catalyst permeating the gas permeable wall of the catalytic article.
- the ammonia is oxidized in the gas stream exiting the gas permeable walls of the catalytic article by promotion of an ammonia oxidation catalyst coated on outlet walls of the catalytic article.
- the CO and hydrocarbons are oxidized to form carbon dioxide and water by promotion of an oxidation catalyst coated on the outlet walls at an outlet end of the catalytic article.
- the soot is oxidized with the promotion of a soot oxidation catalyst before the selective catalytic reduction catalyst. In one or more embodiments, the soot is oxidized after formation of the filter cake.
- Further embodiments of the invention are directed to emissions treatment systems comprising an engine and the catalytic article described herein located downstream of and in flow communication with the engine.
- the emissions treatment system further comprises a diesel oxidation catalyst positioned downstream of the engine and upstream of the catalytic article and in flow communication with both.
- the emissions treatment system further comprises a reductant injector positioned upstream of the catalytic article.
- FIG. 1 shows a perspective view of a catalytic article in accordance with one or more embodiments of the invention
- FIG. 2 shows a schematic cross-sectional view of a wall flow monolith in accordance with one or more embodiments of the invention
- FIG. 3 shows a schematic cross-sectional view of a catalytic article in accordance with one or more embodiments of the invention
- FIG. 4 shows a schematic cross-sectional view of a catalytic article in accordance with one or more embodiments of the invention
- FIG. 5 shows a schematic of an exhaust treatment system in accordance with one or more embodiments of the invention
- FIG. 6 shows a schematic of an exhaust treatment system in accordance with one or more embodiments of the invention.
- FIG. 7 shows a schematic of an exhaust treatment system in accordance with one or more embodiments of the invention.
- FIG. 8 shows a schematic of an exhaust treatment system in accordance with one or more embodiments of the invention.
- Platinum group metal components refer to platinum group metals or one of their oxides.
- the platinum group metals include platinum, palladium, rhodium, ruthenium, osmium and iridium.
- Washcoat has its usual meaning in the art of a thin, adherent coating of a catalytic or other material applied to a refractory substrate, such as a honeycomb flow through monolith substrate or a filter substrate, which is sufficiently porous to permit the passage there through of the gas stream being treated.
- washcoat refers to a catalyst coating comprised of powdered material on a substrate, the powdered material obtained from a dried slurry of insoluble oxides or salts in a liquid medium, typically an aqueous medium. Washcoats are distinguished from impregnation of catalytic material of solutions of soluble precursors applied to a substrate such as by solution impregnation. Washcoats are also distinguished from processes of growing thin films by oxide growth processes or sol-gel processes.
- exhaust stream and “engine exhaust stream” refer to the engine out effluent as well as to the effluent downstream of one or more other catalyst system components including but not limited to a diesel oxidation catalyst and/or soot filter.
- Downstream refers to a position of a component in an exhaust gas stream in a path further away from the engine than the component preceding component.
- Downstream refers to a position of a component in an exhaust gas stream in a path further away from the engine than the component preceding component.
- upstream refers to a component that is located closer to the engine in relation to another component.
- SCR catalyst refers to a catalyst that is effective to promote the conversion NO x in the gas stream to nitrogen in the presence of excess oxygen.
- SCR function or “SCR reaction” will be used herein to refer to a chemical process described by the stoichiometric Eq 1.
- the SCR catalyst is effective to promote the reaction over the operating temperature range of a lean burn engine, for example from 150° C to about 500° C or from about 200° C to about 450° C. Accordingly, platinum group metals are excluded as “SCR catalysts” because above about 200-250° C, such materials do not promote the SCR reaction.
- catalysts are substances which affect the rate of a chemical reaction.
- a catalyst is referred to as converting a species, or reacting with a species, and the like, the catalyst is promoting (e.g., catalyzing) the reaction, not becoming consumed in the reaction.
- an SCR catalyst converts ⁇ to nitrogen in the presence of excess oxygen. It will be understood by those skilled in the art that this means that the SCR catalyst promotes the conversion of NO x to nitrogen in the presence of excess oxygen.
- Embodiments of the invention are directed to single filter substrates with multiple functions for emission control. To obtain the multiple functions of emission control, the sequence of catalysts that the gas flow encounters is described.
- the gas contacts a hydrolysis catalyst coated on the inlet channel walls at the inlet end of a substrate.
- hydrolysis catalyst coated on the inlet channel walls at the inlet end of a substrate.
- An SCR catalyst is disposed in the wall between the inlet plugs and the outlet plugs.
- An ammonia oxidation catalyst is disposed on the outlet channel walls upstream of the plug area and a CO/hydrocarbon oxidation catalyst is coated as a zone on the outlet channel walls in the plug zone.
- soot, urea, ammonia, isocyanic acid also called an ammonia precursor
- water, NO x , CO and hydrocarbons exhaust stream first encounters the hydrolysis catalyst where the decomposition of urea (and the ammonia precursor) is completed, then the filter wall where the soot is filtered from the stream, then the SCR catalyst where the ammonia and NO x react to form N 2 , then to the ammonia oxidation catalyst where the excess or residual ammonia is removed and finally the CO/hydrocarbon oxidation catalyst where any residual CO or hydrocarbons are oxidized to carbon dioxide and water.
- the CO produced from the partial oxidation of the soot on the filter is also reacted on the CO/hydrocarbon oxidation catalyst.
- Embodiments of this variety may be referred to as 6- way catalysts.
- the sequence is the same with the addition of a soot oxidation catalyst disposed either on the inlet channel wall or in the wall directly adjacent to the inlet channel.
- the soot oxidation catalyst will aid in the passive regeneration of the soot during normal operation, and the soot oxidation catalyst generally should not react with the incident ammonia which will react with the SCR catalyst below it.
- the soot oxidation catalyst and the SCR catalyst could be in admixture or co-mixed and spread throughout the wall to allow for the simultaneous oxidation of soot and selective reduction of NO x .
- Embodiments of this variety may be referred to as 7-way catalysts.
- An aspect of the invention pertains to a catalyst.
- the catalyst may be disposed on a monolithic substrate as a washcoat layer.
- a washcoat layer includes a compositionally distinct layer of material disposed on the surface of the monolithic substrate or an underlying washcoat layer.
- a catalyst can contain one or more washcoat layers, and each washcoat layer can have unique chemical catalytic functions.
- the catalytic articles 100 comprise a substrate 50, often referred to as a carrier or carrier substrate.
- the substrate 50 is a wall-flow filter.
- the substrate 50 has an inlet end 54 and an outlet end 56 defining an overall length L.
- the substrate 50 also has gas permeable walls 53 having a thickness T formed into a plurality of axially extending inlet channels 64 and outlet channels 66.
- Each inlet channel 64 has inlet walls 65, an open inlet end 54 and an outlet end 56 with an outlet plug 60.
- Each outlet channel 66 has outlet walls 67, an inlet end 54 with an inlet plug 58 and an open outlet end 56.
- Each inlet channel 64 has adjacent outlet channels 66 which form opposing checkerboard patterns at the inlet end 54 and outlet end 56 as shown in FIG. 2.
- a gas stream entering through the unplugged inlet end 54 of an inlet channel 64 is stopped by the outlet plug 60 and diffuses through the gas permeable walls 53 into the outlet channels 66.
- the gas cannot pass back to the inlet channels 64 because of the pressure drop across the wall 53.
- the inlet plugs 58 prevent gases from entering the outlet channel 66 directly and may help prevent flow across the wall from outlet to inlet.
- the substrate 50 is effective to remove at least some of the particulate matter from the gas stream.
- some embodiments of the invention include an optional hydrolysis catalyst 110 that promotes the hydrolysis of the ammonia precursor. While it may be said the that hydrolysis catalyst hydrolyzes the ammonia precursor, it will be understood by those skilled in the art that the hydrolysis catalyst does not actually hydrolyze the ammonia precursor, but promotes the hydrolysis reaction of the ammonia precursor.
- the hydrolysis catalyst 110 is often referred to as a urea hydrolysis catalyst. However, and without being bound by any particular theory of operation, it is understood by those skilled in the art that the urea hydrolysis catalyst catalyzes the hydrolysis of a thermal degradation product of urea, isocyanic acid.
- the hydrolysis catalyst 110 is coated on a portion of the inlet walls 65 extending from the inlet end 54 of the substrate 50. In one or more embodiments, the hydrolysis catalyst 110 is arranged (positioned) so that the gas stream encounters the hydrolysis catalyst 110 first (i.e., before encountering other catalysts).
- the length that the hydrolysis catalyst 110 extends along the length L of the substrate 50 can vary depending on the requirements of the resultant catalytic article 100. In some embodiments, the hydrolysis catalyst 110 extends from the inlet end 54 to about 50% of the length of the substrate 50. In one or more embodiments, the hydrolysis catalyst 110 extends the same length as the inlet plugs 58 of the adjacent gas channels.
- the hydrolysis catalyst 110 extends from the inlet end 54 to a length in the range of about 5% to about 50% of the length of the substrate 50, or in the range of about 1 ⁇ 4 inch to about 50% of the length of the substrate 50, or in the range of about 5% to about 10% of the length of the substrate 50, or a length of about 1 ⁇ 4 inch, or a length of greater than about 1 ⁇ 4 inch, or a length greater than about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40% or 45% of the length of the substrate 50, or a length less than about 70%, 60%, 50%, 40%, 30%, 20% or 10% of the length of the substrate 50.
- the hydrolysis catalyst 110 extends from the inlet end 54 of the substrate 50 to a length in the range of about one quarter inch to about 10% of the length L of the substrate.
- the hydrolysis catalyst 110 has a particle size which is effective to ensure that substantially all of the hydrolysis catalyst 110 remains on the surface of the inlet wall 65.
- substantially all of the hydrolysis catalyst remains on the surface means that less than about 20% of the hydrolysis catalyst 110 permeates the porous wall 53 of the substrate 50.
- the hydrolysis catalyst can be any suitable hydrolysis catalyst known to those skilled in the art.
- the hydrolysis catalyst comprises one or more of titania, gamma-alumina and transition metal oxides. Either of these materials can be stabilized or unstabilized.
- the stabilizing agent can be any suitable stabilizing agent including, but not limited to ceria, zirconia, lanthana, titania, tungsten and silica.
- the substrate 50 includes a selective catalytic reduction catalyst 120 (SCR catalyst) permeating the gas permeable walls 53.
- SCR catalyst 120 is effective to promote the conversion of NO x in the gas stream to nitrogen in the presence of excess oxygen.
- SCR function or “SCR reaction” will be used herein to refer to a chemical process described by the stoichiometric Eq 1.
- SCR composition refers to a material composition effective to catalyze the SCR function or effective to promote the conversion of NO x .
- permeate when used to describe the dispersion of a catalyst on the substrate, means that the catalyst composition is dispersed throughout the wall of the substrate.
- a composition that permeates the walls is distinguished from a composition that coats the exterior of the walls and does not reside within the pores throughout the wall of the substrate.
- the SCR composition has a soot oxidation function.
- the SCR catalyst extends along substantially the entire length of the wall flow filter.
- substantially the entire length means that the SCR catalyst 120 extends at least about 95% of the entire length, with any portion(s) not including the SCR catalyst 120 being located at any place along the length of the substrate 50.
- the SCR component includes a metal promoted molecular sieve. That is, a molecular sieve onto which a metal from one of the groups VB, VIB, VIIB, VIIIB, IB, or IIB of the periodic table has been deposited onto extra-framework sites on the external surface or within the channels, cavities, or cages of the molecular sieves.
- Metals may be in one of several forms, including, but not limited to, zerovalent metal atoms or clusters, isolated cations, mononuclear or polynuclear oxycations, or as extended metal oxides.
- the metals include iron, copper, and mixtures or combinations thereof.
- the molecular sieve may be a microporous aluminosilicate zeolite having any one of the framework structures listed in the Database of Zeolite Structures published by the International Zeolite Association (IZA).
- the framework structures include, but are not limited to those of the CHA, FAU, BEA, MFI, MOR types.
- Non-limiting examples of aluminosilicate zeolites having these structures include chabazite, faujasite, zeolite Y, ultrastable zeolite Y, beta zeolite, mordenite, silicalite, zeolite X, and ZSM-5.
- the SCR component includes an aluminosilicate molecular sieve having a CHA crystal framework type, an SAR greater than about 15, and copper content exceeding about 0.2 wt%. In a more specific embodiment, the SAR is at least about 10, and copper content from about 0.2 wt% to about 5 wt%.
- Zeolites having the CHA structure include, but are not limited to natural chabazite, SSZ-13, LZ-218, Linde D, Linde R, Phi, ZK-14, and ZYT-6. Other suitable zeolites are also described in U.S. Patent No. 7,601,662 entitled "Copper CHA Zeolite Catalysts," the entire content of which is incorporated herein by reference.
- the SCR composition comprises a copper chabazite.
- Molecular sieve compositions that have a zeolite framework structure but contain other components, for example, phosphorous, in the framework structure, can be utilized in the SCR component according to embodiments of the present invention.
- Non-limiting examples of other molecular sieve compositions suitable as an SCR component include sillicoaluminophosphates SAPO-34, SAPO-37, SAPO-44. Synthesis of synthetic form of SAPO-34 is described in U.S. Patent No. 7,264,789, which is hereby incorporated by reference.
- the selective catalytic reduction catalyst 120 can be present in any loading which is suitable to effectively promote the removal of NO x from the gas stream without causing a significant adverse impact on the system backpressure.
- the SCR catalyst 120 has a loading in the range of about 0.25 g/in 3 to about 2.5 g/in 3 , or in the range of about 0.38 g/in 3 to about 2.0 g/in 3 , or in the range of about 0.5 g/in 3 to about 1.5 g/in 3 , or in the range of about 0.63 g/in 3 to about 1.25 g/in 3.
- the catalytic article 100 includes an ammonia oxidation catalyst 130 on the outlet walls 67 of the outlet channels 66.
- the ammonia oxidation catalyst 130 also referred to as an ammonia oxidation composition, is effective to promote the oxidation of ammonia in the gas stream.
- the term "NH 3 oxidation function" will be used herein to refer to a chemical process described by Eq 2.
- NH 3 oxidation composition or "ammonia oxidation catalyst” refers to a material composition effective to catalyze the NH oxidation function.
- the ammonia oxidation catalyst 130 coats the entire length of or a portion of the length of the outlet walls 67. It may not be necessary to have the ammonia oxidation catalyst 130 coating the entire length of the outlet wall 67 to effectively promote the oxidation of the ammonia in the gas stream. When coating the entire length of the outlet wall 67, the back pressure in the system may increase to undesirable levels.
- the ammonia oxidation catalyst 130 extends up to about 50% of the overall length of the catalytic article.
- the ammonia oxidation catalyst 130 in some embodiments extends from the oxidation catalyst 140 (discussed below) to up to about 50% of the overall length of the catalytic article.
- the ammonia oxidation catalyst 130 extends a length in the range of about 5% to about 75%, or about 10% to about 65%, or about 15% to about 60%, or about 20% to about 55%, or in the range of about 25% to about 50% of the overall length of the substrate 50. In a variety of embodiments, the ammonia oxidation catalyst 130 extends in the range of about l/12 th to about 1/4 ⁇ of the length of the substrate 50. [0050] The ammonia oxidation catalyst 130 can be any suitable catalyst known to those skilled in the art.
- the ammonia oxidation catalyst 130 includes a zeolitic or non-zeolitic molecular sieve, which may have any one of the framework structures listed in the Database of Zeolite Structures published by the International Zeolite Association (IZA).
- the framework structures include, but are not limited to those of the CHA, FAU, BEA, MFI, and MOR types.
- a molecular sieve may be exchanged with a metal component distributed on the external surface or in the channels, cavities, or cages of the molecular sieve.
- the ammonia oxidation catalyst has two components; an SCR catalyst component and an oxidation catalyst component.
- the two components are generally present in two layers with the top coat (i.e., the first layer encountered by a gas stream) being the SCR catalyst component and the bottom layer (i.e., the second layer encountered by the gas stream) having the oxidation catalyst component.
- the top coat i.e., the first layer encountered by a gas stream
- the bottom layer i.e., the second layer encountered by the gas stream
- the oxidation component layer contains a platinum group metal on alumina, or other support, directly on the substrate.
- the ammonia oxidation catalyst comprises both an SCR catalyst and a platinum group metal containing catalyst and cannot be substantially free of either.
- the term "cannot be substantially free of, when referring to an ammonia oxidation catalyst, means that the component in question is intentionally present in the composition. For example, if a composition is known to have a platinum group metal, then the composition is not substantially free of regardless of whether the platinum group metal is intentionally added or inherently present.
- the ammonia oxidation catalyst has a selectivity for N 2 greater than about 70% at 300°C. In various embodiments, the ammonia oxidation catalyst has a selectivity for N 2 greater than about 50%, 55%, 60%, 65%, 75%, 80%, 85% or 90% when measured at 300 °C.
- the catalytic article 100 includes an oxidation catalyst 140 coated on a portion of the outlet walls 67 of the outlet channels 66 of the substrate 50.
- the oxidation catalyst 140 is coated on a portion of the substrate extending from the outlet end 56 of the substrate 50 toward the inlet end.
- the oxidation catalyst 140 of some embodiments is effective to promote the oxidation of carbon monoxide and hydrocarbons in the gas stream.
- the length of the oxidation catalyst 140 can vary depending on the needs of the catalytic article 100. In various embodiments, the oxidation catalyst 140 extends from the outlet end 56 of the outlet channels 67 up to a length of about 3 inches, or about 2 inches, or about 1 inch, or about 1 ⁇ 2 inch, or about 1 ⁇ 4 inch. In one or more embodiments, the oxidation catalyst 140 extends a length of the substrate 50 equal to about the length that the outlet plug 60 extends. This ensures that the gas stream diffusing through the porous wall 53 contacts the ammonia oxidation catalyst 130 before the oxidation catalyst 140.
- the term "substantially no overlap" when referring to the oxidation catalyst 140 means that less than about 10% , or about 5% of the length of the oxidation catalyst 140 overlaps the ammonia oxidation catalyst 130. In one or more embodiments, the oxidation catalyst 140 overlaps a portion of the ammonia oxidation catalyst 130.
- the oxidation catalyst 140 can be any suitable oxidation catalyst known to those skilled in the art. In some embodiments, the oxidation catalyst 140 comprises a platinum group metal supported on a high surface area support (e.g., a refractory metal oxide).
- the high surface area refractory metal oxide is an alumina or stabilized alumina.
- the oxidation catalyst 140 can be a single zone or multiple zones with each zone occupying a different length of the substrate. In a one or more embodiment, the oxidation catalyst comprises two zones, an inlet zone and an outlet zone.
- the catalytic article 100 can include a soot oxidation catalyst 150 before the SCR catalyst 120.
- the soot oxidation catalyst 150 is effective to promote the oxidation of the soot layer, or soot cake, that forms on the inlet wall 65 of the inlet channels 64 as the exhaust gas stream passes through the catalytic article 100.
- the soot oxidation catalyst 150 can be coated on the inlet wall 65 of the inlet channels 64 or can permeate the inlet channel 64 side of the walls 53 of the substrate 53. In some embodiments, the soot oxidation catalyst 150 is coated on the inlet walls 65 of the inlet channels 64. When coated on the inlet walls 65, the soot oxidation catalyst 150 can extend the entire length of the substrate or a partial length of the substrate. When the soot oxidation catalyst 150 extends the entire length of the substrate, it forms a layer below the hydrolysis catalyst 110. When the soot oxidation catalyst 150 extends a partial length of the substrate, it can extend from about the end of the hydrolysis catalyst 110 to the outlet plug 60, or any portion there between.
- the soot oxidation catalyst 150 forming a layer permeating the porous wall 53 has a different composition to that of the SCR catalyst 120.
- the soot oxidation catalyst 150 permeates the wall 53 of the substrate 50, it can form a layer on the inlet side of the wall 53, or can be intimately mixed with the SCR catalyst 120, or can be the same composition as the SCR catalyst 120.
- the soot oxidation catalyst 150 layer permeates the inlet side of the gas permeable wall 53 to a depth of less than about 50% of the wall thickness T.
- the soot oxidation catalyst 150 layer permeates the inlet side of the wall 53 to a depth of less than about 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10% or 5% of the wall thickness T. In a variety of embodiments, the soot oxidation catalyst 150 layer extends a depth in the range of about 10% to about 40%, or in the range of about 20% to about 30% of the wall thickness T. In one or more embodiments, the soot oxidation catalyst 150 layer extends a depth of about 25% of the wall thickness T.
- the soot oxidation catalyst 150 can be any suitable soot oxidation catalyst composition. Generally, the soot oxidation catalyst 150 is a highly selective material. While platinum group metals are capable of oxidizing soot, these materials also can oxidize ammonia which is undesirable. Therefore, in some embodiments the soot oxidation catalyst 150 comprises less than about 40% platinum group metal, or less than about 30% platinum group metal or less than about 20% platinum group metal or less than about 10% platinum group metal. [0061] In one or more embodiments, the soot oxidation catalyst 150 is zirconia stabilized cerium oxide. The soot oxidation catalyst can be an SCR catalyst with some soot oxidation properties, such as vanadia. In some embodiments, the soot oxidation catalyst 150 is vanadia supported on titania or stabilized titania or cerium/zirconium mixture or a cerium phosphate or a spinel.
- Suitable substrates for use with embodiments of the invention include wall flow filters. These filters, as shown in FIGS. 1 and 2 and described above generally have a plurality of fine, substantially parallel gas flow passages extending along the longitudinal axis of the substrate. Typically, each passage is blocked at one end of the substrate body, with alternate passages blocked at opposite end-faces.
- the passages can have any shape, including, but not limited to, rectangular, square, circular, oval, triangular, hexagonal, or other polygonal shapes.
- the thickness of the walls can vary depending on the desired properties of the resultant catalytic articles. In general, where the pore sizes are similar, a larger wall thickness will result in a greater impact on the system backpressure. Wall thickness typically range from about 0.002 to about 0.1 inches.
- Suitable wall flow filter substrates are composed of ceramic-like materials such as cordierite, alpha.-alumina, silicon carbide, silicon nitride, zirconia, mullite, spodumene, alumina-silica-magnesia or zirconium silicate, or of porous, refractory metal.
- Wall flow substrates may also be formed of ceramic fiber composite materials.
- Suitable wall flow substrates are formed from cordierite and silicon carbide. Such materials are able to withstand the environment, particularly high temperatures, encountered in treating the exhaust streams.
- Wall flow filters for use with embodiments of the invention can have a variety of porosities and mean pore sizes.
- the wall flow filter has a porosity of at least about 40% or in the range of about 40% to about 80%.
- the wall flow filter of some embodiments has a mean pore size of at least 5 microns or in the range of about 5 microns to about 30 microns.
- the substrate is a high filtration efficiency filter. A high filtration efficiency filter removes 85% or more of the soot particles on a mass basis. Emissions Treatment Systems
- FIG. 5 shows an embodiment of the invention in which the catalytic article 100 described above is located downstream of and in flow communication with the engine 10.
- the emission treatment system consists essentially of an engine 10 with the catalytic article 100 described downstream of and in flow communication with the engine 10.
- the term "consists essentially of" means that additional components may be included so long as they do not add other catalysts.
- FIG. 6 shows an emission treatment system consisting essentially of an engine 10 with a downstream catalytic article 100 as described above.
- reductant injector 11 system is located between and in flow communication with the exhaust stream between the engine 10 and the catalytic article 100.
- the inclusion of the reductant injector 11 does not add other catalysts to the system, merely a reactant.
- FIG. 7 shows another embodiment of the invention in which a diesel oxidation catalyst 12 is positioned downstream of and in flow communication with the engine 10.
- the diesel oxidation catalyst 12 is positioned upstream of and in flow communication with the catalytic article 100. Exhaust gases exiting the engine 10 pass through the diesel oxidation catalyst 12 to the catalytic article 100 as described above.
- the emissions treatment system consists essentially of a diesel oxidation catalyst downstream of an engine and upstream of the catalytic article as described herein and in flow communication with both.
- FIG. 8 shows an embodiment of the invention. Exhaust gases from engine 10 pass through a diesel oxidation catalyst 12 positioned downstream of and in flow communication with the engine 10. The exhaust gases exiting the diesel oxidation catalyst 12 are combined with a reductant from a reductant injector 11 positioned downstream of the diesel oxidation catalyst
- the reductant injector 11 can be configured to inject, for example, hydrocarbons, on-board fuel, a reductant, air, urea or ammonia.
- a heater, burner or ignition source may also be included in the reductant injector 11.
- the reductant injector 11 includes a metering device 13 which is configured to control the amount of material injected into the exhaust gas stream upstream of the catalytic article 100.
- Additional embodiments of the invention are directed to methods of treating an exhaust gas stream comprising soot, urea, ammonia, NO x , CO and hydrocarbons.
- the hydrolysis of urea is promoted a hydrolysis catalyst 110 located at an inlet end 54 of inlet channels 64 of a catalytic article 100.
- the soot is filtered from the gas stream after the hydrolysis catalyst 110 by passing the gas stream through a gas permeable wall 53. Filtering the gas stream results in the formation of a filter cake on the inlet wall 65 of the inlet channel 64.
- the ammonia and NO x are reacted to form N 2 in the presence of and promoted by a selective catalytic reduction catalyst 120 permeating the gas permeable wall 53 of the catalytic article 100.
- the ammonia in the gas stream exiting the gas permeable wall 53 is oxidized in the presence of and promoted by an ammonia oxidation catalyst 130 coated on the outlet walls 67.
- the CO and hydrocarbons are oxidized to form carbon dioxide and water in the presence of and promoted by an oxidation catalyst 140 coated on the outlet walls 67 at an outlet end 56 of the catalytic article.
- some of the soot is oxidized in the presence of and promoted by a soot oxidation catalyst 150 before the selective catalytic reduction catalyst 120.
- the soot is oxidized after formation of the filter cake.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Toxicology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Biomedical Technology (AREA)
- Exhaust Gas After Treatment (AREA)
- Catalysts (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12719531.1A EP2691165B1 (en) | 2011-03-29 | 2012-04-16 | Multi-component filters for emissions control |
JP2014502704A JP6176672B2 (en) | 2011-03-29 | 2012-04-16 | Multi-component filter for emissions control |
CA2832852A CA2832852C (en) | 2011-03-29 | 2012-04-16 | Multi-component filters for emissions control |
CN201280020350.3A CN103687661B (en) | 2011-03-29 | 2012-04-16 | multi-component filter for emission control |
KR1020137028067A KR102072063B1 (en) | 2012-03-29 | 2012-04-16 | Multi-component filters for emissions control |
BR112013024950A BR112013024950A2 (en) | 2011-03-29 | 2012-04-16 | catalytic article, method of treating an exhaust gas stream, and emission treatment system |
ZA2013/08015A ZA201308015B (en) | 2011-03-29 | 2013-10-29 | Multi-component filters for emissions control |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161468859P | 2011-03-29 | 2011-03-29 | |
US61/468,859 | 2011-03-29 | ||
US13/433,663 | 2012-03-29 | ||
US13/433,663 US8722000B2 (en) | 2011-03-29 | 2012-03-29 | Multi-component filters for emissions control |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012135871A1 true WO2012135871A1 (en) | 2012-10-04 |
Family
ID=46925427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/033802 WO2012135871A1 (en) | 2011-03-29 | 2012-04-16 | Multi-component filters for emissions control |
Country Status (9)
Country | Link |
---|---|
US (2) | US8722000B2 (en) |
EP (1) | EP2691165B1 (en) |
JP (2) | JP6176672B2 (en) |
CN (1) | CN103687661B (en) |
BR (1) | BR112013024950A2 (en) |
CA (1) | CA2832852C (en) |
MY (1) | MY165027A (en) |
WO (1) | WO2012135871A1 (en) |
ZA (1) | ZA201308015B (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2705226A1 (en) * | 2011-05-02 | 2014-03-12 | Daf Trucks N.V. | Exhaust system for a diesel engine |
DE102013003112A1 (en) | 2013-02-25 | 2014-08-28 | Umicore Ag & Co. Kg | SCR catalytic converter with improved NOx conversion |
WO2016187267A1 (en) | 2015-05-19 | 2016-11-24 | Basf Corporation | Catalyzed soot filter for use in passive selective catalytic reduction |
WO2016202855A1 (en) | 2015-06-16 | 2016-12-22 | Basf Se | Scr-catalyzed soot filter with integrated lean nox trap catalyst for use in passive selective catalytic reduction |
GB2562160A (en) * | 2017-03-20 | 2018-11-07 | Johnson Matthey Plc | Catalytic wall-flow filter with an ammonia slip catalyst |
US10344641B2 (en) | 2017-03-09 | 2019-07-09 | Cataler Corporation | Exhaust gas purifying catalyst |
US10344655B2 (en) | 2014-10-16 | 2019-07-09 | Cataler Corporation | Exhaust gas purification catalyst |
US10792615B2 (en) | 2015-03-30 | 2020-10-06 | Basf Corporation | Catalyzed filters with end coating for lean engine exhaust |
US11117098B2 (en) | 2015-03-30 | 2021-09-14 | Basf Corporation | Multifunctional filters for diesel emission control |
WO2023001863A1 (en) | 2021-07-21 | 2023-01-26 | Umicore Ag & Co. Kg | Exhaust gas system for purifying exhaust gases of gasoline engine |
WO2023001865A1 (en) | 2021-07-21 | 2023-01-26 | Umicore Ag & Co. Kg | Exhaust gas purification system for purifying exhaust gases of gasoline engines |
DE102021125536A1 (en) | 2021-10-01 | 2023-04-06 | Umicore Ag & Co. Kg | Catalytically active particle filter with high filtration efficiency |
DE102023101763A1 (en) | 2022-04-11 | 2023-10-12 | Umicore Ag & Co. Kg | Exhaust system for predominantly stoichiometrically operated internal combustion engines, having a catalytic converter to reduce ammonia emissions |
WO2023198577A1 (en) | 2022-04-11 | 2023-10-19 | Umicore Ag & Co. Kg | Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6476115B2 (en) * | 2012-08-17 | 2019-02-27 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | V / TiW catalyst activated by zeolite |
EP2917522B1 (en) * | 2012-11-07 | 2018-09-26 | Johnson Matthey Public Limited Company | Exhaust system |
US9757675B2 (en) * | 2013-01-29 | 2017-09-12 | Corning Incorporated | Partial wall-flow filter and method |
US20140238242A1 (en) * | 2013-02-28 | 2014-08-28 | Corning Incorporated | Ceramic partial wall-flow filter with low deep bed |
USD748236S1 (en) * | 2013-04-30 | 2016-01-26 | Ibiden Co., Ltd | Honeycomb filter |
USD748237S1 (en) * | 2013-04-30 | 2016-01-26 | Ibiden Co., Ltd | Honeycomb filter |
USD749714S1 (en) * | 2013-04-30 | 2016-02-16 | Ibiden Co., Ltd. | Honeycomb filter |
WO2015074698A1 (en) * | 2013-11-21 | 2015-05-28 | Hjs Emission Technology Gmbh & Co. Kg | Particulate filter designed as a wall-flow filter |
EP3110530A1 (en) * | 2014-02-28 | 2017-01-04 | Haldor Topsøe A/S | Method for the cleaning of exhaust gas from a compression ignition engine |
US9616384B2 (en) * | 2014-06-11 | 2017-04-11 | Basf Se | Base metal catalyst |
DE102014215112A1 (en) * | 2014-07-31 | 2016-02-04 | Johnson Matthey Public Limited Company | Process for preparing a catalyst and catalyst articles |
EP3207989B2 (en) * | 2014-10-16 | 2023-07-19 | Cataler Corporation | Exhaust gas purification catalyst |
CN107073463B (en) * | 2014-10-16 | 2020-10-20 | 株式会社科特拉 | Catalyst for exhaust gas purification |
JP6472677B2 (en) * | 2015-02-17 | 2019-02-20 | 株式会社キャタラー | Exhaust gas purification catalyst |
KR102479638B1 (en) * | 2015-03-20 | 2022-12-21 | 토프쉐 에이/에스 | Catalyzed Ceramic Candle Filter and Method for Purifying Process Off-gas or Exhaust Gas |
KR102454125B1 (en) * | 2015-03-20 | 2022-10-14 | 토프쉐 에이/에스 | Catalyzed Ceramic Candle Filters and Methods for Purification of Process Offgases or Exhaust Gases |
WO2016160953A1 (en) * | 2015-03-30 | 2016-10-06 | Basf Corporation | Multifunctional filters for diesel emission control |
CN107636271B (en) * | 2015-05-19 | 2019-12-27 | 优米科尔股份公司及两合公司 | Method, multifunctional filter and system for removing particulate matter and harmful compounds from engine exhaust |
EP3310479A1 (en) * | 2015-06-18 | 2018-04-25 | Johnson Matthey Public Limited Company | Ammonia slip catalyst with low n2o formation |
US10201807B2 (en) * | 2015-06-18 | 2019-02-12 | Johnson Matthey Public Limited Company | Ammonia slip catalyst designed to be first in an SCR system |
JP6867956B2 (en) * | 2015-06-18 | 2021-05-12 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | Zoned exhaust system |
US9789441B2 (en) * | 2015-06-18 | 2017-10-17 | Johnson Matthey Public Limited Company | Single or dual layer ammonia slip catalyst |
US9878287B2 (en) | 2015-06-18 | 2018-01-30 | Johnson Matthey Public Limited Company | NH3 overdosing-tolerant SCR catalyst |
GB2564333B (en) | 2015-06-28 | 2019-12-04 | Johnson Matthey Plc | Catalytic wall-flow filter having a membrane |
US11213789B2 (en) * | 2015-09-04 | 2022-01-04 | Basf Corporation | Integrated SCR and ammonia oxidation catalyst systems |
US10058819B2 (en) | 2015-11-06 | 2018-08-28 | Paccar Inc | Thermally integrated compact aftertreatment system |
US9764287B2 (en) * | 2015-11-06 | 2017-09-19 | Paccar Inc | Binary catalyst based selective catalytic reduction filter |
EP3281699A1 (en) | 2016-08-11 | 2018-02-14 | Umicore AG & Co. KG | Particle filter with scr active coating |
WO2018055894A1 (en) * | 2016-09-20 | 2018-03-29 | パナソニックIpマネジメント株式会社 | Particulate matter combustion catalyst and particulate matter combustion catalyst filter |
GB2556453A (en) * | 2016-10-26 | 2018-05-30 | Johnson Matthey Plc | Hydrocarbon injection through small pore CU-zeolite catalyst |
GB2558371B (en) * | 2016-10-28 | 2021-08-18 | Johnson Matthey Plc | Catalytic wall-flow filter with partial surface coating |
DE102018106329A1 (en) * | 2017-03-20 | 2018-09-20 | Johnson Matthey Public Limited Company | SCRF with rear wall-mounted design |
JP7130622B2 (en) * | 2017-03-27 | 2022-09-05 | 株式会社キャタラー | Exhaust gas purification catalyst |
GB201705279D0 (en) * | 2017-03-31 | 2017-05-17 | Johnson Matthey Plc | Selective catalytic reduction catalyst |
US10675586B2 (en) | 2017-06-02 | 2020-06-09 | Paccar Inc | Hybrid binary catalysts, methods and uses thereof |
US10835866B2 (en) | 2017-06-02 | 2020-11-17 | Paccar Inc | 4-way hybrid binary catalysts, methods and uses thereof |
CN110636893A (en) * | 2017-06-16 | 2019-12-31 | 优美科股份公司及两合公司 | Combined soot filter and urea hydrolysis |
BR112020009175A2 (en) * | 2017-11-10 | 2020-11-03 | Basf Corporation | system for treating a gas stream, catalyzed soot filter (csf) and method for reducing hcs, co and nox |
CN114961940A (en) * | 2017-12-08 | 2022-08-30 | 庄信万丰(上海)化工有限公司 | Novel three-zone two-layer TWC catalyst for gasoline exhaust gas applications |
EP3501648B1 (en) * | 2017-12-19 | 2023-10-04 | Umicore Ag & Co. Kg | Catalytically active particle filter |
EP3505246B1 (en) | 2017-12-19 | 2019-10-23 | Umicore Ag & Co. Kg | Catalytically active particle filter |
EP3501646A1 (en) * | 2017-12-19 | 2019-06-26 | Umicore Ag & Co. Kg | Catalytically active particle filter |
JP7049155B2 (en) | 2018-03-30 | 2022-04-06 | 日本碍子株式会社 | Honeycomb filter |
JP7097210B2 (en) * | 2018-03-30 | 2022-07-07 | 日本碍子株式会社 | Honeycomb filter |
WO2020039649A1 (en) * | 2018-08-22 | 2020-02-27 | 三井金属鉱業株式会社 | Exhaust gas purification catalyst |
US11007514B2 (en) | 2019-04-05 | 2021-05-18 | Paccar Inc | Ammonia facilitated cation loading of zeolite catalysts |
US10906031B2 (en) | 2019-04-05 | 2021-02-02 | Paccar Inc | Intra-crystalline binary catalysts and uses thereof |
US11187127B2 (en) | 2019-06-28 | 2021-11-30 | Deere & Company | Exhaust gas treatment system and method with four-way catalyzed filter element |
US10934918B1 (en) | 2019-10-14 | 2021-03-02 | Paccar Inc | Combined urea hydrolysis and selective catalytic reduction for emissions control |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1486248A1 (en) * | 2003-06-11 | 2004-12-15 | Delphi Technologies, Inc. | Diesel particulate filter comprising at least two catalytic washcoats |
US7264789B1 (en) | 1998-07-29 | 2007-09-04 | Exxonmobil Chemical Patents Inc. | Crystalline molecular sieves |
WO2008122023A1 (en) * | 2007-04-02 | 2008-10-09 | Geo2 Technologies, Inc | A selective catalytic reduction filter and method of using same |
WO2009093071A1 (en) * | 2008-01-23 | 2009-07-30 | Johnson Matthey Public Limited Company | Catalysed filter |
US7601662B2 (en) | 2007-02-27 | 2009-10-13 | Basf Catalysts Llc | Copper CHA zeolite catalysts |
DE102008055890A1 (en) * | 2008-11-05 | 2010-05-12 | Süd-Chemie AG | Particulate reduction with combined SCR and NH3 slip catalyst |
US20100300078A1 (en) * | 2009-05-27 | 2010-12-02 | Gm Global Technology Operations, Inc. | Exhaust After Treatment System |
WO2011041769A2 (en) * | 2009-10-02 | 2011-04-07 | Basf Corporation | Four-way diesel catalysts and methods of use |
FR2952123A1 (en) * | 2009-11-04 | 2011-05-06 | Peugeot Citroen Automobiles Sa | DEVICE FOR TREATING EXHAUST GASES OF A VEHICLE COMPRISING A THERMAL ENGINE |
EP2426326A1 (en) * | 2010-09-02 | 2012-03-07 | Peugeot Citroën Automobiles SA | Particle filter with three catalytic coatings |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9919013D0 (en) | 1999-08-13 | 1999-10-13 | Johnson Matthey Plc | Reactor |
US6764664B2 (en) | 2002-04-22 | 2004-07-20 | Delphi Technologies, Inc. | Catalyst for the combustion of diesel soot, methods for making the catalyst and methods of using the catalyst |
US7229597B2 (en) * | 2003-08-05 | 2007-06-12 | Basfd Catalysts Llc | Catalyzed SCR filter and emission treatment system |
US7722829B2 (en) * | 2004-09-14 | 2010-05-25 | Basf Catalysts Llc | Pressure-balanced, catalyzed soot filter |
US7754160B2 (en) | 2005-08-31 | 2010-07-13 | Ngk Insulators | Honeycomb catalytic body and process for manufacturing honeycomb catalytic body |
JP5073303B2 (en) | 2006-03-24 | 2012-11-14 | 日本碍子株式会社 | Catalytic converter and manufacturing method of catalytic converter |
FR2899493B1 (en) | 2006-04-10 | 2008-05-23 | Saint Gobain Ct Recherches | PURIFICATION STRUCTURE INCORPORATING AN ELECTROCHEMICAL CATALYSIS SYSTEM |
DE102006038288A1 (en) * | 2006-08-16 | 2008-02-21 | Man Nutzfahrzeuge Aktiengesellschaft | aftertreatment system |
DE502007003465D1 (en) | 2007-02-23 | 2010-05-27 | Umicore Ag & Co Kg | Catalytically activated diesel particulate filter with ammonia barrier effect |
JP4638892B2 (en) | 2007-03-30 | 2011-02-23 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
JP2007239752A (en) | 2007-03-30 | 2007-09-20 | Toyota Motor Corp | Exhaust emission control device for internal combustion engine |
US20090180943A1 (en) * | 2008-01-16 | 2009-07-16 | Basf Catalysts Llc | Selective Ammonia Oxidation Catalysts |
DE102008022990A1 (en) * | 2008-05-09 | 2009-11-12 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Particle filter with hydrolysis coating |
JP5258426B2 (en) * | 2008-07-14 | 2013-08-07 | Udトラックス株式会社 | Engine exhaust purification system |
US8844274B2 (en) * | 2009-01-09 | 2014-09-30 | Ford Global Technologies, Llc | Compact diesel engine exhaust treatment system |
JP5726414B2 (en) * | 2009-11-18 | 2015-06-03 | 日本碍子株式会社 | Catalyst-carrying filter and exhaust gas purification system |
US9346018B2 (en) * | 2010-11-02 | 2016-05-24 | Haldor Topsoe A/S | Method for the preparation of a catalysed particulate filter and catalysed particulate filter |
ES2531289T3 (en) * | 2010-11-02 | 2015-03-12 | Haldor Topsoe As | Method for preparing a catalyzed particulate material filter and catalyzed particulate material filter |
-
2012
- 2012-03-29 US US13/433,663 patent/US8722000B2/en active Active
- 2012-04-16 JP JP2014502704A patent/JP6176672B2/en active Active
- 2012-04-16 WO PCT/US2012/033802 patent/WO2012135871A1/en active Application Filing
- 2012-04-16 CA CA2832852A patent/CA2832852C/en not_active Expired - Fee Related
- 2012-04-16 EP EP12719531.1A patent/EP2691165B1/en active Active
- 2012-04-16 BR BR112013024950A patent/BR112013024950A2/en not_active Application Discontinuation
- 2012-04-16 CN CN201280020350.3A patent/CN103687661B/en active Active
- 2012-04-16 MY MYPI2013003527A patent/MY165027A/en unknown
-
2013
- 2013-10-29 ZA ZA2013/08015A patent/ZA201308015B/en unknown
-
2014
- 2014-04-07 US US14/247,206 patent/US9145809B2/en active Active
-
2017
- 2017-04-04 JP JP2017074200A patent/JP6449365B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7264789B1 (en) | 1998-07-29 | 2007-09-04 | Exxonmobil Chemical Patents Inc. | Crystalline molecular sieves |
EP1486248A1 (en) * | 2003-06-11 | 2004-12-15 | Delphi Technologies, Inc. | Diesel particulate filter comprising at least two catalytic washcoats |
US7601662B2 (en) | 2007-02-27 | 2009-10-13 | Basf Catalysts Llc | Copper CHA zeolite catalysts |
WO2008122023A1 (en) * | 2007-04-02 | 2008-10-09 | Geo2 Technologies, Inc | A selective catalytic reduction filter and method of using same |
WO2009093071A1 (en) * | 2008-01-23 | 2009-07-30 | Johnson Matthey Public Limited Company | Catalysed filter |
DE102008055890A1 (en) * | 2008-11-05 | 2010-05-12 | Süd-Chemie AG | Particulate reduction with combined SCR and NH3 slip catalyst |
US20100300078A1 (en) * | 2009-05-27 | 2010-12-02 | Gm Global Technology Operations, Inc. | Exhaust After Treatment System |
WO2011041769A2 (en) * | 2009-10-02 | 2011-04-07 | Basf Corporation | Four-way diesel catalysts and methods of use |
FR2952123A1 (en) * | 2009-11-04 | 2011-05-06 | Peugeot Citroen Automobiles Sa | DEVICE FOR TREATING EXHAUST GASES OF A VEHICLE COMPRISING A THERMAL ENGINE |
EP2426326A1 (en) * | 2010-09-02 | 2012-03-07 | Peugeot Citroën Automobiles SA | Particle filter with three catalytic coatings |
Non-Patent Citations (1)
Title |
---|
HECK; RONALD; ROBERT FARRAUTO: "Catalytic Air Pollution Control", 2002, WILEY-INTERSCIENCE, pages: 18 - 19 |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2705226A1 (en) * | 2011-05-02 | 2014-03-12 | Daf Trucks N.V. | Exhaust system for a diesel engine |
DE102013003112A1 (en) | 2013-02-25 | 2014-08-28 | Umicore Ag & Co. Kg | SCR catalytic converter with improved NOx conversion |
WO2014128270A1 (en) | 2013-02-25 | 2014-08-28 | Umicore Ag & Co. Kg | Scr catalytic converter having improved nox conversion |
DE102013003112B4 (en) * | 2013-02-25 | 2017-06-14 | Umicore Ag & Co. Kg | SCR catalytic converter with improved NOx conversion |
US9694320B2 (en) | 2013-02-25 | 2017-07-04 | Umicore Ag & Co. Kg | SCR catalytic converter having improved NOx conversion |
US10344655B2 (en) | 2014-10-16 | 2019-07-09 | Cataler Corporation | Exhaust gas purification catalyst |
US11117098B2 (en) | 2015-03-30 | 2021-09-14 | Basf Corporation | Multifunctional filters for diesel emission control |
US10792615B2 (en) | 2015-03-30 | 2020-10-06 | Basf Corporation | Catalyzed filters with end coating for lean engine exhaust |
WO2016187267A1 (en) | 2015-05-19 | 2016-11-24 | Basf Corporation | Catalyzed soot filter for use in passive selective catalytic reduction |
US10215073B2 (en) | 2015-05-19 | 2019-02-26 | Basf Corporation | Catalyzed soot filter for use in passive selective catalytic reduction |
WO2016202855A1 (en) | 2015-06-16 | 2016-12-22 | Basf Se | Scr-catalyzed soot filter with integrated lean nox trap catalyst for use in passive selective catalytic reduction |
US10344641B2 (en) | 2017-03-09 | 2019-07-09 | Cataler Corporation | Exhaust gas purifying catalyst |
US10369555B2 (en) | 2017-03-20 | 2019-08-06 | Johnson Matthey Public Limited Company | Catalytic wall-flow filter with an ammonia slip catalyst |
GB2562160A (en) * | 2017-03-20 | 2018-11-07 | Johnson Matthey Plc | Catalytic wall-flow filter with an ammonia slip catalyst |
GB2562160B (en) * | 2017-03-20 | 2021-06-23 | Johnson Matthey Plc | Catalytic wall-flow filter with an ammonia slip catalyst |
WO2023001865A1 (en) | 2021-07-21 | 2023-01-26 | Umicore Ag & Co. Kg | Exhaust gas purification system for purifying exhaust gases of gasoline engines |
WO2023001863A1 (en) | 2021-07-21 | 2023-01-26 | Umicore Ag & Co. Kg | Exhaust gas system for purifying exhaust gases of gasoline engine |
DE102021118802A1 (en) | 2021-07-21 | 2023-01-26 | Umicore Ag & Co. Kg | Exhaust gas cleaning system for cleaning exhaust gases from gasoline engines |
DE102021118803A1 (en) | 2021-07-21 | 2023-01-26 | Umicore Ag & Co. Kg | Exhaust gas cleaning system for cleaning exhaust gases from gasoline engines |
DE102021125536A1 (en) | 2021-10-01 | 2023-04-06 | Umicore Ag & Co. Kg | Catalytically active particle filter with high filtration efficiency |
WO2023052580A1 (en) | 2021-10-01 | 2023-04-06 | Umicore Ag & Co. Kg | Catalytically active particle filter with a high degree of filtration efficiency |
DE102023101772A1 (en) | 2022-04-11 | 2023-10-12 | Umicore Ag & Co. Kg | Exhaust system for predominantly stoichiometrically operated internal combustion engines, having a catalytic converter to reduce ammonia emissions |
DE102023101768A1 (en) | 2022-04-11 | 2023-10-12 | Umicore Ag & Co. Kg | Exhaust system for predominantly stoichiometrically operated internal combustion engines, having a catalytic converter to reduce ammonia emissions |
DE102023101779A1 (en) | 2022-04-11 | 2023-10-12 | Umicore Ag & Co. Kg | Exhaust system for predominantly stoichiometrically operated internal combustion engines, having a catalytic converter to reduce ammonia emissions |
DE102023101763A1 (en) | 2022-04-11 | 2023-10-12 | Umicore Ag & Co. Kg | Exhaust system for predominantly stoichiometrically operated internal combustion engines, having a catalytic converter to reduce ammonia emissions |
WO2023198577A1 (en) | 2022-04-11 | 2023-10-19 | Umicore Ag & Co. Kg | Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions |
WO2023198575A1 (en) | 2022-04-11 | 2023-10-19 | Umicore Ag & Co. Kg | Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions |
WO2023198571A1 (en) | 2022-04-11 | 2023-10-19 | Umicore Ag & Co. Kg | Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions |
WO2023198570A1 (en) | 2022-04-11 | 2023-10-19 | Umicore Ag & Co. Kg | Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions |
WO2023198573A1 (en) | 2022-04-11 | 2023-10-19 | Umicore Ag & Co. Kg | Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions |
WO2023198574A1 (en) | 2022-04-11 | 2023-10-19 | Umicore Ag & Co. Kg | Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions |
WO2023198569A1 (en) | 2022-04-11 | 2023-10-19 | Umicore Ag & Co. Kg | Ammonia-blocking catalyst for stoichiometric internal combustion engines |
WO2023198572A1 (en) | 2022-04-11 | 2023-10-19 | Umicore Ag & Co. Kg | Exhaust gas system for predominantly stoichiometrically operated internal combustion engines, comprising a catalyst for reducing ammonia emissions |
Also Published As
Publication number | Publication date |
---|---|
CA2832852A1 (en) | 2012-10-04 |
EP2691165A1 (en) | 2014-02-05 |
BR112013024950A2 (en) | 2016-12-20 |
US20140219880A1 (en) | 2014-08-07 |
JP6176672B2 (en) | 2017-08-09 |
JP2017205756A (en) | 2017-11-24 |
US9145809B2 (en) | 2015-09-29 |
JP2014515445A (en) | 2014-06-30 |
MY165027A (en) | 2018-02-28 |
CN103687661B (en) | 2017-12-05 |
JP6449365B2 (en) | 2019-01-09 |
EP2691165B1 (en) | 2020-10-28 |
CA2832852C (en) | 2019-09-24 |
ZA201308015B (en) | 2015-01-28 |
US8722000B2 (en) | 2014-05-13 |
CN103687661A (en) | 2014-03-26 |
US20120247092A1 (en) | 2012-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9145809B2 (en) | Multi-component filters for emissions control | |
KR101476901B1 (en) | Catalyzed soot filter and emissions treatment systems and methods | |
RU2609476C2 (en) | Zoned catalytic filters for cleaning exhaust gas | |
JP6023590B2 (en) | Catalyst product and method and system for treating lean combustion diesel exhaust stream using the same | |
US8038954B2 (en) | CSF with low platinum/palladium ratios | |
US20140212350A1 (en) | Ammonia oxidation catalyst | |
KR102072063B1 (en) | Multi-component filters for emissions control | |
JP2013506787A5 (en) | ||
US20110113761A1 (en) | Wall Flow Filter Loaded With SCR Catalyst, Systems and Methods of Exhaust Gas Treatment | |
US20110243801A1 (en) | Passivation-Free Coating Process for a CSF | |
JP2009106913A (en) | Selectively reducing catalyst | |
CN102985655A (en) | Integrated SCR and AMOX catalyst systems | |
EP2382031A2 (en) | Emissions treatment systems and methods with catalyzed scr filter and downstream scr catalyst | |
EP2555867A1 (en) | Fe-bea/fe-mfi mixed zeolite catalyst and process for treating nox in gas streams using the same | |
KR20230079420A (en) | Diesel Oxidation Catalyst Containing Bismuth | |
US11376550B2 (en) | Nitrogen oxide storage catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12719531 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014502704 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1301005517 Country of ref document: TH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2832852 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2013/012028 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 20137028067 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012719531 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013024950 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013024950 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130927 |