WO2012134234A2 - Use of hades as a negative modulator of akt - Google Patents

Use of hades as a negative modulator of akt Download PDF

Info

Publication number
WO2012134234A2
WO2012134234A2 PCT/KR2012/002408 KR2012002408W WO2012134234A2 WO 2012134234 A2 WO2012134234 A2 WO 2012134234A2 KR 2012002408 W KR2012002408 W KR 2012002408W WO 2012134234 A2 WO2012134234 A2 WO 2012134234A2
Authority
WO
WIPO (PCT)
Prior art keywords
akt
hades
protein kinase
cells
protein
Prior art date
Application number
PCT/KR2012/002408
Other languages
French (fr)
Korean (ko)
Other versions
WO2012134234A3 (en
Inventor
안성관
배승희
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Publication of WO2012134234A2 publication Critical patent/WO2012134234A2/en
Publication of WO2012134234A3 publication Critical patent/WO2012134234A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/711Natural deoxyribonucleic acids, i.e. containing only 2'-deoxyriboses attached to adenine, guanine, cytosine or thymine and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/10Peptides having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression

Definitions

  • the present invention relates to the use of Hades as an Akt negative regulator, and more particularly, to an Akt (protein kinase B) negative regulator or anticancer agent containing a Hades protein or a gene encoding the same as an active ingredient.
  • Akt protein kinase B
  • Akt protein kinase B
  • Akt activation regulates a variety of biological responses, including cell proliferation, protein synthesis, cell growth, cell cycle progression, and inhibition of apoptosis [3].
  • Akt is activated through platelet-derived growth factor, insulin, epidermal growth factor, basic fibroblast growth factor, and insulin-like growth factor I [2, 4, 5].
  • Downstream substrates of Akt have been identified at the cellular and molecular level.
  • Glycogen synthase kinase 3 (GSK3) the first identified substrate of Akt, is negatively regulated through direct phosphorylation by Akt [6].
  • GSK3 especially GSK3 (3) activity
  • Phosphatidilinosyl 3-kinase (PI3K) and phosphatase and tensine homologs (PTEN) are regulators of Akt [10].
  • PI3K induces Akt phosphorylation / activation, while PTEN activates Akt via dephosphorylation of phosphatidylinocyte-3,4,5—triphosphate, which is produced from phosphatidylinosyl by -3 and 5-bisphosphate by PI3K. Inhibits [2, 4, 11].
  • C1 domain-containing phosphatase and tencin homologs, carboxy-terminal regulatory proteins, Trb3, And negative regulators such as Keratin KIO have also been reported to inactivate Akt [12-15].
  • the proteolytic activity of the ubiquitin-proteasome system is important in many cellular processes [16].
  • the formation of polyubiquitin-protein conjugates recognized and disrupted by the 26S proteasome involves three components that participate in the cascade of ubiquitin transfer reactions: ubiquitin ⁇ activating enzyme (E1), ubiquitin-conjugating enzyme (E2) And specificity factor (E3) called ubiquitin ligase.
  • E3 ligase controls the specificity of target protein selection and controls the abundance of individual target proteins [16].
  • Hades as a new E3 ligase from Akt.
  • Hades as a new negative regulator of Akt that functions in a variety of cellular processes, including cell proliferation, survival and tumor development, and completed the present invention.
  • Another object of the present invention is to provide an Akt negative regulator containing a Hades protein or a gene encoding the same as an active ingredient.
  • Another object of the present invention is to provide an anticancer agent containing a Hades protein or a gene encoding the same as an active ingredient.
  • Another object of the present invention is to provide a method for screening an Akt negative or positive modulator using the interaction of Akt and Hades.
  • the invention has an amino acid sequence of SEQ ID NO: Provided is an Akt (protein kinase B) negative modulator containing a Hades protein or a gene encoding the same as an active ingredient.
  • Akt protein kinase B
  • the Hades protein was identified among cDNA library proteins capable of interacting with Akt and named after Greek subordinates.
  • Hades protein has been deposited with UniProtKB accession number Q969V5 and has the amino acid sequence of SEQ ID NO: 2.
  • the Akt protein kinase B
  • Aktl is known to be involved in cell survival pathways by inhibiting apoptosis
  • Akt2 is known as an important signaling molecule in the insulin signaling pathway.
  • Hades of the present invention have been found to effectively interact with both Aktl and Akt2.
  • a negative regulator refers to a regulator that inhibits the expression of the Akt or inhibits the downstream signaling pathway of the Akt.
  • the gene encoding Hades may have any nucleotide sequence capable of encoding the amino acid sequence of SEQ ID NO: 2, preferably Akt (protein kinase) characterized by having a nucleotide sequence of SEQ ID NO: 1 B) provides negative modulators.
  • Akt protein kinase
  • the term "gene” refers to a nucleic acid (eg, DNA, RNA) sequence comprising a coding sequence necessary to produce a protein or polypeptide, wherein the protein or polypeptide is defined by a full length coding sequence. Or may be encoded by a portion of a coding sequence so long as the desired active or functional property is maintained. The term also refers to the coding region of a structural gene and the terminus such that the gene conforms to the length of a full-length mRNA. At 5 'and over a distance of about 1 kb
  • sequence located adjacent to the coding region at the 3 'end are referred to as 5′-nontranslated sequences. Sequences located 3 'or below the coding region and present in the mRNA are referred to as 3'-untranslated sequences.
  • Gene includes both the cDNA and genomic form of a gene.
  • a genomic form or clone of a gene is a non-coding called an "intron” or “insertion region” or “insertion sequence” It includes a coding region that is interrupted by the sequence.
  • Introns are segments of genes that are transcribed into nuclear RNA (hnRNA); Introns can include regulatory elements, eg, enhancers, introns are removed or “spliced” from the nucleus or initial transcript; Thus, introns are not present in mRN transcripts.
  • the mRNA functions during translation to specify the sequence or sequence of amino acids of the initial polypeptide.
  • Gene expression converts genetic information encoded in a gene into RNA (e.g., mRNA rRNA, tRNA or sn NA) through transcription of the gene (e.g., by enzymatic action of RNA polymerase), and protein coding gene
  • RNA e.g., mRNA rRNA, tRNA or sn NA
  • Gene expression can be regulated at many stages in the process; “up-regulation” or “activation increases production of gene expression products.
  • up-regulation” or “activation” increases production of gene expression products.
  • down-regulation or “inhibition” refers to regulation that reduces the product.
  • Molecules involved in up-regulation or down-regulation are often referred to as “activators” and “inhibitors” respectively.
  • the 5 'flanking region may comprise regulatory sequences, eg, promoters and enhancers that regulate or influence the transcription of the gene. May comprise sequences directing termination of transcription, post-transcriptional cleavage and polyadenylation.
  • the Hades gene provides an Akt (protein kinase B) negative regulator, which is inserted into a recombinant expression vector.
  • the Hades gene is operably linked and inserted into the regulatory elements of the recombinant expression vector.
  • vector is used for a nucleic acid molecule that transfers DNA fragments from one cell to another, which is often derived from plasmids, bacteriophages or plant or animal viruses.
  • expression vector refers to a suitable nucleic acid sequence necessary for the expression of the coding sequence of interest and the coding sequence operably linked in a particular host organism. Reference to recombinant DNA is included. Nucleic acid sequences required for expression in prokaryotic cells generally include promoters, operators (optional), and ribosomal binding sites, along with other sequences. Eukaryotic cells are known to utilize promoters, enhancers, and termination and polyadenylation signals.
  • the term "recombinant expression vector” is a vector capable of expressing a target protein in a suitable host cell, and in the present invention, a Hades protein, a gene comprising an essential regulatory element operably linked to express a gene insert. Say the construct.
  • operably linked refers to a functional link between a nucleic acid expression control sequence and a nucleic acid sequence encoding a protein of interest to perform a general function.
  • a promoter and a nucleic acid sequence encoding a protein or RNA may be operably linked to affect expression of the coding sequence.
  • Operational linkage with recombinant vectors can be made using genetic recombination techniques well known in the art, and site-specific DNA cleavage and ligation employs enzymes commonly known in the art.
  • Suitable expression vectors include promoters, initiation codons, termination codons, expression control elements such as polyadenylation signals and enhancers, and the like, and can be prepared in various ways.
  • the start codon and the stop codon must be functional in the subject when the gene construct is administered and must be in frame with the coding sequence.
  • Hades provides an Akt (protein kinase B) negative modulator, characterized in that it has a RING finger domain and E3-ubiquitin ligase activity. In the examples of the present invention, it was demonstrated that Hades has RING finger-domain and has E3—ubiquitin ligase activity.
  • the Akt provides an Akt (protein kinase B) negative modulator, characterized in that it directly interacts with Hades and is ubiquitinated by Hades.
  • the Akt directly interacts with Hades and is ubiquiUnateed by Hades. Proved
  • Akt protein kinase B negative modulator
  • Akt protein kinase B negative modulator
  • Akt protein kinase B negative regulator
  • Akt is decomposed by ubiquitination by Hades to inhibit Akt expression.
  • Akt was decomposed by ubiquitination by Hades to inhibit Akt expression.
  • Hades provides an Akt (protein kinase B) negative modulator, characterized in that only Akt activated by phosphorylation specifically ubiquitizes. In the embodiment of the present invention, it was demonstrated that Hades specifically ubiquitizes only Akt activated by phosphorylation.
  • Akt protein kinase B
  • Akt protein kinase B negative modulator
  • Akt protein kinase B negative modulator
  • lysine 284 of Akt is the main site of ubiquitination by Hades.
  • lysine 284 of Akt is a major site of ubiquitination by Hades.
  • the Akt is Akt (protein kinase B) negative, characterized by inducing cell proliferation, inhibition of apoptosis and cell migration by downstream signaling ( negative) provides a regulator. It is well known in the literature that Akt induces cell proliferation, inhibition of apoptosis and cell migration by downstream signaling.
  • Hades provides an Akt (protein kinase B) negative modulator, characterized in that it inhibits the proliferation, survival and cell migration of cancer cells.
  • Akt protein kinase B
  • Embodiments of the present invention demonstrated that Hades inhibits the proliferation, survival and cell migration of cancer cells by negatively regulating downstream signaling of Akt.
  • HeLa cells which are cervical cancer cells
  • HCT116 which is colon cancer cells.
  • the present invention is characterized in that it functions as an Akt (protein kinase B) negative regulator, containing a Hades protein having the amino acid sequence of SEQ ID NO: 2 or a gene encoding the same as an active ingredient.
  • Akt protein kinase B
  • Hades inhibits the proliferation, survival and cell migration of cancer cells by negatively regulating downstream signaling of Akt.
  • HeLa cells which are cervical cancer cells
  • HCT116 which is colon cancer cells.
  • the anticancer agent of the present invention may additionally include one or more pharmaceutically acceptable carriers or excipients (see Remington's Pharmaceutical Sciences and US Pharmacopoeia. 1984, Mack Publishing Company, Easton, PA, USA). .
  • pharmaceutically acceptable generally means suitable for administration to a mammal, including humans, from a toxicity or stability standpoint.
  • Carriers include diluents, excipients, layers, adhesives, wetting agents, Disintegrants, absorption enhancers, surfactants, absorbent carriers, brighteners commonly used in the pharmaceutical art. If necessary, flavors, sweeteners and the like may be added.
  • the carrier may also contain other pharmaceutically acceptable excipients to modify other conditions such as pH, osmotic pressure, viscosity, asepticity, lipidity, solubility, and the like. Pharmaceutically acceptable excipients which allow sustained or delayed release after administration may also be included.
  • Suitable excipients are, for example, water, saline, dextrose, glycerol, ethanol and the like.
  • the pharmaceutical composition administered may contain a small amount of a nontoxic adjuvant such as, for example, a wetting or emulsifying agent such as sodium acetate, sorbitan monolaurate, triethanolamine oleate, triethanamine sodium acetate, pH buffer, and the like. May contain substances.
  • the anticancer agent composition of the present invention can be administered, for example, by systemic or oral route. Can be injected via the route. Preferred forms of systemic administration include injection, generally intravenous injection. Other injection routes may be used, for example, subcutaneously, intramuscularly or intraperitoneally. Alternative means of systemic administration include transmucosal and transdermal administration using penetrants such as bile acids or fusidic acids or other surfactants. Moreover, the anticancer composition of this invention can also be formulated with an enteric agent, a capsolization agent, or an oral administration agent. Administration of these anticancer agents may be local and / or partial in the form of ointments, pastes, gels and the like.
  • the nucleic acid may be included in the vector.
  • the vector can be a viral vector.
  • the viral vector is an adenovirus vector.
  • the adenovirus is formulated with protamine. Any number of viral particles can be administered to the patient. In certain embodiments, about 10 8 to about 10 14 virus particles are administered to the patient per administration.
  • the nucleic acid composition may comprise one or more lipids. Any of the lipids described above can be included in such lipid—nucleic acid compositions. Examples of such lipids include D0TAP and cholesterol, or derivatives thereof.
  • the term “therapeutically effective amount” means the amount of active agent, such as the Hades protein of the present invention, that when administered according to a desired therapeutic regimen produces a desired therapeutic effect or response or provides a desired benefit.
  • the amount of the composition administered may be determined by the physician, based on the severity of the condition, the composition age administered, the body weight, and the condition of the patient to be treated, such as the reaction of each patient, the chosen route of administration, but for medications that are Hades proteins,
  • a pharmaceutically or prophylactically effective amount to be administered to a cancer patient is preferably about 0.01 to 10 rag / kg / day.
  • the invention comprises an Akt comprising the following steps
  • Protein Kinase B Provides a method for screening negative modulators: (a) cotransfection of Akt and Hades to animal cells; (b) treating any of the agents on the transfected animal cells; And, (c) said Determining whether the interaction of Akt and Hades in animal cells is facilitated.
  • the present invention provides a method for screening an Akt (protein kinase B) positive modulator comprising the following steps: (a) cotransfection of Akt and Hades to an animal cell; ); (b) treating the transformed animal cell with any agent; And, (c) determining whether the interaction of Akt and Hades in the animal cell is inhibited.
  • Akt protein kinase B
  • Akt a serine / threonine kinase
  • Hades which is a negative regulator of Akt, having a RING finger domain and E3 ubiquitin ligase activity.
  • Akt interacts directly with Hades, in vitro and by Hades. It has been found to be ubiquitinated in vivo.
  • Other molecular assays have demonstrated that phosphorylated Akt is a practical target for both interaction and ubiquitination by Hades.
  • the results of these functional studies suggest that the degradation of Akt by Hades can inhibit the proliferation and survival of cancer cells.
  • the present invention demonstrates the function of Hades in the negative regulation of Akt cell signaling. Hades is directly bound to Akt in vivo and in vitro,
  • Hades It was not bound by ' Hades ' or ubiquitized by Hades (FIG. 2D). In addition, Hades confirmed that it was not phosphorylated by Akt kinase.
  • the relationship between Hades and Akt is very dependent on the phosphorylation state of Akt. It was found that it was dependent, and thereby found that Akt protein stability was tightly regulated. Serum stimulation to induce phosphorylation of Akt increased the binding capacity between Akt and Hades, thus increasing Akt ubiquitination and Akt degradation. This phosphorylation-dependent Akt proteolysis was re-validated by constructing and using Akt (Myc / His-Akt-myr), which is artificially genetically engineered to remain active at all times. By immunoprecipitation, Hades bound to Akt-myr but not to unphosphorylated dominant negative mutant Akt (Akt-DN).
  • Akt is phosphorylated at the 473 th serine at the C-terminus, which is a phosphorylated and non-enzymatic domain at the amino acid 308 th thronine in the T-loop present in its enzyme activity domain. Complete activity [40].
  • a bond is formed between the PH domain and the kinase domain in Akt, thereby inhibiting the in-loop phosphorylation of Akt by the upper phosphate-independent-kinase kinase-1 [37, 41].
  • the exact structural mechanism is not fully known, it can be concluded that the phosphorylation of Akt exposes a portion capable of binding Hades in the kinase domain of Akt.
  • Akt enzymes play an important role in promoting various intracellular processes involved in cell growth and cell migration through phosphorylation of several downstream targets [36].
  • the overexpression of Hades in cancer cells demonstrated that the cell growth and growth capacity were dependent on Hades' E3 ligase activity.
  • GSK-3 (3 and TSC2 are well known
  • results of the present invention demonstrated that Hades can negatively regulate Akt and regulate many related cellular processes.
  • the results of the present invention may also offer the possibility of having clinical significance as a future new target as a modulator of Akt.
  • Akt interacts with Hades E3 ubiquitin ligase in vitro and in vivo.
  • FIG. 2 shows that the ubiquitination and degradation of Akt is mediated by Hades.
  • FIG. 3 shows that pAkt is a preferred substrate of ubiquitination by Hades.
  • FIG. 5 shows that lysine 284 of Akt is a site for Hades-mediated polyubiquitination.
  • FIG. 6 shows that the cell growth function of Akt is inhibited by Hades.
  • FIG. 7 shows that siRNA-mediated Hades expression clearance stabilizes endogenous Aktl and Akt2 proteins.
  • 8 shows that Hades induces Aktl degradation and co-locates with Aktl in the mitochondria.
  • FIG. 9 shows that serum reduces Akt protein stability.
  • FIG. 10 shows that geldanamycin induces Akt degradation in both control cells and Hades-deficient cells.
  • FIG. 11 shows that Hades-mediated Akt proteolysis is restored by wortmannin.
  • FIG. 13 shows that the depletion of Hades in HeLa cells by shRNA increases cell growth.
  • FIG. 14 shows that Akt-mediated cell survival increase is reduced by Hades in a RING domain-dependent manner.
  • FIG. 15 shows that endogenous Hades deficiency inhibits cell migration.
  • Figure 16 shows that Hades-induced NF- ⁇ activation is independent of its E3 ligase activity, and Akt-induced NF- ⁇ activation is in an E3 ligase activity-dependent manner.
  • FIG. 17 shows that isotopically expressed Akt is degraded by Hades in HeLa cells in the presence of a caspase inhibitor Z-VAD.
  • FIG. 18 shows that Hades reduces colony formation in HCT116 colon cancer cell line.
  • Akt and Hades were amplified and isolated by PCR of cDNA derived from cervical cancer cell line HeLa.
  • Amplified human Aktl cDNA was cloned into pcDNA3.1-Myc / His (Invitrogen, Carlsbad, Calif.), PGEX6p (Pr omega, Madison, Wis.) And pET28 (Novagen, EMD Chemicals Inc. Merck, Darmstat, Germany) vectors. .
  • HadescDNA was cloned into the pEGFP-C (Clontech, Mountain View , CA) , and P GEX6p vector. Functional divisions of the Akt gene were cloned into the pcDNA3.1 (Invitrogen) vector.
  • Akt genes The dominant negative mutated Akt genes (DN-Akt, T308A and S473A), mutants of lysine residues in the Akt amino acid sequence, and Hades' RING domain-mutations (Hades MT-C302S and C305S) were QuikChange site-directed Using the product of the mutagenesis kit (Stratagene, Santa Clara, CA), following the instructions for the product, HA-ubiquitin (HA-Ub) plasmid ⁇ 23 was provided by Dr. Dirk Bohmann (University of Rochester, Rochester, NY). . HA-Ub mutant genes (HA-Ub-K48R and HA_Ub-K63R) were provided by Dr. Zhijian Chen (University of Texas Southwestern Medical Center, Dallas, TX). Primer sequences used for PCR are listed in Table 1 below.
  • Hades-C302S_3 cagggagagtctgaagagcgcctctgtagtgEgtctgagcagcttca
  • GST- and GST-labeled Hades (GST-Hades) proteins are known as Escherichia coli coli) BL21 strain was used to treat 0.1 mM IPTG at 37 ° C. for 1 hour.
  • NPk 40 lysis buffer 50 mMTris-HCl, pH 7.5, 150 mMNaCl) , 1% NP-40, 1 mM DTT, 1 mM EDTA, lysozyme and protease inhibitors).
  • the recombinant proteins were extracted using glutathione-sepharose 4B bead following the instructions of the product, and the extract was dialyzed using the product of Slide-A-Lyzer dialysis cassette (Pierce, Rockford IL). Concentrated using an Ultra-15 device (Millipore, Billerica, Mass.), His-Akt was purchased from Millipore.
  • Example 3 Antibodies and reagents
  • the antibodies used for this study are as follows. Antibodies of EFGP, Myc-tag, Phosphorylated Akt (pAkt) (S308), pAkt (T473), Akt, pGSK-3, TSC2, pTSC2 (TW62)
  • Example 4 In vitro binding assay assay 35S-labeled proteins and protein assemblies were obtained through in vitro transcription / translation reactions. With this, 3 GST or GST-Akt The total protein 0.5% NP-40 buffer containing glutathione-Sepharose 4B beads was mixed and reacted for 3 hours at 37 ° C. After washing three times, the sample was boiled in the SDS sample buffer. Analysis of bound proteins was done by developing using autoradiography via SDS-PAGE.
  • Example 5 immunoprecipitat ion
  • Example 7 In vivo ubiquit inat ion assay After transfection, MG132 treated cells were washed with PBS and vortexed by adding 200 ⁇ denaturing lysis buffer (50 mMTris-HCl, pH 7.4, 0.5% SDS and 70 mM ⁇ -mercaptoethanol). The phase completely lysed the cells by boiling at 95 degrees for 15 minutes. The lysed cell solution was added in 800 ⁇ of CHAPS buffer. The lysed cell solution was immunoprecipitated with the addition of Akt antibody and protein agarose A / G PLUS-Agarose beads. After the reaction, the beads were washed with CHAPS lysis buffer five times and then boiled.
  • 200 ⁇ denaturing lysis buffer 50 mMTris-HCl, pH 7.4, 0.5% SDS and 70 mM ⁇ -mercaptoethanol.
  • the phase completely lysed the cells by boiling at 95 degrees for 15 minutes.
  • the lysed cell solution was added in 800 ⁇ of CHAPS buffer.
  • Ubiquitinated Akt was developed through immunoblotting with anti-HA antibodies. His-pull down assay was performed by diluting the denatured cell solution with 800 ⁇ buffer A (50 mM NaH2P04, 300 mMNaCland 10 mM imidazole pH 8.0), and then adding Ni-NTA bead to room temperature. I rebounded overnight at 4 degrees. The beads were washed five times using buffer B (50 mM NaH 2 P04, 300 mM NaCl and 20 mM imidazole, pH 8.0), and the proteins bound to the beads were eluted by boiling with SDS-PAGE sample buffer. The eluted proteins were immunoblotted using anti-HA antibody, Example 8: RNA interference (RA interference)
  • Hades si RNA 100 pmol was added to LipofectamineR AiMAX (Invitrogen) in serum-free medium.
  • HEK293 cells (5x105 cells) were transduced, then exchanged for normal medium and finished with durban manure for 48 hours.
  • Example 9 Cell Viability Assay
  • a control group encoded with green fluorescent protein (EGFP) in HeLa cells, a cervical cancer cell line Plasmids, EGFP-labeled Hades, or Hades MT gene were transduced. After 2 weeks, the resulting colonies (colonies) were fixed and stained with 0.1% crystal violet to analyze the results.
  • Anchorage-independent soft-agar assay was performed on 3 ml of DMEM medium containing .45% low-melting agarose and 10% fetal bovine serum. After addition, 2 ml of DMEM containing 9% agarose and 10% fetal bovine serum was added to cover the surface, and colonies were observed by incubation for 2 weeks.
  • Example 11 luciferase reporter gene assay
  • This experiment used the TCF-banung luciferase plasmid pTOPFLASH (upstate). There are six TCF-banung sites in the pTOPFLASH vector. After transfection of the vector and reaction for 48 hours, the luciferase activity was analyzed by how many times the ⁇ -galactosidase was increased as a control. The result is the average of three independent experiments.
  • Example 12 Construction of a Full-Length Human cDNA Library
  • RA total RA was first extracted from cervical cancer HeLa cells and liver Chang cells using TRIzol reagent (Invitrogen, Carlsbad, CA) based on the manufacturer's instructions.
  • the full length cDNA library was constructed using the SMART cDNA library construction kit (Clontech, Mountain View, CA) and TRIfflER-cDNA normalization kit (Evrogen, Russia) based on the manufacturer's instructions.
  • the normalized cDNA was fractionated by size using CHROMA SPIN-400 column (Clontech) and modified to insert Sfil restriction enzyme reaction site for all cDNA of 500 bp or more through genetic method. It was then cloned into pcDNA3.1 (+) vector (Invitrogen) and transformed into TOP10 Escherichia coli.
  • Example 13 Novel Akt-binable protein screening experiment
  • Cervix cancer HeLa cells were grown to a population of about 70% on 100-mm plates, and then 5 EGFP-MULAN-WT black EGFP-MULAN-MT with Myc / His-Aktl-myr (2 g) Lipofectamine 2000 (Invitrogen) was used to transduce cells into cells based on the manufacturer's instructions. The cells were then incubated for 24 hours. Cultured cells were harvested and resuspended in NKM buffer (1 mM Tris-HCl, pH 7.4), 130 mM NaCl, 5 mM KC1, 7.5 mM MgC12).
  • the cells were lysed using a Dounce homogenizer and centrifuged for 5 min at 12,000 x g at room temperature with 2 M sucrose (final concentration: 0.25M). After centrifugation, the supernatant was transferred to a new tube and again centrifuged for 15 min at 4 ° C. at a strength of 7,000 X g. Mitochondrial pellets were resuspended in suspension buffer (10 mM Tris-HCl (pH 6.7), 0.15 mM MgC12, 0.25 mM sucrose, protease inhibitor cocktail) and centrifuged at 4 ° C for 10 minutes at 9,500 xg. . After centrifugation the pellet is the mitochondrial fraction and the supernatant is the cytoplasmic fraction. The cytoplasm and mitochondrial proteins were analyzed via immunoblotting using 10-15% SDS-PAGE and corresponding antibodies.
  • the transduced cells were incubated in glass coverslips and then fixed by reaction with 4% formaldehyde at room temperature for 5 minutes, and washed with PBS twice to remove the remaining solution, followed by pemeabilization buffer (0.53 ⁇ 4> Triton X-100 in PBS) for 3 minutes. Immobilized cells in PBS with 5% BSA and 2% goat serum After the reaction, the reaction was blocked for 30 minutes, and the anti-myc antibody (1: 200 in PBS) was reacted at room temperature at 4 ° C. overnight. After washing with PBS three times, the remaining ones were removed and reacted for an additional hour using a secondary antibody (1: 500 in PBS) labeled with fluorescein Texas red.
  • a Hades shRNA-coded pLKO vector (Sigma) was obtained by injecting the microorganism, and the vector was purely isolated from the microorganism. .2) and VSVG plasmids were produced by transducing into 293T cells. 48 hours after transfection, the virus-containing medium was collected and concentrated through a filter having 0.45- ⁇ pores. After culturing cervical cancer HeLa cells on a 6-well plate, the virus was treated with polybrene, and after 6 hours, the medium was changed anew and finally, 72 hours with 1 g / ml puromycin added medium. Incubated. Finally, puromycin-resistant HeLa cells expressing control shRNA and Hades shRNA were selected and used in the experiment.
  • Example 17 Statistical Analysis
  • Statistical analyzes include the ⁇ 2 test, Fisher's exact test and
  • [Experiment result] 1 shows Akt interacts with Hades E3 ubiquitin ligase in vitro and in vivo.
  • A 35S ⁇ methionine-labeled Akt was tested for interaction with GST-tagged Hades (GST-Hades) using an in vitro interaction between Akt and Hades, a full-announce assay.
  • B In vivo association between Akt and Hades. After transfection with the plasmid as indicated, HEK293 cells were treated with MG132, followed by immunoprecipitation with anti-Akt antibody and immunoblotting with anti-EGFP. Immunoglobulin G was used as a negative control.
  • C Endogenous interactions between Hades and Akt soothes.
  • MG132-pretreated HeLa cells were immunoprecipitated with Akt isosome-specific antibodies and immunoblotting using anti-Hades antibodies.
  • D Functional domain structure and guidance of plasmids of Akt deletion mutants.
  • E Akt's KD interacts with Hades. 35S-methionine-labeled Akt deletion mutants were tested for interaction with GST-Hades using a pull-down assay.
  • FIG. 2 shows that the ubiquitination and degradation of Akt is mediated by Hades.
  • A Akt protein levels in cells were reduced by Hades via proteasome degradation pathways in a RING-dependent manner. After transfection with plasmid as indicated, HEK293 cells were treated with MG132 and immunoblotted with the indicated antibodies.
  • Akt was ubiquitized by Hades in vitro, In vitro ubiquitination assay was performed as described in the Examples.
  • C Akt was ubiquitized by Hades in vivo. After transfection with the plasmid as indicated, HEK293 cells were treated with MG132 and then subjected to an in vivo ubiquitination assay as described in the Examples.
  • D Ubiquitination of Akt was eliminated by Hades siRNA transfection.
  • HEK293 cells were treated with 1 ⁇ MG132 for 12 hours and then subjected to in vivo ubiquitination assay.
  • ⁇ 48-linked polyubiquitination is responsible for Hades-dependent Akt ubiquitination.
  • HeLa cells were transfected with plasmids as indicated, followed by in vivo ubiquitination.
  • FIG. 3 shows that pAkt is a preferred substrate of ubiquitination by Hades.
  • A The interaction between Hades and Akt is dependent on phosphorylated Akt. Serum-deficient HeLa cells were treated with 10% serum or insulin and MG132 for 6 hours.
  • pAkt levels in cells were reduced by Hades. HeLa cells were transfected with plasmids as described in the Example. After 24 hours of incubation, the medium was replaced with serum free medium and the cells were then stimulated with 10% serum for 2 hours. Cells were lysed and immunoblotted with antibodies as indicated, (C) the pAkt protein of the cells was ubiquitinated by Hades ⁇ transfected with plasmid as indicated, and then HeLa cells were incubated in serum free medium for 18 hours. I was. Cells were treated with 10 ⁇ LY294002 and then 10 ⁇
  • Akt and pAkt were detected by immunoblotting with the indicated antibodies.
  • Hades siRNA treatment increased Akt protein stability. HeLa cells were transfected with control and Hades siRNA and treated with 40 Mg / ml cyclonucleoside for the indicated time, and then
  • Akt protein turnover was investigated via immunoblotting. 4 shows that activated Akt is the preferential target of the ubiquitin E3 ligase Hades.
  • Hades is const itutively active in vivo
  • Akt Interacted with Akt.
  • HEK293 cells were treated with MG132 and then immunoprecipitated with anti-myc antibody and immunoblotted with the indicated antibodies, (B) Activated Akt was in vivo by Hades. It was efficiently ubiquitated. After transfection with the plasmid as indicated, HEK293 cells were removed.
  • FIG. 5 shows that lysine 284 of Akt is a site for Hades-mediated polyubiquitination.
  • A KD of Akt is ubiquitized by Hades. A series of Akt deletion constructs were transcribed and translated in the presence of 35S-methionine. The 35S-labeled Akt mutations were ubiquitized by Hades via an in vitro ubiquitination assay.
  • B Lysine 284 of Akt is the polyubiquitination site.
  • HEK293 cells were cotransfected with plasmids as indicated. 24 hours after transfection, cells were treated with 10 ⁇ MG132 and subjected to an in vivo ubiquitination assay as described in the Examples.
  • FIG. 6 shows that the cell growth function of Akt is inhibited by Hades.
  • A Cell growth was alleviated by Hades. After transfection with plasmids as indicated in HeLa cells, the number of viable cells was counted every 24 hours using a hemocytometer. The result is representative of three independent experiments.
  • B Hades inhibits cell survival in a dose-dependent manner. HeLa cells were transfected with plasmids as indicated. After 24 hours of incubation, cell viability was determined by MTS assay.
  • Hades inhibits clonal growth.
  • E, F, G Akt downstream signaling is regulated by Hades.
  • HeLa cells were transfected with the indicated Hades plasmid (E) and Hades siRNA (F). After 24 hours incubation, the cells were lysed and immunoblotted with the indicated antibodies.
  • HeLa cells were cotransfected with TCF / LEF1 reporter plasmid, pTOPFLASH and the other plasmids indicated. After 24 hours of incubation, the cells were lysed and the reporter luciferase activity driven by the TCF response element was determined (G).
  • H, I Hades inhibited Akt-induced cell migration (H), but did not inhibit K284R ⁇ Akt-induced cell migration (I).
  • HeLa cells were cotransfected with plasmids as indicated. After 48 hours transfection, 10OT confluent cells were scratched to form wounds. 72 hours after the induction of the wound, cell migration was visualized on a phase contrast microscope.
  • J Cell growth of K284R-A-expressing cells is not inhibited by Hades. After HeLa cells were transfected with the plasmid as indicated, the number of viable cells was counted every 24 hours using a hemocytometer.
  • FIG. 7 shows that siRNA-mediated Hades expression clearance stabilizes endogenous Aktl and Akt2 proteins. Transfection of HeLa serotypes with Hades specific siRNA The effect of Hades clearance on Akt isoforms was determined by immunoblotting with Akt isoform-specific antibodies.
  • FIG. 8 shows that Hades induces Aktl degradation and co-locates with Aktl in the mitochondria.
  • A Hades induced Aktl degradation in both the cytosol and mitochondria. HeLa cells were cotransfected with the indicated plasmids and the cytoplasmic and mitochondrial fractions were isolated. Immunoblotting with the indicated antibodies determined the effect of Aktl degradation by Hades in the cytoplasm and mitochondrial fraction. Tubulin and Bcl-xL were used as cytoplasmic and mitochondrial markers, respectively.
  • B Colocation of Hades with Aktl-WT (top) and Aktl-myr (bottom) was investigated in HeLa cells.
  • FIG. 9 shows that serum decreases Akt protein stability, HeLa cells were serum-deficient for 20 hours, and a set of cells were stimulated with 10% fetal calf serum. Cells were then treated with 40 g / ml cyclonuximide for 0, 3, 6, 12, and 24 hours and endogenous Akt protein stability was examined using immunoblotting.
  • FIG. 10 shows that geldanamycin induces Akt degradation in both control cells and Hades-deficient cells.
  • HeLa cells were transfected with negative control siRNA or Hades siRNA and then treated with geldanamycin (50 nM) overnight. Protein levels of Hades and Akt were detected by immunoblotting.
  • FIG. 11 shows that Hades® mediated Akt proteolysis is recovered by wortmannin.
  • HEK293 cells were cotransfected with plasmids as indicated. After 24 hours of incubation, cells were treated with 10 ⁇ wortmannin for 4 hours. Cells were lysed and immunoblotted with the indicated antibodies.
  • 12 shows that mutation of lysine 284 prevents proteolytic degradation of isotopically expressed Akt by Hades.
  • HEK293 cells were cotransfected with plasmids for wild type or lysine mutations of Akt in combination with plasmids for EGFP-Hades or control EGFP. 24 hours after transfection, Cells were lysed and immunoblotted with the indicated antibodies.
  • FIG. 13 shows that the depletion of Hades in HeLa cells by shRNA increases cell growth. HeLa cells were infected with lentivirus expressing negative control shRNA or Hades shRNA. Cells for 2 weeks
  • FIG. 14 shows that Akt-mediated cell survival increase is reduced by Hades in a RING domain-dependent manner.
  • HeLa cells were transfected with plasmids for control EGFP, EGFP-tagged wild type Hades (EGFPHADES-WT) or RING domain mutant Hades (EGFP-HADES-MT) in combination with Myc / His-Akt-myr. Twenty four hours after transfection, cell viability was determined using MTS assay.
  • HeLa cells were EGFP control,
  • FIG. 17 shows that isotopically expressed Akt is degraded by Hades in He cells in the presence of a caspase inhibitor Z-VAD.
  • HEK293 cells were transfected with a plasmid for EGFP—HADES-WT or EGFP-HADES-MT with a combination of Myc / His-Akt-WT. 24 hours after transfection, cells were treated with Z-VAD (10 ⁇ ) and incubated for another 4 hours. Cell extracts were immunoblotted with the indicated antibodies.
  • FIG. 18 shows that Hades reduces colony formation in HCT116 colon cancer cell line.
  • Cancer cells are characterized by growing morphologically to form colonies.
  • the EGFP vector, the EGFP-Hades WT vector, and the EGFP-Hades MT vector were first transfected into colon cancer cell HCT116 through Lipofectamin 2000 according to the manufacturer's instructions. . Afterwards, the colony was cultured in a medium containing the antibiotic puromycin for 2 weeks to generate colonies. After that, the cells were immobilized and finally stained with 0.1% crystal violet. This is a graph of the colony numbers shown in (B)).
  • Human full-length cDNA libraries derived from HeLa and Chang cells were prepared to identify proteins that interact with Akt (Supplementary Materials and Methods).
  • Akt 1-binding protein In vitro transcription and translated protein pools from the cDNA library were screened for human Akt 1-binding protein with a modified SMART technique.
  • all experiments were conducted using human Aktl, which is denoted 'Akt' unless otherwise specified. remind From the library, several positive cDNA clones were isolated and one of the clones identified as the main Akt—binding partner (data not shown).
  • This clone contained several putative functional domains: a transmembrane (TM) domain or signal peptide at the N terminus, a 2 TM domain at the middle of the protein, and a RING finger domain at the C terminus (ie, a label of the E3 ligase domain).
  • TM transmembrane
  • the present invention focuses on functional communication between this clone and Akt, while Li et al. [23] named this protein MILAN, meaning mitochondrial ubiquitin ligase activator of NF- ⁇ .
  • FIG. 1A In vitro pull-down studies have shown that Akt physically interacts with Hades (FIG. 1A). The intermolecular association between endogenous Akt and Hades was investigated using coi ⁇ unoprecipitation assay (FIG. 1B). Human Akt has three isoforms: Aktl, Akt 2 and Akt3. Akt isosome-specific immunoprecipitation assays showed that Hades interacts with AI and Akt2 but not with Akt3 (FIG. 1C). Also, Hades deficiency increases protein levels of Aktl and Akt2 but not Akt3. (FIG. 7), it was reported that Akt2 was translocated to mitochondria, but not Akt3 [24]. Aktl's mitochondrial transposition is controversial [24-26].
  • Hades functions as an E3 ligase for Akt.
  • Hades expression resulted in a decrease in Akt protein levels in an E3 ligase activity-dependent manner.
  • proteasome inhibitor MG132 completely restored this decrease in intracellular Akt protein levels (FIG. 2A, lane 5).
  • FIG. 2B and 2C The assay demonstrated that recombinant and endogenous Akt proteins were ubiquitinated by Hades in an E3 ligase activity-dependent manner. The opposite was observed in Hades siRNA-induced knockdown cells.
  • FIG. 3B In vivo ubiquitination assays also demonstrated that serum stimulation induced endogenous Akt ubiquitination by Hades (FIG. 3C). In addition, it is a PI3K inhibitor that inhibits phosphorylation of Akt.
  • LY294002 inhibits Hades-induced Akt ubiquitination in serum-stimulated HEK293 cells Inhibition (Fig. X, lanes 5-8). These observations suggest an association between Akt activation status and Hades-mediated degradation. To demonstrate this hypothesis, an in vitro ubiquitination assay was performed in the presence of ⁇ -PPase [30, 31] having activity with phosphorylated serine, threonine and tyrosine residues. Treatment with ⁇ -PPase effectively eliminated phosphorylation of Akt residues to inhibit Akt ubiquitination (FIG. 3D), which led to testing whether serum or growth factors reduce the stability of endogenous Akt.
  • Akt activation is induced by cross-domain morphologically-mediated phosphorylation [32, 33].
  • Myristoylation signal-attached Akt (Akt-myr) is a constitutively active form of Akt [34].
  • Coimmunoprecipitation experiments showed that Hades interacted with ectopically expressed functionally active Akt (Myc / His-Akt-WT and Myc / His-Akt-myr), but dominant-negative Akt (Myc) in HEK293 cells. / His-Akt- DN) did not interact with (Fig. 4A).
  • Akt consists of an N-terminal flextrin homology (PH) domain, a central catalytic kinase domain (KD) and a C-terminal short regulatory hydrophobic motif [36]. Phosphorylation of Akt induces a structural change, separating the PH and HM domains from the KD domain [37].
  • Hades specifically ubiquitizes Akt WT as well as Akt-KD (FIG. 5A). We then determined which lysine residues of Akt-KD are required for protein stabilization and ubiquitination.
  • Akt plays an important role in regulating cell cycle progression, cell survival and cell growth [38].
  • EGFP-Hades-WT EGFP-Hades-
  • FIG. 6A Hades-deficient cells ⁇ grew faster than control cells (FIG. 13). Hades is responsible for the proliferation of HeLa cells in a concentration-dependent manner. Inhibition (FIG. 6B). MTS assay also showed that the increase in Akt-mediated cell viability is reduced by Hades overexpression in HeLa cells (FIG. 14). Cell growth inhibition by Hades was confirmed by clonality and anchorage-independent soft agar assays (FIG. 6D).
  • HeLa cells expressing EGFP-Hades-WT showed a 50% reduction in colony formation compared to colony formation of cells expressing EGFP-Hades-MT or control EGFP (FIG. 6C). These results indicate that Hades modulates the Akt downstream signaling pathway.
  • FIG. 6E we showed that both phosphorylation of Akt downstream target proteins GSK-3P and TSC2 are inhibited by Hades in a RING ligase activity-dependent manner (FIG. 6E).
  • FIG. 6F the opposite phenomenon was observed in a Hades siRNA-dependent manner (FIG. 6F).
  • pTOPFLASH reporter activity was measured to confirm inhibition of Akt downstream signaling by Hades (FIG. 6G).
  • Akt is known to activate NF- ⁇ and Hades is known to be an NF- ⁇ activator Reported [23,45]. Therefore, it is unclear whether Hades induces NF- ⁇ activity or inhibits NF- ⁇ activity by inhibiting Akt.
  • NF- ⁇ activity was tested using a reporter plasmid containing an NF- ⁇ —binding site (NF- ⁇ luciferase reporter). HeLa cells were treated with EGFP control, EGFP-
  • Hades WT and Hades MT increased NF- ⁇ activity (up to 3 fold), but upregulation of NF- ⁇ activity by Akt WT (up to 7 fold) was Hades E3 ligase-dependent Reduced in a manner (FIG. 16). These results indicate that Hades can upregulate F- ⁇ activity, but the effect is independent of Akt-mediated NF- ⁇ pathway,
  • Hades a negative regulator of Akt, with a RING finger domain and E3 ubiquitin ligase activity.
  • Akt interacts directly with Hades and is ubiquitized by Hades in vitro and in vivo. Therefore, Hades according to the present invention can inhibit the proliferation and survival of cancer cells by decomposing Akt and negatively controlling its downstream signaling, and thus can be usefully used as an anticancer agent.
  • CI ⁇ TEN is a negative regulator of the Akt / PKB signal transduction pathway and inhibits cell survival, proliferation, and migration. FASEB J 2005; 19: 971-973.
  • Zhang B, Huang J, Li HL, et al. GIDE is a mitochondrial E3 ubiquit in 1 igase that induces apoptosis and slows growth. Cell Res 2008; 18: 900-910.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to the use of Hades as a negative modulator of Akt, and more particularly, to a negative modulator of Akt (protein kinase B) or anticancer agent containing, as an active ingredient, the Hades protein or a gene that encodes Hades protein. Akt, which is a serine/threonine-specific protein kinase, functions in a variety of cell processes including cell proliferation, cell survival, and tumor development. The inventors of the present invention have identified Hades as being a negative modulator of Akt and having a RING finger domain and E3 ubiquitin ligase activity. According to the present invention, Akt may directly interact with Hades, and may be ubiquitinated by Hades in vitro and in vivo. Therefore, the Hades of the present invention may decompose Akt and negatively modulate the downstream signaling thereof to inhibit the proliferation and survival of cancer cells, and therefore may be effectively used as an anticancer agent.

Description

【명세서】  【Specification】
【발명의 명칭】 [Name of invention]
Akt 음성 조절제로서의 Hades 의 용도 【기술분야】  Use of Hades as Akt negative regulator
본 발명은 Akt 음성 조절제로서의 Hades의 용도에 관한 것으로, 더욱 구체적으로 Hades 단백질 또는 이를 코딩하는 유전자를 유효성분으로 함유하는 Akt (단백질 키나아제 B) 음성 (negative) 조절제 또는항암제에 관한 것이다.  The present invention relates to the use of Hades as an Akt negative regulator, and more particularly, to an Akt (protein kinase B) negative regulator or anticancer agent containing a Hades protein or a gene encoding the same as an active ingredient.
【배경기술】 Background Art
세린 /트레오닌 키나아제인 Akt (단백질 키나아제 B)는 성장인자 및 인슐린과 같은 필수적인 세포 자극에 대한 웅답에 관여한다 [1, 2]. Akt 활성화는 세포 증식 (proliferation), 단백질 합성, 세포 성장, 세포 사이클 진행 및 아팝토시스 (apoptosis)의 억제를 포함하는 다양한 생물학적 웅답을 조절한다 [3]. Akt 는 혈소판 -유래 성장인자, 인슐린, 표피성장인자, 염기성 섬유아세포 성장인자, 및 인슬린 -유사 성장인자 I를 통해 활성화된다 [2, 4, 5]. Akt 의 다운스트림 기질은 세포 및 분자 레벨에서 동정되었다. Akt 의 처음 동정된 기질인 글리코겐 신테이즈 키나아제 3 (GSK3)은 Akt 에 의해 직접 인산화를 통해 음성적으로 조절된다 [6]. Akt 가 GSK3 (특히 GSK3(3) 활성을 저해하면, β- 카테닌 안정화, 핵 위치화 및 유전자 활성화를 유도하게 된다 [7—9].  Akt (protein kinase B), a serine / threonine kinase, is involved in the response to essential cellular stimuli such as growth factors and insulin [1, 2]. Akt activation regulates a variety of biological responses, including cell proliferation, protein synthesis, cell growth, cell cycle progression, and inhibition of apoptosis [3]. Akt is activated through platelet-derived growth factor, insulin, epidermal growth factor, basic fibroblast growth factor, and insulin-like growth factor I [2, 4, 5]. Downstream substrates of Akt have been identified at the cellular and molecular level. Glycogen synthase kinase 3 (GSK3), the first identified substrate of Akt, is negatively regulated through direct phosphorylation by Akt [6]. When Akt inhibits GSK3 (especially GSK3 (3) activity), it induces β-catenin stabilization, nuclear localization and gene activation [7—9].
Akt 활성화의 여러가지 조절인자들이 동정되었으며, Akt 조절 시그날링 패스웨이에 대한 중요한 정보를 제공하였다. 포스파티딜리노시틀 3-키나아제 (PI3K) 및 포스파타제 및 텐신 호모로그 (PTEN)는 Akt 의 조절인자들이다 [10]. PI3K 는 Akt 인산화 /활성화를 유도하는 반면, PTEN는 PI3K에 의해 포스파티딜리노시를 -4, 5-비스포스페이트로부터 생성되는 포스파티딜리노시틀- 3,4,5—트리포스페이트의 탈인산화를 통해 Akt 활성화를 저해한다 [2, 4, 11]. C1 도메인 -함유 포스파타제 및 텐신 호모로그, 카르복시 -말단 조절 단백질, Trb3, 및 Keratin KIO과 같은 음성 조절인자들도 Akt 를 불활성화시킨다고 보고되었다 [12-15]. Several modulators of Akt activation were identified and provided important information on Akt regulatory signaling pathways. Phosphatidilinosyl 3-kinase (PI3K) and phosphatase and tensine homologs (PTEN) are regulators of Akt [10]. PI3K induces Akt phosphorylation / activation, while PTEN activates Akt via dephosphorylation of phosphatidylinocyte-3,4,5—triphosphate, which is produced from phosphatidylinosyl by -3 and 5-bisphosphate by PI3K. Inhibits [2, 4, 11]. C1 domain-containing phosphatase and tencin homologs, carboxy-terminal regulatory proteins, Trb3, And negative regulators such as Keratin KIO have also been reported to inactivate Akt [12-15].
유비퀴틴 -프로테아좀 시스템 (UPS)의 단백질분해 활성은 많은 세포 프로세스들에서 중요하다 [16]. 26S 프로테아좀에 의해 인식되어 파괴되는 폴리유비퀴틴-단백질 콘쥬게이트의 형성은 유비퀴틴 전달 반웅의 케스케이드에 참여하는 3가지 성분들이 관여한다: 유비퀴틴ᅳ활성화 효소 (E1), 유비퀴틴- 콘쥬게이팅 효소 (E2), 및 유비퀴틴 리가아제라고 불리우는 특이성 인자 (E3). E3 리가아제는 표적 단백질 선택의 특이성을 제어하며, 개별 표적 단백질들의 과다 (abundance)를 제어한다 [16]. 비록 Akt 유비퀴틴화 (ubiquitination)의 분자 패스웨이 및 생리학적 역할이 최근 연구되었지만 [17-22], Akt 유비퀴틴화에 대한 대부분은 불명확하게 남아 있었다.  The proteolytic activity of the ubiquitin-proteasome system (UPS) is important in many cellular processes [16]. The formation of polyubiquitin-protein conjugates recognized and disrupted by the 26S proteasome involves three components that participate in the cascade of ubiquitin transfer reactions: ubiquitin ᅳ activating enzyme (E1), ubiquitin-conjugating enzyme (E2) And specificity factor (E3) called ubiquitin ligase. E3 ligase controls the specificity of target protein selection and controls the abundance of individual target proteins [16]. Although the molecular pathways and physiological roles of Akt ubiquitination have been recently studied [17-22], much of Akt ubiquitination remains unclear.
여기서, 본 발명자들은 Hades를 Akt 의 새로운 E3 리가아제로서 동정하였다. 즉 본 발명자들은 세포 증식 (proliferation), 생존 (survival) 및 종양 (tumor) 발달을 포함한 다양한 세포 프로세스들에서 기능하는 Akt의 새로운 음성 조절인자로서 Hades를 동정하고 본 발명을 완성하였다.  Here we identified Hades as a new E3 ligase from Akt. We identified Hades as a new negative regulator of Akt that functions in a variety of cellular processes, including cell proliferation, survival and tumor development, and completed the present invention.
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
따라서, 본 발명의 주된 목적은 Akt 음성 조절제로서의 Hades의 용도를 제공하는 것이다.  It is therefore a primary object of the present invention to provide the use of Hades as an Akt negative modulator.
본 발명의 다른 목적은 Hades 단백질 또는 이를 코딩하는 유전자를 유효성분으로 함유하는 Akt 음성 조절제를 제공하는 것이다.  Another object of the present invention is to provide an Akt negative regulator containing a Hades protein or a gene encoding the same as an active ingredient.
본 발명의 다른 목적은 Hades 단백질 또는 이를 코딩하는 유전자를 유효성분으로 함유하는 항암제를 제공하는 것이다.  Another object of the present invention is to provide an anticancer agent containing a Hades protein or a gene encoding the same as an active ingredient.
본 발명의 다른 목적은 Akt와 Hades의 상호작용을 이용한 Akt 음성 또는 양성 조절제의 스크리닝 방법을 제공하는 것이다.  Another object of the present invention is to provide a method for screening an Akt negative or positive modulator using the interaction of Akt and Hades.
【기술적 해결방법 】 【Technical Solution】
본 발명의 한 양태에 따르면, 본 발명은 서열번호 2의 아미노산 서열을 갖는 Hades 단백질 또는 이를 코딩하는 유전자를 유효성분으로 함유하는 Akt (단백질 키나아제 B) 음성 (negative) 조절제를 제공한다. According to one aspect of the invention, the invention has an amino acid sequence of SEQ ID NO: Provided is an Akt (protein kinase B) negative modulator containing a Hades protein or a gene encoding the same as an active ingredient.
상기 Hades 단백질은 Akt와 상호작용할 수 있는 cDNA 라이브러리 단백질들 중에서 동정한 것으로서 그리스 신하에서 이름을 따와 명명한 것이다. Hades 단백질은 UniProtKB accession number Q969V5로 기탁되어 있으며, 서열번호 2의 아미노산 서열을 가진다. 상기 Akt (단백질 키나아제 B)는 세린 /트레오닌 키나아제로서 세포 증식 (proliferation), 세포 성장, 세포 사이클 진행 및 아팝토시스 (apoptosis)의 억제를 포함하는 다양한 생물학적 프로세스에 관여하는 것으로 알려져 있다. 특히, Aktl은 아팝토시스를 억제함으로써 세포 생존 패스웨이에 관여한다고 알려져 있으며, Akt2는 인슐린 시그날링 패스웨이에서 중요한 시그날링 분자로서 알려져 있다. 본 발명의 Hades는 Aktl 및 Akt2 둘다에 효과적으로 상호작용하는 것이 확인되었다. 여기서, 음성 (negative) 조절제란 상기 Akt 의 발현올 억제하거나 상기 Akt의 다운스트림 시그날링 패스웨이를 저해하는 조절인자를 의미한다.  The Hades protein was identified among cDNA library proteins capable of interacting with Akt and named after Greek subordinates. Hades protein has been deposited with UniProtKB accession number Q969V5 and has the amino acid sequence of SEQ ID NO: 2. The Akt (protein kinase B) is a serine / threonine kinase known to be involved in a variety of biological processes, including cell proliferation, cell growth, cell cycle progression and inhibition of apoptosis. In particular, Aktl is known to be involved in cell survival pathways by inhibiting apoptosis, and Akt2 is known as an important signaling molecule in the insulin signaling pathway. Hades of the present invention have been found to effectively interact with both Aktl and Akt2. Here, a negative regulator refers to a regulator that inhibits the expression of the Akt or inhibits the downstream signaling pathway of the Akt.
본 발명에 있어서, 상기 Hades를 코딩하는 유전자는 서열번호 2의 아미노산 서열을 코딩할 수 있는 어떤 염기서열도 가질 수 있으나, 바람직하게는 서열번호 1의 염기서열을 갖는 것올 특징으로 하는 Akt (단백질 키나아제 B) 음성 (negative) 조절제를 제공한다.  In the present invention, the gene encoding Hades may have any nucleotide sequence capable of encoding the amino acid sequence of SEQ ID NO: 2, preferably Akt (protein kinase) characterized by having a nucleotide sequence of SEQ ID NO: 1 B) provides negative modulators.
본 명세서에 사용된 용어, "유전자' '는 단백질 또는 폴리펩타이드를 생산하는데 필요한 코딩 서열을 포함하는 핵산 (예: DNA, RNA) 서열을 언급한다. 단백질 또는 폴리펩타이드는 완전한 길이의 코딩 서열에 의해 코딩되거나, 목적하는 활성 또는 기능적 특성이 유지되는 한, 코딩 서열의 일부분에 의해 코딩될 수 있다. 또한, 상기 용어는 구조 유전자의 코딩 영역 및 상기 유전자가 완전-길이의 mRNA의 길이에 상웅하도록 말단에서 약 1 kb 이상의 거리로 5' 및 As used herein, the term "gene" refers to a nucleic acid (eg, DNA, RNA) sequence comprising a coding sequence necessary to produce a protein or polypeptide, wherein the protein or polypeptide is defined by a full length coding sequence. Or may be encoded by a portion of a coding sequence so long as the desired active or functional property is maintained.The term also refers to the coding region of a structural gene and the terminus such that the gene conforms to the length of a full-length mRNA. At 5 'and over a distance of about 1 kb
3' 말단의 코딩 영역에 인접하게 위치된 서열을 포함한다. 코딩 영역의 5'에 위치되고 mRNA에 존재하는 서열을 5'-비해독 서열로 언급한다. 코딩 영역의 3' 또는 아래에 위치되고 mRNA에 존재하는 서열을 3'-비해독 서열로 언급한다. 용어A sequence located adjacent to the coding region at the 3 'end. Sequences located 5 ′ of the coding region and present in the mRNA are referred to as 5′-nontranslated sequences. Sequences located 3 'or below the coding region and present in the mRNA are referred to as 3'-untranslated sequences. Terms
"유전자' '는 유전자의 cDNA와 게놈 형태 모두를 포함한다. 게놈 형태 또는 유전자의 클론은 "인트론" 또는 "삽입 영역" 또는 "삽입 서열"로 불리는 비 -코딩 서열에 의해 방해되는 코딩 영역을 포함한다. 인트론은 핵 RNA (hnRNA)로 전사되는 유전자의 절편이다; 인트론은 조절 요소, 예를 들어 인핸서를 포함할 수 있다, 인트론은 핵 또는 초기 전사물로부터 제거되거나 "스플라이싱 "된다; 따라서, 인트론은 mRN 전사물에는 존재하지 않는다. mRNA는 해독 동안 기능은 초기 폴리펩타이드의 아미노산의 서열 또는 순서를 특정하는 기능을 한다. "Gene"'includes both the cDNA and genomic form of a gene. A genomic form or clone of a gene is a non-coding called an "intron" or "insertion region" or "insertion sequence" It includes a coding region that is interrupted by the sequence. Introns are segments of genes that are transcribed into nuclear RNA (hnRNA); Introns can include regulatory elements, eg, enhancers, introns are removed or “spliced” from the nucleus or initial transcript; Thus, introns are not present in mRN transcripts. The mRNA functions during translation to specify the sequence or sequence of amino acids of the initial polypeptide.
유전자 발현은 유전자에 코딩된 유전적 정보를 유전자의 (예를 들어, RNA 폴리머라제의 효소적 작용에 의한) 전사를 통해 RNA (예: mRNA rRNA, tRNA 또는 sn NA)로 전환시키고, 단백질 코딩 유전자에 대해, mRNA의 "해독' '을 통해 단백질로 전환시키는 과정을 언급한다. 유전자 발현은 과정 중의 많은 단계에서 조절될 수 있다; "상향-조절" 또는 "활성화는 유전자 발현 산물의 생성을 증가시키는 조절을 언급하며, "하향-조절" 또는 "억제 "는 산물을 감소시키는 조절을 언급한다. 상향 -조절 또는 하향-조절에 관련되는 분자 (예: 전사 인자)를 종종 각각 "활성화제" 및 ''억제제 "라 부른다. 인트론을 포함하는 것에 추가하여, 유전자의 게놈 형태는 또한 RNA 전사물에 존재하는 서열의 5' 및 3' 말단 모두에 위치된 서열을 포함할 수 있다. 이들 서열은 "플탱킹 (flanking)" 서열 또는 영역이라 언급된다 (이들 플탱킹 서열은 RNA 전사물에 존재하는 비 -해독 서열에 대해 5' 또는 3'로 위치된다). 5' 플랭킹 영역은 조절 서열, 예를 들어 유전자의 전사를 조절하거나 영향을 주는 프로모터 및 인핸서를 포함할 수 있다. 3' 플탱킹 영역은 전사의 종결, 전사후 절단 및 폴리아데닐화를 지시하는 서열을 포함할 수 있다.  Gene expression converts genetic information encoded in a gene into RNA (e.g., mRNA rRNA, tRNA or sn NA) through transcription of the gene (e.g., by enzymatic action of RNA polymerase), and protein coding gene For example, it refers to the process of converting into a protein through the "detoxification" of mRNA. Gene expression can be regulated at many stages in the process; "up-regulation" or "activation increases production of gene expression products. Refers to regulation, and "down-regulation" or "inhibition" refers to regulation that reduces the product. Molecules involved in up-regulation or down-regulation (e.g., transcription factors) are often referred to as "activators" and "inhibitors" respectively. May comprise sequences located at both the 5 'and 3' ends of an existing sequence, these sequences are referred to as "flanking" sequences or regions (these flanking sequences are non-existent in RNA transcripts). The 5 'flanking region may comprise regulatory sequences, eg, promoters and enhancers that regulate or influence the transcription of the gene. May comprise sequences directing termination of transcription, post-transcriptional cleavage and polyadenylation.
본 발명에 있어서, 상기 Hades 유전자는 재조합 발현백터에 삽입되어 있는 것을 특징으로 하는 Akt (단백질 키나아제 B) 음성 (negative) 조절제를 제공한다. 이 경우 상기 Hades 유전자는 재조합 발현 백터의 조절요소들과 작동가능하게 연결되어 삽입되어 있다.  In the present invention, the Hades gene provides an Akt (protein kinase B) negative regulator, which is inserted into a recombinant expression vector. In this case, the Hades gene is operably linked and inserted into the regulatory elements of the recombinant expression vector.
본 명세서에 사용된 용어, "백터' '는 하나의 세포로부터 또 다른 세포로 DNA 절편을 전달하는 핵산 분자에 대해 사용된다. 백터는 종종 플라스미드, 박테리오파아지 또는 식물 또는 동물 바이러스로부터 유래된다.  As used herein, the term “vector” is used for a nucleic acid molecule that transfers DNA fragments from one cell to another, which is often derived from plasmids, bacteriophages or plant or animal viruses.
본 명세서에 사용된 용어, "발현 백터"는 목적하는 코딩 서열 및 특정 숙주 유기체에서 작동적으로 연결된 코딩 서열의 발현에 필요한 적합한 핵산 서열을 포함하는 재조합 DNA를 언급한다. 원핵세포에서의 발현에 필요한 핵산 서열은 일반적으로, 다른 서열과 함께, 프로모터, 오퍼레이터 (임의), 및 리보좀 결합 부위를 포함한다. 진핵세포는 프로모터, 인핸서, 및 종결 및 폴리아데닐화 시그널을 이용하는 것으로 공지되어 있다. As used herein, the term “expression vector” refers to a suitable nucleic acid sequence necessary for the expression of the coding sequence of interest and the coding sequence operably linked in a particular host organism. Reference to recombinant DNA is included. Nucleic acid sequences required for expression in prokaryotic cells generally include promoters, operators (optional), and ribosomal binding sites, along with other sequences. Eukaryotic cells are known to utilize promoters, enhancers, and termination and polyadenylation signals.
본 명세서에 사용된 용어, "재조합 발현 백터"란 적당한 숙주세포에서 목적 단백질, 본 발명에서는 Hades 단백질을 발현할 수 있는 백터로서, 유전자 삽입물이 발현되도톡 작동가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 작제물을 말한다.  As used herein, the term "recombinant expression vector" is a vector capable of expressing a target protein in a suitable host cell, and in the present invention, a Hades protein, a gene comprising an essential regulatory element operably linked to express a gene insert. Say the construct.
상기 본 명세서에서 사용된 용어, "작동가능하게 연결된 (operably linked)"는 일반적 기능을 수행하도록 핵산 발현조절 서열과 목적하는 단백질을 코딩하는 핵산 서열이 기능적으로 연결되어 있는 것을 말한다. 예를 들어 프로모터와 단백질 또는 RNA를 코딩하는 핵산 서열이 작동가능하게 연결되어 코딩서열의 발현에 영향을 미칠 수 있다. 재조합 백터와의 작동적 연결은 당해 기술분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등올 사용한다.  As used herein, the term “operably linked” refers to a functional link between a nucleic acid expression control sequence and a nucleic acid sequence encoding a protein of interest to perform a general function. For example, a promoter and a nucleic acid sequence encoding a protein or RNA may be operably linked to affect expression of the coding sequence. Operational linkage with recombinant vectors can be made using genetic recombination techniques well known in the art, and site-specific DNA cleavage and ligation employs enzymes commonly known in the art.
적합한 발현백터는 프로모터, 개시코돈, 종결코돈, 폴리아데닐화 시그널 및 인핸서 같은 발현 조절 엘리먼트 등을 포함하며 목적에 따라 다양하게 제조될 수 있다. 개시 코돈 및 종결 코돈은 유전자 작제물이 투여되었을 때 개체에서 반드시 작용을 나타내야 하며 코딩 서열과 인프레임 (in frame)에 있어야 한다. 본 발명에 있어서, 상기 Hades는 RING 핑거ᅳ도메인을 가지고 E3-유비퀴틴 리가아제 (ligase) 활성을 갖는 것을 특징으로 하는 Akt (단백질 키나아제 B) 음성 (negative) 조절제를 제공한다. 본 발명의 실시예에서는 상기 Hades가 RING 핑거-도메인을 가지고 E3—유비퀴틴 리가아제 (ligase) 활성을 갖는다는 것을 증명하였다.  Suitable expression vectors include promoters, initiation codons, termination codons, expression control elements such as polyadenylation signals and enhancers, and the like, and can be prepared in various ways. The start codon and the stop codon must be functional in the subject when the gene construct is administered and must be in frame with the coding sequence. In the present invention, Hades provides an Akt (protein kinase B) negative modulator, characterized in that it has a RING finger domain and E3-ubiquitin ligase activity. In the examples of the present invention, it was demonstrated that Hades has RING finger-domain and has E3—ubiquitin ligase activity.
본 발명에 있어서, 상기 Akt는 Hades와 직접 상호작용하고 Hades에 의해 유비퀴틴화 (ubiquitinate)되는 것을 특징으로 하는 Akt (단백질 키나아제 B) 음성 (negative) 조절제를 제공한다. 본 발명의 실시예에서는 상기 Akt가 Hades와 직접 상호작용하고 Hades에 의해 유비퀴틴화 (ubiquiUnate)된다는 것을 증명하였다ᅳ In the present invention, the Akt provides an Akt (protein kinase B) negative modulator, characterized in that it directly interacts with Hades and is ubiquitinated by Hades. In the embodiment of the present invention, the Akt directly interacts with Hades and is ubiquiUnateed by Hades. Proved
본 발명에 있어서, 상기 Akt의 키나아제 도메인 (KD)이 Hades와 주로 연합하여 상호작용하는 것을 특징으로 하는 Akt (단백질 키나아제 B) 음성 (negative) 조절제를 제공한다. 본 발명의 실시예에서는 상기 Akt의 키나아제 도메인 (KD)이 Hades와 주로 연합하여 상호작용한다는 것을 증명하였다. 본 발명에 있어서, 상기 Hades에 의한 유비퀴틴화에 의해 Akt가 분해되어 Akt의 발현이 억제되는 것을 특징으로 하는 Akt (단백질 키나아제 B) 음성 (negative) 조절제를 제공한다. 본 발명의 실시예에서는 상기 Hades에 의한 유비퀴틴화에 의해 Akt가 분해되어 Akt의 발현이 억제된다는 것을 증명하였다. 본 발명에 있어서, 상기 Hades는 인산화 (phosphorylation )에 의해 활성화된 Akt만을 특이적으로 유비퀴틴화하는 것을 특징으로 하는 Akt (단백질 키나아제 B) 음성 (negative) 조절제를 제공한다. 본 발명의 실시예에서는 상기 Hades가 인산화 (phosphorylation)에 의해 활성화된 Akt만을 특이적으로 유비퀴틴화한다는 것을 증명하였다.  In the present invention, it provides an Akt (protein kinase B) negative modulator, characterized in that the kinase domain (KD) of the Akt interacts mainly in association with Hades. In the examples of the present invention it was demonstrated that the kinase domain (KD) of the Akt interacts mainly in association with Hades. In the present invention, Akt (protein kinase B) negative regulator is characterized in that Akt is decomposed by ubiquitination by Hades to inhibit Akt expression. In the examples of the present invention, it was demonstrated that Akt was decomposed by ubiquitination by Hades to inhibit Akt expression. In the present invention, Hades provides an Akt (protein kinase B) negative modulator, characterized in that only Akt activated by phosphorylation specifically ubiquitizes. In the embodiment of the present invention, it was demonstrated that Hades specifically ubiquitizes only Akt activated by phosphorylation.
본 발명에 있어서, 상기 Akt의 라이신 284가 Hades에 의한 유비퀴틴화의 주요 부위인 것을 특징으로 하는 Akt (단백질 키나아제 B) 음성 (negative) 조절제를 제공한다. 본 발명의 실시예에서는 상기 Akt의 라이신 284가 Hades에 의한유비퀴틴화의 주요 부위라는것을 증명하였다. ᅳ 본 발명에 있어서, 상기 Akt는 다운스트림 시그날링에 의해 세포 증식 (proliferation), 아폼토시스 (apoptosis)의 억제 및 세포 이주 (migration)을 유도하는 것을 특징으로 하는 Akt (단백질 키나아제 B) 음성 (negative) 조절제를 제공한다. Akt가 다운스트림 시그날링에 의해 세포 증식 (proliferation), 아픕토시스 (apoptosis)의 억제 및 세포 이주 (migration)을 유도한다는 사실은 종래문헌들을 통해 널리 알려져 있다.  In the present invention, Akt (protein kinase B) negative modulator, characterized in that the lysine 284 of Akt is the main site of ubiquitination by Hades. In the present invention, it was demonstrated that lysine 284 of Akt is a major site of ubiquitination by Hades. 에 In the present invention, the Akt is Akt (protein kinase B) negative, characterized by inducing cell proliferation, inhibition of apoptosis and cell migration by downstream signaling ( negative) provides a regulator. It is well known in the literature that Akt induces cell proliferation, inhibition of apoptosis and cell migration by downstream signaling.
본 발명에 있어서, 상기 Hades는 암세포의 증식, 생존 및 세포 이주를 억제하는 것을 특징으로 하는 Akt (단백질 키나아제 B) 음성 (negative) 조절제를 제공한다. 본 발명의 실시예에서는 상기 Hades가 Akt 의 다운스트림 시그날림을 음성적으로 조절함으로써 암세포의 증식, 생존 및 세포 이주를 억제한다는 것을 증명하였다. 본 발명의 실시예에서는 암세포의 대표적인 예로서, 자궁경부암세포인 HeLa 세포와 대장암세포인 HCT116을 대상으로 본 발명의 효과를 실험하였다. In the present invention, Hades provides an Akt (protein kinase B) negative modulator, characterized in that it inhibits the proliferation, survival and cell migration of cancer cells. Embodiments of the present invention demonstrated that Hades inhibits the proliferation, survival and cell migration of cancer cells by negatively regulating downstream signaling of Akt. In the embodiment of the present invention, as a representative example of cancer cells, The effect of the present invention was tested on HeLa cells, which are cervical cancer cells, and HCT116, which is colon cancer cells.
본 발명의 다른 양태에 따르면, 본 발명은 서열번호 2의 아미노산 서열을 갖는 Hades 단백질 또는 이를 코딩하는 유전자를 유효성분으로 함유하는, Akt (단백질 키나아제 B) 음성 (negative) 조절제로 기능하는 것을 특징으로 하는 항암제를 제공한다. 본 발명의 실시예에서는 상기 Hades가 Akt 의 다운스트림 시그날림을 음성적으로 조절함으로써 암세포의 증식, 생존 및 세포 이주를 억제한다는 것을 증명하였다. 본 발명의 실시예에서는 암세포의 대표적인 예로서, 자궁경부암세포인 HeLa 세포와 대장암세포인 HCT116을 대상으로 본 발명의 효과를 실험하였다.  According to another aspect of the present invention, the present invention is characterized in that it functions as an Akt (protein kinase B) negative regulator, containing a Hades protein having the amino acid sequence of SEQ ID NO: 2 or a gene encoding the same as an active ingredient. To provide an anticancer agent. Examples of the present invention demonstrated that Hades inhibits the proliferation, survival and cell migration of cancer cells by negatively regulating downstream signaling of Akt. In the embodiment of the present invention, as a representative example of cancer cells, the effect of the present invention was tested on HeLa cells, which are cervical cancer cells, and HCT116, which is colon cancer cells.
또한, 바람직하게는 본 발명의 항암제에 하나 이상의 약학적으로 허용가능한 담체 또는 부형제를 추가적으로 포함될 수 있다 (문헌 [Remington's Pharmaceut ical Sciences and US Pharmacopoeia. 1984, Mack Publishing Company, Easton, PA, USA] 참조).  In addition, preferably, the anticancer agent of the present invention may additionally include one or more pharmaceutically acceptable carriers or excipients (see Remington's Pharmaceutical Sciences and US Pharmacopoeia. 1984, Mack Publishing Company, Easton, PA, USA). .
본 명세서에서 사용된 "약제학적으로 허용되는"은 독성 또는 안정성 관점으로부터 인간을 포함하는 포유동물에 투여를 위해 적합함을 일반적으로 의미한다ᅳ 담체는 희석액, 부형제, 층전재, 접착제, —습윤제, 붕해제, 흡수 개선제, 계면 활성제, 흡수제 캐리어, 제약 분야에서 공통적으로 사용되는 광택제를 포함한다. 필요하다면, 향료나 감미료 등이 첨가될 수도 있다. 담체는 또한 pH, 삼투압, 점성, 무균도, 지질도, 용해도등 또다른 조건을 변형시키기 위해 약제학적으로 허용가능한 다른 부형제를 함유할 수 있다. 투여된 후 지속되거나 지연된 방출을 허용하는 약제학적으로 허용가능한 부형제 또한 포함될 수 있다.  As used herein, "pharmaceutically acceptable" generally means suitable for administration to a mammal, including humans, from a toxicity or stability standpoint. Carriers include diluents, excipients, layers, adhesives, wetting agents, Disintegrants, absorption enhancers, surfactants, absorbent carriers, brighteners commonly used in the pharmaceutical art. If necessary, flavors, sweeteners and the like may be added. The carrier may also contain other pharmaceutically acceptable excipients to modify other conditions such as pH, osmotic pressure, viscosity, asepticity, lipidity, solubility, and the like. Pharmaceutically acceptable excipients which allow sustained or delayed release after administration may also be included.
적절한 부형제는 예를 들어 물, 샐린, 덱스트로스, 글리세롤, 에탄올 등이다. 또한, 원하는 경우, 투여되는 약제학적 조성물은 예를 들어 소듐 아세테이트, 소르비탄 모노라우레이트, 트리에탄올아민 올리에이트, 트리에탄아민 소듐 아세테이트 등과 같은 습윤제 또는 에멀견제, pH 완층제 등과 같은 소량의 비독성 보조 물질을 함유할 수 있다.  Suitable excipients are, for example, water, saline, dextrose, glycerol, ethanol and the like. In addition, if desired, the pharmaceutical composition administered may contain a small amount of a nontoxic adjuvant such as, for example, a wetting or emulsifying agent such as sodium acetate, sorbitan monolaurate, triethanolamine oleate, triethanamine sodium acetate, pH buffer, and the like. May contain substances.
본 발명의 항암제 조성물은 예컨대, 전신적 또는 경구 경로에 의한 투여 경로를 통해 주입될 수 있다. 전신적 투여의 바람직한 형태는 주사, 일반적으로 정맥 주사를 포함한다. 다른 주사 경로는 예컨대, 피하, 근육내 또는 복강이 사용될 수 있다. 전신적 투여의 대체적 수단은 담즙산 또는 푸시딘 산 또는 다른 계면 활성제과 같은 침투제를 사용한 경점막 및 경피 투여를 포한한다. 또한 본 발명의 항암제 조성물은 장용제 또는 캡솔화 제제, 경구 투여제로 제제화하는 것도 가능하다. 이들 항암제의 투여는 연고, 페이스트, 겔 등의 형태로 국소적 및 /또는 부분적일 수 있다. The anticancer agent composition of the present invention can be administered, for example, by systemic or oral route. Can be injected via the route. Preferred forms of systemic administration include injection, generally intravenous injection. Other injection routes may be used, for example, subcutaneously, intramuscularly or intraperitoneally. Alternative means of systemic administration include transmucosal and transdermal administration using penetrants such as bile acids or fusidic acids or other surfactants. Moreover, the anticancer composition of this invention can also be formulated with an enteric agent, a capsolization agent, or an oral administration agent. Administration of these anticancer agents may be local and / or partial in the form of ointments, pastes, gels and the like.
본 발명의 항암제 조성물이 핵산을 포함하는 양태에서, 핵산은 백터에 포함될 수 있다. 예를 들어, 백터는 바이러스 백터일 수 있다. 특정 양태에서, 바이러스 백터는 아데노바이러스 백터이다. 일부 양태에서, 아데노바이러스는 프로타민과 함께 제형화된다. 임의의 수의 바이러스 입자가 환자에게 투여될 수 있다. 특정 양태에서, 투여 당 약 108 내지 약 1014개의 바이러스 입자가 환자에게 투여된다. In embodiments in which the anticancer agent composition of the present invention comprises a nucleic acid, the nucleic acid may be included in the vector. For example, the vector can be a viral vector. In certain embodiments, the viral vector is an adenovirus vector. In some embodiments, the adenovirus is formulated with protamine. Any number of viral particles can be administered to the patient. In certain embodiments, about 10 8 to about 10 14 virus particles are administered to the patient per administration.
핵산 조성물이 투여되는 본 발명의 일부 양태에서, 핵산 조성물은 하나 이상의 지질을 포함할 수 있다. 상술되는 어떠한 지질도 이러한 지질—핵산 조성물에 포함될 수 있다. 이러한 지질의 예는 D0TAP 및 콜레스테롤, 또는 이의 유도체를 포함한다.  In some embodiments of the invention in which the nucleic acid composition is administered, the nucleic acid composition may comprise one or more lipids. Any of the lipids described above can be included in such lipid—nucleic acid compositions. Examples of such lipids include D0TAP and cholesterol, or derivatives thereof.
본 명세서에서 사용된 용어 "치료적 유효량' '은 원하는 치료 요법에 따라 투여할 때, 원하는 치료적 효과 또는 반응을 일으키거나 원하는 이익을 제공하는 본 발명의 Hades 단백질 등 활성제의 함량을 의미한다. 실제로 투여되는 조성물의 양은 이상의 심각성, 투여되는 조성물 나이, 체증, 및 각 환자의 반웅, 선택된 투여 경로와 같은 치료하려는 질환에 속하는 환경에 기초하여, 의사에 의해 결정될 수 있으나, Hades 단백질인 의약의 경우, 암 환자에게 투여할 약학적으로 또는 예방학적으로 유효한 양은 0.01 내지 10 rag/kg/day 정도가 바람직하다.  As used herein, the term “therapeutically effective amount” means the amount of active agent, such as the Hades protein of the present invention, that when administered according to a desired therapeutic regimen produces a desired therapeutic effect or response or provides a desired benefit. The amount of the composition administered may be determined by the physician, based on the severity of the condition, the composition age administered, the body weight, and the condition of the patient to be treated, such as the reaction of each patient, the chosen route of administration, but for medications that are Hades proteins, A pharmaceutically or prophylactically effective amount to be administered to a cancer patient is preferably about 0.01 to 10 rag / kg / day.
본 발명의 다른 양태에 따르면, 본 발명은 다음 단계들을 포함하는 Akt According to another aspect of the invention, the invention comprises an Akt comprising the following steps
(단백질 키나아제 B) 음성 (negative) 조절제의 스크리닝 방법을 제공한다: (a) 동물세포에 Akt와 Hades를 공-형질감염 (cotransfection)시키는 단계; (b) 상기 형질감염된 동물세포에 임의의 약제를 처리하는 단계; 및, (c) 상기 동물세포에서 Akt와 Hades의 상호작용이 촉진되는지 여부를 결정하는 단계. (Protein Kinase B) Provides a method for screening negative modulators: (a) cotransfection of Akt and Hades to animal cells; (b) treating any of the agents on the transfected animal cells; And, (c) said Determining whether the interaction of Akt and Hades in animal cells is facilitated.
본 발명의 다른 양태에 따르면, 본 발명은 다음 단계들을 포함하는 Akt (단백질 키나아제 B) 양성 (positive) 조절제의 스크리닝 방법을 제공한다: (a) 동물세포에 Akt와 Hades를 공-형질전환 (cotransfection)시키는 단계; (b) 상기 형질전환된 동물세포에 임의의 약제를 처리하는 단계; 및, (c) 상기 동물세포에서 Akt와 Hades의 상호작용이 저해되는지 여부를 결정하는 단계. 이하, 본 발명을 보다 구체적으로 설명한다.  According to another aspect of the present invention, the present invention provides a method for screening an Akt (protein kinase B) positive modulator comprising the following steps: (a) cotransfection of Akt and Hades to an animal cell; ); (b) treating the transformed animal cell with any agent; And, (c) determining whether the interaction of Akt and Hades in the animal cell is inhibited. Hereinafter, the present invention will be described in more detail.
세린 /트레오닌 키나아제인 Akt 는 세포 증식 (proliferation), 세포 생존 (survival) 및 종양 (tumor) 발달올 포함한 다양한 세포 프로세스들에서 기능한다. 그 동안 Akt 를 음성적으로 조절하는 메커니즘에 대한 연구는 탈인산화 (dephosphorylation)-매개된 불활성화에 초점이 맞추어 졌다. 본 발명에서, 우리는 RING 핑거 도메인 및 E3 유비퀴틴 리가아제 활성을 갖는, Akt 의 음성 조절인자인 Hades를 동정하였다.. Akt 는 Hades와 직접적으로 상호작용하여, Hades에 의해 시험관내 (in vitro) 및 생체내 (in vivo)에서 유비퀴틴화된다고 밝혀졌다. 다른 분자 측정법으로 인산화된 Akt 가 Hades에 의한 상호작용 및 유비퀴틴화 둘다를 위한 실질적인 표적이라는 것을 증명하였다. 이들 기능 연구들의 결과는 Hades에 의한 Akt 의 분해가 암세포의 증식 및 생존을 억제할 수 있다는 것을 제시한다. 이들 데이터는 Akt-유비퀴틴화 시그날링 네트워크에 대한 규명을 제공한다.  Akt, a serine / threonine kinase, functions in a variety of cellular processes, including cell proliferation, cell survival, and tumor development. In the meantime, the study of the mechanisms that negatively regulate Akt has focused on dephosphorylation-mediated inactivation. In the present invention, we identified Hades, which is a negative regulator of Akt, having a RING finger domain and E3 ubiquitin ligase activity. Akt interacts directly with Hades, in vitro and by Hades. It has been found to be ubiquitinated in vivo. Other molecular assays have demonstrated that phosphorylated Akt is a practical target for both interaction and ubiquitination by Hades. The results of these functional studies suggest that the degradation of Akt by Hades can inhibit the proliferation and survival of cancer cells. These data provide a clarification for the Akt-ubiquitination signaling network.
본 발명는 Akt 세포신호전달의 음성적 조절에 관한 Hades의 기능을 증명한 것이다, Hades는 Akt와 in vivo, in vitro상에서 직접적으로 결합하였으며, The present invention demonstrates the function of Hades in the negative regulation of Akt cell signaling. Hades is directly bound to Akt in vivo and in vitro,
Akt의 키나아제 도메인 (kinase domain)을 통해 Hades와 결합됨을 밝혔다. 비록It was found to bind Hades through the kinase domain of Akt. Although
Akt에는 3가지의이소품이 존재하며, 이 이소폼들사이에 키나아제 도메인들은There are three isoforms in Akt, and the kinase domains between these isoforms
90-95% 정도 아미노산서열이 동일하지만, Hades는 Aktl과 Akt2에 결합하며,90-95% amino acid sequence is the same, but Hades binds to Aktl and Akt2,
Akt3에는 결합하지 않았다. 그리고 Akt와 가장 아미노산서열에서 동일한 SGK1도It did not bind to Akt3. And SGK1, the same amino acid sequence as Akt,
Hades에 의해서' 결합되거나 Hades에 의해서 유비퀴틴화되지 않았다 (도 2D). 뿐만아니라, Hades는 Akt 인산화효소에의해서인산화되지않음을확인하였다. It was not bound by ' Hades ' or ubiquitized by Hades (FIG. 2D). In addition, Hades confirmed that it was not phosphorylated by Akt kinase.
본 발명에서 Hades와 Akt사이의 상호관계성은 Akt의 인산화상태에 매우 의존적임을 발견했으며, 이로써 Akt 단백질 안정성이 엄격하게 조절된다는 사실을 알았다. Akt의 인산화를 유도하는 혈청자극은 Akt와 Hades간의 결합력을 증가시켰으며, 따라서 Akt 유비퀴틴화 및 Akt 분해를 증가시켰다. 이러한 인산화-의존적 Akt 단백질분해는 인위적으로 유전조작하여 항상 활성화 상태로 유지할 수 있는 Akt (Myc/His-Akt-myr)를 제작 및 사용하여 재검증하였다. 면역침강법으로 실험한 결과, Hades는 Akt-myr와 결합하였지만, 인산화되지 않은 우성음성 돌연변이 Akt (Akt-DN)와는 결합하지 않았다. 게다가 Akt의 인산화를 저해하는 약물인 LY294002 및 wortmannin를 세포에 처리한 결과 Hades를 통한 Akt의 분해가 저해됨을 보였다. 역으로 siRNA를 통한 Hades의 저발현유도는 Akt단백질 안정성을 증가시켰으며, p-Akt의 레벨도 증가되었다. 종합하자면, 본 데이터는 Hades는 p-Akt에 결합하는 것을 선호하며, 이로서 p-Akt의 분해가 촉진된다는것이다. In the present invention, the relationship between Hades and Akt is very dependent on the phosphorylation state of Akt. It was found that it was dependent, and thereby found that Akt protein stability was tightly regulated. Serum stimulation to induce phosphorylation of Akt increased the binding capacity between Akt and Hades, thus increasing Akt ubiquitination and Akt degradation. This phosphorylation-dependent Akt proteolysis was re-validated by constructing and using Akt (Myc / His-Akt-myr), which is artificially genetically engineered to remain active at all times. By immunoprecipitation, Hades bound to Akt-myr but not to unphosphorylated dominant negative mutant Akt (Akt-DN). In addition, treatment with ALY phosphorylation drugs LY294002 and wortmannin showed that the degradation of Akt through Hades was inhibited. Conversely, low expression of Hades via siRNA increased Akt protein stability and increased p-Akt levels. Taken together, the data suggest that Hades prefers to bind p-Akt, thereby promoting the degradation of p-Akt.
구조적으로살펴보자면, Akt는 그것의 효소활성담당 도메인에 존재하는 T- 루프안에 아미노산 308번째 트레오닌 (Thronine)에 인산화 및 비효소활성적 도메인인 C-말단에 위치한 473번째 세린 (Serine)에 인산화됨으로써 완전활성을 나타내게된다 [40]. Akt의 비활성화 상태에서는 Akt 내 PH 도메인과 키나아제 도메인사이에 결합이 형성되어 상위의 인산이노시타이드-의존적 단백질인산화효소 -1에 의한 Akt 의 루프내 인산화가 억제되어있다 [37, 41]. 비록 정확한 구조적기전에 대해서는 완벽하게 알려지진 않았지만, 본 발명 결과들을 종합하자면 Akt의 인산화는 Akt의 키나아제 도메인안에서 Hades와 결합할 수 있는 부분을 노출시킨다고 결론내릴수있다. 첫째, 풀 -다운 분석 데이터에서 Structurally, Akt is phosphorylated at the 473 th serine at the C-terminus, which is a phosphorylated and non-enzymatic domain at the amino acid 308 th thronine in the T-loop present in its enzyme activity domain. Complete activity [40]. In the inactivated state of Akt, a bond is formed between the PH domain and the kinase domain in Akt, thereby inhibiting the in-loop phosphorylation of Akt by the upper phosphate-independent-kinase kinase-1 [37, 41]. Although the exact structural mechanism is not fully known, it can be concluded that the phosphorylation of Akt exposes a portion capable of binding Hades in the kinase domain of Akt. First, in the pull-down analysis data
Akt의 키나아제 도메인과 Hades사이에 결합이 형성됨을 알수있었다. 둘째, Akt의 인산화부분에 해당하는 것을 작은 펩타이드로 합성하여 경쟁적안 결합분석법을 실시한 결과 인산화된 펩타이드와 비인산화된 펩타이드사이에 Hades의 결합력에는 차이가없었다 (미제시데이타). 셋째, 모방적으로 인산화의 형태를 띠는 Akt (T308D/S473D, 항상 활성화 형태를 모조한 유전자조작)도 Hades와 결합력을 가졌다. 따라서 이러한 결과들은 Hades와 결합에 있어서 Akt의 인산화잔기가 중요한것은아니라, 인산화됨으로나나타나는구조적변형이증요하다라는것이다. 유비퀴틴 -프로테이좀시스템 (UPS)에 의한 단백질분해는 다양한 세포내반웅을 조절할수있다 [16]. 먼저 UPS에 의한 Akt의 분해는 특수한 현상이 아니라 여러 다양한 세포에서 나타나는 광범위한 현상이라고 여러논문에서 보고하였다 [42]. Hsp90의 존재하에서 Akt단백질은 안정화되며, 따라서 Hsp90 저해제는 Akt 분해를 유도한다 [18]. 하지만, 본 발명에서 Hades에 의한 Akt의 분해는 Hsp저해제- 유도적 Akt의 분해와는 관련이 없음올 알았다. Riesterer등은 VEGF 저해재 PTK787/ZK222584에 의한 VEGF 신호전달의 억제는 UPS에 의한 Akt의 분해가 유도된다고하였다 [20, 42, 43]. 게다가, rapamycin이라는 약의 타겟으로 발굴된 단백질 mTOR의 저해재인 rapamycin을 처리하면 UPS-에의한 Akt 분해에 대한 VEGF의 보호기전이 없어짐이 보고되었다. Yan등은 해마신경에서 UPS에 의한 수지상 Akt의 분해가 선택적으로 일어난다고보고하였다 [43]. 그들은 수지상 부분의 Akt 비안정화는 신경극성을 형성하는데 필요함을알아냈다. 이렇게 UPS에 의한 Akt의 분해가 여러 다른 세포적 조건하에서 일어남이 보고되었지만, UPS에 의한 Akt분해를 유발하는 특이적 E3 리가아제에 대해선 아직까지 불분명한 상태였다. 최근 tetratricopeptide repeat domain 3가 Akt—특이적 E3 리가아제이며, 핵안에서 Akt의 유비퀴틴화와 분해가 유발됨을 보고하였다 [20]. 하지만 활성화된 Akt는 핵뿐만이아니라 세포질 및 세포막에 존재할 수 있어, 본 발명이 가지는 의미는 미토콘드리아에 존재하는 Hades[23]는 세포질에 존재하는 p-Akt를 음성적으로 조절한다는 것이다. It was found that a bond was formed between the kinase domain of Akt and Hades. Second, as a result of the synthesis of small peptides corresponding to the phosphorylated moiety of Akt, the competitive eye binding assay showed no difference in Hades' binding ability between phosphorylated and non-phosphorylated peptides (Mishiddata). Third, Akt (T308D / S473D), which mimics the form of phosphorylation mimically, also had a binding ability with Hades. Therefore, these results indicate that the phosphorylation residues of Akt are not important for binding with Hades, but the structural deformation that appears as phosphorylation is important. Proteolysis by the ubiquitin-proteome system (UPS) can regulate various intracellular reactions [16]. First, several papers reported that the breakdown of Akt by UPS is not a specific phenomenon but a wide range of events occurring in many different cells [42]. Akt protein is stabilized in the presence of Hsp90, and therefore Hsp90 inhibitors induce Akt degradation [18]. However, in the present invention, it was found that the degradation of Akt by Hades was not related to the degradation of Hsp inhibitor-induced Akt. Riesterer et al. Reported that inhibition of VEGF signaling by VEGF inhibitor PTK787 / ZK222584 induced degradation of Akt by UPS [20, 42, 43]. In addition, treatment with rapamycin, an inhibitor of protein mTOR discovered as a target for the drug rapamycin, has been reported to eliminate the protective mechanism of VEGF against Akt degradation by UPS-. Yan et al reported that the degradation of dendritic Akt by the UPS in the hippocampal nerve occurs selectively [43]. They found that Akt destabilization of the dendritic portion was necessary to form neuropolarity. Although the breakdown of Akt by UPS has been reported under different cellular conditions, it is still unclear about the specific E3 ligase that causes Akt degradation by UPS. Recently, tetratricopeptide repeat domain 3 is an Akt-specific E3 ligase and has been reported to induce ubiquitination and degradation of Akt in the nucleus [20]. However, activated Akt can exist not only in the nucleus but also in the cytoplasm and the cell membrane. Therefore, the meaning of the present invention is that Hades [23] in the mitochondria negatively regulates p-Akt in the cytoplasm.
이전의 보고에서 Hades의 세포내 위치는 미토콘드리이며, Hades는 세포사멸신호전달을 활성화시킨다고 밝혔다 [45]. 게다가, 다른 연구그룹에서 세포사멸이 일어나는 동안에 Akt의 분해는 카스파제 (caspase)에 의존적으로 일어난다고 보고하였다 [46]. 비록 본 발명에서 Hades에 의한 카스파제 활성화가 Akt 신호전달체계에 영향을미치는 것에 대한 가능성을 해결하진 못했지만, Hades-의존적 Akt의 분해는 카스파제 세포신호전달과 연관이 없어 보였다. 이유인즉은, 카스파제 저해재인 Z-VAD를 세포에 처리한 상태에서도 Hades에 의해서 Akt가 계속 분해되기 때문이다 (도 17).  In a previous report, Hades' intracellular location was mitochondria, and Hades activated apoptosis signaling [45]. In addition, another study group reported that the degradation of Akt during apoptosis is caspase dependent [46]. Although the present invention did not address the possibility that caspase activation by Hades affects the Akt signaling system, the degradation of Hades-dependent Akt did not seem to be associated with caspase cell signaling. This is because Akt continues to be decomposed by Hades even when cells were treated with Z-VAD, a caspase inhibitor (FIG. 17).
현재까지, 폴리유비퀴틴-의존적 단백질분해에 해당하는 Akt 내 아미노산잔기에 대해서 보고되지 않았다. 비록 Akt-KD와 Hades가 결합하지만, Akt-PH와 Akt-HM부분에 유비퀴틴화될 수 있다는 가능성을 배제하지는 않았다. 도 5A에서 제시했듯이, Hades에 의해서 Akt-PH와 Akt-丽이 아닌 Akt의 키나아제 도메인 부분에서 유비퀴틴화가 일어남을 보였다. 그리고 과연 Hades에 의해서 유비퀴틴이 결합되는 Akt내 잔기를 알아내기 위해, 본 발명에서 Akt- D내 11개의 라이신 잔기 (lysine residue)부분을 점돌연변이시켜 실험에 사용하였다. 그 결과 Akt내 284번째 라이신 잔기의 점돌연변이는 Akt 유비퀴틴화를 억제하는데 층분한 결과를 얻었다. 그러나 우리의 실험으로 Akt 단백질 안정성에 관여하는 것이 284잔기 부분만 아니라 다른 부분일 수 있는 가능성은 배제할 수는 없다. To date, no amino acid residues in Akt corresponding to polyubiquitin-dependent proteolysis have been reported. Although Akt-KD and Hades combine, The possibility of ubiquitination in the Akt-PH and Akt-HM moieties is not excluded. As shown in FIG. 5A, ubiquitination occurred by Hades in the kinase domain of Akt but not Akt-PH and Akt- 丽. In order to find out the residues in Akt that ubiquitin is bound by Hades, eleven lysine residues in Akt-D were used for the experiment. As a result, the point mutation of the 284th lysine residue in Akt was difficult to inhibit Akt ubiquitination. However, our experiments do not rule out the possibility that the involvement of Akt protein stability may be other than the 284 residue.
Akt효소는 하위의 여러 타겟물질의 인산화를 통해 세포성장과 세포이동에 관여하는 여러 세포내 과정을 촉진시키는데 중요한 역할을 담당하고 있다 [36]. 본 발명에서 Hades의 암세포내 과발현은 세포성장 및 성장능력올 Hades의 E3 리가아제 활성 의존적으로 억제함을 증명하였다. GSK-3(3와 TSC2는 잘 알려진  Akt enzymes play an important role in promoting various intracellular processes involved in cell growth and cell migration through phosphorylation of several downstream targets [36]. In the present invention, the overexpression of Hades in cancer cells demonstrated that the cell growth and growth capacity were dependent on Hades' E3 ligase activity. GSK-3 (3 and TSC2 are well known
Akt의 하위 타겟 단백질로서 단백질 합성, 세포 증식, 분화, 이동 그리고 세포사멸억제를 조절하는 것으로 알려져 있다 [47,48]. 여러 보고들에 따르면,As a sub-target protein of Akt, it is known to regulate protein synthesis, cell proliferation, differentiation, migration and cell death inhibition [47,48]. According to reports,
GSK-3(3의 세포사멸 촉진능력은 Akt에 의해 GSK-3(3내 9번째 아미노산인 세린 (serine)잔기게 인산화 됨으로써 억제됨이 보였다 [6]. 그리고 TSC2내The apoptosis-promoting capacity of GSK-3 (3) was inhibited by Akt by phosphorylation of GSK-3 (serine), the ninth amino acid in 3 [6].
1462번째 트레오닌 (threonine)잔기가 Akt에 의해서 인산화 되면, 인술린 신호전달등을 위한 세포 성장 신호를 촉진한다고 보고되었다 [49]. 따라서Phosphorylation of the 1462 threonine residues by Akt has been reported to promote cell growth signals for insulin signaling [49]. therefore
Hades에 의한 세포 사멸 및 생존 억제는 Akt를 분해 및 그로인한 Akt 인산화 타겟 단백질 GSK-3(3와 TSC2의 인산화 수준도 저해됨으로 나타나는 결과임을 증명하였다. 뿐만아니라, Hades에 의한 Akt 신호전달의 억제는 pTOPFLASH리포터 및 상처치유 분석법을 통해 Hades는 Akt의 신호를 음성적으로 조절함으로써 이러한 세포 과정을 조절할 수 있다는 결과를 얻었다. 게다가 우리는 Hades를 통한 NF-κΒ의 활성화는 Hades의 E3 리가아제 활성에 비의존적임을 밝혔으며, Akt를 통한 NF-κΒ의 활성화는 Hades의 E3 리가아제 활성에 의존적으로 감소됨을 보였다. 최근에 Zhang 등은 Hades/GIDE와 RING도메인이 없는 Hades모두 NF-κΒ의 활성을 약하게 나마 증가시킨다고 보고하였으며, ΙΚΚβ— KA and ΙκΒα (SS/M)의 과발현은 Hades에 의한 NF-κΒ의 활성을 억제하였지만, Hades/GIDE를 통한 세포 성장 억제 효과는 억제하지 못함도 보고하였다. 따라서, Hades에 의한 NF-κΒ의 활성화 기전의 아직 불분명하지만, NF-κΒ의 활성화는 Hades의 세포 성장 억제 능력과 관련이 없어 보인다. 그러므로, 비록 Hades는 NF-κΒ의 활성을 증가시키지만, 이러한 현상은 Akt에 의한 NF-κΒ기전과 다른 것으로 이해할 수 있다. Inhibition of apoptosis and survival by Hades proved to be the result of degradation of Akt and thus inhibition of Akt phosphorylation target protein GSK-3 (3 and TSC2 phosphorylation levels. In addition, inhibition of Akt signaling by Hades The pTOPFLASH reporter and wound healing assay resulted in Hades being able to modulate this cellular process by negatively regulating Akt signaling, and we also found that NF-κΒ activation through Hades was independent of Hades' E3 ligase activity. Activation of NF-κΒ via Akt is dependent on Hades' E3 ligase activity, and recently Zhang et al. Reported that both Hades / GIDE and RING domains without Hades were NF-κΒ. It was reported that the activity was slightly increased, and overexpression of ΙΚΚβ—KA and ΙκΒα (SS / M) inhibited NF-κΒ activity by Hades, but did not inhibit the effect of inhibiting cell growth through Hades / GIDE. . Thus, although the mechanism of activation of NF-κΒ by Hades is still unclear, the activation of NF-κΒ does not seem to be related to Hades' ability to inhibit cell growth. Therefore, although Hades increases the activity of NF-κΒ, this phenomenon can be understood to be different from the NF-κΒ mechanism by Akt.
본 발명의 결과들은 Hades는 Akt를 음성적으로 조절하여, 관련 많은 세포 과정을 조절할 수 있음을 증명하였다. 본 발명의 결과들은 또한 Akt의 조절자로서 미래의 신규 타겟으로 임상적인 중요성을 가질 수 있는 가능성을 제공할 수 있다.  The results of the present invention demonstrated that Hades can negatively regulate Akt and regulate many related cellular processes. The results of the present invention may also offer the possibility of having clinical significance as a future new target as a modulator of Akt.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1은 Akt가 시험관내 및 생체내에서 Hades E3 유비퀴틴 리가아제와 상호작용하는 것을 보여주는 도면이다.  1 shows Akt interacts with Hades E3 ubiquitin ligase in vitro and in vivo.
도 2는 Akt 의 유비퀴틴화 및 분해가 Hades에 의해 매개된다는 것을 보여주는 도면이다.  FIG. 2 shows that the ubiquitination and degradation of Akt is mediated by Hades.
도 3은 pAkt 가 Hades에 의해 유비퀴틴화의 우선적 (preferred) 기질이라는 것을 보여주는 도면이다.  FIG. 3 shows that pAkt is a preferred substrate of ubiquitination by Hades.
도 4는 활성화된 Akt가 유비퀴틴 E3 리가아제 Hades의 우선적 표적이라는 것을 보여주는 도면이다.  4 shows that activated Akt is the preferential target of the ubiquitin E3 ligase Hades.
도 5는 Akt 의 라이신 284 가 Hades-매개된 폴리유비퀴틴화를 위한 부위라는 것을 보여주는 도면이다.  FIG. 5 shows that lysine 284 of Akt is a site for Hades-mediated polyubiquitination.
도 6은 Akt 의 세포 성장 기능이 Hades에 의해 억제된다는 것을 보여주는 도면이다.  FIG. 6 shows that the cell growth function of Akt is inhibited by Hades.
도 7은 siRNA-매개된 Hades 발현 제거가 내생적 Aktl 및 Akt2 단백질들을 안정화시키는 것을 보여주는 도면이다. 도 8은 Hades가 Aktl 분해를 유도하고 미토콘드리아에서 Aktl과 공동위치된다는 것을 것을 보여주는 도면이다. FIG. 7 shows that siRNA-mediated Hades expression clearance stabilizes endogenous Aktl and Akt2 proteins. 8 shows that Hades induces Aktl degradation and co-locates with Aktl in the mitochondria.
도 9는 혈청이 Akt 단백질 안정성을 감소시키는 것을 보여주는 도면이다, 도 10은 젤다나마이신이 대조군 세포 및 Hades-결핍 세포 둘다에서 Akt 분해를 유도한다는 것을 보여주는 도면이다.  FIG. 9 shows that serum reduces Akt protein stability. FIG. 10 shows that geldanamycin induces Akt degradation in both control cells and Hades-deficient cells.
도 11은 Hades-매개된 Akt 단백질 분해가 워트만닌 (wortmannin)에 의해 회복된다는 것을 보여주는 도면이다.  FIG. 11 shows that Hades-mediated Akt proteolysis is restored by wortmannin.
도 12는 라이신 284의 돌연변이가 Hades에 의한 이소적으로 발현된 Akt의 단백질 분해를 방지한다는 것을 보여주는 도면이다.  12 shows that mutation of lysine 284 prevents proteolytic degradation of isotopically expressed Akt by Hades.
도 13은 shRNA 에 의한 HeLa 세포에서 Hades의 결핍이 세포 성장을 증가시킨다는 것을 보여주는 도면이다.  FIG. 13 shows that the depletion of Hades in HeLa cells by shRNA increases cell growth.
도 14는 Akt-매개된 세포 생존율 증가가 RING 도메인-의존적 방식으로 Hades에 의해 감소된다는 것을 보여주는 도면이다.  FIG. 14 shows that Akt-mediated cell survival increase is reduced by Hades in a RING domain-dependent manner.
도 15는 내생적 Hades의 결핍이 세포 이주를 저해한다는 것을 보여주는 도면이다.  FIG. 15 shows that endogenous Hades deficiency inhibits cell migration.
도 16은 Hades-유도된 NF-κΒ 활성화가 그것의 E3 리가아제 활성에 비의존적이고, Akt-유도된 NF-κΒ 활성화가 E3 리가아제 활성-의존적 방식으로  Figure 16 shows that Hades-induced NF-κΒ activation is independent of its E3 ligase activity, and Akt-induced NF-κΒ activation is in an E3 ligase activity-dependent manner.
Hades에 의해 감소된다는 것을 보여주는도면이다. Figure showing that it is reduced by Hades.
도 17은 이소적으로 발현된 Akt 가 카스파제 (caspase) 저해제 Z-VAD의 존재하에 HeLa 세포에서 Hades에 의해 분해된다는 것을 보여주는 도면이다.  FIG. 17 shows that isotopically expressed Akt is degraded by Hades in HeLa cells in the presence of a caspase inhibitor Z-VAD.
도 18은 Hades가 HCT116 대장암 (colon cancer) 세포주에서 콜로니 형성을 감소시키는 것을 보여주는 도면이다.  FIG. 18 shows that Hades reduces colony formation in HCT116 colon cancer cell line.
【발명올 실시하기 위한 형태 】 [Mode for carrying out the invention]
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다. 실시예 1: 플라스미드 (plasmids) Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only intended to illustrate the invention, and the scope of the invention is not to be construed as limited by these examples. Example 1 Plasmids
Akt와 Hades의 코딩 염기서열 부분은 자궁경부암 세포주 HeLa에서 유래된 cDNA을 대상으로 PCR을 통해 증폭 및 분리하였다. 증폭된 인간 Aktl cDNA는 pcDNA3.1-Myc/His (Invitrogen, Carlsbad, CA) , pGEX6p (Pr omega, Madison, WI) 그리고 pET28 (Novagen, EMD Chemicals Inc. Merck, Darmstat , Germany) 백터들에 클로닝하였다. HadescDNA는 pEGFP-C (Clontech, Mountain View, CA)와 PGEX6p 백터들에 클로닝하였다. Akt유전자를 기능별로 나눈 부분들은 pcDNA3.1 (Invitrogen) 백터에 클로닝 하였다. 우성음성돌연변이된 Akt유전자 (DN-Akt, T308A and S473A) , Akt 아미노산 서열 내 라이신 잔기 (lysine residue)의 돌연변이체들 그리고 Hades의 RING 도메인-돌연변이 (Hades MT-C302S and C305S)들은 QuikChange site-directed mutagenesis kit (Stratagene, Santa Clara, CA)의 제품을 이용하여 해당 제품의 지시사항에 따라 만들었다, HA- 유비퀴틴 (HA-Ub) 플라스미드 ρΜΊΊ23은 Dirk Bohmann (University of Rochester, Rochester, NY) 박사로부터 제공받았다. HA-Ub돌연변이형 유전자들은 (HA-Ub- K48R and HA_Ub-K63R)은 Zhijian Chen (University of Texas Southwestern Medical Center, Dallas, TX) 박사로부터 제공받았다. PCR에 사용된 프라이머 서열들은 하기 표 1에 나열되었다. The coding sequences of Akt and Hades were amplified and isolated by PCR of cDNA derived from cervical cancer cell line HeLa. Amplified human Aktl cDNA was cloned into pcDNA3.1-Myc / His (Invitrogen, Carlsbad, Calif.), PGEX6p (Pr omega, Madison, Wis.) And pET28 (Novagen, EMD Chemicals Inc. Merck, Darmstat, Germany) vectors. . HadescDNA was cloned into the pEGFP-C (Clontech, Mountain View , CA) , and P GEX6p vector. Functional divisions of the Akt gene were cloned into the pcDNA3.1 (Invitrogen) vector. The dominant negative mutated Akt genes (DN-Akt, T308A and S473A), mutants of lysine residues in the Akt amino acid sequence, and Hades' RING domain-mutations (Hades MT-C302S and C305S) were QuikChange site-directed Using the product of the mutagenesis kit (Stratagene, Santa Clara, CA), following the instructions for the product, HA-ubiquitin (HA-Ub) plasmid ρΜΊΊ23 was provided by Dr. Dirk Bohmann (University of Rochester, Rochester, NY). . HA-Ub mutant genes (HA-Ub-K48R and HA_Ub-K63R) were provided by Dr. Zhijian Chen (University of Texas Southwestern Medical Center, Dallas, TX). Primer sequences used for PCR are listed in Table 1 below.
[표 1] Akt 및 Hades 의 구조체를 생성하기 위해 사용된 프라이머 서열들 TABLE 1 Primer sequences used to generate constructs of Akt and Hades
Primer Sequence8 Primer Sequence 8
Myc/His-Akt_S GGAATTCC accatggcaatgagcgacgtgetattg  Myc / His-Akt_S GGAATTCC accatggcaatgagcgacgtgetattg
Myc/His-Akt_3 CCGCTCGAG cgggccgigccgctggccgag  Myc / His-Akt_3 CCGCTCGAG cgggccgigccgctggccgag
GST-Hades_5 GGAATTCC atggagagcggagggcggc  GST-Hades_5 GGAATTCC atggagagcggagggcggc
GST-Hades-3 GGAATTCC ttagctgttgtacaggggEatc  GST-Hades-3 GGAATTCC ttagctgttgtacaggggEatc
EGFI»-Hades_5 GGAATTCC atggagagcggagggcggc  EGFI »-Hades_5 GGAATTCC atggagagcggagggcggc
EGFP-Hades_3 CGCGGATCCGCGttagctgttgtacag  EGFP-Hades_3 CGCGGATCCGCGttagctgttgtacag
Akt-PH_5 GGAATTCC ac catggcaatgagc gacgtgctattg  Akt-PH_5 GGAATTCC ac catggcaatgagc gacgtgctattg
Akt-PH-3 CCGCTCGAG c gcac gcggtgcttgggc  Akt-PH-3 CCGCTCGAG c gcac gcggtgcttgggc
Akt- D_5 GGAATTCC accatggcaaccatgaacgagtttg  Akt- D_5 GGAATTCC accatggcaaccatgaacgagtttg
血-KD一 3 CCGCTCGAG cgaaagaagcgatgcigcatg  血 -KD 一 3 CCGCTCGAG cgaaagaagcgatgcigcatg
Akt-HM_5 GGAATTCC accatggcagc c ggtatcgtgtggc  Akt-HM_5 GGAATTCC accatggcagc c ggtatcgtgtggc
Akt-HMJ CCGCTCGAG c gggc cgtgcc gctggc cgag  Akt-HMJ CCGCTCGAG c gggc cgtgcc gctggc cgag
Myc/His-Aktmyi_5 GGAATTCC accatggggagcagcaagagcaagcccaagatgagcgacgtggctattg Myc / His-Aktmyi_5 GGAATTCC accatggggagcagcaagagcaagcccaagatgagcgacgtggctattg
Akt-T30SA_5 ggtgccaccatgaaggccttttgcggcaca Akt-T30SA_5 ggtgccaccatgaaggccttttgcggcaca
Akt-T30SA_3 gtgEgccgcaaaaggccttcatg tggcacc  Akt-T30SA_3 gtgEgccgcaaaaggccttcatg tggcacc
Akt-S473A_5 cacttc c c c ca gttc gcctactc ggc c age g  Akt-S473A_5 cacttc c c c ca gttc gcctactc ggc c age g
Akt-S473A_3 GgctggccgagtaggGgaactgggggaagt  Akt-S473A_3 GgctggccgagtaggGgaactgggggaagt
Hades-C302S_5 tgaagctgctcagaeacactacagaggcgctcttcagactctccctg  Hades-C302S_5 tgaagctgctcagaeacactacagaggcgctcttcagactctccctg
Hades-C302S_3 cagggagagtctgaagagcgcctctgtagtgEgtctgagcagcttca  Hades-C302S_3 cagggagagtctgaagagcgcctctgtagtgEgtctgagcagcttca
Hades-C30SS-5 ctaaagagc gc ctctgtag gtctctgagcagcttcaagtcctgc  Hades-C30SS-5 ctaaagagc gc ctctgtag gtctctgagcagcttcaagtcctgc
Had s-C305S-3 gcaggacttgaagctgctGagagacagtacagaggcgctcttcag  Had s-C305S-3 gcaggacttgaagctgctGagagacagtacagaggcgctcttcag
^Uppercase letters represent restriction enzyme sites for cloning. 실시예 2 : 재조합 단백질 (recombinant proteins)  ^ Uppercase letters represent restriction enzyme sites for cloning. Example 2: Recombinant Proteins
GST 와 GST가 표지된 Hades (GST-Hades) 단백질들은 대장균 (Escherichia coli) BL21균주를 사용하여 37도의 온도에서 0.1 mM IPTG를 처리하여 1시간동안 발현시켜 얻었다, 그 균주세포들을 대상으로 NPᅳ 40 용해 버퍼 (lysis buffer) (50 mMTris-HCl, pH 7.5, 150 mMNaCl , 1% NP-40, 1 mM DTT, 1 mM EDTA, lysozyme and protease inhibitors)를 사용하여 재현탁시켰다. 이 재조합 단백질들은 glutathione-sepharose 4B bead를 사용하여 해당 제품의 지시사항을 따라 추출하였으며, 추출된 것을 Slide-A-Lyzer dialysis cassette (Pierce, Rockford IL)의 제품을 사용하여 투석시켰으며, 최종적으로 Amicon Ultra-15 device (Millipore, Billerica, MA)을 사용하여 농축하였다, His-Akt는 Millipore회사에서 구입하였다. 실시예 3: 항체 및 시약 (Antibodies and reagents) GST- and GST-labeled Hades (GST-Hades) proteins are known as Escherichia coli coli) BL21 strain was used to treat 0.1 mM IPTG at 37 ° C. for 1 hour. NPk 40 lysis buffer (50 mMTris-HCl, pH 7.5, 150 mMNaCl) , 1% NP-40, 1 mM DTT, 1 mM EDTA, lysozyme and protease inhibitors). The recombinant proteins were extracted using glutathione-sepharose 4B bead following the instructions of the product, and the extract was dialyzed using the product of Slide-A-Lyzer dialysis cassette (Pierce, Rockford IL). Concentrated using an Ultra-15 device (Millipore, Billerica, Mass.), His-Akt was purchased from Millipore. Example 3: Antibodies and reagents
본 연구를 위해 사용한 항체는 다음과 같다. EFGP, Myc-tag, 인산화된 Akt (pAkt) (S308), pAkt (T473), Akt, pGSK-3 , TSC2, pTSC2 (TW62)의 항체는 Cell  The antibodies used for this study are as follows. Antibodies of EFGP, Myc-tag, Phosphorylated Akt (pAkt) (S308), pAkt (T473), Akt, pGSK-3, TSC2, pTSC2 (TW62)
Signaling Technology (Danvers, MA)에서 구입하였으며, HA-tag, GSK_3(3의항체는Purchased from Signaling Technology (Danvers, MA), and the HA-tag, GSK_3 (antibody of 3
Santa Cruz Biotechnology, (Santa Cruz, CA)에서구입하였으며, SGK1 하에는 Millipore에서 구입하여 사용하였다. Hades 다클론항체 (polyclonal antibody)는 아미노산서열 N-SGERPKGIQETEEM-C 및 N-SRAKPEDRESLKSAO (:로 이루어진 펩타이드를 사용하여 토끼에 주입후 면역화시켜 항체를 추출하였다. 암세포내 인위적으로 플라스미드를 주입하는 형질감염 (transfection)은 Lipofectai ne 2000 reagent (Invitrogen)을사용하여 수행하였다. Z-VAD 및 MG132는 Sigma—Aldrich (St. Louis, M0)에서 구입하여 사용하였다. LY294002 and wortmannin Cell Signaling Technology사에서 구입하였다. 3— (4,5-dimethylthiazol-2-yl )-5-(3ᅳ c ar boxyme t hoxypheny 1 ) -2- ( 4-su 1 f opheny 1 ) -2H- 1 e t r azo 1 i urn , inner salt (MTS) assay kit는 Pr omega사에서 구입하여 사용하였다. 실시예 4: 시험관내 단백질 결합 역가 측정 실험 (in vitro binding assay) 35S-로 표지된 단백질 및 단백질집합체는 시험관내 전사 /번역반웅을 통해 얻어내었으며, 이를가지고 3 의 GST 혹은 GST-Akt 재조합단백질이 부착된 glutathione-Sepharose 4B beads가 담긴 0.5% NP-40 버퍼를 흔합하여 37도에서 3시간반웅시켰으며, 3번의 수세를 한후, 샘플을 SDS 샘플버퍼에 넣어끓였다. 결합된 단백질들의 분석은 SDS-PAGE를 통하여 autoradiography를 사용하여 현상함으로써 이루어졌다. 실시예 5: 면역침강 (Immunoprecipitat ion) It was purchased from Santa Cruz Biotechnology, (Santa Cruz, CA), and was purchased from Millipore under SGK1. Hades polyclonal antibodies were injected into rabbits using peptides consisting of the amino acid sequences N-SGERPKGIQETEEM-C and N-SRAKPEDRESLKSAO (:) and immunized to extract the antibodies. transfection) was performed using Lipofectai ne 2000 reagent (Invitrogen) Z-VAD and MG132 were purchased from Sigma—Aldrich (St. Louis, M0) and purchased from LY294002 and wortmannin Cell Signaling Technology. — (4,5-dimethylthiazol-2-yl) -5- (3 ᅳ c ar boxyme t hoxypheny 1) -2- (4-su 1 f opheny 1) -2H-1 1 etr azo 1 i urn, inner salt ( MTS) assay kit was purchased from Pr omega, Inc. Example 4: In vitro binding assay assay 35S-labeled proteins and protein assemblies were obtained through in vitro transcription / translation reactions. With this, 3 GST or GST-Akt The total protein 0.5% NP-40 buffer containing glutathione-Sepharose 4B beads was mixed and reacted for 3 hours at 37 ° C. After washing three times, the sample was boiled in the SDS sample buffer. Analysis of bound proteins was done by developing using autoradiography via SDS-PAGE. Example 5: immunoprecipitat ion
면역침강실험은 CHAPS 버퍼 (0.5% CHAPS, 10 mMTris-HCl, pH 7.5, 1 mM Immunoprecipitation experiments were performed with CHAPS buffer (0.5% CHAPS, 10 mMTris-HCl, pH 7.5, 1 mM
MgC12, 1 mM EGTA, 5 mM β-mercaptoethanol and 10% glycerol)에 현탁된 세포파쇄액을 영상 4도에서 해당항체와 같이 반응시켜 수행되었다. 후에 Protein A/G PLUS-Agarose beads (Santa Cruz Biotechnology)를 첨가하였으며, 2시간 더 반응시켜 수세하여 마무리시켰다. 실시예 6: 시험관내유비퀴틴화실험 (in vitro ubiquit inat ion assay) 곤층세포에서 정제된 His-Akt 혹은 λ-단백질 탈인산화효소 (λ-PPase, NewCell disruption suspended in MgC12, 1 mM EGTA, 5 mM β-mercaptoethanol and 10% glycerol) was carried out by reacting with the corresponding antibody at 4 degrees. Afterwards Protein A / G PLUS-Agarose beads (Santa Cruz Biotechnology) was added, followed by further reaction for 2 hours and washed with water. Example 6 in vitro ubiquit inat ion assay His-Akt or λ-protein dephosphatase (λ-PPase, New)
England Biolabs, Ipswich, MA)를 처리한 His-Akt를 150ng의 재조합 EKBoston Biochem, Cambridge, MA)효소, 250 ng의 재조합 UbcH5C (Boston Biochem), 500 ng의 GST-Hades와 5 ug His-ubiquitin (Boston Biochem)들과 함께 유비퀴틴화 버퍼 (50 mMTris-HCl, pH 7.4, 5 mM MgC12, 15 μΜ ZnC12, 0.3 mM DTT, 0.006% DTT His-Akt treated with England Biolabs, Ipswich, MA), 150 ng of recombinant EKBoston Biochem, Cambridge, MA) enzyme, 250 ng of recombinant UbcH5C (Boston Biochem), 500 ng of GST-Hades and 5 ug His-ubiquitin (Boston) Biochem) with ubiquitination buffer (50 mMTris-HCl, pH 7.4, 5 mM MgC12, 15 μΜ ZnC12, 0.3 mM DTT, 0.006% DTT
2 mM ATP, 10 U creatine phosphokinase and 10 mM phosphocreatine)안에서 상온Room temperature in 2 mM ATP, 10 U creatine phosphokinase and 10 mM phosphocreatine
30도에서 90분간 반웅시켰다, λ-단백질 탈인산화효소를 처리한 유비퀴틴화 반웅은 His-Akt와 λ-PPase를 유비퀴틴화 버퍼안에서 상온 30도에서 1시간동안 반웅시켰으며, 반웅후 2배 농축된 탈인산화효소 저해제를 첨가하였다. 그후 그 반웅흔ᅳ합체에 El, E2, GST-Hades와 유비퀴틴을 첨가하여 반웅시켰다. 반웅산물은 8% SDS-PAGE를 통해 anti-Akt 항체를 사용하여 면역블로팅 (i隱 unoblotting)을 통해 분석되었다. 실시예 7: In vivo 유비퀴틴화실험 (in vivo ubiquit inat ion assay) 형질감염 (transfection)후 MG132 처리된 세포들을 PBS로 수세한후 200 μΐ의 변성용해버퍼 (denaturing lysis buffer, 50 mMTris-HCl, pH 7.4, 0.5% SDS and 70 mM β-mercaptoethanol)를 첨가하여 vortexing 및 상은 95도에서 15분간 끓임으로서 완전히 세포를 용해시켰다. 용해된 세포액은 800 μΐ of CHAPS버퍼를 넣어 회석하였다. 그 회석된 세포액을 Akt 항체와 protein agarose A/G PLUS- Agarose beads를 첨가하여 면역침강시켰다. 반응후, beads는 CHAPS lysis buffer에 5번수세한후, 끓였다. 유비퀴틴화된 Akt는 anti-HA항체를 사용한 면역블로팅을 통해 현상되었다. His-풀다운 실험 (His-pull down assay)은 변성된 세포액을 먼저 800 μΐ의 버퍼 A (50 mM NaH2P04, 300 mMNaCland 10 mM imidazole pH 8.0)를 첨가하여 회석한후, Ni-NTA bead를 첨가하여 상온 4도에서 밤새 반웅시켰다. 그 beads는 버퍼 B(50 mM NaH2P04, 300 mMNaCl and 20 mM imidazole, pH 8.0)를사용하여 5번 수세되었으며, 그후 bead에 결합된 단백질들은 SDS-PAGE 샘플버퍼를 넣고 끓여서 용리시켰다. 그 용리된 단백질들은 anti-HA항체를 사용하여 면역블로팅하였다, 실시예 8: RNA간섭 (R A interference) The reaction of ubiquitination reaction with λ-protein dephosphatase treated with His-Akt and λ-PPase was repeated for 1 hour at room temperature at 30 degrees in ubiquitination buffer. Dephosphatase inhibitors were added. The reaction mixture was then reacted with El, E2, GST-Hades and ubiquitin. Banung products were analyzed by immunoblotting (i 隱 unoblotting) using anti-Akt antibodies via 8% SDS-PAGE. Example 7: In vivo ubiquit inat ion assay After transfection, MG132 treated cells were washed with PBS and vortexed by adding 200 μΐ denaturing lysis buffer (50 mMTris-HCl, pH 7.4, 0.5% SDS and 70 mM β-mercaptoethanol). The phase completely lysed the cells by boiling at 95 degrees for 15 minutes. The lysed cell solution was added in 800 μΐ of CHAPS buffer. The lysed cell solution was immunoprecipitated with the addition of Akt antibody and protein agarose A / G PLUS-Agarose beads. After the reaction, the beads were washed with CHAPS lysis buffer five times and then boiled. Ubiquitinated Akt was developed through immunoblotting with anti-HA antibodies. His-pull down assay was performed by diluting the denatured cell solution with 800 μΐ buffer A (50 mM NaH2P04, 300 mMNaCland 10 mM imidazole pH 8.0), and then adding Ni-NTA bead to room temperature. I rebounded overnight at 4 degrees. The beads were washed five times using buffer B (50 mM NaH 2 P04, 300 mM NaCl and 20 mM imidazole, pH 8.0), and the proteins bound to the beads were eluted by boiling with SDS-PAGE sample buffer. The eluted proteins were immunoblotted using anti-HA antibody, Example 8: RNA interference (RA interference)
Hades를 타겟하는 siRNA는 Ambion사에서 구입하였다. 먼저 Hades si RNA (100 pmol)를 LipofectamineR AiMAX (Invitrogen)를 통해 혈청이 없는 배지상태에서 Sides targeting Hades were purchased from Ambion. First, Hades si RNA (100 pmol) was added to LipofectamineR AiMAX (Invitrogen) in serum-free medium.
HEK293 세포 (5x105 cells)에 형질도입시켰으며, 그후 정상배지로 교환시켜, 48 시간를 더반 웅시켜 마무리하였다. 실시예 9: 세포생존능력실험 (cell viability assay) HEK293 cells (5x105 cells) were transduced, then exchanged for normal medium and finished with durban manure for 48 hours. Example 9: Cell Viability Assay
세포생존능력은 일반적인 MTS 실험을 통해 관찰하였다. 결과는 그래프로 제시하였으며, 대조군을 통해 비교치를 퍼센트로 나타내었다. 실시예 10: 집락형성분석법 (Clonogenjc survival assay)  Cell viability was observed through a general MTS experiment. The results are presented graphically and compared in percentages with the control. Example 10: Colonogenjc survival assay
먼저 자궁경부암세포주인 HeLa세포에 녹색형광단백질 (EGFP)이 코딩된 대조군 플라스미드, EGFP가 표지된 Hades, 혹은 Hades MT유전자를 형질도입시켰다. 2 주후, 생긴 콜로니 (colonies)를 고정화시키고, 0.1% crystal violet를 가지고 염색하여 결과를 분석하였다. 부착비의존성 소프트 -아가분석법 (anchorage- independent soft-agar assay)은위에서 언급된 플라스미드들이 형질도입된 HeLa세포를 .45% low-melting 아가로즈와 10% 우태아혈청이 포함된 DMEM배지 3 ml에 첨가한후, 으 9% 아가로즈와 10% 우태아혈청이 포함된 DMEM 2ml를 추가적으로 첨가해 표면을덮었으며, 2주간 배양하여 콜로니를 관찰하였다. 실시예 11: 루시퍼레이즈리포터유전자분석법 (luciferase reporter gene assay) First, a control group encoded with green fluorescent protein (EGFP) in HeLa cells, a cervical cancer cell line Plasmids, EGFP-labeled Hades, or Hades MT gene were transduced. After 2 weeks, the resulting colonies (colonies) were fixed and stained with 0.1% crystal violet to analyze the results. Anchorage-independent soft-agar assay was performed on 3 ml of DMEM medium containing .45% low-melting agarose and 10% fetal bovine serum. After addition, 2 ml of DMEM containing 9% agarose and 10% fetal bovine serum was added to cover the surface, and colonies were observed by incubation for 2 weeks. Example 11: luciferase reporter gene assay
본실험은 TCF—반웅 루시퍼레이즈 플라스미드인 pTOPFLASH (upstate)를 사용하였다, pTOPFLASH백터에는 6개의 TCF-반웅사이트가 존재한다. 이백터를 형질도입시켜 48시간동안 반웅한후, 루시퍼레이즈 활성을 β-galactosidase를 대조군으로하여 몇배 증가되었는지 분석하였다. 해당결과는 3번의 독립적인 실험들을 바탕으로 평균낸값이다. 실시예 12: 전장 (full-length) 인간 cDNA라이브러리 구축  This experiment used the TCF-banung luciferase plasmid pTOPFLASH (upstate). There are six TCF-banung sites in the pTOPFLASH vector. After transfection of the vector and reaction for 48 hours, the luciferase activity was analyzed by how many times the β-galactosidase was increased as a control. The result is the average of three independent experiments. Example 12 Construction of a Full-Length Human cDNA Library
전장 인간 cDNA 라이브러리를 구축하기위해, 먼저 자궁경부암 HeLa 세포와 간 (liver) Chang 세포로 부터 TRIzol 시약 (Invitrogen, Carlsbad, CA)를 이용하여 해당 제조사의 지시사항을 토대로 total R A를 추출하였다, 노멀라이즈된 전장 cDNA 라이브러리는 SMART cDNA library construction kit (Clontech, Mountain View, CA)와 TRIfflER-cDNA normalization kit (Evrogen, Russia) 제품을 사용하여 해당 제조사의 지시사항을 토대로 제작하였다. 노멀라이즈된 cDNA는 CHROMA SPIN-400 column (Clontech)을 통해 크기별로 분별하였으며, 500 bp이상의 모든 cDNA를 대상으로 유전자 기법을 통하여 Sfil 제한효소 반웅 사이트가 삽입되도록 변형하였다. 그 후 pcDNA3.1(+) 백터 (Invitrogen)에 클로닝하였으며, TOP10 대장균에 형질전환하였다. 실시예 13: 신규 Akt-결합 가능 단백체 선별 실험 To construct a full-length human cDNA library, total RA was first extracted from cervical cancer HeLa cells and liver Chang cells using TRIzol reagent (Invitrogen, Carlsbad, CA) based on the manufacturer's instructions. The full length cDNA library was constructed using the SMART cDNA library construction kit (Clontech, Mountain View, CA) and TRIfflER-cDNA normalization kit (Evrogen, Russia) based on the manufacturer's instructions. The normalized cDNA was fractionated by size using CHROMA SPIN-400 column (Clontech) and modified to insert Sfil restriction enzyme reaction site for all cDNA of 500 bp or more through genetic method. It was then cloned into pcDNA3.1 (+) vector (Invitrogen) and transformed into TOP10 Escherichia coli. Example 13: Novel Akt-binable protein screening experiment
시험과내 결합 분석법을 통해 결합 양성적인 단백질 집합체가 발견되면, 해당 cDNA 집합체를 다시 세부적으로 나누어 한개의 양성적인 cDNA 클론이 분리될때까지 계속 실험하였다, Akt에 결합 양성적 클론들은 염기서열 분석을 통해 나온 정보를 NCBI 유전자 데이타베이스를 통해 확인하였다. 실시예 14: 준세포분획 (subcellular fractionation)  If binding positive protein aggregates were found by in vitro binding assays, the cDNA aggregates were further subdivided and continued until one positive cDNA clone was isolated. The information presented was confirmed through the NCBI gene database. Example 14 Subcellular Fractionation
자궁경부암 HeLa 세포를 100— mm 플레이트에 약 70% 정도의 군집을 가지도록 키운다음, 5 의 EGFP-MULAN-WT 흑은 EGFP-MULAN-MT를 Myc/His-Aktl-myr (2 g)과 함께 Lipofectamine 2000 (Invitrogen)를 이용하여 해당 제조사의 지시사항을 토대로 세포 안으로 형질도입시켰다. 그 후, 세포를 24시간 동안 계속 배양하였다. 배양된 세포를 수확한 후, NKM buffer (1 mM Tris-HCl (pH 7.4), 130 mM NaCl , 5 mM KC1 , 7.5 mM MgC12)에 재 현탁하였다. 해당 세포를 Dounce homogenizer를 이용하여 세포파쇄를 시켰으며, 2 M sucrose (최종 농도: 0.25M)를 첨가하여 상온 4도에서 12,000 x g의 세기로 5분동안 원심분리 시켰다. 원심분리 후 상층액을 새로운 튜브로 옮겼으며, 다시 7,000 X g의 세기로 상온 4도에서 15분동안 원심분리 하였다. 미토콘드리아 펠렛들을 현탁 버퍼 (10 mM Tris-HCl (pH 6.7), 0.15 mM MgC12, 0.25 mM sucrose, protease inhibitor cocktail)로 재 현탁시켜 다시 9,500 x g의 세기로 상온 4도에서 10분동안 원심분리 하였다. 원심분리 후 펠렛은 미토콘드리아 분획이며 , 상층액은 세포질 분획이다. 그 세포질 및 미토콘드리아 단백질들은 10-15% SDS-PAGE 및 해당 항체들을 이용하여 면역블로팅을 통해 분석되었다. 실시예 15: 면역형광분석법 (immunofluorescence assay)  Cervix cancer HeLa cells were grown to a population of about 70% on 100-mm plates, and then 5 EGFP-MULAN-WT black EGFP-MULAN-MT with Myc / His-Aktl-myr (2 g) Lipofectamine 2000 (Invitrogen) was used to transduce cells into cells based on the manufacturer's instructions. The cells were then incubated for 24 hours. Cultured cells were harvested and resuspended in NKM buffer (1 mM Tris-HCl, pH 7.4), 130 mM NaCl, 5 mM KC1, 7.5 mM MgC12). The cells were lysed using a Dounce homogenizer and centrifuged for 5 min at 12,000 x g at room temperature with 2 M sucrose (final concentration: 0.25M). After centrifugation, the supernatant was transferred to a new tube and again centrifuged for 15 min at 4 ° C. at a strength of 7,000 X g. Mitochondrial pellets were resuspended in suspension buffer (10 mM Tris-HCl (pH 6.7), 0.15 mM MgC12, 0.25 mM sucrose, protease inhibitor cocktail) and centrifuged at 4 ° C for 10 minutes at 9,500 xg. . After centrifugation the pellet is the mitochondrial fraction and the supernatant is the cytoplasmic fraction. The cytoplasm and mitochondrial proteins were analyzed via immunoblotting using 10-15% SDS-PAGE and corresponding antibodies. Example 15 Immunofluorescence Assay
형질도입된 세포를 유리 커버슬립 (coverslip)에 배양시킨 후, 4% 포름알데하이드로 상온에서 5분동안 반웅시켜 고정화 하였으며, PBS로 2번 수세하여 남은 용액을 제거한 후, pemeabilization 버퍼 (0.5¾> Triton X-100 in PBS)에 3분동안 반웅시켰다. 고정화된 세포를 PBS에 5% BSA와 2% goat serum이 담긴 것을 이용하여 30분 동안 반웅시켜 블러킹하였으며, anti-myc 항체 (1:200 in PBS)를 상온 4도에서 밤세 반응시켰다. 그 후 PBS로 세번 수세하여 남은 것들을 제거하였고, fluorescein Texas red가 표지된 2차 항체 (1:500 in PBS)를 이용하여 추가적으로 1시간동안 반웅시켰다. 그 커버슬립을 뒤집은 다음 Vectashield (Vector Laboratories, USA)에 단단히 고정화 시켜 confocal laser-scanning microscope (FV-1000 Spectral , Olympus , Japan)를 이용하여 형광분석을 실시 하였다. 실시예 16: 렌티바이러스 합성 및 감염 The transduced cells were incubated in glass coverslips and then fixed by reaction with 4% formaldehyde at room temperature for 5 minutes, and washed with PBS twice to remove the remaining solution, followed by pemeabilization buffer (0.5¾> Triton X-100 in PBS) for 3 minutes. Immobilized cells in PBS with 5% BSA and 2% goat serum After the reaction, the reaction was blocked for 30 minutes, and the anti-myc antibody (1: 200 in PBS) was reacted at room temperature at 4 ° C. overnight. After washing with PBS three times, the remaining ones were removed and reacted for an additional hour using a secondary antibody (1: 500 in PBS) labeled with fluorescein Texas red. The coverslips were turned upside down and firmly immobilized in Vectashield (Vector Laboratories, USA) and subjected to fluorescence analysis using a confocal laser-scanning microscope (FV-1000 Spectral, Olympus, Japan). Example 16: Lentivirus Synthesis and Infection
먼저, Hades shRNA가 코딩된 pLKO 백터 (Sigma)를 미생물에 주입시킨 것을 구입하였으며, 이러한 미생물로부터 해당 백터를 순수분리하였다, LK0 shRNA 렌티바이러스 백터는 Lipofectamine 2000을 통하여 pLKO-MULAN shRNA, packaging 플라스미드 (pCMV_A8.2) 그리고 VSVG 플라스미드를 293T 세포에 형질 도입시켜 생산되었다. 형질 도입 후 48시간 후에, 바이러스가 포함된 배지를 모와 0.45-μηι구멍을 가지는 필터를 통하여 걸러 바이러스를 농축하였다. 6-well 플레이트에 자궁경부암 HeLa 세포를 배양시킨 후, 그 해당 바이러스를 polybrene과 함께 처리하였으며, 6 시간 후, 배지를 새로 교환시켜 준다음, 마지막으로 1 g/ml puromycin이 첨가된 배지로 72시간 배양시켰다. 최종적으로 대조군 shRNA 와 Hades shRNA가 발현되는 puromycin-resistant HeLa 세포을 선택하여 실험에 사용하였다. 실시예 17: 통계분석  First, a Hades shRNA-coded pLKO vector (Sigma) was obtained by injecting the microorganism, and the vector was purely isolated from the microorganism. .2) and VSVG plasmids were produced by transducing into 293T cells. 48 hours after transfection, the virus-containing medium was collected and concentrated through a filter having 0.45-μηι pores. After culturing cervical cancer HeLa cells on a 6-well plate, the virus was treated with polybrene, and after 6 hours, the medium was changed anew and finally, 72 hours with 1 g / ml puromycin added medium. Incubated. Finally, puromycin-resistant HeLa cells expressing control shRNA and Hades shRNA were selected and used in the experiment. Example 17 Statistical Analysis
통계분석은 χ2검정법, 피셔의정확검정법 (Fisher's exact test) 그리고  Statistical analyzes include the χ2 test, Fisher's exact test and
Spearman등 위상관계수분석법을 통해 수행되었다. PO.05는 통계적으로 유의하다라고 말할 수 있다. This was done through Spearman et al. It can be said that PO.05 is statistically significant.
[실험결과] 도 1은 Akt가 시험관내 및 생체내에서 Hades E3 유비퀴틴 리가아제와 상호작용하는 것을 보여주는 도면이다. (A) Akt 및 Hades 사이의 시험관내 상호작용, 풀 -아운 분석법을 사용하여 35Sᅳ메티오닌-라벨된 Akt를 GST-태그된 Hades (GST-Hades)과의 상호작용에 대해 시험하였다. (B) Akt 및 Hades 사이의 생체내 연합. 지시된대로 플라스미드로 형질감염시킨후, HEK293 세포를 MG132로 처리한 다음, 항 -Akt 항체로 면역침강시키고 항 -EGFP로 면역블로팅시켰다. 면역글로불린 G를 음성 대조군으로 사용하였다. (C) Hades 및 Akt 이소픔들 사이의 내생적 상호작용. MG132-전처리된 HeLa 세포를 Akt 이소품-특이적 항체들로 면역침강시키고 항 -Hades 항체를 사용하여 면역블로팅을 실시하였다. (D) Akt 결실 돌연변이의 플라스미드의 기능적 도메인 구조 및 지도. (E) Akt 의 KD가 Hades와 상호작용한다. 풀 -다운 분석법을 사용하여 35S-메티오닌-라벨된 Akt 결실 돌연변이들을 GST-Hades와의 상호작용에 대해 시험하였다. 도 2는 Akt 의 유비퀴틴화 및 분해가 Hades에 의해 매개된다는 것을 보여주는 도면이다. (A) 세포의 Akt 단백질 레벨이 RING-의존적 방식으로 프로테아좀 분해 패스웨이를 통해 Hades에 의해 감소되었다. 지시된대로 플라스미드로 형질감염시킨후, HEK293 세포를 MG132로 처리한 다음, 지시된 항체들로 면역블로팅시켰다. GST의 이소적 발현 레벨을 형질감염 대조군으로 정규화 (normalize)하였다. (B) Akt는 시험관내에서 Hades에 의해 유비퀴틴화되었다, 시험관내 유비퀴틴화 분석법을 실시예에 기재된 대로 실시하였다. (C) Akt 는 생체내에서 Hades에 의해 유비퀴틴화되었다. 지시된대로 플라스미드로 형질감염시킨 후, HEK293 세포를 MG132로 처리한 다음, 실시예에 기재된 대로 생체내 유비퀴틴화 분석을 실시하였다. (D) Akt 의 유비퀴틴화는 Hades siRNA 형질감염에 의해 제거되었다. 지시된대로 siRNAs 및 HA_Ub 플라스미드로 형질감염시킨후에, HEK293 세포를 12시간동안 1 μΜ MG132로 처리한 다음, 생체내 유비퀴틴화 분석을 실시하였다. (Ε) Κ48-링크된 폴리유비퀴틴화가 Hades-의존적 Akt 유비퀴틴화를 책임진다. 지시된대로 HeLa 세포를 플라스미드로 형질감염시킨후, 생체내 유비퀴틴화를 실시하였다. 도 3은 pAkt 가 Hades에 의해 유비퀴틴화의 우선적 (preferred) 기질이라는 것을 보여주는 도면이다. (A) Hades 및 Akt 사이의 상호작용은 인산화된 Akt에 의존적이다. 혈청-결핍된 HeLa 세포를 6시간동안 10% 혈청 또는 인슐린과 MG132로 처리하였다. 다음 Akt 항체로 면역침강 분석법을 실시한 후, 항— Hades 항체로 면역블로팅을 실시하였다. (B) 세포의 pAkt 레벨이 Hades에 의해 감소되었다. 실싱예에 기재된대로 HeLa 세포를 플라스미드로 형질감염시켰다ᅳ 24시간 인큐베이션후에, 배지를 무혈청 배지로 교체시키고, 이어서 세포를 2시간동안 10% 혈청으로 자극시켰다. 세포를 용해시키고 지시된대로 항체로 면역블로팅시켰다, (C) 세포의 pAkt 단백질이 Hades에 의해 유비퀴틴화되었다ᅳ 지시된대로 플라스미드로 형질감염시킨 후, HeLa 세포를 18시간동안 무혈청 배지에서 인큐베이팅시켰다. 세포를 10 μΜ LY294002로 처리한 후, 10 μΜ[Experiment result] 1 shows Akt interacts with Hades E3 ubiquitin ligase in vitro and in vivo. (A) 35S 상호 methionine-labeled Akt was tested for interaction with GST-tagged Hades (GST-Hades) using an in vitro interaction between Akt and Hades, a full-announce assay. (B) In vivo association between Akt and Hades. After transfection with the plasmid as indicated, HEK293 cells were treated with MG132, followed by immunoprecipitation with anti-Akt antibody and immunoblotting with anti-EGFP. Immunoglobulin G was used as a negative control. (C) Endogenous interactions between Hades and Akt soothes. MG132-pretreated HeLa cells were immunoprecipitated with Akt isosome-specific antibodies and immunoblotting using anti-Hades antibodies. (D) Functional domain structure and guidance of plasmids of Akt deletion mutants. (E) Akt's KD interacts with Hades. 35S-methionine-labeled Akt deletion mutants were tested for interaction with GST-Hades using a pull-down assay. FIG. 2 shows that the ubiquitination and degradation of Akt is mediated by Hades. (A) Akt protein levels in cells were reduced by Hades via proteasome degradation pathways in a RING-dependent manner. After transfection with plasmid as indicated, HEK293 cells were treated with MG132 and immunoblotted with the indicated antibodies. Isotopic expression levels of GST were normalized to the transfection control. (B) Akt was ubiquitized by Hades in vitro, In vitro ubiquitination assay was performed as described in the Examples. (C) Akt was ubiquitized by Hades in vivo. After transfection with the plasmid as indicated, HEK293 cells were treated with MG132 and then subjected to an in vivo ubiquitination assay as described in the Examples. (D) Ubiquitination of Akt was eliminated by Hades siRNA transfection. After transfection with siRNAs and HA_Ub plasmid as indicated, HEK293 cells were treated with 1 μΜ MG132 for 12 hours and then subjected to in vivo ubiquitination assay. (Ε) Κ48-linked polyubiquitination is responsible for Hades-dependent Akt ubiquitination. HeLa cells were transfected with plasmids as indicated, followed by in vivo ubiquitination. FIG. 3 shows that pAkt is a preferred substrate of ubiquitination by Hades. (A) The interaction between Hades and Akt is dependent on phosphorylated Akt. Serum-deficient HeLa cells were treated with 10% serum or insulin and MG132 for 6 hours. Following immunoprecipitation assay with Akt antibody, immunoblotting with anti-Hades antibody was performed. (B) pAkt levels in cells were reduced by Hades. HeLa cells were transfected with plasmids as described in the Example. After 24 hours of incubation, the medium was replaced with serum free medium and the cells were then stimulated with 10% serum for 2 hours. Cells were lysed and immunoblotted with antibodies as indicated, (C) the pAkt protein of the cells was ubiquitinated by Hades ᅳ transfected with plasmid as indicated, and then HeLa cells were incubated in serum free medium for 18 hours. I was. Cells were treated with 10 μΜ LY294002 and then 10 μΜ
MG132의 존재하에 10% 혈청으로 자극시켰다. 세포 용해물을 지시된 항체들로 면역침강시키고 면역블로팅시켰다. (D) pAkt 의 탈인산화는 시험관내에서 Hades- 매개된 Akt 유비퀴틴화를 감소시켰다. 시험관내 유비퀴틴화 분석법을 Sf9 세포 및 λ-PPase로부터 유래된 정제된 인간 Akt 단백질로 실시하였다. 유비퀴틴화된Stimulated with 10% serum in the presence of MG132. Cell lysates were immunoprecipitated and immunoblotted with the indicated antibodies. (D) Dephosphorylation of pAkt reduced Hades-mediated Akt ubiquitination in vitro. In vitro ubiquitination assays were performed with purified human Akt protein derived from Sf9 cells and λ-PPase. Ubiquitinated
Akt 및 pAkt를 지시된 항체들로 면역블로팅에 의해 검출하였다. (E) Hades siRNA 처리는 Akt 단백질 안정성을 증가시켰다. HeLa 세포를 대조군 및 Hades siRNA로 형질감염시키고 지시된 시간동안 40 Mg/ml 사이클로핵시미드로 처리하고, 그 후Akt and pAkt were detected by immunoblotting with the indicated antibodies. (E) Hades siRNA treatment increased Akt protein stability. HeLa cells were transfected with control and Hades siRNA and treated with 40 Mg / ml cyclonucleoside for the indicated time, and then
Akt 단백질 턴오버 (turnover)를 면역블로팅을 통해 조사하였다. 도 4는 활성화된 Akt가 유비퀴틴 E3 리가아제 Hades의 우선적 표적이라는 것을 보여주는 도면이다. (A) Hades는 생체내에서 영구 (const itut ively) 활성Akt protein turnover was investigated via immunoblotting. 4 shows that activated Akt is the preferential target of the ubiquitin E3 ligase Hades. (A) Hades is const itutively active in vivo
Akt와 상호작용하였다. 지시된대로 플라스미드로 형질감염시킨 후, HEK293 세포를 MG132로 처리한 다음, 항 -myc 항체로 면역침강시키고 지시된 항체들로 면역블로팅시켰다, (B) 활성화된 Akt는 생체내에서 Hades에 의해 효율적으로 유비퀴틴화되었다. 지시된대로 플라스미드로 형질감염시킨후, HEK293 세포를Interacted with Akt. After transfection with the plasmid as indicated, HEK293 cells were treated with MG132 and then immunoprecipitated with anti-myc antibody and immunoblotted with the indicated antibodies, (B) Activated Akt was in vivo by Hades. It was efficiently ubiquitated. After transfection with the plasmid as indicated, HEK293 cells were removed.
MG132로 처리한 다음, 실시예에 기재된 대로 생체내 유비퀴틴화 분석을 실시하였다. (C) Hades—매개된 Akt의 단백질 분해는 LY294002에 의해 저해되었다. HEK293 세포를 지시된대로 플라스미드로 공형질감염시켰다. 24시간 인큐베이션후에, 세포를 4시간 동안 10 μΜ LY29402로 처리하였다. 세포를 용해시키고 지시된 항체들로 면역블로팅시켰다. GST의 이소적 발현 레벨을 형질감염 대조군으로 정규화하였다. 그래프는 3회 실험들로부터 Akt 의 상대 강도의 평균 ( mean) ± SD를 나타낸다. Treatment with MG132 followed by an in vivo ubiquitination assay as described in the Examples. Was carried out. (C) Proteolysis of Hades-mediated Akt was inhibited by LY294002. HEK293 cells were cotransfected with plasmids as indicated. After 24 hours incubation, cells were treated with 10 μΜ LY29402 for 4 hours. Cells were lysed and immunoblotted with the indicated antibodies. Isotopic expression levels of GST were normalized to transfection control. The graph shows the mean ± SD of the relative intensities of Akt from three experiments.
도 5는 Akt 의 라이신 284 가 Hades-매개된 폴리유비퀴틴화를 위한 부위라는 것을 보여주는 도면이다. (A) Akt 의 KD가 Hades에 의해 유비퀴틴화된다. 일련의 Akt 결실 구조체를 35S-메티오닌의 존재하에 전사시키고 번역시켰다. 상기 35S- 라벨된 Akt 돌연변이들을 시험관내 유비퀴틴화 분석법을 통해 Hades에 의해 유비퀴틴화시켰다ᅳ (B) Akt 의 라이신 284가 폴리유비퀴틴화 부위이다. HEK293 세포를 지시된대로 플라스미드로 공형질감염시켰다. 형질감염시킨지 24시간 후에, 세포를 10 μΜ MG132로 처리하고, 실시예에 기재된대로 생체내 유비퀴틴화 분석을 실시하였다. 전체 세포 용해물을 지시된 항체들로 면역블로팅에 의해 분석하였다. (C) K284R-Akt는 WT Akt 보다 더 안정하였다. HeLa 세포를 지시된 플라스미드로 공형질감염시킨 후, 40 Mg/ml 사이클로핵시미드로 처리하였다. 세포를 지시된 항체들로 면역블로팅시겼다. 도 6은 Akt 의 세포 성장 기능이 Hades에 의해 억제된다는 것을 보여주는 도면이다. (A) 세포 성장이 Hades에 의해 완화되었다. HeLa 세포에 지시된대로 플라스미드로 형질감염시킨 후, 생존 세포의 개수를 매 24시간마다 헤모사이토미터를 사용하여 계수하였다. 그 결과는 3회의 독립된 실험들을 대표한다. (B) Hades는 투여량-의존적 방식으로 세포 생존을 저해한다. HeLa 세포를 지시된대로 플라스미드로 형질감염시켰다. 24시간 인큐베이션후에, 세포 생존율을 MTS 분석법으로 결정하였다. (C) Hades는 클론원성 성장을 억제한다.FIG. 5 shows that lysine 284 of Akt is a site for Hades-mediated polyubiquitination. (A) KD of Akt is ubiquitized by Hades. A series of Akt deletion constructs were transcribed and translated in the presence of 35S-methionine. The 35S-labeled Akt mutations were ubiquitized by Hades via an in vitro ubiquitination assay. (B) Lysine 284 of Akt is the polyubiquitination site. HEK293 cells were cotransfected with plasmids as indicated. 24 hours after transfection, cells were treated with 10 μΜ MG132 and subjected to an in vivo ubiquitination assay as described in the Examples. Total cell lysates were analyzed by immunoblotting with the indicated antibodies. (C) K284R-Akt was more stable than WT Akt. HeLa cells were cotransfected with the indicated plasmids and then treated with 40 Mg / ml cyclonucleosides. Cells were immunoblotted with the indicated antibodies. FIG. 6 shows that the cell growth function of Akt is inhibited by Hades. (A) Cell growth was alleviated by Hades. After transfection with plasmids as indicated in HeLa cells, the number of viable cells was counted every 24 hours using a hemocytometer. The result is representative of three independent experiments. (B) Hades inhibits cell survival in a dose-dependent manner. HeLa cells were transfected with plasmids as indicated. After 24 hours of incubation, cell viability was determined by MTS assay. (C) Hades inhibits clonal growth.
HeLa 세포를 지시된대로 플라스미드로 형질감염시킨 후 2주간 G418 (500 g/ml) 함유 배지에서 인큐베이션시키고, 크리스탈 바이올렛으로 염색하였다. (D) Hades는 부착 (anchorage)-비의존적 성장을 저해한다. 소프트 -아가 분석법을 지시된 플라스미드로 형질감염된 HeLa 세포로 실시하였다. 시딩 (seeding)한지 2주후 콜로니를 계수하였다. 그 결과는 3회의 독립된 실험들을 대표한다 (평균 土 SD 도시). 통계학적 유의성올 위해 스튜던트 t-검정을 사용하였다 (*P <G418 (500 g / ml) for 2 weeks after HeLa cells were transfected with plasmid as indicated Incubated in containing medium and stained with crystal violet. (D) Hades inhibits anchorage-independent growth. Soft-agar assays were performed with HeLa cells transfected with the indicated plasmids. Colonies were counted two weeks after seeding. The results represent three independent experiments (mean 土 SD city). Student's t-test was used for statistical significance (* P <
0.05). (E, F, G) Akt 다운스트림 시그날링이 Hades에 의해 조절된다. HeLa 세포를 지시된 Hades 플라스미드 (E) 및 Hades siRNA (F)로 형질감염시켰다, 24시간 인큐베이션후에, 세포를 용해시키고 지시된 항체들로 면역블로팅시켯다. HeLa 세포를 TCF/LEF1 리포터 플라스미드, pTOPFLASH 및 지시된 다른 플라스미드들로 공형질감염시켰다. 24시간 인큐베이션후에, 세포를 용해시키고, TCF 응답 요소로 구동된 리포터 루시퍼라제 활성을 결정하였다 (G). (H, I) Hades는 Akt-유도된 세포 이주를 저해하지만 (H) , K284Rᅳ Akt-유도된 세포 이주는 저해하지 않았다 (I). HeLa 세포를 지시된대로 플라스미드로 공형질감염시켰다ᅳ 48시간 형질감염후에, 10OT 컨플루언트 (confluent) 세포들을 스크래치하여 상처를 형성시켰다. 상처를 유도한지 72시간후에, 세포의 이주를 위상차 현미경에서 가시화하였다. (J) K284R-A -발현 세포들의 세포 성장이 Hades에 의해 저해되지 않는다. HeLa 세포를 지시된대로 플라스미드로 형질감염시킨후, 생존 세포들의 개수를 매 24시간마다 헤모사이토미터를 사용하여 계수하였다. 도 7은 siRNA-매개된 Hades 발현 제거가 내생적 Aktl 및 Akt2 단백질들을 안정화시키는 것을 보여주는 도면이다. HeLa 세로를 Hades 특이적 siRNA로 형질감염시켯다ᅳ Akt 이소품들에 대한 Hades 제거의 효과는 Akt 이소폼-특이적 항체들로 면역블로팅하여 결정하였다. 도 8은 Hades가 Aktl 분해를 유도하고 미토콘드리아에서 Aktl과 공동위치된다는 것을 것을 보여주는 도면이다. (A) Hades는 세포질 (cytosol) 및 미토콘드리아 둘다에서 Aktl 분해를 유도하였다. HeLa 세포를 지시된 플라스미드로 공형질감염시키고, 세포질 및 미토콘드리아 분획들을 분리하였다. 지시된 항체들로 면역블로팅하여 세포질 및 미토콘드리아 분획에서 Hades에 의한 Aktl 분해의 효과를 결정하였다. 투블린 및 Bcl-xL를 각각 세포질 및 미토콘드리아 마커로 사용하였다. (B) Hades 와 Aktl-WT (top) 및 Aktl— myr (bottom)의 공동위치화를 HeLa 세포에서 조사하엿다. HeLa 세포를 지시된 플라스미드로 공형질감염시키고, 세포를 4시간동안 MG132 (10 μΜ)의 존재하에 인큐베이팅하고, 고정화한 후 공초점 현미경으로 가시화하였다. DAPI 염색을 사용하여 핵을 보이게 하였다. 약어 : cyto, 세포질 1; mi to, 미토콘드리아 도 9는 혈청이 Akt 단백질 안정성을 감소시키는 것을 보여주는 도면이다, HeLa 세포를 20시간동안 혈청-결핍시키고, 한세트의 세포들을 10% 우태아 혈청으로 자극하였다. 이어서 세포를 0, 3, 6, 12, 및 24 시간동안 40 g/ml 시클로핵시미드로 처리하고, 내생적 Akt 단백질 안정성을 면역블로팅을 사용하여 조사하였다. 도 10은 젤다나마이신이 대조군 세포 및 Hades-결핍 세포 둘다에서 Akt 분해를 유도한다는 것을 보여주는 도면이다. HeLa 세포를 음성 대조군 siRNA 또는 Hades siRNA로 형질감염시킨 다음, 하룻밤 젤다나마이신 (50 nM)으로 처리하엿다. Hades 및 Akt의 단백질 레벨을 면역블로팅에 의해 검출하였다. 도 11은 Hadesᅳ매개된 Akt 단백질 분해가 워트만닌 (wortmannin)에 의해 회복된다는 것을 보여주는 도면이다. HEK293 세포를 지시된대로 플라스미드로 공형질감염시켰다. 24 시간 인큐베이션후에, 세포를 4시간동안 10 μΜ 워트만닌으로 처리하였다. 세포를 용해시키고 지시된 항체들로.면역블로팅시켰다. 도 12는 라이신 284의 돌연변이가 Hades에 의한 이소적으로 발현된 Akt의 단백질 분해를 방지한다는 것을 보여주는 도면이다. HEK293 세포를 EGFP-Hades 또는 대조군 EGFP 용 플라스미드와 조합으로 Akt 의 야생형 또는 라이신 돌연변이 용 플라스미드로 공형질감염시켰다. 형질감염시킨지 24시간후에, 세포를 용해하고 지시된 항체들로 면역블로팅하였다. 도 13은 shRNA 에 의한 HeLa 세포에서 Hades의 결핍이 세포 성장을 증가시킨다는 것을 보여주는 도면이다. HeLa 세포를 음성 대조군 shRNA 또는 Hades shRNA를 발현하는 렌티바이러스 (lentivirus)로 감염시켰다. 세포를 2주간0.05). (E, F, G) Akt downstream signaling is regulated by Hades. HeLa cells were transfected with the indicated Hades plasmid (E) and Hades siRNA (F). After 24 hours incubation, the cells were lysed and immunoblotted with the indicated antibodies. HeLa cells were cotransfected with TCF / LEF1 reporter plasmid, pTOPFLASH and the other plasmids indicated. After 24 hours of incubation, the cells were lysed and the reporter luciferase activity driven by the TCF response element was determined (G). (H, I) Hades inhibited Akt-induced cell migration (H), but did not inhibit K284R ᅳ Akt-induced cell migration (I). HeLa cells were cotransfected with plasmids as indicated. After 48 hours transfection, 10OT confluent cells were scratched to form wounds. 72 hours after the induction of the wound, cell migration was visualized on a phase contrast microscope. (J) Cell growth of K284R-A-expressing cells is not inhibited by Hades. After HeLa cells were transfected with the plasmid as indicated, the number of viable cells was counted every 24 hours using a hemocytometer. FIG. 7 shows that siRNA-mediated Hades expression clearance stabilizes endogenous Aktl and Akt2 proteins. Transfection of HeLa serotypes with Hades specific siRNA The effect of Hades clearance on Akt isoforms was determined by immunoblotting with Akt isoform-specific antibodies. 8 shows that Hades induces Aktl degradation and co-locates with Aktl in the mitochondria. (A) Hades induced Aktl degradation in both the cytosol and mitochondria. HeLa cells were cotransfected with the indicated plasmids and the cytoplasmic and mitochondrial fractions were isolated. Immunoblotting with the indicated antibodies determined the effect of Aktl degradation by Hades in the cytoplasm and mitochondrial fraction. Tubulin and Bcl-xL were used as cytoplasmic and mitochondrial markers, respectively. (B) Colocation of Hades with Aktl-WT (top) and Aktl-myr (bottom) was investigated in HeLa cells. HeLa cells were cotransfected with the indicated plasmids and the cells were incubated in the presence of MG132 (10 μΜ) for 4 hours, immobilized and visualized by confocal microscopy. DAPI staining was used to make nuclei visible. Abbreviations: cyto, cytoplasm 1; mi to, mitochondria FIG. 9 shows that serum decreases Akt protein stability, HeLa cells were serum-deficient for 20 hours, and a set of cells were stimulated with 10% fetal calf serum. Cells were then treated with 40 g / ml cyclonuximide for 0, 3, 6, 12, and 24 hours and endogenous Akt protein stability was examined using immunoblotting. FIG. 10 shows that geldanamycin induces Akt degradation in both control cells and Hades-deficient cells. HeLa cells were transfected with negative control siRNA or Hades siRNA and then treated with geldanamycin (50 nM) overnight. Protein levels of Hades and Akt were detected by immunoblotting. FIG. 11 shows that Hades® mediated Akt proteolysis is recovered by wortmannin. HEK293 cells were cotransfected with plasmids as indicated. After 24 hours of incubation, cells were treated with 10 μΜ wortmannin for 4 hours. Cells were lysed and immunoblotted with the indicated antibodies. 12 shows that mutation of lysine 284 prevents proteolytic degradation of isotopically expressed Akt by Hades. HEK293 cells were cotransfected with plasmids for wild type or lysine mutations of Akt in combination with plasmids for EGFP-Hades or control EGFP. 24 hours after transfection, Cells were lysed and immunoblotted with the indicated antibodies. FIG. 13 shows that the depletion of Hades in HeLa cells by shRNA increases cell growth. HeLa cells were infected with lentivirus expressing negative control shRNA or Hades shRNA. Cells for 2 weeks
5 Mg/ml 푸로마이신으로 선택하였다. 세포 성장은 매 24시간 마다 헤모사아토미터를 사용하여 계수함으로써 결정하였다. 데이터는 3회 독립 실험들의 평균으로 나타내었다 (평균 ± SD 도시). 도 14는 Akt-매개된 세포 생존율 증가가 RING 도메인-의존적 방식으로 Hades에 의해 감소된다는 것을 보여주는 도면이다. HeLa 세포를 Myc/His-Akt- myr와 조합으로 대조군 EGFP, EGFP-태그된 야생형 Hades (EGFPHADES-WT) 또는 RING 도메인 돌연변이 Hades (EGFP-HADES-MT) 용 플라스미드들로 형질감염시켰다. 형질감염한지 24시간후에, 세포 생존율을 MTS 분석법을 사용하여 결정하였다.5 Mg / ml puromycin was selected. Cell growth was determined by counting using a hemosatometer every 24 hours. Data is shown as mean of 3 independent experiments (mean ± SD plot). FIG. 14 shows that Akt-mediated cell survival increase is reduced by Hades in a RING domain-dependent manner. HeLa cells were transfected with plasmids for control EGFP, EGFP-tagged wild type Hades (EGFPHADES-WT) or RING domain mutant Hades (EGFP-HADES-MT) in combination with Myc / His-Akt-myr. Twenty four hours after transfection, cell viability was determined using MTS assay.
3회 독립 실험들을 실시하였다. 그 결과는 3회 독립 실험들을 대표한다 (평균 土 SD 도시). 스튜던트 t-검정을 사용하여 통계적 유의성을 결정하였다 (*P < 0.05). 도 15는 내생적 Hades의 결핍이 세포 이주를 저해한다는 것올 보여주는 도면이다, 렌티바이러스-매개된 Hades-결핍 세포 및 대조군 세포를 인큐베이팅하고, 100% 콘플루언트 세포들을 스크래치하여 상처를 형성하였다. 세포 이주는 상처를 형성하기 위해 스크래칭한지 72시간후에 위상차 현미경으로 가시화하였다. 도 16은 Hades-유도된 NF-κΒ 활성화가 그것의 E3 리가아제 활성에 비의존적이고, Akt—유도된 NF— κΒ 활성화가 Ε3 리가아제 활성-의존적 방식으로Three independent experiments were conducted. The results represent three independent experiments (mean 土 SD city). Student's t-test was used to determine statistical significance (* P <0.05). 15 shows that endogenous Hades deficiency inhibits cell migration, incubating lentiviral-mediated Hades-deficient cells and control cells and scratching 100% confluent cells to form a wound. Cell migration was visualized by phase contrast microscopy 72 hours after scratching to form a wound. Figure 16 shows that Hades-induced NF-κΒ activation is independent of its E3 ligase activity, and Akt-induced NF—κΒ activation is in a Ε3 ligase activity-dependent manner.
Hades에 의해 감소된다는 것을 보여주는도면이다. HeLa 세포를 EGFP 대조군,Figure showing that it is reduced by Hades. HeLa cells were EGFP control,
EGFP-HADES-WT, 또는 EGFP-HADES-MT로 형질감염시키거나, 또는 NF— κΒ 루시퍼라제 리포터 플라스미드 및 β-갈락토시다제 플라스미드와 함께 Myc/His-Akt-WT 용 플라스미드로 공형질감염시켰다. 24시간 인큐베이션후에, 세포를 용해시키고, 리포터 루시퍼라제 활성을 결정하였다. 도 17은 이소적으로 발현된 Akt 가 카스파제 (caspase) 저해제 Z-VAD의 존재하에 He 세포에서 Hades에 의해 분해된다는 것을 보여주는 도면이다. HEK293 세포를 Myc/His-Akt-WT의 조합으로 EGFP—HADES-WT 또는 EGFP-HADES-MT용 플라스미드로 형질감염시켰다. 형질감염시킨지 24시간후에, 세포를 Z-VAD (10 μΜ)로 처리하고 4시간 더 인큐베이팅하였다. 세포 추출물을 지시된 항체들로 면역블로팅시켰다. 도 18은 Hades가 HCT116 대장암 (colon cancer) 세포주에서 콜로니 형성을 감소시키는 것을 보여주는 도면이다. (a) 암세포는 형태학적으로 특이적이게 콜로니를 형성하면서 자라는 특성이 있다. 이를 확인하여 얼마만큼의 콜로니가 생성되었는지 확인하기위해, 먼저 EGFP 백터, EGFP-Hades WT 백터, EGFP-Hades MT 백터를 Lipofectamin 2000을 통해 해당 제조사의 지시사항으 바탕으로 대장암 세포 HCT116에 형질 도입시켰다. 그 후, 백터내에 포함된 항생제인 puromycin이 포함된 배지에서 2주동안 배양시켜 콜로니를 생성시켰으며, 그 후 고정화 시키고, 0.1% crystal violet을 가지고 최종적으로 염색하여 콜로시 숫자를 분석하였다. (B) )에서 나타나는 콜로니 숫자를 그래프로 나타낸 것이다. 결과 1: Akt 가 Hades E3 유비퀴틴 리가아제와 상호작용한다 Transfected with EGFP-HADES-WT, or EGFP-HADES-MT, or NF—κΒ luciferase Cotransfected with plasmid for Myc / His-Akt-WT together with the reporter plasmid and β-galactosidase plasmid. After 24 hours of incubation, cells were lysed and reporter luciferase activity was determined. FIG. 17 shows that isotopically expressed Akt is degraded by Hades in He cells in the presence of a caspase inhibitor Z-VAD. HEK293 cells were transfected with a plasmid for EGFP—HADES-WT or EGFP-HADES-MT with a combination of Myc / His-Akt-WT. 24 hours after transfection, cells were treated with Z-VAD (10 μΜ) and incubated for another 4 hours. Cell extracts were immunoblotted with the indicated antibodies. FIG. 18 shows that Hades reduces colony formation in HCT116 colon cancer cell line. (a) Cancer cells are characterized by growing morphologically to form colonies. In order to confirm how much colonies were generated, the EGFP vector, the EGFP-Hades WT vector, and the EGFP-Hades MT vector were first transfected into colon cancer cell HCT116 through Lipofectamin 2000 according to the manufacturer's instructions. . Afterwards, the colony was cultured in a medium containing the antibiotic puromycin for 2 weeks to generate colonies. After that, the cells were immobilized and finally stained with 0.1% crystal violet. This is a graph of the colony numbers shown in (B)). Outcome 1: Akt interacts with Hades E3 ubiquitin ligase
Akt 와 상호작용하는 단백질들을 동정하기 위하여 HeLa 및 간 창 (Chang) 세포들로부터 유래된 인간 전장 cDNA 라이브러리를 제조하였다 (Supplementary Materials and Methods). cDNA 라이브러리로부터 시험관내 (in vitro) 전사 및 번역된 단백질 푸울 (pool)을 변형된 SMART 기술로 인간 Akt 1-결합 단백질에 대하여 스크리닝하였다. 본 발명에서, 모든 실험들은 인간 Aktl를 사용하여 실시하였으며, 이는 달리 특정하지 않는 한 'Akt'로 표시된다. 상기 라이브러리로부터, 여러 양성 (positive) cDNA 클론들을 분리하였으며, 분리된 클론들중에서 하나의 클론이 주요 Akt—결합 파트너로 동정되었다 (데이터 미도시). 이 클론은 여러 추정상 기능적 도메인들을 함유하였다: N 말단에 트랜스멤브레인 (TM) 도메인 또는 시그날 펩타이드, 단백질 중간에 게 2 TM 도메인, 및 C 말단에 RING 핑거 도메인 (즉, E3 리가아제 도메인의 표식), 본 발명은 이 클론과 Akt 사이의 기능적 커뮤니케이션에 초점올 맞춘 반면, Li et al. [23] 은 이 단백질을 NF-κΒ의 미토콘드리아 유비퀴틴 리가아제 활성인자를 의미하는 MILAN이라고 명명하였다. Human full-length cDNA libraries derived from HeLa and Chang cells were prepared to identify proteins that interact with Akt (Supplementary Materials and Methods). In vitro transcription and translated protein pools from the cDNA library were screened for human Akt 1-binding protein with a modified SMART technique. In the present invention, all experiments were conducted using human Aktl, which is denoted 'Akt' unless otherwise specified. remind From the library, several positive cDNA clones were isolated and one of the clones identified as the main Akt—binding partner (data not shown). This clone contained several putative functional domains: a transmembrane (TM) domain or signal peptide at the N terminus, a 2 TM domain at the middle of the protein, and a RING finger domain at the C terminus (ie, a label of the E3 ligase domain). The present invention focuses on functional communication between this clone and Akt, while Li et al. [23] named this protein MILAN, meaning mitochondrial ubiquitin ligase activator of NF-κΒ.
시험관내 풀 -다운 (pull-down) 연구는 Akt 가 Hades와 물리적으로 상호작용한다는 것을 보여주었다 (도 1A). 내생적 (endogenous) Akt 및 Hades 사이의 분자간 연합은 공면역침강 (coi讓 unoprecipitation) 분석법을 이용하여 조사하였다 (도 1B). 인간 Akt 는 3가지 이소품 (isoforms)을 가진다: Aktl, Akt 2 및 Akt3. Akt 이소품-특이적 면역침강 분석법은 Hades가 A I 및 Akt2 와 상호작용하나 Akt3와는 상호작용하지 않는다는 것을 보여주었다 (도 1C), 또한, Hades 결핍은 Aktl 및 Akt2 의 단백질 레벨은 증가시키나 Akt3는 그러하지 않았다 (도 7), Akt2는 미토콘드리아로 전위되나 Akt3는 그렇지 않다고 보고되었다 [24]. Aktl의 미토콘드리아 전위는 논란이 있다 [24-26]. 그러나, 본 발명의 실험은 Aktl가 미토콘드리아로 전위될 수 있음을 밝혔다 (도 8A). 또한, 공초점 현미경은 Aktl가 Hades와 공동위치 (colocalize)한다는 것을 밝혔다 (도 8B). 일련의 Akt 결여 돌연변이체들을 이용한 시험관내 결합 분석법은 Akt 의 키나아제 도메인이 Hades와주로 연합한다는 것을 밝혔다 (도 1D 및 1E). 결과 2: Akt 유비퀴틴화 및 분해는 Hades에 의해 직접 조절된다  In vitro pull-down studies have shown that Akt physically interacts with Hades (FIG. 1A). The intermolecular association between endogenous Akt and Hades was investigated using coi 讓 unoprecipitation assay (FIG. 1B). Human Akt has three isoforms: Aktl, Akt 2 and Akt3. Akt isosome-specific immunoprecipitation assays showed that Hades interacts with AI and Akt2 but not with Akt3 (FIG. 1C). Also, Hades deficiency increases protein levels of Aktl and Akt2 but not Akt3. (FIG. 7), it was reported that Akt2 was translocated to mitochondria, but not Akt3 [24]. Aktl's mitochondrial transposition is controversial [24-26]. However, the experiments of the present invention revealed that Aktl could be translocated to mitochondria (FIG. 8A). Confocal microscopy also revealed that Aktl colocalized with Hades (FIG. 8B). In vitro binding assays using a series of Akt lacking mutants revealed that the kinase domain of Akt associates mainly with Hades (FIGS. 1D and 1E). Outcome 2: Akt ubiquitination and degradation are directly regulated by Hades
Akt 및 Hades사이의 상호작용의 기능적 역할을 결정하기 위하여, Hades가 Akt 를 위한 E3 리가아제로서 기능하는지 조사하였다. Hades 발현은 E3 리가아제 활성-의존적 방식으로 Akt 단백질 레벨의 감소를 초래하였다, 또한, 프로테아좀 저해제 MG132는 이러한 세포내 Akt 단백질 레벨의 감소를 완전히 회복시켰다 (도 2A, 레인 5). 다음, 시험관내 (in vitro) 및 생체내 (in vivo) 유비퀴틴화 분석법은 재조합 및 내생적 Akt 단백질들이 Hades에 의해 E3 리가아제 활성- 의존적 방식으로 유비퀴틴화된다는 것을 증명하였다 (도 2B 및 2C). 그 반대 현상이 Hades siRNA-유도된 넉다운 세포에서 관찰되었다. Hades siRNA 형질감염 (transfection)은 HEK293 세포에서 Akt 유비퀴틴화의 저해를 초래하였다 (도 2D, 좌측 패널). 홍미롭게도, Akt 와 높은 상동성을 갖는 혈청 /글루코코르티코이드 조절 키나아제 1 (SGK1) [27] 는 내생적 Hades의 결핍에 의해 영향을 받지 않았다 (도 2D, 우측 패널). To determine the functional role of the interaction between Akt and Hades, we investigated whether Hades functions as an E3 ligase for Akt. Hades expression resulted in a decrease in Akt protein levels in an E3 ligase activity-dependent manner. In addition, proteasome inhibitor MG132 completely restored this decrease in intracellular Akt protein levels (FIG. 2A, lane 5). Next, in vitro and in vivo ubiquitination The assay demonstrated that recombinant and endogenous Akt proteins were ubiquitinated by Hades in an E3 ligase activity-dependent manner (FIGS. 2B and 2C). The opposite was observed in Hades siRNA-induced knockdown cells. Hades siRNA transfection resulted in inhibition of Akt ubiquitination in HEK293 cells (FIG. 2D, left panel). Incidentally, serum / glucocorticoid regulatory kinase 1 (SGK1) [27] with high homology with Akt was not affected by endogenous Hades deficiency (FIG. 2D, right panel).
다양한 (diverse) 기질ᅳ유비퀴틴 구조를 생성할 수 있는 능력은 서로 다른 운명을 갖는 단백질들을 표적하는 데 중요하다 [28]. 이를 위해서, 라이신 48 또는 63이 아르기닌으로 돌연변이된 HA-태그된 유비퀴틴 (HA-Ub WT, HA-Ub K48R, 및 HA— Ub K63R)을 발현하는 HeLa 세포에서 생체내 유비퀴틴화 분석을 실시하였다. 도 2E에서 보여지듯이, Ub K48R는 Hades-매개된 Akt 유비퀴틴화를 완전히 폐기시키지만, Ub WT 및 Ub K63R는 그렇지 않았다. 이는 K48-링크된 유비퀴틴화 체인이 Akt 의 Hades—매개된 유비퀴틴화 동안에 형성된다는 것을 가르킨다, 이들 결과는 Hades E3 리가아제가 Akt 를 특이적으로 표적화하여 그것의 유비퀴틴화 및 후속 분해를 유도한다는 것을 보여준다. 결과 3: pAkt는 Hades E3 유비퀴틴 리가아제의 우선적 (preferential ) 표적이다  The ability to generate diverse substrate and ubiquitin structures is important for targeting proteins with different fates [28]. To this end, in vivo ubiquitination assays were performed in HeLa cells expressing HA-tagged ubiquitin (HA-Ub WT, HA-Ub K48R, and HA—Ub K63R) in which lysine 48 or 63 were mutated to arginine. As shown in FIG. 2E, Ub K48R completely abolished Hades-mediated Akt ubiquitination, while Ub WT and Ub K63R did not. This indicates that K48-linked ubiquitination chains are formed during Hades-mediated ubiquitination of Akt. These results indicate that Hades E3 ligase specifically targets Akt to induce its ubiquitination and subsequent degradation. Shows. Result 3: pAkt is a Preferential Target of Hades E3 Ubiquitin Ligase
Akt 키나아제 활성의 상향조절이 세린 308 및 트레오닌 473의 인산화에 의해 엄격히 제어되기 때문에 [29], Akt의 활성 /불활성 상태가 Hades에 의한 Akt 분해에 영향을 주는지 시험하였다. 이 가설을 시험하기 위해, 우선 성장인자의 자극하에 내생적 Hades 와 Akt 사이의 상호작용을 시험하였다. 흥미롭게도, 내생적 Hades 와 Akt 사이의 상호작용이 HeLa 세포에서 혈청 및 인슐린의 존재하에 검출되었다 (도 3A). 유사하게, Hades-유도된 Akt 분해는 혈청-자극된 Since upregulation of Akt kinase activity is tightly controlled by the phosphorylation of serine 308 and threonine 473, it was tested whether the activity / inactivation state of Akt affected Akt degradation by Hades. To test this hypothesis, we first tested the interaction between endogenous Hades and Akt under the stimulus of growth factors. Interestingly, the interaction between endogenous Hades and Akt was detected in the presence of serum and insulin in HeLa cells (FIG. 3A). Similarly, Hades-induced Akt degradation was serum-stimulated
HEK293 세포에서 우선적으로 유도되었다 (도 3B). 또한, 생체내 유비퀴틴화 분석법은 혈청 자극이 Hades에 의한 내생적 Akt 유비퀴틴화를 유도한다는 것을 증명하였다 (도 3C). 또한, Akt 의 인산화를 저해하는 PI3K 저해인자인It was preferentially induced in HEK293 cells (FIG. 3B). In vivo ubiquitination assays also demonstrated that serum stimulation induced endogenous Akt ubiquitination by Hades (FIG. 3C). In addition, it is a PI3K inhibitor that inhibits phosphorylation of Akt.
LY294002는 혈청-자극된 HEK293 세포에서 Hades-유도된 Akt 유비퀴틴화를 억제하였다 (도 X, 레인 5 내지 8). 이들 관찰은 Akt 활성화 상태 및 Hades- 매개된 분해 사이의 연관관계를 제시한다. 이 가설을 증명하기 위해, 인산화된 세린, 트레오닌 및 타이로신 잔기들로의 활성을 갖는 λ-PPase [30, 31]의 존재하에 시험관내 유비퀴틴화 분석법을 실시하였다. λ-PPase 로의 처리는 Akt 잔기들의 인산화를 효율적으로 제거하여 Akt 유비퀴틴화를 저해하였다 (도 3D), 상기 결과들은 혈청 또는 성장인자가 내생적 Akt 의 안정성을 감소시키는지를 시험하도록 이끌었다. 흥미롭게도, Akt 단백질 레벨이 혈청- 결핍된 세포에서 약간 감소되었고 혈청-자극된 세포에서 상당히 증가된다는 것을 발견하였으며, 이는 인산화된 Akt가 비인산화된 Akt 보다 더 효율적으로 분해된다는 것을 가리킨다 (도 9). 또한, 혈청-유도된 Akt 분해가 Hades 결핍에 의해 저해된다는 것 (도 3E)과 siRNA-유도된 Hades 결핍이 투여량-의존적 방식으로 Akt 및 pAkt 의 단백질 레벨을 증가시킨다는 것 (도 6F)을 밝혀냈다. 또한, 젤다나마이신 (geldanamycin)은 대조 세포 및 Hades—결핍 세포 둘다에서 Akt 분해를 유도하였으며, 이는 Hades-유도된 Akt 분해가 Hsp90 저해제-유도된 Akt 분해에 비의존적이라는 것을 제시한다 (도 10). 총체적으로, 이들 결과는 Hades가 유비퀴틴화를 위해 pAkt를 우선적으로 표적화한다는 것을 가리킨다. 결과 4: 활성화된 Akt는 Hades의 폴리유비퀴틴화 표적이다 LY294002 inhibits Hades-induced Akt ubiquitination in serum-stimulated HEK293 cells Inhibition (Fig. X, lanes 5-8). These observations suggest an association between Akt activation status and Hades-mediated degradation. To demonstrate this hypothesis, an in vitro ubiquitination assay was performed in the presence of λ-PPase [30, 31] having activity with phosphorylated serine, threonine and tyrosine residues. Treatment with λ-PPase effectively eliminated phosphorylation of Akt residues to inhibit Akt ubiquitination (FIG. 3D), which led to testing whether serum or growth factors reduce the stability of endogenous Akt. Interestingly, it was found that Akt protein levels were slightly decreased in serum-deficient cells and significantly increased in serum-stimulated cells, indicating that phosphorylated Akt degrades more efficiently than non-phosphorylated Akt (FIG. 9). . It was also found that serum-induced Akt degradation was inhibited by Hades deficiency (FIG. 3E) and that siRNA-induced Hades deficiency increased the protein levels of Akt and pAkt in a dose-dependent manner (FIG. 6F). . In addition, geldanamycin induced Akt degradation in both control and Hades-deficient cells, suggesting that Hades-induced Akt degradation is independent of Hsp90 inhibitor-induced Akt degradation (FIG. 10). . Overall, these results indicate that Hades preferentially targets pAkt for ubiquitination. Result 4: Activated Akt is a polyubiquitination target of Hades
Akt 활성화는 도메인간 형태 변화 -매개된 인산화에 의해 유도된다 [32, 33]. 다음 우리는 Hades에 의한 영구 활성 Akt 의 세포내 조절을 공면역침강 분석법으로 시험하였다, 미리스토일레이션 시그날 -부착 Akt (Akt-myr)는 Akt 의 영구 (constitutively) 활성 형태이다 [34]. 공면역침강 실험은 Hades가 이소적으로 (ectopically) 발현된 기능적 활성 Akt (Myc/His-Akt-WT 및 Myc/His- Akt-myr)와는 상호작용을 하나, HEK293 세포에서 우성 -음성 Akt (Myc/His-Akt- DN)와는 상호작용하지 않는다는 것을 보여주었다 (도 4A). 우리는 Akt 의 유비퀴틴화가 형질감염된 HEK293 세포에서 Akt 활성화에 의존적이라는 것을 생체내 유비퀴틴화 실험을 이용하여 확인하였다 (도 4B). 유사하게, LY294002는 Akt 인산화를 완전히 저해하였으며 Hades-매개된 Akt 분해를 대부분 차단하였다 (도 4C, 레인 4, 5, 및 6). 다른 PI3K/Akt 저해제인 워트만닌 (wortmannin) [35] 또한 Hades-매개된 Akt 분해를 차단하였다 (도 11). 이들 결과는 Hades가 pAkt에 우선적으로 결합하여 그것의 분해를 촉진한다는 것을 가리키며, 이는 Hades가 활성 pAkt 를 음성적으로 조절한다는 우리의 결과들과 일치한다. 결과 5: Akt 내의 라이신 284은 Hades에 의한 유비퀴틴화의 주요부위이다 Akt activation is induced by cross-domain morphologically-mediated phosphorylation [32, 33]. We then tested the intracellular regulation of permanently active Akt by Hades by coimmunoprecipitation assay, Myristoylation signal-attached Akt (Akt-myr) is a constitutively active form of Akt [34]. Coimmunoprecipitation experiments showed that Hades interacted with ectopically expressed functionally active Akt (Myc / His-Akt-WT and Myc / His-Akt-myr), but dominant-negative Akt (Myc) in HEK293 cells. / His-Akt- DN) did not interact with (Fig. 4A). We confirmed using ubiquitination experiments in vivo that ubiquitination of Akt was dependent on Akt activation in transfected HEK293 cells (FIG. 4B). Similarly, LY294002 completely inhibited Akt phosphorylation and mostly blocked Hades-mediated Akt degradation. (Figure 4C, lanes 4, 5, and 6). Another PI3K / Akt inhibitor, wortmannin [35] also blocked Hades-mediated Akt degradation (FIG. 11). These results indicate that Hades preferentially binds to pAkt and promotes its degradation, which is consistent with our results that Hades negatively regulates active pAkt. Outcome 5: Lysine 284 in Akt is a major site of ubiquitination by Hades
Akt 는 N-말단의 플렉스트린 상동성 (PH) 도메인, 중앙의 촉매 키나아제 도메인 (KD) 및 C-말단의 짧은 조절 소수성 모티프 (丽)로 구성된다 [36]. Akt 의 인산화는 구조변화를 유도하여 PH 및 HM 도메인들이 KD 도메인으로부터 분리된다 [37]. 시험관내 결합 분석법은 Hades가 Akt-KD뿐만 아니라 Akt WT도 특이적으로 유비퀴틴화한다는 것을 증명하였다 (도 5A). 우리는 다음 Akt-KD의 어떤 라이신 잔기가 단백질 안정화 및 유비퀴틴화에 필요한지를 결정하였다. Akt 단백질 안정화 및 라이신 잔기의 돌연변이사이의 연관관계를 평가하기 위해,' 부위 -지정 돌연변이에 의해 추정상 유비퀴틴 -콘쥬게이션 잔기들 (K158, K163, K170, K183, K189, K214, K276, K284, K289, K297 및 K307) 의 Akt 라이신 00 에서 아르기닌 (R)으로의 돌연변이들을 생성하였다. 도 12에서 보여지듯이, Akt K284R 의 분해는 Akt WT 및 다른 Akt 돌연변이들에 비해 저해되었다. 또한, 우리는 생체내 유비퀴틴화 분석법을 통해 Akt K284R 가 유의적으로 감소된 유비퀴틴화를 나타낸다는 것을 확인하였다 (도 5B). 또한, 사이클로핵시미드 체이즈 분석법은 Hades가 Akt WT에 비해 Akt K284R의 안정성을 감소시키지 않는다는 것을 보여주었다 (도 5C). 상기 결과는 Akt 내의 라이신 284가 Hades- 매개된 Akt 유비퀴틴화의 특이적 잔기라는 것을 가리킨다. 결과 6: Hades에 의한 Akt 시그날링의 음성 조절 Akt consists of an N-terminal flextrin homology (PH) domain, a central catalytic kinase domain (KD) and a C-terminal short regulatory hydrophobic motif [36]. Phosphorylation of Akt induces a structural change, separating the PH and HM domains from the KD domain [37]. In vitro binding assays demonstrated that Hades specifically ubiquitizes Akt WT as well as Akt-KD (FIG. 5A). We then determined which lysine residues of Akt-KD are required for protein stabilization and ubiquitination. To evaluate the relationship between mutations in the Akt protein stability, and a lysine residue, a "part-of conjugation residues (K158, K163, K170, K183, K189, K214, K276, K284, K289-estimate the ubiquitin by specifying mutations Mutations from Akt lysine 00 to arginine (R), K297 and K307). As shown in FIG. 12, degradation of Akt K284R was inhibited compared to Akt WT and other Akt mutations. In addition, we confirmed in vivo ubiquitination assay that Akt K284R showed significantly reduced ubiquitination (FIG. 5B). In addition, cyclonucleoside chase assays showed that Hades did not reduce the stability of Akt K284R compared to Akt WT (FIG. 5C). The results indicate that lysine 284 in Akt is a specific residue of Hades-mediated Akt ubiquitination. Outcome 6: negative control of Akt signaling by Hades
Akt 는 세포 사이클 진행, 세포 생존 및 세포 성장을 조절하는데 중요한 역할을 한다 [38]. 우리는 EGFP-Hades-WT을 발현한느 세포의 성장이 EGFP-Hades- Akt plays an important role in regulating cell cycle progression, cell survival and cell growth [38]. We believe that the growth of cells expressing EGFP-Hades-WT is EGFP-Hades-
MT 또는 대조 EGFP를 발현하는 세포들의 성장에 비해 유의적으로 억제된다는 것을 발견하였다 (도 6A). Hades-결핍된 세포는 대조군 세포에 비해 더 빨리 성장하였다 (도 13). Hades는 농도-의존적 방식으로 HeLa 세포의 증식을 억제하였다 (도 6B). MTS 분석법은 또한 Akt-매개된 세포 생존율의 증가가 HeLa 세포에서 Hades 과발현에 의해 감소된다는 것을 보여주었다 (도 14). Hades에 의한 세포 성장 저해는 클론원성 및 부착 (anchorage)-비의존적 소프트 아가 분석법에 의해 확인하였다 (도 6D). EGFP-Hades-WT 를 발현하는 HeLa 세포는 EGFP-Hades-MT 또는 대조 EGFP를 발현하는 세포들의 콜로니 형성에 비해 콜로니 형성의 50% 감소를 나타내었다 (도 6C). 이들 결과는 Hades가 Akt 다운스크림 시그날링 패스웨이를 조절한다는 것을 가리킨다. GSK— 3/β-카테닌 /TCF 시그날링은 It was found to be significantly inhibited compared to the growth of cells expressing MT or control EGFP (FIG. 6A). Hades-deficient cells grew faster than control cells (FIG. 13). Hades is responsible for the proliferation of HeLa cells in a concentration-dependent manner. Inhibition (FIG. 6B). MTS assay also showed that the increase in Akt-mediated cell viability is reduced by Hades overexpression in HeLa cells (FIG. 14). Cell growth inhibition by Hades was confirmed by clonality and anchorage-independent soft agar assays (FIG. 6D). HeLa cells expressing EGFP-Hades-WT showed a 50% reduction in colony formation compared to colony formation of cells expressing EGFP-Hades-MT or control EGFP (FIG. 6C). These results indicate that Hades modulates the Akt downstream signaling pathway. GSK— 3 / β-catenin / TCF signaling
PI3K/Akt-매개된 세포 생존 및 증식의 중요한 다운스트림 패스웨이이다 [6, 39]. 도 6E에서, 우리는 둘다 Akt 다운스트림 표적 단백질인 GSK-3P 및 TSC2의 인산화가 RING 리가아제 활성-의존적 방식으로 Hades에 의해 억제된다는 것을 보여주었다 (도 6E). 또한, 반대 현상이 Hades siRNA-의존적 방식으로 관찰되었다 (도 6F). TCF/LEF1 응답 요소-구동된 루시퍼라제 시스템에서, pTOPFLASH 리포터 활성을 측정하여 Hades에 의한 Akt 다운스트림 시그날링의 저해를 확인하였다 (도 6G). 합쳐보면, 이들 결과는 Hades가 Akt 시그날링 패스웨이를 조절함으로써 세포 성장을 억제한다는 것을 가리킨다. 우리는 다음 생체내 상처 치유 분석법을 이용하여 Akt-유도된 세포 이주 (migration)에 대한 Hades의 효과를 평가하였다. 이소적으로 발현된 ¥[ Hades는 RING 리가아제 MT Hades 보다 더 잘 HeLa 세포 이주를 억제하였으며 (도 6H), Hades siRNA 형질감염은 HeLa 세포 이주를 증가시켰다 (도 15). 이는 Hades E3 리가아제가 Akt 및 그것의 다운스트림 시그날링을 효율적으로 억제한다는 것을 가리킨다. 또한, 우리는 Hades에 의해 조절되는, 세포 성장 및 세포 이주에 대한 Akt K284R의 효과를 시험하였다. Hades는 그것이 Akt_K284R-유도된 세포 성장을 억제하는 것보다 더 효율적으로 Akt-유도된 세포 성장을 억제하였다 (도 6J). 유사하게, Akt-K284R-유도된 세포 이주는 Akt WT-유도된 세포 이주와 대조적으로 Hades에 의해 저해되지 않았다 (도 61). 이들 결과는 Hades E3 리가아제가 라이신 284에서 Akt 의 유비퀴틴화에 의해 Akt 기능을 효율적으로 억제한다는 것을 가리킨다. PI3K / Akt-mediated downstream pathway of cell survival and proliferation [6, 39]. In FIG. 6E we showed that both phosphorylation of Akt downstream target proteins GSK-3P and TSC2 are inhibited by Hades in a RING ligase activity-dependent manner (FIG. 6E). In addition, the opposite phenomenon was observed in a Hades siRNA-dependent manner (FIG. 6F). In the TCF / LEF1 response element-driven luciferase system, pTOPFLASH reporter activity was measured to confirm inhibition of Akt downstream signaling by Hades (FIG. 6G). Taken together, these results indicate that Hades inhibits cell growth by regulating the Akt signaling pathway. We assessed the effect of Hades on Akt-induced cell migration using the following in vivo wound healing assay. Isoexpressed ¥ [Hades inhibited HeLa cell migration better than RING ligase MT Hades (FIG. 6H) and Hades siRNA transfection increased HeLa cell migration (FIG. 15). This indicates that Hades E3 ligase efficiently inhibits Akt and its downstream signaling. In addition, we tested the effect of Akt K284R on cell growth and cell migration, regulated by Hades. Hades inhibited Akt-induced cell growth more efficiently than it inhibited Akt_K284R-induced cell growth (FIG. 6J). Similarly, Akt-K284R-induced cell migration was not inhibited by Hades in contrast to Akt WT-induced cell migration (FIG. 61). These results indicate that Hades E3 ligase efficiently inhibits Akt function by ubiquitination of Akt in lysine 284.
Akt 는 NF-κΒ 를 활성화한다고 알려졌으며, Hades는 NF-κΒ 활성화제라고 보고되었다 [23,45]. 따라세 Hades가 NF-κΒ 활성을 유도하는지 또는 Akt 를 저해하여 NF-κΒ 활성을 억제하는지 불명확하다. 이 문제를 해결하기 위하여, 우리는 NF-κΒ—결합 부위를 함유하는 리포터 플라스미드 (NF-κΒ 루시퍼라제 리포터 )를 이용하여 NF-κΒ 활성을 시험하였다. HeLa 세포를 EGFP 대조군, EGFP-Akt is known to activate NF-κΒ and Hades is known to be an NF-κΒ activator Reported [23,45]. Therefore, it is unclear whether Hades induces NF-κΒ activity or inhibits NF-κΒ activity by inhibiting Akt. To solve this problem, we tested NF-κΒ activity using a reporter plasmid containing an NF-κΒ—binding site (NF-κΒ luciferase reporter). HeLa cells were treated with EGFP control, EGFP-
Hades-WT 및 EGFP-Hades-MT로 형질감염시키거나 Myc/His-Akt WT 용 플라스미드들로 공형질감염 (cotransfecte)시켰다. 이들 형질감염된 HeLa 세포들에서, Hades WT 및 Hades MT는 NF-κΒ 활성올 증가시켰으나 (최대 3배), Akt WT에 의한 NF-κΒ 활성의 상향조절 (최대 7배)은 Hades E3 리가아제-의존적 방식으로 감소되었다 (도 16). 이 결과는 Hades가 F-κΒ 활성을 상향조절할 수 있지만, 그 효과는 Akt-매개된 NF-κΒ패스웨이에 비의존적이라는 것올 가리킨다, Transfection with Hades-WT and EGFP-Hades-MT or cotransfected with plasmids for Myc / His-Akt WT. In these transfected HeLa cells, Hades WT and Hades MT increased NF-κΒ activity (up to 3 fold), but upregulation of NF-κΒ activity by Akt WT (up to 7 fold) was Hades E3 ligase-dependent Reduced in a manner (FIG. 16). These results indicate that Hades can upregulate F-κΒ activity, but the effect is independent of Akt-mediated NF-κΒ pathway,
【산업상 이용가능성】 Industrial Applicability
본 발명자들은 RING핑거 도메인 및 E3 유비퀴틴 리가아제 활성을 갖는, Akt 의 음성 조절인자인 Hades를 동정하였다. 본 발명에 따르면, Akt 는 Hades와 직접적으로 상호작용하여, Hades에 의해 시험관내 (in vitro) 및 생체내 (in vivo)에서 유비퀴틴화된다. 따라서, 본 발명에 따른 Hades는 Akt를 분해하고 그 다운스티림 시그날링을 음성 조절함으로써 암세포의 증식 및 생존을 억제할 수 있으므로, 항암제로 유용하게 사용될 수 있다.  The inventors have identified Hades, a negative regulator of Akt, with a RING finger domain and E3 ubiquitin ligase activity. According to the present invention, Akt interacts directly with Hades and is ubiquitized by Hades in vitro and in vivo. Therefore, Hades according to the present invention can inhibit the proliferation and survival of cancer cells by decomposing Akt and negatively controlling its downstream signaling, and thus can be usefully used as an anticancer agent.
[References] [References]
1. Jones PF, Jakubowicz T, Pitossi FJ , Maurer F, Hemmings BA. Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci U S A 1991; 88:4171-4175.  Jones PF, Jakubowicz T, Pitossi FJ, Maurer F, Hemmings BA. Molecular cloning and identification of a serine / threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci U S A 1991; 88: 4171-4175.
2. Burger ing BM, Coffer PJ . Protein kinase B (c-Akt) in phosphat i dy 1 i nos i t o 1 -3-OH kinase signal transduction. Nature 1995; 376:599— 602. 3. Franke TF. PI3K/Akt: getting it right matters. Oncogene 2008; 27:6473-6488. Burger ing BM, Coffer PJ. Protein kinase B (c-Akt) in phosphat i dy 1 i nos ito 1 -3-OH kinase signal transduction. Nature 1995; 376: 599—602. 3. Franke TF. PI3K / Akt : getting it right matters. Oncogene 2008; 27: 6473-6488.
4. Franke TF, Yang SI, Chan TO, et al . The protein kinase encoded by the Akt proto-oncogene is a target of the PDGFᅳ activated phosphatidyl inositol 3-kinase. Cell 1995; 81:72그 736.  4. Franke TF, Yang SI, Chan TO, et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF ᅳ activated phosphatidyl inositol 3-kinase. Cell 1995; 81: 72 He 736.
5. Kohn AD, Kovacina KS, Roth RA. Insulin stimulates the kinase activity of RAC-PK , a pleckstr in homology domain containing ser/thr kinase. EMBO J 1995; 14:4288-4295.  5. Kohn AD, Kovacina KS, Roth RA. Insulin stimulates the kinase activity of RAC-PK, a pleckstr in homology domain containing ser / thr kinase. EMBO J 1995; 14: 4288-4295.
6. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinaseᅳ 3 by insulin mediated by protein kinase B. Nature 1995; 378:785-789.  6. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase ᅳ 3 by insulin mediated by protein kinase B. Nature 1995; 378: 785-789.
7. Lustig B, Behrens J. The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol 2003; 129:199-221.  7. Lustig B, Behrens J. The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol 2003; 129: 199-221.
8. Behrens J, von Kries JP, Kuhl M, et al . Functional interact ion of beta-catenin with the transcription factor LEF-1. Nature 1996; 382: 638-642.  8. Behrens J, von Kries JP, Kuhl M, et al. Functional interact ion of beta-catenin with the transcription factor LEF-1. Nature 1996; 382: 638-642.
9. Huber 0, Korn R, McLaughlin J, et al. Nuclear local ization of beta- catenin by interact ion with transcript ion factor LEF-1. Mech Dev 1996; 59:3-10.  9. Huber 0, Korn R, McLaughlin J, et al. Nuclear local ization of beta- catenin by interact ion with transcript ion factor LEF-1. Mech Dev 1996; 59: 3-10.
10. Brazil DP, Hemmings BA. Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 2001; 26: 657-664.  10. Brazil DP, Hemmings BA. Ten years of protein kinase B signaling: a hard Akt to follow. Trends Biochem Sci 2001; 26: 657-664.
11. Luo J , Manning BD, Cant ley LC. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 2003; 4:257-262.  11. Luo J, Manning BD, Cant ley LC. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 2003; 4: 257-262.
12. Hafizi S, Ibraimi F, Dahlback B. CIᅳ TEN is a negative regulator of the Akt/PKB signal transduction pathway and inhibits cell survival , proliferation, and migration. FASEB J 2005; 19:971-973.  12.Hafizi S, Ibraimi F, Dahlback B. CI ᅳ TEN is a negative regulator of the Akt / PKB signal transduction pathway and inhibits cell survival, proliferation, and migration. FASEB J 2005; 19: 971-973.
13. Maira SM, Galetic I, Brazil DP, et al. Carboxyl一 terminal modulator protein (CTMP) , a negative regulator of PKB/Akt and v-Akt at the plasma membrane. Science 2001; 294:374-380.  13. Maira SM, Galetic I, Brazil DP, et al. Carboxyl 一 terminal modulator protein (CTMP), a negative regulator of PKB / Akt and v-Akt at the plasma membrane. Science 2001; 294: 374-380.
14. Du K, Herzig S, Kulkarni RN, Montminy M. TRB3: a tribbles Du K, Herzig S, Kulkarni RN, Montminy M. TRB3: a tribbles
Figure imgf000039_0001
Figure imgf000039_0001
as;. kie. Scence99767570n Bi 12775:- as ; . k i e. Scence99767570n B i 12775 : -
Figure imgf000040_0001
Figure imgf000040_0001
.restir 27--.res ti r 27-
Cad;996.rio0096912l 24:Cad ; 996.r i o0096912 l 24 :
l Celoc oiwtv¾l mit;oiwlxi<ihrri Ce l oc o i wtv¾ l m it; o i w l x i <i hrr i
o tassflnocwtlli:- ,gg,,es stuatkteasuiml Aa Jh Hades Lin K Wn PH. Inlin. YnY Y 26 o t ass fl nocwt lli: -, gg ,, es stua t k t easu i m l Aa Jh Hades L i n K Wn PH. I n li n. YnY Y 26
p j/ Sa .oe .I . oun 1n31037r 00075211 : p j / Sa .oe. I. oun 1 n31037r 00075211 :
pgy e coS Oe;73.eeoeo.ln0095ll ccrrssn P 242li: pgy e coS Oe ; 73.eeoeo. l n0095 ll ccrrssn P 242 li:
¾p¾oduato o stre treredolin intstocoda clins wl ih rx mfInihnIil in..¾p¾oduato os t re treredo li n i nts t ocoda c li ns w li h rx m fI n i hn Iil i n ..
,,PcoC e a.ttcocu Ga S Fa Mtl Ak.ni Aric Vllirn 25 Ahl y sus; CC.bceaocaton.esi009858059ur li Am J Cll ph 212lll1:I 33. Huang BX, Kim Hades . Inter domain conformational changes in Akt activation revealed by chemical crossᅳ linking and tandem mass spectrometry. Mol Cell Proteomics 2006; 5:1045-1053. ,, PcoC e a.ttcocu Ga S Fa Mt l Ak.n i Ar i c V lli rn 25 Ahl y sus ; CC.bceaocaton.es i 009858059ur li Am JC ll ph 212 lll 1 : I 33. Huang BX, Kim Hades. Inter domain conformational changes in Akt activation revealed by chemical cross ᅳ linking and tandem mass spectrometry. Mol Cell Proteomics 2006; 5: 1045-1053.
34. Majumder PK, Yeh JJ, George DJ, et al . Prostate intraepithelial neo lasia induced by prostate restricted Akt activation: the MPAKT model . Proc Natl Acad Sci U S A 2003; 100:7841-7846.  34. Majumder PK, Yeh JJ, George DJ, et al. Prostate intraepithelial neo lasia induced by prostate restricted Akt activation: the MPAKT model. Proc Natl Acad Sci U S A 2003; 100: 7841-7846.
35. Arcaro A, Wymann MP. Wortmannin is a potent phosphatidyl inositol 3一 kinase inhibitor: the role of phosphat idyl inositol 3 , 4 , 5-t r i sphosphat e in neutrophil responses. Biochera J 1993; 296 (Pt 2) :297-301.  35. Arcaro A, Wymann MP. Wortmannin is a potent phosphatidyl inositol 3 一 kinase inhibitor : the role of phosphat idyl inositol 3, 4, 5-t r i sphosphat e in neutrophil responses. Biochera J 1993; 296 (Pt 2): 297-301.
36. Hanada M, Feng J , Hemmings BA. Structure, regulation and function of PKB/AKT― a major therapeutic target . Biochim Biophys Acta 2004; 1697:3-16.  36. Hanada M, Feng J, Hemmings BA. Structure, regulation and function of PKB / AKT-- a major therapeutic target. Biochim Biophys Acta 2004; 1697: 3-16.
37. Stephens L, Anderson K, Stokoe D, et al . Protein kinase B kinases that mediate phosphat idyl inositol 3 , 4 , 5~t r i sphosphat e-dependent activation of protein kinase B. Science 1998; 279:710-714. 37. Stephens L, Anderson K, Stokoe D, et al. Protein kinase B kinases that mediate phosphat idyl inositol 3, 4, 5 to tri sphosphat e-dependent activation of protein kinase B. Science 1998; 279: 710-714.
38. Whiteman EL, Cho Hades , Birnbaum MJ . Role of Akt/protein kinase B in metabol ism. Trends Endocrinol Metab 2002; 13:444-451.  38. Whiteman EL, Cho Hades, Birnbaum MJ. Role of Akt / protein kinase B in metabol ism. Trends Endocrinol Metab 2002; 13: 444-451.
39. Weston CR, Davis RJ. Signal transduction: signaling specificity- a complex affair. Science 2001; 292:2439-2440.  39. Weston CR, Davis RJ. Signal transduction: signaling specificity- a complex affair. Science 2001; 292: 2439-2440.
40. Meier R, Hemmings BA. Regulation of protein kinase B. J ecept Signal Transduct Res 1999; 19:121-128.  40. Meier R, Hemmings BA. Regulation of protein kinase B. J ecept Signal Transduct Res 1999; 19: 121-128.
41. Alessi DR, Deak M, Casamayor A, et al . 3-Phospho i nos i t i de- dependent protein kinaseᅳ 1 (PDR1) '· structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol 1997; 7:776-789.  41. Alessi DR, Deak M, Casamayor A, et al. 3-Phospho i no i t i de-dependent protein kinase ᅳ 1 (PDR1) '· structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol 1997; 7: 776-789.
42. Riesterer 0, Zingg D, Hummer johann J, Bod is S, Pruschy M. Degradation of PKB/Akt protein by inhibition of the VEGF receptor/mTOR pathway in endothelial cells. Oncogene 2004; 23:4624-4635.  42. Riesterer 0, Zingg D, Hummer johann J, Bod is S, Pruschy M. Degradation of PKB / Akt protein by inhibition of the VEGF receptor / mTOR pathway in endothelial cells. Oncogene 2004; 23: 4624-4635.
43. Yan D, Guo L, Wang Hades . Requirement of dendritic Akt degradat ion by the ub i qui t i n-prot easome system for neuronal polarity. J Cell Biol 2006; 174:415-424. 43. Yan D, Guo L, Wang Hades. Requirement of dendritic Akt degradat ion by the ub i qui ti n-prot easome system for neuronal polarity. J Cell Biol 2006; 174: 415-424.
44. Sasaki K, Sato M, Umezawa Hades . Fluorescent indicators for Akt/protein kinase B and dynamics of Akt activity visual ized in living cells. J Biol Chem 2003; 278:30945-30951.  44. Sasaki K, Sato M, Umezawa Hades. Fluorescent indicators for Akt / protein kinase B and dynamics of Akt activity visual ized in living cells. J Biol Chem 2003; 278: 30945-30951.
45. Zhang B, Huang J, Li HL, et al . GIDE is a mitochondrial E3 ubiquit in 1 igase that induces apoptosis and slows growth. Cell Res 2008; 18:900-910.  45. Zhang B, Huang J, Li HL, et al. GIDE is a mitochondrial E3 ubiquit in 1 igase that induces apoptosis and slows growth. Cell Res 2008; 18: 900-910.
46. Rokudai S, Fuj ita N, Hashimoto Hades , Tsuruo T. Cleavage and inactivation of ant iapopt otic Akt/PKB by caspases during apoptosis. J Cell Physiol 2000; 182:290-296.  46.Rokudai S, Fuj ita N, Hashimoto Hades, Tsuruo T. Cleavage and inactivation of ant iapopt otic Akt / PKB by caspases during apoptosis. J Cell Physiol 2000; 182: 290-296.
47. Jope RS, Yuskaitis CJ, Beurel E. Glycogen synthase kinase-3 (GS 3): inflammation, diseases, and therapeutics. Neurochem Res 2007; 32:577-595.  47. Jope RS, Yuskaitis CJ, Beurel E. Glycogen synthase kinase-3 (GS 3): inflammation, diseases, and therapeutics. Neurochem Res 2007; 32: 577-595.
48. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer . Cancer Cell 2007; 12:9-22.  48. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007; 12: 9-22.
49. Potter CJ, Pedraza LG, Xu T. Akt regulates growth by direct ly phosphorylating Tsc2. Nat Cell Biol 2002; 4:658-665.  49. Potter CJ, Pedraza LG, Xu T. Akt regulates growth by direct ly phosphorylating Tsc2. Nat Cell Biol 2002; 4: 658-665.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
서열번호 2의 아미노산 서열을 갖는 Hades 단백질 또는 이를 코딩하는 유전자를 유효성분으로 함유하는 Akt (단백질 키나아제 B) 음성 (negative) 조절제,  Akt (protein kinase B) negative modulator containing Hades protein having the amino acid sequence of SEQ ID NO: 2 or a gene encoding the same as an active ingredient,
【청구항 2]  [Claim 2]
제 1항에 있어서, 상기 Hades를 코딩하는 유전자는 서열번호 1의 염기서열을 갖는 것을 특징으로 하는 Akt (단백질 키나아제 B) 음성 (negative) 조절제.  The Akt (protein kinase B) negative modulator according to claim 1, wherein the Hades-encoding gene has a nucleotide sequence of SEQ ID NO: 1.
【청구항 3】  [Claim 3]
제 2항에 있어서, 상기 Hades를 코딩하는 유전자는 재조합 발현백터에 삽입되어 있는 것을 특징으로 하는 Akt (단백질 키나아제 B) 음성 (negative) 조절제.  The Akt (protein kinase B) negative modulator according to claim 2, wherein the Hades-encoding gene is inserted into a recombinant expression vector.
【청구항 4】  [Claim 4]
제 1항에 있어서, 상기 Hades는 RING 핑거-도메인을 가지고 E3-유비퀴틴 리가아제 (ligase) 활성을 갖는 것을 특징으로 하는 Akt (단백질 키나아제 B) 음성 (negative) 조절제.  The Akt (protein kinase B) negative modulator according to claim 1, wherein the Hades has a RING finger-domain and has E3-ubiquitin ligase activity.
【청구항 5】  [Claim 5]
제 1항에 있어서, 상기 Akt는 Hades와 직접 상호작용하고 Hades에 의해 유비퀴틴화 (ubiquitinate)되는 것을 특징으로 하는 Akt (단백질 키나아제 B) 음성 (negative) 조절제.  The Akt (protein kinase B) negative modulator according to claim 1, wherein the Akt interacts directly with Hades and is ubiquitinated by Hades.
【청구항 6]  [Claim 6]
제 5항에 있어서, 상기 Akt의 키나아제 도메인 (KD)이 Hades와 주로 연합하여 상호작용하는 것을 특징으로 하는 Akt (단백질 키나아제 B) 음성 (negative) 조절제.  6. Akt (protein kinase B) negative modulator according to claim 5, characterized in that the kinase domain (KD) of Akt interacts mainly in association with Hades.
【청구항 7]  [Claim 7]
제 5항에 있어서, 상기 Hades에 의한 유비퀴틴화에 의해 Akt가 분해되어 Akt의 발현이 억제되는 것을 특징으로 하는 Akt (단백질 키나아제 B) 음성 (negative) 조절제.  The Akt (protein kinase B) negative modulator according to claim 5, wherein Akt is decomposed by ubiquitination by Hades to inhibit Akt expression.
【청구항 8】 저 15항에 있어세 상기 Hades는 인산화 ( phosphorylation )에 의해 활성화된 Akt만을 특이적으로 유비퀴틴화하는 것을 특징으로 하는 Akt (단백질 키나아제 B) 음성 (negative) 조절제, [Claim 8] The method according to claim 15, wherein the Hades Akt (protein kinase B) negative modulator, characterized in that the specific ubiquitination of only Akt activated by phosphorylation,
【청구항 9]  [Claim 9]
제 5항에 있어서, 상기 Akt의 라이신 284가 Hades에 의한 유비퀴틴화의 주요 부위인 것을 특징으로 하는 Akt (단백질 키나아제 B) 음성 (negative) 조절제 .  6. Akt (protein kinase B) negative modulator according to claim 5, characterized in that lysine 284 of Akt is a major site of ubiquitination by Hades.
【청구항 10】 [Claim 10]
제 1항에 있어서, 상기 Akt는 다운스트림 시그날링에 의해 세포 증식 (proliferation), 아픕토시스 (apoptosis)의 억제 및 세포 이주 (migration)을 유도하는 것을 특징으로 하는 Akt (단백질 키나아제 B) 음성 (negative) 조절제.  The method of claim 1, wherein the Akt is Akt (protein kinase B) negative (1) characterized by inducing cell proliferation, inhibition of apoptosis and cell migration by downstream signaling ( negative) modifier.
【청구항 11】 [Claim 11]
제 1항에 있어서, 상기 Hades는 암세포의 증식, 생존 및 세포 이주를 억제하는 것을 특징으로 하는 Akt (단백질 키나아제 B) 음성 (negative) 조절제.  The Akt (protein kinase B) negative modulator according to claim 1, wherein the Hades inhibits the proliferation, survival and cell migration of cancer cells.
【청구항 12】 [Claim 12]
서열번호 2의 아미노산 서열을 갖는 Hades 단백질 또는 이를 코딩하는 유전자를 유효성분으로 함유하는, Akt (단백질 키나아제 B) 음성 (negative) 조절제로 기능하는 것을 특징으로 하는 항암제.  An anticancer agent comprising a Hades protein having the amino acid sequence of SEQ ID NO: 2 or a gene encoding the same as an active ingredient, which acts as an Akt (protein kinase B) negative regulator.
【청구항 13】  [Claim 13]
다음 단계들을 포함하는 Akt (단백질 키나아제 B) 음성 (negative) 조절제의 스크리닝 방법 :  Screening method for Akt (protein kinase B) negative modulator comprising the following steps:
(a) 동물세포에 Akt와 Hades를 공-형질감염 (cotransfection)시키는 단계; (a) cotransfection of Akt and Hades to animal cells;
(b) 상기 형질감염된 동물세포에 임의의 약제를 처리하는 단계; 및 (b) treating any of the agents on the transfected animal cells; And
(c) 상기 동물세포에서 Akt와 Hades의 상호작용이 촉진되는지 여부를 결정하는 단계 .  (c) determining whether the interaction of Akt and Hades is promoted in said animal cell.
【청구항 14】  [Claim 14]
다음 단계들을 포함하는 Akt (단백질 키나아제 B) 양성 (positive) 조절제의 스크리닝 방법 :  Screening method for Akt (protein kinase B) positive modulator comprising the following steps:
(a) 동물세포에 Akt와 Hades를 공-형질전환 (cotransfection)시키는 단계; (a) cotransfection of Akt and Hades to animal cells;
(b) 상기 형질전환된 동물세포에 임의의 약제를 처리하는 단계; 및 (c) 상기 동물세포에서 Akt와 Hades의 상호작용이 저해되는지 여부를 결정하는 단계 . (b) treating the transformed animal cell with any agent; And (c) determining whether the interaction of Akt and Hades is inhibited in said animal cell.
PCT/KR2012/002408 2011-03-31 2012-03-30 Use of hades as a negative modulator of akt WO2012134234A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161469814P 2011-03-31 2011-03-31
US61/469,814 2011-03-31

Publications (2)

Publication Number Publication Date
WO2012134234A2 true WO2012134234A2 (en) 2012-10-04
WO2012134234A3 WO2012134234A3 (en) 2013-01-03

Family

ID=46932176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002408 WO2012134234A2 (en) 2011-03-31 2012-03-30 Use of hades as a negative modulator of akt

Country Status (2)

Country Link
KR (1) KR101419999B1 (en)
WO (1) WO2012134234A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102026142B1 (en) 2017-03-21 2019-09-27 충남대학교산학협력단 Anti-Cancer and Anti-Metastasis Composition Comprising CRIF1 Antagonist

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056594A1 (en) * 2003-12-15 2005-06-23 Japan Science And Technology Agency Akt ACTIVITY SPECIFICALLY INHIBITING POLYPEPTIDE
KR20060066714A (en) * 2003-07-29 2006-06-16 스미스클라인 비참 코포레이션 Inhibitors of akt activity
US20080131526A1 (en) * 2006-10-04 2008-06-05 University Of South Florida Akt sensitization of cancer cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060066714A (en) * 2003-07-29 2006-06-16 스미스클라인 비참 코포레이션 Inhibitors of akt activity
WO2005056594A1 (en) * 2003-12-15 2005-06-23 Japan Science And Technology Agency Akt ACTIVITY SPECIFICALLY INHIBITING POLYPEPTIDE
US20080131526A1 (en) * 2006-10-04 2008-06-05 University Of South Florida Akt sensitization of cancer cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUNG, JIN HYUK: 'Hades is a Novel p53-interacting and-ubiquitinating Protein That Negatively Regulates the Exonuclear Function ofp53' KONKUK GRADUATE SCHOOL, DOCTOR'S THESIS June 2010, pages 1 - 99 *

Also Published As

Publication number Publication date
KR20120112196A (en) 2012-10-11
KR101419999B1 (en) 2014-08-12
WO2012134234A3 (en) 2013-01-03

Similar Documents

Publication Publication Date Title
Oh et al. Role of the tumor suppressor RASSF1A in Mst1-mediated apoptosis
Platta et al. Nedd4-dependent lysine-11-linked polyubiquitination of the tumour suppressor Beclin 1
Al-Hakim et al. Control of AMPK-related kinases by USP9X and atypical Lys29/Lys33-linked polyubiquitin chains
Zhong et al. Regulation of SR protein phosphorylation and alternative splicing by modulating kinetic interactions of SRPK1 with molecular chaperones
Zheng et al. Protein tyrosine kinase 6 directly phosphorylates AKT and promotes AKT activation in response to epidermal growth factor
Pérez et al. Mutual regulation between SIAH2 and DYRK2 controls hypoxic and genotoxic signaling pathways
US20090304663A1 (en) Use of gsk-3 inhibitors for the treatment of prostate cancer
Islam et al. Pin1 regulates osteoclast fusion through suppression of the master regulator of cell fusion DC‐STAMP
Lukong et al. BRK phosphorylates PSF promoting its cytoplasmic localization and cell cycle arrest
Goel et al. The unique N‐terminal region of SRMS regulates enzymatic activity and phosphorylation of its novel substrate docking protein 1
Manoharan et al. Thioredoxin inhibits MPK38-induced ASK1, TGF‐β, and p53 function in a phosphorylation-dependent manner
Fan et al. FAM122A, a new endogenous inhibitor of protein phosphatase 2A
Han et al. New role of human ribosomal protein S3: Regulation of cell cycle via phosphorylation by cyclin‑dependent kinase 2
Loftus et al. A novel interaction between Pyk2 and MAP4K4 is integrated with glioma cell migration
Roh et al. TRAF2 functions as an activator switch in the reactive oxygen species-induced stimulation of MST1
Mahul-Mellier et al. De-ubiquitinating proteases USP2a and USP2c cause apoptosis by stabilising RIP1
Feola et al. Transglutaminase 2 modulation of NF-κB signaling in astrocytes is independent of its ability to mediate astrocytic viability in ischemic injury
Cui et al. AMOTL2 inhibits JUN Thr239 dephosphorylation by binding PPP2R2A to suppress the proliferation in non-small cell lung cancer cells
Bollaert et al. HBP1 phosphorylation by AKT regulates its transcriptional activity and glioblastoma cell proliferation
Paniagua et al. KSR induces RAS‐independent MAPK pathway activation and modulates the efficacy of KRAS inhibitors
Fletcher et al. Abolishment of the Tyr-15 inhibitory phosphorylation site on cdc2 reduces the radiation-induced G2 delay, revealing a potential checkpoint in early mitosis
Zhang et al. AKT serine/threonine kinase 2-mediated phosphorylation of fascin threonine 403 regulates esophageal cancer progression
Zanca et al. PED interacts with Rac1 and regulates cell migration/invasion processes in human non‐small cell lung cancer cells
Tripathi et al. SRC and ERK cooperatively phosphorylate DLC1 and attenuate its Rho-GAP and tumor suppressor functions
Wu et al. Nrdp1S, short variant of Nrdp1, inhibits human glioma progression by increasing Nrdp1‐mediated ErbB3 ubiquitination and degradation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764742

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764742

Country of ref document: EP

Kind code of ref document: A2