WO2012134044A1 - Corrugated panel for wind power generator blade - Google Patents

Corrugated panel for wind power generator blade Download PDF

Info

Publication number
WO2012134044A1
WO2012134044A1 PCT/KR2012/000164 KR2012000164W WO2012134044A1 WO 2012134044 A1 WO2012134044 A1 WO 2012134044A1 KR 2012000164 W KR2012000164 W KR 2012000164W WO 2012134044 A1 WO2012134044 A1 WO 2012134044A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
wind turbine
panel
corrugated panel
coupled
Prior art date
Application number
PCT/KR2012/000164
Other languages
French (fr)
Korean (ko)
Inventor
김기현
이정상
오은정
Original Assignee
삼성중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성중공업 주식회사 filed Critical 삼성중공업 주식회사
Priority to US14/007,314 priority Critical patent/US20140017088A1/en
Publication of WO2012134044A1 publication Critical patent/WO2012134044A1/en
Priority to DKPA201370629A priority patent/DK201370629A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/145Means for influencing boundary layers or secondary circulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/20Manufacture essentially without removing material
    • F05B2230/23Manufacture essentially without removing material by permanently joining parts together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/32Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor with roughened surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/10Geometry two-dimensional
    • F05B2250/18Geometry two-dimensional patterned
    • F05B2250/183Geometry two-dimensional patterned zigzag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/10Inorganic materials, e.g. metals
    • F05B2280/103Heavy metals
    • F05B2280/10304Titanium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/10Inorganic materials, e.g. metals
    • F05B2280/1073Aluminium alloy, e.g. AlCuMgPb
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a corrugated panel for a wind turbine blade, and more particularly, to a corrugated panel coupled to a wind turbine blade for improving aerodynamic performance of a wind turbine blade.
  • Wind power is a promising alternative energy source that can replace fossil fuels and is a clean energy source with little environmental pollution.
  • Wind power generation is known to be the most economical alternative energy support by current technology. Therefore, the research and development of wind power generators is actively progressing, and the cases of installing wind power generators by selecting regions with abundant wind volume are increasing.
  • a plurality of blades are coupled to a hub to receive rotational force from a rotor that is rotated by wind force and a main shaft connected to the rotor.
  • the generator is converted into electrical energy.
  • FIG. 1 illustrates a wind turbine of the horizontal axis type.
  • the wind generator 100 may include a tower 110, a nussel 120, a hub 130, and a blade 140.
  • the above-described rotor may include a hub 130 and a plurality of blades 140 coupled to the hub 130.
  • the hub 130 may be connected to each other by a generator (not shown) and a main shaft (not shown) installed in the nussel 120.
  • the lamp shaped tower 110 may be installed in the ground 1, and the nussel 120 may be supported by the tower 110.
  • the nussel 120 is a tower at the top of the tower 110
  • FIG. 2 shows a cross section along the ⁇ - ⁇ straight line shown in FIG. 1.
  • the blade 140 has a top ion side 141 and a bottom surface.
  • pressure side, 142 may be included.
  • the shape of the upper surface 141 and the lower surface 142 may be formed such that the cross section of the blade 140 has the shape of an airfoil, such as the wing of the aircraft, as described above, the blade ( 140) is to increase the efficiency of converting the force of the wind into rotational force.
  • the power P produced by the wind turbine 100 is represented by the following equation.
  • A represents the swept area of the blade (140).
  • the air density (p) and the wind speed (V) are different depending on the place where the wind turbine 100 is installed, but cannot be arbitrarily adjusted. Therefore, in order to increase the power P produced by the wind turbine 100, a method of increasing the rotational area A or increasing the power factor C p may be considered.
  • the length of the blade 140 In order to increase the rotational area A, the length of the blade 140 needs to be extended. As the length of the blade 140 increases, the cost and time required for the production of the blade 140 increase, and the blade An increase in the linear velocity of the tip portion of the tip 140 may cause a problem of an increase in the generation of noise and vibration. Therefore, there is a limit in extending the length of the blade 140.
  • Embodiment of the present invention is to improve the aerodynamic characteristics of the wind turbine blade to improve the power generation efficiency of the wind turbine.
  • a plurality of wrinkles are formed in the longitudinal direction of the blade, at a predetermined position of the plurality of wrinkles
  • the spacing and height of the wind turbine blades can be provided, characterized in that when coupled to the blade has a value of each predetermined ratio compared to the cord length of the airfoil cross section of the blade at the predetermined position.
  • the corrugated panel for the wind turbine blade may be coupled to cover the entire width of one surface of the blade from one end to the other end of the blade.
  • the corrugated panel for the wind turbine blade may be made of a material including any one of titanium alloy, aluminum alloy and synthetic resin.
  • a panel body having one surface coupled to one surface or the other surface of a wind turbine blade having a blade cross section, and a plurality of wrinkles in the longitudinal direction of the blade on the other surface of the panel body.
  • a plurality of pleats formed, wherein the spacing and height at predetermined positions of the plurality of pleats are predetermined compared to the cord length of the airfoil cross section of the blade at the predetermined position when the panel body is coupled to the blade.
  • a corrugated panel for a wind turbine blade can be provided which has a value of a ratio.
  • the panel body may be coupled to cover the entire width of one surface of the blade from one end to the other end of the blade.
  • the panel body and the corrugation part may be made of a material including any one of a titanium alloy, an aluminum alloy, and a synthetic resin.
  • the corrugation may be formed such that the cross section thereof has any one of polygonal, semicircular, and elliptical increase, and in particular, the cross section thereof is formed to have a triangular shape. Can be.
  • the predetermined ratio may be 0.1 to 5 percent.
  • the panel body may include a connecting portion foldable at the position between the corrugation.
  • the power generation efficiency of the wind turbine can be improved by improving the aerodynamic characteristics of the blades that are already installed and used in the wind turbine as well as the newly manufactured wind turbine blades.
  • FIG. 1 is a diagram illustrating a general wind power generator.
  • FIG. 2 is a cross-sectional view taken along the line ⁇ - ⁇ of FIG. 1.
  • FIG. 3 is a perspective view schematically illustrating a scene of coupling a corrugated panel for a wind turbine blade to a blade according to an embodiment of the present invention.
  • 4 and 5 are graphs for explaining the difference in lift generation according to the shape of the airfoil.
  • FIG. 6 is a view showing an experimental result for explaining that a corrugated panel has an airfoil-like effect.
  • FIG. 7 is a cross-sectional view taken along line Vn-Vn of FIG. 3.
  • FIG. 8 is a view showing a cross-sectional view of a corrugated panel for a wind turbine blade coupled to a blade according to an embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of the corrugated panel for a wind turbine blade according to another embodiment of the present invention. -Best Mode for Implementation of the Invention
  • FIG. 3 is a corrugated panel for a wind turbine blade according to an embodiment of the present invention.
  • the corrugated panel 200 for a wind turbine blade may be coupled to one surface of the blade 140, that is, the upper surface 141.
  • the power generator blade corrugated panel 200 according to an embodiment of the present invention may be coupled to the other surface of the blade 140, that is, the lower surface (see 142 of FIG. 7) as necessary.
  • the cross section of the blade 140 of the wind power generator may have a airfoil shape. This will be described with reference to FIGS. 4 and 5.
  • FIG. 4 and 5 illustrate graphs for explaining differences in lift generation according to airfoil shapes. It demonstrates with reference to FIG. 4 and FIG.
  • NACA means the American Aeronautical Advisory Board, the forerunner of the NASA.
  • NACA 0012 airfoils are symmetrical airfoils that have a symmetrical shape around a non-shown code, ie between 0 and 1 in the horizontal axis of the graph.
  • the NACA 4412 airfoil is an asymraetrical airfoil, with an asymmetrical shape centered between 0 and 1 on the horizontal axis of the graph.
  • the NACA 0012 airfoil matches the average camber wire (see 146 in FIG. 2) with this code (see 145 in FIG. 2), and the NACA 4412 airfoil is the average camber wire (146 in FIG. 2). This may not be consistent with the code (see 145 of FIG. 2), but may be formed at a position in which the outline is biased, that is, at an upper side of the graph. In other words, the asymmetric airfoil NACA 4412 airfoil is formed with a camber.
  • FIG. 5 an experimental result graph showing a change in lift coefficient according to an angle of attack of a NACA 0012 airfoil and a NACA 4412 airfoil is illustrated.
  • the angle of attack refers to the angle formed by the cord (145 of FIG. 2) and the direction of the wind of the blade (140 of FIG. 1) having an airfoil cross section, which is well known to those skilled in the art, so a detailed description of the angle of attack is omitted. do.
  • NACA irrespective of change of angle of attack within a certain range.
  • the lift coefficient of NACA 4412 airfoil is always larger than that of 0012 airfoil. Accordingly, it can be seen that the lift force generated by the NACA 4412 airfoil with camber is larger than the NACA 0012 airfoil within a predetermined angle range.
  • Equation 2 Equation 2
  • Lift coefficient is an experimental value that is related to airfoil shape or angle of attack, so it can be measured directly or obtained from reference materials.
  • the blade of the wind generator (100 in FIG. 1) (140 in FIG. 1) has a cross section of the blade (140 in FIG. 1) in order to increase the efficiency of converting the force exerted by the wind into rotational force. It can be designed to have a shape that can take full advantage of the lifting force (L) applied to.
  • the blades (140 in FIG. 1) of a typical horizontal axis wind turbine (100 in FIG. 1) are designed to have the shape of an asymmetric airfoil with cambers.
  • the airfoil cross-sectional shape of the blade (140 in FIG. 1) has a shape in which the lift coefficient C L is increased, that is, a camber in the airfoil cross-section is increased, the power coefficient C P is increased to increase the wind power generator (Fig. 1).
  • the power generation efficiency of 100 of 1 may be improved.
  • the corrugated panel 20 is shown when positioned in an air stream flowing in parallel with the X-axis direction.
  • the corrugated panel 20 is formed with a plurality of wrinkles (Ra, Rb, Rc, Rd, Re, Rf, Rg, Rh, Ri, Rj, Rk, Rl, hereinafter referred to as 'Ra to Rl').
  • the virtual lines have airfoils.
  • the portions relatively recessed by the plurality of corrugations Ra to R1 are included in the vortices Va, Vb, Vc, Vd, Ve, Vf, and Vg. , Vh, Vi, Vj, hereinafter, 'Va to Vj' are formed, respectively.
  • the vortices Va to Vj are continuously formed in the space between the plurality of wrinkles Ra to R1 as shown, and stable laminar flow LS is formed outside the plurality of wrinkles Ra to Ri. Is formed.
  • the corrugated panel 20 has a cross-sectional shape different from the airfoil as shown, and functions like a airfoil, and according to the extent to which the plurality of corrugations Ra to R1 protrude, the camber ( It can be seen that the same effect as the camber is formed.
  • the wrinkles Ra to R1 have a difference in size compared to the overall size of the corrugated panel 20.
  • the wrinkles Ra to R1 described above are not intended to delay the peeling phenomenon, but also differ in that the corrugated panel 20 having a cross section different from the airfoil acts like an airfoil.
  • FIG. 7 is a cross-sectional view taken along the line Vn- ⁇ of FIG. 3
  • FIG. 8 is a cross-sectional view of a corrugated panel for a wind turbine blade coupled to a blade according to an embodiment of the present invention. . It demonstrates with reference to FIG.
  • a blade 140 to which a wind turbine blade corrugation panel 200 is coupled to a wind turbine blade corrugation panel 200 according to an embodiment of the present invention.
  • a plurality of corrugations 202 may be formed in the longitudinal direction of.
  • the corrugated panel 200 for the wind turbine blade When the corrugated panel 200 for the wind turbine blade is coupled to one surface of the blade 140, the corrugated panel 200 for the wind turbine blade has the other end from one end thereof in the longitudinal direction of the blade 140. That is, it can be combined to cover from the root portion of the blade 140 to the tip portion. However, if necessary, the blade 140 may be coupled to cover only a portion in the longitudinal direction.
  • the corrugated panel 200 for the wind turbine blade is joined to one surface of the blade 140, the corrugated panel 200 for the wind turbine blade is moved from the leading edge 143 in the width direction of the blade 140.
  • (P) and height (hr) are of a predetermined ratio with respect to the cord length (IX) of the airfoil cross section of the blade 140 at the predetermined position when the corrugated panel 200 for the wind turbine blade is coupled to the blade 140. It can be formed to have each value.
  • the cord length IX of the airfoil cross section of the blade 140 may be continuously changed from one end to the other end along the longitudinal direction of the blade 140. Therefore, the interval p and the height hr of the plurality of wrinkles 202 may have a predetermined ratio of values with respect to the cord length IX, and according to a predetermined position along the longitudinal direction of the blade 140. The spacing p and height hr of the wrinkle 202 may be changed in proportion to the code length LC at the corresponding position.
  • the overall shape of the wind turbine blade corrugated panel 200 may be manufactured to have the same shape as the surface to which the wind turbine blade corrugated panel 200 is to be attached.
  • the projected ends of the plurality of corrugations 202 protruding in the direction in which the corrugated panel 200 for the wind turbine blades are coupled to the upper surface 141 of the blade 140 are simulated.
  • the lower outline LL connected to each other may be formed to have a shape of the upper surface 141 of the blade 140.
  • the lower outline LL is a blade.
  • the lower surface 142 of the 140 may be formed to have a shape.
  • the wind turbine blade wrinkle panel 200 is coupled to the upper surface 141 of the blade 140.
  • the corrugated panel 200 for the wind turbine blade is attached to the blade 140 in the adhesive
  • Substitution place rule Article 26 It may be coupled by, or may be coupled using separate fastening members (not shown) such as bolts and nuts.
  • a through hole for coupling the fastening member (not shown) to the blade 140 and the corrugation panel 200 for the wind turbine blade may be formed. There is a force collected in the through-holes may reduce the rigidity of the blade 140 and the corrugated panel 200 for the wind turbine blade.
  • an adhesive for bonding the corrugated panel 200 and the blade 140 for the wind turbine blade since the blade 140 is installed and used outdoors, the adhesive used herein can be selected and used that can maintain sufficient strength while having high weather resistance and water resistance.
  • the plurality of corrugations 202 When the blade 140 to which the corrugated panel 200 for a wind turbine blade is attached according to an embodiment of the present invention is positioned in an airflow, the plurality of corrugations 202 have been described with reference to FIG. 6. Vortex may be formed as in the case of a corrugated panel (20 in FIG. 6). Therefore, the plurality of corrugations 202 may act as an additional camber corresponding to the shape of the upper outline UL on the upper surface 141 of the blade 140.
  • the blade 140 of the wind turbine 100 has a shape to minimize the generation of noise and vibration at the same time to maximize the efficiency of converting the wind into the rotational power.
  • the research and development of the shape of 140) is ongoing.
  • the shape of the 140 may need to be supplemented. That is, the shape may not be applied even if there is room to further increase the camber of the blade 140.
  • the extent to which the camber is increased by the wind turbine blade corrugation panel 200 according to the embodiment of the present invention is a distance between the plurality of corrugations 202 formed in the wind turbine blade corrugation panel 200 (p). ) And height (hr).
  • the difference with the shape of the optimized blade designed to calculate the wind power according to the calculation result
  • the spacing p and the height hr of the plurality of corrugations 202 to be formed in the corrugated panel 200 for the generator blade can be determined.
  • the interval p of the plurality of corrugations 202 is defined as a blade at a predetermined position.
  • the height hr of the plurality of corrugations 202 may also be selected within the range of 0.1 to 5 percent of the cord length IX of the airfoil cross section of the blade 140.
  • the plurality of corrugations 202 formed in the corrugated panel 200 for wind turbine blades can be formed such that each cross section has a triangle as shown, but not shown
  • the cross section may be formed to have one of polygonal, semicircular and elliptical shapes.
  • the shape of the cross section of this corrugation 202 can be changed as needed.
  • corrugated panel 200 for a wind turbine blade can be manufactured to have a light weight and sufficient strength.
  • the corrugated panel for wind turbine blades 200 may be made of various materials such as titanium alloy, aluminum alloy and synthetic resin.
  • titanium alloys have excellent corrosion resistance against seawater, which may be advantageous when applied to blades of wind turbines (not shown) installed at sea, and aluminum alloys and synthetic resins are lightweight and have high structural strengths. have.
  • the corrugated panel for a wind turbine blade according to an embodiment of the present invention.
  • the efficiency of the blade 140 may be increased.
  • the plurality of corrugations 202 formed in the corrugated panel 200 for the wind turbine blades increase the stiffness of the blade 140 against the bending moment generated by the wind. It is also possible to reduce the occurrence of accidents such as the tip portion of the tower 110 and the stone stratification.
  • FIG. 9 shows a corrugated panel for a wind turbine blade according to another embodiment of the present invention.
  • Substitution place rule Article 26 A cross section is shown.
  • the panel body 310 may be included in the wrinkle panel 300 for a wind turbine blade according to another embodiment of the present invention, and a plurality of wrinkles may be formed on the other surface of the panel body 310.
  • the formed wrinkled portion 320 may be formed.
  • one surface of the panel body 310 is the upper surface of the blade (see 140 of FIG. 7) (see FIG. 7).
  • one surface of the panel body 310 may not have irregularities such as a plurality of wrinkles formed in the wrinkle part 320.
  • one surface of the panel body 310 is the upper surface of the blade (see 140 of FIG. 7) (see FIG. 7).
  • a secure contact area can be secured and firmly bonded.
  • the plurality of wrinkles formed in the wrinkle part 320 is a plurality of wrinkles (202) of the corrugation panel (200 in FIG. 7) for a wind turbine blade according to an embodiment of the present invention described with reference to FIGS. 7 and 8.
  • a wind turbine blade according to an embodiment of the present invention described with reference to FIGS. 7 and 8.
  • the longitudinal direction of the blade to be coupled to one surface of the panel body 310, that is, the panel body 310 in the direction from the root portion of the blade (see 140 in FIG. 7) to the tip portion. It may be formed on the other side of the.
  • a plurality of wrinkles formed in the pleats 320, a plurality of corrugated panel for wind turbine blades (200 of FIG. 7) according to an embodiment of the present invention described with reference to Figures 7 and 8
  • the length of the cord of the airfoil cross section of the blade at a predetermined position when one surface of the panel body 310 is coupled to the blade (see 140 in FIG. 7), as in the corrugation 202 of FIG. Relative to the LC reference).
  • the height and the spacing of the plurality of wrinkles formed in the pleats 320 may be as described above, and as a result of the experiment, the spacing of the plurality of wrinkles is the airfoil of the blade (see 140 of FIG. 7) at a predetermined position. It can be selected within the range of 0.1 to 5 percent of the cord length of the cross section (see IX in FIG. 7).
  • the height of the plurality of corrugations formed in the corrugations 320 may also be selected within the range of 0.1 to 5 percent of the cord length IX of the airfoil cross section of the blade (see 140 in FIG. 7).
  • a cross section of the plurality of wrinkles formed in the wrinkle part 320 may be formed to have a triangle as shown, and may be formed to have a shape of any one of a polygon, a semi-circle, and an ellipse although not shown. .
  • the coupling surface SSL indicated by the dotted line in the drawing is a surface on which one surface of the panel main body 310 is to be coupled, that is, an upper surface of the blade (see 140 in FIG. 7) (see 141 in FIG. 7) or a lower surface. (Of FIG. 7 142). That is, the panel body 310 may be manufactured to have flexibility so as to be deformed like the shape of the coupling surface SSL shown in the drawing.
  • the panel body 310 can be easily coupled to the coupling surface SSL of various shapes.
  • the panel body 310 may be made of various materials such as titanium alloy, aluminum alloy, and synthetic resin.
  • a hinge (not shown) may be installed at the connection part 311. You can also make it flexible.
  • the corrugated panel for wind turbine blades 300 is wind power It can be coupled to the blade of the generator (see 140 in Figure 7) to improve its efficiency.
  • embodiments of the present invention provide a blade of a wind turbine under construction.
  • the power generation efficiency of the wind turbine can be improved by improving the aerodynamic characteristics of the blade (not shown) that is already installed and in use in the wind turbine (not shown). .
  • the aerodynamic characteristics of the blade that is already installed and used in the wind turbine can be improved to improve the power generation efficiency of the wind turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

A corrugated panel for a wind power generator blade is disclosed. The present invention is coupled to one surface or the other surface of the wind power generator blade having an airfoil-shaped oblong cross section, the blade provided with a plurality of folds in the lengthwise direction, wherein the distance and height of each of the plurality of folds, at a predetermined position, can be values corresponding to a predetermined proportion of the airfoil-shaped oblong cross section of the blade at a predetermined position, when coupled to the blade.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
풍력발전기 블레이드용 주름패널  Corrugated Panel for Wind Turbine Blade
[기술분야】  [Technical Field]
<ι> 본 발명은 풍력발전기 블레이드용 주름패널에 관한 것으로, 보다 상세하게는 풍력발전기 블레이드의 공력성능 향상을 위하여 풍력발전기 블레이드에 결합되는 주름패널에 관한 것이다.  The present invention relates to a corrugated panel for a wind turbine blade, and more particularly, to a corrugated panel coupled to a wind turbine blade for improving aerodynamic performance of a wind turbine blade.
【배경기술】  Background Art
<2> 풍력발전은 화석연료를 대체할 수 있는 유망한 대체에너지원으로, 환경오염 을 거의 유발하지 않는 청정에너지원이다. 풍력발전은 현재 기술에 의한 대체에너 지원 증 가장 경제성이 높은 것으로 알려져 있다. 따라서, 풍력발전기에 대한 연구 및 개발이 활발하게 진행되고 있으며, 풍량이 풍부한 지역을 선정하여 풍력발전기 를 설치하는 사례가증가되고 있는 추세이다.  <2> Wind power is a promising alternative energy source that can replace fossil fuels and is a clean energy source with little environmental pollution. Wind power generation is known to be the most economical alternative energy support by current technology. Therefore, the research and development of wind power generators is actively progressing, and the cases of installing wind power generators by selecting regions with abundant wind volume are increasing.
<3> 일반적으로 풍력발전기에는 복수의 블레이드 (blade)가 허브 (hub)에 결합되 어 바람의 힘에 의해 회전하는 로터 (rotor)와, 로터에 연결된 주축 (main shaft)으 로부터 회전력을 전달받아 전기에너지로 변환하는 발전기가구비된다.  <3> In general, in a wind turbine, a plurality of blades are coupled to a hub to receive rotational force from a rotor that is rotated by wind force and a main shaft connected to the rotor. The generator is converted into electrical energy.
<4> 도 1에는수평축 형식의 풍력발전기가 예시되어 있다.  FIG. 1 illustrates a wind turbine of the horizontal axis type.
<5> 도 1을 참조하면, 풍력발전기 (100)에는 타워 (110), 너셀 (120), 허브 (130) 및 블레이드 (140)가포함될 수 있다.  Referring to FIG. 1, the wind generator 100 may include a tower 110, a nussel 120, a hub 130, and a blade 140.
<6> 상술한 로터에는 허브 (130) 및 허브 (130)에 결합된 복수의 블레이드 (140)가 포함될 수 있다. 허브 (130)는 너셀 (120) 내에 설치된 발전기 (도시되지 않음)와 주 축 (도시되지 않음)에 의해 서로 연결될 수 있다. The above-described rotor may include a hub 130 and a plurality of blades 140 coupled to the hub 130. The hub 130 may be connected to each other by a generator (not shown) and a main shaft (not shown) installed in the nussel 120.
<7> 기등 형상의 타워 (110)는 지반 (1)에 설치되고, 너셀 (120)은 타워 (110)에 의 해 지지될 수 있다. 이때, 일반적으로 너샐 (120)은 타워 (110)의 상단부에 타워The lamp shaped tower 110 may be installed in the ground 1, and the nussel 120 may be supported by the tower 110. In this case, in general, the nussel 120 is a tower at the top of the tower 110
(110)의 길이방향을 중심으로 회전 가능하게 결합되어, 바람이 불어오는 방향으로 로터를 회전시킬 수 있다. It is rotatably coupled around the longitudinal direction of the 110, it is possible to rotate the rotor in the wind blowing direction.
<8> 따라서, 풍력발전기 (100)가 설치된 지역에 바람이 불 때 허브 (130)가 바람이 불어오는 방향을 향하도록 너샐 (120)을 회전시키면 블레이드 (140)에 바람에 의한 힘이 가해져서 허브 (130)가 회전하게 되며, 허브 (130)의 회전력이 주축 (도시되지 않음)을 통해 발전기 (도시되지 않음)로 전달되어 전기에너지로 변환된다. Therefore, when the wind is blowing in an area where the wind turbine 100 is installed, when the hub 130 is rotated to face the wind blowing direction, a force by the wind is applied to the blade 140. The hub 130 rotates, and the rotational force of the hub 130 is transmitted to a generator (not shown) through a main shaft (not shown) and converted into electrical energy.
<9> 이때, 풍력발전기 (100)의 발전효율을 향상시키기 위해서는 블레이드 (140)가 바람에 의해 가해지는 힘을 회전력으로 변환시키는 효율을 높일 필요가 있다. 따라 At this time, in order to improve the power generation efficiency of the wind power generator 100, it is necessary to increase the efficiency of converting the force applied by the blades to the rotational force by the wind. follow
대체용지 (규칙 제 26조) 서, 블레이드 (140)가 공기역학적 측면에서 최대한 높은 효율올 얻을 수 있는 형상 을 갖도록 하기 위하여 블레이드 (140)의 형상에 대한 연구 및 개발이 지속적으로 진행되고 있다. Alternative Site (Article 26) In order to ensure that the blade 140 has a shape capable of obtaining the highest efficiency in terms of aerodynamics, research and development on the shape of the blade 140 are continuously being performed.
<ιο> 도 2에는 도 1에 표시된 Π-Π 직선에 따른 단면이 도시되어 있다.  FIG. 2 shows a cross section along the Π-Π straight line shown in FIG. 1.
<π> 도 2를 참조하면, 블레이드 (140)에는 상면 (suet ion side, 141) 및 하면 Referring to FIG. 2, the blade 140 has a top ion side 141 and a bottom surface.
(pressure side, 142)이 포함될 수 있다. (pressure side, 142) may be included.
<12> 여기서, 상면 (141) 및 하면 (142)의 형상은 블레이드 (140)의 단면이 항공기 의 날개와 같은 익형 (airfoil)의 형상올 갖도록 형성될 수 있는데, 이는 앞에서 언 급한 바와 같이 블레이드 (140)가 바람의 힘을 회전력으로 변환시키는 효율이 높아 지도록 하기 위한 것이다. Here, the shape of the upper surface 141 and the lower surface 142 may be formed such that the cross section of the blade 140 has the shape of an airfoil, such as the wing of the aircraft, as described above, the blade ( 140) is to increase the efficiency of converting the force of the wind into rotational force.
<13> 익형의 형상올 갖는 블레이드 (140)의 단면에 표시된 부호는 전연 (leading edge, 143) , 후연 (trailing edge, 144), 코드 (chord, 145), 평균캠버선 (mean camber line, 146) 및 코드 길이 (LC)를 나타낸 것인데, 이는 당업자에게 잘 알려진 사항이므로 설명을 생략한다. <13> Indicated on the cross section of the blade 140 having the shape of the airfoil is the leading edge (143), trailing edge (144), cord (chord, 145), mean camber line (146) ) And code length (LC), which are well known to those skilled in the art and will not be described.
<14> 다시 도 1을 참조하면, 풍력발전기 (100)에 의해 생산되는 전력 (P)은 수학식Referring back to FIG. 1, the power P produced by the wind turbine 100 is represented by the following equation.
1과 같이 나타낼 수 있다. It can be represented as 1.
<15> 【수학식 1】
Figure imgf000003_0001
<15> [Equation 1]
Figure imgf000003_0001
<17> 여기서, P는 전력 (power), p는 공기밀도, V는 풍속, CP는 동력계수Where P is power, p is air density, V is wind speed, and C P is power factor.
(coefficient of power), A는 블레이드 (140)의 회전면적 (swept area of blade)을 나타낸다. (coefficient of power), A represents the swept area of the blade (140).
<18> 이 중 공기밀도 (p) 및 풍속 (V)은 풍력발전기 (100)가 설치되는 장소에 따른 차이가 있을 뿐 임의로 조절할 수 없다. 따라서, 풍력발전기 (100)에 의해 생산되는 전력 (P)을 증가시키기 위해서는 회전면적 (A)올 증가시키는 방법 또는 동력계수 (Cp) 를 증가시키는 방법을 고려할 수 있다. Among these, the air density (p) and the wind speed (V) are different depending on the place where the wind turbine 100 is installed, but cannot be arbitrarily adjusted. Therefore, in order to increase the power P produced by the wind turbine 100, a method of increasing the rotational area A or increasing the power factor C p may be considered.
<19> 회전면적 (A)을 증가시키기 위해서는 블레이드 (140)의 길이를 연장시켜야 하 는데, 블레이드 (140)의 길이가 길어질수록 블레이드 (140)의 생산에 소요되는 비용 및 시간이 증가되고, 블레이드 (140)의 팁 (tip) 부분의 선속도 증가로 소음 및 진동 의 발생이 증가되는 문제가 발생될 수 있다. 그러므로, 블레이드 (140)의 길이를 연 장시키는 데에는 한계가 있다. In order to increase the rotational area A, the length of the blade 140 needs to be extended. As the length of the blade 140 increases, the cost and time required for the production of the blade 140 increase, and the blade An increase in the linear velocity of the tip portion of the tip 140 may cause a problem of an increase in the generation of noise and vibration. Therefore, there is a limit in extending the length of the blade 140.
대체용지 (규칙 제 26조) <2o> 그러므로, 블레이드 ( 140)를 설계하는 단계에서부터 동력 계수 (Cp)가 최 대한 높아지도록 함으로써 풍력발전기 ( 100)에 의해 생산되는 전력 (P)을 증가시킬 수 있 다 . Alternative Site (Article 26) Therefore, it is possible to increase the power P produced by the wind turbine 100 by causing the power factor C p to become as high as possible from the design of the blade 140.
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
<21> 본 발명의 실시 예는 풍력발전기 블레이드의 공기 역학적 특성을 향상시 켜 풍 력발전기의 발전효율을 향상시키고자 한다.  Embodiment of the present invention is to improve the aerodynamic characteristics of the wind turbine blade to improve the power generation efficiency of the wind turbine.
【기술적 해결방법】  Technical Solution
<22> 본 발명의 일 측면에 따르면, .익 형 횡단면을 갖는 풍력발전기 블레이드의 일면 또는 타면에 결합되고 , 상기 블레이드의 길이방향으로 복수의 주름이 형성 되 며, 상기 복수의 주름의 소정 위치에서의 간격 및 높이는, 상기 블레이드에 결합되 었을 때 상기 소정 위치에서의 상기 블레이드의 익형 횡단면의 코드 길이에 비하여 각각 소정 비율의 값을 갖는 것을 특징으로 하는 풍력발전기 블레이드용 주름패 널 이 제공될 수 있다 .  According to an aspect of the present invention, coupled to one or the other surface of the wind turbine blade having a blade-shaped cross-section, a plurality of wrinkles are formed in the longitudinal direction of the blade, at a predetermined position of the plurality of wrinkles The spacing and height of the wind turbine blades can be provided, characterized in that when coupled to the blade has a value of each predetermined ratio compared to the cord length of the airfoil cross section of the blade at the predetermined position. .
<23> 여기서, 풍력발전기 블레이드용 주름패널은 상기 블레이드의 일면의 폭 전 체를 상기 블레이드의 일단부로부터 타단부까지 커버하며 결합될 수 있다.  Here, the corrugated panel for the wind turbine blade may be coupled to cover the entire width of one surface of the blade from one end to the other end of the blade.
<24> 그리고, 풍력발전기 블레이드용 주름패널은 티타늄합금, 알루미늄합금 및 합성수지 중 어느 하나를 포함하는 소재로 제조될 수 있다.  In addition, the corrugated panel for the wind turbine blade may be made of a material including any one of titanium alloy, aluminum alloy and synthetic resin.
<25> 본 발명의 다른 측면에 따르면, 익 형 횡단면을 갖는 풍력발전기 블레 이드의 일면 또는 타면에 그 일면이 결합되는 패널본체와, 상기 패널본체의 타면에 상기 블레이드의 길이방향으로 복수의 주름이 형성된 주름부를 포함하고, 상기 복수의 주름의 소정의 위치에서의 간격 및 높이는, 상기 패널본체가 상기 블레 이드에 결합 되었을 때 상기 소정의 위치에서의 상기 블레이드의 익형 횡단면의 코드 길이에 비 하여 각각 소정 비율의 값을 갖는 것을 특징으로 하는 풍력발전기 블레이드용 주름 패널이 제공될 수 있다 .  According to another aspect of the present invention, a panel body having one surface coupled to one surface or the other surface of a wind turbine blade having a blade cross section, and a plurality of wrinkles in the longitudinal direction of the blade on the other surface of the panel body. A plurality of pleats formed, wherein the spacing and height at predetermined positions of the plurality of pleats are predetermined compared to the cord length of the airfoil cross section of the blade at the predetermined position when the panel body is coupled to the blade. A corrugated panel for a wind turbine blade can be provided which has a value of a ratio.
<26> 여 기서, 상기 패널본체는 상기 블레이드의 일면의 폭 전체를 상기 블레이 드 의 일단부로부터 타단부까지 커버하며 결합될 수 있다.  Here, the panel body may be coupled to cover the entire width of one surface of the blade from one end to the other end of the blade.
<27> 그리고, 상기 패널본체 및 상기 주름부는 티타늄합금, 알루미늄합금 및 합 성수지 중 어느 하나를 포함하는 소재로 제조될 수 있다.  In addition, the panel body and the corrugation part may be made of a material including any one of a titanium alloy, an aluminum alloy, and a synthetic resin.
<28> 상술한 바와 같은 풍력발전기 블레이드용 주름패널에서 , 상기 주름은 그 횡 단면이 다각형, 반원형 및 타원형 증 어느 하나의 형상올 갖도록 형성될 수 있으 며, 특히 그 횡단면이 삼각형 형상을 갖도록 형성될 수 있다 .  In the corrugation panel for a wind turbine blade as described above, the corrugation may be formed such that the cross section thereof has any one of polygonal, semicircular, and elliptical increase, and in particular, the cross section thereof is formed to have a triangular shape. Can be.
대 체 용지 (규칙 제 26조) <29> 그리고, 상기 소정 비율은 0.1 내지 5퍼센트일 수 있다. Replacement Paper (Rule Article 26) And, the predetermined ratio may be 0.1 to 5 percent.
<30> 또한, 상기 패널본체는 상기 주름사이 위치에 접철 가능한 연결부를 포함할 수 있다.  In addition, the panel body may include a connecting portion foldable at the position between the corrugation.
【유리한 효과】  Advantageous Effects
<31> 본 발명의 실시예에 따르면, 새로 제조되는 풍력발전기 블레이드뿐만 아니 라, 이미 풍력발전기에 설치되어 사용 중인 블레이드의 공기역학적 특성을 향상시 킴으로써 풍력발전기의 발전효율을 향상시킬 수 있다 .  According to the embodiment of the present invention, the power generation efficiency of the wind turbine can be improved by improving the aerodynamic characteristics of the blades that are already installed and used in the wind turbine as well as the newly manufactured wind turbine blades.
【도면의 간단한 설명】  [Brief Description of Drawings]
<32> 도 1은 일반적인 풍력발전기를 예시한도면.  1 is a diagram illustrating a general wind power generator.
<33> 도 2는도 1의 Π-Π 직선에 따른 단면을 나타낸 도면.  FIG. 2 is a cross-sectional view taken along the line Π-Π of FIG. 1. FIG.
<34> 도 3은 본 발명의 일 실시예에 따른 풍력발전기 블레이드용 주름패널을 블 레이드에 결합시키는 장면을 개략적으로 도시한사시도.  3 is a perspective view schematically illustrating a scene of coupling a corrugated panel for a wind turbine blade to a blade according to an embodiment of the present invention.
<35> 도 4 및 도 5는 익형의 형상에 따른 양력발생의 차이를 설명하기 위한 그래 프  4 and 5 are graphs for explaining the difference in lift generation according to the shape of the airfoil.
<36> 도 6은 주름진 패널이 익형과 같은 효과를 나타내는 것을 설명하기 위한 실 험 결과를 나타낸 도면.  FIG. 6 is a view showing an experimental result for explaining that a corrugated panel has an airfoil-like effect. FIG.
<37> 도 7은 도 3의 Vn-Vn직선에 따른 단면을 나타낸 도면.  FIG. 7 is a cross-sectional view taken along line Vn-Vn of FIG. 3. FIG.
<38> 도 8은 본 발명의 일 실시예에 따른 풍력발전기 블레이드용 주름패널이 블 레이드에 결합된 모습의 단면을 나타낸 도면.  8 is a view showing a cross-sectional view of a corrugated panel for a wind turbine blade coupled to a blade according to an embodiment of the present invention.
<39> 도 9는 본 발명의 다른 실시예에 따른 풍력발전기 블레이드용 주름패널의 단 면을 나타낸 도면. - 【발명의 실시를 위한 최선의 형태】  9 is a cross-sectional view of the corrugated panel for a wind turbine blade according to another embodiment of the present invention. -Best Mode for Implementation of the Invention
<40> 본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예돌을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발 명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물올 포함하는 것 으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체 적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생 략한다.  As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all transformations, equivalents, and substitutes included in the spirit and technical scope of the present invention. In the following description of the present invention, detailed descriptions of related well-known techniques will be omitted if it is determined that they may unnecessarily obscure the subject matter of the present invention.
<41> 이하, 본 발명의 실시예를 첨부한도면들을 참조하여 상세히 설명하기로 한 다.  Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
<42> 도 3에는 본 발명의 일 실시예에 따른 풍력발전기 블레이드용 주름패널이  3 is a corrugated panel for a wind turbine blade according to an embodiment of the present invention.
대체용지 (규칙 제 26조) 블레이드에 결합되는 장면이 개략적으로 도시되어 있다. Alternative Site (Article 26) The scene coupled to the blade is shown schematically.
<43> 도 3을 참조하면, 본 발명의 일 실시예에 따른 풍력발전기 블레이드용 주름 패널 (200)은 블레이드 (140)의 일면, 즉 상면 (141)에 결합될 수 있다. 여기서, 본 발명의 일 실시예에 따른 Ϋ력발전기 블레이드용 주름패널 (200)은 필요에 따라 블 레이드 (140)의 타면, 즉 하면 (도 7의 142 참조)에도 결합될 수 있다.  Referring to FIG. 3, the corrugated panel 200 for a wind turbine blade according to an embodiment of the present invention may be coupled to one surface of the blade 140, that is, the upper surface 141. Here, the power generator blade corrugated panel 200 according to an embodiment of the present invention may be coupled to the other surface of the blade 140, that is, the lower surface (see 142 of FIG. 7) as necessary.
<44> 앞에서 설명했던 바와 같이, 풍력발전기 (도 1의 100 참조)의 블레이드 (140) 의 단면은 익형 형상을 가질 수 있다. 이에 대해서는 도 4 및 도 5를 참조하여 설 명한다. As described above, the cross section of the blade 140 of the wind power generator (see 100 of FIG. 1) may have a airfoil shape. This will be described with reference to FIGS. 4 and 5.
<45> 도 4 및 도 5에는 익형의 형상에 따른 양력발생의 차이를 설명하기 위한 그 래프가각각 예시되어 있다. 도 4 및 도 5를 함께 참조하여 설명한다.  4 and 5 illustrate graphs for explaining differences in lift generation according to airfoil shapes. It demonstrates with reference to FIG. 4 and FIG.
<46> 우선, 도 4를 참조하면, NACA 0012형 익형 및 NACA 4412형 익형의 형상을 비교한 그래프가 예시되어 있다. 여기서, NACA는 미국 항공우주국 (NASA)의 전신인 미국 항공자문위원회를 의미한다.  First, referring to FIG. 4, a graph comparing the shapes of the NACA 0012 airfoil and the NACA 4412 airfoil is illustrated. NACA means the American Aeronautical Advisory Board, the forerunner of the NASA.
<47> NACA 0012형 익형은 대칭형 익형 (symmetrical airfoil)으로, 도시되지 않은 코드, 즉 그래프의 가로축에서 0과 1 사이의 부분을 중심으로 대칭인 형상을 갖는 다. NACA 4412형 익형은 비대칭형 익형 (asymraetr ical airfoil)으로, 그래프의 가로 축에서 0과 1사이의 부분을 증심으로 비대칭인 형상을 갖는다.  NACA 0012 airfoils are symmetrical airfoils that have a symmetrical shape around a non-shown code, ie between 0 and 1 in the horizontal axis of the graph. The NACA 4412 airfoil is an asymraetrical airfoil, with an asymmetrical shape centered between 0 and 1 on the horizontal axis of the graph.
<48> 즉 도시되지는 않았으나, NACA 0012형 익형은 평균캠버선 (도 2의 146 참조) 이 코드 (도 2의 145 참조)와 일치하며, NACA 4412형 익형은 평균캠버선 (도 2의 146 참조)이 코드 (도 2의 145 참조)와 일치하지 않고 외곽선이 치우친 방향, 즉 그래프 의 가로축보다 상측으로 치우친 위치에 형성될 수 있다. 환언하면, 비대칭형 익형 인 NACA 4412형 익형은 캠버가 형성된다.  That is, although not shown, the NACA 0012 airfoil matches the average camber wire (see 146 in FIG. 2) with this code (see 145 in FIG. 2), and the NACA 4412 airfoil is the average camber wire (146 in FIG. 2). This may not be consistent with the code (see 145 of FIG. 2), but may be formed at a position in which the outline is biased, that is, at an upper side of the graph. In other words, the asymmetric airfoil NACA 4412 airfoil is formed with a camber.
<49> 도 5를 참조하면, NACA 0012형 익형 및 NACA 4412형 익형의 받음각 (angle of attack)에 따른 양력계수의 변화를 나타낸 실험 결과 그래프가 예시되어 있다. 여기서, 받음각은 익형 단면을 갖는 블레이드 (도 1의 140)의 코드 (도 2의 145)와 바람의 방향이 이루는 각도를 지칭하는 것인데, 이는 당업자에게 잘 알려진 사항이 므로 받음각에 대한상세한 설명은 생략한다.  Referring to FIG. 5, an experimental result graph showing a change in lift coefficient according to an angle of attack of a NACA 0012 airfoil and a NACA 4412 airfoil is illustrated. Here, the angle of attack refers to the angle formed by the cord (145 of FIG. 2) and the direction of the wind of the blade (140 of FIG. 1) having an airfoil cross section, which is well known to those skilled in the art, so a detailed description of the angle of attack is omitted. do.
<50> 도시된 바와 같이, 일정 범위 내에서는 받음각의 변화에 상관없이 NACAAs shown in the figure, NACA irrespective of change of angle of attack within a certain range.
0012형 익형에 비하여 NACA 4412형 익형의 양력계수가 항상 크다는 것을 알 수 있 다. 따라서, 소정의 각도 범위 내에서는 NACA 0012형 익형에 비하여 캠버가 형성된 NACA 4412형 익형에 의해 발생되는 양력이 더 크게 발생된다는 것을 확인할 수 있 다. It can be seen that the lift coefficient of NACA 4412 airfoil is always larger than that of 0012 airfoil. Accordingly, it can be seen that the lift force generated by the NACA 4412 airfoil with camber is larger than the NACA 0012 airfoil within a predetermined angle range.
대체용지 (규칙 제 26조) 참고로, 익형에 작용하는 양력 (lift)은 수학식 2와 같이 나타낼 수 있다. 【수학식 2】
Figure imgf000007_0001
Alternative Site (Article 26) For reference, the lift acting on the airfoil may be represented by Equation 2. [Equation 2]
Figure imgf000007_0001
여기서, L는 양력, p는 공기밀도, V는 풍속, CL은 양력계수 (coefficient of lift), A는 블레이드 (도 1의 140)의 회전면적을 나타낸다. 양력계수는 익형의 형상이나 받음각 둥과 관계가 있는 실험치이므로, 직접적으로 측정하거나 자료집 등을 참조하여 구할수 있다. Where L is the lift, p is the air density, V is the wind speed, C L is the coefficient of lift, and A is the rotational area of the blade (140 in FIG. 1). Lift coefficient is an experimental value that is related to airfoil shape or angle of attack, so it can be measured directly or obtained from reference materials.
풍력발전기 (도 1의 100)의 블레이드 (도 1의 140)는 바람에 의해 작용되는 힘을 회전력으로 변환시키는 효율을 높이기 위하여, 블레이드 (도 1의 140)의 단면 이 블레이드 (도 1의 140)에 작용되는 양력 (L)을 최대한 활용할 수 있는 형상을 갖 도록 설계될 수 있다.  The blade of the wind generator (100 in FIG. 1) (140 in FIG. 1) has a cross section of the blade (140 in FIG. 1) in order to increase the efficiency of converting the force exerted by the wind into rotational force. It can be designed to have a shape that can take full advantage of the lifting force (L) applied to.
실제로, 일반적인 수평축 풍력발전기 (도 1의 100)의 블레이드 (도 1의 140) 는 캠버가 형성된 비대칭형 익형의 형상을 갖도록 설계되고 있다.  Indeed, the blades (140 in FIG. 1) of a typical horizontal axis wind turbine (100 in FIG. 1) are designed to have the shape of an asymmetric airfoil with cambers.
여기서 , 블레이드 (도 1의 140)에 작용되는 양력이 커질수록 허브 (도 1의 130)에 연결된 주축 (도시되지 않음)을 회전시키는 방향의 힘이 커진다. 주축 (도시 되지 않음)을 회전시키는 힘이 증가되면 풍력발전기 (도 1의 100)에 의해 생산되는 전력 (P)이 증가되며, 따라서 동력계수 ( 가증가될 수 있다.  Here, the greater the lift applied to the blade 140 (FIG. 1), the greater the force in the direction of rotating the main axis (not shown) connected to the hub (130 of FIG. 1). Increasing the power to rotate the spindle (not shown) increases the power P produced by the wind turbine (100 in FIG. 1), and thus the power factor (which can be increased).
그러므로, 블레이드 (도 1의 140)의 익형 단면 형상이 양력계수 (CL)가 증가 되는 형상, 즉 익형 단면의 캠버가 증가되는 형상을 가질수록 동력계수 (CP)가 증가 되어 풍력발전기 (도 1의 100)의 발전효율이 향상될 수 있다. Therefore, as the airfoil cross-sectional shape of the blade (140 in FIG. 1) has a shape in which the lift coefficient C L is increased, that is, a camber in the airfoil cross-section is increased, the power coefficient C P is increased to increase the wind power generator (Fig. 1). The power generation efficiency of 100 of 1 may be improved.
도 6에는 주름진 패널이 익형과 같은 효과를 나타내는 것을 설명하기 위한 실험 결과가도시되어 있다.  6 shows experimental results for explaining that the corrugated panel has an airfoil-like effect.
도 6을 참조하면, 주름진 패널 (20)이 X축 방향과 나란하게 유동하는 기류 중에 위치할 때의 모습이 도시되어 있다. 여기서, 주름진 패널 (20)에는 복수의 주 름 (Ra, Rb, Rc, Rd, Re, Rf, Rg, Rh, Ri , Rj, Rk, Rl, 이하 'Ra 내지 Rl'이라 칭 함)이 형성되어 있는데, 도시되지는 않았으나 복수의 주름 (Ra 내지 R1)의 정점을 가상의 선으로 연결하는 경우를 가정하면, 그 가상의 선은 익형을 갖는다.  Referring to FIG. 6, the corrugated panel 20 is shown when positioned in an air stream flowing in parallel with the X-axis direction. Here, the corrugated panel 20 is formed with a plurality of wrinkles (Ra, Rb, Rc, Rd, Re, Rf, Rg, Rh, Ri, Rj, Rk, Rl, hereinafter referred to as 'Ra to Rl'). Although not shown, assuming that the vertices of the plurality of wrinkles Ra to R1 are connected by virtual lines, the virtual lines have airfoils.
이러한 주름진 패널 (20)이 상술한 바와 같은 기류 증에 위치하게 되면, 복 수의 주름 (Ra 내지 R1)에 의해 상대적으로 함몰된 부분에는 와류 (Va, Vb, Vc, Vd, Ve, Vf , Vg, Vh, Vi, Vj, 이하, 'Va내지 Vj')가 각각 형성된다. <62> 여기서, 와류 (Va 내지 Vj)는 도시된 바와 같이 복수의 주름 (Ra 내지 R1) 사 이의 공간에 지속적으로 형성되어, 복수의 주름 (Ra 내지 Ri) 외측에는 안정적인 층 류 (LS)가 형성된다. When the corrugated panel 20 is positioned in the air flow as described above, the portions relatively recessed by the plurality of corrugations Ra to R1 are included in the vortices Va, Vb, Vc, Vd, Ve, Vf, and Vg. , Vh, Vi, Vj, hereinafter, 'Va to Vj' are formed, respectively. Here, the vortices Va to Vj are continuously formed in the space between the plurality of wrinkles Ra to R1 as shown, and stable laminar flow LS is formed outside the plurality of wrinkles Ra to Ri. Is formed.
<63> 따라서, 주름진 패널 (20)은 도시된 바와 같이 그 단면의 형상이 익형과 상 이함에도 블구하고 익형과 같은 작용을 하며, 복수의 주름 (Ra 내지 R1)이 돌출된 정도에 따라 캠버 (camber)가 형성된 것과 같은 효과를 얻게 되는 것을 확인할 수 있다.  Therefore, the corrugated panel 20 has a cross-sectional shape different from the airfoil as shown, and functions like a airfoil, and according to the extent to which the plurality of corrugations Ra to R1 protrude, the camber ( It can be seen that the same effect as the camber is formed.
<64> 참고로, 이러한 주름진 패널 (20)의 작용에 대한 실험결과 등은 미국항공우 주학회 (AIAA: American Institute for Aeronautics and Astronautics)에서 발간된 AIM 저널 제 47호 (2009년 12월 12일)에 게재된 "Flow Visualization Study of the Aerodunamics of Modeled Dragonfly ings(AIAA-2007-0483)" 및 미국 폴로리다주 올란도에서 2009년 1월 5일부터 8일 사이에 열린 47차 AIM Aerospace Sciences Meeting Including The New Hor i zons Forum and Aerospace Exposition에서 발표된 "An Experimental Investigation on Bio-inspired Corrugated Airf ioKAIAA一 2009一 1087)"에서 확인할 수 있으므로 더 상세한 설명은 생략하기로 한다.  For reference, experimental results on the action of the corrugated panel 20 can be found in the AIM Journal 47 (December 12, 2009) published by the American Institute for Aeronautics and Astronautics (AIAA). ), "Flow Visualization Study of the Aerodunamics of Modeled Dragonfly ings (AIAA-2007-0483)" and the 47th AIM Aerospace Sciences Meeting Including The The detailed description will be omitted since it can be found in "An Experimental Investigation on Bio-inspired Corrugated Airf ioKAIAA 一 2009 一 1087" published in the New Horzons Forum and Aerospace Exposition.
<65> 현재 항공분야, 조선분야 둥에서는 유체와의 마찰이 일어나는 표면에 미세 한 홈 또는 돌기, 즉 딤플 (dimple) 또는 리블릿 (riblet) 등을 형성하여 유체의 박 리현상 (separation)을 지연시키는 방법이 지속적으로 연구, 개발 및 적용되고 있 다.  At present, in the aerospace and shipbuilding fields, fine grooves or protrusions, ie dimples or riblets, are formed on the surface where the friction with the fluid occurs, thus delaying the separation of the fluid. This method is constantly being researched, developed and applied.
<66> 그런데, 상술한 주름 (Ra 내지 R1)은 이와 같은 미세한 홈 또는 돌기와 달 리, 주름진 패널 (20)의 전체적인 규모에 비하여 상당한 크기를 갖는다는 차이가 있 다. 또한, 상술한 주름 (Ra 내지 R1)은 박리현상의 지연을 주목적으로 하는 것이 아 니라, 익형과 상이한 단면을 갖는 주름진 패널 (20)이 익형과 같은 작용을 하도록 한다는 점에서도 차이가 있다.  However, unlike the fine grooves or protrusions described above, the wrinkles Ra to R1 have a difference in size compared to the overall size of the corrugated panel 20. In addition, the wrinkles Ra to R1 described above are not intended to delay the peeling phenomenon, but also differ in that the corrugated panel 20 having a cross section different from the airfoil acts like an airfoil.
<67> 따라서, 도 3에서와 같이 주름진 패널 (20)이 블레이드 (도 3의 140)의 일면 ( 도 3의 141)에 결합되면, 블레이드 (도 3의 140)의 익형 단면의 캠버를 증가시키는 효과를 얻을 수 있는데, 이에 대해서는 도 7 및 도 8을 참조하여 설명하기로 한다. Thus, when the corrugated panel 20 is coupled to one surface (141 of FIG. 3) of the blade (140 of FIG. 3), as shown in FIG. 3, the camber of the airfoil cross section of the blade (140 of FIG. 3) is increased. An effect can be obtained, which will be described with reference to FIGS. 7 and 8.
<68> 도 7에는 도 3의 Vn-νΠ 직선에 따른 단면이 도시되어 있고, 도 8에는 본 발 명의 일 실시예에 따른 풍력발전기 블레이드용 주름패널이 블레이드에 결합된 모습 의 단면이 도시되어 있다. 도 3을 함께 참조하여 설명한다. FIG. 7 is a cross-sectional view taken along the line Vn-νΠ of FIG. 3, and FIG. 8 is a cross-sectional view of a corrugated panel for a wind turbine blade coupled to a blade according to an embodiment of the present invention. . It demonstrates with reference to FIG.
<6 > 우선 도 7을 참조하면, 본 발명의 일 실시예에 따른 풍력발전기 블레이드용 주름패널 (200)에는, 풍력발전기 블레이드용 주름패널 (200)이 결합될 블레이드 (140)  First, referring to FIG. 7, a blade 140 to which a wind turbine blade corrugation panel 200 is coupled to a wind turbine blade corrugation panel 200 according to an embodiment of the present invention.
대체용지 (규칙 제 26조) 의 길이방향으로 복수의 주름 (202)이 형성될 수 있다. Alternative Site (Article 26) A plurality of corrugations 202 may be formed in the longitudinal direction of.
<70> 풍력발전기 블레이드용 주름패널 (200)이 블레이드 (140)의 일면에 결합될 경 우, 풍력발전기 블레이드용 주름패널 (200)은 블레이드 (140)의 길이방향으로는 그 일단부로부터 타단부, 즉 블레이드 (140)의 루트 (root) 부분으로부터 팁 (tip) 부분 까지 커버하며 결합될 수 있다. 단, 필요한 경우 블레이드 (140)의 길이방향으로는 일부분만 커버하며 결합될 수도 있다.  When the corrugated panel 200 for the wind turbine blade is coupled to one surface of the blade 140, the corrugated panel 200 for the wind turbine blade has the other end from one end thereof in the longitudinal direction of the blade 140. That is, it can be combined to cover from the root portion of the blade 140 to the tip portion. However, if necessary, the blade 140 may be coupled to cover only a portion in the longitudinal direction.
<7i> 또한, 풍력발전기 블레이드용 주름패널 (200)이 블레이드 (140)의 일면에 결 합될 경우, 풍력발전기 블레이드용 주름패널 (200)은 블레이드 (140)의 폭방향으로는 전연 (143)으로부터 후연 (144)까지 커버하며 결합될 수 있다. 단, 필요한 경우 블레 이드 (140)의 폭방향으로는 일부분만 커버하며 결합될 수도 있다.  In addition, when the corrugated panel 200 for the wind turbine blade is joined to one surface of the blade 140, the corrugated panel 200 for the wind turbine blade is moved from the leading edge 143 in the width direction of the blade 140. Covers up to trailing edge 144 and may be coupled. However, if necessary, the cover 140 may be coupled to cover only a part of the width 140.
<72> 풍력발전기 블레이드용 주름패널 (200)에 형성된 복수의 주름 (202)의 간격 A gap of the plurality of corrugations 202 formed in the corrugated panel 200 for the wind turbine blades
(P) 및 높이 (hr)는 풍력발전기 블레이드용 주름패널 (200)이 블레이드 (140)에 결합 되었을 때 소정 위치에서의 블레이드 (140)의 익형 횡단면의 코드 길이 (IX)에 대하 여 소정 비율의 값을 각각 갖도록 형성될 수 있다. (P) and height (hr) are of a predetermined ratio with respect to the cord length (IX) of the airfoil cross section of the blade 140 at the predetermined position when the corrugated panel 200 for the wind turbine blade is coupled to the blade 140. It can be formed to have each value.
<7¾> 여기서, 블레이드 (140)의 익형 횡단면의 코드 길이 (IX)는 블레이드 (140)의 길이방향을 따라 일단부로부터 타단부까지 지속적으로 변경될 수 있다. 따라서, 복 수의 주름 (202)의 간격 (p) 및 높이 (hr)는 코드 길이 (IX)에 대하여 소정 비율의 값 을 가질 수 있으므로, 블레이드 (140)의 길이방향에 따른 소정의 위치에 따라 그 주 름 (202)의 간격 (p) 및 높이 (hr)가 해당 위치에서의 코드 길이 (LC)에 비례하여 각각 변경될 수 있다.  Here, the cord length IX of the airfoil cross section of the blade 140 may be continuously changed from one end to the other end along the longitudinal direction of the blade 140. Therefore, the interval p and the height hr of the plurality of wrinkles 202 may have a predetermined ratio of values with respect to the cord length IX, and according to a predetermined position along the longitudinal direction of the blade 140. The spacing p and height hr of the wrinkle 202 may be changed in proportion to the code length LC at the corresponding position.
<74> 한편, 풍력발전기 블레이드용 주름패널 (200)의 전체적인 형상은 풍력발전기 블레이드용 주름패널 (200)이 부착될 면과 같은 형상을 갖도록 제조될 수 있다. On the other hand, the overall shape of the wind turbine blade corrugated panel 200 may be manufactured to have the same shape as the surface to which the wind turbine blade corrugated panel 200 is to be attached.
<75> 예를 돌어, 도시된 바와 같이 풍력발전기 블레이드용 주름패널 (200)에서 블 레이드 (140)의 상면 (141)에 결합되는 방향으로 돌출된 복수의 주름 (202)의 돌출된 단부를 가상으로 연결한 하측윤곽선 (LL)은, 블레이드 (140)의 상면 (141)의 형상을 갖도록 형성될 수 있다. For example, as illustrated, the projected ends of the plurality of corrugations 202 protruding in the direction in which the corrugated panel 200 for the wind turbine blades are coupled to the upper surface 141 of the blade 140 are simulated. The lower outline LL connected to each other may be formed to have a shape of the upper surface 141 of the blade 140.
<76> 또한, 도시되지는 않았으나, 본 발명의 일 실시예에 따른 풍력발전기 블레 이드용 주름패널 (200)이 블레이드 (140)의 하면 (142)에 결합될 경우에는 하측윤곽선 (LL)이 블레이드 (140)의 하면 (142)의 형상을 갖도록 형성될 수도 있다.  Also, although not shown, when the corrugated panel 200 for the wind turbine blade according to the embodiment of the present invention is coupled to the lower surface 142 of the blade 140, the lower outline LL is a blade. The lower surface 142 of the 140 may be formed to have a shape.
<77> 도 8을 참조하면, 본 발명의 일 실시예에 따른 풍력발전기 블레이드용주름 패널 (200)이 블레이드 (140)의 상면 (141)에 결합되어 있다.  Referring to Figure 8, the wind turbine blade wrinkle panel 200 according to an embodiment of the present invention is coupled to the upper surface 141 of the blade 140.
<78> 이때, 풍력발전기 블레이드용 주름패널 (200)은 블레이드 (140)에 접착제에 At this time, the corrugated panel 200 for the wind turbine blade is attached to the blade 140 in the adhesive
대체 지 규칙 제 26조 의해 결합될 수도 있고, 볼트 및 너트와 같은 별도의 체결부재 (도시되지 않음)를 이용하여 결합될 수도 있다. Substitution place rule Article 26 It may be coupled by, or may be coupled using separate fastening members (not shown) such as bolts and nuts.
<79> 참고로, 별도의 체결부재 (도시되지 않음)를 이용할 경우 블레이드 (140) 및 풍력발전기 블레이드용 주름패널 (200)에 체결부재 (도시되지 않음)를 결합시키기 위 한 통공 둥이 형성될 수 있는데 이러한 통공에 웅력이 집증되어 블레이드 (140) 및 풍력발전기 블레이드용 주름패널 (200)의 강성이 저하될 수 있다.  For reference, when a separate fastening member (not shown) is used, a through hole for coupling the fastening member (not shown) to the blade 140 and the corrugation panel 200 for the wind turbine blade may be formed. There is a force collected in the through-holes may reduce the rigidity of the blade 140 and the corrugated panel 200 for the wind turbine blade.
<80> 또한, 체결부재 (도시되지 않음)가 블레이드 (140) 및 풍력발전기 블레이드용 주름패널 (200)의 표면으로부터 돌출될 경우 공기와의 저항 등에 의해 소음 등이 발 생될 수도 있다.  In addition, when the fastening member (not shown) protrudes from the surfaces of the blade 140 and the corrugated panel 200 for the wind turbine blade, noise may be generated due to resistance with air or the like.
<8i> 따라서, 풍력발전기 블레이드용 주름패널 (200) 및 블레이드 (140)의 결합에 는 접착제가 사용되는 것이 유리할 수 있다. 이때, 블레이드 (140)는 옥외에 설치 및 사용되므로, 여기에 사용되는 접착제는 내후성 및 내수성이 높으면서도 충분한 강도를 유지할수 있는 것을 선정하여 사용할 수 있다.  Therefore, it may be advantageous to use an adhesive for bonding the corrugated panel 200 and the blade 140 for the wind turbine blade. At this time, since the blade 140 is installed and used outdoors, the adhesive used herein can be selected and used that can maintain sufficient strength while having high weather resistance and water resistance.
<S2> 풍력발전기 블레이드용 주름패널 (200)에서 블레이드 (140)의 상면 (141)에 결 합되는 방향의 반대방향으로 돌출된 복수의 주름 (202)의 돌출된 단부를 가상으로 연결한 상측윤곽선 (UL)은, 블레이드 (140)의 상면 (141)과 유사한 형상을 가질 수 있 다.  <S2> Upper contour line that virtually connects the protruding ends of the plurality of corrugations 202 protruding in a direction opposite to the direction in which the corrugated panel 200 for wind turbine blades is coupled to the upper surface 141 of the blade 140. UL may have a shape similar to the top surface 141 of the blade 140.
<83> 본 발명의 일 실시예에 따른 풍력발전기 블레이드용 주름패널 (200)이 부착 된 블레이드 (140)가 기류 중에 위치하게 될 경우, 복수의 주름 (202) 사이에는 도 6 을 참조하여 설명했던 주름진 패널 (도 6의 20)의 경우와 같이 와류가 형성될 수 있 다. 따라서, 복수의 주름 (202)은 블레이드 (140)의 상면 (141)에 상측윤곽선 (UL)의 형상에 해당되는 추가적인 캠버 (camber)가 형성된 것과 같은 작용을 할 수 있다. When the blade 140 to which the corrugated panel 200 for a wind turbine blade is attached according to an embodiment of the present invention is positioned in an airflow, the plurality of corrugations 202 have been described with reference to FIG. 6. Vortex may be formed as in the case of a corrugated panel (20 in FIG. 6). Therefore, the plurality of corrugations 202 may act as an additional camber corresponding to the shape of the upper outline UL on the upper surface 141 of the blade 140.
<84> 풍력발전기 (100)의 블레이드 (140)는 앞에서 언급했던 바와 같이 바람을 회 전력으로 변경시키는 효율을 최대한 높일 수 있는 .동시에, 소음 및 진동의 발생을 최소화 할 수 있는 형상을 갖도록 블레이드 (140)의 형상에 대한 연구 및 개발이 지 속적으로 진행되고 있다. As mentioned above, the blade 140 of the wind turbine 100 has a shape to minimize the generation of noise and vibration at the same time to maximize the efficiency of converting the wind into the rotational power. The research and development of the shape of 140) is ongoing.
<85> 따라서, 이미 설치되어 사용 중인 풍력발전기 (100)의 경우에는 블레이드 Therefore, in the case of the wind power generator 100 that is already installed and in use, the blade
(140)의 형상에 보완이 필요할 수 있다. 즉, 블레이드 (140)의 캠버를 더 증가시킬 수 있는 여지가 있음에도 그 형상이 적용되지 않은 경우가 있다. The shape of the 140 may need to be supplemented. That is, the shape may not be applied even if there is room to further increase the camber of the blade 140.
<86> 이러한 경우, 블레이드 (140)에 본 발명의 일 실시예에 따른 풍력발전기 블 레이드용 주름패널 (200)을 결합시켜 블레이드 (140)의 성능을 보완할 수 있다.  In this case, by combining the corrugated panel 200 for the wind turbine blade according to an embodiment of the present invention to the blade 140, it is possible to supplement the performance of the blade 140.
<87> 한편, 블레이드 (140)의 캠버를 증가시키되, 실속 (stall) 현상이 발생되어  On the other hand, while increasing the camber of the blade 140, a stall phenomenon occurs
대체 지 규칙 제 26조 효율이 급격히 저하되는 상태 이전까지는 캠버가 증가됨에 따라 블레이드 (140)의 양력이 증가될 수 있다. Substitution place rule Article 26 Until the efficiency is sharply lowered, the lifting force of the blade 140 may increase as the camber is increased.
<88> 본 발명의 일 실시예에 따른 풍력발전기 블레이드용 주름패널 (200)에 의해 캠버가 증가되는 정도는, 풍력발전기 블레이드용 주름패널 (200)에 형성된 복수의 주름 (202)의 간격 (p) 및 높이 (hr)에 의해 결정될 수 있다. The extent to which the camber is increased by the wind turbine blade corrugation panel 200 according to the embodiment of the present invention is a distance between the plurality of corrugations 202 formed in the wind turbine blade corrugation panel 200 (p). ) And height (hr).
<89> 따라서 블레이드 (140)의 성능을 향상시키기 위해서는, 블레이드 (140)의 형 상을 실측한 후 최적화 설계된 블레이드 (도시되지 않음)의 형상과의 차이를 산출하 고, 그 산출 결과에 따라 풍력발전기 블레이드용 주름패널 (200)에 형성될 복수의 주름 (202)의 간격 (p) 및 높이 (hr)를 결정할 수 있다. Therefore, in order to improve the performance of the blade 140, after measuring the shape of the blade 140, the difference with the shape of the optimized blade (not shown) designed to calculate the wind power according to the calculation result The spacing p and the height hr of the plurality of corrugations 202 to be formed in the corrugated panel 200 for the generator blade can be determined.
<90> 참고로, 실험결과 복수의 주름 (202)의 간격 (p)은 소정 위치에서의 블레이드For reference, as a result of the experiment, the interval p of the plurality of corrugations 202 is defined as a blade at a predetermined position.
(140)의 익형 횡단면의 코드 길이 (IX)의 0.1 내지 5퍼센트의 범위 내에서 선택될 수 있다. 그리고, 복수의 주름 (202)의 높이 (hr) 또한 블레이드 (140)의 익형 횡단면 의 코드 길이 (IX)의 0.1 내지 5퍼센트의 범위 내에서 선택될 수 있다. And may be selected within the range of 0.1 to 5 percent of the cord length IX of the airfoil cross section of 140. And, the height hr of the plurality of corrugations 202 may also be selected within the range of 0.1 to 5 percent of the cord length IX of the airfoil cross section of the blade 140.
<9i> 그리고 도시되지는 않았으나, 풍력발전기 블레이드용 주름패널 (200)에 형성 된 복수의 주름 (202)은 도시된 바와 같이 그 각각의 횡단면이 삼각형을 갖도록 형 성될 수 있고, 도시되지는 않았으나 그 횡단면이 다각형, 반원형 및 타원형 중 어 느 하나의 형상을 갖도록 형성될 수도 있다. 이러한 주름 (202)의 횡단면의 형상은 필요에 따라 변경될 수 있다. And although not shown, the plurality of corrugations 202 formed in the corrugated panel 200 for wind turbine blades can be formed such that each cross section has a triangle as shown, but not shown The cross section may be formed to have one of polygonal, semicircular and elliptical shapes. The shape of the cross section of this corrugation 202 can be changed as needed.
< 2> 또한, 본 발명의 일 실시예에 따른 풍력발전기 블레이드용 주름패널 (200)은 경량이면서도충분한 강도를 갖도록 제조될 수 있다.  In addition, the corrugated panel 200 for a wind turbine blade according to an embodiment of the present invention can be manufactured to have a light weight and sufficient strength.
<93> 즉, 풍력발전기 블레이드용 주름패널 (200)는 티타늄합금, 알루미늄합금 및 합성수지 등 다양한 소재로 제조될 수 있다. 참고로, 티타늄합금은 해수에 대한 내 식성이 우수하므로 해상에 설치된 풍력발전기 (도시되지 않음)의 블레이드에 적용할 경우 유리할 수 있고, 알루미늄합금 및 합성수지는 경량이면서도 높은 구조적 강도 를 얻을 수 있는 장점이 있다.  That is, the corrugated panel for wind turbine blades 200 may be made of various materials such as titanium alloy, aluminum alloy and synthetic resin. For reference, titanium alloys have excellent corrosion resistance against seawater, which may be advantageous when applied to blades of wind turbines (not shown) installed at sea, and aluminum alloys and synthetic resins are lightweight and have high structural strengths. have.
<94> 이와 같이, 본 발명의 일 실시예에 따른 풍력발전기 블레이드용 주름패널 As such, the corrugated panel for a wind turbine blade according to an embodiment of the present invention.
(200)이 블레이드 (140)에 결합되면, 블레이드 (140)의 효율이 증가될 수 있다. When the 200 is coupled to the blade 140, the efficiency of the blade 140 may be increased.
<95> 또한, 풍력발전기 블레이드용 주름패널 (200)에 형성된 복수의 주름 (202)에 의해 블레이드 (140)가 바람에 의해 발생되는 굽힘 모멘트에 대한 강성 (stiffness) 이 증가되어, 블레이드 (140)의 팁 부분이 타워 (110)와 층돌하는 등의 사고 발생이 감소되는 효과도 얻을 수 있다.  In addition, the plurality of corrugations 202 formed in the corrugated panel 200 for the wind turbine blades increase the stiffness of the blade 140 against the bending moment generated by the wind. It is also possible to reduce the occurrence of accidents such as the tip portion of the tower 110 and the stone stratification.
<96> 도 9에는 본 발명의 다른 실시예에 따른 풍력발전기 블레이드용 주름패널의  9 shows a corrugated panel for a wind turbine blade according to another embodiment of the present invention.
대체 지 규칙 제 26조 단면이 도시되어 있다. Substitution place rule Article 26 A cross section is shown.
< 7> 도 9를 참조하면, 본 발명의 다른 실시 예에 따른 풍력발전기 블레이드용 주 름패널 (300)에는 패널본체 (310)가 포함될 수 있고 , 패널본체 (310)의 타면에는 복수 의 주름이 형성 된 주름부 (320)가 형성될 수 있다.  Referring to FIG. 9, the panel body 310 may be included in the wrinkle panel 300 for a wind turbine blade according to another embodiment of the present invention, and a plurality of wrinkles may be formed on the other surface of the panel body 310. The formed wrinkled portion 320 may be formed.
<98> 여 기서, 패널본체 (310)의 일면은 블레이드 (도 7의 140 참조)의 상면 (도 7의 Here, one surface of the panel body 310 is the upper surface of the blade (see 140 of FIG. 7) (see FIG. 7).
141 참조) 또는 하면 (도 7의 142 참조)에 결합될 수 있는 면이 며, 이 패널본체 (310)의 일면에는 주름부 (320)에 형성된 복수의 주름과 같은 요철이 형성되지 않을 수 있다. 141) or a lower surface (see 142 of FIG. 7), and one surface of the panel body 310 may not have irregularities such as a plurality of wrinkles formed in the wrinkle part 320.
<99> 따라서, 패널본체 (310)의 일면이 블레이드 (도 7의 140 참조)의 상면 (도 7의 Therefore, one surface of the panel body 310 is the upper surface of the blade (see 140 of FIG. 7) (see FIG. 7).
141 참조) 또는 하면 (도 7의 142 참조)에 접착제를 이용하여 결합될 경우, 층분한 접촉면적 이 확보되 어 견고하게 접착될 수 있다. 141) or the lower surface (see 142 of FIG. 7) by using an adhesive, a secure contact area can be secured and firmly bonded.
<ιοο> 주름부 (320)에 형성된 복수의 주름은, 도 7 및 도 8을 참조하여 설명한 본 발명의 일 실시 예에 따른 풍력발전기 블레이드용 주름패널 (도 7의 200)의 복수의 주름 (202)과 같이, 패널본체 (310)의 일면에 결합될 블레이드 (도 7의 140 참조)의 길이방향, 즉 블레이드 (도 7의 140 참조)의 루트 부분으로부터 팁 부분을 향하는 방향으로 패널본체 (310)의 타면에 형성될 수 있다 .  The plurality of wrinkles formed in the wrinkle part 320 is a plurality of wrinkles (202) of the corrugation panel (200 in FIG. 7) for a wind turbine blade according to an embodiment of the present invention described with reference to FIGS. 7 and 8. In the longitudinal direction of the blade (see 140 in FIG. 7) to be coupled to one surface of the panel body 310, that is, the panel body 310 in the direction from the root portion of the blade (see 140 in FIG. 7) to the tip portion. It may be formed on the other side of the.
<ιοι> 그리고, 주름부 (320)에 형성된 복수의 주름은 , 도 7 및 도 8을 참조하여 설 명 한 본 발명의 일 실시예에 따른 풍력발전기 블레이드용 주름패널 (도 7의 200)의 복수의 주름 (202)과 같이, 패널본체 (310)의 일면이 블레이드 (도 7의 140 참조)에 결합되 었을 때 소정 위치에서의 블레이드 (도 7의 140 참조)의 익형 횡단면의 코드 길이 (도 7의 LC 참조)에 비하여 각각 소정 비율의 값을 가질 수 있다.  And, a plurality of wrinkles formed in the pleats 320, a plurality of corrugated panel for wind turbine blades (200 of FIG. 7) according to an embodiment of the present invention described with reference to Figures 7 and 8 The length of the cord of the airfoil cross section of the blade (see 140 in FIG. 7) at a predetermined position when one surface of the panel body 310 is coupled to the blade (see 140 in FIG. 7), as in the corrugation 202 of FIG. Relative to the LC reference).
<102> 또한, 주름부 (320)에 형성된 복수의 주름의 높이 및 간격은 앞에서 설명 한 바와 같을 수 있으며, 실험결과 복수의 주름의 간격은 소정 위치에서의 블레이드( 도 7의 140 참조)의 익형 횡단면의 코드 길이 (도 7의 IX 참조)의 0. 1 내지 5퍼센트 의 범위 내에서 선택될 수 있다. 여기서, 주름부 (320)에 형성된 복수의 주름의 높 이 또한 블레이드 (도 7의 140 참조)의 익 형 횡단면의 코드 길이 (IX)의 0.1 내지 5 퍼 센트의 범위 내에서 선택될 수 있다.  In addition, the height and the spacing of the plurality of wrinkles formed in the pleats 320 may be as described above, and as a result of the experiment, the spacing of the plurality of wrinkles is the airfoil of the blade (see 140 of FIG. 7) at a predetermined position. It can be selected within the range of 0.1 to 5 percent of the cord length of the cross section (see IX in FIG. 7). Here, the height of the plurality of corrugations formed in the corrugations 320 may also be selected within the range of 0.1 to 5 percent of the cord length IX of the airfoil cross section of the blade (see 140 in FIG. 7).
<103> 주름부 (320)에 형 성 된 복수의 주름의 횡단면은 도시된 바와 같이 삼각형을 갖도록 형성될 수 있고, 도시되지는 않았으나 다각형, 반원형 및 타원형 중 어느 하나의 형상을 갖도록 형성될 수도 있다.  A cross section of the plurality of wrinkles formed in the wrinkle part 320 may be formed to have a triangle as shown, and may be formed to have a shape of any one of a polygon, a semi-circle, and an ellipse although not shown. .
<i 04> 한편, 도면에 점선으로 표시 된 결합면 (SSL)은 패널본체 (310)의 일면이 결합 될 면, 즉 블레이드 (도 7의 140 참조)의 상면 (도 7의 141 참조) 또는 하면 (도 7의 142 참조)의 형상일 수 있다. 즉, 패널본체 (310)는 도면에 표시된 결합면 (SSL)의 형상과 같이 변형될 수 있도록 가요성을 갖게 제조될 수 있다. <i 04> Meanwhile, the coupling surface SSL indicated by the dotted line in the drawing is a surface on which one surface of the panel main body 310 is to be coupled, that is, an upper surface of the blade (see 140 in FIG. 7) (see 141 in FIG. 7) or a lower surface. (Of FIG. 7 142). That is, the panel body 310 may be manufactured to have flexibility so as to be deformed like the shape of the coupling surface SSL shown in the drawing.
<105> 이럴 경우, 주름부 (320)에 형성된 복수의 주름 사이를 연결하는 연결부In this case, the connecting portion connecting between the plurality of wrinkles formed in the wrinkle portion 320
(311)가 원활히 접철 될 수 있도록 제조하면, 패널본체 (310)가 다양한 형상의 결합 면 (SSL)에도 용이하게 결합될 수 있다. If the 311 is manufactured to be smoothly folded, the panel body 310 can be easily coupled to the coupling surface SSL of various shapes.
<106> 패널본체 (310)는 티타늄합금, 알루미늄합금 및 합성수지 등 다양한 소재로 제조될 수 있으며, 가요성이 없는 소재로 제조될 경우에는 연결부 (311)에 경첩 (도 시되지 않음) 등을 설치하여 가요성을 갖도록 할 수도 있다. The panel body 310 may be made of various materials such as titanium alloy, aluminum alloy, and synthetic resin. When the panel body 310 is made of a material having no flexibility, a hinge (not shown) may be installed at the connection part 311. You can also make it flexible.
<107> 앞에서 설명한 본 발명의 일 실시예에 따른 풍력발전기 블레이드용 주름패 널 (도 7의 200)과 같이, 본 발명의 다른 실시예에 따른 풍력발전기 불레이드용 주 름패널 (300)은 풍력발전기의 블레이드 (도 7의 140 참조)에 결합되어 그 효율을 향 상시킬 수 있다.  As in the corrugated panel for the wind turbine blade (200 in FIG. 7) according to the embodiment of the present invention described above, the corrugated panel for wind turbine blades 300 according to another embodiment of the present invention is wind power It can be coupled to the blade of the generator (see 140 in Figure 7) to improve its efficiency.
<108> 상술한 바와 같이 , 본 발명의 실시예들은 제조 중인 풍력발전기의 블레이드 As described above, embodiments of the present invention provide a blade of a wind turbine under construction.
(도시되지 않음)뿐만 아니라, 이미 풍력발전기 (도시되지 않음)에 설치되어 사용 중 인 블레이드 (도시되지 않음)의 공기역학적 특성을 향상시킴으로써 풍력발전기 (도시 되지 않음)의 발전효율을 향상시킬 수 있다. In addition to (not shown), the power generation efficiency of the wind turbine (not shown) can be improved by improving the aerodynamic characteristics of the blade (not shown) that is already installed and in use in the wind turbine (not shown). .
<109> 이상에서 본 발명의 실시예에 따른 풍력발전기 블레이드용 주름패널에 대하 여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아 니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요 소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있 을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.  Although described above with respect to the corrugated panel for a wind turbine blade according to an embodiment of the present invention, the spirit of the present invention is not limited to the embodiments presented herein, to understand the spirit of the present invention Those skilled in the art will be able to easily propose other embodiments by the addition, modification, deletion, addition, etc. of the elements within the scope of the same idea, but this also falls within the scope of the present invention.
【산업상 이용가능성】  Industrial Applicability
<110> 본 발명의 실시예에 따르면, 새로 제조되는 풍력발전기 블레이드뿐만 아니 라, 이미 풍력발전기에 설치되어 사용 중인 블레이드의 공기역학적 특성을 향상시 ¾으로써 풍력발전기의 발전효율을 향상시킬 수 있다.  According to the embodiment of the present invention, as well as a newly manufactured wind turbine blade, the aerodynamic characteristics of the blade that is already installed and used in the wind turbine can be improved to improve the power generation efficiency of the wind turbine.
대체용지 규칙 제 26조 Replacement Paper Rule 26

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
익형 횡단면을 갖는 풍력발전기 불레이드의 일면 또는 타면에 결합되고, 상기 블레이드의 길이방향으로 복수의 주름이 형성되며,  It is coupled to one or the other surface of the wind turbine blades having airfoil cross section, a plurality of corrugations are formed in the longitudinal direction of the blade,
상기 복수의 주름의 소정 위치에서의 간격 및 높이는, 상기 블레이드에 결 합되었올 때 상기 소정 위치에서의 상기 블레이드의 익 형 횡단면의 코드 길이에 비 하여 각각 소정 비율의 값을 갖는 것을 특징으로 하는 풍력발전기 블레이드용 주름 패널 .  The spaces and heights of the plurality of corrugations at predetermined positions each have a predetermined ratio of values compared to the cord length of the airfoil cross section of the blade at the predetermined positions when joined to the blade. Corrugated panel for generator blades.
[청구항 2】  [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 블레이드의 일면의 폭 전체를 상기 블레이드의 일단부로부터 타단부까 지 커버하며 결합되는 것을 특징으로 하는 풍력발전기 블레이드용 주름패널 .  Covering the entire width of one side of the blade from one end to the other end of the blade corrugated panel for wind turbine blades, characterized in that coupled.
【청구항 3】  [Claim 3]
저 U항에 있어서,  In that U term,
상기 블레이드용 주름패널은 티타늄합금, 알루미늄합금 및 합성수지 중 어 느 하나를 포함하는 소재로 제조된 것을 특징으로 하는 풍력발전기 블레이드용 주 름패널 .  The blade corrugated panel is a corrugated panel for wind turbine blades, characterized in that made of a material comprising any one of titanium alloy, aluminum alloy and synthetic resin.
【청구항 4】  [Claim 4]
익 형 횡단면을 갖는 풍력발전기 블레이드의 일면 또는 타면에 그 일면이 결 합되는 패널본체 ; 및  A panel body having one surface coupled to one surface or the other surface of the wind turbine blade having a blade cross section; And
상기 패널본체의 타면에 상기 블레이드의 길이방향으로 복수의 주름이 형성 된 주름부를 포함하고,  The other surface of the panel body includes a wrinkle portion formed with a plurality of wrinkles in the longitudinal direction of the blade,
상기 복수의 주름의 소정의 위치에서의 간격 및 높이는, 상기 패널본체가 상기 블레이드에 결합되 었을 때 상기 소정의 위 치에서의 상기 블레이드의 익형 횡 단면의 코드 길이에 비하여 각각 소정 비율의 값올 갖는 것을 특징으로 하는 풍력 발전기 블레이드용 주름패널 .  The spacing and height at predetermined positions of the plurality of corrugations have a predetermined ratio, respectively, compared to the cord length of the airfoil transverse cross section of the blade at the predetermined position when the panel body is coupled to the blade. Corrugated panel for wind generator blades
【청구항 5】  [Claim 5]
제 4항에 있어서, ᅳ 상기 패널본체는 상기 블레이드의 일면의 폭 전체를 상기 블레이드의 일단 부로부터 타단부까지 커버하며 결합되는 것올 특징으로 하는 풍력발전기 블레이드 용 주름패널 .  The corrugated panel according to claim 4, wherein the panel body is coupled to cover the entire width of one surface of the blade from one end to the other end of the blade.
【청구항 6】 저 U항 또는 제 4항에 있어서, [Claim 6] In accordance with claim U or 4,
상기 주름은 그 횡단면이 다각형, 반원형 및 타원형 중 어느 하나의 형상을 갖도록 형성된 것올 특징으로 하는 풍력발전기 블레이드용 주름패널 .  The corrugation is a corrugated panel for a wind turbine blade, characterized in that the cross section is formed to have a shape of any one of polygonal, semi-circular and oval.
【청구항 7】  [Claim 7]
제 6항에 있어서 ,  The method of claim 6,
상기 주름은 그 횡단면이 삼각형 형상을 갖도록 형성된 것을 특징으로 하는 풍력발전기 블레이드용 주름패널 .  The corrugation is a corrugated panel for a wind turbine blade, characterized in that the cross section is formed to have a triangular shape.
【청구항 8]  [Claim 8]
제 1항 또는 ?항에 있어서,  According to claim 1 or?
상기 소정 비율은 0.1 내지 5퍼 센트인 것을 특징으로 하는 풍력발전기 블레 이드용 주름패널 .  The predetermined ratio is a corrugated panel for wind turbine blades, characterized in that 0.1 to 5 percent.
【청구항 9]  [Claim 9]
제 4항에 있어서,  The method of claim 4,
상기 패널본체 및 상기 주름부는 티타늄합금, 알루미늄합금 및 합성수지 중 어느 하나를 포함하는 소재로 제조된 것을 특징으로 하는 풍력발전기 블레이드용 주름패널 .  The panel body and the corrugated portion corrugated panel for a wind turbine blade, characterized in that made of a material comprising any one of titanium alloy, aluminum alloy and synthetic resin.
【청구항 10】  [Claim 10]
제 4항에 있어 ? ᅳ  Is it about 4?
상기 패널본체는,  The panel body is
상기 주름 사이 위 치에 접철 가능한 연결부를 포함하는 것을 특징으로 하는 풍력발전기 블레이드용 주름패널 .  Corrugated panel for a wind turbine blade, characterized in that it comprises a foldable connection portion between the pleat position.
PCT/KR2012/000164 2011-03-31 2012-01-06 Corrugated panel for wind power generator blade WO2012134044A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/007,314 US20140017088A1 (en) 2011-03-31 2012-01-06 Corrugated panel for wind power generator blade
DKPA201370629A DK201370629A (en) 2011-03-31 2013-10-29 Corrugated panel for wind power generator blade

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0029521 2011-03-31
KR1020110029521A KR101225996B1 (en) 2011-03-31 2011-03-31 Corrugated plate for blades of wind turbine

Publications (1)

Publication Number Publication Date
WO2012134044A1 true WO2012134044A1 (en) 2012-10-04

Family

ID=46931685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000164 WO2012134044A1 (en) 2011-03-31 2012-01-06 Corrugated panel for wind power generator blade

Country Status (4)

Country Link
US (1) US20140017088A1 (en)
KR (1) KR101225996B1 (en)
DK (1) DK201370629A (en)
WO (1) WO2012134044A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104603457A (en) * 2013-05-28 2015-05-06 泰拉尔株式会社 Rotor
CN109477392A (en) * 2016-06-28 2019-03-15 赛峰飞机发动机公司 The method that there is the component for reducing resistance by non-constant rib and produce the component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001193628A (en) * 2000-01-07 2001-07-17 Takao Okuno High-efficient propeller for wind power generator
JP2005315094A (en) * 2004-04-27 2005-11-10 Zephyr Corp Manufacturing method of windmill vane, windmill vane and wind power generating device
KR20100041467A (en) * 2008-10-14 2010-04-22 남태우 Blade for aerogenerator
US20100329879A1 (en) * 2009-06-03 2010-12-30 Presz Jr Walter M Wind turbine blades with mixer lobes

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4434957A (en) * 1982-03-30 1984-03-06 Rolls-Royce Incorporated Low drag surface
US5133516A (en) * 1985-05-31 1992-07-28 Minnesota Mining And Manufacturing Co. Drag reduction article
US4986496A (en) * 1985-05-31 1991-01-22 Minnesota Mining And Manufacturing Drag reduction article
US5848769A (en) * 1996-08-26 1998-12-15 Minnesota Mining & Manufacturing Company Drag reduction article
DE19650439C1 (en) * 1996-12-05 1998-03-12 Deutsch Zentr Luft & Raumfahrt Ribbed surface for wall subjected to turbulent airflow
US5891551A (en) * 1997-07-14 1999-04-06 Gibbs; Ronnie D. Apparatus for reducing drag across a flow surface
JPH11201021A (en) 1998-01-06 1999-07-27 Mitsubishi Heavy Ind Ltd Wind mill vane
US7070850B2 (en) * 2002-12-31 2006-07-04 3M Innovative Properties Company Drag reduction article and method of use
US7604461B2 (en) * 2005-11-17 2009-10-20 General Electric Company Rotor blade for a wind turbine having aerodynamic feature elements
US8603628B2 (en) * 2007-04-30 2013-12-10 Saint-Gobain Performance Plastics Corporation Turbine blade protective barrier
US7810867B2 (en) * 2008-04-14 2010-10-12 Fastskinz, Inc. Vehicle with drag-reducing outer surface
RU2506188C2 (en) * 2008-08-05 2014-02-10 Алкоа Инк. Metal sheets and plates with friction-decreasing texturised surface and method of their production
US8662854B1 (en) * 2010-05-21 2014-03-04 Fastskinz, Inc. Turbine with turbulence inducing surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001193628A (en) * 2000-01-07 2001-07-17 Takao Okuno High-efficient propeller for wind power generator
JP2005315094A (en) * 2004-04-27 2005-11-10 Zephyr Corp Manufacturing method of windmill vane, windmill vane and wind power generating device
KR20100041467A (en) * 2008-10-14 2010-04-22 남태우 Blade for aerogenerator
US20100329879A1 (en) * 2009-06-03 2010-12-30 Presz Jr Walter M Wind turbine blades with mixer lobes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104603457A (en) * 2013-05-28 2015-05-06 泰拉尔株式会社 Rotor
US9938957B2 (en) 2013-05-28 2018-04-10 Teral Inc. Rotor
CN109477392A (en) * 2016-06-28 2019-03-15 赛峰飞机发动机公司 The method that there is the component for reducing resistance by non-constant rib and produce the component
CN109477392B (en) * 2016-06-28 2021-01-19 赛峰飞机发动机公司 Component with reduced drag by non-constant ribs and method of producing the same

Also Published As

Publication number Publication date
KR101225996B1 (en) 2013-01-24
DK201370629A (en) 2013-10-29
US20140017088A1 (en) 2014-01-16
KR20120111167A (en) 2012-10-10

Similar Documents

Publication Publication Date Title
US11614068B2 (en) Airfoil with a vortex generator pair
CN103270296B (en) Wind turbine blade, wind power generation device provided with same, and design method for wind turbine blade
US8047801B2 (en) Wind turbine blades with aerodynamic vortex elements
US8573541B2 (en) Wavy airfoil
CN103089536B (en) Aileron surface on the stall fence on wind turbine blade
JP6154050B1 (en) Wind turbine blade, wind turbine rotor, wind power generator, and vortex generator mounting method
JP6691616B2 (en) Rotor blade for wind power generator and wind power generator
US20070217917A1 (en) Rotary fluid dynamic utility structure
BRPI0720184A2 (en) WIND TURBINE, WIND TURBINE UNDERSTANDING A ROTOR WITH WIND TURBINE SHOPS EACH OWNING A ROOF END CONNECTED TO A CUBE OF THE WIND TURBINE AND A TIP END TURBINE EXHIBITION WITH A TURBINE EXHIBITION FROM A ROOT TO A CUBE OF A WIND TURBINE AND A TIP END WITH THE SMALL FLIP
WO2008113350A2 (en) Wind turbine blades with vortex generators
WO2008113349A2 (en) Slow rotating wind turbine rotor with slender blades
JP6783211B2 (en) How to determine the placement of the vortex generator on the wind turbine blades and wind turbine blades
CN102797624A (en) Root flap for rotor blade in wind turbine
CN102099575A (en) Power-generating wind turbine and its manufacturing method
JP2019078191A5 (en)
Liang et al. Design considerations of rotor configuration for straight-bladed vertical axis wind turbines
EP2992206A1 (en) Turbine blade
US20150061294A1 (en) Magnus type wind power generator
JP6797888B2 (en) Vortex generator and windmill wings
JP2019015201A (en) Arrangement position determination method for vortex generator to windmill blade, manufacturing method of windmill blade assembly, and windmill blade assembly
KR101225996B1 (en) Corrugated plate for blades of wind turbine
Hasan et al. Dynamic stall investigation of two-dimensional vertical axis wind turbine blades using computational fluid dynamics
JP5479300B2 (en) Wind turbine blade, wind power generator equipped with the wind turbine blade, and wind turbine blade design method
JP6800030B2 (en) Wings and windmills using them
EP2682597B1 (en) Method for designing a wind turbine blade comprising a winglet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764387

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14007314

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764387

Country of ref document: EP

Kind code of ref document: A1