WO2012133574A1 - Highly corrosion-resistant austenite stainless steel well-suited to brazing - Google Patents

Highly corrosion-resistant austenite stainless steel well-suited to brazing Download PDF

Info

Publication number
WO2012133574A1
WO2012133574A1 PCT/JP2012/058220 JP2012058220W WO2012133574A1 WO 2012133574 A1 WO2012133574 A1 WO 2012133574A1 JP 2012058220 W JP2012058220 W JP 2012058220W WO 2012133574 A1 WO2012133574 A1 WO 2012133574A1
Authority
WO
WIPO (PCT)
Prior art keywords
brazing
stainless steel
test
corrosion resistance
austenitic stainless
Prior art date
Application number
PCT/JP2012/058220
Other languages
French (fr)
Japanese (ja)
Inventor
透 松橋
純 徳永
Original Assignee
新日鐵住金ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金ステンレス株式会社 filed Critical 新日鐵住金ステンレス株式会社
Priority to CN201280009312.8A priority Critical patent/CN103380224B/en
Priority to US14/002,932 priority patent/US20130336834A1/en
Priority to AU2012233539A priority patent/AU2012233539B2/en
Priority to NZ614829A priority patent/NZ614829B2/en
Priority to CA2829874A priority patent/CA2829874C/en
Priority to KR1020137024172A priority patent/KR20130123443A/en
Publication of WO2012133574A1 publication Critical patent/WO2012133574A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Definitions

  • the present invention relates to an austenitic stainless steel used for a structure joined with a brazing material such as nickel brazing or copper brazing.
  • a brazing material such as nickel brazing or copper brazing.
  • the present invention not only has excellent brazing properties, but also has corrosion resistance in an environment where condensed water having a low pH containing nitrate ions and sulfate ions is generated due to condensation of combustion exhaust gas.
  • the present invention relates to an austenitic stainless steel having excellent corrosion resistance in an aqueous solution environment.
  • Brazing joining is a technique for joining materials by using a brazing material having a melting point lower than that of the structural material and heat-treating it at a temperature slightly higher than the melting point of the brazing material.
  • Brazing joining is a joining method widely used also in stainless steel.
  • the brazing material used for brazing stainless steel is a nickel or copper alloy.
  • brazing joining is performed in a vacuum or in a hydrogen atmosphere in order to reduce and remove the passive film.
  • the temperature of brazing joining is, for example, about 1100 ° C. when nickel brazing is used.
  • brazing and joining it is important that the brazing material sufficiently fills the gaps between the materials to be joined to ensure the strength of the joint. Therefore, the wettability of the brazing material with respect to the stainless steel to be joined becomes important. On the other hand, if the wettability of the brazing material is too good, the brazing material flows out from the gaps between the materials to be joined, the gap cannot be filled with the brazing material, and the bonding strength is reduced. For this reason, it is important to have appropriate wettability as stainless steel excellent in brazing joint.
  • Austenitic stainless steel is generally used as the stainless steel to be brazed.
  • JIS Japanese Industrial Standard
  • SUS304-based material and SUS316-based material are widely used.
  • the SUS304-based material and the SUS316-based material have not only processability but also characteristics excellent in corrosion resistance in a general environment.
  • the problem is that SUS316-based materials and SUS316-based materials are inferior in stress corrosion cracking resistance.
  • Stress corrosion cracking occurs when tensile stress remains in a material that is highly susceptible to stress corrosion cracking and exposed to an environment where corrosion occurs.
  • austenitic stainless steel is joined by brazing, there is no fear of stress corrosion cracking even if tensile stress remains in the material to be joined before brazing joining. This is because the austenitic stainless steel is brazed at a temperature at which the austenitic stainless steel is annealed, and residual stress is removed during brazing. For example, when nickel brazing is used, it is brazed at about 1100 ° C. as described above.
  • an austenitic stainless steel brazing joint material for example, there are an exhaust system member of an automobile and a secondary heat exchanger of a water heater provided with a latent heat recovery unit. All of these members are used in an environment in which condensed water having a low pH containing nitrate ions and sulfate ions is generated because the combustion exhaust gas is condensed. This is because the atmosphere taken in for combustion contains a large amount of nitrogen, and the fuel or the odorizing substance added to the fuel contains a sulfur compound. Under such circumstances, copper is corroded. Therefore, copper cannot be used as a material constituting an automobile exhaust system member or a secondary heat exchanger of a water heater provided with a latent heat recovery device, and austenitic stainless steel is essential.
  • the austenitic stainless steel used for such members it is important for the austenitic stainless steel used for such members to satisfy both corrosion resistance and brazing even in an environment where condensed water containing nitrate ions and sulfate ions and having a low pH is generated. .
  • Patent Document 1 proposes a pre-coated brazed metal sheet in which a nickel brazing material suspended together with an organic binder is spray-coated on a stainless steel plate surface and then heated.
  • Patent Document 2 proposes a method for producing a nickel brazing-coated stainless steel sheet excellent in self-brazing property, in which a nickel-based brazing material is coated by plasma spraying on a stainless steel sheet having an adjusted surface roughness. ing.
  • Patent Documents 1 and 2 only conventional SUS304-based materials and SUS316-based materials are examined as austenitic stainless steel materials to which a brazing material is applied.
  • Patent Document 3 proposes a stainless steel excellent in brazing property in which Al and Ti are reduced.
  • both Patent Documents 3 and 4 are studies on ferritic stainless steel, and austenitic stainless steel has not been studied.
  • Patent Document 5 proposes an austenitic stainless steel material having stress corrosion cracking resistance and crevice corrosion resistance.
  • the steel sheet proposed in Patent Document 5 is applied to automobile oil supply system members, and although stress corrosion cracking resistance has been studied, brazing performance is not described.
  • chlorides are contained in the intake air, so it is used especially in high salt damage areas near the coast.
  • corrosion resistance in an environment containing chloride ions is also a problem.
  • the present invention not only has excellent brazing properties, but also has corrosion resistance in an environment where condensed water having low pH containing nitrate ions and sulfate ions is generated by condensation of combustion exhaust gas, and further contains chloride ions. It aims at providing the austenitic stainless steel which is excellent also in the corrosion resistance in aqueous solution environment.
  • the present invention has been made on the basis of the above findings, and the gist thereof is as follows.
  • Nb 0.1 to 0.7%
  • Ti 0.1 to 0.5%
  • V 0.1 to 3.0%
  • B 0.0002% to The austenitic stainless steel excellent in corrosion resistance and brazing as described in (1) above, containing one or more of 0.003%.
  • an austenitic stainless steel excellent in corrosion resistance and brazing is provided by optimizing the Cu content and the Si content in the austenitic stainless steel and further controlling the N content and the Mo content. Is possible.
  • the structure obtained by brazing joining such as a waste heat recovery device of combustion exhaust gas which used hydrocarbons, such as gasoline, LNG, LPG, and petroleum, and other heat exchangers Corrosion resistance can be improved.
  • % relating to the component composition means “% by mass” unless otherwise specified.
  • the austenitic stainless steel was hot-rolled and heat-treated at 1150 ° C. for 1 minute, and then the scale was ground and removed, and further cold-rolled to obtain a cold-rolled sheet.
  • This cold-rolled sheet is heat-treated at 1050 to 1150 ° C. for 1 minute based on the recrystallization behavior, and then subjected to immersion pickling treatment until the scale is completely removed in an aqueous nitric hydrofluoric acid solution. It was made a material for. Using this brazing material, brazing properties and stress corrosion cracking were evaluated.
  • the brazing joint material was cut into 40 ⁇ 50 mm and 25 ⁇ 30 mm, and used as test materials for brazing evaluation.
  • the thickness of this brazing material evaluation test material is 1 mm.
  • the specimen material thus produced was brazed using silver brazing.
  • 0.3 g of JIS BNi5 nickel brazing mixed with an organic binder was placed as a brazing material in the overlapping portion where two test materials were stacked, and brazing joined.
  • the brazing joining was performed in an atmosphere of 1100 ° C. and 100% hydrogen using a hydrogen reduction furnace. Brazing property was evaluated by cutting a brazed specimen and visually observing a cross section.
  • the brazing material was heated in the atmosphere of 1100 ° C. and 100% hydrogen using the same conditions as when brazing, ie, using a hydrogen reduction furnace, without brazing. After this heating, the brazing joint material was cut into a size of 30 ⁇ 30 mm and 15 ⁇ 15 mm and the cut end face was polished. The two materials having different sizes were overlapped and spot welded at the center, and a gap was provided between the two materials to obtain a test material for stress corrosion cracking evaluation.
  • the stress corrosion cracking evaluation test material 200 ppm of Cl - is immersed in an aqueous solution containing was held at 100 ° C. 7 days. After 7 days, the spot weld was punched and separated, and the presence or absence of cracks in the inner clearance surface was evaluated. The presence or absence of cracks was confirmed by a dye penetration test (color check method).
  • the effect of suppressing the stress corrosion cracking can be obtained by the synergistic effect of Cu and Si represented by the value of [Cu] ⁇ [Si] even in the brazed austenitic stainless steel. did. Therefore, the lower limit of the value of [Cu] ⁇ [Si] is set to 1.6. More preferably, it is set to 2.0.
  • the structure to be brazed is used as an exhaust system member of an automobile, a secondary heat exchanger of a water heater provided with a latent heat recovery device, or the like. Therefore, it is not sufficient for the austenitic stainless steel constituting the brazed joint structure to be excellent only in brazing and stress corrosion cracking properties.
  • the material used as the test material is excellent in brazeability and stress corrosion resistance, that is, an austenitic stainless steel having a value of [Cu] ⁇ [Si] in the range of 1.6 to 4.4.
  • the test liquid can simulate the composition of condensed water generated by combustion of general LNG or petroleum. Specifically, the test solution was adjusted to nitrate ion 100 ppm, sulfate ion 10 ppm, pH 2.5, and had a composition in which chloride ions were added at 100 ppm in terms of Cl 2 ⁇ to accelerate corrosion.
  • the maximum pitting corrosion depth may be 100 ⁇ m or more.
  • the Cu content was outside the range described below. This is because Cu is eluted and ionized during corrosion in a wet and dry repeated corrosive environment containing an oxidizing agent such as nitrate ions. And in such an environment, since Cu ion works as an oxidizing agent inside and outside the corrosion hole, it is estimated that the corrosion depth has increased.
  • the upper limit of 2 [N] + [Mo] is 1.0 or less.
  • a preferable upper limit is 0.77, and a more preferable upper limit is 0.74.
  • the lower limit of 2 [N] + [Mo] is 0.16 as described above, and the preferable lower limit is 0.20.
  • the corrosion resistance refers to the stress corrosion cracking resistance, the corrosion resistance in an environment where condensed water having a low pH containing nitrate ions and sulfate ions is generated due to condensation of combustion exhaust gas, and further chloride ions.
  • the austenitic stainless steel of the present invention needs to satisfy the following formulas (A) and (B) for Cu, Si, Mo, and N.
  • the preferable C content is in the range of 0.005 to 0.060%.
  • Si is added to improve wettability and prevent stress corrosion cracking, as with Cu. If the Si content is less than 1.2%, these effects are not exhibited. On the other hand, when the Si content exceeds 3.0%, the wettability is excessively improved and the brazing property is lowered. Therefore, the Si content needs to be in the range of 1.2 to 3.0%. Preferably, it is in the range of 1.4 to 2.5%.
  • Mn is an important element as a deoxidizing element, but if it is added excessively, MnS that becomes a starting point of corrosion is likely to be generated. Therefore, the Mn content needs to be in the range of 0.4 to 2.0%. More preferably, it is in the range of 0.5 to 1.2%.
  • PP not only reduces weldability and workability, but also tends to cause intergranular corrosion, so P should be kept as low as possible. For this reason, the upper limit of the content of P needs to be 0.03%.
  • a preferable P content is in the range of 0.001 to 0.025%.
  • the S content is set to 0.003% or less.
  • the S content is preferably in the range of 0.0002 to 0.002%.
  • Ni does not affect stress corrosion cracking resistance in the amount specified by JIS SUS316L. However, there is a concern that the stress corrosion cracking resistance may deteriorate in an environment where the LNG or petroleum is exposed to exhaust gas when burned. Moreover, it is necessary to maintain an austenite phase and to ensure workability. Therefore, the Ni content needs to be in the range of 6.0 to 12.0%. Preferably, it is in the range of 6.5 to 11.0%.
  • Cr is the most important element for ensuring the corrosion resistance of stainless steel. Therefore, the lower limit of the Cr content is 16.0%. However, when Cr is increased, the corrosion resistance is also improved, but the manufacturability and other manufacturability are lowered, so the upper limit of the Cr content is 20.0%. A preferable Cr content is in the range of 16.5 to 19.0%.
  • the Cu, together with Si, reduces brazing by its addition, but has the function of suppressing stress corrosion cracking.
  • excessive addition of Cu reduces the corrosion resistance in a solution containing nitrate ions. Therefore, the Cu content needs to be in the range of 0.2 to 3.0%. Preferably, it is in the range of 0.5 to 2.5%.
  • Al is important as a deoxidizing element, and also refines the structure by controlling the composition of non-metallic inclusions.
  • the Al content needs to be in the range of 0.002 to 0.10%. Preferably it is 0.005 to 0.08% of range.
  • the N content needs to be in the range of 0.030 to 0.150%. Preferably, it is 0.037 to 0.10% of range.
  • Mo is an element that is effective in repairing the passive film and is very effective in improving corrosion resistance. Furthermore, in an environment containing nitrate ions and chloride ions, there is an effect of improving pitting corrosion resistance in combination with N. Therefore, it is necessary to contain Mo at least 0.1%. On the other hand, when Mo is increased, the corrosion resistance is improved, but excessive addition reduces workability and causes an increase in cost. Therefore, the upper limit of the Mo content needs to be 1.0%. A preferable Mo content is in the range of 0.2 to 0.8%.
  • Nb, Ti, V, and B may be contained alone or in combination as required.
  • Nb can be added as needed because it has the effect of generating carbonitrides to suppress sensitization in the vicinity of the weld and increasing the high-temperature strength.
  • the Nb content is preferably in the range of 0.1 to 0.7%.
  • Ti has the same effect as Nb, but excessive addition causes an increase in surface defects due to titanium nitride. Therefore, the Ti content is preferably in the range of 0.1 to 0.5%.
  • V improves weather resistance and crevice corrosion resistance, excellent workability can be secured if V is added while suppressing the use of Cr and Mo. Therefore, V can be added as necessary. However, excessive addition causes deterioration of workability. Therefore, the V content is preferably in the range of 0.1 to 3.0%.
  • the B is a grain boundary strengthening element effective for improving hot workability, and can be added as necessary. However, excessive addition causes a decrease in workability. Therefore, the B content is preferably 0.0002% at the lower limit and 0.003% at the upper limit.
  • Steel having the chemical composition shown in Table 1 was produced by a normal austenitic stainless steel production method. First, an ingot having a thickness of 40 mm was manufactured after vacuum melting, and this was hot rolled to a thickness of 4.0 mm. Thereafter, a heat treatment was performed at 1150 ° C. for 1 minute, the scale was removed by grinding, and a steel plate having a thickness of 1.0 mm was manufactured by cold rolling. This was heat-treated at 1050 to 1150 ° C. for 1 minute based on each recrystallization behavior, and then subjected to immersion pickling treatment until the scale was completely removed in an aqueous nitric hydrofluoric acid solution. It used for the test.
  • Brazing joining was performed by stacking two test materials in the same manner as described above. Specifically, 0.3 g of JIS BNi5 silver brazing mixed with an organic binder was placed on the overlapping part of the test material and brazed and joined. The brazing joining was performed in an atmosphere of 1100 ° C. and 100% hydrogen using a hydrogen reduction furnace. In the evaluation method, the cross section of the brazed specimen was evaluated by visual observation as being good when the gap was completely filled with the gap and poor when the gap remained.
  • test material various stainless steels were heated in an atmosphere of 1100 ° C. and 100% hydrogen using the same conditions as when brazing without using brazing, that is, using a hydrogen reduction furnace. Then, it cut
  • the composition of the test solution was adjusted to nitrate ion 100 ppm, sulfate ion 10 ppm, pH 2.5 by simulating the composition of the condensed water generated by the combustion of general LNG or petroleum, and concentrated salt
  • the chloride ion was set to 100 ppm.
  • the test material was immersed in a test tube containing 10 ml of the test solution and placed in a warm bath at 80 ° C. This test solution was held until it completely dried, and after drying, the sample was transferred to a new test tube filled with the test solution and dried again. The maximum corrosion depth after the test after 14 times of this drying was measured.
  • Stress corrosion cracking evaluation test In the stress corrosion cracking evaluation test, the same material as that used in the brazeability test was subjected to the same conditions as when brazing without brazing, that is, using a hydrogen reduction furnace at 1100 ° C. and hydrogen. The heating was performed in a 100% atmosphere. From this material, it was cut into a size of 30 ⁇ 30 mm and 15 ⁇ 15 mm and wet-polished on the entire surface, and then the two sheets were overlapped and spot-welded to provide a gap. The specimen thus provided with the gap was immersed in distilled water containing 200 ppm of Cl 2 ⁇ and continuously treated at 100 ° C. for 7 days.
  • the value of [Cu] ⁇ [Si] and the value of 2 [N] + [Mo] are within the range of the present invention, but Cr is outside the lower limit of the range of the present invention, so the corrosion resistance test (wet and dry In the repeated test), the maximum pitting corrosion depth exceeded 100 ⁇ m.
  • the austenitic stainless steel of the present invention is excellent in brazing property and does not cause stress corrosion cracking even in an environment in a heat exchanger exposed to combustion gas of hydrocarbon fuel.
  • the austenitic stainless steel of the present invention is excellent in corrosion resistance in an environment where condensed water containing nitrate ions and sulfate ions is generated at a low pH and in an aqueous solution environment containing chloride ions. It could be confirmed.
  • the present invention is a structure for brazing austenitic stainless steel, corrosion resistance in an environment where condensed water containing nitrate ions and sulfate ions and having a low pH is generated, and in an aqueous solution containing chloride ions. It can be applied to all uses that require corrosion resistance.
  • the austenitic stainless steel of the present invention is particularly suitable for use as a heat exchanger material, particularly as a secondary heat exchanger material for a latent heat recovery type hot water heater using kerosene or LNG as fuel.
  • the austenitic stainless steel of the present invention can be applied not only to heat exchanger pipes but also to any materials such as cases and partition plates.
  • the austenitic stainless steel of the present invention is also suitable when used as a heat recovery component from exhaust gas such as EGR mounted on an automobile having gasoline and diesel engines.
  • the austenitic stainless steel of the present invention is particularly suitable for use in an environment of repeated wet and dry exposure to a low pH solution containing nitrate ions and sulfate ions.
  • outdoor exterior materials, building materials, roofing materials, outdoor equipment, etc. that are assumed to have an acid rain environment.
  • the austenitic stainless steel sheet of the present invention is generally used for water-related equipment where stress corrosion cracking is a concern, specifically, water storage / hot water storage tanks, home appliances, bathtubs, kitchen equipment, and other outdoor / indoor use. It is suitable for use in equipment.
  • the present invention has a high utility value in the industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Exhaust Silencers (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

The present invention provides an austenite stainless steel that not only is well-suited to brazing but is also highly resistant to corrosion in aqueous-solution environments containing chloride ions and environments in which low-pH condensed water containing nitrate ions and sulfate ions is produced via condensation of combustion exhaust gases. Said steel contains, by mass, up to 0.080% carbon, 1.2-3.0% silicon, 0.4-2.0% manganese, up to 0.03% phosphorus, up to 0.003% sulfur, 6.0-12.0% nickel, 16.0-20.0% chromium, 0.2-3.0% copper, 0.002-0.10% aluminum, 0.030-0.150% nitrogen, and 0.1-1.0% molybdenum, with the remainder comprising iron and unavoidable impurities. The mass percentages of copper, silicon, nickel, and molybdenum in said steel also satisfy relations (A) (1.6 ≤ [Cu]×[Si] ≤ 4.4) and (B) (0.16 ≤ 2[N]+[Mo] ≤ 1.0).

Description

耐食性及びろう付け性に優れたオーステナイト系ステンレス鋼Austenitic stainless steel with excellent corrosion resistance and brazing
 本発明は、ニッケルろうや銅ろう等のろう材で接合される構造物に用いられるオーステナイト系ステンレス鋼に関する。特に、本発明は、ろう付け性に優れるだけでなく、燃焼排気ガスの凝縮により、硝酸イオン及び硫酸イオンを含んだpHが低い凝縮水が生成する環境下での耐食性、さらに、塩化物イオンを含有する水溶液環境における耐食性にも優れるオーステナイト系ステンレス鋼に関するものである。 The present invention relates to an austenitic stainless steel used for a structure joined with a brazing material such as nickel brazing or copper brazing. In particular, the present invention not only has excellent brazing properties, but also has corrosion resistance in an environment where condensed water having a low pH containing nitrate ions and sulfate ions is generated due to condensation of combustion exhaust gas. The present invention relates to an austenitic stainless steel having excellent corrosion resistance in an aqueous solution environment.
 ろう付け接合は、構造材よりも低融点のろう材を用い、そのろう材の融点よりやや高い温度で加熱処理することで材料を接合する技術である。ろう付け接合は、ステンレス鋼においても広く用いられる接合方法である。ステンレス鋼のろう付け接合で用いられるろう材は、ニッケルや銅の合金である。 Brazing joining is a technique for joining materials by using a brazing material having a melting point lower than that of the structural material and heat-treating it at a temperature slightly higher than the melting point of the brazing material. Brazing joining is a joining method widely used also in stainless steel. The brazing material used for brazing stainless steel is a nickel or copper alloy.
 ステンレス鋼のろう付け接合では、ステンレス鋼の不動態皮膜がろう付け性を阻害する。したがって、ろう付け接合は、不動態皮膜を還元除去するために、真空中又は水素雰囲気中で行われる。ろう付け接合の温度は、例えば、ニッケルろうを使用する場合、1100℃程度である。 In stainless steel brazing, the stainless steel passive film hinders brazing. Therefore, brazing joining is performed in a vacuum or in a hydrogen atmosphere in order to reduce and remove the passive film. The temperature of brazing joining is, for example, about 1100 ° C. when nickel brazing is used.
 ろう付け接合では、ろう材が被接合材同士のすき間を十分に埋め、接合部の強度を確保することが重要である。したがって、被接合材であるステンレス鋼に対するろう材の濡れ性が重要となる。一方で、ろう材の濡れ性が良すぎると、被接合材同士のすき間からろう材が流れ出し、すき間をろう材で埋めることが出来ず、接合強度を低下させる。このため、ろう付け接合に優れるステンレス鋼としては、適度な濡れ性を有することが重要となる。 In brazing and joining, it is important that the brazing material sufficiently fills the gaps between the materials to be joined to ensure the strength of the joint. Therefore, the wettability of the brazing material with respect to the stainless steel to be joined becomes important. On the other hand, if the wettability of the brazing material is too good, the brazing material flows out from the gaps between the materials to be joined, the gap cannot be filled with the brazing material, and the bonding strength is reduced. For this reason, it is important to have appropriate wettability as stainless steel excellent in brazing joint.
 ろう付け接合されるステンレス鋼としては、オーステナイト系ステンレス鋼が一般的に用いられる。また、オーステナイト系ステンレス鋼としては、JIS(Japan Industrial Standard:日本工業規格)SUS304系の材料及びSUS316系の材料(以下、SUS304系の材料及びSUS316系の材料という)が広く用いられている。SUS304系の材料及びSUS316系の材料は、加工性だけでなく、一般的な環境において耐食性に優れた特性を有する。しかしながら、SUS316系の材料及びSUS316系の材料は、耐応力腐食割れ性に劣ることが課題である。 Austenitic stainless steel is generally used as the stainless steel to be brazed. As austenitic stainless steel, JIS (Japan Industrial Standard) SUS304-based material and SUS316-based material (hereinafter referred to as SUS304-based material and SUS316-based material) are widely used. The SUS304-based material and the SUS316-based material have not only processability but also characteristics excellent in corrosion resistance in a general environment. However, the problem is that SUS316-based materials and SUS316-based materials are inferior in stress corrosion cracking resistance.
 応力腐食割れは、腐食が生じる環境に晒された応力腐食割れ感受性の高い材料に、引っ張り応力が残留している場合に生じる。オーステナイト系ステンレス鋼をろう付け接合する場合には、ろう付け接合をする前の段階で被接合材に引っ張り応力が残留していても、応力腐食割れの心配はない。オーステナイト系ステンレス鋼のろう付け接合温度は、オーステナイト系ステンレス鋼が焼き鈍される温度で行われ、残留応力は、ろう付け接合中に除去されるからである。例えば、ニッケルろうを使用する場合には、上述したように、1100℃程度でろう付け接合されるからである。 Stress corrosion cracking occurs when tensile stress remains in a material that is highly susceptible to stress corrosion cracking and exposed to an environment where corrosion occurs. When austenitic stainless steel is joined by brazing, there is no fear of stress corrosion cracking even if tensile stress remains in the material to be joined before brazing joining. This is because the austenitic stainless steel is brazed at a temperature at which the austenitic stainless steel is annealed, and residual stress is removed during brazing. For example, when nickel brazing is used, it is brazed at about 1100 ° C. as described above.
 しかしながら、部品によっては、ろう付け接合後に、他の部品と溶接やビス止め等で組立が行われることがあり、その場合、引っ張り応力が組立後の部品に生じ、応力腐食割れのおそれがある。そのため、ろう付け接合されたオーステナイト系ステンレス鋼は、耐応力腐食性を有することが必要となる。 However, some parts may be assembled with other parts by welding or screwing after brazing and joining, and in that case, tensile stress may be generated in the assembled parts and stress corrosion cracking may occur. Therefore, it is necessary that the austenitic stainless steel brazed and joined has stress corrosion resistance.
 オーステナイト系ステンレス鋼のろう付け接合材が用いられる環境として、例えば、自動車の排気系部材、及び潜熱回収器を設置した給湯器の二次熱交換器がある。これらの部材は、いずれも、燃焼排気ガスが凝縮するために、硝酸イオン及び硫酸イオンを含んだpHが低い凝縮水が生成する環境下で使用される。燃焼のために取り込まれる大気中には窒素が多量に含まれ、燃料又は燃料に添加された臭い付け物質には硫黄化合物が含まれるからである。このような環境下において、銅は腐食される。したがって、自動車の排気系部材、あるいは、潜熱回収器を設置した給湯器の二次熱交換器を構成する材料として、銅を使用することはできず、オーステナイト系ステンレス鋼が必須となる。 As an environment in which an austenitic stainless steel brazing joint material is used, for example, there are an exhaust system member of an automobile and a secondary heat exchanger of a water heater provided with a latent heat recovery unit. All of these members are used in an environment in which condensed water having a low pH containing nitrate ions and sulfate ions is generated because the combustion exhaust gas is condensed. This is because the atmosphere taken in for combustion contains a large amount of nitrogen, and the fuel or the odorizing substance added to the fuel contains a sulfur compound. Under such circumstances, copper is corroded. Therefore, copper cannot be used as a material constituting an automobile exhaust system member or a secondary heat exchanger of a water heater provided with a latent heat recovery device, and austenitic stainless steel is essential.
 よって、このような部材に使用されるオーステナイト系ステンレス鋼は、硝酸イオン及び硫酸イオンを含んだpHが低い凝縮水が生成する環境下においても、耐食性とろう付け性を両立することが重要となる。 Therefore, it is important for the austenitic stainless steel used for such members to satisfy both corrosion resistance and brazing even in an environment where condensed water containing nitrate ions and sulfate ions and having a low pH is generated. .
 ステンレス鋼のろう付け性については、特許文献1に、有機系バインダーと共に懸濁させたニッケル系ろう材を、ステンレス鋼板表面上に噴霧塗布後加熱した、プレコートろう被覆金属板材が提案されている。また、特許文献2には、表面粗さを調整したステンレス鋼板上に、プラズマ溶射にてニッケル系ろう材を被覆させた、自己ろう付け性に優れたニッケルろう被覆ステンレス鋼板の製造方法が提案されている。しかしながら、特許文献1及び2のいずれも、ろう付け材を塗布するオーステナイト系ステンレス鋼素材として、従来のSUS304系の材料及びSUS316系の材料しか検討していない。 Regarding the brazeability of stainless steel, Patent Document 1 proposes a pre-coated brazed metal sheet in which a nickel brazing material suspended together with an organic binder is spray-coated on a stainless steel plate surface and then heated. Patent Document 2 proposes a method for producing a nickel brazing-coated stainless steel sheet excellent in self-brazing property, in which a nickel-based brazing material is coated by plasma spraying on a stainless steel sheet having an adjusted surface roughness. ing. However, in both Patent Documents 1 and 2, only conventional SUS304-based materials and SUS316-based materials are examined as austenitic stainless steel materials to which a brazing material is applied.
 特許文献3には、Al及びTiを低減させたろう付け性に優れるステンレス鋼が提案されている。また、特許文献4には、M=-0.22T+34.5Ni+10.5Mn+13.5Cu-17.3Cr-17.3Si-18Mo+475.5で示されるM値を1~25に調整させたステンレス鋼が提案されている。しかしながら、特許文献3及び4のいずれも、フェライト系ステンレス鋼での検討であり、オーステナイト系ステンレス鋼については検討されていない。 Patent Document 3 proposes a stainless steel excellent in brazing property in which Al and Ti are reduced. Patent Document 4 proposes a stainless steel in which the M value represented by M = −0.22T + 34.5Ni + 10.5Mn + 13.5Cu-17.3Cr-17.3Si-18Mo + 475.5 is adjusted to 1 to 25. ing. However, both Patent Documents 3 and 4 are studies on ferritic stainless steel, and austenitic stainless steel has not been studied.
 特許文献5には、耐応力腐食割れ性及び耐隙間腐食性を有するオーステナイト系ステンレス鋼材が提案されている。しかしながら、特許文献5に提案される鋼板は、自動車給油系部材用に適用されるものであり、耐応力腐食割れ性については検討されているものの、ろう付け性については記載されていない。 Patent Document 5 proposes an austenitic stainless steel material having stress corrosion cracking resistance and crevice corrosion resistance. However, the steel sheet proposed in Patent Document 5 is applied to automobile oil supply system members, and although stress corrosion cracking resistance has been studied, brazing performance is not described.
 また、自動車の排気系部材又は潜熱回収器を設置した給湯器の二次熱交換器に用いる場合、吸気される大気中に塩化物が含まれるため、特に沿岸に近い高塩害地域で使用する場合には、塩化物イオンを含有する環境における耐食性も問題となる。 Also, when used for secondary heat exchangers of water heaters equipped with automobile exhaust system members or latent heat recovery devices, chlorides are contained in the intake air, so it is used especially in high salt damage areas near the coast. In addition, corrosion resistance in an environment containing chloride ions is also a problem.
特開平1-249294号公報JP-A-1-249294 特開2001-26855号公報JP 2001-26855 A 特開2009-174046号公報JP 2009-174046 A 特開2010-65278号公報JP 2010-65278 A 特開2007-9314号公報JP 2007-9314 A
 本発明は、ろう付け性に優れるだけでなく、燃焼排気ガスの凝縮により、硝酸イオン及び硫酸イオンを含んだpHが低い凝縮水が生成する環境下での耐食性、さらに、塩化物イオンを含有する水溶液環境下での耐食性にも優れるオーステナイト系ステンレス鋼を提供することを目的とする。 The present invention not only has excellent brazing properties, but also has corrosion resistance in an environment where condensed water having low pH containing nitrate ions and sulfate ions is generated by condensation of combustion exhaust gas, and further contains chloride ions. It aims at providing the austenitic stainless steel which is excellent also in the corrosion resistance in aqueous solution environment.
 本発明者らは、ろう付け性及び耐食性を両立するオーステナイト系ステンレス鋼を得るべく、鋭意検討を行った結果、次の知見を見出した。 As a result of intensive studies to obtain an austenitic stainless steel having both brazing and corrosion resistance, the present inventors have found the following knowledge.
(a)オーステナイト系ステンレス鋼の場合、Si及びCuが一定量以上添加されると、濡れ性が過剰に良好となり、被接合材同士のすき間からろう材が流れ出してしまうために接合が不十分になる。これを防止するために、Cu及びSiの含有量それぞれの上限だけでなく、[Cu]×[Si]の値の上限を規定することが重要である。なお、以下の説明において、[Cu]及び[Si]は、質量%で表したCu及びSiの含有量とする。 (A) In the case of austenitic stainless steel, when a certain amount or more of Si and Cu is added, the wettability becomes excessively good, and the brazing material flows out from the gaps between the joined materials, so that the joining is insufficient. Become. In order to prevent this, it is important to define not only the upper limits of the Cu and Si contents, but also the upper limit of the value of [Cu] × [Si]. In the following description, [Cu] and [Si] are the contents of Cu and Si expressed in mass%.
(b)ろう付け接合されたオーステナイト系ステンレス鋼は、応力腐食割れの抑制を、[Cu]×[Si]の値で表されるCu及びSiの相乗効果で得られる。 (B) The austenitic stainless steel that has been brazed and bonded can suppress stress corrosion cracking by the synergistic effect of Cu and Si expressed by the value of [Cu] × [Si].
(c)燃焼排気ガスの凝縮により、硝酸イオン及び硫酸イオンを含んだpHが低い凝縮水が生成する環境下での耐食性、さらに、塩化物イオンを含有する水溶液環境下で耐食性は、2[N]+[Mo]の値を一定値以上にすることで向上する。なお、以下の説明において、[N]及び[Mo]は、質量%で表したN及びMoの含有量とする。 (C) Corrosion resistance in an environment where condensed water having low pH containing nitrate ions and sulfate ions is generated by condensation of combustion exhaust gas, and further in an aqueous solution environment containing chloride ions, the corrosion resistance is 2 [N ] + [Mo] is improved by setting the value to a certain value or more. In the following description, [N] and [Mo] are the contents of N and Mo expressed in mass%.
 本発明は、上記の知見に基づきなされたもので、その要旨は、次のとおりである。 The present invention has been made on the basis of the above findings, and the gist thereof is as follows.
(1)質量%で、C:0.080%以下、Si:1.2~3.0%、Mn:0.4~2.0%、P:0.03%以下、S:0.003%以下、Ni:6.0~12.0%、Cr:16.0~20.0%、Cu:0.2%~3.0%、Al:0.002~0.10%、N:0.030~0.150%、及びMo:0.1~1.0%を含有し、残部はFe及び不可避的不純物からなり、かつ、下記(A)式及び(B)式を満たすことを特徴とする耐食性及びろう付け性に優れたオーステナイト系ステンレス鋼。
 (A)式:1.6≦[Cu]×[Si]≦4.4
 (B)式:0.16≦2[N]+[Mo]≦1.0
 ここで、[Cu]、[Si]、[N]、及び[Mo]は、質量%で表した各元素の含有量とする。
(1) By mass%, C: 0.080% or less, Si: 1.2 to 3.0%, Mn: 0.4 to 2.0%, P: 0.03% or less, S: 0.003 %: Ni: 6.0 to 12.0%, Cr: 16.0 to 20.0%, Cu: 0.2% to 3.0%, Al: 0.002 to 0.10%, N: 0.030 to 0.150%, and Mo: 0.1 to 1.0%, the balance is made of Fe and inevitable impurities, and satisfies the following formulas (A) and (B) Austenitic stainless steel with excellent corrosion resistance and brazing characteristics.
(A) Formula: 1.6 ≦ [Cu] × [Si] ≦ 4.4
(B) Formula: 0.16 ≦ 2 [N] + [Mo] ≦ 1.0
Here, [Cu], [Si], [N], and [Mo] are the contents of each element expressed in mass%.
(2)さらに、質量%で、Nb:0.1~0.7%、Ti:0.1~0.5%、V:0.1~3.0%、及びB:0.0002%~0.003%のうちの1種又は2種以上を含有することを特徴とする上記(1)に記載の耐食性及びろう付性に優れたオーステナイト系ステンレス鋼。 (2) Further, in terms of mass%, Nb: 0.1 to 0.7%, Ti: 0.1 to 0.5%, V: 0.1 to 3.0%, and B: 0.0002% to The austenitic stainless steel excellent in corrosion resistance and brazing as described in (1) above, containing one or more of 0.003%.
 本発明によれば、オーステナイト系ステンレス鋼におけるCu含有量及びSi含有量を適正化し、さらにN含有量及びMo含有量を制御することで、耐食性及びろう付け性に優れたオーステナイト系ステンレス鋼を提供することが可能である。 According to the present invention, an austenitic stainless steel excellent in corrosion resistance and brazing is provided by optimizing the Cu content and the Si content in the austenitic stainless steel and further controlling the N content and the Mo content. Is possible.
 そして、本発明によれば、ガソリン、LNG、LPG、及び石油等の炭化水素を燃料とした燃焼排ガスの排熱回収器、並びに、その他熱交換器等の、ろう付け接合して得られる構造物の耐食性を向上させることができる。 And according to this invention, the structure obtained by brazing joining, such as a waste heat recovery device of combustion exhaust gas which used hydrocarbons, such as gasoline, LNG, LPG, and petroleum, and other heat exchangers Corrosion resistance can be improved.
Cu及びSiの含有量と、ろう付け性及び耐食性との関係を示す図である。It is a figure which shows the relationship between content of Cu and Si, brazing property, and corrosion resistance. 2[N]+[Mo]の値と最大腐食深さとの関係を示す図である。It is a figure which shows the relationship between the value of 2 [N] + [Mo], and the maximum corrosion depth. 2[N]+[Mo]の値及び[Cu]×[Si]の値と、ろう付け性及び耐食性との関係を示す図である。It is a figure which shows the relationship between the value of 2 [N] + [Mo] and the value of [Cu] x [Si], brazing property, and corrosion resistance.
 本発明を詳細に説明する。以下の説明において、成分組成に関する%は、特に断りのない限り、質量%を意味するものとする。 The present invention will be described in detail. In the following description, “%” relating to the component composition means “% by mass” unless otherwise specified.
 まず、ろう付け性と耐食性を両立させる成分組成を得るために行った実験及びその結果について説明する。Si、Cu、Mo、及びNを変化させたオーステナイト系ステンレス鋼を真空溶解により製造した。このときその他の元素は、JIS SUS316の成分範囲内とした。 First, an experiment conducted to obtain a component composition that achieves both brazability and corrosion resistance and the results thereof will be described. Austenitic stainless steel in which Si, Cu, Mo, and N were changed was manufactured by vacuum melting. At this time, other elements were within the component range of JIS SUS316.
 このオーステナイト系ステンレス鋼を熱間圧延し、1150℃×1分の熱処理を行ってから、スケールを研削除去し、さらに冷間圧延して冷延板とした。この冷延板を、再結晶挙動に基づき1050~1150℃×1分の条件で熱処理し、その後、硝ふっ酸水溶液中でスケールが完全に除去されるまで浸漬酸洗処理を行い、ろう付け接合用素材とした。このろう付け接合用素材を用いて、ろう付け性及び応力腐食割れについて評価した。 The austenitic stainless steel was hot-rolled and heat-treated at 1150 ° C. for 1 minute, and then the scale was ground and removed, and further cold-rolled to obtain a cold-rolled sheet. This cold-rolled sheet is heat-treated at 1050 to 1150 ° C. for 1 minute based on the recrystallization behavior, and then subjected to immersion pickling treatment until the scale is completely removed in an aqueous nitric hydrofluoric acid solution. It was made a material for. Using this brazing material, brazing properties and stress corrosion cracking were evaluated.
(ろう付け性評価)
 ろう付け接合用素材を、40×50mm及び25×30mmに切断し、ろう付け性評価用供試材とした。このろう付け性評価用供試材の板厚は、1mmである。このようにして作製された供試材に、銀ろうを用いてろう付け接合を行った。ろう付け接合は、供試材を二枚重ねた重ね部位に、ろう材として、有機バインダーを混合したJIS BNi5のニッケルろうを0.3g配設し、ろう付け接合した。ろう付け接合は、水素還元炉を用いて、1100℃、水素100%の雰囲気で行った。ろう付け性は、ろう付け接合された供試材を切断し、断面を目視観察して評価した。
(Brassability evaluation)
The brazing joint material was cut into 40 × 50 mm and 25 × 30 mm, and used as test materials for brazing evaluation. The thickness of this brazing material evaluation test material is 1 mm. The specimen material thus produced was brazed using silver brazing. In the brazing joining, 0.3 g of JIS BNi5 nickel brazing mixed with an organic binder was placed as a brazing material in the overlapping portion where two test materials were stacked, and brazing joined. The brazing joining was performed in an atmosphere of 1100 ° C. and 100% hydrogen using a hydrogen reduction furnace. Brazing property was evaluated by cutting a brazed specimen and visually observing a cross section.
 評価結果を図1に示す。ろう付け接合された供試材の断面において、すき間にろう材が完全に充填されていた場合は白丸印(○)又は黒丸印(●)、すき間が残っていた場合はばつ印(×)で表示した。ここで、白丸印(○)と黒丸印(●)は、後述する応力腐食割れの評価結果について区別したもので、応力腐食割れが発生せず良好な場合を白丸印(○)、応力腐食割れが発生して不良である場合を黒丸印(●)で表示した。また、図1中に示される2本の曲線のうち、下側の曲線は[Cu]×[Si]の値が1.6であることを示し、上側の曲線は[Cu]×[Si]の値が4.4であることを示す。なお、図1中のSCCとは応力腐食割れのことを意味する。図3についても同様である。 Evaluation results are shown in FIG. When the brazing filler metal is completely filled in the cross section of the brazed joint, the white circle (○) or black circle (●), and if there is a gap, the cross mark (×) displayed. Here, the white circle mark (○) and the black circle mark (●) distinguish the evaluation results of stress corrosion cracks, which will be described later. A black circle mark (●) indicates a case where a defect occurs. In addition, among the two curves shown in FIG. 1, the lower curve indicates that the value of [Cu] × [Si] is 1.6, and the upper curve indicates [Cu] × [Si]. Indicates that the value of is 4.4. Note that SCC in FIG. 1 means stress corrosion cracking. The same applies to FIG.
 図1から明らかなように、Siが3.0%超、Cuが3.0%超、又は[Cu]×[Si]の値が4.4超の場合、ろう付け接合された供試材の断面にすき間が発生していた。オーステナイト系ステンレス鋼の場合、Si及びCuの添加により、ろう材の濡れ性が良好となる。しかし、Si及びCuが一定量以上添加されると、濡れ性が過剰に良好となり、被接合材同士のすき間からろう材が流れ出してしまうために接合が不十分になるからである。したがって、[Cu]×[Si]の値の上限は4.4とする。より好ましい上限は4.0である。 As is apparent from FIG. 1, when Si is more than 3.0%, Cu is more than 3.0%, or the value of [Cu] × [Si] is more than 4.4, the specimens brazed and joined. There was a gap in the cross section. In the case of austenitic stainless steel, the addition of Si and Cu improves the wettability of the brazing material. However, when a certain amount or more of Si and Cu is added, the wettability becomes excessively good, and the brazing material flows out from the gaps between the materials to be joined, so that the joining becomes insufficient. Therefore, the upper limit of the value of [Cu] × [Si] is 4.4. A more preferred upper limit is 4.0.
(応力腐食割れ評価)
 ろう付け接合用素材を、ろう付け接合はせずに、ろう付け接合するときと同じ条件、即ち、水素還元炉を用いて、1100℃、水素100%の雰囲気で加熱した。この加熱の後に、ろう付け接合用素材を、30×30mm及び15×15mmの大きさに切り出し切断端面を研磨処理した。この大きさの異なる二枚の素材を重ねて中央部をスポット溶接し、二枚の素材の間にすき間を付与して応力腐食割れ評価用供試材とした。この応力腐食割れ評価用供試材を、200ppmのClが含有する水溶液中に浸漬し、100℃に7日間保持した。7日間経過後、スポット溶接部を穿孔して分離し、内側のすき間面における割れの有無を評価した。割れの有無は染色浸透探傷試験(カラーチェック法)で確認した。
(Stress corrosion crack evaluation)
The brazing material was heated in the atmosphere of 1100 ° C. and 100% hydrogen using the same conditions as when brazing, ie, using a hydrogen reduction furnace, without brazing. After this heating, the brazing joint material was cut into a size of 30 × 30 mm and 15 × 15 mm and the cut end face was polished. The two materials having different sizes were overlapped and spot welded at the center, and a gap was provided between the two materials to obtain a test material for stress corrosion cracking evaluation. The stress corrosion cracking evaluation test material, 200 ppm of Cl - is immersed in an aqueous solution containing was held at 100 ° C. 7 days. After 7 days, the spot weld was punched and separated, and the presence or absence of cracks in the inner clearance surface was evaluated. The presence or absence of cracks was confirmed by a dye penetration test (color check method).
 評価結果を図1に併記した。応力腐食割れが発生しなかった場合を白丸印(○)で、応力腐食割れが発生した場合を黒丸印(●)で表示した。図1において、応力腐食割れが発生していない供試材を調べると、[Cu]×[Si]の値が1.6以上であった。一方、[Cu]×[Si]の値が1.6未満の供試材は、応力腐食割れが発生していた。一般にオーステナイト系ステンレス鋼の耐応力腐食割れ性改善にSiとCuの添加が有効との知見がある。本発明では、ろう付け接合されたオーステナイト系ステンレス鋼においても、応力腐食割れの抑制効果が、[Cu]×[Si]の値で表されるCuとSiの相乗効果で得られることを明らかにした。したがって、[Cu]×[Si]の値の下限を1.6とする。より好ましくは2.0とする。 The evaluation results are shown in FIG. The case where stress corrosion cracking did not occur is indicated by a white circle (◯), and the case where stress corrosion cracking occurred is indicated by a black circle (●). In FIG. 1, when the test material in which stress corrosion cracking did not occur was examined, the value of [Cu] × [Si] was 1.6 or more. On the other hand, stress corrosion cracking occurred in the test material having a value of [Cu] × [Si] of less than 1.6. In general, it is known that the addition of Si and Cu is effective in improving the stress corrosion cracking resistance of austenitic stainless steel. In the present invention, it is clear that the effect of suppressing the stress corrosion cracking can be obtained by the synergistic effect of Cu and Si represented by the value of [Cu] × [Si] even in the brazed austenitic stainless steel. did. Therefore, the lower limit of the value of [Cu] × [Si] is set to 1.6. More preferably, it is set to 2.0.
 次に、燃焼排気ガスにより発生する凝縮水に対する耐食性の評価方法及びその結果について説明する。上述したように、ろう付け接合される構造体は、自動車の排気系部材、又は潜熱回収器を設置した給湯器の二次熱交換器等として使用される。したがって、ろう付け接合された構造体を構成するオーステナイト系ステンレス鋼は、ろう付け性及び応力腐食割れ性に優れるだけでは不十分である。 Next, a method for evaluating the corrosion resistance against the condensed water generated by the combustion exhaust gas and the result thereof will be described. As described above, the structure to be brazed is used as an exhaust system member of an automobile, a secondary heat exchanger of a water heater provided with a latent heat recovery device, or the like. Therefore, it is not sufficient for the austenitic stainless steel constituting the brazed joint structure to be excellent only in brazing and stress corrosion cracking properties.
(燃焼排気ガスにより発生する凝縮水に対する耐食性の評価)
 供試材として用いる材料は、ろう付け性及び耐応力腐食性に優れるもの、即ち、[Cu]×[Si]の値が1.6以上4.4以下の範囲でにあるオーステナイト系ステンレス鋼を用いた。試験液は、一般的なLNGや石油の燃焼で生じる凝縮水の組成を模擬できるものとした。具体的には、試験液は、硝酸イオン100ppm、硫酸イオン10ppm、pH2.5に調整し、腐食を加速させるため塩化物イオンをCl量で100ppm添加した組成とした。
(Evaluation of corrosion resistance against condensed water generated by combustion exhaust gas)
The material used as the test material is excellent in brazeability and stress corrosion resistance, that is, an austenitic stainless steel having a value of [Cu] × [Si] in the range of 1.6 to 4.4. Using. The test liquid can simulate the composition of condensed water generated by combustion of general LNG or petroleum. Specifically, the test solution was adjusted to nitrate ion 100 ppm, sulfate ion 10 ppm, pH 2.5, and had a composition in which chloride ions were added at 100 ppm in terms of Cl 2 to accelerate corrosion.
 上記した[Cu]×[Si]の値が1.6以上4.4以下の範囲であるオーステナイト系ステンレス鋼の素材を、ろう付け接合はせずに、ろう付け接合するときと同じ条件、即ち、水素還元炉を用いて、1100℃、水素100%の雰囲気で加熱した。加熱後の素材を15×100mmの大きさに切断し、耐食性評価供試材とした。この耐食性評価供試材を、試験管中で試験液に半分だけ浸漬させた。なお、試験管内の試験液は10mlとした。そして、この試験管を80℃の温湯に浸漬し、数時間で完全乾燥するまで保持し、乾燥後は別の試験管に試験液を新たに満たして完全乾燥するまで保持する、乾湿繰り返し試験を14サイクル実施した。燃焼排気ガスにより発生する凝縮水に対する耐食性の評価は、試験後の耐食性評価供試材の表面における最大腐食深さを測定して行った。 The above-mentioned [Cu] × [Si] values in the range of 1.6 to 4.4 are the same conditions as when brazing and joining the austenitic stainless steel material without brazing. Then, it was heated in an atmosphere of 1100 ° C. and 100% hydrogen using a hydrogen reduction furnace. The heated material was cut into a size of 15 × 100 mm, and used as a test material for evaluating corrosion resistance. This corrosion resistance evaluation specimen was immersed in the test solution by half in a test tube. The test solution in the test tube was 10 ml. Then, the test tube is immersed in hot water at 80 ° C. and held for several hours until it is completely dried. After drying, another test tube is filled with the test solution and held until it is completely dried. 14 cycles were performed. The evaluation of the corrosion resistance against the condensed water generated by the combustion exhaust gas was performed by measuring the maximum corrosion depth on the surface of the test material for the corrosion resistance evaluation after the test.
 評価結果を図2に示す。最大侵食深さが100μm未満の場合を白丸印(○)、100μm以上の場合をばつ印(×)で表示した。図2にから明らかなように、2[N]+[Mo]の値が0.16以上のとき、最大腐食深さが100μm未満となった。これは、Clを含有する低pH溶液でも、MoとNによる耐孔食性向上効果が得られるからと推定される。 The evaluation results are shown in FIG. A case where the maximum erosion depth is less than 100 μm is indicated by a white circle mark (◯), and a case where the maximum erosion depth is 100 μm or more is indicated by a cross mark (×). As is apparent from FIG. 2, when the value of 2 [N] + [Mo] is 0.16 or more, the maximum corrosion depth is less than 100 μm. This, Cl - even at a low pH solution containing, pitting corrosion resistance improving effect by Mo and N are estimated because obtained.
 なお、図2中で、2[N]+[Mo]の値が0.16以上であっても、最大孔食深さが100μm以上の場合がある。このような場合の供試材を調べると、Cu含有量が、後述する範囲外であった。これは、硝酸イオンのような酸化剤を含む乾湿繰り返し腐食環境では、Cuが腐食時に溶出、イオン化する。そして、このような環境内において、Cuイオンが腐食孔内外部で酸化剤として働くため、腐食深さが増加したと推定される。 In FIG. 2, even when the value of 2 [N] + [Mo] is 0.16 or more, the maximum pitting corrosion depth may be 100 μm or more. When examining the test material in such a case, the Cu content was outside the range described below. This is because Cu is eluted and ionized during corrosion in a wet and dry repeated corrosive environment containing an oxidizing agent such as nitrate ions. And in such an environment, since Cu ion works as an oxidizing agent inside and outside the corrosion hole, it is estimated that the corrosion depth has increased.
 また、2[N]+[Mo]の値の増加とともに、最大腐食深さは低減するが、ある値以上で腐食深さの低下は飽和した。これは、N及びMoの含有量が一定値を超えると、腐食深さは、N及びMo以外の元素の影響が無視できなくなるためであると推定される。特に、Cuが存在する場合、Cuイオンにより、腐食が促進される。このような理由で、2[N]+[Mo]の上限を1.0以下とする。好ましい上限は0.77であり、より好ましい上限は0.74である。なお、2[N]+[Mo]の下限は、上述したとおり、0.16であり、好ましい下限は0.20である。 Also, as the value of 2 [N] + [Mo] increases, the maximum corrosion depth decreases, but the decrease in the corrosion depth is saturated above a certain value. This is presumably because when the N and Mo contents exceed a certain value, the corrosion depth is such that the influence of elements other than N and Mo cannot be ignored. In particular, when Cu is present, corrosion is accelerated by Cu ions. For this reason, the upper limit of 2 [N] + [Mo] is 1.0 or less. A preferable upper limit is 0.77, and a more preferable upper limit is 0.74. The lower limit of 2 [N] + [Mo] is 0.16 as described above, and the preferable lower limit is 0.20.
 上述した図1及び図2で示した結果を、[Cu]×[Si]の値と2[N]+[Mo]の値の関係でまとめると、図3に示す関係となる。図3から明らかなように、[Cu]×[Si]の値が1.6~4.4の範囲で、かつ、2[N]+[Mo]の値が0.16~1.0の範囲にある供試材は、ろう付け性と耐食性を両立する。なお、本発明において、耐食性とは、応力腐食割れ性と、燃焼排気ガスの凝縮により、硝酸イオン及び硫酸イオンを含んだpHが低い凝縮水が生成する環境下での耐食性、さらに、塩化物イオンを含有する水溶液環境下での耐食性を意味する。 When the results shown in FIGS. 1 and 2 described above are summarized by the relationship between the value of [Cu] × [Si] and the value of 2 [N] + [Mo], the relationship shown in FIG. 3 is obtained. As is apparent from FIG. 3, the value of [Cu] × [Si] is in the range of 1.6 to 4.4, and the value of 2 [N] + [Mo] is 0.16 to 1.0. Test materials in the range have both brazing and corrosion resistance. In the present invention, the corrosion resistance refers to the stress corrosion cracking resistance, the corrosion resistance in an environment where condensed water having a low pH containing nitrate ions and sulfate ions is generated due to condensation of combustion exhaust gas, and further chloride ions. Means corrosion resistance in an aqueous solution environment containing
 したがって、本発明のオーステナイト系ステンレス鋼は、Cu、Si、Mo、及びNについて、下記(A)式及び(B)式を満たす必要がある。
 (A)式:1.6≦[Cu]×[Si]≦4.4
 (B)式:0.16≦2[N]+[Mo]≦1.0
Therefore, the austenitic stainless steel of the present invention needs to satisfy the following formulas (A) and (B) for Cu, Si, Mo, and N.
(A) Formula: 1.6 ≦ [Cu] × [Si] ≦ 4.4
(B) Formula: 0.16 ≦ 2 [N] + [Mo] ≦ 1.0
 次に、本発明のオーステナイト系ステンレス鋼が含有する各元素の単独での限定理由について説明する。 Next, the reasons for limitation of each element contained in the austenitic stainless steel of the present invention will be described.
 Cは、耐粒界腐食性、加工性を低下させるため、その含有量を低減させる必要があるため、上限を0.080%とする必要がある。しかし、C含有量を過度に低減させることは、精錬コストを悪化させる。したがって、好ましいC含有量は、0.005~0.060%の範囲である。 C lowers the intergranular corrosion resistance and workability, so its content needs to be reduced, so the upper limit needs to be 0.080%. However, excessively reducing the C content deteriorates the refining cost. Therefore, the preferable C content is in the range of 0.005 to 0.060%.
 Siは、上述したように、Cuと同様、濡れ性の改善と、応力腐食割れの防止のために添加される。Si含有量が1.2%未満であると、これらの効果が発現しない。一方、Si含有量が3.0%を超えると、濡れ性が過剰に向上し、ろう付け性が低下する。したがって、Si含有量は、1.2~3.0%の範囲とすることが必要である。好ましくは、1.4~2.5%の範囲である。 As described above, Si is added to improve wettability and prevent stress corrosion cracking, as with Cu. If the Si content is less than 1.2%, these effects are not exhibited. On the other hand, when the Si content exceeds 3.0%, the wettability is excessively improved and the brazing property is lowered. Therefore, the Si content needs to be in the range of 1.2 to 3.0%. Preferably, it is in the range of 1.4 to 2.5%.
 Mnは、脱酸元素として重要な元素であるが、過剰に添加すると腐食の起点となるMnSを生成しやすくなる。したがって、Mn含有量は、0.4~2.0%の範囲とする必要がある。より好ましくは、0.5~1.2%の範囲である。 Mn is an important element as a deoxidizing element, but if it is added excessively, MnS that becomes a starting point of corrosion is likely to be generated. Therefore, the Mn content needs to be in the range of 0.4 to 2.0%. More preferably, it is in the range of 0.5 to 1.2%.
 Pは、溶接性、加工性を低下させるだけでなく、粒界腐食を生じやすくするため、可能な限り低く抑える必要がある。このためPの含有量の上限は、0.03%とする必要がある。好ましいP含有量は、0.001~0.025%の範囲である。 PP not only reduces weldability and workability, but also tends to cause intergranular corrosion, so P should be kept as low as possible. For this reason, the upper limit of the content of P needs to be 0.03%. A preferable P content is in the range of 0.001 to 0.025%.
 Sは、上述したMnS等の腐食の起点となる水溶性介在物を生成させるため、可能な限り低減させる必要がある。そのため、S含有率は、0.003%以下とする。ただし、Sの過剰な低減にはコストがかかるため、S含有量は、0.0002~0.002%の範囲とすることが好ましい。 It is necessary to reduce S as much as possible in order to generate water-soluble inclusions that become the starting point of corrosion such as MnS described above. Therefore, the S content is set to 0.003% or less. However, since excessive reduction of S is costly, the S content is preferably in the range of 0.0002 to 0.002%.
 Niは、JIS SUS316Lで規定される程度の量においては、耐応力腐食割れに影響しない。しかし、LNG又は石油が燃焼したときの排気ガスに晒される環境下では、耐応力腐食割れ性が低下することが懸念される。また、オーステナイト相を維持し、加工性も確保する必要がある。したがって、Ni含有量は6.0~12.0%の範囲とする必要がある。好ましくは、6.5~11.0%の範囲である。 Ni does not affect stress corrosion cracking resistance in the amount specified by JIS SUS316L. However, there is a concern that the stress corrosion cracking resistance may deteriorate in an environment where the LNG or petroleum is exposed to exhaust gas when burned. Moreover, it is necessary to maintain an austenite phase and to ensure workability. Therefore, the Ni content needs to be in the range of 6.0 to 12.0%. Preferably, it is in the range of 6.5 to 11.0%.
 Crは、ステンレス鋼の耐食性を確保する上で最も重要な元素である。したがって、Cr含有量の下限は16.0%とする。しかし、Crを増加させると耐食性も向上するが、加工性をはじめとする製造性を低下させるため、Cr含有量の上限は20.0%とする。好ましいCr含有量は、16.5~19.0%の範囲である。 Cr is the most important element for ensuring the corrosion resistance of stainless steel. Therefore, the lower limit of the Cr content is 16.0%. However, when Cr is increased, the corrosion resistance is also improved, but the manufacturability and other manufacturability are lowered, so the upper limit of the Cr content is 20.0%. A preferable Cr content is in the range of 16.5 to 19.0%.
 Cuは、Siとともに、その添加により、ろう付け性を低下させるが、応力腐食割れを抑制する働きがある。一方、Cuの過剰な添加は、硝酸イオンを含む溶液中での耐食性を低下させる。したがって、Cu含有量は0.2~3.0%の範囲とする必要がある。好ましくは、0.5~2.5%の範囲である。 Cu, together with Si, reduces brazing by its addition, but has the function of suppressing stress corrosion cracking. On the other hand, excessive addition of Cu reduces the corrosion resistance in a solution containing nitrate ions. Therefore, the Cu content needs to be in the range of 0.2 to 3.0%. Preferably, it is in the range of 0.5 to 2.5%.
 Alは脱酸元素として重要であり、また、非金属介在物の組成を制御し組織を微細化する。しかし、過剰に添加すると、非金属介在物の粗大化を招き、製品の疵発生の起点になるおそれもある。したがって、Al含有量は0.002~0.10%の範囲とする必要がある。好ましくは0.005~0.08%の範囲である。 Al is important as a deoxidizing element, and also refines the structure by controlling the composition of non-metallic inclusions. However, if it is added excessively, the non-metallic inclusions become coarse, and there is a possibility that it may become a starting point for product wrinkles. Therefore, the Al content needs to be in the range of 0.002 to 0.10%. Preferably it is 0.005 to 0.08% of range.
 Nは、耐孔食性を向上させるが、過剰な添加は、Cと同様に、耐粒界腐食性、加工性を低下させる。したがって、N含有量は0.030~0.150%の範囲とする必要がある。好ましくは、0.037~0.10%の範囲である。 N improves pitting corrosion resistance, but excessive addition reduces the intergranular corrosion resistance and workability in the same manner as C. Therefore, the N content needs to be in the range of 0.030 to 0.150%. Preferably, it is 0.037 to 0.10% of range.
 Moは、不動態皮膜の補修に効果があり、耐食性を向上させるのに非常に有効な元素である。さらに、硝酸イオン及び塩化物イオンを含有する環境下では、Nとの組み合わせで耐孔食性を向上させる効果がある。したがって、Moは少なくとも0.1%含有させることが必要である。一方、Moを増加させると耐食性は向上するが、過剰な添加は、加工性を低下させ、コストの上昇を招く。よって、Mo含有量の上限は1.0%とする必要がある。好ましいMo含有量は0.2~0.8%の範囲である。 Mo is an element that is effective in repairing the passive film and is very effective in improving corrosion resistance. Furthermore, in an environment containing nitrate ions and chloride ions, there is an effect of improving pitting corrosion resistance in combination with N. Therefore, it is necessary to contain Mo at least 0.1%. On the other hand, when Mo is increased, the corrosion resistance is improved, but excessive addition reduces workability and causes an increase in cost. Therefore, the upper limit of the Mo content needs to be 1.0%. A preferable Mo content is in the range of 0.2 to 0.8%.
 本発明においては、これまでに説明した必須元素の他に、必要に応じてNb、Ti、V、及びBから1種もしくは2種以上を含有させることができる。 In the present invention, in addition to the essential elements described so far, Nb, Ti, V, and B may be contained alone or in combination as required.
 Nbは、その添加により、炭窒化物を生成し、溶接部近傍の鋭敏化を抑制したり、高温強度を増加させる効果があるため、必要に応じて添加することができる。ただし、過剰な添加はコスト上昇を招く。したがって、Nb含有量は0.1~0.7%の範囲とすることが好ましい。 Nb can be added as needed because it has the effect of generating carbonitrides to suppress sensitization in the vicinity of the weld and increasing the high-temperature strength. However, excessive addition causes cost increase. Therefore, the Nb content is preferably in the range of 0.1 to 0.7%.
 Tiは、Nbと同様の効果を有するが、過剰な添加は、チタンの窒化物による表面疵増加を招く。したがって、Ti含有量は0.1~0.5%の範囲とすることが好ましい。 Ti has the same effect as Nb, but excessive addition causes an increase in surface defects due to titanium nitride. Therefore, the Ti content is preferably in the range of 0.1 to 0.5%.
 Vは、耐銹性や耐すき間腐食性を改善するため、Cr及びMoの使用を抑えてVを添加すれば、優れた加工性も確保することができる。したがって、Vは、必要に応じて添加することができる。ただし、過剰な添加は、加工性低下を招くため。よって、V含有量は0.1~3.0%の範囲とすることが好ましい。 Since V improves weather resistance and crevice corrosion resistance, excellent workability can be secured if V is added while suppressing the use of Cr and Mo. Therefore, V can be added as necessary. However, excessive addition causes deterioration of workability. Therefore, the V content is preferably in the range of 0.1 to 3.0%.
 Bは、熱間加工性改善に有効な粒界強化元素であるため、必要に応じて添加することができる。しかし、過剰な添加は加工性低下の原因になる。したがって、B含有量は、下限を0.0002%、上限を0.003%とすることが好ましい。 B is a grain boundary strengthening element effective for improving hot workability, and can be added as necessary. However, excessive addition causes a decrease in workability. Therefore, the B content is preferably 0.0002% at the lower limit and 0.003% at the upper limit.
 次に、本発明を実施例でさらに説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, the present invention will be further described with reference to examples. Conditions in the examples are one example of conditions adopted to confirm the feasibility and effects of the present invention, and the present invention is examples of these one condition. It is not limited to. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
 表1に示す化学組成を有する鋼を通常のオーステナイト系ステンレス鋼の製造方法で製造した。まず真空溶製後に40mm厚のインゴットを製造し、これを熱間圧延で4.0mm厚に圧延した。その後、1150℃×1分の熱処理を行ってから、スケールを研削除去し、さらに冷間圧延により1.0mm厚の鋼板を製造した。これを、各々の再結晶挙動に基づき1050~1150℃×1分の条件で熱処理し、その後、硝ふっ酸水溶液中でスケールが完全に除去されるまで浸漬酸洗処理を行い、以下の3つの試験に供した。 Steel having the chemical composition shown in Table 1 was produced by a normal austenitic stainless steel production method. First, an ingot having a thickness of 40 mm was manufactured after vacuum melting, and this was hot rolled to a thickness of 4.0 mm. Thereafter, a heat treatment was performed at 1150 ° C. for 1 minute, the scale was removed by grinding, and a steel plate having a thickness of 1.0 mm was manufactured by cold rolling. This was heat-treated at 1050 to 1150 ° C. for 1 minute based on each recrystallization behavior, and then subjected to immersion pickling treatment until the scale was completely removed in an aqueous nitric hydrofluoric acid solution. It used for the test.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(ろう付け性試験)
 厚さ1mmの各種ステンレス鋼を、40×50mmと25×30mmに切断し、#600番の耐水エメリー紙(耐水研磨紙)を用いて全面を湿式研磨処理したものを供試材として、銀ろうを用いたろう付け性試験を実施した。
(Brassability test)
Silver brazing was made by cutting various stainless steels with a thickness of 1 mm into 40 x 50 mm and 25 x 30 mm and wet-polishing the entire surface using # 600 water-resistant emery paper (water-resistant abrasive paper). A brazeability test using was conducted.
 ろう付け接合は、上述したのと同一の方法で、供試材を二枚重ねて行った。具体的には、供試材の重ね部に、有機バインダーを混合させたJIS BNi5の銀ろうを0.3g配設してろう付け接合した。ろう付け接合は、水素還元炉を用いて、1100℃、水素100%の雰囲気で行った。評価方法は、ろう付け接合された供試材の断面において、目視観察により、すき間にろう材が完全に充填されていた場合は良好、すき間が残っていた場合は不良とした。 Brazing joining was performed by stacking two test materials in the same manner as described above. Specifically, 0.3 g of JIS BNi5 silver brazing mixed with an organic binder was placed on the overlapping part of the test material and brazed and joined. The brazing joining was performed in an atmosphere of 1100 ° C. and 100% hydrogen using a hydrogen reduction furnace. In the evaluation method, the cross section of the brazed specimen was evaluated by visual observation as being good when the gap was completely filled with the gap and poor when the gap remained.
(耐食性試験)
 次に、LNGや石油の燃焼で生じる凝縮水を模擬した試験液中で行う、乾湿繰り返し試験方法について説明する。供試材は、各種ステンレス鋼を、ろう付け接合はせずに、ろう付け接合するときと同じ条件、即ち、水素還元炉を用いて、1100℃、水素100%の雰囲気で加熱した。その後、15×100mmの大きさに切断して試験した。なお、供試材の板厚は1mmである。試験液の組成は、先に説明したとおり、一般的なLNGや石油の燃焼で生じる凝縮水の組成を模擬して、硝酸イオン100ppm、硫酸イオン10ppm、pH2.5に調整し、塩分の濃縮を模擬して、塩化物イオンを100ppmとした。この試験液10mlを入れた試験管中に、供試材を半分浸漬させて80℃の温浴に入れた。この試験液が完全乾燥するまで保持し、乾燥後に試験用液を満たした新たな試験管にサンプルを移し替えて再度乾燥させた。この乾燥を14回実施した後の、試験後の最大腐食深さを測定した。
(Corrosion resistance test)
Next, a wet and dry repeated test method performed in a test solution simulating condensed water generated by LNG or petroleum combustion will be described. As the test material, various stainless steels were heated in an atmosphere of 1100 ° C. and 100% hydrogen using the same conditions as when brazing without using brazing, that is, using a hydrogen reduction furnace. Then, it cut | disconnected to the magnitude | size of 15 * 100 mm and tested. In addition, the plate | board thickness of a test material is 1 mm. As described above, the composition of the test solution was adjusted to nitrate ion 100 ppm, sulfate ion 10 ppm, pH 2.5 by simulating the composition of the condensed water generated by the combustion of general LNG or petroleum, and concentrated salt As a simulation, the chloride ion was set to 100 ppm. The test material was immersed in a test tube containing 10 ml of the test solution and placed in a warm bath at 80 ° C. This test solution was held until it completely dried, and after drying, the sample was transferred to a new test tube filled with the test solution and dried again. The maximum corrosion depth after the test after 14 times of this drying was measured.
(応力腐食割れ評価試験)
 応力腐食割れ評価試験は、ろう付け性試験に供したものと同じ材料を、ろう付け接合はせずに、ろう付け接合するときと同じ条件、即ち、水素還元炉を用いて、1100℃、水素100%の雰囲気で加熱して行った。この材料から、30×30mmと15×15mmの大きさに切り出し全面湿式研磨処理してから、二枚を重ねてスポット溶接を実施し、すき間を付与した。このようにすき間を付与した供試材を、200ppmのClを含有する蒸留水中に浸漬し、100℃で7日間連続処理した。処理後の供試材のスポット溶接部をドリルで穿孔して分離した後に、染色浸透探傷試験(カラーチェック法)で割れの有無を観察した。ここで、割れが生じない場合を良好、割れが生じた場合を不良とした。
(Stress corrosion cracking evaluation test)
In the stress corrosion cracking evaluation test, the same material as that used in the brazeability test was subjected to the same conditions as when brazing without brazing, that is, using a hydrogen reduction furnace at 1100 ° C. and hydrogen. The heating was performed in a 100% atmosphere. From this material, it was cut into a size of 30 × 30 mm and 15 × 15 mm and wet-polished on the entire surface, and then the two sheets were overlapped and spot-welded to provide a gap. The specimen thus provided with the gap was immersed in distilled water containing 200 ppm of Cl 2 and continuously treated at 100 ° C. for 7 days. After the spot welded portion of the test material after the treatment was drilled and separated, the presence or absence of cracks was observed by a dye penetration test (color check method). Here, the case where a crack did not occur was determined to be good, and the case where a crack occurred was determined to be defective.
 これらの試験結果を表1に併記した。なお、ろう付け性試験結果及び応力腐食割れ評価試験結果については、良好をA、不良をBで表示した。 These test results are also shown in Table 1. In addition, about the brazing property test result and the stress corrosion cracking evaluation test result, “A” indicates good and “B” indicates failure.
 表1から明らかなように、No.1~13の発明例は、ろう付け性試験、耐食性試験(乾湿繰り返し試験)での最大腐食深さ、及び耐応力腐食割れ評価試験のいずれも、良好な結果であることを確認できた。 As is clear from Table 1, No. In Examples 1 to 13, it was confirmed that the brazing test, the maximum corrosion depth in the corrosion resistance test (dry and wet repetition test), and the stress corrosion cracking evaluation test were all good results.
 これに対し、[Cu]×[Si]の値が4.4を超えるNo.14~18、21は、十分なろう付け性が得られないことを確認した。また、[Cu]×[Si]の値が1.6未満のNo.19、23、24、25は、ろう付け性は良好でも、応力腐食割れ評価試験で割れが確認された。さらに、2[N]+[Mo]の値が本発明のを下限外であるNo.20、21、23、24は、耐食性試験(乾湿繰り返し試験)での最大孔食深さが100μm以上となる結果となった。No.22は、[Cu]×[Si]の値、及び2[N]+[Mo]の値は本発明の範囲内であるが、Crが本発明の範囲の下限外のため、耐食性試験(乾湿繰り返し試験)で、最大孔食深さが100μmを超える結果となった。なお、No.14~18で、2[N]+[Mo]の値が本発明の範囲内であっても、耐食性試験(乾湿繰り返し試験)で最大腐食深さが100μmを超える結果となったのは、Cuが本発明の範囲外であったために、溶出したCuイオンによる腐食促進効果が働いたためと判断される。 In contrast, No. with a value of [Cu] × [Si] exceeding 4.4. 14 to 18 and 21 confirmed that sufficient brazability could not be obtained. In addition, the value of [Cu] × [Si] is less than 1.6. Nos. 19, 23, 24, and 25 were confirmed to have cracks in the stress corrosion cracking evaluation test even though the brazing property was good. Furthermore, No. 2 in which the value of 2 [N] + [Mo] is outside the lower limit of the present invention. Nos. 20, 21, 23, and 24 resulted in a maximum pitting corrosion depth of 100 μm or more in the corrosion resistance test (dry and wet repetition test). No. 22, the value of [Cu] × [Si] and the value of 2 [N] + [Mo] are within the range of the present invention, but Cr is outside the lower limit of the range of the present invention, so the corrosion resistance test (wet and dry In the repeated test), the maximum pitting corrosion depth exceeded 100 μm. In addition, No. 14 to 18, even when the value of 2 [N] + [Mo] was within the range of the present invention, the maximum corrosion depth was more than 100 μm in the corrosion resistance test (dry and wet repeated test). Is outside the scope of the present invention, it is judged that the corrosion promotion effect by the eluted Cu ions worked.
 以上より、本発明のオーステナイト系ステンレス鋼は、炭化水素燃料の燃焼ガスに晒される熱交換器内の環境下においても、ろう付け性に優れ、応力腐食割れが発生しないことを確認できた。また、それと同時に、本発明のオーステナイト系ステンレス鋼は、硝酸イオンや硫酸イオンを含んだpHが低い凝縮水が生成する環境下や、塩化物イオンを含有する水溶液環境下での耐食性に優れることを確認できた。 From the above, it was confirmed that the austenitic stainless steel of the present invention is excellent in brazing property and does not cause stress corrosion cracking even in an environment in a heat exchanger exposed to combustion gas of hydrocarbon fuel. At the same time, the austenitic stainless steel of the present invention is excellent in corrosion resistance in an environment where condensed water containing nitrate ions and sulfate ions is generated at a low pH and in an aqueous solution environment containing chloride ions. It could be confirmed.
 本発明は、オーステナイト系ステンレス鋼をろう付け接合する構造体で、硝酸イオン及び硫酸イオンを含んだpHが低い凝縮水が生成する環境下での耐食性、さらに、塩化物イオンを含む水溶液中での耐食性が必要な用途全てにおいて適用が可能である。具体的には、本発明のオーステナイト系ステンレス鋼は、熱交換器用材料、特に灯油やLNGを燃料とした潜熱回収型給湯器の二次熱交換器用材料に用いて特に好適である。その場合、本発明のオーステナイト系ステンレス鋼は、熱交換器パイプだけでなく、ケースや仕切板等のいずれの材料としても適用可能である。また、本発明のオーステナイト系ステンレス鋼は、ガソリン及びディーゼルエンジンを有する自動車において車載されるEGR等の排気ガスからの熱回収部品として使用しても、同様に好適である。 The present invention is a structure for brazing austenitic stainless steel, corrosion resistance in an environment where condensed water containing nitrate ions and sulfate ions and having a low pH is generated, and in an aqueous solution containing chloride ions. It can be applied to all uses that require corrosion resistance. Specifically, the austenitic stainless steel of the present invention is particularly suitable for use as a heat exchanger material, particularly as a secondary heat exchanger material for a latent heat recovery type hot water heater using kerosene or LNG as fuel. In that case, the austenitic stainless steel of the present invention can be applied not only to heat exchanger pipes but also to any materials such as cases and partition plates. Further, the austenitic stainless steel of the present invention is also suitable when used as a heat recovery component from exhaust gas such as EGR mounted on an automobile having gasoline and diesel engines.
 その他、本発明のオーステナイト系ステンレス鋼は、硝酸イオン及び硫酸イオンを含む低pHの溶液に晒された乾湿繰り返しとなる環境下で用いて特に好適である。具体的には酸性雨環境が想定される屋外外装材、建材、屋根材、屋外機器類等である。また、本発明のオーステナイト系ステンレス鋼板は、応力腐食割れが懸念される水回り一般に用いられる機器類、具体的には、貯水・貯湯タンク、家電製品、浴槽、厨房機器、及び、その他屋外・屋内機器に用いて好適である。このように、本発明は、産業上、利用価値の高いものである。 In addition, the austenitic stainless steel of the present invention is particularly suitable for use in an environment of repeated wet and dry exposure to a low pH solution containing nitrate ions and sulfate ions. Specifically, outdoor exterior materials, building materials, roofing materials, outdoor equipment, etc. that are assumed to have an acid rain environment. In addition, the austenitic stainless steel sheet of the present invention is generally used for water-related equipment where stress corrosion cracking is a concern, specifically, water storage / hot water storage tanks, home appliances, bathtubs, kitchen equipment, and other outdoor / indoor use. It is suitable for use in equipment. Thus, the present invention has a high utility value in the industry.

Claims (2)

  1.  質量%で、C:0.080%以下、Si:1.2~3.0%、Mn:0.4~2.0%、P:0.03%以下、S:0.003%以下、Ni:6.0~12.0%、Cr:16.0~20.0%、Cu:0.2~3.0%、Al:0.002~0.10%、N:0.030~0.150%、及びMo:0.1~1.0%を含有し、残部はFe及び不可避的不純物からなり、かつ、下記(A)式及び(B)式を満たすことを特徴とする耐食性及びろう付け性に優れたオーステナイト系ステンレス鋼。
     (A)式:1.6≦[Cu]×[Si]≦4.4
     (B)式:0.16≦2[N]+[Mo]≦1.0
     ここで、[Cu]、[Si]、[N]、及び[Mo]は、質量%で表した各元素の含有量とする。
    In mass%, C: 0.080% or less, Si: 1.2 to 3.0%, Mn: 0.4 to 2.0%, P: 0.03% or less, S: 0.003% or less, Ni: 6.0 to 12.0%, Cr: 16.0 to 20.0%, Cu: 0.2 to 3.0%, Al: 0.002 to 0.10%, N: 0.030 to Corrosion resistance characterized by containing 0.150% and Mo: 0.1-1.0%, the balance being Fe and inevitable impurities and satisfying the following formulas (A) and (B) Austenitic stainless steel with excellent brazing properties.
    (A) Formula: 1.6 ≦ [Cu] × [Si] ≦ 4.4
    (B) Formula: 0.16 ≦ 2 [N] + [Mo] ≦ 1.0
    Here, [Cu], [Si], [N], and [Mo] are the contents of each element expressed in mass%.
  2.  さらに、質量%で、Nb:0.1~0.7%、Ti:0.1~0.5%、V:0.1~3.0%、及びB:0.0002%~0.003%のうちの1種又は2種以上を含有することを特徴とする請求項1に記載の耐食性及びろう付け性に優れたオーステナイト系ステンレス鋼。 Further, in terms of mass%, Nb: 0.1 to 0.7%, Ti: 0.1 to 0.5%, V: 0.1 to 3.0%, and B: 0.0002% to 0.003 The austenitic stainless steel excellent in corrosion resistance and brazing properties according to claim 1, comprising one or more of the following:
PCT/JP2012/058220 2011-03-29 2012-03-28 Highly corrosion-resistant austenite stainless steel well-suited to brazing WO2012133574A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201280009312.8A CN103380224B (en) 2011-03-29 2012-03-28 The austenite stainless steel of solidity to corrosion and solderability excellence
US14/002,932 US20130336834A1 (en) 2011-03-29 2012-03-28 Austenitic stainless steel excellent in corrosion resistance and brazeability
AU2012233539A AU2012233539B2 (en) 2011-03-29 2012-03-28 Highly corrosion-resistant austenite stainless steel well-suited to brazing
NZ614829A NZ614829B2 (en) 2011-03-29 2012-03-28 Highly corrosion-resistant austenite stainless steel well-suited to brazing
CA2829874A CA2829874C (en) 2011-03-29 2012-03-28 Austenitic stainless steel excellent in corrosion resistance and brazeability
KR1020137024172A KR20130123443A (en) 2011-03-29 2012-03-28 Highly corrosion-resistant austenite stainless steel well-suited to brazing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-073205 2011-03-29
JP2011073205A JP6016331B2 (en) 2011-03-29 2011-03-29 Austenitic stainless steel with excellent corrosion resistance and brazing

Publications (1)

Publication Number Publication Date
WO2012133574A1 true WO2012133574A1 (en) 2012-10-04

Family

ID=46931281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058220 WO2012133574A1 (en) 2011-03-29 2012-03-28 Highly corrosion-resistant austenite stainless steel well-suited to brazing

Country Status (8)

Country Link
US (1) US20130336834A1 (en)
JP (1) JP6016331B2 (en)
KR (1) KR20130123443A (en)
CN (1) CN103380224B (en)
AU (1) AU2012233539B2 (en)
CA (1) CA2829874C (en)
TW (1) TWI471427B (en)
WO (1) WO2012133574A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980244A4 (en) * 2013-03-28 2016-09-28 Nippon Steel & Sumikin Sst Heat-resistant austenitic stainless steel sheet

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5743975B2 (en) * 2012-08-08 2015-07-01 日本冶金工業株式会社 Austenitic stainless steel for diesel engine EGR cooler and EGR cooler for diesel engine
JP6116019B2 (en) * 2014-03-31 2017-04-19 日新製鋼株式会社 Austenitic stainless steel with excellent intergranular penetration resistance during Cu brazing
CN104532161B (en) * 2015-01-08 2017-01-25 辽宁省兴城市特种铸钢有限公司 Magnetic separator end cap and manufacturing method thereof
CA2977619C (en) 2015-03-26 2020-01-14 Nippon Steel & Sumikin Stainless Steel Corporation Stainless steel having excellent brazeability
KR101988150B1 (en) * 2015-03-31 2019-06-11 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Exhaust system parts
CN105483761A (en) * 2015-12-09 2016-04-13 上海大学 Process for improving intergranular corrosion resistance of 316 stainless steel
KR101756701B1 (en) * 2015-12-23 2017-07-12 주식회사 포스코 Austenitic stainless steel with increased workability
WO2017164344A1 (en) * 2016-03-23 2017-09-28 新日鐵住金ステンレス株式会社 Austenitic stainless steel sheet for exhaust component having excellent heat resistance and workability, turbocharger component, and method for producing austenitic stainless steel sheet for exhaust component
KR101903173B1 (en) * 2016-12-23 2018-10-01 주식회사 포스코 Austenitic stainless steel having excellent hot workability and corrosion resistance and method of manufacturing the same
KR20180074408A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Austenitic stainless steel having excellent corrosion resistance to sulfuric acid
EP3875624A4 (en) * 2018-10-30 2022-08-31 NIPPON STEEL Stainless Steel Corporation Austenitic stainless steel sheet
CN109911871B (en) * 2019-03-18 2021-10-29 昆明理工大学 Temperature-changing phase-changing separation method and system for elemental phosphorus in phosphorus-containing tail gas
CN111020381B (en) * 2019-12-09 2022-01-11 宁波宝新不锈钢有限公司 Austenitic stainless steel and preparation method thereof
WO2021200106A1 (en) * 2020-03-30 2021-10-07 日鉄ステンレス株式会社 Austenitic stainless steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09279313A (en) * 1996-04-15 1997-10-28 Sumitomo Metal Ind Ltd Stainless steel for exhaust gas system of city waste incineration equipment
JP2004277767A (en) * 2003-03-13 2004-10-07 Nisshin Steel Co Ltd Austenitic stainless steel for automotive oil filler pipe and fuel tank, and automotive oil filler pipe and fuel tank
JP2006249464A (en) * 2005-03-08 2006-09-21 Nisshin Steel Co Ltd Austenitic stainless steel for automotive member
JP2009041103A (en) * 2007-07-17 2009-02-26 Hitachi Metals Ltd Austenitic stainless steel for component of exhaust gas re-circulation system, and manufacturing method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877555A (en) * 1981-11-04 1983-05-10 Nippon Yakin Kogyo Co Ltd Austenitic stainless steel with superior pitting corrosion resistance and weather resistance
JPS59185763A (en) * 1983-04-04 1984-10-22 Nippon Stainless Steel Co Ltd Austenitic stainless steel having superior corrosion resistance in environment containing neutral salt
JP4327629B2 (en) * 2004-03-22 2009-09-09 日本金属工業株式会社 Austenitic stainless steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09279313A (en) * 1996-04-15 1997-10-28 Sumitomo Metal Ind Ltd Stainless steel for exhaust gas system of city waste incineration equipment
JP2004277767A (en) * 2003-03-13 2004-10-07 Nisshin Steel Co Ltd Austenitic stainless steel for automotive oil filler pipe and fuel tank, and automotive oil filler pipe and fuel tank
JP2006249464A (en) * 2005-03-08 2006-09-21 Nisshin Steel Co Ltd Austenitic stainless steel for automotive member
JP2009041103A (en) * 2007-07-17 2009-02-26 Hitachi Metals Ltd Austenitic stainless steel for component of exhaust gas re-circulation system, and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980244A4 (en) * 2013-03-28 2016-09-28 Nippon Steel & Sumikin Sst Heat-resistant austenitic stainless steel sheet
US9945016B2 (en) 2013-03-28 2018-04-17 Nippon Steel & Sumikin Stainless Steel Corporation Heat-resistant austenitic stainless steel sheet

Also Published As

Publication number Publication date
JP6016331B2 (en) 2016-10-26
AU2012233539A1 (en) 2013-09-26
CA2829874C (en) 2016-02-02
JP2012207259A (en) 2012-10-25
CN103380224B (en) 2016-03-30
TWI471427B (en) 2015-02-01
KR20130123443A (en) 2013-11-12
AU2012233539B2 (en) 2015-06-18
CN103380224A (en) 2013-10-30
NZ614829A (en) 2014-09-26
TW201245468A (en) 2012-11-16
US20130336834A1 (en) 2013-12-19
CA2829874A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP6016331B2 (en) Austenitic stainless steel with excellent corrosion resistance and brazing
JP6295155B2 (en) Ferritic stainless steel, manufacturing method thereof, and heat exchanger using ferritic stainless steel as a member
JP4898543B2 (en) Steel sheet with excellent pit resistance and method for producing the same
KR101339484B1 (en) High-strength stainless steel pipe
JP6270821B2 (en) Ferritic stainless steel plate with excellent brazing, heat exchanger, ferritic stainless steel plate for heat exchanger, ferritic stainless steel, ferritic stainless steel for fuel supply system members, and fuel supply system parts
JP5320034B2 (en) Mo-type ferritic stainless steel for automotive exhaust system parts with excellent corrosion resistance after heating
EP2546376B1 (en) Ferritic stainless steel having excellent corrosion resistance in condensed water environment produced by exhaust gas from hydrocarbon combustion
JP5588868B2 (en) Ferritic stainless steel for urea water tank
JP6379283B2 (en) Stainless steel with excellent brazeability
CA2707518A1 (en) Ferritic stainless steel with excellent brazeability
JP6097693B2 (en) Ferritic stainless steel with excellent corrosion resistance and workability
JPH11131179A (en) Steel for welded structure, excellent in sulfuric acid dew point corrosion resistance, and its production
NZ614829B2 (en) Highly corrosion-resistant austenite stainless steel well-suited to brazing
JP2575250B2 (en) Line pipe with excellent corrosion resistance and weldability
JP5089103B2 (en) Stainless steel with excellent corrosion resistance
JP2000288775A (en) Welded joint of martensitic stainless steel
JPH07251291A (en) Welding wire for gas shielded metal arc welding

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280009312.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765127

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14002932

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2829874

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20137024172

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012233539

Country of ref document: AU

Date of ref document: 20120328

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765127

Country of ref document: EP

Kind code of ref document: A1