WO2012133237A1 - Method for manufacturing polycarbonate resin, polycarbonate resin, polycarbonate-resin film, and methods for manufacturing polycarbonate-resin pellets and polycarbonate-resin films - Google Patents

Method for manufacturing polycarbonate resin, polycarbonate resin, polycarbonate-resin film, and methods for manufacturing polycarbonate-resin pellets and polycarbonate-resin films Download PDF

Info

Publication number
WO2012133237A1
WO2012133237A1 PCT/JP2012/057622 JP2012057622W WO2012133237A1 WO 2012133237 A1 WO2012133237 A1 WO 2012133237A1 JP 2012057622 W JP2012057622 W JP 2012057622W WO 2012133237 A1 WO2012133237 A1 WO 2012133237A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
filter
general formula
dihydroxy compound
producing
Prior art date
Application number
PCT/JP2012/057622
Other languages
French (fr)
Japanese (ja)
Inventor
正志 横木
慎悟 並木
剛一 永尾
正規 山本
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to CN2012800156517A priority Critical patent/CN103459112A/en
Priority to KR1020137025198A priority patent/KR101380522B1/en
Priority to KR1020137025278A priority patent/KR20130122980A/en
Publication of WO2012133237A1 publication Critical patent/WO2012133237A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/10Conditioning or physical treatment of the material to be shaped by grinding, e.g. by triturating; by sieving; by filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates

Definitions

  • the present invention relates to a method for efficiently and stably producing a polycarbonate resin which is excellent in thermal stability, hue, and mechanical strength and has few foreign matters.
  • Polycarbonate resins generally contain bisphenols as monomer components and take advantage of transparency, heat resistance, mechanical strength, etc., so-called electrical / electronic parts, automotive parts, optical recording media, lenses, and other optical fields. Widely used as engineering plastics.
  • Aromatic polycarbonate resins containing monomers as monomer components cannot meet the demand.
  • Japanese Patent No. 3325560 Japanese Unexamined Patent Publication No. 2003-90914 Japanese Unexamined Patent Publication No. 2007-171756 Japanese Laid-Open Patent Publication No. 2010-230832 Japanese Laid-Open Patent Publication No. 2004-67990 Japanese Unexamined Patent Publication No. 2010-189508 Japanese Unexamined Patent Publication No. 2007-70392
  • the polycarbonate resin having a fluorene structure has a problem that when it is filtered using a filter in a melted state, the melt viscosity is too high and the resin is deteriorated due to shear heat generation during filtration.
  • the object of the present invention is to eliminate the above-mentioned conventional problems, and to efficiently and stably produce polycarbonate resin pellets or polycarbonate resin films having excellent optical characteristics, thermal stability, hue, mechanical strength, and few foreign matters. It is to provide a method of manufacturing.
  • the present inventor has obtained optical characteristics by filtering the polycarbonate resin under specific conditions in a method of producing a polycarbonate resin pellet or film having a fluorene structure.
  • the present inventors have found a method for stably producing polycarbonate resin pellets or polycarbonate resin films that are excellent in mechanical strength and hue and have few foreign matters.
  • the gist of the present invention resides in the following [1] to [28].
  • [1] A method for producing a polycarbonate resin in which a polycarbonate resin obtained by polycondensation of a dihydroxy compound and a carbonic acid diester is filtered and then solidified by cooling, wherein the dihydroxy compound is represented by the following general formula (1)
  • the polycarbonate resin is filtered so that the filter has an opening of 50 ⁇ m or less and the temperature of the polycarbonate resin after filtration using the filter is 200 ° C. or higher and lower than 280 ° C.
  • a method for producing a polycarbonate resin A method for producing a polycarbonate resin.
  • R 1 to R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon number 6 to 20 carbon atoms. Or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, and X is a substituted or unsubstituted alkylene group having 2 to 10 carbon atoms, substituted or unsubstituted carbon number It represents a cycloalkylene group having 6 to 20 carbon atoms or a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, and m and n are each independently an integer of 0 to 5. ]
  • the polycarbonate resin obtained by cooling and solidifying has a melt viscosity of 1000 Pa ⁇ s to 5000 Pa ⁇ s at a shear rate of 91.2 sec ⁇ 1 measured at 240 ° C. [1] to [3].
  • the polycarbonate resin obtained by cooling and solidifying is obtained by using 18 mol% or more of the dihydroxy compound represented by the general formula (1) as a raw material monomer with respect to the total dihydroxy compound [ [1]
  • the polycarbonate resin is obtained by polycondensation of at least a dihydroxy compound represented by the general formula (1) and a carbonic acid diester by a transesterification reaction in the presence of a catalyst. [1] Thru
  • the polycondensation is performed using a catalyst, and the catalyst is at least one metal compound selected from the group consisting of a metal of Group 2 of the long-period periodic table and lithium [7]. Or the manufacturing method of polycarbonate resin as described in [8].
  • the polycarbonate resin uses a dihydroxy compound having a portion represented by the following general formula (3) in a part of the structure [ [1] The method for producing a polycarbonate resin according to any one of [9].
  • the dihydroxy compound having the moiety represented by the general formula (3) is a compound having a cyclic ether structure, and the moiety represented by the general formula (3) is a part of the cyclic ether structure [ [10] A process for producing a polycarbonate resin according to [10].
  • the polycarbonate resin is represented by the following dihydroxy compound represented by the following general formula (4) and the following general formula (5). [1] to [11], wherein one or more dihydroxy compounds selected from the group consisting of a dihydroxy compound and a dihydroxy compound represented by the following formula (6) are used.
  • a method for producing a polycarbonate resin is also included.
  • R 5 represents a substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms.
  • R 6 represents a substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms.
  • R 11 represents a chain alkylene group having 2 to 20 carbon atoms.
  • the filter is stored in a container, and a value obtained by dividing the internal volume (m 3 ) of the storage container by the flow rate (m 3 / min) of the polycarbonate resin to be filtered is 2 to 10 minutes.
  • the polycarbonate resin before filtration is supplied from the lower part of the storage container of the filter, and the polycarbonate resin after filtration is discharged from the upper part of the storage container.
  • a method for producing a polycarbonate resin is supplied from the lower part of the storage container of the filter, and the polycarbonate resin after filtration is discharged from the upper part of the storage container.
  • the screw of the extruder is composed of a plurality of elements, and at least one of the elements is a kneading disk, and the total length of the kneading disk is 20% of the total length of the screw.
  • a polycarbonate resin having a yellow index value of 70 or less obtained by the production method according to any one of [1] to [25].
  • a polycarbonate resin obtained by using a dihydroxy compound having a structural unit represented by the following general formula (1) as a raw material monomer is filtered using a filter in a molten state, discharged from a die, and cooled. Thereafter, a method for producing a polycarbonate resin pellet or a polycarbonate resin film, wherein the dihydroxy compound includes at least a dihydroxy compound having a site represented by the following general formula (1) in a part of the structure, and the aperture of the filter Is 50 ⁇ m or less, and the temperature of the resin discharged from the die is 200 ° C. or higher and lower than 280 ° C.
  • a method for producing a polycarbonate resin pellet or polycarbonate resin film is
  • R 1 to R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon number 6 to 20 carbon atoms. Or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, and X is a substituted or unsubstituted alkylene group having 2 to 10 carbon atoms, substituted or unsubstituted carbon number It represents a cycloalkylene group having 6 to 20 carbon atoms or a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, and m and n are each independently an integer of 0 to 5. ]
  • Polycarbonate resin pellets or films having excellent performance can be produced efficiently and stably.
  • FIG. 1 is a process diagram showing an example of a manufacturing process according to the present invention.
  • a dihydroxy compound is used as a raw material monomer, and at least one of the dihydroxy compounds is a specific dihydroxy compound having a site represented by the following general formula (1) in a part of the structure. (Hereinafter sometimes referred to as “the dihydroxy compound of the present invention”).
  • R 1 to R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon atom having 6 to 20 carbon atoms.
  • X is a substituted or unsubstituted alkylene group having 2 to 10 carbon atoms, substituted or unsubstituted 6 carbon atoms.
  • m and n are each independently an integer of 0 to 5.
  • the dihydroxy compound of the present invention is a compound represented by the above general formula (1).
  • each of R 1 to R 4 independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 6 to 20 carbon atoms, or Represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms.
  • examples of the substituent include an ester group, an ether group, a carboxylic acid, an amide group, and a halogen.
  • a hydrogen atom, an unsubstituted alkyl group having 1 to 4 carbon atoms, an unsubstituted cycloalkyl group having 5 to 7 carbon atoms, or a phenyl group is preferable.
  • X is an unsubstituted or ester group, an ether group, a carboxylic acid, an amide group, a halogen-substituted alkylene group having 2 to 10 carbon atoms, an unsubstituted or ester group, an ether group, a carboxylic acid, an amide group, a halogen A cycloalkylene group having 6 to 20 carbon atoms substituted with an aryl group or the like, or an arylene group having 6 to 20 carbon atoms which is unsubstituted or substituted with an ester group, an ether group, a carboxylic acid, an amide group, a halogen or the like. And is preferably an alkylene group having 2 to 6 carbon atoms.
  • dihydroxy compound of the present invention examples include 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, and 9,9-bis. (4-hydroxy-3-ethylphenyl) fluorene, 9,9-bis (4-hydroxy-3-n-propylphenyl) fluorene, 9,9-bis (4-hydroxy-3-isopropylphenyl) fluorene, 9, 9-bis (4-hydroxy-3-n-butylphenyl) fluorene, 9,9-bis (4-hydroxy-3-sec-butylphenyl) fluorene, 9,9-bis (4-hydroxy-3-tert- Butylphenyl) fluorene, 9,9-bis (4-hydroxy-3-cyclohexylphenyl) fluorene, 9,9-bis (4- Loxy-3-phenylphenyl) fluorene, 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluoren
  • 9,9-bis (4-hydroxy-3-methylphenyl) fluorene 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene or 9,9-bis (4- (2-hydroxyethoxy) -3-methylphenyl) fluorene, particularly preferably 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene.
  • 9,9-bis (4-hydroxy-3-methylphenyl) fluorene or 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene is preferred from the viewpoint of handling properties and physical properties of the obtained polymer.
  • the polycarbonate resin of the present invention is preferably obtained by using 18 mol% or more of the specific dihydroxy compound having the structural unit represented by the general formula (1) as a raw material monomer with respect to the total dihydroxy compound, More preferably, it is 20 mol% or more, Especially preferably, it is 25 mol% or more, Most preferably, it is 30 mol% or more. Moreover, it is preferably 90 mol% or less, more preferably 70 mol% or less, and particularly preferably 50 mol% or less.
  • the obtained polycarbonate resin may not exhibit the desired optical performance. If the amount is too large, the melt viscosity of the resulting polycarbonate resin will be high, making it difficult to filter using a filter with a small opening, resulting in increased foreign matter, and making pelletization or film formation difficult. There is. Also, if a filter with a small aperture is used forcibly, the filter may be damaged, or the polycarbonate resin may be colored or the molecular weight may be reduced.
  • Desired optical performance includes coloring, foreign matter, or phase difference that affects light transmittance.
  • the polycarbonate resin of the present invention when used as a quarter-wave plate for a retardation film, it is important to have a retardation in the vicinity of a quarter of the wavelength in any wavelength region.
  • the birefringence wavelength dispersibility is measured by preparing a stretched film having a uniform thickness, measuring a retardation (R450) at a measurement wavelength of 450 nm and a retardation (R550) at 550 nm, and a ratio of R450 to R550 (R450 / R550). ) Can be evaluated.
  • R450 / R550 is preferably 0.80 to 0.95, more preferably 0.85 to 0.93, and particularly preferably 0.87 to 0.91. Reverse wavelength dispersion cannot be achieved if the structural unit represented by the general formula (1) is too much or too little, but is also affected by the structure or content of other structural units. .
  • a dihydroxy compound represented by the general formula (3) can be used as a raw material monomer.
  • dihydroxy compound represented by the general formula (3) examples include oxyalkylene glycols such as diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, polypropylene glycol, and polytetramethylene glycol; Examples thereof include compounds having a cyclic ether structure such as an anhydrosugar alcohol represented by the dihydroxy compound represented by the general formula (9) and a spiro glycol represented by the following general formula (10).
  • diethylene glycol, triethylene glycol, or polyethylene glycol is preferable from the viewpoints of availability, handling, reactivity during polymerization, and hue of the obtained polycarbonate resin.
  • anhydrous sugar alcohol represented by the dihydroxy compound represented by the following general formula (9), or a cyclic ether structure such as spiroglycol represented by the following general formula (10) [preferably, A compound having a moiety represented by the general formula (3) that is part of a cyclic ether structure] is preferred.
  • examples of the dihydroxy compound represented by the general formula (9) include isosorbide, isomannide, and isoide which are related to stereoisomers.
  • isosorbide obtained by dehydration condensation of sorbitol produced from various starches that are abundant as resources and are readily available is easy to obtain and manufacture, optical properties and moldability From the viewpoint of the above, it is most preferable.
  • the amount used when using a compound having a cyclic ether structure such as isosorbide or spiroglycol is not limited, but the lower limit thereof is preferably 10 mol% or more, more preferably 20 mol% or more, Especially preferably, it is 30 mol% or more, Most preferably, it is 40 mol% or more. Moreover, as an upper limit, Preferably it is 90 mol% or less, More preferably, it is 70 mol% or less, Most preferably, it is 60 mol% or less.
  • the obtained polycarbonate resin may not exhibit the desired optical performance. If the amount is too large, not only the desired optical performance may not be exhibited, but also the thermal stability of the obtained polycarbonate resin is adversely affected, the melt viscosity becomes high, and pelletization or film formation is difficult. There is a possibility of becoming.
  • a dihydroxy compound represented by the general formula (4) can be used as a raw material monomer.
  • R 5 represents a substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms.
  • Examples of the dihydroxy compound represented by the general formula (4) include a plurality of compounds such as 2,6-decalindiol, 1,5-decalindiol, 2,3-decalindiol tricyclodecanediol, and pentacyclopentadecanediol.
  • the compound containing a 5-membered ring structure or a 6-membered ring structure is mentioned normally.
  • a 5-membered ring structure or a 6-membered ring structure the heat resistance of the obtained polycarbonate resin can be increased.
  • the six-membered ring structure may be fixed in a chair shape or a boat shape by a covalent bond.
  • the substituent is preferably an alkyl group having 1 to 4 carbon atoms.
  • dihydroxy compound represented by the general formula (4) examples include 1,2-cyclopentanediol, 1,3-cyclopentanediol, 1,2-cyclohexanediol, and 1,3-cyclohexane. Examples thereof include diol, 1,4-cyclohexanediol and 2-methyl-1,4-cyclohexanediol.
  • a dihydroxy compound represented by the general formula (5) can be used as a raw material monomer.
  • R 6 represents a substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms.
  • Examples of the dihydroxy compound represented by the general formula (5) include a plurality of compounds such as 2,3-norbornane dimethanol, 2,5-norbornane dimethanol, adamantane dimethanol, decalin dimethanol, and tricyclotetradecane dimethanol.
  • Examples thereof include compounds having an alicyclic structure and compounds containing a monocyclic cycloalkylene group such as 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol and 1,4-cyclohexanedimethanol.
  • a dihydroxy compound having a plurality of alicyclic structures When a dihydroxy compound having a plurality of alicyclic structures is used, the heat resistance may be improved, but the toughness may be deteriorated, or the viscosity at the time of melting may be increased and the fluidity may be deteriorated. Therefore, from the viewpoint of improving the toughness and fluidity at the time of melting, a dihydroxy compound having a monocyclic structure, particularly a dihydroxy compound containing a 5-membered ring structure or a 6-membered ring structure is preferable.
  • the heat resistance of the obtained polycarbonate resin can be improved by being a 5-membered ring structure or a 6-membered ring structure.
  • the six-membered ring structure may be fixed in a chair shape or a boat shape by a covalent bond.
  • the substituent is preferably an alkyl group having 1 to 4 carbon atoms.
  • Specific examples include 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol and 1,4-cyclohexanedimethanol.
  • cyclohexanedimethanols are particularly preferable, and 1,4-cyclohexanedimethanol and 1,3-cyclohexane are preferable from the viewpoint of easy availability and handling. Dimethanol or 1,2-cyclohexanedimethanol is preferred. Of these, 1,4-cyclohexanedimethanol is preferred from the viewpoint of improving polymerization reactivity and toughness.
  • a dihydroxy compound represented by the general formula (6) can be used as a raw material monomer.
  • R 11 represents a chain alkylene group having 2 to 20 carbon atoms.
  • the dihydroxy compound represented by the general formula (6) may be linear or branched, but is preferably a linear alkylene diol. Specific examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol.
  • 1,3-propylene glycol, 1,4-butanediol, and 1,6-hexanediol are preferable.
  • 1,6-hexanediol is most preferred because it volatilizes during polymerization or the effect of imparting toughness is small.
  • a bisphenol compound may be used as a raw material monomer.
  • the polycarbonate resin in the present invention includes a dihydroxy compound having a site represented by the general formula (3), a dihydroxy compound represented by the general formula (4), a dihydroxy compound represented by the general formula (5), One or more dihydroxy compounds selected from the group consisting of the dihydroxy compound represented by the general formula (6) and the bisphenol compound, the total of them being 25 mol% or more when the total dihydroxy compound is 100 mol% It is preferable that it is obtained by using, More preferably, it is 30 mol% or more, More preferably, it is 35 mol% or more. Moreover, it is preferable that it is 82 mol% or less, More preferably, it is 75 mol% or less.
  • dihydroxy compounds having a site represented by the general formula (3), dihydroxy compounds represented by the general formula (4), dihydroxy compounds represented by the general formula (5), and general formula (6)
  • the amount of one or more dihydroxy compounds selected from the group consisting of dihydroxy compounds and bisphenol compounds is too small, the toughness of the obtained polycarbonate resin is reduced, making pelletization or film formation difficult. There is a possibility. On the other hand, if the amount is too large, the obtained polycarbonate resin may not exhibit the desired optical performance.
  • the dihydroxy compound represented by the general formula (1) is 9,9-bis ( 4-Hydroxy-3-methylphenyl) fluorene and / or 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene are preferred.
  • the polycarbonate resin which copolymerized isosorbide and / or spiroglycol is preferable.
  • At least one dihydroxy compound selected from diethylene glycol, triethylene glycol, polyethylene glycol, 1,4-cyclohexanedimethanol and 1,6-hexanediol is used, and three or more monomers are used. It is preferable to use a polycarbonate resin obtained by copolymerizing.
  • diethylene glycol triethylene glycol
  • polyethylene glycol 1,4-cyclohexanedimethanol or 1,6-hexanediol
  • It is a polycarbonate resin obtained by copolymerizing at least one dihydroxy compound selected from the group of 30 mol% or less, more preferably 20 mol% or less.
  • the polycarbonate resin in the present invention can be obtained by interfacial polycondensation using the dihydroxy compound and phosgene.
  • the dihydroxy compound has a structure having no phenolic hydroxyl group, that is, the compound represented by the general formula (1), the compound having the site represented by the general formula (3) and / or the general formula.
  • the dihydroxy compound represented by (4), (5) or (6) is used in combination, the monohydroxy compound produced as a by-product by transesterifying the dihydroxy compound and the carbonic acid diester in the presence of a catalyst is removed from the system. It is preferable to obtain by a transesterification method in which the molecular weight is increased while removing.
  • the polycarbonate resin using the dihydroxy compound having the site represented by the general formula (3) or the dihydroxy compound represented by the general formula (4), (5), or (6) as a monomer component starts to decompose at a low temperature.
  • the viscosity is too high, and the pressure loss at the filter becomes large at the normal filtration area, causing damage to the filter or during filtration.
  • the resin was deteriorated by shearing heat generation.
  • a filter having a small pressure loss and low filtration accuracy (a large opening) had to be used.
  • the dihydroxy compound having the site represented by the general formula (3) or the dihydroxy compound represented by the general formula (4), (5) or (6) is used as a monomer component, a filter is used. Therefore, it is important to control the temperature of the resin during filtration, and the present invention is particularly useful.
  • Carbonated diester examples of the carbonic acid diester used in the present invention include those represented by the following general formula (11). These carbonic acid diesters may be used alone or in combination of two or more.
  • a 1 and A 2 are a substituted or unsubstituted aliphatic group having 1 to 18 carbon atoms or a substituted or unsubstituted aromatic group, and A 1 and A 2 may be the same or different.
  • a 1 and A 2 are preferably a substituted or unsubstituted aromatic hydrocarbon group, more preferably an unsubstituted aromatic hydrocarbon group.
  • substituent of the aliphatic hydrocarbon group include an ester group, an ether group, a carboxylic acid, an amide group, and a halogen.
  • substituent of the aromatic hydrocarbon group include alkyl groups such as a methyl group and an ethyl group.
  • Examples of the carbonic acid diester represented by the general formula (11) include substituted diphenyl carbonates such as diphenyl carbonate and ditolyl carbonate, dimethyl carbonate, diethyl carbonate, and di-t-butyl carbonate. Among these, diphenyl carbonate or substituted diphenyl carbonate is preferable, and diphenyl carbonate is particularly preferable.
  • Carbonic acid diesters may contain impurities such as chloride ions, which may hinder the polymerization reaction or worsen the hue of the resulting polycarbonate resin. It is preferable to use what was done.
  • a polycarbonate resin can be obtained by polycondensing a dihydroxy compound containing the dihydroxy compound of the present invention and a carbonic acid diester by a transesterification reaction.
  • the raw material dihydroxy compound and carbonic acid diester can be transesterified even if they are dropped independently into the reaction tank, but they can be mixed uniformly before the transesterification.
  • the mixing temperature is preferably 80 ° C. or higher, more preferably 90 ° C. or higher, and the upper limit is preferably 250 ° C. or lower, more preferably 200 ° C. or lower, still more preferably 150 ° C. or lower. Among these, 100 ° C. or higher and 130 ° C. or lower is preferable.
  • the mixing temperature is too low, the dissolution rate may be slow or the solubility may be insufficient, often causing problems such as solidification, and if the mixing temperature is too high, the dihydroxy compound may be thermally deteriorated. As a result, the hue of the polycarbonate resin obtained may be deteriorated.
  • the oxygen concentration in the operating environment in which the dihydroxy compound containing the dihydroxy compound of the present invention as a raw material and the carbonic acid diester are mixed is preferably 10 vol% or less, more preferably 0.0001 vol% to 10 vol%, It is preferably performed in an atmosphere of 0.0001 vol% to 5 vol%, particularly preferably 0.0001 vol% to 1 vol%, from the viewpoint of preventing hue deterioration.
  • the carbonic acid diester is preferably used in a molar ratio of 0.90 to 1.20, more preferably 0.95 to 1.20, based on all dihydroxy compounds including the dihydroxy compound of the present invention used in the reaction. 10, more preferably 0.97 to 1.03, particularly preferably 0.99 to 1.02.
  • the molar ratio When the molar ratio is decreased, the terminal hydroxyl group of the produced polycarbonate resin is increased, the thermal stability of the polymer is deteriorated, coloring is caused at the time of molding, the rate of the transesterification reaction is decreased, and the desired high molecular weight.
  • the body may not be obtained.
  • the rate of transesterification decreases, the production of polycarbonate having a desired molecular weight becomes difficult, the amount of residual carbonic diester in the polycarbonate resin increases, and during extrusion or molding In some cases, gas may be generated.
  • the decrease in the transesterification reaction rate may increase the thermal history during the polymerization reaction and may deteriorate the hue of the resulting polycarbonate resin.
  • the amount of residual carbonic diester in the obtained polycarbonate resin increases, which becomes a gas at the time of molding and causes molding defects. Bleed out from the product, which is not preferable.
  • the concentration of the carbonic acid diester remaining in the polycarbonate resin pellet or film obtained by the method of the present invention is preferably 200 ppm by weight or less, more preferably 100 ppm by weight or less, still more preferably 60 ppm by weight or less, and particularly 30 ppm by weight or less. preferable.
  • a transesterification catalyst (hereinafter simply referred to as “catalyst”). Or “polymerization catalyst”) can be present.
  • the transesterification catalyst may particularly affect the yellow index (YI) value representing the thermal stability or hue of the polycarbonate resin.
  • the transesterification catalyst used is not limited as long as it satisfies the thermal stability and hue of the polycarbonate resin.
  • the transesterification catalyst is not limited to Group 1 or Group 2 in the long-period periodic table (hereinafter, simply referred to as “transesterification catalyst”).
  • a basic compound such as a basic boron compound, a basic phosphorus compound, a basic ammonium compound, and an amine compound.
  • Group 1 metal compounds and / or Group 2 metal compounds are used. More preferably, it is a metal compound of a metal selected from the group consisting of a long-period group 2 metal and lithium.
  • the group 1 metal compound and / or group 2 metal compound is usually used in the form of a hydroxide or a salt such as a carbonate, carboxylate or phenol salt. From the standpoint of hue and polymerization activity, acetate is preferred from the viewpoint of easiness.
  • Group 1 metal compound examples include sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, lithium hydrogen carbonate, cesium hydrogen carbonate, sodium carbonate, Potassium carbonate, lithium carbonate, cesium carbonate, sodium acetate, potassium acetate, lithium acetate, cesium acetate, sodium stearate, potassium stearate, lithium stearate, cesium stearate, sodium borohydride, potassium borohydride, borohydride Lithium, cesium borohydride, sodium borohydride, potassium phenyl borohydride, lithium phenyl borohydride, cesium phenyl borohydride, sodium benzoate, potassium benzoate, lithium benzoate, cesium benzoate, 2 sodium hydrogen phosphate, 2 potassium hydrogen phosphate, 2 lithium hydrogen phosphate, 2 cesium hydrogen phosphate, 2 sodium phenyl phosphate, 2 potassium phenyl phosphate, 2 lithium phenyl
  • Group 2 metal compound examples include calcium hydroxide, barium hydroxide, magnesium hydroxide, strontium hydroxide, calcium hydrogen carbonate, barium hydrogen carbonate, magnesium hydrogen carbonate, strontium hydrogen carbonate, and carbonic acid.
  • Examples thereof include calcium, barium carbonate, magnesium carbonate, strontium carbonate, calcium acetate, barium acetate, magnesium acetate, strontium acetate, calcium stearate, barium stearate, magnesium stearate, and strontium stearate.
  • a magnesium compound, a calcium compound or a barium compound is preferable, and at least one metal compound selected from the group consisting of a magnesium compound and a calcium compound is more preferable from the viewpoint of polymerization activity and the hue of the obtained polycarbonate resin, most preferably magnesium.
  • a basic compound such as a basic boron compound, a basic phosphorus compound, a basic ammonium compound, or an amine compound can be used in combination with the Group 1 metal compound and / or the Group 2 metal compound.
  • a basic compound such as a basic boron compound, a basic phosphorus compound, a basic ammonium compound, or an amine compound
  • Examples of the basic boron compound that can be used in combination include tetramethylboron, tetraethylboron, tetrapropylboron, tetrabutylboron, trimethylethylboron, trimethylbenzylboron, trimethylphenylboron, triethylmethylboron, triethylbenzylboron, and triethyl.
  • Sodium salt, potassium salt, lithium salt, calcium salt, barium salt, magnesium salt and strontium such as phenylboron, tributylbenzylboron, tributylphenylboron, tetraphenylboron, benzyltriphenylboron, methyltriphenylboron and butyltriphenylboron Examples include salts.
  • Examples of the basic phosphorus compound that can be used in combination include triethylphosphine, tri-n-propylphosphine, triisopropylphosphine, tri-n-butylphosphine, triphenylphosphine, tributylphosphine, and quaternary phosphonium salts. .
  • Examples of the basic ammonium compound that can be used in combination include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylbenzylammonium hydroxide, and trimethyl.
  • Phenylammonium hydroxide triethylmethylammonium hydroxide, triethylbenzylammonium hydroxide, triethylphenylammonium hydroxide, tributylbenzylammonium hydroxide, tributylphenylammonium hydroxide, tetraphenylammonium hydroxide, benzyltriphenylammonium hydroxide, methyltrimethyl Phenyl Nmo onium hydroxide and butyltriphenyl ammonium hydroxide, and the like.
  • Examples of the amine compounds that can be used in combination include 4-aminopyridine, 2-aminopyridine, N, N-dimethyl-4-aminopyridine, 4-diethylaminopyridine, 2-hydroxypyridine, 2-methoxypyridine, 4 -Methoxypyridine, 2-dimethylaminoimidazole, 2-methoxyimidazole, imidazole, 2-mercaptoimidazole, 2-methylimidazole, aminoquinoline and the like.
  • the amount of the catalyst used is preferably 0.1 ⁇ mol to 300 ⁇ mol, more preferably 0.5 ⁇ mol to 100 ⁇ mol, still more preferably 0.5 ⁇ mol to 50 ⁇ mol, and particularly preferably 0.5 ⁇ mol to 20 ⁇ mol per 1 mol of all dihydroxy compounds used. Most preferably, it is 1 ⁇ mol to 15 ⁇ mol.
  • the amount of metal is preferably usually 0.1 ⁇ mol or more per 1 mol of all dihydroxy compounds used, Preferably it is 0.5 micromol or more, More preferably, it is 0.7 micromol or more.
  • the upper limit is usually preferably 50 ⁇ mol, more preferably 30 ⁇ mol, still more preferably 20 ⁇ mol, particularly preferably 15 ⁇ mol, and particularly preferably 10 ⁇ mol.
  • the amount of the catalyst used is too small, the polycondensation reaction will not proceed easily, and a polycarbonate resin having a desired molecular weight may not be obtained. On the other hand, if the amount of the catalyst used is too large, the hue of the polycarbonate resin obtained by an undesired side reaction may be deteriorated or foreign matter may be caused.
  • the hue may be adversely affected, and the metal may be mixed not only from the catalyst used but also from the raw material or the reactor. Therefore, the total amount of these compounds in the polycarbonate resin is usually preferably 1 ppm by weight or less, more preferably 0.8 ppm by weight or less, and even more preferably 0.7 ppm by weight or less as the amount of metal. .
  • the amount of metal in the polycarbonate resin can be measured using a method such as atomic emission, atomic absorption, or Inductively Coupled Plasma (ICP) after recovering the metal in the polycarbonate resin by a method such as wet ashing. I can do it.
  • a method such as atomic emission, atomic absorption, or Inductively Coupled Plasma (ICP) after recovering the metal in the polycarbonate resin by a method such as wet ashing. I can do it.
  • ICP Inductively Coupled Plasma
  • the catalyst may be added directly to the reactor, or may be added to a raw material adjusting tank in which a dihydroxy compound and a carbonic acid diester are mixed in advance, and then present in the reactor. You may add in the piping which supplies a raw material.
  • the method for obtaining a polycarbonate resin by polycondensation of the dihydroxy compound and the carbonic acid diester may be carried out in multiple stages using a plurality of reactors in the presence of the catalyst.
  • the reaction format may be any of batch, continuous, or a combination of batch and continuous.
  • the continuous type is preferable from the viewpoint of stabilizing the quality.
  • the jacket temperature and internal temperature at each molecular weight stage and the pressure in the reaction system are appropriately selected. For example, if either the temperature or the pressure is changed too quickly before the polymerization reaction reaches a predetermined value, unreacted monomers will be distilled, causing the molar ratio of the dihydroxy compound and the carbonic acid diester to change, resulting in a decrease in the polymerization rate. Or a polymer having a predetermined molecular weight or terminal group cannot be obtained, and as a result, the object of the present invention may not be achieved.
  • a reflux condenser for the polymerization reactor in order to suppress the amount of monomer to be distilled off, and the effect is particularly great in a reactor in the early stage of polymerization where there are many unreacted monomer components.
  • the temperature of the refrigerant introduced into the reflux condenser can be appropriately selected according to the monomer used.
  • the temperature of the refrigerant introduced into the reflux condenser is preferably 45 to 180 ° C. at the inlet of the reflux condenser, more preferably 80 to 150 ° C., and particularly preferably 100 to 140 ° C.
  • the temperature of the refrigerant is too high, the amount of reflux is reduced and the effect is reduced. On the other hand, if the temperature is too low, the distillation efficiency of the monohydroxy compound that should be distilled off tends to be reduced.
  • the refrigerant hot water, steam, heat medium oil or the like is used, and steam or heat medium oil is preferable.
  • the catalyst is used for polymerization in multiple stages using a plurality of reactors.
  • the initial stage of the polymerization reaction since a large amount of monomer is contained in the reaction solution, it is preferable to suppress the volatilization of the monomer while maintaining a necessary polymerization rate.
  • the number of reactors used in the polymerization in the present invention is preferably at least two, more preferably three or more, and still more preferably 3 to 5 from the viewpoint of production efficiency. And particularly preferably four.
  • reaction conditions can be set in each reactor, and the temperature and pressure are continuously changed in each reactor. May be.
  • the polymerization catalyst can be added to the raw material preparation tank or raw material storage tank, or can be added directly to the polymerization tank. From the viewpoint of supply stability and polymerization control, the polymerization catalyst is added to the polymerization tank.
  • the catalyst supply pipe is preferably installed in the middle of the raw material pipe before being supplied, and more preferably supplied as an aqueous solution.
  • the productivity is lowered or the thermal history of the product is increased. If the temperature is too high, not only the monomer is volatilized but also decomposition or coloring of the polycarbonate resin may be promoted. .
  • the maximum internal temperature of the polymerization reactor is preferably 140 to 270 ° C., more preferably 170 to 240 ° C., still more preferably 180 to 210 ° C., and preferably 110 to 1 kPa, More preferably 70 to 5 kPa, still more preferably 30 to 10 kPa (absolute pressure), preferably 0.1 to 10 hours, more preferably 0.5 to 3 hours. It is carried out while distilling off.
  • the reaction in the first stage in the present invention refers to a reaction in a reactor at the uppermost stream of the process in a reactor in which 5% by weight or more of a monohydroxy compound distilled through the entire polymerization reaction is distilled. .
  • the pressure in the reaction system is gradually reduced from the pressure in the first stage, and the monohydroxy compound that is subsequently generated is removed from the reaction system.
  • it is 2 kPa or less, more preferably 1 kPa or less, preferably 210 ° C. or more, more preferably 220 ° C. or more, preferably 270 ° C. or less, more preferably 250 ° C. or less, still more preferably 240 ° C. or less, preferably 0 1 to 10 hours, more preferably 1 to 6 hours, particularly preferably 0.5 to 3 hours.
  • the maximum internal temperature in all reaction steps is preferably 260 ° C. or less, more preferably 250 ° C. or less, Especially preferably, it is 245 degrees C or less, Especially it is preferable that it is 240 degrees C or less.
  • the internal temperature indicates the temperature of the process liquid, and is usually measured by a thermometer using a thermocouple or the like provided in the reactor.
  • a thermometer using a thermocouple or the like provided in the reactor.
  • the yellow index (YI) value representing the hue tends to increase when the polymerization temperature is increased and the polymerization time is excessively prolonged.
  • the monohydroxy compound distilled off as a by-product in the reaction is preferably used as a raw material for fuel or chemicals from the viewpoint of effective utilization of resources.
  • the polycarbonate resin of the present invention is filtered using a filter after performing the above-mentioned polycondensation reaction.
  • the polycarbonate resin obtained by polycondensation is introduced into an extruder and then discharged from the extruder in order to remove low molecular weight components contained in the polycarbonate resin or to add and knead a heat stabilizer or the like. Is preferably filtered using a filter.
  • Examples of the method for pelletizing the polycarbonate resin obtained by polycondensation as described above by using a filter include the following methods.
  • a method of extracting polycarbonate resin in a molten state from a final polymerization reactor using a gear pump or a screw and filtering with the filter Polycarbonate resin is supplied from a final polymerization reactor to a uniaxial or biaxial extruder in a molten state, melt extruded, filtered through the filter, cooled and solidified in the form of a strand, and pelletized with a rotary cutter or the like.
  • Polycarbonate resin is supplied to a single-screw or twin-screw extruder in a molten state without being solidified from the final polymerization reactor, melt-extruded, then cooled and solidified in the form of a strand, pelletized, and the pellet is extruded again.
  • the polycarbonate resin is extracted from the final polymerization reactor in a molten state, cooled and solidified in the form of strands without passing through an extruder, and once pelletized, then the pellets are supplied to a single or twin screw extruder and melted.
  • the resin in order to minimize heat history and suppress thermal degradation such as deterioration of hue or molecular weight, the resin is put into a single or twin screw extruder in a molten state without solidifying from the final polymerization reactor.
  • a method of feeding, melting and extruding, feeding to the filter using a gear pump, filtering, discharging from a die, cooling and solidifying in the form of a strand, and pelletizing with a rotary cutter or the like is preferable.
  • a DPC melt prepared at a predetermined temperature in a nitrogen gas atmosphere is continuously supplied from the raw material supply port 1a to the raw material mixing tank 2a.
  • the ISB melt and the 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene powder weighed under a nitrogen gas atmosphere are fed from the raw material supply ports 1b and 1c, respectively, into the raw material mixing tank. 2a is continuously supplied. And these are mixed by the stirring blade 3a in the raw material mixing tank 2a, and a uniform raw material mixing melt is obtained.
  • the obtained raw material mixture melt is continuously supplied to the first vertical stirring reaction tank 6a via the raw material supply pump 4a and the raw material filtration filter 5a. Further, the raw material catalyst is continuously supplied as an aqueous solution from the catalyst supply port 1d in the middle of the raw material mixed melt transfer pipe.
  • a first vertical stirring reaction tank 6a, a second vertical stirring reaction tank 6b, a third vertical stirring reaction tank 6c, and a fourth horizontal stirring reaction tank 6d are provided in series. It is done.
  • the liquid level is kept constant, the polycondensation reaction is continuously performed, and the polymerization reaction liquid discharged from the bottom of the first vertical stirring reaction tank 6a is transferred to the second vertical stirring reaction tank 6b.
  • the third vertical stirring reaction tank 6c and the fourth horizontal stirring reaction tank 6d are sequentially and continuously supplied, and the polycondensation reaction proceeds.
  • the reaction conditions in each reactor are preferably set so as to become high temperature, high vacuum, and low stirring speed as the polycondensation reaction proceeds.
  • Max blend blades 7a, 7b and 7c are provided in the first vertical stirring reaction tank 6a, the second vertical stirring reaction tank 6b and the third vertical stirring reaction tank 6c, respectively.
  • the fourth horizontal stirring reaction tank 6d is provided with a biaxial glasses-type stirring blade 7d. Since the reaction liquid to be transferred becomes highly viscous after the third vertical stirring reaction tank 6c, a gear pump 4b is provided.
  • the amount of supplied heat may be particularly large, so that the internal heat exchangers 8a and 8b are respectively provided so that the heat medium temperature does not become excessively high. Is provided.
  • distilling tubes 11a, 11b, 11c, and 11d for discharging by-products generated by the polycondensation reaction are attached to these four reactors, respectively.
  • reflux condensers 9a and 9b and reflux pipes 10a and 10b are provided in order to return a part of the distillate to the reaction system.
  • the reflux ratio can be controlled by appropriately adjusting the pressure of the reactor and the heat medium temperature of the reflux condenser.
  • the distillation pipes 11a, 11b, 11c, and 11d are connected to condensers 12a, 12b, 12c, and 12d, respectively, and each reactor is in a predetermined depressurized state by a decompression device 13a, 13b, 13c, and 13d. To be kept.
  • by-products such as phenol (monohydroxy compound) are continuously liquefied and recovered from the condensers 12a, 12b, 12c, and 12d attached to the respective reactors.
  • a cold trap (not shown) is provided downstream of the condensers 12c and 12d attached to the third vertical stirring reaction tank 6c and the fourth horizontal stirring reactor 6d, respectively, so that by-products are continuously present. Solidified and recovered.
  • the reaction liquid raised to a predetermined molecular weight is withdrawn from the fourth horizontal stirring reaction tank 6d, and the pipe connecting the extruder 15a by the gear pump 4c is a jacket-type double pipe in which the heat medium flows to the outside. preferable.
  • the temperature of the heating medium can be appropriately determined in consideration of the viscosity of the polycarbonate resin, the pressure loss of the piping, and the thermal stability of the polycarbonate resin. However, if the temperature is too high, the polycarbonate resin may be deteriorated or gas may be generated. Usually, it is preferably 300 ° C. or lower, more preferably 280 ° C. or lower, further preferably 260 ° C. or lower, particularly preferably 250 ° C. or lower, and particularly preferably 240 ° C. or lower.
  • the temperature of the heating medium is too low, the pressure loss in the piping becomes large and the piping diameter needs to be increased, but at the same time, the residence time in the piping of the polycarbonate resin becomes long and may cause thermal deterioration. Therefore, it is usually preferably 150 ° C. or higher, more preferably 180 ° C. or higher, further preferably 200 ° C. or higher, particularly preferably 210 ° C. or higher, and particularly preferably 220 ° C. or higher.
  • the extruder 15a is equipped with a vacuum vent to remove residual low molecular components in the polycarbonate. Further, an antioxidant, a light stabilizer, a colorant, a release agent, or the like is added as necessary.
  • Resin is supplied to the filter 15b by the gear pump 4d from the extruder 15a, and foreign matter is filtered.
  • the resin that has passed through the filter 15b is extracted in the form of a strand from the die 15c, and after cooling and solidifying the resin with water in the strand cooling tank 16a, the resin is pelletized by the strand cutter 16b.
  • the polycarbonate resin pellets thus obtained are pneumatically transported by the air blower 16c and sent to the product hopper 16d. A predetermined amount of product is packed in the product bag 16f by the measuring instrument 16e.
  • gear pumps 4c and 4d there are no restrictions on the types of gear pumps 4c and 4d, but there is a circuit that leads a part of the polymer from the discharge side of the gear pump to the ground through the valve, applies a certain pressure to the shaft seal, and returns it to the suction port.
  • a self-circulating seal type gear pump that does not use a gland packing at the seal portion is preferable from the viewpoint of reducing foreign matter.
  • the form of the extruder is not limited, but a uniaxial or biaxial extruder is used. Among them, a twin screw extruder is preferable for improving the devolatilization performance described later or for uniform kneading of the additive. In this case, the rotation direction of the shaft may be different or the same, but the same direction is preferable from the viewpoint of kneading performance.
  • Use of an extruder can stabilize the supply of polycarbonate resin to the filter.
  • vent ports may be one or plural, but preferably two or more.
  • additives such as a thermal stabilizer, a release agent, or a colorant, which will be described later, can be kneaded using the extruder.
  • the rotational speed of a shaft (hereinafter sometimes referred to as a screw) provided in the extruder is preferably 300 rpm or less, more preferably 250 rpm or less, More preferably, it is 200 rpm or less.
  • a screw By setting the number of rotations of the screw to 300 rpm or less, it is possible to suppress an increase in shear heat generation of the polycarbonate resin, and to prevent a deterioration in hue or a decrease in molecular weight.
  • the number of rotations of the screw is too small, not only may the devolatilization performance deteriorate, or the additive kneading performance deteriorates, but the throughput per unit time decreases, resulting in deterioration of productivity. Therefore, it is preferably 50 rpm or more, more preferably 70 rpm or more.
  • the peripheral speed of the screw is appropriately determined by the screw diameter and the rotational speed of the extruder, but in order to suppress thermal deterioration such as coloring or molecular weight reduction due to heat generated by shearing of the polycarbonate resin, Usually, it is preferably 1.0 m / second or less, more preferably 0.6 m / second or less, and particularly preferably 0.4 m / second or less.
  • the peripheral speed becomes too small, venting up during vacuum devolatilization tends to occur, or devolatilization performance or additive dispersion performance tends to decrease. Therefore, it is usually preferably 0.05 m / second or more. More preferably, it is 0.1 m / second or more.
  • the screw of the extruder is composed of a plurality of elements (screw elements) in order to have various functions.
  • it consists of a full flight consisting mainly of spiral screws (flight) for the purpose of transporting the resin, a kneading disc for the purpose of resin kneading, or a seal ring for the purpose of resin sealing.
  • a reverse flight in which screws are arranged in the direction opposite to the direction of resin conveyance is also used.
  • a double-row deep groove capable of taking a large amount of processing with respect to the screw diameter of the extruder and suppressing shearing heat generated by screw rotation. Type is preferred.
  • the configuration of these screw elements is not limited, but it is preferable to have a kneading disk.
  • the total length of the kneading disk is 20% of the total length of the screw. % Or less, more preferably 15% or less, and most preferably 10% or less. If the total length of the kneading disk is too long, local heat generation due to the shearing of the resin increases, and the problem of deterioration of the hue or molecular weight of the polycarbonate resin tends to occur.
  • the total length of the kneading disk is too short, the performance during devolatilization or kneading of the additive may be deteriorated. It is preferably 3% or more of the length, and more preferably 5% or more.
  • the kneading disk includes a forward feed type, an orthogonal type, and a reverse feed type with respect to the resin transport direction, and can be appropriately selected according to the viscosity of the resin used or the required performance.
  • the material of the screw element it is preferable to increase the surface nickel content or the like to keep the iron content low, or to treat the surface hardness with TiN or CrN.
  • the lower limit is preferably 12000, more preferably 15000, still more preferably 20000, and particularly preferably 25000.
  • the upper limit is preferably 60000, More preferably, it is 50000, still more preferably 40000, and particularly preferably 35000.
  • the temperature of the resin when the polycarbonate resin is supplied in the molten state to the extruder is preferably 200 ° C. or higher, and particularly preferably 210 ° C. or higher, particularly 220 ° C. or higher. Further, the upper limit is preferably 250 ° C. or lower, more preferably 245 ° C. or lower, particularly 240 ° C. or lower.
  • the melt viscosity of the polycarbonate resin becomes too high and the supply becomes unstable, and the load on the drive motor of the extruder becomes excessive.
  • the shear heat generation in the extruder becomes large and the polycarbonate resin is deteriorated.
  • the temperature is too high, the polycarbonate resin is likely to be deteriorated, which tends to cause a deterioration in hue, a decrease in molecular weight, or a decrease in mechanical strength associated therewith.
  • the temperature of the polycarbonate resin supplied to the extruder is controlled by a method such as controlling the internal temperature of the final polymerization reactor, controlling the temperature of the piping supplying the polycarbonate resin to the extruder, or installing a heat exchanger. can do.
  • the temperature of the polycarbonate resin discharged from the extruder is usually preferably less than 300 ° C, more preferably less than 280 ° C, still more preferably less than 270 ° C, particularly preferably 260 ° C. Is less than.
  • the temperature of the polycarbonate resin discharged from the extruder becomes too high, the polycarbonate resin tends to be deteriorated, which tends to cause a deterioration in hue or a decrease in molecular weight, and a decrease in mechanical strength associated therewith.
  • the temperature of the polycarbonate resin discharged from the extruder becomes too low, the melt viscosity of the polycarbonate resin is high, the load on the extruder increases, screw rotation becomes unstable, and the motor is overloaded. Therefore, it is preferably 220 ° C. or higher, more preferably 230 ° C. or higher, and particularly preferably 240 ° C. or higher.
  • the melt viscosity will decrease, and the shearing heat generation will tend to be suppressed accordingly.However, if the temperature of the polycarbonate resin itself is high, the deterioration tends to occur, the hue deteriorates or the molecular weight decreases, or it accompanies it. Since there is a tendency to cause a decrease in mechanical strength, it is not easy to perform extrusion by preventing deterioration of a polycarbonate resin having high viscosity that is inferior in thermal stability.
  • the temperature of the polycarbonate resin discharged from the extruder is usually controlled by the temperature of the polycarbonate resin supplied or the temperature of the heater attached to the barrel, but the amount of polycarbonate resin supplied to the extruder or the screw of the extruder Since this may vary depending on the number of rotations, it is preferable to control these conditions together.
  • filter In the present invention, filtration is performed with a filter in order to remove foreign matters such as burns or gels in the polycarbonate resin obtained by polycondensation. Among them, it is possible to remove residual monomers or by-product phenol by decompression devolatilization, and to extrude polycarbonate resin with an extruder and filter with a filter in order to mix additives such as heat stabilizer or mold release agent. preferable.
  • Examples of the form of the filter include known ones such as a candle type, a pleat type, and a leaf disk type.
  • a leaf disk type that can provide a large filtration area with respect to the storage container of the filter is preferable, and a plurality of combinations are preferably used so that a large filtration area can be obtained.
  • the leaf disk type filter is configured by combining a holding member (also referred to as a retainer) and a filtering member (hereinafter also referred to as media), and storing these filters (in some cases, a plurality or plural). It is used in the form of a unit (sometimes called a filter unit) stored in a container.
  • a type in which a plurality of aperture media are overlapped so that the differential pressure (pressure loss) of the filter is small and the apertures become finer in order from the resin intrusion direction is preferable.
  • a type obtained by sintering metal powder it is also possible to use a type obtained by sintering metal powder.
  • the aperture of the filter is 50 ⁇ m or less, preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, as 99% filtration accuracy.
  • the thickness is preferably 15 ⁇ m or less.
  • the filtration accuracy of 99% is preferably 1 ⁇ m or more.
  • the aperture defined as 99% filtration accuracy is the value of ⁇ when the ⁇ value represented by the following formula (12) determined in accordance with ISO 16889 (2008) is 100.
  • (number of particles on the primary side larger than ⁇ ⁇ m) / (number of particles on the secondary side larger than ⁇ ⁇ m) (12) (Here, the primary side is before filtration with a filter, and the secondary side is after filtration.)
  • the material of the filter media is not limited as long as it has the strength and heat resistance necessary for resin filtration, but stainless steel such as SUS316 or SUS316L with a low iron content is particularly preferable.
  • a nonwoven fabric type can be used in addition to a regular weaving part of the foreign matter such as plain weave, twill weave, plain tatami mat or twill mat weave.
  • a non-woven fabric type having a high gel-capturing ability particularly a type in which steel wires constituting the non-woven fabric are sintered and fixed is preferable.
  • the filter contains an iron component
  • the resin tends to deteriorate during filtration at a high temperature exceeding 200 ° C. Therefore, as described above, in the case of stainless steel, the iron content is small. In addition, it is preferable to passivate it before use.
  • the passivation treatment for example, a method in which the filter is immersed in an acid such as nitric acid or an acid is passed through the filter to form a passivated surface, and roasting is performed in the presence of water vapor or oxygen.
  • the method of (heating) processing, the method of using these together, etc. are mentioned. Among them, it is preferable to perform both nitric acid treatment and roasting.
  • the temperature when the filter is roasted is preferably 350 ° C. to 500 ° C., more preferably 350 ° C. to 450 ° C., and the roasting time is usually preferably 3 hours to 200 hours, More preferably, it is 5 hours to 100 hours.
  • the temperature of roasting is too low or the time is too short, the formation of passivity is insufficient, and the polycarbonate resin tends to deteriorate during filtration.
  • the temperature of roasting is too high or the time is too long, the filter media may be severely damaged and the required filtration accuracy may not be achieved.
  • the concentration of nitric acid when the filter is treated with nitric acid is usually preferably 5 to 50% by weight, more preferably 10 to 30% by weight, and the temperature during the treatment is usually 5 ° C. It is preferably from -100 ° C, more preferably from 50 ° C to 90 ° C, and the treatment time is usually preferably from 5 minutes to 120 minutes, more preferably from 10 minutes to 60 minutes.
  • the concentration of nitric acid is too low, the processing temperature is too low, or the processing time is too short, the formation of passives will be insufficient, the concentration of nitric acid will be too high, the processing temperature will be too high, or the processing time will be If it is too long, the filter media will be severely damaged and the required filtration accuracy may not be achieved.
  • the filter is stored in a containment vessel because it facilitates filtration under pressure while securing a necessary filtration area.
  • the material of the storage container is not limited as long as it has strength and heat resistance that can withstand resin filtration, but is preferably a stainless steel such as SUS316 or SUS316L with a low iron content. If the iron content is large, the polycarbonate resin may be deteriorated as described above.
  • the storage container of the filter may be arranged such that the supply port and the discharge port of polycarbonate resin are arranged substantially horizontally, arranged substantially vertically, or arranged obliquely.
  • the supply port of the polycarbonate resin is disposed at the lower part of the filter storage container and the discharge port is disposed at the upper part.
  • the differential pressure of the filter may increase and the filter may be damaged. If it is too large, the polycarbonate resin will be deteriorated during filtration, so it is preferably 1 minute to 20 minutes, more preferably 2 minutes to 10 minutes, and more preferably 3 to 8 minutes.
  • the linear velocity of the molten resin on the filter surface is preferably 0.01 to 0.5 m / h.
  • the linear velocity of the molten resin on the filter surface can be determined by dividing the processing volume of polycarbonate resin per hour by the filtration area of the filter. If the linear velocity is excessively low, the residence time during filtration may be prolonged, leading to deterioration of the polycarbonate resin, which may cause coloring or foreign matter generation.
  • the linear velocity is more preferably 0.03 to 0.3 m / h, particularly preferably. 0.05 to 0.15 m / h.
  • the temperature of the polycarbonate resin supplied to the filter is usually preferably less than 300 ° C, more preferably less than 280 ° C, further preferably less than 270 ° C, and particularly preferably 265 ° C. Less than 260.degree.
  • the temperature of the polycarbonate resin is preferably 220 ° C. or higher, more preferably 230 ° C. or higher, particularly preferably 240 ° C. or higher.
  • the temperature of the polycarbonate resin after filtration is 200 ° C. or higher, preferably 220 ° C. or higher, more preferably 230 ° C. or higher. If the temperature of the polycarbonate resin after filtration using the filter is too low, the melt viscosity becomes high and the extruded strands are not stable and tend to be difficult to be pelletized with a rotary cutter or the like. There is.
  • the temperature of the polycarbonate resin after filtration is less than 280 ° C, preferably less than 270 ° C, more preferably less than 265 ° C, and still more preferably less than 260 ° C. If the temperature of the polycarbonate resin after filtration using the filter is too high, the polycarbonate resin is likely to be thermally deteriorated, which tends to cause a deterioration in hue, a molecular weight, or a mechanical strength associated therewith.
  • Examples of the resin temperature after the filtration include a method in which the resin discharged from the filter is taken out and directly measured, and a method in which a sensor is installed inside the pipe of the filter outlet channel and the like.
  • the temperature of the discharged resin may be the resin temperature after filtration according to the present invention.
  • a sensor is installed inside the pipe of the filter outlet channel, and the temperature of the resin discharged from a die installed near the filter outlet is measured. Both methods can also be implemented.
  • the filter unit is usually provided with a heater composed of a plurality of blocks on the outside thereof for temperature control, but if the set temperature is too high, the polycarbonate resin may be deteriorated. It is set to 280 ° C. or lower, more preferably 260 ° C. or lower, particularly preferably 250 ° C. or lower.
  • the melt viscosity becomes high and it is difficult to filter with a filter. Therefore, it is usually preferably 150 ° C. or higher, more preferably 180 ° C. or higher, particularly preferably 200 ° C. or higher.
  • a pipe for guiding the polycarbonate resin discharged from the filter unit to the die is usually provided with a heater outside thereof, but since the polycarbonate resin may be deteriorated if its set temperature is too high, it is usually preferable. It is set to 280 ° C. or lower, more preferably 260 ° C. or lower, particularly preferably 250 ° C. or lower.
  • the melt viscosity becomes high and the pressure loss in the piping increases, so that it is usually preferably 150 ° C. or higher, more preferably 180 ° C. or higher, and particularly preferably 200 ° C. or higher.
  • the residence time of the polycarbonate resin from the outlet of the filter unit to the die is long, the polycarbonate resin may be deteriorated. Therefore, it is usually preferably 1 to 30 minutes, more preferably 3 to 20 minutes.
  • the temperature of the polycarbonate resin discharged from the die through filtration with the filter is preferably 200 ° C. or higher, more preferably 220 ° C. or higher, further preferably 230 ° C. or higher,
  • the upper limit is preferably less than 280 ° C, more preferably less than 270 ° C, even more preferably less than 265 ° C, and particularly preferably less than 260 ° C.
  • the melt viscosity becomes high and the extruded strands are not stable and may be difficult to pelletize with a rotary cutter or the like There is sex.
  • the temperature is too high, thermal degradation of the polycarbonate resin is likely to occur, which may lead to a deterioration in hue, a decrease in molecular weight, or a decrease in mechanical strength associated therewith.
  • the temperature is usually preferably 280 ° C. or less, more preferably 260 ° C. or less, particularly preferably. Set to 250 ° C or lower.
  • the melt viscosity becomes high and the pressure loss in the piping increases, so that it is usually preferably 150 ° C. or higher, more preferably 180 ° C. or higher, and particularly preferably 200 ° C. or higher.
  • the processing amount of the polycarbonate resin in the extruder, the rotational speed or peripheral speed of the screw, or the configuration of the element or the like can be selected as described above. Become important.
  • the difference between the temperature of the polycarbonate resin before being filtered by the filter and the temperature of the polycarbonate resin after the filtration is preferably within 50 ° C, more preferably within 30 ° C, most preferably Preferably it is within 10 degreeC.
  • the reduced viscosity ( ⁇ sp / c) of the polycarbonate resin obtained by polycondensation by the transesterification reaction before being filtered through the filter is filtered using the filter A and the die is obtained.
  • the reduced viscosity ( ⁇ sp / c) of the polycarbonate resin pellets obtained by discharging in the form of strands and cooling and using a cutter after cooling is B, it is preferable to satisfy the following formula (2). 0.8 ⁇ B / A ⁇ 1.1 (2)
  • B / A By setting B / A to more than 0.8, it is possible to suppress the generation of a coloring component or a coloring precursor that is considered to be generated by a side reaction, which is preferable.
  • B / A ⁇ 1.0 when the reduced viscosity rises in the polymer filter, the generation of foreign matters such as gel or burnt rises, and therefore it is more preferable that B / A ⁇ 1.0. A method for measuring the reduced viscosity will be described later.
  • B / a it is possible to suppress the generation of a coloring component or a coloring precursor that is considered to be generated by a side reaction, which is preferable.
  • B / a ⁇ 1.0 it is more preferable that B / a ⁇ 1.0.
  • the temperature of the polycarbonate resin in the final reactor In order to make the change in the reduced viscosity in the polymer filter or the extruder within the above range, the temperature of the polycarbonate resin in the final reactor, the temperature of the polycarbonate resin entering the polymer filter, the temperature of the polycarbonate resin discharged from the polymer filter, Selection of throughput per unit time or opening of polymer filter, temperature control or residence time from polymer filter to die, when using an extruder, temperature of polycarbonate resin supplied to the extruder, discharge from the extruder It is important to select the temperature of the polycarbonate resin to be used, the devolatilization pressure, the presence or absence of water injection, the amount of water injection, the rotation speed or peripheral speed of the screw, or the element configuration.
  • gear pump between the extruder and the filter in order to stabilize the supply amount of the polycarbonate resin to the filter.
  • a gear pump there is no restriction on the type of gear pump, but in particular, a part of polymer from the discharge side of the gear pump is guided to the gland part through the valve, a certain pressure is applied to the shaft seal part, and there is a circuit to return it to the suction port, and the seal A self-circulation type in which no gland packing is used for the part is preferable from the viewpoint of reducing foreign matter.
  • class 7 as defined in JIS B 9920 (2002), more preferably, in order to prevent foreign matter from being mixed from the outside air. This is done in a clean room with higher cleanliness than class 6.
  • the polycarbonate resin filtered by the filter is cooled and solidified, and pelletized by a rotary cutter or the like, and it is preferable to use a cooling method such as air cooling or water cooling when pelletizing.
  • the air used for air cooling is preferably air from which foreign matter in the air has been removed in advance with a hepa filter or the like to prevent reattachment of foreign matter in the air.
  • water cooling it is preferable to use water from which metal in water has been removed with an ion exchange resin or the like, and further, foreign matter in water has been removed with the filter.
  • the opening of the filter to be used is preferably 10 to 0.45 ⁇ m in terms of filtration accuracy with 99.9% removal.
  • a heat stabilizer a neutralizing agent, an ultraviolet absorber, a release agent, a colorant, an antistatic agent, a lubricant, a lubricant, a plasticizer, a phase, which are generally known in the extruder.
  • a solubilizer or a flame retardant may be added and kneaded.
  • a phosphite ester or a hindered phenol heat stabilizer is preferable because it can suppress a decrease in molecular weight or a deterioration in color tone during extrusion or filtration of the polycarbonate resin of the present invention.
  • phosphite-based heat stabilizer examples include triphenyl phosphite, tris (nonylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, and tridecyl phosphite.
  • trioctyl phosphite trioctadecyl phosphite, didecyl monophenyl phosphite, dioctyl monophenyl phosphite, diisopropyl monophenyl phosphite, monobutyl diphenyl phosphite, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythrityl diphosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite, bis (nonylpheny ) Pentaerythrityl diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythrityl diphosphite,
  • hindered phenol-based heat stabilizer examples include pentaerythrityl tetrakis (3-mercaptopropionate), pentaerythrityl tetrakis (3-laurylthiopropionate), glycerol-3-stearylthio.
  • Propionate triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5-di-tert -Butyl-4-hydroxyphenyl) propionate], pentaerythrityltetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert- Butyl-4-hydroxyphenyl) propionate, 1,3,5 Trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, N, N-hexamethylenebis (3,5-di-tert-butyl-4-hydroxy-hydro Cinnamide), 3,5-di-tert-butyl-4-hydroxy-benzylphosphonate-diethyl ester, tris (3,5-
  • pentaerythrityltetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] or octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) Propionate, particularly preferably pentaerythrityltetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate].
  • heat stabilizers may be used alone or in combination of two or more.
  • the blending amount of these heat stabilizers is preferably 0.0001 to 1 part by weight, more preferably 0.0005 to 0.5 part by weight, and 0.001 to 0.2 part, based on 100 parts by weight of the polycarbonate resin. Part by weight is more preferred.
  • the shape of the raw material filtration filter may be any type such as basket type, disk type, leaf disk type, tube type, flat cylindrical type, or pleated cylindrical type, among which compact and has a large filtration area.
  • a pleated type that can be taken is preferred.
  • the filter medium constituting the raw material filter may be any of metal wind, laminated metal mesh, metal nonwoven fabric, porous metal plate, etc., but from the viewpoint of filtration accuracy, a laminated metal mesh or metal nonwoven fabric is preferred, and metal A type in which a nonwoven fabric is sintered and fixed is preferable.
  • metal or resin ceramics can be used. From the viewpoint of heat resistance and color reduction, a metal filter having an iron content of 80% or less. Among them, stainless steel such as SUS304, SUS316, SUS316L, or SUS310S is preferable.
  • the filter eyes in the upstream unit.
  • C is preferably larger than D (C> D).
  • the opening of the raw material filtration filter is not particularly limited, but in at least one of the raw material filtration filters, the filtration accuracy of 99.9% is preferably 10 ⁇ m or less, and the filter unit constituting the raw material filtration filter includes In the case of a plurality of arrangements, it is preferably 8 ⁇ m or more, more preferably 10 ⁇ m or more on the most upstream side, and preferably 2 ⁇ m or less, more preferably 1 ⁇ m or less on the most downstream side.
  • the opening of the said raw material filtration filter said here is determined based on the above-mentioned ISO16889 (2008).
  • the temperature of the raw material fluid when the raw material is passed through the raw material filtration filter there is no restriction on the temperature of the raw material fluid when the raw material is passed through the raw material filtration filter, but if it is too low, the raw material is solidified, and if it is too high, there is a problem such as thermal decomposition. ⁇ 200 ° C., more preferably 100 ° C. to 150 ° C.
  • any of the raw materials to be used may be filtered, or all of the raw materials may be filtered.
  • the method is not limited, and the dihydroxy compound and the carbonic acid diester are not limited.
  • the raw material mixture may be filtered, or may be mixed after separately filtering.
  • the reaction liquid in the middle of a polycondensation reaction can also be filtered with the filter similar to the said raw material filtration filter.
  • the yellow index value of the polycarbonate resin pellet obtained by the method of the present invention is preferably 90 or less, more preferably 70 or less, particularly preferably 50 or less, and most preferably 40 or less. In order to lower the yellow index value, as described above, it is necessary to appropriately select the monomer preparation conditions, the polymerization reaction conditions, the filtration conditions, and the extrusion conditions or screw elements when using an extruder.
  • the molecular weight of the polycarbonate resin obtained in the method of the present invention can be represented by a reduced viscosity ( ⁇ sp / c), and the reduced viscosity is preferably 0.2 dL / g or more, more preferably 0.8. It is 25 dL / g or more, More preferably, it is 0.3 or more, It is preferable that it is 0.6 dL / g or less, More preferably, it is 0.5 dL / g or less, Most preferably, it is 0.45 dL / g or less.
  • the reduced viscosity of the polycarbonate resin is too low, the mechanical strength of the molded product may be small, and if the stretching operation is performed after forming into a film, there is a possibility that the stretching will be broken.
  • it is too large not only the fluidity at the time of molding tends to be lowered and the productivity or moldability tends to be lowered, but also there is a possibility that the deterioration is severe due to shearing heat generation during filtration or extrusion.
  • the reduced viscosity is precisely measured by using a Ubbelohde viscosity tube at a temperature of 20.0 ° C. ⁇ 0.1 ° C. by accurately measuring polycarbonate resin pellets, using methylene chloride as a solvent, and preparing precisely at 0.6 g / dL. To do.
  • the melt viscosity of the polycarbonate resin obtained by the method of the present invention at a shear rate of 91.2 sec ⁇ 1 measured at 240 ° C. is preferably 500 Pa ⁇ s or more, more preferably 1000 Pa ⁇ s or more, and particularly preferably 1500 Pa. S or more, and the upper limit thereof is preferably 5000 Pa ⁇ s or less, and preferably 4000 Pa ⁇ s or less.
  • melt viscosity is too low, the mechanical strength of the molded product tends to be inferior. If it is too high, as described above, shear heat generation in the filter or the extruder increases, and the deterioration during filtration or extrusion may become severe. There is. In addition, since the melt viscosity varies depending on the molecular structure in addition to the molecular weight, it is important to select these according to the required performance and control them within the above range.
  • the glass transition temperature of the polycarbonate resin obtained by the method of this invention it is 50 degreeC or more, More preferably, it is 110 degreeC or more, More preferably, it is 120 degreeC or more, Especially preferably, it is 130 degreeC or more. . If the glass transition temperature is too low, the heat resistance is inferior, and therefore the reliability of the optical member may be inferior.
  • the glass transition temperature is high, the polycarbonate resin may deteriorate due to shear heat generation during extrusion, or the melt viscosity when filtering with a filter becomes too high, which may cause deterioration of the polycarbonate resin.
  • the temperature is preferably less than 180 ° C, more preferably 150 ° C or less, further preferably 145 ° C or less, and particularly preferably 140 ° C or less.
  • the glass transition temperature can be measured with a differential scanning calorimeter (DSC), and the temperature at which the change in heat capacity appears at the lowest temperature (Tig) when measured at a heating rate of 20 ° C./min using about 10 mg of a sample. ) Is defined as the glass transition temperature in the present invention.
  • DSC differential scanning calorimeter
  • the polycarbonate resin of the present invention is produced using a substituted diphenyl carbonate such as diphenyl carbonate or ditolyl carbonate as the carbonic acid diester represented by the general formula (11), Alternatively, it is inevitable that aromatic monohydroxy compounds such as substituted phenols are by-produced and remain in the polycarbonate resin.
  • Aromatic monohydroxy compounds may cause gas generation during filtration or odor during molding. Therefore, using an extruder equipped with a vacuum vent, it is preferably less than 0.2% by weight, more preferably 0. It is preferable to make it less than 1% by weight, particularly less than 0.08% by weight. However, it is difficult to remove these compounds completely industrially, and the lower limit of the content of the aromatic monohydroxy compound is usually 0.0001% by weight.
  • aromatic monohydroxy compounds may naturally have a substituent depending on the raw material to be used, and may have, for example, an alkyl group having 5 or less carbon atoms.
  • diphenyl carbonate is used as the carbonic acid diester, the aromatic monohydroxy compound is phenol.
  • the polycarbonate resin obtained by the method of the present invention can be formed into a molded product by a generally known method such as an injection molding method, an extrusion molding method or a compression molding method.
  • the resin may be heat stabilizer, neutralizer, UV absorber, mold release agent, colorant, antistatic agent, lubricant, lubricant, plasticizer, compatibilizer or Additives such as flame retardants can also be mixed with a tumbler, super mixer, floater, V-type blender, nauter mixer, Banbury mixer or extruder.
  • flame retardants can also be mixed with a tumbler, super mixer, floater, V-type blender, nauter mixer, Banbury mixer or extruder.
  • it after filtering on the said conditions, it can also shape
  • a polycarbonate resin with less coloring and less foreign matter is obtained. Therefore, a foreign matter having a maximum length of 25 ⁇ m or more contained in a film having a thickness of 35 ⁇ m ⁇ 5 ⁇ m obtained by extrusion molding from the resin is preferably used. It can be 1000 / m 2 or less, more preferably 500 / m 2 or less, and most preferably 200 / m 2 or less. Such a characteristic with less foreign matters is particularly preferable when the polycarbonate resin is used for optical applications.
  • Polycarbonate resin pellets obtained by the method of the present invention are, for example, aromatic polycarbonate, aromatic polyester, aliphatic polyester, polyamide, polystyrene, polyolefin, acrylic resin, amorphous polyolefin, synthetic resin such as ABS or AS, polylactic acid or It can also be used as a polymer alloy by kneading with one or more of biodegradable resins such as polybutylene succinate or rubber.
  • the present invention it is possible to provide a polycarbonate resin pellet or a polycarbonate resin film that is excellent in thermal stability, hue, and mechanical strength and has few foreign substances.
  • the polycarbonate resin pellets are manufactured not only by using the pellets after the above procedure, but also by molding into a film without going through the pellet state. May be.
  • the glass transition temperature of the polycarbonate resin was measured using a differential scanning calorimeter (DSC 6220 manufactured by SII Nano Technology). About 10 mg of a polycarbonate resin sample was put in an aluminum pan manufactured by the same company and sealed, and the temperature was raised from room temperature to 250 ° C. at a temperature rising rate of 20 ° C./min under a nitrogen stream of 50 mL / min. After maintaining the temperature for 3 minutes, it was cooled to 30 ° C. at a rate of 20 ° C./min. The temperature was maintained at 30 ° C. for 3 minutes, and the temperature was increased again to 200 ° C. at a rate of 20 ° C./min. From the DSC data obtained at the second temperature increase, the extrapolated glass transition start temperature was adopted.
  • DSC 6220 manufactured by SII Nano Technology
  • the structural unit ratio derived from each dihydroxy compound in the polycarbonate resin was obtained by weighing 30 mg of the polycarbonate resin and dissolving it in about 0.7 mL of deuterated chloroform. The solution was put into an NMR tube having an inner diameter of 5 mm, and a 1H NMR spectrum was measured at room temperature using JNM-AL400 (resonance frequency 400 MHz) manufactured by JEOL. The structural unit ratio derived from each dihydroxy compound was determined from the signal intensity ratio based on the structural unit derived from each dihydroxy compound.
  • the hue of the polycarbonate resin was evaluated by measuring the yellow index (YI) value in the reflected light of the pellet in accordance with ASTM D1925.
  • YI yellow index
  • ASTM D1925 As the apparatus, a spectrocolorimeter CM-5 manufactured by Konica Minolta Co., Ltd. was used, and a measurement diameter of 30 mm and SCE were selected as measurement conditions.
  • a petri dish calibration glass CM-A212 was fitted into the measurement part, and a zero calibration box CM-A124 was placed thereon to perform zero calibration, followed by white calibration using a built-in white calibration plate.
  • L * is 99.40 ⁇ 0.05, a * is 0.03 ⁇ 0.01, b * is ⁇ 0.43 ⁇ 0.01, YI is ⁇ It was confirmed to be 0.58 ⁇ 0.01.
  • the pellets were measured by putting the pellets to a depth of 30 mm or more in a cylindrical glass container having an inner diameter of 30 mm and a height of 50 mm. The operation of taking out the pellet from the glass container and then performing the measurement again was repeated twice, and the average value of the measurement values of three times in total was used. The smaller the YI value, the better the quality without yellowness.
  • a sample having a width of 6 cm and a length of 6 cm was cut out from the film.
  • This sample was placed in a batch type biaxial stretching apparatus (manufactured by Toyo Seiki Co., Ltd.) with a glass transition temperature of the polycarbonate resin + 15 ° C. and a stretching speed of 720 mm / min (strain speed of 1200% / min).
  • Uniaxial stretching of 0 times was performed to obtain a transparent film having a uniform thickness. At this time, it extended
  • a sample obtained by cutting the transparent film into a width of 4 cm and a length of 4 cm is measured for a phase difference (R450) at a measurement wavelength of 450 nm and a phase difference (R550) at 550 nm using a phase difference measuring device (KOBRA-WPR manufactured by Oji Scientific Instruments). did. And the ratio (R450 / R550) of the measured phase difference (R450) and phase difference (R550) was calculated. If the phase difference ratio is greater than 1, the chromatic dispersion is positive, and if it is less than 1, it is negative (reverse dispersion). It is shown that the smaller the ratio of the respective phase differences is less than 1, the stronger the negative wavelength dispersion.
  • BHEPF 9,9-bis (4- (2-hydroxyethoxy) -phenyl) fluorene (Osaka Gas Chemical Co., Ltd.)
  • BCF 9,9-bis (4-hydroxy-3-methylphenyl) fluorene (manufactured by Osaka Gas Chemical Co., Ltd.)
  • ISB Isosorbide (Rocket Fleure, trade name: POLYSORB PS)
  • PEG Polyethylene glycol (manufactured by Sanyo Chemical Industries)
  • DEG Diethylene glycol (Mitsubishi Chemical Corporation)
  • CHDM 1,4-cyclohexanedimethanol (manufactured by Shin Nippon Rika Co., Ltd.)
  • 1,6-HD 1,6-hexanediol (manufactured by BASF)
  • SPG Spiroglycol (also known as 3,9-bis (1,1-dimethyl-2-methoxye
  • Example 1 In a raw material preparation tank sufficiently purged with nitrogen (oxygen concentration 0.0005 vol% to 0.001 vol%), the molar ratio of BHEPF / ISB / PEG (average molecular weight 1000) / DPC was 43.2 / 55.6 / 1.2. / 99 A first polymerization reactor comprising a heat medium jacket using oil as a heat medium, a heat medium internal coil, a stirring blade, a distillation pipe connected to a vacuum pump, and a condenser.
  • the magnesium acetate tetrahydrate made into an aqueous solution from the catalyst supply pipe connected to the raw material supply pipe is 19 ⁇ 10 ⁇ 6 mol (converted to magnesium metal atom) per 1 mol of all dihydroxy compounds.
  • the magnesium acetate tetrahydrate made into an aqueous solution from the catalyst supply pipe connected to the raw material supply pipe is 19 ⁇ 10 ⁇ 6 mol (converted to magnesium metal atom) per 1 mol of all dihydroxy compounds. was continuously supplied.
  • the upstream raw material filtration filter opening is 10 ⁇ m, downstream The mesh opening was 1 ⁇ m.
  • the distillation pipe is provided with a reflux condenser using oil (inlet temperature 130 ° C.) as a refrigerant, and phenol and the like that are not condensed in the reflux condenser.
  • a condenser using warm water (inlet temperature 45 ° C.) as a refrigerant was disposed. While keeping the rotation speed of the stirring blade of the first polymerization reactor constant, the internal temperature was controlled to be constant at 196 ° C., pressure 26.3 kPa, residence time 1.5 hours, and the reaction solution was continuously fed from the bottom of the reaction vessel. And was fed to the second polymerization reactor.
  • the second polymerization reactor includes a heat medium jacket, a heat medium internal coil, a stirring blade, a distillation pipe connected to a vacuum pump, and a distillation pipe having a reflux condenser and a condenser.
  • the internal temperature was 207 ° C.
  • the pressure was 23.9 kPa
  • the residence time was controlled to be constant at 1 hour.
  • the reaction solution was continuously withdrawn from the bottom of the reaction vessel and supplied to the third polymerization reactor.
  • the third polymerization reactor is controlled to be constant at an internal temperature of 218 ° C., a pressure of 20.9 kPa, and a residence time of 1 hour, and the polycondensation reaction proceeds while distilling off the by-produced phenol to react the reaction solution.
  • a horizontal stirring reactor having two horizontal rotating shafts and discontinuous stirring blades mounted substantially at right angles to the horizontal shaft, continuously extracted from the tank bottom using a self-circulating sealed gear pump (4th polymerization reactor).
  • the fourth polymerization reactor was controlled so that the internal temperature near the inlet was 220 ° C., the internal temperature near the outlet was 240 ° C., the pressure was 1.4 kPa, and the residence time was 2 hours, and the polycondensation reaction was further advanced. .
  • a self-circulating seal type gear pump was continuously supplied to a twin screw extruder having a ratio of 6%.
  • the pipe connecting the gear pump and the extruder is a jacket-type double pipe in which the heat medium flows to the outside, and the temperature of the heat medium is set to 250 ° C.
  • the temperature of the resin supplied to the extruder was 248 ° C. when measured with a resin thermometer installed at the inlet of the extruder.
  • 0.1% of water was supplied to the polycarbonate resin to be treated, and the vent port was connected to a vacuum pump to remove volatile components contained in the polycarbonate resin.
  • the heater temperature of the barrel of the extruder was set to 245 ° C. for the upstream 4 blocks, 225 ° C. for the 6 blocks downstream, and the screw speed was 274 rpm. At this time, the polycarbonate resin supplied to the extruder was temporarily extracted and subjected to various analyses. The results are shown in Table 1.
  • Kneading element ratio (%) (total length of kneading disc / total length of screw) ⁇ 100
  • the polycarbonate resin processed by the extruder was supplied to a filter unit having a resin inlet at the bottom and an outlet at the top through a gear pump installed at the outlet.
  • Table 1 shows the temperature of the resin sampled before the filter unit and various measured values.
  • a leaf disk filter having a mesh size of 7 ⁇ m [manufactured by Nippon Pole Co., Ltd.] [material is stainless steel (SUS304, SUS316)] was installed to remove foreign substances in the polycarbonate resin.
  • the filter Prior to use, the filter was roasted at 310 ° C. for 40 hours in a water vapor atmosphere and then at 420 ° C. for 52 hours in an air atmosphere, cooled to room temperature, and then immersed in a 30% by weight nitric acid aqueous solution for 30 minutes. Then, an oxide film was formed, washed and dried.
  • the filter unit was equipped with a heater composed of a plurality of blocks, and each temperature was set to 245 ° C.
  • a die On the outlet side of the filter unit, a die was installed through a polymer pipe equipped with a heater composed of a plurality of blocks. The set temperature of the heater of the polymer pipe was set to 240 ° C., and the heater of the dice was set to 235 ° C.
  • ⁇ A sensor for measuring the resin temperature was installed in the outlet channel of the filter unit.
  • the temperature of the polycarbonate resin discharged from the die was measured using a thermometer.
  • the resin temperature at the die outlet was directly measured by inserting a thermometer into the die hole.
  • the polycarbonate resin was extracted in the form of a strand in a room maintained at a class 10000 cleanness from the die, solidified in a water tank, and pelletized with a rotary cutter.
  • the analytical values are shown in Table 1.
  • Example 2 The raw materials were prepared so that the molar ratio of BHEPF / ISB / PEG (average molecular weight 1000) / DPC was 40.3 / 59.4 / 0.3 / 99, and the internal temperature of the first polymerization reactor was 194 ° C.
  • the pressure is 27.8 kPa
  • the internal temperature of the second polymerization reactor is 208 ° C.
  • the pressure is 25.8 kPa
  • the internal temperature of the third polymerization reactor is 221 ° C.
  • the pressure is 23.0 kPa
  • the vicinity of the inlet of the fourth polymerization reactor The inner temperature of the outlet is 225 ° C.
  • the inner temperature near the outlet is 239 ° C.
  • the pressure is 1.3 kPa
  • the screw speed of the extruder the polycarbonate resin extrusion rate / extruder barrel cross-sectional area, the filter heater set temperature, and the filter surface
  • Example 3 Set the heater temperature of the barrel of the extruder to 240 ° C for the upstream 4 blocks and 220 ° C for the 6 blocks downstream.
  • Table 1 shows the screw rotation speed of the extruder, the heater setting temperature of the filter, and the heater setting temperature of the die. The procedure was the same as Example 2 except that the procedure was changed. The analytical values are shown in Table 1.
  • Example 4 The same procedure as in Example 1 was carried out except that a part of the polycarbonate resin was extracted from the piping for supplying the polycarbonate resin to the extruder from the fourth polymerization reactor, and the amount of the resin supplied to the extruder was reduced.
  • Example 5 The raw materials were prepared so that the molar ratio of BHEPF / ISB / DPC was 40/60/100, the pressure of the first polymerization reactor was 33 kPa, the internal temperature of the second polymerization reactor was 201 ° C., the pressure was 25 kPa, The internal temperature of the 3 polymerization reactor is 241 ° C., the pressure is 18.3 kPa, the internal temperature near the inlet of the fourth polymerization reactor is 235 ° C., the internal temperature near the outlet is 250 ° C., and the pressure is 1.1 kPa.
  • Example 6 A side feeder is installed downstream of the vent port, and pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (trade name: IRGANOX1010) is added to 100 parts by weight of polycarbonate resin. In contrast to the above, 0.1 parts by weight of tris (2,4-di-t-butylphenyl) phosphite (trade name: ADK STAB 2112) was continuously supplied to the same amount of 0.05 parts by weight. Same as 2.
  • Example 7 The length of the kneading disk occupying the length of the elements constituting the entire screw of the extruder is 12%, a side feeder is installed downstream of the vent port, and pentaerythrityl tetrakis [3- (3,5-dioxy -T-butyl-4-hydroxyphenyl) propionate] (trade name: IRGANOX1010) with respect to 100 parts by weight of polycarbonate resin, 0.1 part by weight of tris (2,4-di-t-butylphenyl) phosphite (product) Name: ADK STAB 2112) was carried out in the same manner as in Example 1 except that 0.05 parts by weight was continuously supplied.
  • Example 8 In the fourth polymerization reactor, the internal temperature near the inlet is 220 ° C., the internal temperature near the outlet is 235 ° C., the pressure is 1.2 kPa, and the heat medium temperature of the pipe connecting the gear pump and the extruder at the fourth polymerization reactor outlet Is set to 230 ° C, the heater temperature of the barrel of the extruder is set to 240 ° C for the upstream 4 blocks, and 220 ° C for the 6 blocks downstream, and the screw speed of the extruder, the heater set temperature of the filter, The heater set temperature was changed as shown in Table 1.
  • a side feeder is installed downstream of the vent port, and pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (trade name: IRGANOX1010) is added to 100 parts by weight of polycarbonate resin.
  • IRGANOX1010 pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate]
  • Example 9 As a raw material monomer, a raw material prepared so that the molar ratio of BHEPF / ISB / DEG / DPC was 37.0 / 52.7 / 10.3 / 101 was used, and magnesium acetate tetrahydrate was used as a catalyst.
  • the dihydroxy compound was used in an amount of 14 ⁇ 10 ⁇ 6 mol per 1 mol of the dihydroxy compound (magnesium metal atom equivalent), and the feed rate per unit time of the raw material was increased from that in Example 8, and the residence time of the first polymerization reactor was 0.9.
  • the residence time of the second polymerization reactor is 0.6 hours
  • the residence time of the third polymerization reactor is 0.6 hours
  • the residence time of the fourth polymerization reactor is 1.1 hours
  • Implementation was performed except that the pressure was 0.7 kPa, the filter opening was 15 ⁇ m, and tris (2,4-di-t-butylphenyl) phosphite (trade name: ADK STAB 2112) was not added. 8 and was carried out in the same manner.
  • Example 10 As a raw material monomer, a raw material prepared so that the molar ratio of BCF / SPG / CHDM / DPC was 29.3 / 35.9 / 34.8 / 103 was used, and calcium acetate monohydrate was used as a catalyst. The dihydroxy compound was used at 200 ⁇ 10 ⁇ 6 mol (calcium metal atom equivalent) per mol, and the heat medium temperature of the pipe connecting the gear pump at the outlet of the fourth polymerization reactor and the extruder was set to 240 ° C. The same procedure as in Example 1 was carried out except that no stabilizer was added.
  • Example 11 As a raw material monomer, a raw material prepared so that the molar ratio of BCF / SPG / 1,6-HD / DPC was 30.9 / 47.4 / 21.7 / 102 was used, and calcium acetate monohydration was used as a catalyst. The product was used in the same manner as in Example 10, except that the product was used in an amount of 250 ⁇ 10 ⁇ 6 mol (calculated as calcium metal atom) per mol of the total dihydroxy compound.
  • Example 1 Example 1 except that the kneading element ratio of the extruder was 12%, the screw rotation speed of the extruder was 285 rpm, the heater setting temperature of the filter, the heater setting temperature of the polymer pipe, and the die setting temperature were 280 ° C. It carried out like. Although the pressure difference at the inlet / outlet of the filter decreased and it became easier to filter, the obtained pellets and film were markedly colored and foreign matter increased.

Abstract

The present invention relates to a polycarbonate-resin manufacturing method whereby polycarbonate-resin pellets or polycarbonate-resin films that contain little foreign material and exhibit excellent optical properties, thermal stability, hue, and mechanical strength are manufactured efficiently and stably.

Description

ポリカーボネート樹脂の製造方法、ポリカーボネート樹脂、ポリカーボネート樹脂フィルム、並びにポリカーボネート樹脂ペレットおよびポリカーボネート樹脂フィルムの製造方法Production method of polycarbonate resin, polycarbonate resin, polycarbonate resin film, and production method of polycarbonate resin pellet and polycarbonate resin film
 本発明は、熱安定性、色相、及び機械的強度に優れ、かつ異物の少ないポリカーボネート樹脂を、効率的かつ安定的に製造する方法に関する。 The present invention relates to a method for efficiently and stably producing a polycarbonate resin which is excellent in thermal stability, hue, and mechanical strength and has few foreign matters.
 ポリカーボネート樹脂は一般的にビスフェノール類をモノマー成分とし、透明性、耐熱性または機械的強度等の優位性を生かし、電気・電子部品、自動車用部品、光学記録媒体またはレンズ等の光学分野等でいわゆるエンジニアリングプラスチックスとして広く利用されている。 Polycarbonate resins generally contain bisphenols as monomer components and take advantage of transparency, heat resistance, mechanical strength, etc., so-called electrical / electronic parts, automotive parts, optical recording media, lenses, and other optical fields. Widely used as engineering plastics.
 しかしながら、最近急激に普及しつつあるフラットパネルディスプレー等の位相差フィルム用途またはレンズ用途では、低複屈折または低光弾性係数等、さらに高度な光学的特性が要求されるようになり、従来のビスフェノール類をモノマー成分とした芳香族ポリカーボネート樹脂ではその要求に応えられなくなってきた。 However, for retardation film applications or lens applications such as flat panel displays, which have been rapidly spreading recently, more advanced optical properties such as low birefringence or low photoelastic coefficient have been required, and conventional bisphenols have been required. Aromatic polycarbonate resins containing monomers as monomer components cannot meet the demand.
 近年、フルオレン構造を有するジヒドロキシ化合物をモノマーとするポリカーボネート樹脂が提案されており、特異な位相差を発現する位相差フィルム(例えば、特許文献1~4)または複屈折の小さいレンズ(例えば、特許文献5、6)に応用することが提案されている。 In recent years, a polycarbonate resin using a dihydroxy compound having a fluorene structure as a monomer has been proposed, and a retardation film that exhibits a specific retardation (for example, Patent Documents 1 to 4) or a lens having a small birefringence (for example, Patent Documents). Application to 5, 6) has been proposed.
 このような高度な光学的特性が要求される用途では、一般の射出成形部品または押出成形部品に比べ、高い光学的信頼性が要求され、異物の混入または着色は特に深刻な問題であった。これを解決する方法として、フルオレン構造を有するポリカーボネート樹脂を押出機で押し出した後、フィルターで濾過する方法が開示されている(例えば、特許文献7) In applications where such high optical properties are required, higher optical reliability is required compared to general injection molded parts or extruded parts, and contamination or coloring of foreign matters has been a particularly serious problem. As a method for solving this, a method is disclosed in which a polycarbonate resin having a fluorene structure is extruded with an extruder and then filtered with a filter (for example, Patent Document 7).
日本国特許第3325560号公報Japanese Patent No. 3325560 日本国特開2003-90914号公報Japanese Unexamined Patent Publication No. 2003-90914 日本国特開2007-171756号公報Japanese Unexamined Patent Publication No. 2007-171756 日本国特開2010-230832号公報Japanese Laid-Open Patent Publication No. 2010-230832 日本国特開2004-67990号公報Japanese Laid-Open Patent Publication No. 2004-67990 日本国特開2010-189508号公報Japanese Unexamined Patent Publication No. 2010-189508 日本国特開2007-70392号公報Japanese Unexamined Patent Publication No. 2007-70392
 しかしながらフルオレン構造を有するポリカーボネート樹脂は、溶融させた状態でフィルターを用いて濾過しようとすると、溶融粘度が高すぎて、濾過時の剪断発熱によって樹脂の劣化を招くという問題があった。 However, the polycarbonate resin having a fluorene structure has a problem that when it is filtered using a filter in a melted state, the melt viscosity is too high and the resin is deteriorated due to shear heat generation during filtration.
 また仮にフィルターで剪断発熱による劣化を抑制しつつ濾過精度の高いフィルターを使おうとすると、ポリカーボネート樹脂の処理量を減らしたり、濾過面積を過大にしたりせざるを得ず、結果的に濾過処理に要する時間が長くなって、ポリカーボネート樹脂の劣化を招く等の問題が生じる。 Also, if you want to use a filter with high filtration accuracy while suppressing deterioration due to shear heat generation with the filter, you will have to reduce the amount of polycarbonate resin treatment or increase the filtration area, and consequently require filtration treatment The time becomes longer, causing problems such as the deterioration of the polycarbonate resin.
 一方、濾過処理に要する時間を短くするために、ポリカーボネート樹脂の溶融粘度を低くしようとすると、ポリカーボネート樹脂自体の分子量を下げたり、濾過温度を上げたりする必要がある。 On the other hand, in order to shorten the time required for the filtration treatment, if the melt viscosity of the polycarbonate resin is to be lowered, it is necessary to lower the molecular weight of the polycarbonate resin itself or raise the filtration temperature.
 しかし、ポリカーボネート樹脂自体の分子量を下げると機械的強度または耐熱性の低下を招き、濾過時の温度を高くすると、樹脂が分解・劣化し、機械的強度などの物性を満足する樹脂が得られなくなるだけでなく、着色を助長したり、分解ガスによってストランドのガス切れまたはフィルムの銀条欠陥を招いたりして、ペレット化または製膜が安定的に行えないというジレンマがあった。 However, if the molecular weight of the polycarbonate resin itself is lowered, the mechanical strength or heat resistance is lowered. If the temperature during filtration is increased, the resin is decomposed and deteriorated, and a resin satisfying physical properties such as mechanical strength cannot be obtained. In addition, there was a dilemma in that pelletization or film formation could not be performed stably by facilitating coloring, or by causing outgassing of strands or silver strip defects of the film by the decomposition gas.
 本発明の目的は、上記従来の問題点を解消し、光学的特性、熱安定性、色相、及び機械的強度に優れ、かつ異物の少ないポリカーボネート樹脂ペレットまたはポリカーボネート樹脂フィルムを、効率的かつ安定的に製造する方法を提供することにある。 The object of the present invention is to eliminate the above-mentioned conventional problems, and to efficiently and stably produce polycarbonate resin pellets or polycarbonate resin films having excellent optical characteristics, thermal stability, hue, mechanical strength, and few foreign matters. It is to provide a method of manufacturing.
 本発明者は、上記課題を解決するべく、鋭意検討を重ねた結果、フルオレン構造を有するポリカーボネート樹脂のペレットまたはフィルムを製造する方法において、特定の条件でポリカーボネート樹脂を濾過することによって、光学的特性、機械的強度および色相に優れ、異物の少ないポリカーボネート樹脂ペレットまたはポリカーボネート樹脂フィルムを安定的に製造する方法を見出した。 As a result of intensive studies to solve the above problems, the present inventor has obtained optical characteristics by filtering the polycarbonate resin under specific conditions in a method of producing a polycarbonate resin pellet or film having a fluorene structure. The present inventors have found a method for stably producing polycarbonate resin pellets or polycarbonate resin films that are excellent in mechanical strength and hue and have few foreign matters.
 すなわち、本発明の要旨は下記[1]~[28]に存する。
 [1]ジヒドロキシ化合物および炭酸ジエステルを重縮合させて得られたポリカーボネート樹脂を、フィルターを用いて濾過した後に、冷却固化するポリカーボネート樹脂の製造方法であって、前記ジヒドロキシ化合物が下記一般式(1)で表されるジヒドロキシ化合物を少なくとも含み、前記フィルターの目開きが50μm以下であり、前記フィルターを用いて濾過した後のポリカーボネート樹脂の温度が200℃以上280℃未満となるようにポリカーボネート樹脂を濾過することを特徴とするポリカーボネート樹脂の製造方法。
That is, the gist of the present invention resides in the following [1] to [28].
[1] A method for producing a polycarbonate resin in which a polycarbonate resin obtained by polycondensation of a dihydroxy compound and a carbonic acid diester is filtered and then solidified by cooling, wherein the dihydroxy compound is represented by the following general formula (1) The polycarbonate resin is filtered so that the filter has an opening of 50 μm or less and the temperature of the polycarbonate resin after filtration using the filter is 200 ° C. or higher and lower than 280 ° C. A method for producing a polycarbonate resin.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[上記一般式(1)中、R~Rはそれぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキル基、または、置換若しくは無置換の炭素数6~炭素数20のアリール基を表し、Xは置換若しくは無置換の炭素数2~炭素数10のアルキレン基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキレン基、または、置換若しくは無置換の炭素数6~炭素数20のアリーレン基を表し、m及びnはそれぞれ独立に0~5の整数である。] [In the general formula (1), R 1 to R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon number 6 to 20 carbon atoms. Or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, and X is a substituted or unsubstituted alkylene group having 2 to 10 carbon atoms, substituted or unsubstituted carbon number It represents a cycloalkylene group having 6 to 20 carbon atoms or a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, and m and n are each independently an integer of 0 to 5. ]
[2]前記冷却固化して得られたポリカーボネート樹脂のガラス転移温度が50℃以上180℃未満である[1]に記載のポリカーボネート樹脂の製造方法。 [2] The method for producing a polycarbonate resin according to [1], wherein the polycarbonate resin obtained by cooling and solidifying has a glass transition temperature of 50 ° C. or higher and lower than 180 ° C.
[3]前記冷却固化して得られたポリカーボネート樹脂の還元粘度(ηsp/c)が、0.2dL/g以上、0.6dL/g以下である[1]または[2]に記載のポリカーボネート樹脂の製造方法。 [3] The polycarbonate resin according to [1] or [2], wherein the reduced viscosity (ηsp / c) of the polycarbonate resin obtained by cooling and solidifying is 0.2 dL / g or more and 0.6 dL / g or less. Manufacturing method.
[4]前記冷却固化して得られたポリカーボネート樹脂の、240℃で測定した剪断速度91.2sec-1での溶融粘度が、1000Pa・s以上5000Pa・s以下である[1]乃至[3]の何れかに記載のポリカーボネート樹脂の製造方法。 [4] The polycarbonate resin obtained by cooling and solidifying has a melt viscosity of 1000 Pa · s to 5000 Pa · s at a shear rate of 91.2 sec −1 measured at 240 ° C. [1] to [3]. A method for producing a polycarbonate resin according to any one of the above.
[5]前記冷却固化して得られたポリカーボネート樹脂が、原料モノマーとして前記一般式(1)で表されるジヒドロキシ化合物を全ジヒドロキシ化合物に対して18モル%以上用いて得られたものである[1]乃至[4]の何れか1に記載のポリカーボネート樹脂の製造方法。 [5] The polycarbonate resin obtained by cooling and solidifying is obtained by using 18 mol% or more of the dihydroxy compound represented by the general formula (1) as a raw material monomer with respect to the total dihydroxy compound [ [1] The method for producing a polycarbonate resin according to any one of [4].
[6]前記ポリカーボネート樹脂の前記フィルターで濾過する前の還元粘度(ηsp/c)をAとし、前記冷却固化して得られたポリカーボネート樹脂の還元粘度(ηsp/c)をBとした場合に、下記式(2)を満たす[1]乃至[5]の何れか1に記載のポリカーボネート樹脂の製造方法。
  0.8<B/A<1.1 ・・・(2)
[6] When the reduced viscosity (ηsp / c) of the polycarbonate resin before filtering with the filter is A, and the reduced viscosity (ηsp / c) of the polycarbonate resin obtained by cooling and solidification is B, The method for producing a polycarbonate resin according to any one of [1] to [5], which satisfies the following formula (2).
0.8 <B / A <1.1 (2)
[7]前記ポリカーボネート樹脂が、少なくとも前記一般式(1)で表されるジヒドロキシ化合物と、炭酸ジエステルを触媒の存在下、エステル交換反応により重縮合させて得られたものである請求項[1]乃至[6]の何れか1に記載のポリカーボネート樹脂の製造方法。 [7] The polycarbonate resin is obtained by polycondensation of at least a dihydroxy compound represented by the general formula (1) and a carbonic acid diester by a transesterification reaction in the presence of a catalyst. [1] Thru | or the manufacturing method of polycarbonate resin in any one of [6].
[8]前記重縮合させて得られた前記ポリカーボネート樹脂を、固化させることなく溶融状態のまま前記フィルターに供給し濾過する[7]に記載のポリカーボネート樹脂の製造方法。 [8] The method for producing a polycarbonate resin according to [7], wherein the polycarbonate resin obtained by the polycondensation is supplied to the filter in a molten state without being solidified and filtered.
[9]前記重縮合が触媒を用いて行われるものであり、前記触媒が、長周期型周期表第2族の金属及びリチウムからなる群より選ばれる少なくとも1種の金属化合物である[7]または[8]に記載のポリカーボネート樹脂の製造方法。 [9] The polycondensation is performed using a catalyst, and the catalyst is at least one metal compound selected from the group consisting of a metal of Group 2 of the long-period periodic table and lithium [7]. Or the manufacturing method of polycarbonate resin as described in [8].
[10]前記ポリカーボネート樹脂が、原料モノマーとして前記一般式(1)で表されるジヒドロキシ化合物の他に、構造の一部に下記一般式(3)で表される部位を有するジヒドロキシ化合物を用いる[1]乃至[9]の何れか1に記載のポリカーボネート樹脂の製造方法。 [10] In addition to the dihydroxy compound represented by the general formula (1) as a raw material monomer, the polycarbonate resin uses a dihydroxy compound having a portion represented by the following general formula (3) in a part of the structure [ [1] The method for producing a polycarbonate resin according to any one of [9].
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[但し、上記一般式(3)で表される部位が-CH-O-Hの一部である場合を除く。] [However, the case where the moiety represented by the general formula (3) is a part of —CH 2 —O—H is excluded. ]
[11]前記一般式(3)で表される部位を有するジヒドロキシ化合物が、環状エーテル構造を有する化合物であり、前記一般式(3)で表される部位が環状エーテル構造の一部である[10]に記載のポリカーボネート樹脂の製造方法。 [11] The dihydroxy compound having the moiety represented by the general formula (3) is a compound having a cyclic ether structure, and the moiety represented by the general formula (3) is a part of the cyclic ether structure [ [10] A process for producing a polycarbonate resin according to [10].
[12]前記ポリカーボネート樹脂が、原料モノマーとして前記一般式(1)で表されるジヒドロキシ化合物の他に、下記一般式(4)で表されるジヒドロキシ化合物、下記一般式(5)で表されるジヒドロキシ化合物、及び下記一般式(6)で表されるジヒドロキシ化合物で表されるジヒドロキシ化合物からなる群より選ばれた一種以上のジヒドロキシ化合物を用いる[1]乃至[11]の何れか1に記載のポリカーボネート樹脂の製造方法。 [12] In addition to the dihydroxy compound represented by the general formula (1) as a raw material monomer, the polycarbonate resin is represented by the following dihydroxy compound represented by the following general formula (4) and the following general formula (5). [1] to [11], wherein one or more dihydroxy compounds selected from the group consisting of a dihydroxy compound and a dihydroxy compound represented by the following formula (6) are used. A method for producing a polycarbonate resin.
Figure JPOXMLDOC01-appb-C000009
[上記一般式(4)中、Rは炭素数4から炭素数20の置換若しくは無置換のシクロアルキレン基を示す。]
Figure JPOXMLDOC01-appb-C000009
[In the general formula (4), R 5 represents a substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms. ]
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[上記一般式(5)中、Rは炭素数4から炭素数20の置換若しくは無置換のシクロアルキレン基を示す。] [In the general formula (5), R 6 represents a substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms. ]
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[上記一般式(6)中、R11は炭素数2から炭素数20の鎖状アルキレン基を表す。] [In General Formula (6), R 11 represents a chain alkylene group having 2 to 20 carbon atoms. ]
[13]前記フィルターが容器に格納されており、該格納容器の内容積(m)を、濾過する前記ポリカーボネート樹脂の流量(m/分)で除した値が2~10分である[1]乃至[12]の何れか1に記載のポリカーボネート樹脂の製造方法。 [13] The filter is stored in a container, and a value obtained by dividing the internal volume (m 3 ) of the storage container by the flow rate (m 3 / min) of the polycarbonate resin to be filtered is 2 to 10 minutes. [1] A method for producing a polycarbonate resin according to any one of [12].
[14]前記フィルター面での溶融樹脂の線速が0.01~0.5m/hである[1]乃至[13]の何れか1に記載のポリカーボネート樹脂の製造方法。 [14] The method for producing a polycarbonate resin according to any one of [1] to [13], wherein the linear velocity of the molten resin on the filter surface is 0.01 to 0.5 m / h.
[15]前記冷却固化して得られたポリカーボネート樹脂中に含まれる芳香族モノヒドロキシ化合物含有量が0.0001重量%以上0.2重量%未満である[1]乃至[14]の何れか1に記載のポリカーボネート樹脂の製造方法。 [15] Any one of [1] to [14], wherein the content of the aromatic monohydroxy compound contained in the polycarbonate resin obtained by cooling and solidifying is 0.0001% by weight or more and less than 0.2% by weight. A method for producing a polycarbonate resin as described in 1. above.
[16]前記原料モノマーを、重縮合反応を行う前に原料濾過フィルターで濾過する[1]乃至[15]の何れか1に記載のポリカーボネート樹脂の製造方法。 [16] The method for producing a polycarbonate resin according to any one of [1] to [15], wherein the raw material monomer is filtered with a raw material filter before the polycondensation reaction.
[17]前記フィルターが350℃以上500℃以下の温度であらかじめ焙焼処理を施した金属からなる[1]乃至[16]の何れか1に記載のポリカーボネート樹脂の製造方法。 [17] The method for producing a polycarbonate resin according to any one of [1] to [16], wherein the filter is made of a metal that has been previously roasted at a temperature of 350 ° C. or higher and 500 ° C. or lower.
[18]前記濾過前のポリカーボネート樹脂が前記フィルターの格納容器の下部から供給され、濾過後のポリカーボネート樹脂が該格納容器の上部から排出される[1]乃至[17]の何れか1に記載のポリカーボネート樹脂の製造方法。 [18] The polycarbonate resin before filtration is supplied from the lower part of the storage container of the filter, and the polycarbonate resin after filtration is discharged from the upper part of the storage container. A method for producing a polycarbonate resin.
[19]前記ポリカーボネート樹脂を、ベント口を有する二軸押出機で脱揮する操作を行った後、前記フィルターに供給し、濾過する[1]乃至[18]の何れか1に記載のポリカーボネート樹脂の製造方法。 [19] The polycarbonate resin according to any one of [1] to [18], wherein the polycarbonate resin is devolatilized by a twin-screw extruder having a vent port, and then supplied to the filter and filtered. Manufacturing method.
[20]前記押出機のスクリューが複数のエレメントから構成されており、該エレメントの少なくとも1つがニーディングディスクであり、該ニーディングディスクの合計の長さが、前記スクリュー全体の長さの20%以下である[19]に記載のポリカーボネート樹脂の製造方法。 [20] The screw of the extruder is composed of a plurality of elements, and at least one of the elements is a kneading disk, and the total length of the kneading disk is 20% of the total length of the screw. The method for producing a polycarbonate resin according to [19], which is as follows.
[21]前記押出機で1時間当たりに押し出す樹脂の重量をW(kg/h)、前記押出機のバレルの断面積をS(m)とした場合に、下記式(7)を満たす[19]または[20]に記載のポリカーボネート樹脂の製造方法。 [21] When the weight of the resin extruded per hour by the extruder is W (kg / h) and the cross sectional area of the barrel of the extruder is S (m 2 ), the following formula (7) is satisfied: [19] The method for producing a polycarbonate resin according to [20].
  12000 ≦ W/S ≦ 60000  (7)
[22]前記押出機に供給されるポリカーボネート樹脂の温度が200℃以上250℃未満である[19]乃至[21]のいずれか1に記載のポリカーボネート樹脂の製造方法。
12000 ≦ W / S ≦ 60000 (7)
[22] The method for producing a polycarbonate resin according to any one of [19] to [21], wherein the temperature of the polycarbonate resin supplied to the extruder is 200 ° C. or higher and lower than 250 ° C.
[23]前記フィルターに供給されるポリカーボネート樹脂の温度が230℃以上280℃未満である[19]乃至[22]のいずれか1に記載のポリカーボネート樹脂の製造方法。 [23] The method for producing a polycarbonate resin according to any one of [19] to [22], wherein the temperature of the polycarbonate resin supplied to the filter is 230 ° C. or higher and lower than 280 ° C.
[24]前記押出機に供給されるポリカーボネート樹脂の還元粘度(ηsp/c)をa、前記冷却固化して得られたポリカーボネート樹脂の還元粘度(ηsp/c)をBとした場合に、下記式(8)を満たす[19]乃至[23]の何れか1に記載のポリカーボネート樹脂の製造方法。
  0.8<B/a<1.1・・(8)
[24] When the reduced viscosity (ηsp / c) of the polycarbonate resin supplied to the extruder is a and the reduced viscosity (ηsp / c) of the polycarbonate resin obtained by cooling and solidification is B, the following formula The method for producing a polycarbonate resin according to any one of [19] to [23], which satisfies (8).
0.8 <B / a <1.1 (8)
[25]前記押出機と前記フィルターの間に、ギアポンプを配置する[19]乃至[24]の何れか1に記載のポリカーボネート樹脂の製造方法。 [25] The method for producing a polycarbonate resin according to any one of [19] to [24], wherein a gear pump is disposed between the extruder and the filter.
[26][1]乃至[25]の何れか1に記載の製造方法によって得られたイエローインデックス値が70以下であるポリカーボネート樹脂。 [26] A polycarbonate resin having a yellow index value of 70 or less obtained by the production method according to any one of [1] to [25].
[27][1]乃至[25]の何れか1に記載の製造方法によって得られたポリカーボネート樹脂、又は[26]に記載のポリカーボネート樹脂を押出成形して得られる厚さ20μm~200μmのフィルムであって、該フィルムに含まれる最大長が25μm以上の異物が1000個/m以下であるポリカーボネート樹脂フィルム。 [27] A polycarbonate resin obtained by the production method according to any one of [1] to [25] or a film having a thickness of 20 μm to 200 μm obtained by extrusion molding of the polycarbonate resin according to [26]. A polycarbonate resin film having a maximum length of 25 μm or more contained in the film of 1000 / m 2 or less.
[28]原料モノマーとして下記一般式(1)で表される構造単位を有するジヒドロキシ化合物を用いて得られたポリカーボネート樹脂を、溶融状態でフィルターを用いて濾過して、ダイスから吐出させて、冷却後、ポリカーボネート樹脂ペレットまたはポリカーボネート樹脂フィルムを製造する方法であって、前記ジヒドロキシ化合物が構造の一部に下記一般式(1)で表される部位を有するジヒドロキシ化合物を少なくとも含み、前記フィルターの目開きが50μm以下であり、前記ダイスから吐出される樹脂の温度が200℃以上280℃未満であることを特徴とするポリカーボネート樹脂ペレットまたはポリカーボネート樹脂フィルムの製造方法。 [28] A polycarbonate resin obtained by using a dihydroxy compound having a structural unit represented by the following general formula (1) as a raw material monomer is filtered using a filter in a molten state, discharged from a die, and cooled. Thereafter, a method for producing a polycarbonate resin pellet or a polycarbonate resin film, wherein the dihydroxy compound includes at least a dihydroxy compound having a site represented by the following general formula (1) in a part of the structure, and the aperture of the filter Is 50 μm or less, and the temperature of the resin discharged from the die is 200 ° C. or higher and lower than 280 ° C. A method for producing a polycarbonate resin pellet or polycarbonate resin film,
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[上記一般式(1)中、R~Rはそれぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキル基、または、置換若しくは無置換の炭素数6~炭素数20のアリール基を表し、Xは置換若しくは無置換の炭素数2~炭素数10のアルキレン基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキレン基、または、置換若しくは無置換の炭素数6~炭素数20のアリーレン基を表し、m及びnはそれぞれ独立に0~5の整数である。] [In the general formula (1), R 1 to R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon number 6 to 20 carbon atoms. Or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, and X is a substituted or unsubstituted alkylene group having 2 to 10 carbon atoms, substituted or unsubstituted carbon number It represents a cycloalkylene group having 6 to 20 carbon atoms or a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, and m and n are each independently an integer of 0 to 5. ]
 本発明によれば、光学的特性、機械的強度および色相に優れ、かつ異物の少ない位相差フィルム、さらには、カメラレンズ、ファインダーレンズ、CCDまたはCMOS用レンズなどのレンズ用途といった光学分野へ適用可能な性能を有するポリカーボネート樹脂ペレットまたはフィルムを、効率的にかつ安定して製造することが可能になる。 INDUSTRIAL APPLICABILITY According to the present invention, a retardation film having excellent optical characteristics, mechanical strength and hue and having less foreign matters, and further applicable to optical fields such as camera lenses, viewfinder lenses, CCD or CMOS lenses, etc. Polycarbonate resin pellets or films having excellent performance can be produced efficiently and stably.
図1は、本発明にかかる製造工程の例を示す工程図であるFIG. 1 is a process diagram showing an example of a manufacturing process according to the present invention.
 以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、以下の内容に限定されない。なお、本明細書において「~」という表現を用いた場合、その前後の数値又は物理値を含む意味で用いることとする。 DESCRIPTION OF EMBODIMENTS Embodiments of the present invention will be described in detail below. However, the description of the constituent elements described below is an example (representative example) of an embodiment of the present invention. It is not limited to the contents. In addition, when the expression “˜” is used in this specification, it is used in the meaning including numerical values or physical values before and after the expression.
 <原料モノマーと重合触媒>
 (ジヒドロキシ化合物)
 本発明のポリカーボネート樹脂の製造法においては、原料モノマーとしてジヒドロキシ化合物を用いるが、ジヒドロキシ化合物の少なくとも1種が、構造の一部に下記一般式(1)で表される部位を有する特定ジヒドロキシ化合物であることを特徴とする(以下、「本発明のジヒドロキシ化合物」と称することがある。)。
<Raw material monomers and polymerization catalyst>
(Dihydroxy compound)
In the method for producing a polycarbonate resin of the present invention, a dihydroxy compound is used as a raw material monomer, and at least one of the dihydroxy compounds is a specific dihydroxy compound having a site represented by the following general formula (1) in a part of the structure. (Hereinafter sometimes referred to as “the dihydroxy compound of the present invention”).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記一般式(1)中、R~Rはそれぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキル基、または、置換若しくは無置換の炭素数6~炭素数20のアリール基を表し、Xは置換若しくは無置換の炭素数2~炭素数10のアルキレン基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキレン基、または、置換若しくは無置換の炭素数6~炭素数20のアリーレン基を表し、m及びnはそれぞれ独立に0~5の整数である。 In the general formula (1), R 1 to R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon atom having 6 to 20 carbon atoms. Represents a cycloalkyl group or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, and X is a substituted or unsubstituted alkylene group having 2 to 10 carbon atoms, substituted or unsubstituted 6 carbon atoms. Represents a cycloalkylene group having 20 carbon atoms, or a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, and m and n are each independently an integer of 0 to 5.
 本発明のジヒドロキシ化合物としては、上記一般式(1)で表される化合物である。式中、R~Rはそれぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキル基、または、置換若しくは無置換の炭素数6~炭素数20のアリール基を表す。 The dihydroxy compound of the present invention is a compound represented by the above general formula (1). In the formula, each of R 1 to R 4 independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 6 to 20 carbon atoms, or Represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms.
 ここで、置換基としては、例えば、エステル基、エーテル基、カルボン酸、アミド基およびハロゲンが挙げられる。中でも水素原子、無置換の炭素数1~4のアルキル基、無置換の炭素数5~7のシクロアルキル基、又はフェニル基が好ましい。 Here, examples of the substituent include an ester group, an ether group, a carboxylic acid, an amide group, and a halogen. Of these, a hydrogen atom, an unsubstituted alkyl group having 1 to 4 carbon atoms, an unsubstituted cycloalkyl group having 5 to 7 carbon atoms, or a phenyl group is preferable.
 Xは無置換若しくはエステル基、エーテル基、カルボン酸、アミド基、ハロゲン等で置換された炭素数2~炭素数10のアルキレン基、無置換若しくはエステル基、エーテル基、カルボン酸、アミド基、ハロゲン等で置換された炭素数6~炭素数20のシクロアルキレン基、または、無置換若しくはエステル基、エーテル基、カルボン酸、アミド基、ハロゲン等で置換された炭素数6~炭素数20のアリーレン基であり、炭素数2~6のアルキレン基であるのが好ましい。 X is an unsubstituted or ester group, an ether group, a carboxylic acid, an amide group, a halogen-substituted alkylene group having 2 to 10 carbon atoms, an unsubstituted or ester group, an ether group, a carboxylic acid, an amide group, a halogen A cycloalkylene group having 6 to 20 carbon atoms substituted with an aryl group or the like, or an arylene group having 6 to 20 carbon atoms which is unsubstituted or substituted with an ester group, an ether group, a carboxylic acid, an amide group, a halogen or the like. And is preferably an alkylene group having 2 to 6 carbon atoms.
 又、m及びnはそれぞれ独立に0~5の整数であるが、0または1が好ましく、m=0且つn=0の化合物、またはm=1且つn=1の化合物が特に好ましい。 M and n are each independently an integer of 0 to 5, preferably 0 or 1, particularly preferably a compound of m = 0 and n = 0, or a compound of m = 1 and n = 1.
 本発明のジヒドロキシ化合物としては、具体的には、例えば、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-エチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-n-プロピルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-イソプロピルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-n-ブチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-sec-ブチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-tert-ブチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-シクロヘキシルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-イソプロピルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-イソブチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-tert-ブチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-シクロヘキシルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3,5-ジメチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-tert-ブチル-6-メチルフェニル]フルオレン、9,9-ビス[4-(3-ヒドロキシ-2,2-ジメチルプロポキシ)フェニル]フルオレン等が挙げられる。 Specific examples of the dihydroxy compound of the present invention include 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, and 9,9-bis. (4-hydroxy-3-ethylphenyl) fluorene, 9,9-bis (4-hydroxy-3-n-propylphenyl) fluorene, 9,9-bis (4-hydroxy-3-isopropylphenyl) fluorene, 9, 9-bis (4-hydroxy-3-n-butylphenyl) fluorene, 9,9-bis (4-hydroxy-3-sec-butylphenyl) fluorene, 9,9-bis (4-hydroxy-3-tert- Butylphenyl) fluorene, 9,9-bis (4-hydroxy-3-cyclohexylphenyl) fluorene, 9,9-bis (4- Loxy-3-phenylphenyl) fluorene, 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene, 9,9-bis [4- (2-hydroxyethoxy) -3-methylphenyl] fluorene, 9 , 9-bis [4- (2-hydroxyethoxy) -3-isopropylphenyl] fluorene, 9,9-bis [4- (2-hydroxyethoxy) -3-isobutylphenyl] fluorene, 9,9-bis [4 -(2-hydroxyethoxy) -3-tert-butylphenyl] fluorene, 9,9-bis [4- (2-hydroxyethoxy) -3-cyclohexylphenyl] fluorene, 9,9-bis [4- (2- Hydroxyethoxy) -3-phenylphenyl] fluorene, 9,9-bis [4- (2-hydroxyethoxy) -3,5-dimethyl Ruphenyl] fluorene, 9,9-bis [4- (2-hydroxyethoxy) -3-tert-butyl-6-methylphenyl] fluorene, 9,9-bis [4- (3-hydroxy-2,2-dimethyl) Propoxy) phenyl] fluorene and the like.
 これらの中でも、好ましくは、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンまたは9,9-ビス(4-(2-ヒドロキシエトキシ)-3-メチルフェニル)フルオレンであり、特に好ましくは9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンである。 Among these, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene or 9,9-bis (4- (2-hydroxyethoxy) -3-methylphenyl) fluorene, particularly preferably 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene.
 中でもハンドリング性と得られるポリマーの物性から、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンまたは、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンが好ましく、特には9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンが好ましい。 Among these, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene or 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene is preferred from the viewpoint of handling properties and physical properties of the obtained polymer. Is preferably 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene.
 本発明のポリカーボネート樹脂は、原料モノマーとして上記一般式(1)で表される構造単位を有する特定ジヒドロキシ化合物を全ジヒドロキシ化合物に対して18モル%以上用いて得られたものであることが好ましく、さらに好ましくは20モル%以上、特に好ましくは25モル%以上、最も好ましくは30モル%以上である。また、好ましくは90モル%以下であり、更に好ましくは70モル%以下であり、特に好ましくは50モル%以下である。 The polycarbonate resin of the present invention is preferably obtained by using 18 mol% or more of the specific dihydroxy compound having the structural unit represented by the general formula (1) as a raw material monomer with respect to the total dihydroxy compound, More preferably, it is 20 mol% or more, Especially preferably, it is 25 mol% or more, Most preferably, it is 30 mol% or more. Moreover, it is preferably 90 mol% or less, more preferably 70 mol% or less, and particularly preferably 50 mol% or less.
 前記構造単位を有するモノマーの使用量が少な過ぎると、得られたポリカーボネート樹脂が所望の光学的性能を示さなくなる可能性がある。また多すぎると得られたポリカーボネート樹脂の溶融粘度が高くなり、小さい目開きのフィルターを用いた濾過が困難になって異物が増加したり、ペレット化またはフィルム製膜が困難になったりする可能性がある。また、無理に小さい目開きのフィルターを用いるとフィルターの破損を招いたり、ポリカーボネート樹脂の着色または分子量低下を招いたりする可能性がある。 If the amount of the monomer having the structural unit is too small, the obtained polycarbonate resin may not exhibit the desired optical performance. If the amount is too large, the melt viscosity of the resulting polycarbonate resin will be high, making it difficult to filter using a filter with a small opening, resulting in increased foreign matter, and making pelletization or film formation difficult. There is. Also, if a filter with a small aperture is used forcibly, the filter may be damaged, or the polycarbonate resin may be colored or the molecular weight may be reduced.
 所望の光学的性能とは、光線透過率に影響を及ぼす、着色、異物または位相差等が挙げられる。特に本発明のポリカーボネート樹脂を1/4波長板として位相差フィルムに使用する場合、あらゆる波長領域で波長の1/4近傍の位相差を持たせることが重要である。そのためには、複屈折が短波長になるほど小さく、長波長になるほど大きくなる、いわゆる複屈折の逆波長分散性を持たせる必要がある。 Desired optical performance includes coloring, foreign matter, or phase difference that affects light transmittance. In particular, when the polycarbonate resin of the present invention is used as a quarter-wave plate for a retardation film, it is important to have a retardation in the vicinity of a quarter of the wavelength in any wavelength region. For this purpose, it is necessary to provide so-called birefringence reverse wavelength dispersion, in which the birefringence decreases as the wavelength decreases and increases as the wavelength increases.
 複屈折の波長分散性は、均一な厚みを持つ延伸フィルムを作成し、測定波長450nmの位相差(R450)及び550nmの位相差(R550)を測定して、R450とR550の比(R450/R550)を求めることで評価できる。 The birefringence wavelength dispersibility is measured by preparing a stretched film having a uniform thickness, measuring a retardation (R450) at a measurement wavelength of 450 nm and a retardation (R550) at 550 nm, and a ratio of R450 to R550 (R450 / R550). ) Can be evaluated.
 前記値が1より小さいと逆波長分散性(負の波長分散性と称することがある)を示す。本発明においてR450/R550は、0.80~0.95であることが好ましく、より好ましくは0.85~0.93、特に好ましくは、0.87~0.91である。逆波長分散性は、上記一般式(1)で表される構造単位が多過ぎても少な過ぎても達成することができないが、一方で他の構造単位の構造または含有率にも影響を受ける。 If the value is smaller than 1, it indicates reverse wavelength dispersion (sometimes referred to as negative wavelength dispersion). In the present invention, R450 / R550 is preferably 0.80 to 0.95, more preferably 0.85 to 0.93, and particularly preferably 0.87 to 0.91. Reverse wavelength dispersion cannot be achieved if the structural unit represented by the general formula (1) is too much or too little, but is also affected by the structure or content of other structural units. .
 本発明のポリカーボネート樹脂の製造法においては、原料モノマーとして一般式(3)で表されるジヒドロキシ化合物を用いることができる。 In the method for producing a polycarbonate resin of the present invention, a dihydroxy compound represented by the general formula (3) can be used as a raw material monomer.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 但し、上記一般式(3)で表される部位が-CH-O-Hの一部である場合を除く。 However, the case where the site represented by the general formula (3) is a part of —CH 2 —O—H is excluded.
 上記一般式(3)で表されるジヒドロキシ化合物としては、具体的には、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ポリプロピレングリコールおよびポリテトラメチレングリコールなどのオキシアルキレングリコール類;下記一般式(9)で表されるジヒドロキシ化合物に代表される無水糖アルコールおよび下記一般式(10)で表されるスピログリコール等の環状エーテル構造を有する化合物が挙げられる。 Specific examples of the dihydroxy compound represented by the general formula (3) include oxyalkylene glycols such as diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, polypropylene glycol, and polytetramethylene glycol; Examples thereof include compounds having a cyclic ether structure such as an anhydrosugar alcohol represented by the dihydroxy compound represented by the general formula (9) and a spiro glycol represented by the following general formula (10).
 中でも、入手のし易さ、ハンドリング、重合時の反応性および得られるポリカーボネート樹脂の色相の観点から、ジエチレングリコール、トリエチレングリコールまたはポリエチレングリコールが好ましい。 Among these, diethylene glycol, triethylene glycol, or polyethylene glycol is preferable from the viewpoints of availability, handling, reactivity during polymerization, and hue of the obtained polycarbonate resin.
 耐熱性の観点からは、下記一般式(9)で表されるジヒドロキシ化合物に代表される無水糖アルコール、または下記一般式(10)で表されるスピログリコール等の環状エーテル構造[好ましくは、上記一般式(3)で表される部位が、環状エーテル構造の一部であるもの]を有する化合物が好ましい。 From the viewpoint of heat resistance, an anhydrous sugar alcohol represented by the dihydroxy compound represented by the following general formula (9), or a cyclic ether structure such as spiroglycol represented by the following general formula (10) [preferably, A compound having a moiety represented by the general formula (3) that is part of a cyclic ether structure] is preferred.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 なお、上記一般式(9)で表されるジヒドロキシ化合物としては、例えば、立体異性体の関係にある、イソソルビド、イソマンニドまたはイソイデットが挙げられる。これらのジヒドロキシ化合物のうち、資源として豊富に存在し、容易に入手可能な種々のデンプンから製造されるソルビトールを脱水縮合して得られるイソソルビドが、入手及び製造のし易さ、光学特性および成形性の面から最も好ましい。 In addition, examples of the dihydroxy compound represented by the general formula (9) include isosorbide, isomannide, and isoide which are related to stereoisomers. Among these dihydroxy compounds, isosorbide obtained by dehydration condensation of sorbitol produced from various starches that are abundant as resources and are readily available is easy to obtain and manufacture, optical properties and moldability From the viewpoint of the above, it is most preferable.
 本発明において、イソソルビドまたはスピログリコール等、環状エーテル構造を有する化合物を使用する場合の使用量には制限がないが、その下限としては、好ましくは10モル%以上、さらに好ましくは20モル%以上、特に好ましくは30モル%以上、最も好ましくは40モル%以上である。また、上限としては、好ましくは90モル%以下であり、更に好ましくは70モル%以下であり、特に好ましくは60モル%以下である。 In the present invention, the amount used when using a compound having a cyclic ether structure such as isosorbide or spiroglycol is not limited, but the lower limit thereof is preferably 10 mol% or more, more preferably 20 mol% or more, Especially preferably, it is 30 mol% or more, Most preferably, it is 40 mol% or more. Moreover, as an upper limit, Preferably it is 90 mol% or less, More preferably, it is 70 mol% or less, Most preferably, it is 60 mol% or less.
 前記構造単位を有するモノマーの使用量が少な過ぎると、得られたポリカーボネート樹脂が所望の光学的性能を示さなくなる可能性がある。また多すぎても所望の光学的性能を示さなくなる可能性があるだけでなく、得られたポリカーボネート樹脂の熱安定性に悪影響を及ぼしたり、溶融粘度が高くなり、ペレット化またはフィルム製膜が困難になったりする可能性がある。 If the amount of the monomer having the structural unit is too small, the obtained polycarbonate resin may not exhibit the desired optical performance. If the amount is too large, not only the desired optical performance may not be exhibited, but also the thermal stability of the obtained polycarbonate resin is adversely affected, the melt viscosity becomes high, and pelletization or film formation is difficult. There is a possibility of becoming.
 本発明のポリカーボネート樹脂の製造法においては、原料モノマーとして一般式(4)で表されるジヒドロキシ化合物を用いることができる。 In the method for producing a polycarbonate resin of the present invention, a dihydroxy compound represented by the general formula (4) can be used as a raw material monomer.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 上記一般式(4)中、Rは炭素数4から炭素数20の置換若しくは無置換のシクロアルキレン基を示す。 In the general formula (4), R 5 represents a substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms.
 前記一般式(4)で表されるジヒドロキシ化合物としては、例えば、2,6-デカリンジオール、1,5-デカリンジオール、2,3-デカリンジオールトリシクロデカンジオールおよびペンタシクロペンタデカンジオール等の複数の脂環構造を持つ化合物、並びに1,2-シクロペンタンジオール、1,3-シクロペンタンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、2-メチル-1,4-シクロヘキサンジオールおよび1,3-テトラメチルシクロブタンジオール等の単環構造のシクロアルキレン基を含む化合物が挙げられる。単環構造とすることにより、得られるポリカーボネート樹脂をフィルムとしたときの靭性を改良することが出来る。 Examples of the dihydroxy compound represented by the general formula (4) include a plurality of compounds such as 2,6-decalindiol, 1,5-decalindiol, 2,3-decalindiol tricyclodecanediol, and pentacyclopentadecanediol. Compounds having an alicyclic structure, 1,2-cyclopentanediol, 1,3-cyclopentanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 2-methyl-1 , 4-cyclohexanediol, 1,3-tetramethylcyclobutanediol, and other compounds containing a monocyclic cycloalkylene group. By setting it as a monocyclic structure, the toughness when the polycarbonate resin obtained is used as a film can be improved.
 又、通常、5員環構造又は6員環構造を含む化合物が挙げられる。5員環構造又は6員環構造であることにより、得られるポリカーボネート樹脂の耐熱性を高くすることができる。6員環構造は共有結合によって椅子形または舟形に固定されていてもよい。 Moreover, the compound containing a 5-membered ring structure or a 6-membered ring structure is mentioned normally. By being a 5-membered ring structure or a 6-membered ring structure, the heat resistance of the obtained polycarbonate resin can be increased. The six-membered ring structure may be fixed in a chair shape or a boat shape by a covalent bond.
 また、置換基を有する場合の置換基としては炭素数1~4のアルキル基が好ましい。 Further, when it has a substituent, the substituent is preferably an alkyl group having 1 to 4 carbon atoms.
 前記一般式(4)で表されるジヒドロキシ化合物としては、具体的には、例えば、1,2-シクロペンタンジオール、1,3-シクロペンタンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオールおよび2-メチル-1,4-シクロヘキサンジオール等が挙げられる。 Specific examples of the dihydroxy compound represented by the general formula (4) include 1,2-cyclopentanediol, 1,3-cyclopentanediol, 1,2-cyclohexanediol, and 1,3-cyclohexane. Examples thereof include diol, 1,4-cyclohexanediol and 2-methyl-1,4-cyclohexanediol.
 本発明のポリカーボネート樹脂の製造法においては、原料モノマーとして一般式(5)で表されるジヒドロキシ化合物を用いることができる。 In the method for producing a polycarbonate resin of the present invention, a dihydroxy compound represented by the general formula (5) can be used as a raw material monomer.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 上記一般式(5)中、Rは炭素数4から炭素数20の置換若しくは無置換のシクロアルキレン基を示す。 In the general formula (5), R 6 represents a substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms.
 前記一般式(5)で表されるジヒドロキシ化合物としては、例えば、2,3-ノルボルナンジメタノール、2,5-ノルボルナンジメタノール、アダマンタンジメタノール、デカリンジメタノールおよびトリシクロテトラデカンジメタノール等の複数の脂環構造を持つ化合物、並びに1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノールおよび1,4-シクロヘキサンジメタノール等の単環構造のシクロアルキレン基を含む化合物が挙げられる。 Examples of the dihydroxy compound represented by the general formula (5) include a plurality of compounds such as 2,3-norbornane dimethanol, 2,5-norbornane dimethanol, adamantane dimethanol, decalin dimethanol, and tricyclotetradecane dimethanol. Examples thereof include compounds having an alicyclic structure and compounds containing a monocyclic cycloalkylene group such as 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol and 1,4-cyclohexanedimethanol.
 複数の脂環式構造を有するジヒドロキシ化合物を用いると、耐熱性は向上する一方で、靭性の悪化を招いたり、溶融時の粘度が高くなり流動性を悪化させたりすることがある。そのため、靭性の改良効果および溶融時の流動性の観点からは、単環構造を有するジヒドロキシ化合物、特には5員環構造又は6員環構造を含むジヒドロキシ化合物が好ましい。 When a dihydroxy compound having a plurality of alicyclic structures is used, the heat resistance may be improved, but the toughness may be deteriorated, or the viscosity at the time of melting may be increased and the fluidity may be deteriorated. Therefore, from the viewpoint of improving the toughness and fluidity at the time of melting, a dihydroxy compound having a monocyclic structure, particularly a dihydroxy compound containing a 5-membered ring structure or a 6-membered ring structure is preferable.
 5員環構造又は6員環構造であることにより、得られるポリカーボネート樹脂の耐熱性を向上することができる。6員環構造は共有結合によって椅子形または舟形に固定されていてもよい。 The heat resistance of the obtained polycarbonate resin can be improved by being a 5-membered ring structure or a 6-membered ring structure. The six-membered ring structure may be fixed in a chair shape or a boat shape by a covalent bond.
 また、置換基を有する場合の置換基としては炭素数1~4のアルキル基が好ましい。具体的には、例えば、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノールおよび1,4-シクロヘキサンジメタノール等が挙げられる。 Further, when it has a substituent, the substituent is preferably an alkyl group having 1 to 4 carbon atoms. Specific examples include 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol and 1,4-cyclohexanedimethanol.
 上述した脂環式ジヒドロキシ化合物の具体例のうち、特に、シクロヘキサンジメタノール類が好ましく、入手のしやすさおよび取り扱いのしやすさという観点から、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノールまたは1,2-シクロヘキサンジメタノールが好ましい。中でも重合反応性と靭性改良の観点からは、1,4-シクロヘキサンジメタノールが好ましい。 Of the above-described specific examples of the alicyclic dihydroxy compound, cyclohexanedimethanols are particularly preferable, and 1,4-cyclohexanedimethanol and 1,3-cyclohexane are preferable from the viewpoint of easy availability and handling. Dimethanol or 1,2-cyclohexanedimethanol is preferred. Of these, 1,4-cyclohexanedimethanol is preferred from the viewpoint of improving polymerization reactivity and toughness.
 本発明のポリカーボネート樹脂の製造法においては、原料モノマーとして一般式(6)で表されるジヒドロキシ化合物を用いることができる。 In the method for producing a polycarbonate resin of the present invention, a dihydroxy compound represented by the general formula (6) can be used as a raw material monomer.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 上記一般式(6)中、R11は炭素数2から炭素数20の鎖状アルキレン基を表す。 In the general formula (6), R 11 represents a chain alkylene group having 2 to 20 carbon atoms.
 前記一般式(6)で表されるジヒドロキシ化合物は、直鎖状でも分岐を有していてもよいが、直鎖状のアルキレンジオールが好ましい。具体的には、例えば、エチレングルコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオールおよび1,6-ヘキサンジオールなどが挙げられる。 The dihydroxy compound represented by the general formula (6) may be linear or branched, but is preferably a linear alkylene diol. Specific examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol.
 その中でも1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオールが好ましい。分子量が小さいと重合中に揮散したり、靭性付与効果が小さかったりするため、1,6-ヘキサンジオールが最も好ましい。 Of these, 1,3-propylene glycol, 1,4-butanediol, and 1,6-hexanediol are preferable. When the molecular weight is small, 1,6-hexanediol is most preferred because it volatilizes during polymerization or the effect of imparting toughness is small.
 本発明のポリカーボネート樹脂の製造法においては、原料モノマーとしてビスフェノール化合物を用いてもよい。該ビスフェノール化合物としては、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン[=ビスフェノールA]、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジエチルフェニル)プロパン、2,2-ビス[4-ヒドロキシ-(3,5-ジフェニル)フェニル]プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,4’-ジヒドロキシ-ジフェニルメタン、ビス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-5-ニトロフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、3,3-ビス(4-ヒドロキシフェニル)ペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、ビス(4-ヒドロキシフェニル)スルホン、2,4’-ジヒドロキシジフェニルスルホン、ビス(4-ヒドロキシフェニル)スルフィド、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジクロロジフェニルエーテルおよび4,4’-ジヒドロキシ-2,5-ジエトキシジフェニルエーテル等が挙げられる。 In the method for producing the polycarbonate resin of the present invention, a bisphenol compound may be used as a raw material monomer. Examples of the bisphenol compound include 2,2-bis (4-hydroxyphenyl) propane [= bisphenol A], 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, and 2,2-bis. (4-hydroxy-3,5-diethylphenyl) propane, 2,2-bis [4-hydroxy- (3,5-diphenyl) phenyl] propane, 2,2-bis (4-hydroxy-3,5-dibromo Phenyl) propane, 2,2-bis (4-hydroxyphenyl) pentane, 2,4′-dihydroxy-diphenylmethane, bis (4-hydroxyphenyl) methane, bis (4-hydroxy-5-nitrophenyl) methane, 1, 1-bis (4-hydroxyphenyl) ethane, 3,3-bis (4-hydroxyphenyl) pentane, 1,1-bis ( -Hydroxyphenyl) cyclohexane, bis (4-hydroxyphenyl) sulfone, 2,4'-dihydroxydiphenylsulfone, bis (4-hydroxyphenyl) sulfide, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxy-3, Examples include 3'-dichlorodiphenyl ether and 4,4'-dihydroxy-2,5-diethoxydiphenyl ether.
 本発明におけるポリカーボネート樹脂は、前記一般式(3)で表される部位を有するジヒドロキシ化合物、前記一般式(4)で表されるジヒドロキシ化合物、前記一般式(5)で表されるジヒドロキシ化合物、前記一般式(6)で表されるジヒドロキシ化合物、及びビスフェノール化合物からなる群より選ばれた一種以上のジヒドロキシ化合物を、それらの合計として、全ジヒドロキシ化合物を100モル%とした場合に、25モル%以上用いて得られたものであることが好ましく、より好ましくは30モル%以上、更に好ましくは35モル%以上である。また、82モル%以下であることが好ましく、更に好ましくは75モル%以下である。 The polycarbonate resin in the present invention includes a dihydroxy compound having a site represented by the general formula (3), a dihydroxy compound represented by the general formula (4), a dihydroxy compound represented by the general formula (5), One or more dihydroxy compounds selected from the group consisting of the dihydroxy compound represented by the general formula (6) and the bisphenol compound, the total of them being 25 mol% or more when the total dihydroxy compound is 100 mol% It is preferable that it is obtained by using, More preferably, it is 30 mol% or more, More preferably, it is 35 mol% or more. Moreover, it is preferable that it is 82 mol% or less, More preferably, it is 75 mol% or less.
 これらの前記一般式(3)で表される部位を有するジヒドロキシ化合物、前記一般式(4)で表されるジヒドロキシ化合物、前記一般式(5)で表されるジヒドロキシ化合物、前記一般式(6)で表されるジヒドロキシ化合物、及びビスフェノール化合物からなる群より選ばれた一種以上のジヒドロキシ化合物の使用量が少な過ぎると、得られたポリカーボネート樹脂の靱性が低下し、ペレット化またはフィルム製膜が困難になる可能性がある。一方、多すぎると得られたポリカーボネート樹脂が所望の光学的性能を示さなくなる可能性がある。 These dihydroxy compounds having a site represented by the general formula (3), dihydroxy compounds represented by the general formula (4), dihydroxy compounds represented by the general formula (5), and general formula (6) When the amount of one or more dihydroxy compounds selected from the group consisting of dihydroxy compounds and bisphenol compounds is too small, the toughness of the obtained polycarbonate resin is reduced, making pelletization or film formation difficult. There is a possibility. On the other hand, if the amount is too large, the obtained polycarbonate resin may not exhibit the desired optical performance.
 中でも、本発明においては、光学的特性、耐熱性、得られたポリマーの靭性および溶融時の流動性からは、前記一般式(1)で表されるジヒドロキシ化合物としては、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンおよび/または、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンが好ましい。また、上記式(4)で表されるジヒドロキシ化合物としては、イソソルビドおよび/またはスピログリコールを共重合させたポリカーボネート樹脂が好ましい。 Among these, in the present invention, from the viewpoint of optical properties, heat resistance, toughness of the obtained polymer and fluidity upon melting, the dihydroxy compound represented by the general formula (1) is 9,9-bis ( 4-Hydroxy-3-methylphenyl) fluorene and / or 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene are preferred. Moreover, as a dihydroxy compound represented by the said Formula (4), the polycarbonate resin which copolymerized isosorbide and / or spiroglycol is preferable.
 さらに、靭性付与のため、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、1,4-シクロヘキサンジメタノールおよび1,6-ヘキサンジオールの中から選ばれる少なくとも1種のジヒドロキシ化合物を用いて、3種以上のモノマーを共重合させたポリカーボネート樹脂とすることが好ましい。 Further, for imparting toughness, at least one dihydroxy compound selected from diethylene glycol, triethylene glycol, polyethylene glycol, 1,4-cyclohexanedimethanol and 1,6-hexanediol is used, and three or more monomers are used. It is preferable to use a polycarbonate resin obtained by copolymerizing.
 特に好ましくは、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンとイソソルビドに加え、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、1,4-シクロヘキサンジメタノールまたは1,6-ヘキサンジオールの中から選ばれる少なくとも1種のジヒドロキシ化合物を30モル%以下、更に好ましくは20モル%以下、共重合させたポリカーボネート樹脂である。 Particularly preferably, in addition to 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene and isosorbide, diethylene glycol, triethylene glycol, polyethylene glycol, 1,4-cyclohexanedimethanol or 1,6-hexanediol is used. It is a polycarbonate resin obtained by copolymerizing at least one dihydroxy compound selected from the group of 30 mol% or less, more preferably 20 mol% or less.
 本発明におけるポリカーボネート樹脂は、前記ジヒドロキシ化合物とホスゲンとを用い、界面重縮合で得ることができる。特にジヒドロキシ化合物として、上記一般式(1)で表される化合物のうち、m=n=0の場合、またはビスフェノール化合物を使用する場合には、ジヒドロキシ化合物のアルカリ金属塩の水溶液とホスゲンとを塩化メチレン等の溶媒存在下に反応させる界面重縮合法で得ることが好ましい。 The polycarbonate resin in the present invention can be obtained by interfacial polycondensation using the dihydroxy compound and phosgene. In particular, as a dihydroxy compound, when m = n = 0 or a bisphenol compound is used among the compounds represented by the general formula (1), an aqueous solution of an alkali metal salt of a dihydroxy compound and phosgene are chlorinated. It is preferably obtained by an interfacial polycondensation method in which the reaction is carried out in the presence of a solvent such as methylene.
 また、ジヒドロキシ化合物がフェノール性水酸基を有しない構造である場合、即ち上記一般式(1)で表される化合物と、上記一般式(3)で表される部位を有する化合物及び/又は上記一般式(4)、(5)または(6)で表されるジヒドロキシ化合物とを併用する場合には、ジヒドロキシ化合物と炭酸ジエステルを触媒の存在下、エステル交換させて副生するモノヒドロキシ化合物を系外に除きながら分子量を増大させるエステル交換法で得ることが好ましい。 In addition, when the dihydroxy compound has a structure having no phenolic hydroxyl group, that is, the compound represented by the general formula (1), the compound having the site represented by the general formula (3) and / or the general formula. When the dihydroxy compound represented by (4), (5) or (6) is used in combination, the monohydroxy compound produced as a by-product by transesterifying the dihydroxy compound and the carbonic acid diester in the presence of a catalyst is removed from the system. It is preferable to obtain by a transesterification method in which the molecular weight is increased while removing.
 上記一般式(3)で表される部位を有するジヒドロキシ化合物又は上記一般式(4)、(5)、(6)で表されるジヒドロキシ化合物をモノマー成分として用いるポリカーボネート樹脂は、低温で分解が始まりやすい傾向にあり、ポリカーボネート樹脂の分解が生じない温度で濾過しようとすると、粘度が高すぎて、通常の濾過面積ではフィルターでの圧力損失が大きくなって、フィルターの破損を招いたり、濾過時の剪断発熱によって樹脂の劣化を招くという問題があった。逆に、破損を避けようとすると、圧力損失が小さく濾過精度の低い(目開きの大きい)フィルターを用いなければならなかった。 The polycarbonate resin using the dihydroxy compound having the site represented by the general formula (3) or the dihydroxy compound represented by the general formula (4), (5), or (6) as a monomer component starts to decompose at a low temperature. When attempting to filter at a temperature that does not cause decomposition of the polycarbonate resin, the viscosity is too high, and the pressure loss at the filter becomes large at the normal filtration area, causing damage to the filter or during filtration. There was a problem that the resin was deteriorated by shearing heat generation. Conversely, in order to avoid breakage, a filter having a small pressure loss and low filtration accuracy (a large opening) had to be used.
 また、フィルターの破損または樹脂の剪断発熱による劣化を抑制しつつ濾過精度の高いフィルターを使おうとすると、濾過面積を過大にせざるを得ず、結果的に濾過処理に要する時間が長くなって、ポリカーボネート樹脂の劣化を招く等の問題が生じた。 In addition, if a filter with high filtration accuracy is used while suppressing deterioration due to filter breakage or shear heat generation of the resin, the filtration area must be excessively increased, resulting in an increase in the time required for the filtration treatment, and polycarbonate. Problems such as resin degradation have occurred.
 更には、フィルターでの圧力損失を抑制し、濾過処理に要する時間を短くするために、ポリカーボネート樹脂の溶融粘度を低くしようとすると、ポリカーボネート樹脂自体の分子量を下げたり、濾過温度を上げたりする必要があるが、分子量を下げると機械的強度または耐熱性の低下を招き、濾過時の温度を高くすると、樹脂が分解・劣化し、機械的強度などの物性を満足する樹脂が得られなくなるだけでなく、着色を助長したり、分解ガスによってストランドのガス切れを招いて、ペレット化が安定的に得られないという問題があった。 Furthermore, in order to suppress the pressure loss in the filter and shorten the time required for the filtration process, it is necessary to lower the molecular weight of the polycarbonate resin itself or increase the filtration temperature when trying to lower the melt viscosity of the polycarbonate resin. However, lowering the molecular weight causes a decrease in mechanical strength or heat resistance.If the temperature during filtration is increased, the resin will decompose and deteriorate, and it will not be possible to obtain a resin that satisfies the physical properties such as mechanical strength. However, there was a problem that the coloring was promoted or the strands were out of gas by the decomposition gas, so that the pelletization could not be stably obtained.
 これらの問題は、上記一般式(3)で表される部位を有するジヒドロキシ化合物、中でも環状エーテル構造を有するジヒドロキシ化合物をモノマー成分として用いる場合に起こりやすい。 These problems are likely to occur when a dihydroxy compound having a site represented by the general formula (3), particularly a dihydroxy compound having a cyclic ether structure, is used as a monomer component.
 従って、上記一般式(3)で表される部位を有するジヒドロキシ化合物又は上記一般式(4)、(5)または(6)で表されるジヒドロキシ化合物をモノマー成分として用いる場合には、フィルターを用いて濾過する際の樹脂の温度の制御が重要となり、本発明は特に有用である。 Therefore, when the dihydroxy compound having the site represented by the general formula (3) or the dihydroxy compound represented by the general formula (4), (5) or (6) is used as a monomer component, a filter is used. Therefore, it is important to control the temperature of the resin during filtration, and the present invention is particularly useful.
(炭酸ジエステル)
 本発明で用いられる炭酸ジエステルとしては、下記一般式(11)で表されるものが挙げられる。これらの炭酸ジエステルは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
(Carbonated diester)
Examples of the carbonic acid diester used in the present invention include those represented by the following general formula (11). These carbonic acid diesters may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 A、Aは、置換若しくは無置換の炭素数1~18の脂肪族または置換若しくは無置換の芳香族基であり、AとAは同一であっても異なっていてもよい。 A 1 and A 2 are a substituted or unsubstituted aliphatic group having 1 to 18 carbon atoms or a substituted or unsubstituted aromatic group, and A 1 and A 2 may be the same or different.
 A及びAは置換または無置換の芳香族炭化水素基が好ましく、無置換の芳香族炭化水素基がより好ましい。尚、脂肪族炭化水素基の置換基としては、例えば、エステル基、エーテル基、カルボン酸、アミド基およびハロゲンが挙げられる。芳香族炭化水素基の置換基としては、例えば、メチル基およびエチル基等のアルキル基が挙げられる。 A 1 and A 2 are preferably a substituted or unsubstituted aromatic hydrocarbon group, more preferably an unsubstituted aromatic hydrocarbon group. Examples of the substituent of the aliphatic hydrocarbon group include an ester group, an ether group, a carboxylic acid, an amide group, and a halogen. Examples of the substituent of the aromatic hydrocarbon group include alkyl groups such as a methyl group and an ethyl group.
 上記一般式(11)で表される炭酸ジエステルとしては、例えば、ジフェニルカーボネートおよびジトリルカーボネート等の置換ジフェニルカーボネート、ジメチルカーボネート、ジエチルカーボネート並びにジ-t-ブチルカーボネート等が挙げられる。これらの中でも好ましくはジフェニルカーボネートまたは置換ジフェニルカーボネートであり、特に好ましくはジフェニルカーボネートである。 Examples of the carbonic acid diester represented by the general formula (11) include substituted diphenyl carbonates such as diphenyl carbonate and ditolyl carbonate, dimethyl carbonate, diethyl carbonate, and di-t-butyl carbonate. Among these, diphenyl carbonate or substituted diphenyl carbonate is preferable, and diphenyl carbonate is particularly preferable.
 なお、炭酸ジエステルは、塩化物イオンなどの不純物を含む場合があり、重合反応を阻害したり、得られるポリカーボネート樹脂の色相を悪化させたりする場合があるため、必要に応じて、蒸留などにより精製したものを使用することが好ましい。 Carbonic acid diesters may contain impurities such as chloride ions, which may hinder the polymerization reaction or worsen the hue of the resulting polycarbonate resin. It is preferable to use what was done.
 本発明の方法において、本発明のジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルとをエステル交換反応により重縮合させることによって、ポリカーボネート樹脂を得られる。 In the method of the present invention, a polycarbonate resin can be obtained by polycondensing a dihydroxy compound containing the dihydroxy compound of the present invention and a carbonic acid diester by a transesterification reaction.
 原料であるジヒドロキシ化合物と炭酸ジエステルは、反応槽に独立に投下してもエステル交換反応をさせることは可能であるが、エステル交換反応前に均一に混合することもできる。 The raw material dihydroxy compound and carbonic acid diester can be transesterified even if they are dropped independently into the reaction tank, but they can be mixed uniformly before the transesterification.
 前記混合の温度は80℃以上が好ましく、より好ましくは90℃以上であり、その上限は250℃以下が好ましく、より好ましくは200℃以下、更に好ましくは150℃以下である。中でも100℃以上130℃以下が好ましい。 The mixing temperature is preferably 80 ° C. or higher, more preferably 90 ° C. or higher, and the upper limit is preferably 250 ° C. or lower, more preferably 200 ° C. or lower, still more preferably 150 ° C. or lower. Among these, 100 ° C. or higher and 130 ° C. or lower is preferable.
 混合の温度が低すぎると溶解速度が遅かったり、溶解度が不足したりする可能性があり、しばしば固化等の不具合を招き、混合の温度が高すぎるとジヒドロキシ化合物の熱劣化を招く場合があり、結果的に得られるポリカーボネート樹脂の色相が悪化する可能性がある。 If the mixing temperature is too low, the dissolution rate may be slow or the solubility may be insufficient, often causing problems such as solidification, and if the mixing temperature is too high, the dihydroxy compound may be thermally deteriorated. As a result, the hue of the polycarbonate resin obtained may be deteriorated.
 本発明の方法において、原料である本発明のジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルとを混合する操作環境の酸素濃度は、10vol%以下が好ましく、より好ましくは0.0001vol%~10vol%、さらに好ましくは0.0001vol%~5vol%、特に好ましくは0.0001vol%~1vol%の雰囲気下で行うことが、色相悪化防止の観点から好ましい。 In the method of the present invention, the oxygen concentration in the operating environment in which the dihydroxy compound containing the dihydroxy compound of the present invention as a raw material and the carbonic acid diester are mixed is preferably 10 vol% or less, more preferably 0.0001 vol% to 10 vol%, It is preferably performed in an atmosphere of 0.0001 vol% to 5 vol%, particularly preferably 0.0001 vol% to 1 vol%, from the viewpoint of preventing hue deterioration.
 本発明において、炭酸ジエステルは、反応に用いる本発明のジヒドロキシ化合物を含む全ジヒドロキシ化合物に対して、0.90~1.20のモル比率で用いることが好ましく、より好ましくは0.95~1.10、更に好ましくは0.97~1.03、特に好ましくは0.99~1.02である。 In the present invention, the carbonic acid diester is preferably used in a molar ratio of 0.90 to 1.20, more preferably 0.95 to 1.20, based on all dihydroxy compounds including the dihydroxy compound of the present invention used in the reaction. 10, more preferably 0.97 to 1.03, particularly preferably 0.99 to 1.02.
 前記モル比率が小さくなると、製造されたポリカーボネート樹脂の末端水酸基が増加して、ポリマーの熱安定性が悪化し、成形時に着色を招いたり、エステル交換反応の速度が低下したり、所望する高分子量体が得られない可能性がある。 When the molar ratio is decreased, the terminal hydroxyl group of the produced polycarbonate resin is increased, the thermal stability of the polymer is deteriorated, coloring is caused at the time of molding, the rate of the transesterification reaction is decreased, and the desired high molecular weight. The body may not be obtained.
 一方、前記モル比率が大きくなると、エステル交換反応の速度が低下したり、所望とする分子量のポリカーボネートの製造が困難となったり、ポリカーボネート樹脂中の残存炭酸ジエステル量が増加し、押出時または成型時にガスの発生を招いたりする場合がある。エステル交換反応速度の低下は、重合反応時の熱履歴を増大させ、結果的に得られたポリカーボネート樹脂の色相を悪化させる可能性がある。 On the other hand, when the molar ratio increases, the rate of transesterification decreases, the production of polycarbonate having a desired molecular weight becomes difficult, the amount of residual carbonic diester in the polycarbonate resin increases, and during extrusion or molding In some cases, gas may be generated. The decrease in the transesterification reaction rate may increase the thermal history during the polymerization reaction and may deteriorate the hue of the resulting polycarbonate resin.
 更には、本発明のジヒドロキシ化合物を含む全ジヒドロキシ化合物に対して、炭酸ジエステルのモル比率が増大すると、得られるポリカーボネート樹脂中の残存炭酸ジエステル量が増加し、これが成形時にガスとなり成形不良を招いたり、製品からブリードアウトしたりする場合があり、好ましくない。 Furthermore, when the molar ratio of the carbonic diester is increased with respect to all the dihydroxy compounds including the dihydroxy compound of the present invention, the amount of residual carbonic diester in the obtained polycarbonate resin increases, which becomes a gas at the time of molding and causes molding defects. Bleed out from the product, which is not preferable.
 本発明の方法で得られるポリカーボネート樹脂ペレットまたはフィルムに残存する炭酸ジエステルの濃度は、好ましくは200重量ppm以下、より好ましくは100重量ppm以下、さらに好ましくは60重量ppm以下、中でも30重量ppm以下が好ましい。 The concentration of the carbonic acid diester remaining in the polycarbonate resin pellet or film obtained by the method of the present invention is preferably 200 ppm by weight or less, more preferably 100 ppm by weight or less, still more preferably 60 ppm by weight or less, and particularly 30 ppm by weight or less. preferable.
(触媒)
 本発明の方法においては、上述のように本発明のジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルとをエステル交換反応により重縮合させてポリカーボネート樹脂を製造する際に、エステル交換触媒(以下、単に「触媒」又は「重合触媒」とも言う。)を存在させることができる。
(catalyst)
In the method of the present invention, as described above, when a polycarbonate resin is produced by polycondensation of a dihydroxy compound containing the dihydroxy compound of the present invention and a carbonic acid diester by a transesterification reaction, a transesterification catalyst (hereinafter simply referred to as “catalyst”). Or “polymerization catalyst”) can be present.
 本発明の方法において、エステル交換触媒(触媒)は、特にポリカーボネート樹脂の熱安定性または色相を表すイエローインデックス(YI)値に影響を与え得る。用いられるエステル交換触媒としては、ポリカーボネート樹脂の熱安定性、色相、を満足するものであれば、限定されるものではないが、例えば、長周期型周期表における1族または2族(以下、単に「1族」、「2族」と表記する。)の金属化合物、並びに塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物およびアミン系化合物等の塩基性化合物が挙げられる。好ましくは1族金属化合物及び/又は2族金属化合物が使用される。より好ましくは、長周期型周期表2族の金属及びリチウムからなる群より選ばれる金属の金属化合物である。 In the method of the present invention, the transesterification catalyst (catalyst) may particularly affect the yellow index (YI) value representing the thermal stability or hue of the polycarbonate resin. The transesterification catalyst used is not limited as long as it satisfies the thermal stability and hue of the polycarbonate resin. For example, the transesterification catalyst is not limited to Group 1 or Group 2 in the long-period periodic table (hereinafter, simply referred to as “transesterification catalyst”). And a basic compound such as a basic boron compound, a basic phosphorus compound, a basic ammonium compound, and an amine compound. Preferably, Group 1 metal compounds and / or Group 2 metal compounds are used. More preferably, it is a metal compound of a metal selected from the group consisting of a long-period group 2 metal and lithium.
 前記の1族金属化合物及び/又は2族金属化合物の形態としては、通常、水酸化物、又は炭酸塩、カルボン酸塩若しくはフェノール塩といった塩の形態で用いられるが、入手のし易さ、取扱いの容易さから、水酸化物、炭酸塩または酢酸塩が好ましく、色相と重合活性の観点からは酢酸塩が好ましい。 The group 1 metal compound and / or group 2 metal compound is usually used in the form of a hydroxide or a salt such as a carbonate, carboxylate or phenol salt. From the standpoint of hue and polymerization activity, acetate is preferred from the viewpoint of easiness.
 前記1族金属化合物としては、具体的には、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸水素セシウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、酢酸セシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸セシウム、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素リチウム、水素化ホウ素セシウム、フェニル化ホウ素ナトリウム、フェニル化ホウ素カリウム、フェニル化ホウ素リチウム、フェニル化ホウ素セシウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、安息香酸セシウム、リン酸水素2ナトリウム、リン酸水素2カリウム、リン酸水素2リチウム、リン酸水素2セシウム、フェニルリン酸2ナトリウム、フェニルリン酸2カリウム、フェニルリン酸2リチウム、フェニルリン酸2セシウム、ナトリウム、カリウム、リチウム、セシウムのアルコレート、フェノレート、ビスフェノールAの2ナトリウム塩、2カリウム塩、2リチウム塩および2セシウム塩等が挙げられる。中でもリチウム化合物が好ましい。 Specific examples of the Group 1 metal compound include sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, lithium hydrogen carbonate, cesium hydrogen carbonate, sodium carbonate, Potassium carbonate, lithium carbonate, cesium carbonate, sodium acetate, potassium acetate, lithium acetate, cesium acetate, sodium stearate, potassium stearate, lithium stearate, cesium stearate, sodium borohydride, potassium borohydride, borohydride Lithium, cesium borohydride, sodium borohydride, potassium phenyl borohydride, lithium phenyl borohydride, cesium phenyl borohydride, sodium benzoate, potassium benzoate, lithium benzoate, cesium benzoate, 2 sodium hydrogen phosphate, 2 potassium hydrogen phosphate, 2 lithium hydrogen phosphate, 2 cesium hydrogen phosphate, 2 sodium phenyl phosphate, 2 potassium phenyl phosphate, 2 lithium phenyl phosphate, 2 cesium phenyl phosphate, sodium, Examples thereof include potassium, lithium, cesium alcoholate, phenolate, disodium salt of bisphenol A, 2 potassium salt, 2 lithium salt, and 2 cesium salt. Of these, lithium compounds are preferred.
 また、前記2族金属化合物としては、具体的には、例えば、水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸水素バリウム、炭酸水素マグネシウム、炭酸水素ストロンチウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸マグネシウムおよびステアリン酸ストロンチウム等が挙げられる。 Specific examples of the Group 2 metal compound include calcium hydroxide, barium hydroxide, magnesium hydroxide, strontium hydroxide, calcium hydrogen carbonate, barium hydrogen carbonate, magnesium hydrogen carbonate, strontium hydrogen carbonate, and carbonic acid. Examples thereof include calcium, barium carbonate, magnesium carbonate, strontium carbonate, calcium acetate, barium acetate, magnesium acetate, strontium acetate, calcium stearate, barium stearate, magnesium stearate, and strontium stearate.
 中でもマグネシウム化合物、カルシウム化合物またはバリウム化合物が好ましく、重合活性と得られるポリカーボネート樹脂の色相の観点から、マグネシウム化合物及びカルシウム化合物からなる群より選ばれる少なくとも1種の金属化合物が更に好ましく、最も好ましくはマグネシウム化合物である。 Among them, a magnesium compound, a calcium compound or a barium compound is preferable, and at least one metal compound selected from the group consisting of a magnesium compound and a calcium compound is more preferable from the viewpoint of polymerization activity and the hue of the obtained polycarbonate resin, most preferably magnesium. A compound.
 なお、前記1族金属化合物及び/又は2族金属化合物と共に、補助的に、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物またはアミン系化合物等の塩基性化合物を併用することも可能であるが、重合反応中に揮発してトラブルの原因となる可能性があるため、1族金属化合物及び/又は2族金属化合物のみを使用することが特に好ましい。 In addition, a basic compound such as a basic boron compound, a basic phosphorus compound, a basic ammonium compound, or an amine compound can be used in combination with the Group 1 metal compound and / or the Group 2 metal compound. However, it is particularly preferable to use only the Group 1 metal compound and / or the Group 2 metal compound because it may volatilize during the polymerization reaction and cause trouble.
 前記の併用可能な塩基性ホウ素化合物としては、例えば、テトラメチルホウ素、テトラエチルホウ素、テトラプロピルホウ素、テトラブチルホウ素、トリメチルエチルホウ素、トリメチルベンジルホウ素、トリメチルフェニルホウ素、トリエチルメチルホウ素、トリエチルベンジルホウ素、トリエチルフェニルホウ素、トリブチルベンジルホウ素、トリブチルフェニルホウ素、テトラフェニルホウ素、ベンジルトリフェニルホウ素、メチルトリフェニルホウ素およびブチルトリフェニルホウ素等のナトリウム塩、カリウム塩、リチウム塩、カルシウム塩、バリウム塩、マグネシウム塩並びにストロンチウム塩等が挙げられる。 Examples of the basic boron compound that can be used in combination include tetramethylboron, tetraethylboron, tetrapropylboron, tetrabutylboron, trimethylethylboron, trimethylbenzylboron, trimethylphenylboron, triethylmethylboron, triethylbenzylboron, and triethyl. Sodium salt, potassium salt, lithium salt, calcium salt, barium salt, magnesium salt and strontium such as phenylboron, tributylbenzylboron, tributylphenylboron, tetraphenylboron, benzyltriphenylboron, methyltriphenylboron and butyltriphenylboron Examples include salts.
 前記の併用可能な塩基性リン化合物としては、例えば、トリエチルホスフィン、トリ-n-プロピルホスフィン、トリイソプロピルホスフィン、トリ-n-ブチルホスフィン、トリフェニルホスフィン、トリブチルホスフィンおよび四級ホスホニウム塩等が挙げられる。 Examples of the basic phosphorus compound that can be used in combination include triethylphosphine, tri-n-propylphosphine, triisopropylphosphine, tri-n-butylphosphine, triphenylphosphine, tributylphosphine, and quaternary phosphonium salts. .
 前記の併用可能な塩基性アンモニウム化合物としては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシドおよびブチルトリフェニルアンモニウムヒドロキシド等が挙げられる。 Examples of the basic ammonium compound that can be used in combination include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylbenzylammonium hydroxide, and trimethyl. Phenylammonium hydroxide, triethylmethylammonium hydroxide, triethylbenzylammonium hydroxide, triethylphenylammonium hydroxide, tributylbenzylammonium hydroxide, tributylphenylammonium hydroxide, tetraphenylammonium hydroxide, benzyltriphenylammonium hydroxide, methyltrimethyl Phenyl Nmo onium hydroxide and butyltriphenyl ammonium hydroxide, and the like.
 前記の併用可能なアミン系化合物としては、例えば、4-アミノピリジン、2-アミノピリジン、N,N-ジメチル-4-アミノピリジン、4-ジエチルアミノピリジン、2-ヒドロキシピリジン、2-メトキシピリジン、4-メトキシピリジン、2-ジメチルアミノイミダゾール、2-メトキシイミダゾール、イミダゾール、2-メルカプトイミダゾール、2-メチルイミダゾールおよびアミノキノリン等が挙げられる。 Examples of the amine compounds that can be used in combination include 4-aminopyridine, 2-aminopyridine, N, N-dimethyl-4-aminopyridine, 4-diethylaminopyridine, 2-hydroxypyridine, 2-methoxypyridine, 4 -Methoxypyridine, 2-dimethylaminoimidazole, 2-methoxyimidazole, imidazole, 2-mercaptoimidazole, 2-methylimidazole, aminoquinoline and the like.
 前記触媒の使用量は、用いた全ジヒドロキシ化合物1mol当たり0.1μmol~300μmolが好ましく、より好ましくは0.5μmol~100μmolであり、さらに好ましくは0.5μmol~50μmol、特に好ましくは0.5μmol~20μmol、最も好ましくは1μmol~15μmolである。 The amount of the catalyst used is preferably 0.1 μmol to 300 μmol, more preferably 0.5 μmol to 100 μmol, still more preferably 0.5 μmol to 50 μmol, and particularly preferably 0.5 μmol to 20 μmol per 1 mol of all dihydroxy compounds used. Most preferably, it is 1 μmol to 15 μmol.
 中でも長周期型周期表第2族の金属及びリチウムから選ばれる少なくとも1種の金属化合物を用いる場合、用いた全ジヒドロキシ化合物1mol当たり、金属量として、通常0.1μmol以上であることが好ましく、より好ましくは0.5μmol以上、更に好ましくは0.7μmol以上である。また上限としては、通常50μmolであることが好ましく、より好ましくは30μmol、さらに好ましくは20μmol、特に好ましくは15μmol、中でも10μmolが好ましい。 In particular, when using at least one metal compound selected from the metals of Group 2 of the long-period periodic table and lithium, the amount of metal is preferably usually 0.1 μmol or more per 1 mol of all dihydroxy compounds used, Preferably it is 0.5 micromol or more, More preferably, it is 0.7 micromol or more. The upper limit is usually preferably 50 μmol, more preferably 30 μmol, still more preferably 20 μmol, particularly preferably 15 μmol, and particularly preferably 10 μmol.
 前記触媒の使用量が少なすぎると、重縮合反応が進行し難くなり、所望の分子量のポリカーボネート樹脂が得られなくなる可能性がある。一方、前記触媒の使用量が多すぎると、望まざる副反応によって得られるポリカーボネート樹脂の色相を悪化させたり、異物の原因になる可能性がある。 If the amount of the catalyst used is too small, the polycondensation reaction will not proceed easily, and a polycarbonate resin having a desired molecular weight may not be obtained. On the other hand, if the amount of the catalyst used is too large, the hue of the polycarbonate resin obtained by an undesired side reaction may be deteriorated or foreign matter may be caused.
 また、1族金属、中でもナトリウムは、ポリカーボネート樹脂中に多く含まれると色相に悪影響を及ぼす可能性があり、該金属は使用する触媒からのみではなく、原料または反応装置から混入する場合がある。そのため、ポリカーボネート樹脂中のこれらの化合物の合計量は、金属量として、通常1重量ppm以下であることが好ましく、より好ましくは0.8重量ppm以下、さらに好ましくは0.7重量ppm以下である。 In addition, when a large amount of Group 1 metal, especially sodium, is contained in the polycarbonate resin, the hue may be adversely affected, and the metal may be mixed not only from the catalyst used but also from the raw material or the reactor. Therefore, the total amount of these compounds in the polycarbonate resin is usually preferably 1 ppm by weight or less, more preferably 0.8 ppm by weight or less, and even more preferably 0.7 ppm by weight or less as the amount of metal. .
 なお、ポリカーボネート樹脂中の金属量は、湿式灰化などの方法でポリカーボネート樹脂中の金属を回収した後、原子発光、原子吸光またはInductively Coupled Plasma(ICP)等の方法を使用して測定することが出来る。 The amount of metal in the polycarbonate resin can be measured using a method such as atomic emission, atomic absorption, or Inductively Coupled Plasma (ICP) after recovering the metal in the polycarbonate resin by a method such as wet ashing. I can do it.
 尚、上記触媒は、反応器に直接添加してもよいし、ジヒドロキシ化合物と炭酸ジエステルを予め混合する原料調整槽に添加し、その後、反応器に存在させる方法を取ってもよいし、反応器に原料を供給する配管中で添加してもよい。 The catalyst may be added directly to the reactor, or may be added to a raw material adjusting tank in which a dihydroxy compound and a carbonic acid diester are mixed in advance, and then present in the reactor. You may add in the piping which supplies a raw material.
(エステル交換法による重縮合方法)
 本発明の方法において、前記のジヒドロキシ化合物と前記の炭酸ジエステルとを重縮合させてポリカーボネート樹脂を得る方法は、上述の触媒存在下、複数の反応器を用いて多段階で実施されるとよい。
(Polycondensation method by transesterification)
In the method of the present invention, the method for obtaining a polycarbonate resin by polycondensation of the dihydroxy compound and the carbonic acid diester may be carried out in multiple stages using a plurality of reactors in the presence of the catalyst.
 反応の形式は、バッチ式、連続式、あるいはバッチ式と連続式の組み合わせのいずれの方法でもよい。中でも品質の安定化の観点からは連続式が好ましい。重合初期においては、相対的に低温、低真空でプレポリマーを得、重合後期においては相対的に高温、高真空で所定の値まで分子量を上昇させることが好ましい。 The reaction format may be any of batch, continuous, or a combination of batch and continuous. Among these, the continuous type is preferable from the viewpoint of stabilizing the quality. In the initial stage of polymerization, it is preferable to obtain a prepolymer at a relatively low temperature and low vacuum, and to increase the molecular weight to a predetermined value at a relatively high temperature and high vacuum in the late stage of polymerization.
 各分子量段階でのジャケット温度と内温、反応系内の圧力を適切に選択することが色相および熱安定性の観点から好ましい。例えば、重合反応が所定の値に到達する前に温度および圧力のどちらか一方でも早く変化させすぎると、未反応のモノマーが留出し、ジヒドロキシ化合物と炭酸ジエステルのモル比率を狂わせ、重合速度の低下を招いたり、所定の分子量または末端基を持つポリマーが得られなかったりして結果的に本願発明の目的を達成することができない可能性がある。 It is preferable from the viewpoints of hue and thermal stability that the jacket temperature and internal temperature at each molecular weight stage and the pressure in the reaction system are appropriately selected. For example, if either the temperature or the pressure is changed too quickly before the polymerization reaction reaches a predetermined value, unreacted monomers will be distilled, causing the molar ratio of the dihydroxy compound and the carbonic acid diester to change, resulting in a decrease in the polymerization rate. Or a polymer having a predetermined molecular weight or terminal group cannot be obtained, and as a result, the object of the present invention may not be achieved.
 更には、留出するモノマーの量を抑制するために、重合反応器に還流冷却器を用いることは有効であり、特に未反応モノマー成分が多い重合初期の反応器でその効果は大きい。還流冷却器に導入される冷媒の温度は使用するモノマーに応じて適宜選択することができる。 Furthermore, it is effective to use a reflux condenser for the polymerization reactor in order to suppress the amount of monomer to be distilled off, and the effect is particularly great in a reactor in the early stage of polymerization where there are many unreacted monomer components. The temperature of the refrigerant introduced into the reflux condenser can be appropriately selected according to the monomer used.
 通常、還流冷却器に導入される冷媒の温度は該還流冷却器の入口において45~180℃であることが好ましく、より好ましくは、80~150℃、特に好ましくは100~140℃である。 Usually, the temperature of the refrigerant introduced into the reflux condenser is preferably 45 to 180 ° C. at the inlet of the reflux condenser, more preferably 80 to 150 ° C., and particularly preferably 100 to 140 ° C.
 冷媒の温度が高すぎると還流量が減り、その効果が低下し、逆に低すぎると、本来留去すべきモノヒドロキシ化合物の留去効率が低下する傾向にある。冷媒としては、温水、蒸気、熱媒オイル等が用いられ、蒸気、熱媒オイルが好ましい。 If the temperature of the refrigerant is too high, the amount of reflux is reduced and the effect is reduced. On the other hand, if the temperature is too low, the distillation efficiency of the monohydroxy compound that should be distilled off tends to be reduced. As the refrigerant, hot water, steam, heat medium oil or the like is used, and steam or heat medium oil is preferable.
 前記重合の速度を適切に維持し、モノマーの留出を抑制しながら、最終的なポリカーボネート樹脂の異物発生を抑制し、色相または熱安定性を損なわないようにするためには、前述の触媒の種類と量の選定が重要である。 In order to maintain the polymerization rate appropriately and suppress the distillation of the monomer while suppressing the occurrence of foreign matter in the final polycarbonate resin and not impairing the hue or thermal stability, Selection of type and quantity is important.
 本発明では、前記の触媒を用いて、複数の反応器を用いて多段階で重合させて製造することが好ましい。重合反応初期においては、反応液中に含まれるモノマーが多いために、必要な重合速度を維持しつつ、モノマーの揮散を抑制することが好ましい。また、重合反応後期においては、平衡を重合側にシフトさせるために、副生するモノヒドロキシ化合物を十分留去させることが好ましい。したがって、初期と後期では好ましい重合反応条件が異なることから、重合を複数の反応器で実施することが好ましい。このように、異なった重合反応条件を設定するには、直列に配置された複数の重合反応器を用いることが、生産効率の観点から好ましい。 In the present invention, it is preferable that the catalyst is used for polymerization in multiple stages using a plurality of reactors. In the initial stage of the polymerization reaction, since a large amount of monomer is contained in the reaction solution, it is preferable to suppress the volatilization of the monomer while maintaining a necessary polymerization rate. In the latter stage of the polymerization reaction, it is preferable to sufficiently distill off the by-produced monohydroxy compound in order to shift the equilibrium to the polymerization side. Therefore, since preferable polymerization reaction conditions are different between the initial stage and the late stage, it is preferable to carry out the polymerization in a plurality of reactors. Thus, in order to set different polymerization reaction conditions, it is preferable from the viewpoint of production efficiency to use a plurality of polymerization reactors arranged in series.
 本発明で前記重合の際に使用される反応器は、上述の通り、少なくとも2つ以上であることが好ましく、生産効率などの観点からは、より好ましくは3つ以上、さらに好ましくは3~5つ、特に好ましくは4つである。 As described above, the number of reactors used in the polymerization in the present invention is preferably at least two, more preferably three or more, and still more preferably 3 to 5 from the viewpoint of production efficiency. And particularly preferably four.
 本発明において、反応器が2つ以上であれば、それぞれの反応器中で、条件の異なる反応条件を設定することができ、それぞれの反応器で連続的に温度・圧力を変えていくなどしてもよい。 In the present invention, if there are two or more reactors, different reaction conditions can be set in each reactor, and the temperature and pressure are continuously changed in each reactor. May be.
 本発明において、前記の重合触媒は原料調製槽または原料貯槽に添加することもできるし、重合槽に直接添加することもできるが、供給の安定性および重合の制御の観点からは、重合槽に供給される前の原料配管の途中に触媒供給配管を設置することが好ましく、より好ましくは水溶液で供給する。 In the present invention, the polymerization catalyst can be added to the raw material preparation tank or raw material storage tank, or can be added directly to the polymerization tank. From the viewpoint of supply stability and polymerization control, the polymerization catalyst is added to the polymerization tank. The catalyst supply pipe is preferably installed in the middle of the raw material pipe before being supplied, and more preferably supplied as an aqueous solution.
 前記重合反応の温度は、低すぎると生産性の低下または製品への熱履歴の増大を招き、高すぎるとモノマーの揮散を招くだけでなく、ポリカーボネート樹脂の分解または着色を助長する可能性がある。 If the temperature of the polymerization reaction is too low, the productivity is lowered or the thermal history of the product is increased. If the temperature is too high, not only the monomer is volatilized but also decomposition or coloring of the polycarbonate resin may be promoted. .
 具体的な前記温度は次の通りである。第1段目の反応は、重合反応器の内温の最高温度としては、140~270℃が好ましく、より好ましくは170~240℃、更に好ましくは180~210℃で、110~1kPaが好ましく、より好ましくは70~5kPa、更に好ましくは30~10kPa(絶対圧力)の圧力下、好ましくは0.1~10時間、より好ましくは0.5~3時間、副生するモノヒドロキシ化合物を反応系外へ留去しながら実施される。 The specific temperature is as follows. In the first stage reaction, the maximum internal temperature of the polymerization reactor is preferably 140 to 270 ° C., more preferably 170 to 240 ° C., still more preferably 180 to 210 ° C., and preferably 110 to 1 kPa, More preferably 70 to 5 kPa, still more preferably 30 to 10 kPa (absolute pressure), preferably 0.1 to 10 hours, more preferably 0.5 to 3 hours. It is carried out while distilling off.
 本発明における第1段目の反応とは、重合反応全体を通じて留出するモノヒドロキシ化合物の5重量%以上が留出する反応器の中で、プロセスの最上流にある反応器での反応を指す。 The reaction in the first stage in the present invention refers to a reaction in a reactor at the uppermost stream of the process in a reactor in which 5% by weight or more of a monohydroxy compound distilled through the entire polymerization reaction is distilled. .
 第2段目以降は、反応系の圧力を第1段目の圧力から徐々に下げ、引き続き発生するモノヒドロキシ化合物を反応系外へ除きながら、最終的には反応系の圧力(絶対圧力)を好ましくは2kPa以下、より好ましくは1kPa以下にして、好ましくは210℃以上、より好ましくは220℃以上、好ましくは270℃以下、より好ましくは250℃以下、更に好ましくは240℃以下で、好ましくは0.1~10時間、より好ましくは、1~6時間、特に好ましくは0.5~3時間行うことが好ましい。 In the second and subsequent stages, the pressure in the reaction system is gradually reduced from the pressure in the first stage, and the monohydroxy compound that is subsequently generated is removed from the reaction system. Preferably it is 2 kPa or less, more preferably 1 kPa or less, preferably 210 ° C. or more, more preferably 220 ° C. or more, preferably 270 ° C. or less, more preferably 250 ° C. or less, still more preferably 240 ° C. or less, preferably 0 1 to 10 hours, more preferably 1 to 6 hours, particularly preferably 0.5 to 3 hours.
 特にポリカーボネート樹脂の着色または熱劣化を抑制し、色相または熱安定性の良好なポリカーボネート樹脂を得るには、全反応段階における内温の最高温度が好ましくは260℃以下、より好ましくは250℃以下、特に好ましくは245℃以下、中でも240℃以下であることが好ましい。 In particular, in order to suppress the coloring or thermal deterioration of the polycarbonate resin and obtain a polycarbonate resin having a good hue or thermal stability, the maximum internal temperature in all reaction steps is preferably 260 ° C. or less, more preferably 250 ° C. or less, Especially preferably, it is 245 degrees C or less, Especially it is preferable that it is 240 degrees C or less.
 ここでいう内温とはプロセス液の温度を示し、通常、反応器に具備された熱電対等を用いた温度計によって測定される。また、重合反応後段の重合速度の低下を抑止し、熱履歴による劣化を最小限に抑えるためには、重合の最終段階でプラグフロー性と界面更新性に優れた横型反応器を使用することが好ましい。 Here, the internal temperature indicates the temperature of the process liquid, and is usually measured by a thermometer using a thermocouple or the like provided in the reactor. In order to suppress the decrease in the polymerization rate after the polymerization reaction and minimize deterioration due to thermal history, it is necessary to use a horizontal reactor with excellent plug flow and interface renewability at the final stage of polymerization. preferable.
 ただし、所定の分子量のポリカーボネート樹脂を得るために、重合温度を高く、重合時間を長くし過ぎると、色相を表すイエローインデックス(YI)値は大きくなる傾向にある点に留意する必要がある。 However, in order to obtain a polycarbonate resin having a predetermined molecular weight, it is necessary to note that the yellow index (YI) value representing the hue tends to increase when the polymerization temperature is increased and the polymerization time is excessively prolonged.
 前記の反応中で副生され留去したモノヒドロキシ化合物は、資源有効活用の観点から、燃料または化学品の原料として用いることが好ましい。特には必要に応じ精製を行った後、炭酸ジフェニルまたはビスフェノールA等の原料として再利用することが好ましい。 The monohydroxy compound distilled off as a by-product in the reaction is preferably used as a raw material for fuel or chemicals from the viewpoint of effective utilization of resources. In particular, it is preferable to reuse the raw material such as diphenyl carbonate or bisphenol A after purification as necessary.
(重縮合反応以降の工程)
 本発明のポリカーボネート樹脂は、上述の重縮合反応を行った後、フィルターを用いて濾過する。中でもポリカーボネート樹脂中に含まれる低分子量成分の除去、または熱安定剤等の添加混練を実施するため、重縮合で得られたポリカーボネート樹脂を押出機に導入し、次いで押出機から排出されたポリカーボネート樹脂を、フィルターを用いて濾過することが好ましい。
(Process after polycondensation reaction)
The polycarbonate resin of the present invention is filtered using a filter after performing the above-mentioned polycondensation reaction. In particular, the polycarbonate resin obtained by polycondensation is introduced into an extruder and then discharged from the extruder in order to remove low molecular weight components contained in the polycarbonate resin or to add and knead a heat stabilizer or the like. Is preferably filtered using a filter.
 前記のようにして重縮合で得られたポリカーボネート樹脂を、フィルターを用いて濾過してペレット化する方法としては、例えば、次の方法が挙げられる。 Examples of the method for pelletizing the polycarbonate resin obtained by polycondensation as described above by using a filter include the following methods.
 例えば、濾過に必要な圧力を発生させるために、最終重合反応器からギアポンプまたはスクリュー等を用いて溶融状態でポリカーボネート樹脂を抜き出し、前記フィルターで濾過する方法;
 最終重合反応器から溶融状態で一軸または二軸の押出機にポリカーボネート樹脂を供給し、溶融押出しした後、前記フィルターで濾過し、ストランドの形態で冷却固化させて、回転式カッター等でペレット化する方法;
 最終重合反応器から固化させることなく溶融状態のままで一軸または二軸の押出機にポリカーボネート樹脂を供給し、溶融押出しした後、一旦ストランドの形態で冷却固化させてペレット化し、該ペレットを再度押出機に導入して前記フィルターで濾過し、ストランドの形態で冷却固化させて、ペレット化する方法;
 又は、最終重合反応器から溶融状態でポリカーボネート樹脂を抜き出し、押出機を通さずにストランドの形態で冷却固化させて一旦ペレット化させた後に、一軸または二軸の押出機にペレットを供給し、溶融押出しした後、前記フィルターで濾過し、ストランドの形態で冷却固化させてペレット化させる方法;
等である。
For example, in order to generate a pressure required for filtration, a method of extracting polycarbonate resin in a molten state from a final polymerization reactor using a gear pump or a screw and filtering with the filter;
Polycarbonate resin is supplied from a final polymerization reactor to a uniaxial or biaxial extruder in a molten state, melt extruded, filtered through the filter, cooled and solidified in the form of a strand, and pelletized with a rotary cutter or the like. Method;
Polycarbonate resin is supplied to a single-screw or twin-screw extruder in a molten state without being solidified from the final polymerization reactor, melt-extruded, then cooled and solidified in the form of a strand, pelletized, and the pellet is extruded again. A method of introducing into a machine, filtering with the filter, cooling and solidifying in the form of a strand, and pelletizing;
Alternatively, the polycarbonate resin is extracted from the final polymerization reactor in a molten state, cooled and solidified in the form of strands without passing through an extruder, and once pelletized, then the pellets are supplied to a single or twin screw extruder and melted. A method of extruding, filtering through the filter, cooling and solidifying in the form of a strand, and pelletizing;
Etc.
 中でも熱履歴を最小限に抑え、色相の悪化または分子量の低下等、熱劣化を抑制するためには、最終重合反応器から固化させることなく溶融状態のまま一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、ギアポンプを用いて前記フィルターに供給、濾過し、ダイスから吐出させてストランドの形態で冷却固化させて、回転式カッター等でペレット化する方法が好ましい。 In particular, in order to minimize heat history and suppress thermal degradation such as deterioration of hue or molecular weight, the resin is put into a single or twin screw extruder in a molten state without solidifying from the final polymerization reactor. A method of feeding, melting and extruding, feeding to the filter using a gear pump, filtering, discharging from a die, cooling and solidifying in the form of a strand, and pelletizing with a rotary cutter or the like is preferable.
<製造装置の一例>
 以上に記載した原料モノマーから冷却固化して得られたポリカーボネート樹脂ペレット(以下、「冷却固化されたポリカーボネート樹脂」を単に「ポリカーボネート樹脂」という場合がある。)を得る本発明を実施する装置の一例を、図1の工程図に示す。
<Example of manufacturing equipment>
An example of an apparatus for carrying out the present invention for obtaining polycarbonate resin pellets obtained by cooling and solidification from the raw material monomers described above (hereinafter, “cooled and solidified polycarbonate resin” may be simply referred to as “polycarbonate resin”). Is shown in the process diagram of FIG.
 原料モノマーである本発明のジヒドロキシ化合物として9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンとイソソルビド(ISB)を、炭酸ジエステルとしてジフェニルカーボネート(DPC)を、重合触媒として酢酸マグネシウムを用いたものとする。 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene and isosorbide (ISB) are used as the raw material monomer of the present invention, diphenyl carbonate (DPC) is used as the carbonic acid diester, and magnesium acetate is used as the polymerization catalyst. Shall be used.
 まず、原料調製工程において、窒素ガス雰囲気下、所定の温度で調製されたDPCの溶融液が、原料供給口1aから原料混合槽2aに連続的に供給される。また、窒素ガス雰囲気下で計量されたISBの溶融液、および9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンの粉体が、それぞれ原料供給口1b、1cから、原料混合槽2aに連続的に供給される。そして、原料混合槽2a内で攪拌翼3aによりこれらは混合され、均一な原料混合溶融液が得られる。 First, in the raw material preparation step, a DPC melt prepared at a predetermined temperature in a nitrogen gas atmosphere is continuously supplied from the raw material supply port 1a to the raw material mixing tank 2a. Also, the ISB melt and the 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene powder weighed under a nitrogen gas atmosphere are fed from the raw material supply ports 1b and 1c, respectively, into the raw material mixing tank. 2a is continuously supplied. And these are mixed by the stirring blade 3a in the raw material mixing tank 2a, and a uniform raw material mixing melt is obtained.
 次に、得られた原料混合溶融液は、原料供給ポンプ4a、原料濾過フィルター5aを経由して第1竪型撹拌反応槽6aに連続的に供給される。また、原料触媒は水溶液として、原料混合溶融液の移送配管途中の触媒供給口1dから連続的に供給される。 Next, the obtained raw material mixture melt is continuously supplied to the first vertical stirring reaction tank 6a via the raw material supply pump 4a and the raw material filtration filter 5a. Further, the raw material catalyst is continuously supplied as an aqueous solution from the catalyst supply port 1d in the middle of the raw material mixed melt transfer pipe.
 図1の製造装置の重縮合工程においては、第1竪型撹拌反応槽6a、第2竪型撹拌反応槽6b、第3竪型撹拌反応槽6c、第4横型撹拌反応槽6dが直列に設けられる。各反応器では液面レベルを一定に保ち、連続的に重縮合反応が行われ、第1竪型撹拌反応槽6aの槽底より排出された重合反応液は第2竪型撹拌反応槽6bへ、続いて、第3竪型撹拌反応槽6cへ、第4横型撹拌反応槽6dへと順次連続供給され、重縮合反応が進行する。各反応器における反応条件は、重縮合反応の進行とともに高温、高真空、低攪拌速度となるようにそれぞれ設定することが好ましい。 In the polycondensation step of the production apparatus of FIG. 1, a first vertical stirring reaction tank 6a, a second vertical stirring reaction tank 6b, a third vertical stirring reaction tank 6c, and a fourth horizontal stirring reaction tank 6d are provided in series. It is done. In each reactor, the liquid level is kept constant, the polycondensation reaction is continuously performed, and the polymerization reaction liquid discharged from the bottom of the first vertical stirring reaction tank 6a is transferred to the second vertical stirring reaction tank 6b. Subsequently, the third vertical stirring reaction tank 6c and the fourth horizontal stirring reaction tank 6d are sequentially and continuously supplied, and the polycondensation reaction proceeds. The reaction conditions in each reactor are preferably set so as to become high temperature, high vacuum, and low stirring speed as the polycondensation reaction proceeds.
 第1竪型撹拌反応槽6a、第2竪型撹拌反応槽6b及び第3竪型撹拌反応槽6cには、マックスブレンド翼7a、7b、7cがそれぞれ設けられる。また、第4横型撹拌反応槽6dには、2軸メガネ型攪拌翼7dが設けられる。第3竪型攪拌反応槽6cの後には移送する反応液が高粘度になるため、ギアポンプ4bが設けられる。 Max blend blades 7a, 7b and 7c are provided in the first vertical stirring reaction tank 6a, the second vertical stirring reaction tank 6b and the third vertical stirring reaction tank 6c, respectively. The fourth horizontal stirring reaction tank 6d is provided with a biaxial glasses-type stirring blade 7d. Since the reaction liquid to be transferred becomes highly viscous after the third vertical stirring reaction tank 6c, a gear pump 4b is provided.
 第1竪型撹拌反応槽6aと第2竪型撹拌反応槽6bは、供給熱量が特に大きくなることがあるため、熱媒温度が過剰に高温にならないように、それぞれ内部熱交換器8a、8bが設けられる。 In the first vertical stirring reaction tank 6a and the second vertical stirring reaction tank 6b, the amount of supplied heat may be particularly large, so that the internal heat exchangers 8a and 8b are respectively provided so that the heat medium temperature does not become excessively high. Is provided.
 なお、これらの4器の反応器には、それぞれ、重縮合反応により生成する副生物等を排出するための留出管11a、11b、11c、11dが取り付けられる。第1竪型撹拌反応槽6aと第2竪型撹拌反応槽6bについては留出液の一部を反応系に戻すために、還流冷却器9a、9bと還流管10a、10bがそれぞれ設けられる。還流比は反応器の圧力と、還流冷却器の熱媒温度とをそれぞれ適宜調整することにより制御可能である。 In addition, distilling tubes 11a, 11b, 11c, and 11d for discharging by-products generated by the polycondensation reaction are attached to these four reactors, respectively. For the first vertical stirring reaction tank 6a and the second vertical stirring reaction tank 6b, reflux condensers 9a and 9b and reflux pipes 10a and 10b are provided in order to return a part of the distillate to the reaction system. The reflux ratio can be controlled by appropriately adjusting the pressure of the reactor and the heat medium temperature of the reflux condenser.
 前記の留出管11a、11b、11c、11dは、それぞれ凝縮器12a、12b、12c、12dに接続し、また、各反応器は、減圧装置13a、13b、13c、13dにより、所定の減圧状態に保たれる。 The distillation pipes 11a, 11b, 11c, and 11d are connected to condensers 12a, 12b, 12c, and 12d, respectively, and each reactor is in a predetermined depressurized state by a decompression device 13a, 13b, 13c, and 13d. To be kept.
 また、各反応器にそれぞれ取り付けられた凝縮器12a、12b、12c、12dから、フェノール(モノヒドロキシ化合物)等の副生物が連続的に液化回収される。また、第3竪型撹拌反応槽6cと第4横型攪拌反応器6dにそれぞれ取り付けられた凝縮器12c、12dの下流側にはコールドトラップ(図示せず)が設けられ、副生物が連続的に固化回収される。 Further, by-products such as phenol (monohydroxy compound) are continuously liquefied and recovered from the condensers 12a, 12b, 12c, and 12d attached to the respective reactors. Further, a cold trap (not shown) is provided downstream of the condensers 12c and 12d attached to the third vertical stirring reaction tank 6c and the fourth horizontal stirring reactor 6d, respectively, so that by-products are continuously present. Solidified and recovered.
 所定の分子量まで上昇させた反応液は第4横型撹拌反応槽6dから抜き出され、ギアポンプ4cにより押出機15aを繋ぐ配管は熱媒が外部に流れるジャケット型の二重管となっていることが好ましい。 The reaction liquid raised to a predetermined molecular weight is withdrawn from the fourth horizontal stirring reaction tank 6d, and the pipe connecting the extruder 15a by the gear pump 4c is a jacket-type double pipe in which the heat medium flows to the outside. preferable.
 前記熱媒の温度はポリカーボネート樹脂の粘度または配管の圧力損失、ポリカーボネート樹脂の熱安定性を考慮し適宜決めることができるが、高すぎるとポリカーボネート樹脂の劣化またはガスの発生を招く可能性があるため、通常300℃以下であることが好ましく、より好ましくは280℃以下、さらに好ましくは260℃以下、特に好ましくは250℃以下、中でも240℃以下が好ましい。 The temperature of the heating medium can be appropriately determined in consideration of the viscosity of the polycarbonate resin, the pressure loss of the piping, and the thermal stability of the polycarbonate resin. However, if the temperature is too high, the polycarbonate resin may be deteriorated or gas may be generated. Usually, it is preferably 300 ° C. or lower, more preferably 280 ° C. or lower, further preferably 260 ° C. or lower, particularly preferably 250 ° C. or lower, and particularly preferably 240 ° C. or lower.
 一方、前記熱媒の温度が低すぎると配管での圧力損失が大きくなり、配管径を大きくする必要があるが、同時にポリカーボネート樹脂の配管中での滞留時間が長くなり熱劣化を招く可能性があるため、通常150℃以上であることが好ましく、より好ましくは180℃以上、さらに好ましくは200℃以上、特に好ましくは210℃以上、中でも220℃以上が好ましい。 On the other hand, if the temperature of the heating medium is too low, the pressure loss in the piping becomes large and the piping diameter needs to be increased, but at the same time, the residence time in the piping of the polycarbonate resin becomes long and may cause thermal deterioration. Therefore, it is usually preferably 150 ° C. or higher, more preferably 180 ° C. or higher, further preferably 200 ° C. or higher, particularly preferably 210 ° C. or higher, and particularly preferably 220 ° C. or higher.
 押出機15aには真空ベントが具備されており、ポリカーボネート中の残存低分子成分を除去する。また、必要に応じて酸化防止剤、光安定剤、着色剤または離型剤などが添加される。 The extruder 15a is equipped with a vacuum vent to remove residual low molecular components in the polycarbonate. Further, an antioxidant, a light stabilizer, a colorant, a release agent, or the like is added as necessary.
 押出機15aからギアポンプ4dによりフィルター15bに樹脂が供給され、異物が濾過される。フィルター15bを通った樹脂はダイス15cからストランド状に抜き出され、ストランド冷却槽16aで水により樹脂を冷却固化した後、ストランドカッター16bでペレットにされる。こうして得られたポリカーボネート樹脂ペレットは空送ブロワー16cにより、気力輸送されて、製品ホッパー16dに送られる。計量器16eで所定量の製品が製品袋16fに梱包される。 Resin is supplied to the filter 15b by the gear pump 4d from the extruder 15a, and foreign matter is filtered. The resin that has passed through the filter 15b is extracted in the form of a strand from the die 15c, and after cooling and solidifying the resin with water in the strand cooling tank 16a, the resin is pelletized by the strand cutter 16b. The polycarbonate resin pellets thus obtained are pneumatically transported by the air blower 16c and sent to the product hopper 16d. A predetermined amount of product is packed in the product bag 16f by the measuring instrument 16e.
 ギアポンプ4c、4dの種類についての制限はないが、中でもギアポンプの吐出側から一部のポリマーを、バルブを介してグランド部に導き、一定の圧力を軸封部にかけ、吸込口へ戻す回路を有し、シール部にグランドパッキンを用いない自己循環型シール式ギアポンプが異物低減の観点から好ましい。 There are no restrictions on the types of gear pumps 4c and 4d, but there is a circuit that leads a part of the polymer from the discharge side of the gear pump to the ground through the valve, applies a certain pressure to the shaft seal, and returns it to the suction port. A self-circulating seal type gear pump that does not use a gland packing at the seal portion is preferable from the viewpoint of reducing foreign matter.
<重合反応後のペレット製造工程の詳細>
(押出機)
 本発明において前記押出機の形態は限定されるものではないが、一軸または二軸の押出機が用いられる。中でも後述の脱揮性能の向上または添加剤の均一な混練のためには、二軸の押出機が好ましい。この場合、軸の回転方向は異方向であっても同方向であってもよいが、混練性能の観点からは同方向が好ましい。押出機の使用により前記フィルターへのポリカーボネート樹脂の供給を安定させることができる。
<Details of pellet manufacturing process after polymerization reaction>
(Extruder)
In the present invention, the form of the extruder is not limited, but a uniaxial or biaxial extruder is used. Among them, a twin screw extruder is preferable for improving the devolatilization performance described later or for uniform kneading of the additive. In this case, the rotation direction of the shaft may be different or the same, but the same direction is preferable from the viewpoint of kneading performance. Use of an extruder can stabilize the supply of polycarbonate resin to the filter.
 また、上記の通り重縮合させて得られたポリカーボネート樹脂中には、色相または熱安定性、さらにはブリードアウト等により製品に悪影響を与える可能性のある原料モノマー、エステル交換反応で副生するモノヒドロキシ化合物、またはポリカーボネートオリゴマー等の低分子量化合物が残存していることが多い。 In addition, in the polycarbonate resin obtained by polycondensation as described above, hue or thermal stability, and further, raw material monomers that may adversely affect the product due to bleed-out, etc. Low molecular weight compounds such as hydroxy compounds or polycarbonate oligomers often remain.
 前記押出機としてベント口を有するものを用い、好ましくはベント口から真空ポンプ等を用いて減圧にすることにより、前記低分子量化合物を脱揮除去することも可能である。また、前記押出機内に水等の揮発性液体を導入して、脱揮を促進することもできる。ベント口は1つであっても複数であってもよいが、好ましくは2つ以上である。 It is also possible to devolatilize and remove the low molecular weight compound by using an extruder having a vent port and preferably reducing the pressure from the vent port using a vacuum pump or the like. Moreover, volatile liquids, such as water, can be introduce | transduced in the said extruder, and devolatilization can also be accelerated | stimulated. The number of vent ports may be one or plural, but preferably two or more.
 さらに、前記押出機を用いて後述する熱安定剤、離型剤または着色剤等の添加剤を混練することもできる。 Furthermore, additives such as a thermal stabilizer, a release agent, or a colorant, which will be described later, can be kneaded using the extruder.
 さらにまた、押出機内でのポリカーボネート樹脂の熱劣化を抑制するために、押出機に備えられた軸(以下、スクリューと呼ぶことがある)の回転数を好ましくは300rpm以下、より好ましくは250rpm以下、さらに好ましくは200rpm以下にする。前記スクリューの回転数を300rpm以下とすることにより、ポリカーボネート樹脂の剪断発熱が大きくなるのを抑制し、色相の悪化または分子量の低下を防ぐことができる。 Furthermore, in order to suppress the thermal deterioration of the polycarbonate resin in the extruder, the rotational speed of a shaft (hereinafter sometimes referred to as a screw) provided in the extruder is preferably 300 rpm or less, more preferably 250 rpm or less, More preferably, it is 200 rpm or less. By setting the number of rotations of the screw to 300 rpm or less, it is possible to suppress an increase in shear heat generation of the polycarbonate resin, and to prevent a deterioration in hue or a decrease in molecular weight.
 一方、前記スクリューの回転数が小さすぎると脱揮性能の悪化、または添加剤の混練性能の悪化を招く可能性があるだけでなく、単位時間当たりの処理量が低下し、生産性の悪化を招くため、好ましくは50rpm以上、より好ましくは70rpm以上である。 On the other hand, if the number of rotations of the screw is too small, not only may the devolatilization performance deteriorate, or the additive kneading performance deteriorates, but the throughput per unit time decreases, resulting in deterioration of productivity. Therefore, it is preferably 50 rpm or more, more preferably 70 rpm or more.
 そして、前記スクリューの周速は、前記押出機のスクリュー径と回転数により適宜決定されるが、ポリカーボネート樹脂の剪断による発熱に起因する着色または分子量の低下等の熱劣化を抑制するためには、通常1.0m/秒以下であることが好ましく、より好ましくは0.6m/秒以下、特に好ましくは0.4m/秒以下である。 And the peripheral speed of the screw is appropriately determined by the screw diameter and the rotational speed of the extruder, but in order to suppress thermal deterioration such as coloring or molecular weight reduction due to heat generated by shearing of the polycarbonate resin, Usually, it is preferably 1.0 m / second or less, more preferably 0.6 m / second or less, and particularly preferably 0.4 m / second or less.
 一方、周速が小さくなりすぎると、真空脱揮時のベントアップを招いたり、脱揮性能または添加剤の分散性能が低下する傾向があるため、通常0.05m/秒以上であることが好ましく、より好ましくは0.1m/秒以上である。 On the other hand, if the peripheral speed becomes too small, venting up during vacuum devolatilization tends to occur, or devolatilization performance or additive dispersion performance tends to decrease. Therefore, it is usually preferably 0.05 m / second or more. More preferably, it is 0.1 m / second or more.
 通常、押出機のスクリューは、様々な機能を持たせるために、複数のエレメント(スクリューエレメント)から構成されている。一般的には、主に樹脂の搬送を目的とした螺旋ねじ(フライト)のみからなるフルフライト、樹脂の混練を目的としたニーディングディスクまたは樹脂のシールを目的としたシールリング等から構成される。目的に応じて樹脂の搬送方向と逆方向にねじを配した逆フライトも用いられる。 Usually, the screw of the extruder is composed of a plurality of elements (screw elements) in order to have various functions. Generally, it consists of a full flight consisting mainly of spiral screws (flight) for the purpose of transporting the resin, a kneading disc for the purpose of resin kneading, or a seal ring for the purpose of resin sealing. . Depending on the purpose, a reverse flight in which screws are arranged in the direction opposite to the direction of resin conveyance is also used.
 また、ねじの切り方によって二条型または三条型があるが、本発明においては、前記押出機のスクリュー径に対して処理量が大きく取れ、スクリュー回転により発生する剪断発熱を抑制できる二条型の深溝タイプが好ましい。 Also, depending on how the screw is cut, there are two-row type or three-row type, but in the present invention, a double-row deep groove capable of taking a large amount of processing with respect to the screw diameter of the extruder and suppressing shearing heat generated by screw rotation. Type is preferred.
 本発明においては、これらスクリューエレメントの構成は限定されるものではないが、ニーディングディスクを有するものであることが好ましく、中でも該ニーディングディスクの合計の長さが、スクリュー全体の長さの20%以下であることが好ましく、より好ましくは15%以下、最も好ましくは10%以下である。該ニーディングディスクの合計の長さが長すぎると、樹脂の剪断による局所的な発熱が増大し、ポリカーボネート樹脂の色相の悪化または分子量の低下という問題が生じやすくなる。 In the present invention, the configuration of these screw elements is not limited, but it is preferable to have a kneading disk. Among them, the total length of the kneading disk is 20% of the total length of the screw. % Or less, more preferably 15% or less, and most preferably 10% or less. If the total length of the kneading disk is too long, local heat generation due to the shearing of the resin increases, and the problem of deterioration of the hue or molecular weight of the polycarbonate resin tends to occur.
 一方、前記ニーディングディスクの合計の長さが短すぎると、上述した脱揮または添加剤の混練時の性能が低下する可能性があるため、該ニーディングディスクの合計の長さがスクリュー全体の長さの3%以上であることが好ましく、5%以上がより好ましい。 On the other hand, if the total length of the kneading disk is too short, the performance during devolatilization or kneading of the additive may be deteriorated. It is preferably 3% or more of the length, and more preferably 5% or more.
 前記ニーディングディスクとしては、樹脂の搬送方向に対して順送り型、直交型、逆送り型があるが、使用される樹脂の粘度または要求される性能に応じて適宜選択することができる。 The kneading disk includes a forward feed type, an orthogonal type, and a reverse feed type with respect to the resin transport direction, and can be appropriately selected according to the viscosity of the resin used or the required performance.
 前記スクリューエレメントの材質としては、表面のニッケル等の含有量を高くして鉄含有量を低く抑えたり、TiNまたはCrNで表面硬度を高める処理を施したりすることが好ましい。 As the material of the screw element, it is preferable to increase the surface nickel content or the like to keep the iron content low, or to treat the surface hardness with TiN or CrN.
 本発明においては、前記押出機で1時間当たりに押し出す樹脂の重量をW(kg/h)、前記押出機のバレルの断面積をS(m)とした場合に、下記式(7)を満たすことが好ましい。
 12000 ≦ W/S ≦ 60000 ・・・(7)
In the present invention, when the weight of the resin extruded per hour by the extruder is W (kg / h) and the sectional area of the barrel of the extruder is S (m 2 ), the following formula (7) is satisfied. It is preferable to satisfy.
12000 ≦ W / S ≦ 60000 (7)
 W/Sが小さ過ぎると、処理するポリカーボネート樹脂量に対して押出機の大きさが過大になるだけでなく、押出機内での滞留時間が増大し、ポリカーボネート樹脂の分子量低下または着色等の劣化を招く可能性があるため、その下限は、好ましくは12000、より好ましくは15000、更に好ましくは20000、特に好ましくは25000である。 If W / S is too small, not only will the size of the extruder be excessive with respect to the amount of polycarbonate resin to be processed, but also the residence time in the extruder will increase, resulting in a decrease in molecular weight or deterioration of the coloring of the polycarbonate resin. The lower limit is preferably 12000, more preferably 15000, still more preferably 20000, and particularly preferably 25000.
 一方、大き過ぎると、押出機の大きさに対し過大なポリカーボネート樹脂が供給され、脱揮効率の低下、剪断発熱によるポリカーボネート樹脂の劣化を招く可能性があるため、その上限は、好ましくは60000、より好ましくは50000、更に好ましくは40000、特に好ましくは35000である。 On the other hand, if it is too large, an excessively large polycarbonate resin is supplied with respect to the size of the extruder, which may lead to a decrease in devolatilization efficiency and deterioration of the polycarbonate resin due to shearing heat generation. Therefore, the upper limit is preferably 60000, More preferably, it is 50000, still more preferably 40000, and particularly preferably 35000.
 本発明において、前記押出機に溶融状態のままでポリカーボネート樹脂を供給する場合の樹脂の温度は200℃以上であることが好ましく、中でも210℃以上、特には220℃以上が好ましい。またその上限は、250℃以下であることが好ましく、中でも245℃以下、特には240℃以下であることが好ましい。 In the present invention, the temperature of the resin when the polycarbonate resin is supplied in the molten state to the extruder is preferably 200 ° C. or higher, and particularly preferably 210 ° C. or higher, particularly 220 ° C. or higher. Further, the upper limit is preferably 250 ° C. or lower, more preferably 245 ° C. or lower, particularly 240 ° C. or lower.
 前記押出機に供給するポリカーボネート樹脂の温度が低すぎると、ポリカーボネート樹脂の溶融粘度が高くなり過ぎて供給が不安定になったり、押出機の駆動モーターの負荷が過大となり、上記式(2)を満たせなくなったりする可能性があるだけでなく、押出機内での剪断発熱が大きくなりポリカーボネート樹脂の劣化を招く可能性がある。一方、該温度が高すぎるとポリカーボネート樹脂の劣化が起こりやすくなり、色相の悪化若しくは分子量の低下、またはそれに伴う機械的強度の低下を招く傾向がある。 If the temperature of the polycarbonate resin supplied to the extruder is too low, the melt viscosity of the polycarbonate resin becomes too high and the supply becomes unstable, and the load on the drive motor of the extruder becomes excessive. In addition to the possibility of not being able to satisfy, there is a possibility that the shear heat generation in the extruder becomes large and the polycarbonate resin is deteriorated. On the other hand, when the temperature is too high, the polycarbonate resin is likely to be deteriorated, which tends to cause a deterioration in hue, a decrease in molecular weight, or a decrease in mechanical strength associated therewith.
 前記押出機へ供給するポリカーボネート樹脂の温度は、最終重合反応器の内温を制御する他、押出機へポリカーボネート樹脂を供給する配管の温度を制御したり、熱交換器を設ける等の方法で制御することができる。 The temperature of the polycarbonate resin supplied to the extruder is controlled by a method such as controlling the internal temperature of the final polymerization reactor, controlling the temperature of the piping supplying the polycarbonate resin to the extruder, or installing a heat exchanger. can do.
 さらに本発明において、前記押出機から排出されたポリカーボネート樹脂の温度は、通常300℃未満であることが好ましく、280℃未満にするのがより好ましく、さらに好ましくは270℃未満、特に好ましくは260℃未満である。 Furthermore, in the present invention, the temperature of the polycarbonate resin discharged from the extruder is usually preferably less than 300 ° C, more preferably less than 280 ° C, still more preferably less than 270 ° C, particularly preferably 260 ° C. Is less than.
 前記押出機から排出されたポリカーボネート樹脂の温度が高くなりすぎると、ポリカーボネート樹脂の劣化が起こりやすくなり、色相の悪化若しくは分子量の低下、それに伴う機械的強度の低下を招く傾向がある。 If the temperature of the polycarbonate resin discharged from the extruder becomes too high, the polycarbonate resin tends to be deteriorated, which tends to cause a deterioration in hue or a decrease in molecular weight, and a decrease in mechanical strength associated therewith.
 また逆に、押出機から排出されるポリカーボネート樹脂の温度が低くなりすぎると、ポリカーボネート樹脂の溶融粘度が高く、押出機への負荷が大きくなり、スクリュー回転が不安定になったり、モーターの過負荷を招いたりするため、好ましくは220℃以上、より好ましくは230℃以上、特に好ましくは240℃以上である。 Conversely, if the temperature of the polycarbonate resin discharged from the extruder becomes too low, the melt viscosity of the polycarbonate resin is high, the load on the extruder increases, screw rotation becomes unstable, and the motor is overloaded. Therefore, it is preferably 220 ° C. or higher, more preferably 230 ° C. or higher, and particularly preferably 240 ° C. or higher.
 通常、押出機ではスクリューの回転に伴う樹脂の剪断による発熱があり、一般的には供給されるポリカーボネート樹脂の温度より排出されるポリカーボネート樹脂の温度の方が高くなる傾向にあり、特にポリカーボネート樹脂の分子量が高く溶融粘度が高い場合にこの傾向は顕著となる。 Usually, in an extruder, heat is generated by shearing of the resin accompanying the rotation of the screw, and generally the temperature of the discharged polycarbonate resin tends to be higher than the temperature of the supplied polycarbonate resin. This tendency becomes significant when the molecular weight is high and the melt viscosity is high.
 ポリカーボネート樹脂の温度を上げれば溶融粘度は低下し、その分剪断発熱は抑えられる傾向にあるが、ポリカーボネート樹脂の温度自体が高ければ劣化が起こりやすくなり、色相の悪化若しくは分子量の低下、またはそれに伴う機械的強度の低下を招く傾向があるため、熱安定性に劣る高粘度のポリカーボネート樹脂の劣化を防ぎ、押出を行うことは容易ではない。 If the temperature of the polycarbonate resin is raised, the melt viscosity will decrease, and the shearing heat generation will tend to be suppressed accordingly.However, if the temperature of the polycarbonate resin itself is high, the deterioration tends to occur, the hue deteriorates or the molecular weight decreases, or it accompanies it. Since there is a tendency to cause a decrease in mechanical strength, it is not easy to perform extrusion by preventing deterioration of a polycarbonate resin having high viscosity that is inferior in thermal stability.
 前記押出機から排出されたポリカーボネート樹脂の温度は、通常、供給されるポリカーボネート樹脂の温度またはバレルに付帯するヒーターの温度で制御するが、ポリカーボネート樹脂の前記押出機への供給量または押出機のスクリュー回転数によっても変わることがあるため、これらの条件も合わせて制御することが好ましい。 The temperature of the polycarbonate resin discharged from the extruder is usually controlled by the temperature of the polycarbonate resin supplied or the temperature of the heater attached to the barrel, but the amount of polycarbonate resin supplied to the extruder or the screw of the extruder Since this may vary depending on the number of rotations, it is preferable to control these conditions together.
 特に粘度の高いポリカーボネート樹脂では、スクリュー回転による剪断発熱が大きくなり、供給される樹脂の温度に対し、排出される樹脂の温度が上がる傾向にあるため、添加剤の分散、脱揮性能、生産性等を維持しながら該剪断発熱によるポリカーボネート樹脂の劣化を抑制するには、スクリューの回転数または周速とエレメント構成の選択が重要である。 Especially in the case of polycarbonate resin with high viscosity, shear heat generation due to screw rotation increases, and the temperature of the discharged resin tends to rise with respect to the temperature of the supplied resin. Therefore, dispersion of additives, devolatilization performance, and productivity In order to suppress the deterioration of the polycarbonate resin due to the shear heat generation while maintaining the above, it is important to select the rotation speed or peripheral speed of the screw and the element configuration.
(フィルター)
 本発明においては、重縮合して得られたポリカーボネート樹脂中の焼けまたはゲル等の異物を除去するためフィルターで濾過する。中でも、残存モノマーまたは副生フェノール等を減圧脱揮により除去し、熱安定剤または離型剤等の添加剤を混合するために、ポリカーボネート樹脂を押出機で押出した後、フィルターで濾過することが好ましい。
(filter)
In the present invention, filtration is performed with a filter in order to remove foreign matters such as burns or gels in the polycarbonate resin obtained by polycondensation. Among them, it is possible to remove residual monomers or by-product phenol by decompression devolatilization, and to extrude polycarbonate resin with an extruder and filter with a filter in order to mix additives such as heat stabilizer or mold release agent. preferable.
 前記のフィルターの形態としては、例えば、キャンドル型、プリーツ型およびリーフディスク型等公知のものが挙げられる。中でもフィルターの格納容器に対する濾過面積が大きく取れるリーフディスク型が好ましく、また、濾過面積が大きく取れるように複数組み合わせて用いるのが好ましい。 Examples of the form of the filter include known ones such as a candle type, a pleat type, and a leaf disk type. Among these, a leaf disk type that can provide a large filtration area with respect to the storage container of the filter is preferable, and a plurality of combinations are preferably used so that a large filtration area can be obtained.
 前記リーフディスク型フィルターは、保持部材(リテイナーとも言う)に、濾過部材(以下、メディアと言うことがある)を組合せて構成されており、それらフィルターが(場合によっては複数枚・複数個)格納容器に格納されたユニット(フィルターユニットと言うこともある)の形式で用いられる。 The leaf disk type filter is configured by combining a holding member (also referred to as a retainer) and a filtering member (hereinafter also referred to as media), and storing these filters (in some cases, a plurality or plural). It is used in the form of a unit (sometimes called a filter unit) stored in a container.
 本発明においては、前記フィルターの差圧(圧力損失)が小さくなるように、複数の目開きのメディアを重ね合わせ、樹脂の侵入方向から順に目開きが細かくなっているタイプが好ましく、フィルター表面にゲルを破砕する目的で金属製のパウダーを焼結したタイプのものを使用することもできる。 In the present invention, a type in which a plurality of aperture media are overlapped so that the differential pressure (pressure loss) of the filter is small and the apertures become finer in order from the resin intrusion direction is preferable. For the purpose of crushing the gel, it is also possible to use a type obtained by sintering metal powder.
 本発明において前記フィルターの目開きは、99%の濾過精度として、50μm以下であり、好ましくは30μm以下、より好ましくは20μm以下である。異物を特に低減させたい場合には15μm以下が好ましいが、目開きが小さくなると前記フィルターでの圧力損失が増大して、前記フィルターの破損を招いたり、剪断発熱によりポリカーボネート樹脂が劣化したりする可能性があるため、99%の濾過精度として、1μm以上であることが好ましい。 In the present invention, the aperture of the filter is 50 μm or less, preferably 30 μm or less, more preferably 20 μm or less, as 99% filtration accuracy. When it is desired to reduce foreign matters, the thickness is preferably 15 μm or less. However, if the aperture is reduced, the pressure loss in the filter may increase, and the filter may be damaged, or the polycarbonate resin may be deteriorated by shearing heat generation. Therefore, the filtration accuracy of 99% is preferably 1 μm or more.
 尚、ここで99%の濾過精度として定義される目開きとは、ISO16889(2008年)に準拠して決定された下記式(12)で表されるβχ値が100の場合のχの値を言う。
 βχ=(χμmより大きい1次側の粒子数)/(χμmより大きい2次側の粒子数)・・・(12)
(ここで1次側とはフィルターでの濾過前、2次側とは濾過後を示す)
Here, the aperture defined as 99% filtration accuracy is the value of χ when the βχ value represented by the following formula (12) determined in accordance with ISO 16889 (2008) is 100. To tell.
βχ = (number of particles on the primary side larger than χ μm) / (number of particles on the secondary side larger than χ μm) (12)
(Here, the primary side is before filtration with a filter, and the secondary side is after filtration.)
 前記フィルターのメディアの材質としては、樹脂の濾過に必要な強度と耐熱性を有している限り制限はないが、中でも鉄の含有量が少ないSUS316またはSUS316L等のステンレス系が好ましい。 The material of the filter media is not limited as long as it has the strength and heat resistance necessary for resin filtration, but stainless steel such as SUS316 or SUS316L with a low iron content is particularly preferable.
 また、織りの種類としては、平織、綾織、平畳織または綾畳織等、異物の捕集部分が規則正しい織り状になっているものの他、不織布タイプも用いることができる。本発明においては、ゲルの捕集能力の高い不織布タイプ、中でも不織布を構成する鋼線どうしを焼結させて固定したタイプが好ましい。 Also, as the type of weaving, a nonwoven fabric type can be used in addition to a regular weaving part of the foreign matter such as plain weave, twill weave, plain tatami mat or twill mat weave. In the present invention, a non-woven fabric type having a high gel-capturing ability, particularly a type in which steel wires constituting the non-woven fabric are sintered and fixed is preferable.
 また、前記フィルターに鉄製分が含まれていると、200℃を超える高温での濾過の際に樹脂を劣化させる傾向があるため、上記のように、ステンレスの場合は鉄製分の含有量が少ないことが好ましく、さらに、使用前に不動態化処理しておくことが好ましい。 In addition, if the filter contains an iron component, the resin tends to deteriorate during filtration at a high temperature exceeding 200 ° C. Therefore, as described above, in the case of stainless steel, the iron content is small. In addition, it is preferable to passivate it before use.
 不動態化処理としては、例えば、前記フィルターを硝酸等の酸に浸漬させたり、前記フィルターに酸を通液させたりして表面に不動態を形成させる方法、および水蒸気または酸素存在下で焙焼(加熱)処理する方法、並びにこれらを併用する方法等が挙げられる。中でも硝酸処理と焙焼の両方を実施することが好ましい。 As the passivation treatment, for example, a method in which the filter is immersed in an acid such as nitric acid or an acid is passed through the filter to form a passivated surface, and roasting is performed in the presence of water vapor or oxygen. The method of (heating) processing, the method of using these together, etc. are mentioned. Among them, it is preferable to perform both nitric acid treatment and roasting.
 前記フィルターについて焙焼処理を行う場合の温度は350℃~500℃であることが好ましく、より好ましくは350℃~450℃であり、焙焼時間は通常3時間~200時間であることが好ましく、より好ましくは5時間~100時間である。 The temperature when the filter is roasted is preferably 350 ° C. to 500 ° C., more preferably 350 ° C. to 450 ° C., and the roasting time is usually preferably 3 hours to 200 hours, More preferably, it is 5 hours to 100 hours.
 焙焼の温度が低すぎたり、時間が短すぎたりすると不動態の形成が不充分になり、濾過時にポリカーボネート樹脂を劣化させる傾向がある。一方、焙焼の温度が高すぎたり、時間が長すぎたりすると、フィルターメディアの損傷が激しくなり、必要な濾過精度が出なくなる可能性がある。 If the roasting temperature is too low or the time is too short, the formation of passivity is insufficient, and the polycarbonate resin tends to deteriorate during filtration. On the other hand, if the temperature of roasting is too high or the time is too long, the filter media may be severely damaged and the required filtration accuracy may not be achieved.
 また、前記フィルターを硝酸で処理する際の硝酸の濃度は、通常5重量%~50重量%であることが好ましく、より好ましくは10重量%~30重量%、処理時の温度は、通常5℃~100℃であることが好ましく、より好ましくは50℃~90℃、処理時間は、通常5分~120分であることが好ましく、より好ましくは10分~60分である。 Further, the concentration of nitric acid when the filter is treated with nitric acid is usually preferably 5 to 50% by weight, more preferably 10 to 30% by weight, and the temperature during the treatment is usually 5 ° C. It is preferably from -100 ° C, more preferably from 50 ° C to 90 ° C, and the treatment time is usually preferably from 5 minutes to 120 minutes, more preferably from 10 minutes to 60 minutes.
 硝酸の濃度が低すぎたり、処理温度が低すぎたり、処理時間が短すぎたりすると不動態の形成が不充分になり、硝酸の濃度が高すぎたり、処理温度が高すぎたり、処理時間が長すぎたりするとフィルターメディアの損傷が激しくなり、必要な濾過精度が出なくなる可能性がある。 If the concentration of nitric acid is too low, the processing temperature is too low, or the processing time is too short, the formation of passives will be insufficient, the concentration of nitric acid will be too high, the processing temperature will be too high, or the processing time will be If it is too long, the filter media will be severely damaged and the required filtration accuracy may not be achieved.
 前記フィルターは、格納容器に格納されていると、必要な濾過面積を確保しつつ、圧力をかけて濾過を進行させやすくなるので好ましい。この格納容器の材質についても、樹脂の濾過に耐えられる強度と耐熱性を有している限り制限はないが、好ましくは鉄の含有量が少ないSUS316またはSUS316L等のステンレス系である。鉄の含有量が多いと、上記と同様に、ポリカーボネート樹脂が劣化するおそれがある。 It is preferable that the filter is stored in a containment vessel because it facilitates filtration under pressure while securing a necessary filtration area. The material of the storage container is not limited as long as it has strength and heat resistance that can withstand resin filtration, but is preferably a stainless steel such as SUS316 or SUS316L with a low iron content. If the iron content is large, the polycarbonate resin may be deteriorated as described above.
 前記フィルターの格納容器は、ポリカーボネート樹脂の供給口と排出口が実質的に水平に配置されていても、実質的に垂直に配置されていても、斜めに配置されていてもよいが、前記格納容器内でのガスおよびポリカーボネート樹脂の滞留を抑制し、ポリカーボネート樹脂の劣化を防ぐためには、ポリカーボネート樹脂の供給口がフィルター格納容器の下部、排出口が上部に配置されていることが好ましい。 The storage container of the filter may be arranged such that the supply port and the discharge port of polycarbonate resin are arranged substantially horizontally, arranged substantially vertically, or arranged obliquely. In order to prevent gas and polycarbonate resin from staying in the container and prevent deterioration of the polycarbonate resin, it is preferable that the supply port of the polycarbonate resin is disposed at the lower part of the filter storage container and the discharge port is disposed at the upper part.
 また、フィルター格納容器の内容積(m)を、ポリカーボネート樹脂流量(m/分)で除した値は、小さすぎるとフィルターの差圧が大きくなってフィルターの破損を招く可能性があり、大きすぎると濾過時にポリカーボネート樹脂の劣化を招くため、1分~20分が好ましく、より好ましくは2分~10分、より好ましくは3~8分である。 Moreover, if the value obtained by dividing the internal volume (m 3 ) of the filter storage container by the polycarbonate resin flow rate (m 3 / min) is too small, the differential pressure of the filter may increase and the filter may be damaged. If it is too large, the polycarbonate resin will be deteriorated during filtration, so it is preferably 1 minute to 20 minutes, more preferably 2 minutes to 10 minutes, and more preferably 3 to 8 minutes.
 本発明においては、前記フィルター面での溶融樹脂の線速が0.01~0.5m/hであることが好ましい。フィルター面での溶融樹脂の線速は、1時間当たりのポリカーボネート樹脂の処理容積をフィルターの濾過面積で除することによって求めることができる。該線速が過度に小さいと、濾過時の滞留時間が長くなってポリカーボネート樹脂の劣化を招き、着色または異物発生の原因となる可能性があり In the present invention, the linear velocity of the molten resin on the filter surface is preferably 0.01 to 0.5 m / h. The linear velocity of the molten resin on the filter surface can be determined by dividing the processing volume of polycarbonate resin per hour by the filtration area of the filter. If the linear velocity is excessively low, the residence time during filtration may be prolonged, leading to deterioration of the polycarbonate resin, which may cause coloring or foreign matter generation.
 また、前記線速が、過度に大きいと濾過時の剪断発熱が大きくなり、着色または異物発生の原因となる可能性があるため、より好ましくは0.03~0.3m/h、特に好ましくは0.05~0.15m/hである。 Further, if the linear velocity is excessively high, shear heat generation during filtration increases, which may cause coloring or generation of foreign matter. Therefore, it is more preferably 0.03 to 0.3 m / h, particularly preferably. 0.05 to 0.15 m / h.
 本発明の方法において、前記フィルターに供給されるポリカーボネート樹脂の温度は、通常300℃未満であることが好ましく、280℃未満にするのがより好ましく、さらに好ましくは270℃未満、特に好ましくは265℃未満、中でも260℃未満が好ましい。 In the method of the present invention, the temperature of the polycarbonate resin supplied to the filter is usually preferably less than 300 ° C, more preferably less than 280 ° C, further preferably less than 270 ° C, and particularly preferably 265 ° C. Less than 260.degree.
 前記フィルターで濾過する前の温度が高くなりすぎると、フィルターユニット中での熱劣化が起こりやすくなり、色相の悪化若しくは分子量の低下、またはそれに伴う機械的強度の低下を招く傾向がある。 If the temperature before filtering with the filter becomes too high, thermal deterioration in the filter unit is likely to occur, and there is a tendency to cause deterioration in hue or molecular weight, or mechanical strength associated therewith.
 また逆に、前記フィルターで濾過する前の温度が低くなりすぎると、ポリカーボネートの溶融粘度が高く、前記フィルターへの負荷が大きくなり、前記フィルターの破損を招く可能性があるため、前記フィルターに供給されるポリカーボネート樹脂の温度は、好ましくは220℃以上、より好ましくは230℃以上、特に好ましくは240℃以上である。 Conversely, if the temperature before filtering with the filter is too low, the melt viscosity of the polycarbonate is high and the load on the filter increases, which may cause damage to the filter. The temperature of the polycarbonate resin is preferably 220 ° C. or higher, more preferably 230 ° C. or higher, particularly preferably 240 ° C. or higher.
 また、本発明において、濾過後のポリカーボネート樹脂の温度は、200℃以上であり、好ましくは220℃以上、より好ましくは230℃以上である。前記フィルターを用いて濾過した後のポリカーボネート樹脂の温度が低すぎると、溶融粘度が高くなって押し出されて形成されるストランドが安定せず、回転式カッター等でペレット化することが困難になる傾向がある。 In the present invention, the temperature of the polycarbonate resin after filtration is 200 ° C. or higher, preferably 220 ° C. or higher, more preferably 230 ° C. or higher. If the temperature of the polycarbonate resin after filtration using the filter is too low, the melt viscosity becomes high and the extruded strands are not stable and tend to be difficult to be pelletized with a rotary cutter or the like. There is.
 一方、濾過後のポリカーボネート樹脂の温度は、280℃未満であり、好ましくは270℃未満であり、より好ましくは265℃未満であり、更にまた好ましくは260℃未満である。前記フィルターを用いて濾過した後のポリカーボネート樹脂の温度が高すぎると、ポリカーボネート樹脂の熱劣化が起こりやすくなり、色相の悪化若しくは分子量の低下、またはそれに伴う機械的強度の低下を招く傾向がある。 On the other hand, the temperature of the polycarbonate resin after filtration is less than 280 ° C, preferably less than 270 ° C, more preferably less than 265 ° C, and still more preferably less than 260 ° C. If the temperature of the polycarbonate resin after filtration using the filter is too high, the polycarbonate resin is likely to be thermally deteriorated, which tends to cause a deterioration in hue, a molecular weight, or a mechanical strength associated therewith.
 前記の濾過後の樹脂温度としては、例えば、フィルターから排出された樹脂を取り出して直接測定する方法、およびフィルター出口流路の配管内部にセンサーを設置して測定する方法等が挙げられる。 Examples of the resin temperature after the filtration include a method in which the resin discharged from the filter is taken out and directly measured, and a method in which a sensor is installed inside the pipe of the filter outlet channel and the like.
 前記のフィルター出口流路の配管内部にセンサーを設置して測定する場合、センサー周辺の配管の外部に設置されたヒーターの影響により正しい樹脂温度を測定することが困難なときがある。フィルター出口の近くにダイス等の樹脂を吐出させる装置が設置されていて、そこから吐出される樹脂の温度が、フィルター出口側の樹脂温度と同等であるとみなせるような場合には、ダイス等から吐出される樹脂の温度を、本発明の濾過後の樹脂温度としてもよい。 When measuring with the sensor installed inside the pipe of the filter outlet channel, it may be difficult to measure the correct resin temperature due to the influence of the heater installed outside the pipe around the sensor. If a device that discharges resin such as a die is installed near the filter outlet and the temperature of the resin discharged from the device can be regarded as equivalent to the resin temperature on the filter outlet side, The temperature of the discharged resin may be the resin temperature after filtration according to the present invention.
 なお、濾過後の樹脂温度の精度を高める目的で、フィルター出口流路の配管内部にセンサーを設置して測定する方法と、フィルター出口の近くに設置されたダイス等から吐出される樹脂温度を測定する方法の両方を実施することもできる。 For the purpose of increasing the accuracy of the resin temperature after filtration, a sensor is installed inside the pipe of the filter outlet channel, and the temperature of the resin discharged from a die installed near the filter outlet is measured. Both methods can also be implemented.
 本発明の方法において、前記フィルターユニットは通常その外側に複数のブロックからなるヒーターを設置し温度制御を行うが、その設定温度が高すぎるとポリカーボネート樹脂の劣化を招くことがあるため、通常好ましくは280℃以下、より好ましくは260℃以下、特に好ましくは250℃以下に設定する。 In the method of the present invention, the filter unit is usually provided with a heater composed of a plurality of blocks on the outside thereof for temperature control, but if the set temperature is too high, the polycarbonate resin may be deteriorated. It is set to 280 ° C. or lower, more preferably 260 ° C. or lower, particularly preferably 250 ° C. or lower.
 一方、設定温度が低すぎると溶融粘度が高くなって、フィルターで濾過することが困難になるため、通常好ましくは150℃以上、より好ましくは180℃以上、特に好ましくは200℃以上とする。 On the other hand, if the set temperature is too low, the melt viscosity becomes high and it is difficult to filter with a filter. Therefore, it is usually preferably 150 ° C. or higher, more preferably 180 ° C. or higher, particularly preferably 200 ° C. or higher.
 また、前記フィルターユニットから排出されたポリカーボネート樹脂をダイスに導くための配管も通常その外部にヒーターを設置するが、その設定温度が高すぎるとポリカーボネート樹脂の劣化を招くことがあるため、通常好ましくは280℃以下、より好ましくは260℃以下、特に好ましくは250℃以下に設定する。 Also, a pipe for guiding the polycarbonate resin discharged from the filter unit to the die is usually provided with a heater outside thereof, but since the polycarbonate resin may be deteriorated if its set temperature is too high, it is usually preferable. It is set to 280 ° C. or lower, more preferably 260 ° C. or lower, particularly preferably 250 ° C. or lower.
 一方、設定温度が低すぎると溶融粘度が高くなって、配管での圧力損失が大きくなるため、通常好ましくは150℃以上、より好ましくは180℃以上、特に好ましくは200℃以上とする。 On the other hand, if the set temperature is too low, the melt viscosity becomes high and the pressure loss in the piping increases, so that it is usually preferably 150 ° C. or higher, more preferably 180 ° C. or higher, and particularly preferably 200 ° C. or higher.
 さらにフィルターユニット出口からダイスまでのポリカーボネート樹脂の滞留時間が長いとポリカーボネート樹脂の劣化を招くことがあるため、通常好ましくは1~30分、より好ましくは3~20分とする。 Further, if the residence time of the polycarbonate resin from the outlet of the filter unit to the die is long, the polycarbonate resin may be deteriorated. Therefore, it is usually preferably 1 to 30 minutes, more preferably 3 to 20 minutes.
 本発明の方法において、前記フィルターでの濾過を経て前記ダイスから吐出されるポリカーボネート樹脂の温度は、200℃以上であることが好ましく、より好ましくは220℃以上、さらに好ましくは230℃以上であり、上限は280℃未満であることが好ましく、より好ましくは270℃未満、さらに好ましくは265℃未満、特に好ましくは260℃未満である。 In the method of the present invention, the temperature of the polycarbonate resin discharged from the die through filtration with the filter is preferably 200 ° C. or higher, more preferably 220 ° C. or higher, further preferably 230 ° C. or higher, The upper limit is preferably less than 280 ° C, more preferably less than 270 ° C, even more preferably less than 265 ° C, and particularly preferably less than 260 ° C.
 濾過を経て前記ダイスから吐出されるポリカーボネート樹脂の温度が低すぎると、溶融粘度が高くなって押し出されて形成されるストランドが安定せず、回転式カッター等でペレット化することが困難になる可能性がある。一方、温度が高すぎるとポリカーボネート樹脂の熱劣化が起こりやすくなり、色相の悪化若しくは分子量の低下、またはそれに伴う機械的強度の低下を招く可能性がある。 If the temperature of the polycarbonate resin discharged from the die after filtration is too low, the melt viscosity becomes high and the extruded strands are not stable and may be difficult to pelletize with a rotary cutter or the like There is sex. On the other hand, if the temperature is too high, thermal degradation of the polycarbonate resin is likely to occur, which may lead to a deterioration in hue, a decrease in molecular weight, or a decrease in mechanical strength associated therewith.
 前記ダイスには、通常ヒーターを設置するが、その設定温度が高すぎるとポリカーボネート樹脂の劣化を招くことがあるため、通常280℃以下であることが好ましく、より好ましくは260℃以下、特に好ましくは250℃以下に設定する。 Usually, a heater is installed in the die, but if the set temperature is too high, the polycarbonate resin may be deteriorated. Therefore, the temperature is usually preferably 280 ° C. or less, more preferably 260 ° C. or less, particularly preferably. Set to 250 ° C or lower.
 一方、設定温度が低すぎると溶融粘度が高くなって、配管での圧力損失が大きくなるため、通常好ましくは150℃以上、より好ましくは180℃以上、特に好ましくは200℃以上とする。 On the other hand, if the set temperature is too low, the melt viscosity becomes high and the pressure loss in the piping increases, so that it is usually preferably 150 ° C. or higher, more preferably 180 ° C. or higher, and particularly preferably 200 ° C. or higher.
 通常、ポリカーボネート樹脂を目開きの小さい前記フィルターで濾過すると剪断発熱により温度が上昇し、押出機を使用する場合には、スクリュー回転による剪断発熱も加わるため、濾過を経て前記ダイスから吐出されるポリカーボネート樹脂の温度を制御するには、前記フィルターの目開き、濾過面積、温度設定、ポリカーボネート樹脂の分子量、フィルターユニットの温度設定またはフィルター出口からダイスまでの温度設定等を総合的に制御することが重要になる。 Normally, when polycarbonate resin is filtered through the above-mentioned filter having a small mesh opening, the temperature rises due to shearing heat generation, and when using an extruder, shearing heat generation due to screw rotation is also added, so the polycarbonate discharged from the die through filtration To control the temperature of the resin, it is important to comprehensively control the opening of the filter, the filtration area, the temperature setting, the molecular weight of the polycarbonate resin, the temperature setting of the filter unit or the temperature setting from the filter outlet to the die, etc. become.
 また、前記フィルターへの供給に前記押出機を使用する場合には、併せて前述のように前記押出機におけるポリカーボネート樹脂の処理量、スクリューの回転数若しくは周速、またはエレメントの構成等の選択が重要になる。 In addition, when the extruder is used for supplying to the filter, the processing amount of the polycarbonate resin in the extruder, the rotational speed or peripheral speed of the screw, or the configuration of the element or the like can be selected as described above. Become important.
 また、本発明の方法においては、前記フィルターで濾過される前のポリカーボネート樹脂の温度と、濾過後のポリカーボネート樹脂の温度の差が50℃以内であることが好ましく、より好ましくは30℃以内、最も好ましくは10℃以内である。 In the method of the present invention, the difference between the temperature of the polycarbonate resin before being filtered by the filter and the temperature of the polycarbonate resin after the filtration is preferably within 50 ° C, more preferably within 30 ° C, most preferably Preferably it is within 10 degreeC.
 前記フィルターで濾過される前のポリカーボネート樹脂の温度と、濾過後のポリカーボネート樹脂の温度差が大きくなりすぎると、特に複数のリーフディスク型フィルターでフィルターユニットが構成されている場合、樹脂の供給側と排出側で圧力バランスが崩れて前記フィルターの破損を招く可能性がある。 When the temperature difference between the temperature of the polycarbonate resin before being filtered by the filter and the temperature of the polycarbonate resin after the filtration becomes too large, particularly when a filter unit is constituted by a plurality of leaf disk filters, the resin supply side and The pressure balance may be lost on the discharge side, and the filter may be damaged.
 また、本発明の方法においては、前記エステル交換反応により重縮合させ得られたポリカーボネート樹脂の前記フィルターで濾過する前の還元粘度(ηsp/c)をA、前記フィルターを用いて濾過して、ダイスからストランドの形態で吐出し、冷却後、カッターを用いて得られたポリカーボネート樹脂ペレットの還元粘度(ηsp/c)をBとした場合に、下記式(2)を満たすことが好ましい。
 0.8<B/A<1.1 ・・・(2)
In the method of the present invention, the reduced viscosity (ηsp / c) of the polycarbonate resin obtained by polycondensation by the transesterification reaction before being filtered through the filter is filtered using the filter A and the die is obtained. When the reduced viscosity (ηsp / c) of the polycarbonate resin pellets obtained by discharging in the form of strands and cooling and using a cutter after cooling is B, it is preferable to satisfy the following formula (2).
0.8 <B / A <1.1 (2)
 より好ましくはB/A>0.85、さらに好ましくはB/A>0.9、特に好ましくはB/A>0.95である。B/Aを0.8超とすることにより、副反応により生成すると考えられる着色成分または着色の前駆体となる成分が生じるのを抑制することができ、好ましい。一方で、ポリマーフィルター内で還元粘度が上昇すると、ゲルまたはヤケ等の異物の生成が台頭してくるため、B/A≦1.0であることがより好ましい。還元粘度の測定法については後述する。 More preferably, B / A> 0.85, still more preferably B / A> 0.9, and particularly preferably B / A> 0.95. By setting B / A to more than 0.8, it is possible to suppress the generation of a coloring component or a coloring precursor that is considered to be generated by a side reaction, which is preferable. On the other hand, when the reduced viscosity rises in the polymer filter, the generation of foreign matters such as gel or burnt rises, and therefore it is more preferable that B / A ≦ 1.0. A method for measuring the reduced viscosity will be described later.
 尚、前記の重縮合反応器と前記フィルターの間に前記押出機を設置する場合には、前記押出機に供給されるポリカーボネート樹脂の還元粘度(ηsp/c)をaとした場合に、前記のBに対して、下記式(8)を満たすことが好ましい。
 0.8<B/a<1.1・・・(8)
When the extruder is installed between the polycondensation reactor and the filter, when the reduced viscosity (ηsp / c) of the polycarbonate resin supplied to the extruder is a, For B, it is preferable to satisfy the following formula (8).
0.8 <B / a <1.1 (8)
 より好ましくはB/a>0.85、特に好ましくはB/a>0.9である。B/aを0.8超とすることにより、副反応により生成すると考えられる着色成分または着色の前駆体となる成分が生じるのを抑制することができ、好ましい。一方で、還元粘度が上昇すると、ゲルまたはヤケ等の異物の生成が台頭してくるため、B/a≦1.0であることがより好ましい。 More preferably, B / a> 0.85, and particularly preferably B / a> 0.9. By setting B / a to more than 0.8, it is possible to suppress the generation of a coloring component or a coloring precursor that is considered to be generated by a side reaction, which is preferable. On the other hand, when the reduced viscosity is increased, the generation of foreign matters such as gels or burns rises. Therefore, it is more preferable that B / a ≦ 1.0.
 ポリマーフィルターまたは押出機での還元粘度の変化を上記範囲にするためには、最終反応器でのポリカーボネート樹脂の温度、ポリマーフィルターへ入るポリカーボネート樹脂の温度、ポリマーフィルターから吐出されるポリカーボネート樹脂の温度、ポリマーフィルターの単位時間当たりの処理量若しくは目開きの選択、ポリマーフィルターからダイスまでの温度制御若しくは滞留時間、押出機を使用する場合には、押出機へ供給するポリカーボネート樹脂の温度、押出機から吐出されるポリカーボネート樹脂の温度、脱揮圧力、注水の有無若しくは注水量、スクリューの回転数若しくは周速、またはエレメント構成の選択が重要である。 In order to make the change in the reduced viscosity in the polymer filter or the extruder within the above range, the temperature of the polycarbonate resin in the final reactor, the temperature of the polycarbonate resin entering the polymer filter, the temperature of the polycarbonate resin discharged from the polymer filter, Selection of throughput per unit time or opening of polymer filter, temperature control or residence time from polymer filter to die, when using an extruder, temperature of polycarbonate resin supplied to the extruder, discharge from the extruder It is important to select the temperature of the polycarbonate resin to be used, the devolatilization pressure, the presence or absence of water injection, the amount of water injection, the rotation speed or peripheral speed of the screw, or the element configuration.
 更には、前記押出機を用いる場合、前記フィルターへのポリカーボネート樹脂の供給量を安定化させるために、前記押出機と前記フィルターの間に、ギアポンプを配置するのが好ましい。ギアポンプの種類についての制限はないが、中でもギアポンプの吐出側から一部のポリマーを、バルブを介してグランド部に導き、一定の圧力を軸封部にかけ、吸込口へ戻す回路を有し、シール部にグランドパッキンを用いない自己循環型が異物低減の観点から好ましい。 Furthermore, when the extruder is used, it is preferable to dispose a gear pump between the extruder and the filter in order to stabilize the supply amount of the polycarbonate resin to the filter. There is no restriction on the type of gear pump, but in particular, a part of polymer from the discharge side of the gear pump is guided to the gland part through the valve, a certain pressure is applied to the shaft seal part, and there is a circuit to return it to the suction port, and the seal A self-circulation type in which no gland packing is used for the part is preferable from the viewpoint of reducing foreign matter.
 本発明において、ポリカーボネート樹脂が直接外気と触れるストランド化、ペレット化の際には、外気からの異物混入を防止するために、好ましくはJISB 9920(2002年)に定義されるクラス7、更に好ましくはクラス6より清浄度の高いクリーンルーム中で実施することがこのまいし。 In the present invention, when stranding or pelletizing the polycarbonate resin directly in contact with the outside air, it is preferably class 7 as defined in JIS B 9920 (2002), more preferably, in order to prevent foreign matter from being mixed from the outside air. This is done in a clean room with higher cleanliness than class 6.
 また、前記フィルターで濾過されたポリカーボネート樹脂は、冷却固化させ、回転式カッター等でペレット化されるが、そのペレット化の際、空冷または水冷等の冷却方法を使用するのが好ましい。 The polycarbonate resin filtered by the filter is cooled and solidified, and pelletized by a rotary cutter or the like, and it is preferable to use a cooling method such as air cooling or water cooling when pelletizing.
 空冷の際に使用する空気は、へパフィルター等で空気中の異物を事前に取り除いた空気を使用し、空気中の異物の再付着を防ぐのが好ましい。水冷を使用する際は、イオン交換樹脂等で水中の金属分を取り除き、さらに前記フィルターにて、水中の異物を取り除いた水を使用することが好ましい。用いるフィルターの目開きは、99.9%除去の濾過精度として10~0.45μmであることが好ましい。 The air used for air cooling is preferably air from which foreign matter in the air has been removed in advance with a hepa filter or the like to prevent reattachment of foreign matter in the air. When water cooling is used, it is preferable to use water from which metal in water has been removed with an ion exchange resin or the like, and further, foreign matter in water has been removed with the filter. The opening of the filter to be used is preferably 10 to 0.45 μm in terms of filtration accuracy with 99.9% removal.
 さらに、本発明においては、前記押出機中で通常知られている、熱安定剤、中和剤、紫外線吸収剤、離型剤、着色剤、帯電防止剤、滑剤、潤滑剤、可塑剤、相溶化剤または難燃剤等を添加、混練することも出来る。 Further, in the present invention, a heat stabilizer, a neutralizing agent, an ultraviolet absorber, a release agent, a colorant, an antistatic agent, a lubricant, a lubricant, a plasticizer, a phase, which are generally known in the extruder. A solubilizer or a flame retardant may be added and kneaded.
 中でも、亜リン酸エステル系、ヒンダードフェノール系熱安定剤の添加は、本発明のポリカーボネート樹脂の押出時若しくは濾過時の分子量の低下または色調の悪化を抑制することができるため好ましい。 Among these, addition of a phosphite ester or a hindered phenol heat stabilizer is preferable because it can suppress a decrease in molecular weight or a deterioration in color tone during extrusion or filtration of the polycarbonate resin of the present invention.
 亜リン酸エステル系熱安定剤としては、具体的には、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリチルジホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、ビス(ノニルフェニル)ペンタエリスリチルジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリチルジホスファイト、ジステアリルペンタエリスリチルジホスファイト、トリブチルホスフェート、トリエチルホスフェート、トリメチルホスフェート、トリフェニルホスフェート、ジフェニルモノオルソキセニルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェート、4,4’-ビフェニレンジホスフィン酸テトラキス(2,4-ジ-tert-ブチルフェニル)、ベンゼ ンホスホン酸ジメチル、ベンゼンホスホン酸ジエチルおよびベンゼンホスホン酸ジプロピル等が挙げられる。 Specific examples of the phosphite-based heat stabilizer include triphenyl phosphite, tris (nonylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, and tridecyl phosphite. Phyto, trioctyl phosphite, trioctadecyl phosphite, didecyl monophenyl phosphite, dioctyl monophenyl phosphite, diisopropyl monophenyl phosphite, monobutyl diphenyl phosphite, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythrityl diphosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite, bis (nonylpheny ) Pentaerythrityl diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythrityl diphosphite, distearyl pentaerythrityl diphosphite, tributyl phosphate, triethyl phosphate, trimethyl phosphate, triphenyl phosphate, Diphenyl monoorthoxenyl phosphate, dibutyl phosphate, dioctyl phosphate, diisopropyl phosphate, 4,4′-biphenylenediphosphinic acid tetrakis (2,4-di-tert-butylphenyl), benzene phosphonate dimethyl, benzenephosphonate diethyl and benzenephosphone Examples include dipropyl acid.
 なかでも、トリスノニルフェニルホスファイト、トリメチルホスフェート、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリチルジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリチルジホスファイトまたはベンゼンホスホン酸ジメチル等が好ましく、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイトがより好ましい。 Among them, trisnonylphenyl phosphite, trimethyl phosphate, tris (2,4-di-tert-butylphenyl) phosphite, bis (2,4-di-tert-butylphenyl) pentaerythrityl diphosphite, bis ( 2,6-di-tert-butyl-4-methylphenyl) pentaerythrityl diphosphite or dimethylbenzenephosphonate is preferred, and tris (2,4-di-tert-butylphenyl) phosphite is more preferred.
 ヒンダードフェノール系熱安定剤としては、具体的には、例えば、ペンタエリスリチルテトラキス(3-メルカプトプロピオネート)、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)、グリセロール-3-ステアリルチオプロピオネート、トリエチレングリコール-ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリスリチルテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、N,N-ヘキサメチレンビス(3,5-ジ-tert-ブチル-4-ヒドロキシ-ヒドロシンナマイド)、3,5-ジ-tert-ブチル-4-ヒドロキシ-ベンジルホスホネート-ジエチルエステル、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、4,4’-ビフェニレンジホスフィン酸テトラキス(2,4-ジ-tert-ブチルフェニル)および3,9-ビス{1,1-ジメチル-2-[β-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル}-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン等の1種又は2種以上が挙げられる。 Specific examples of the hindered phenol-based heat stabilizer include pentaerythrityl tetrakis (3-mercaptopropionate), pentaerythrityl tetrakis (3-laurylthiopropionate), glycerol-3-stearylthio. Propionate, triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5-di-tert -Butyl-4-hydroxyphenyl) propionate], pentaerythrityltetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert- Butyl-4-hydroxyphenyl) propionate, 1,3,5 Trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, N, N-hexamethylenebis (3,5-di-tert-butyl-4-hydroxy-hydro Cinnamide), 3,5-di-tert-butyl-4-hydroxy-benzylphosphonate-diethyl ester, tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 4,4′-biphenylene Tetrakis (2,4-di-tert-butylphenyl) diphosphinate and 3,9-bis {1,1-dimethyl-2- [β- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyl Oxy] ethyl} -2,4,8,10-tetraoxaspiro (5,5) undecane and the like It is.
 中でも、好ましくはペンタエリスリチルテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]またはオクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、特に好ましくはペンタエリスリチルテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]である。 Among them, preferably pentaerythrityltetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] or octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) Propionate, particularly preferably pentaerythrityltetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate].
 これらの熱安定剤は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの熱安定剤の配合量は、ポリカーボネート樹脂を100重量部とした場合、0.0001~1重量部が好ましく、0.0005~0.5重量部がより好ましく、0.001~0.2重量部が更に好ましい。 These heat stabilizers may be used alone or in combination of two or more. The blending amount of these heat stabilizers is preferably 0.0001 to 1 part by weight, more preferably 0.0005 to 0.5 part by weight, and 0.001 to 0.2 part, based on 100 parts by weight of the polycarbonate resin. Part by weight is more preferred.
(重合前における濾過)
 一方、本発明の方法においては、最終的に得られるポリカーボネート樹脂ペレットに含まれる異物をより低減させるために、原料モノマーを重縮合させる前に、予め原料濾過フィルターで濾過するのも有効である。
(Filtration before polymerization)
On the other hand, in the method of the present invention, in order to further reduce foreign substances contained in the finally obtained polycarbonate resin pellets, it is also effective to pre-filter with a raw material filter before polycondensing the raw material monomers.
 前記原料濾過フィルターの形状としては、バスケットタイプ、ディスクタイプ、リーフディスクタイプ、チューブタイプ、フラット型円筒タイプまたはプリーツ型円筒タイプ等のいずれの型式であってもよいが、中でもコンパクトで濾過面積が大きく取れるプリーツタイプのものが好ましい。 The shape of the raw material filtration filter may be any type such as basket type, disk type, leaf disk type, tube type, flat cylindrical type, or pleated cylindrical type, among which compact and has a large filtration area. A pleated type that can be taken is preferred.
 また、前記原料濾過フィルターを構成する濾材としては、金属ワインド、積層金属メッシュ、金属不織布または多孔質金属板等のいずれでもよいが、濾過精度の観点から積層金属メッシュまたは金属不織布が好ましく、中でも金属不織布を焼結して固定したタイプのものが好ましい。 Further, the filter medium constituting the raw material filter may be any of metal wind, laminated metal mesh, metal nonwoven fabric, porous metal plate, etc., but from the viewpoint of filtration accuracy, a laminated metal mesh or metal nonwoven fabric is preferred, and metal A type in which a nonwoven fabric is sintered and fixed is preferable.
 該原料濾過フィルターの材質についての制限は特になく、金属製または樹脂製セラミック製等を使用することができるが、耐熱性および着色低減の観点からは、鉄含有量80%以下である金属製フィルターが好ましく、中でもSUS304、SUS316、SUS316LまたはSUS310S等のステンレス鋼製が好ましい。 There are no particular restrictions on the material of the raw material filter, and metal or resin ceramics can be used. From the viewpoint of heat resistance and color reduction, a metal filter having an iron content of 80% or less. Among them, stainless steel such as SUS304, SUS316, SUS316L, or SUS310S is preferable.
 また、原料モノマーの濾過の際に、濾過性能を確保しながら前記原料濾過フィルターの寿命を延ばすためには、複数のフィルターユニットを用いることが好ましく、中でも上流にある側のユニット中のフィルターの目開きをCμm、下流側にある側のユニット中のフィルターの目開きをDμmとした場合に、少なくとも1つの組み合わせにおいて、CはDより大きい(C>D)ことが好ましい。この条件を満たした場合は、前記原料濾過フィルターがより閉塞しにくくなり、前記原料濾過フィルターの交換頻度の低減を図ることができる。 Further, in order to extend the life of the raw material filtration filter while ensuring the filtration performance during the filtration of the raw material monomer, it is preferable to use a plurality of filter units, and in particular, the filter eyes in the upstream unit. In the case where the opening is C μm and the opening of the filter in the downstream unit is D μm, in at least one combination, C is preferably larger than D (C> D). When this condition is satisfied, the raw material filtration filter is less likely to be blocked, and the replacement frequency of the raw material filtration filter can be reduced.
 前記原料濾過フィルターの目開きは特に制限はないが、少なくとも1つの前記原料濾過フィルターにおいては、99.9%の濾過精度として10μm以下であることが好ましく、前記原料濾過フィルターを構成するフィルターユニットが複数配置されている場合には、最上流側において好ましくは8μm以上、更に好ましくは10μm以上であり、その最下流側において好ましくは2μm以下、更に好ましくは1μm以下である。尚、ここで言う前記原料濾過フィルターの目開きも、上述した、ISO16889(2008年)に準拠して決定されるものである。 The opening of the raw material filtration filter is not particularly limited, but in at least one of the raw material filtration filters, the filtration accuracy of 99.9% is preferably 10 μm or less, and the filter unit constituting the raw material filtration filter includes In the case of a plurality of arrangements, it is preferably 8 μm or more, more preferably 10 μm or more on the most upstream side, and preferably 2 μm or less, more preferably 1 μm or less on the most downstream side. In addition, the opening of the said raw material filtration filter said here is determined based on the above-mentioned ISO16889 (2008).
 本発明において、原料を前記原料濾過フィルターに通過させる際の原料流体の温度に制限はないが、低すぎると原料が固化し、高すぎると熱分解等の不具合があるため、通常好ましくは100℃~200℃、より好ましくは100℃~150℃である。 In the present invention, there is no restriction on the temperature of the raw material fluid when the raw material is passed through the raw material filtration filter, but if it is too low, the raw material is solidified, and if it is too high, there is a problem such as thermal decomposition. ˜200 ° C., more preferably 100 ° C. to 150 ° C.
 また、本発明においては、複数種用いる原料のうち、いずれの原料を濾過してもよいし、全てを濾過してもよく、その方法は、限定されるものではなく、ジヒドロキシ化合物と炭酸ジエステルの原料混合物を濾過してもよいし、別々に濾過した後に混合してもよい。また、本発明の製造法においては、重縮合反応の途中の反応液を前記原料濾過フィルターと同様のフィルターで濾過することもできる。 In the present invention, any of the raw materials to be used may be filtered, or all of the raw materials may be filtered. The method is not limited, and the dihydroxy compound and the carbonic acid diester are not limited. The raw material mixture may be filtered, or may be mixed after separately filtering. Moreover, in the manufacturing method of this invention, the reaction liquid in the middle of a polycondensation reaction can also be filtered with the filter similar to the said raw material filtration filter.
(得られるポリカーボネート樹脂)
 本発明の方法で得られるポリカーボネート樹脂ペレットのイエローインデックス値は、90以下であるのが好ましく、より好ましくは70以下、特に好ましくは50以下、最も好ましくは40以下である。イエローインデックス値を下げるには、前述のように、モノマー調製条件、重合反応条件、濾過条件、押出機を使用する場合には押出条件またはスクリューエレメント等の選択を適切に行う必要がある。
(Polycarbonate resin obtained)
The yellow index value of the polycarbonate resin pellet obtained by the method of the present invention is preferably 90 or less, more preferably 70 or less, particularly preferably 50 or less, and most preferably 40 or less. In order to lower the yellow index value, as described above, it is necessary to appropriately select the monomer preparation conditions, the polymerization reaction conditions, the filtration conditions, and the extrusion conditions or screw elements when using an extruder.
 また、本発明の方法において得られる前記ポリカーボネート樹脂の分子量は、還元粘度(ηsp/c)で表すことができ、還元粘度は、0.2dL/g以上であることが好ましく、より好ましくは0.25dL/g以上、さらに好ましくは0.3以上であり、0.6dL/g以下であることが好ましく、より好ましくは0.5dL/g以下、特に好ましくは0.45dL/g以下である。 Further, the molecular weight of the polycarbonate resin obtained in the method of the present invention can be represented by a reduced viscosity (ηsp / c), and the reduced viscosity is preferably 0.2 dL / g or more, more preferably 0.8. It is 25 dL / g or more, More preferably, it is 0.3 or more, It is preferable that it is 0.6 dL / g or less, More preferably, it is 0.5 dL / g or less, Most preferably, it is 0.45 dL / g or less.
 ポリカーボネート樹脂の還元粘度が低すぎると成形品の機械的強度が小さい可能性があり、フィルムに成形した後、延伸操作を行う場合は延伸切れを招く可能性がある。一方、大きすぎると、成形する際の流動性が低下し、生産性または成形性を低下させる傾向があるだけでなく、濾過や押出時の剪断発熱で劣化が激しくなる可能性がある。 If the reduced viscosity of the polycarbonate resin is too low, the mechanical strength of the molded product may be small, and if the stretching operation is performed after forming into a film, there is a possibility that the stretching will be broken. On the other hand, if it is too large, not only the fluidity at the time of molding tends to be lowered and the productivity or moldability tends to be lowered, but also there is a possibility that the deterioration is severe due to shearing heat generation during filtration or extrusion.
 尚、還元粘度は、ポリカーボネート樹脂ペレットを精秤し、溶媒として塩化メチレンを用い、0.6g/dLに精密に調製し、温度20.0℃±0.1℃でウベローデ粘度管を用いて測定する。 The reduced viscosity is precisely measured by using a Ubbelohde viscosity tube at a temperature of 20.0 ° C. ± 0.1 ° C. by accurately measuring polycarbonate resin pellets, using methylene chloride as a solvent, and preparing precisely at 0.6 g / dL. To do.
 本発明の方法で得られるポリカーボネート樹脂の240℃で測定した剪断速度91.2sec-1での溶融粘度は、500Pa・s以上であることが好ましく、より好ましくは1000Pa・s以上、特に好ましくは1500Pa・s以上であり、その上限は5000Pa・s以下であることが好ましく、好ましくは4000Pa・s以下である。 The melt viscosity of the polycarbonate resin obtained by the method of the present invention at a shear rate of 91.2 sec −1 measured at 240 ° C. is preferably 500 Pa · s or more, more preferably 1000 Pa · s or more, and particularly preferably 1500 Pa. S or more, and the upper limit thereof is preferably 5000 Pa · s or less, and preferably 4000 Pa · s or less.
 溶融粘度が低すぎると成形品の機械的強度に劣る傾向があり、高すぎると前述のように、フィルターまたは押出機での剪断発熱が大きくなり、濾過時または押出時の劣化が激しくなる可能性がある。なお、溶融粘度は分子量の他、分子構造によっても変わるので、求められる性能に合わせてこれらを選択し、上記範囲に制御することが重要である。 If the melt viscosity is too low, the mechanical strength of the molded product tends to be inferior. If it is too high, as described above, shear heat generation in the filter or the extruder increases, and the deterioration during filtration or extrusion may become severe. There is. In addition, since the melt viscosity varies depending on the molecular structure in addition to the molecular weight, it is important to select these according to the required performance and control them within the above range.
 本発明の方法で得られるポリカーボネート樹脂のガラス転移温度に制限はないが、50℃以上であることが好ましく、より好ましくは110℃以上、さらに好ましくは120℃以上であり、130℃以上が特に好ましい。ガラス転移温度が低すぎると耐熱性に劣るため、光学部材とした場合の信頼性に劣る可能性がある。 Although there is no restriction | limiting in the glass transition temperature of the polycarbonate resin obtained by the method of this invention, It is preferable that it is 50 degreeC or more, More preferably, it is 110 degreeC or more, More preferably, it is 120 degreeC or more, Especially preferably, it is 130 degreeC or more. . If the glass transition temperature is too low, the heat resistance is inferior, and therefore the reliability of the optical member may be inferior.
 一方、ガラス転移温度が高いと、押出時の剪断発熱によってポリカーボネート樹脂の劣化を招いたり、フィルターで濾過する際の溶融粘度が高くなりすぎ、ポリカーボネート樹脂の劣化を招いたりする可能性があるため、180℃未満であることが好ましく、より好ましくは150℃以下、さらに好ましくは145℃以下、特に好ましくは140℃以下である。 On the other hand, if the glass transition temperature is high, the polycarbonate resin may deteriorate due to shear heat generation during extrusion, or the melt viscosity when filtering with a filter becomes too high, which may cause deterioration of the polycarbonate resin. The temperature is preferably less than 180 ° C, more preferably 150 ° C or less, further preferably 145 ° C or less, and particularly preferably 140 ° C or less.
 なお、ガラス転移温度は示差走査型熱量計(DSC)で測定することができ、サンプル約10mgを用いて昇温速度20℃/分で測定した際に最も低温で熱容量に変化が現れる温度(Tig)を本発明におけるガラス転移温度と定義する。 The glass transition temperature can be measured with a differential scanning calorimeter (DSC), and the temperature at which the change in heat capacity appears at the lowest temperature (Tig) when measured at a heating rate of 20 ° C./min using about 10 mg of a sample. ) Is defined as the glass transition temperature in the present invention.
 本発明で行うエステル交換反応では、前記の一般式(11)で表される炭酸ジエステルとして、ジフェニルカーボネートまたはジトリルカーボネート等の置換ジフェニルカーボネートを用いて本発明のポリカーボネート樹脂を製造する場合は、フェノールまたは置換フェノール等の芳香族モノヒドロキシ化合物が副生し、ポリカーボネート樹脂中に残存することは避けられない。 In the transesterification performed in the present invention, when the polycarbonate resin of the present invention is produced using a substituted diphenyl carbonate such as diphenyl carbonate or ditolyl carbonate as the carbonic acid diester represented by the general formula (11), Alternatively, it is inevitable that aromatic monohydroxy compounds such as substituted phenols are by-produced and remain in the polycarbonate resin.
 芳香族モノヒドロキシ化合物は濾過時のガスの発生または成形時の臭気の原因となる可能性があるため、真空ベント付の押出機を用いて、好ましくは0.2重量%未満、更に好ましくは0.1重量%未満、特には0.08重量%未満にすることが好ましい。ただし、これらの化合物を工業的に完全に除去することは困難であり、芳香族モノヒドロキシ化合物の含有量の下限値は、通常0.0001重量%である。 Aromatic monohydroxy compounds may cause gas generation during filtration or odor during molding. Therefore, using an extruder equipped with a vacuum vent, it is preferably less than 0.2% by weight, more preferably 0. It is preferable to make it less than 1% by weight, particularly less than 0.08% by weight. However, it is difficult to remove these compounds completely industrially, and the lower limit of the content of the aromatic monohydroxy compound is usually 0.0001% by weight.
 尚、これら芳香族モノヒドロキシ化合物は、用いる原料により、当然置換基を有していてもよく、例えば、炭素数が5以下であるアルキル基などを有していてもよい。炭酸ジエステルとしてジフェニルカーボネートを用いる場合、芳香族モノヒドロキシ化合物はフェノールとなる。 In addition, these aromatic monohydroxy compounds may naturally have a substituent depending on the raw material to be used, and may have, for example, an alkyl group having 5 or less carbon atoms. When diphenyl carbonate is used as the carbonic acid diester, the aromatic monohydroxy compound is phenol.
 本発明の方法で得られたポリカーボネート樹脂は、射出成形法、押出成形法または圧縮成形法等の通常知られている方法で成形物にすることができる。種々の成形を行う前に、必要に応じて、樹脂に熱安定剤、中和剤、紫外線吸収剤、離型剤、着色剤、帯電防止剤、滑剤、潤滑剤、可塑剤、相溶化剤または難燃剤等の添加剤を、タンブラー、スーパーミキサー、フローター、V型ブレンダー、ナウターミキサー、バンバリーミキサーまたは押出機などで混合することもできる。また、上記条件で濾過をした後、ペレットにすることなく直接フィルムに成形することもできる。 The polycarbonate resin obtained by the method of the present invention can be formed into a molded product by a generally known method such as an injection molding method, an extrusion molding method or a compression molding method. Before performing various moldings, if necessary, the resin may be heat stabilizer, neutralizer, UV absorber, mold release agent, colorant, antistatic agent, lubricant, lubricant, plasticizer, compatibilizer or Additives such as flame retardants can also be mixed with a tumbler, super mixer, floater, V-type blender, nauter mixer, Banbury mixer or extruder. Moreover, after filtering on the said conditions, it can also shape | mold directly on a film, without making it a pellet.
 本発明の方法により、着色が少なく、異物の少ないポリカーボネート樹脂が得られるため、該樹脂から押出成形によって得られた厚さ35μm±5μmのフィルムに含まれる最大長が25μm以上の異物が、好ましくは1000個/m以下、より好ましくは500個/m以下、最も好ましくは200個/m以下とすることができる。このように異物の少ない特性は、ポリカーボネート樹脂を光学用途に用いる際に特に好ましい。 According to the method of the present invention, a polycarbonate resin with less coloring and less foreign matter is obtained. Therefore, a foreign matter having a maximum length of 25 μm or more contained in a film having a thickness of 35 μm ± 5 μm obtained by extrusion molding from the resin is preferably used. It can be 1000 / m 2 or less, more preferably 500 / m 2 or less, and most preferably 200 / m 2 or less. Such a characteristic with less foreign matters is particularly preferable when the polycarbonate resin is used for optical applications.
 本発明の方法で得られたポリカーボネート樹脂ペレットは、例えば、芳香族ポリカーボネート、芳香族ポリエステル、脂肪族ポリエステル、ポリアミド、ポリスチレン、ポリオレフィン、アクリル樹脂、アモルファスポリオレフィン、ABS若しくはASなどの合成樹脂、ポリ乳酸若しくはポリブチレンスクシネートなどの生分解性樹脂、またはゴムなどの1種又は2種以上と混練して、ポリマーアロイとしても用いることもできる。 Polycarbonate resin pellets obtained by the method of the present invention are, for example, aromatic polycarbonate, aromatic polyester, aliphatic polyester, polyamide, polystyrene, polyolefin, acrylic resin, amorphous polyolefin, synthetic resin such as ABS or AS, polylactic acid or It can also be used as a polymer alloy by kneading with one or more of biodegradable resins such as polybutylene succinate or rubber.
 本発明によれば、熱安定性、色相、及び機械的強度に優れ、かつ異物の少ないポリカーボネート樹脂ペレットまたはポリカーボネート樹脂フィルムを提供することができる。なお、ポリカーボネート樹脂フィルムの製造にあたっては、一旦上記のような手順でポリカーボネート樹脂ペレットを製造した後にそのペレットを使用して製造するだけでなく、ペレット状態を経由することなくフィルムに成形して製造してもよい。 According to the present invention, it is possible to provide a polycarbonate resin pellet or a polycarbonate resin film that is excellent in thermal stability, hue, and mechanical strength and has few foreign substances. In the production of polycarbonate resin film, the polycarbonate resin pellets are manufactured not only by using the pellets after the above procedure, but also by molding into a film without going through the pellet state. May be.
 以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例により限定されるものではない。以下において、ポリカーボネートの物性ないし特性の評価は次の方法により行った。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist. In the following, the physical properties and characteristics of polycarbonate were evaluated by the following methods.
 以下において、ポリカーボネートの物性ないし特性の評価は次の方法により行った。  In the following, physical properties and characteristics of polycarbonate were evaluated by the following methods. *
 (1)重合反応装置内の酸素濃度の測定 
 酸素計(AMI社製:1000RS)を使用し、測定した。 
(1) Measurement of oxygen concentration in polymerization reactor
An oxygen meter (manufactured by AMI: 1000RS) was used for measurement.
 (2)還元粘度
 ポリカーボネート樹脂を溶媒として塩化メチレンを用い溶解し、0.6g/dLの濃度のポリカーボネート溶液を調製した。ウベローデ型粘度管(森友理化工業社製)を用いて、温度20.0℃±0.1℃で測定を行い、溶媒の通過時間t0と溶液の通過時間tから次式より相対粘度ηrelを求め、
 ηrel=t/t0
相対粘度から次式より比粘度ηspを求めた。
 ηsp=(η-η0)/η0=ηrel-1
比粘度を濃度c(g/dL)で割って、還元粘度ηsp/cを求めた。この値が高いほど分子量が大きい。
(2) Reduced viscosity A polycarbonate resin having a concentration of 0.6 g / dL was prepared by dissolving methylene chloride using a polycarbonate resin as a solvent. Using an Ubbelohde type viscosity tube (Moriyu Rika Kogyo Co., Ltd.), measurement is performed at a temperature of 20.0 ° C. ± 0.1 ° C., and the relative viscosity ηrel is obtained from the following equation from the solvent passage time t0 and the solution passage time t. ,
ηrel = t / t0
From the relative viscosity, the specific viscosity ηsp was determined from the following formula.
ηsp = (η−η0) / η0 = ηrel−1
The reduced viscosity ηsp / c was determined by dividing the specific viscosity by the concentration c (g / dL). The higher this value, the higher the molecular weight.
 (3)ポリカーボネート樹脂のガラス転移温度
 ポリカーボネート樹脂のガラス転移温度は示差走査熱量計(エスアイアイ・ナノテクノロジー社製DSC6220)を用いて測定した。ポリカーボネート樹脂サンプル約10mgを同社製アルミパンに入れて密封し、50mL/分の窒素気流下、昇温速度20℃/分で室温から250℃まで昇温した。3分間温度を保持した後、30℃まで20℃/分の速度で冷却した。30℃で3分保持し、再び200℃まで20℃/分の速度で昇温した。2回目の昇温で得られたDSCデータより、補外ガラス転移開始温度を採用した。
(3) Glass Transition Temperature of Polycarbonate Resin The glass transition temperature of the polycarbonate resin was measured using a differential scanning calorimeter (DSC 6220 manufactured by SII Nano Technology). About 10 mg of a polycarbonate resin sample was put in an aluminum pan manufactured by the same company and sealed, and the temperature was raised from room temperature to 250 ° C. at a temperature rising rate of 20 ° C./min under a nitrogen stream of 50 mL / min. After maintaining the temperature for 3 minutes, it was cooled to 30 ° C. at a rate of 20 ° C./min. The temperature was maintained at 30 ° C. for 3 minutes, and the temperature was increased again to 200 ° C. at a rate of 20 ° C./min. From the DSC data obtained at the second temperature increase, the extrapolated glass transition start temperature was adopted.
 (4)ポリカーボネート樹脂中の各ジヒドロキシ化合物に由来する構造単位比の測定 ポリカーボネート樹脂中の各ジヒドロキシ化合物に由来する構造単位比は、ポリカーボネート樹脂30mgを秤取し、重クロロホルム約0.7mLに溶解し、溶液とし、これを内径5mmのNMR用チューブに入れ、日本電子社製JNM-AL400(共鳴周波数400MHz)を用いて常温で1H NMRスペクトルを測定した。各ジヒドロキシ化合物に由来する構造単位に基づくシグナル強度比より各ジヒドロキシ化合物に由来する構造単位比を求めた。 (4) Measurement of the structural unit ratio derived from each dihydroxy compound in the polycarbonate resin The structural unit ratio derived from each dihydroxy compound in the polycarbonate resin was obtained by weighing 30 mg of the polycarbonate resin and dissolving it in about 0.7 mL of deuterated chloroform. The solution was put into an NMR tube having an inner diameter of 5 mm, and a 1H NMR spectrum was measured at room temperature using JNM-AL400 (resonance frequency 400 MHz) manufactured by JEOL. The structural unit ratio derived from each dihydroxy compound was determined from the signal intensity ratio based on the structural unit derived from each dihydroxy compound.
 (5)ポリカーボネート樹脂中のフェノール含有量、DPC含有量の測定
 ポリカーボネート樹脂試料1.00gを塩化メチレン5mlに溶解し、溶液とした後、総量が25mlになるようにアセトンを添加して再沈殿処理を行った。該溶液を0.2μmディスクフィルターでろ過して、液体クロマトグラフィーにて定量を行った。
(5) Measurement of phenol content and DPC content in polycarbonate resin Dissolve 1.00 g of a polycarbonate resin sample in 5 ml of methylene chloride to prepare a solution, and then add acetone to make the total amount 25 ml for reprecipitation treatment. Went. The solution was filtered through a 0.2 μm disk filter and quantified by liquid chromatography.
 (6)ポリカーボネート樹脂の初期色相の評価方法
 ポリカーボネート樹脂の色相は、ASTM D1925に準拠して、ペレットの反射光におけるイエローインデックス(YI)値を測定して評価した。装置はコニカミノルタ社製分光測色計CM-5を用い、測定条件は測定径30mm、SCEを選択した。シャーレ測定用校正ガラスCM-A212を測定部にはめ込み、その上からゼロ校正ボックスCM-A124をかぶせてゼロ校正を行い、続いて内蔵の白色校正板を用いて白色校正を行った。
(6) Method for evaluating initial hue of polycarbonate resin The hue of the polycarbonate resin was evaluated by measuring the yellow index (YI) value in the reflected light of the pellet in accordance with ASTM D1925. As the apparatus, a spectrocolorimeter CM-5 manufactured by Konica Minolta Co., Ltd. was used, and a measurement diameter of 30 mm and SCE were selected as measurement conditions. A petri dish calibration glass CM-A212 was fitted into the measurement part, and a zero calibration box CM-A124 was placed thereon to perform zero calibration, followed by white calibration using a built-in white calibration plate.
 白色校正板CM-A210を用いて測定を行い、L*が99.40±0.05、a*が0.03±0.01、b*が-0.43±0.01、YIが-0.58±0.01となることを確認した。ペレットの測定は、内径30mm、高さ50mmの円柱ガラス容器にペレットを30mm以上の深さまで入れて測定を行った。ガラス容器からペレットを取り出してから再度測定を行う操作を2回繰り返し、計3回の測定値の平均値を用いた。YI値が小さい程、黄色味がなく品質が優れることを示す。 Measure using white calibration plate CM-A210, L * is 99.40 ± 0.05, a * is 0.03 ± 0.01, b * is −0.43 ± 0.01, YI is − It was confirmed to be 0.58 ± 0.01. The pellets were measured by putting the pellets to a depth of 30 mm or more in a cylindrical glass container having an inner diameter of 30 mm and a height of 50 mm. The operation of taking out the pellet from the glass container and then performing the measurement again was repeated twice, and the average value of the measurement values of three times in total was used. The smaller the YI value, the better the quality without yellowness.
 (7)溶融粘度
 溶融粘度(Pa・s):
120℃で、6hr乾燥した試料を、径1mmφ×長さ10mmLのキャピラリーを有するダイを具備したキャピラリーレオメーター(東洋精機(株)製)を用いて、240℃に加熱して剪断速度γ=9.12~1824(sec-1)間で測定し、91.2sec-1での溶融粘度を読み取った。
(7) Melt viscosity Melt viscosity (Pa · s):
A sample dried at 120 ° C. for 6 hours was heated to 240 ° C. using a capillary rheometer (manufactured by Toyo Seiki Co., Ltd.) equipped with a die having a capillary having a diameter of 1 mmφ × length of 10 mmL, and a shear rate γ = 9 .12 ~ measured between 1824 (sec -1), it was read melt viscosity at 91.2sec -1.
 (8)複屈折の波長分散性
 80℃で5時間真空乾燥をしたポリカーボネート樹脂を、単軸押出機(いすず化工機社製、スクリュー径25mm、シリンダー設定温度:220℃)、Tダイ(幅200mm、設定温度:220℃)、チルロール(設定温度:120~130℃)及び巻取機を備えたフィルム製膜装置を用いて、厚み100μm±5μmのフィルムを作製した。
(8) Birefringence wavelength dispersibility Polycarbonate resin vacuum-dried at 80 ° C. for 5 hours is converted into a single-screw extruder (made by Isuzu Chemical Industries, screw diameter 25 mm, cylinder set temperature: 220 ° C.), T-die (width 200 mm). A film having a thickness of 100 μm ± 5 μm was prepared using a film forming apparatus equipped with a chill roll (set temperature: 120 to 130 ° C.) and a winder.
 前記フィルムから幅6cm、長さ6cmの試料を切り出した。この試料を、バッチ式二軸延伸装置(東洋精機社製)で、延伸温度をポリカーボネート樹脂のガラス転移温度+15℃で、延伸速度720mm/分(ひずみ速度1200%/分)で、1×2.0倍の一軸延伸を行い、厚みが均一な透明フィルムを得た。このとき延伸方向に対して垂直方向は、保持した状態(延伸倍率1.0)で延伸を行った。 A sample having a width of 6 cm and a length of 6 cm was cut out from the film. This sample was placed in a batch type biaxial stretching apparatus (manufactured by Toyo Seiki Co., Ltd.) with a glass transition temperature of the polycarbonate resin + 15 ° C. and a stretching speed of 720 mm / min (strain speed of 1200% / min). Uniaxial stretching of 0 times was performed to obtain a transparent film having a uniform thickness. At this time, it extended | stretched in the perpendicular | vertical direction with respect to the extending | stretching state in the hold | maintained state (drawing ratio 1.0).
 前記透明フィルムを幅4cm、長さ4cmに切り出したサンプルを、位相差測定装置(王子計測機器社製KOBRA-WPR)により測定波長450nmの位相差(R450)及び550nmの位相差(R550)を測定した。そして測定した位相差(R450)と位相差(R550)の比(R450/R550)を計算した。位相差比が1より大きいと波長分散は正であり、1未満では負(逆分散)となる。それぞれの位相差の比が、1未満で小さい程、負の波長分散性が強いことを示している。 A sample obtained by cutting the transparent film into a width of 4 cm and a length of 4 cm is measured for a phase difference (R450) at a measurement wavelength of 450 nm and a phase difference (R550) at 550 nm using a phase difference measuring device (KOBRA-WPR manufactured by Oji Scientific Instruments). did. And the ratio (R450 / R550) of the measured phase difference (R450) and phase difference (R550) was calculated. If the phase difference ratio is greater than 1, the chromatic dispersion is positive, and if it is less than 1, it is negative (reverse dispersion). It is shown that the smaller the ratio of the respective phase differences is less than 1, the stronger the negative wavelength dispersion.
(9)異物数の評価方法
 OPTICAL CONTROL SYSTEMS社製、1軸押出機(口径20mm、シングルフライト、L/D=25)とキャストフィルムダイ(150mm幅)、チルロールを用いて、シリンダー設定温度250℃、ロール温度133℃で、厚み35±5μmのフィルムを成形し、ゲルカウンターシステム(形式FSA100)を用いて、25μm以上の異物をカウントした。
(10)ストランドのガス切れ頻度
 連続運転を実施し、ストランドがガスで切れる頻度を数えた。
(9) Evaluation method for the number of foreign substances: OPTICAL CONTROL SYSTEMS, Inc., single screw extruder (caliber 20 mm, single flight, L / D = 25), cast film die (150 mm width), chill roll, cylinder setting temperature 250 ° C. A film having a thickness of 35 ± 5 μm was formed at a roll temperature of 133 ° C., and foreign matters of 25 μm or more were counted using a gel counter system (form FSA100).
(10) Frequency of strands running out of gas Continuous operation was performed, and the frequency of strands running out of gas was counted.
 以下の実施例の記載の中で用いた化合物の略号は次の通りである。 
・BHEPF:9,9-ビス(4-(2-ヒドロキシエトキシ)-フェニル)フルオレン(大阪ガスケミカル株式会社製)
・BCF:9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(大阪ガスケミカル株式会社製)
・ISB:イソソルビド (ロケットフルーレ社製、商品名:POLYSORB PS)
・PEG:ポリエチレングリコール(三洋化成工業株式会社製)
・DEG:ジエチレングリコール(三菱化学株式会社製)
・CHDM:1,4-シクロヘキサンジメタノール (新日本理化株式会社製)
・1,6-HD:1,6-ヘキサンジオール(BASF社製)
・SPG:スピログリコール(別名:3,9-ビス(1,1-ジメチル-2-メトキシエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン) (三菱ガス化学社製)
・DPC:ジフェニルカーボネート (三菱化学株式会社製)
The abbreviations of the compounds used in the description of the following examples are as follows.
BHEPF: 9,9-bis (4- (2-hydroxyethoxy) -phenyl) fluorene (Osaka Gas Chemical Co., Ltd.)
BCF: 9,9-bis (4-hydroxy-3-methylphenyl) fluorene (manufactured by Osaka Gas Chemical Co., Ltd.)
ISB: Isosorbide (Rocket Fleure, trade name: POLYSORB PS)
・ PEG: Polyethylene glycol (manufactured by Sanyo Chemical Industries)
・ DEG: Diethylene glycol (Mitsubishi Chemical Corporation)
・ CHDM: 1,4-cyclohexanedimethanol (manufactured by Shin Nippon Rika Co., Ltd.)
・ 1,6-HD: 1,6-hexanediol (manufactured by BASF)
SPG: Spiroglycol (also known as 3,9-bis (1,1-dimethyl-2-methoxyethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane) (Mitsubishi Gas Chemical Co., Ltd.) )
・ DPC: Diphenyl carbonate (Mitsubishi Chemical Corporation)
[実施例1]
 十分に窒素置換した(酸素濃度0.0005vol%~0.001vol%)原料調製槽において、BHEPF/ISB/PEG(平均分子量1000)/DPCのモル比が43.2/55.6/1.2/99になるように調製した原料を、オイルを熱媒体とした熱媒体ジャケット、熱媒体内部コイル、および撹拌翼、真空ポンプに連結された留出管および凝縮器を具備した第1重合反応器に、連続的に一定量供給すると同時に、原料供給配管に連結した触媒供給配管より、水溶液にした酢酸マグネシウム4水和物を、全ジヒドロキシ化合物1mol当たり19×10-6mol(マグネシウム金属原子換算)になるように連続的に供給した。
[Example 1]
In a raw material preparation tank sufficiently purged with nitrogen (oxygen concentration 0.0005 vol% to 0.001 vol%), the molar ratio of BHEPF / ISB / PEG (average molecular weight 1000) / DPC was 43.2 / 55.6 / 1.2. / 99 A first polymerization reactor comprising a heat medium jacket using oil as a heat medium, a heat medium internal coil, a stirring blade, a distillation pipe connected to a vacuum pump, and a condenser. In addition, while supplying a constant amount continuously, the magnesium acetate tetrahydrate made into an aqueous solution from the catalyst supply pipe connected to the raw material supply pipe is 19 × 10 −6 mol (converted to magnesium metal atom) per 1 mol of all dihydroxy compounds. Was continuously supplied.
 原料と触媒水溶液を配管で混合した後、第1反応器に入るまでの流路にプリーツ型円筒タイプの原料濾過フィルターを2器設置し、上流側の原料濾過フィルターの目開きを10μm、下流側の目開きを1μmとした。 After mixing the raw material and catalyst aqueous solution by piping, install two pleated cylindrical type raw material filtration filters in the flow path to enter the first reactor, the upstream raw material filtration filter opening is 10 μm, downstream The mesh opening was 1 μm.
 第1重合反応器の留出管には、冷媒としてオイル(入口温度130℃)を用いた還流冷却器、更に還流冷却器で凝縮されないフェノール等を凝縮させるため、還流冷却器と真空ポンプの間に冷媒として温水(入口温度45℃)を用いた凝縮器を配置した。第1重合反応器の撹拌翼の回転数を一定にしながら、内温196℃、圧力26.3kPa、滞留時間1.5時間で一定となるよう制御し、反応液を反応槽槽底から連続的に抜き出し、第2重合反応器に供給した。 In the first polymerization reactor, the distillation pipe is provided with a reflux condenser using oil (inlet temperature 130 ° C.) as a refrigerant, and phenol and the like that are not condensed in the reflux condenser. In addition, a condenser using warm water (inlet temperature 45 ° C.) as a refrigerant was disposed. While keeping the rotation speed of the stirring blade of the first polymerization reactor constant, the internal temperature was controlled to be constant at 196 ° C., pressure 26.3 kPa, residence time 1.5 hours, and the reaction solution was continuously fed from the bottom of the reaction vessel. And was fed to the second polymerization reactor.
 第2重合反応器は、第1重合反応器と同様、熱媒体ジャケット、熱媒体内部コイル、撹拌翼、真空ポンプに連結された留出管および留出管には還流冷却器、凝縮器を具備しており、内温207℃、圧力23.9kPa、滞留時間1時間で一定となるよう制御し、反応液を反応槽槽底から連続的に抜き出し、第3重合反応器に供給した。 Similar to the first polymerization reactor, the second polymerization reactor includes a heat medium jacket, a heat medium internal coil, a stirring blade, a distillation pipe connected to a vacuum pump, and a distillation pipe having a reflux condenser and a condenser. The internal temperature was 207 ° C., the pressure was 23.9 kPa, and the residence time was controlled to be constant at 1 hour. The reaction solution was continuously withdrawn from the bottom of the reaction vessel and supplied to the third polymerization reactor.
 第3重合反応器は、内温218℃、圧力20.9kPa、滞留時間1時間で一定となるよう制御し、引き続き副生するフェノールを留去しながら重縮合反応を進行させ、反応液を反応槽槽底から連続的に自己循環型シール式ギアポンプを用いて抜き出し、2本の水平な回転軸とこの水平軸にほぼ直角に取り付けられた相互に不連続な攪拌翼とを有する横型攪拌反応器(第4重合反応器)に供給した。 The third polymerization reactor is controlled to be constant at an internal temperature of 218 ° C., a pressure of 20.9 kPa, and a residence time of 1 hour, and the polycondensation reaction proceeds while distilling off the by-produced phenol to react the reaction solution. A horizontal stirring reactor having two horizontal rotating shafts and discontinuous stirring blades mounted substantially at right angles to the horizontal shaft, continuously extracted from the tank bottom using a self-circulating sealed gear pump (4th polymerization reactor).
 第4重合反応器は、入口付近の内温を220℃、出口付近の内温を240℃、圧力を1.4kPa、滞留時間を2時間になるよう制御し、さらに重縮合反応を進行させた。 The fourth polymerization reactor was controlled so that the internal temperature near the inlet was 220 ° C., the internal temperature near the outlet was 240 ° C., the pressure was 1.4 kPa, and the residence time was 2 hours, and the polycondensation reaction was further advanced. .
 得られたポリカーボネート樹脂は、添加剤供給口および3つのベント口を有し、L/D=42、押出機のスクリュー全体を構成するエレメントの長さに占めるニーディングディスクの長さ(ニーディングエレメント比率)が6%の二軸押出機に、自己循環型シール式ギアポンプを用いて連続的に供給した。該ギアポンプと押出機を繋ぐ配管は熱媒が外部に流れるジャケット型の二重管となっており、熱媒の温度は250℃に設定した。 The obtained polycarbonate resin has an additive supply port and three vent ports, L / D = 42, the length of the kneading disk occupying the length of the element constituting the entire screw of the extruder (kneading element) A self-circulating seal type gear pump was continuously supplied to a twin screw extruder having a ratio of 6%. The pipe connecting the gear pump and the extruder is a jacket-type double pipe in which the heat medium flows to the outside, and the temperature of the heat medium is set to 250 ° C.
 押出機に供給される樹脂の温度は押出機入口に設置した樹脂温計で測定したところ248℃であった。押出機内に、処理されるポリカーボネート樹脂に対して0.1%の水を供給し、ベント口は、真空ポンプに連結させ、ポリカーボネート樹脂中に含まれる揮発成分を除去した。 The temperature of the resin supplied to the extruder was 248 ° C. when measured with a resin thermometer installed at the inlet of the extruder. In the extruder, 0.1% of water was supplied to the polycarbonate resin to be treated, and the vent port was connected to a vacuum pump to remove volatile components contained in the polycarbonate resin.
 押出機のバレルのヒーター温度の設定は、上流の4ブロックを245℃、下流の6ブロックを225℃とし、スクリュー回転数は274rpmとした。この時、押出機に供給するポリカーボネート樹脂を一時抜き出し、各種分析を行った。結果を表1に示す。 The heater temperature of the barrel of the extruder was set to 245 ° C. for the upstream 4 blocks, 225 ° C. for the 6 blocks downstream, and the screw speed was 274 rpm. At this time, the polycarbonate resin supplied to the extruder was temporarily extracted and subjected to various analyses. The results are shown in Table 1.
 なお、表1において、ニーディングエレメント比率は、下記式から計算される値をいう。
 ニーディングエレメント比率(%)=(ニーディングディスクの合計の長さ/スクリュー全体の長さ)×100
In Table 1, the kneading element ratio is a value calculated from the following formula.
Kneading element ratio (%) = (total length of kneading disc / total length of screw) × 100
 押出機で処理されたポリカーボネート樹脂は、その出口に設置したギアポンプを経て、樹脂の入口が下部、出口が上部にあるフィルターユニットに供給した。フィルターユニットの手前でサンプリングした樹脂の温度、および各種測定値を表1に示す。 The polycarbonate resin processed by the extruder was supplied to a filter unit having a resin inlet at the bottom and an outlet at the top through a gear pump installed at the outlet. Table 1 shows the temperature of the resin sampled before the filter unit and various measured values.
 フィルターユニットの内部には、目開き7μmのリーフディスクフィルター[日本ポール(株)製][材質はステンレス(SUS304、SUS316)]を装着し、ポリカーボネート樹脂中の異物を除去した。該フィルターは、使用前に水蒸気雰囲気下、310℃で40時間、続いて空気雰囲気下420℃で52時間、焙焼処理を行い室温まで冷却した後、30重量%の硝酸水溶液に30分間浸漬し、酸化皮膜を形成させ、水洗および乾燥を行ったものを用いた。 Inside the filter unit, a leaf disk filter having a mesh size of 7 μm [manufactured by Nippon Pole Co., Ltd.] [material is stainless steel (SUS304, SUS316)] was installed to remove foreign substances in the polycarbonate resin. Prior to use, the filter was roasted at 310 ° C. for 40 hours in a water vapor atmosphere and then at 420 ° C. for 52 hours in an air atmosphere, cooled to room temperature, and then immersed in a 30% by weight nitric acid aqueous solution for 30 minutes. Then, an oxide film was formed, washed and dried.
 フィルターユニットは複数のブロックで構成されるヒーターが具備されており、それぞれの温度を245℃に設定した。フィルターユニットの出口側には、複数のブロックからなるヒーターを具備したポリマー配管を通じてダイスを設置し、ポリマー配管のヒーターの設定温度は240℃、ダイスのヒーターは235℃に設定した。 The filter unit was equipped with a heater composed of a plurality of blocks, and each temperature was set to 245 ° C. On the outlet side of the filter unit, a die was installed through a polymer pipe equipped with a heater composed of a plurality of blocks. The set temperature of the heater of the polymer pipe was set to 240 ° C., and the heater of the dice was set to 235 ° C.
 フィルターユニットの出口流路に樹脂温度を測定するためのセンサーを設置した。ダイスから排出されたポリカーボネート樹脂の温度を温度計を用いて測定した。ダイス出口の樹脂温度は、温度計をダイス穴部に挿入し直接測定した。該ダイスからクラス10000の清浄度に保持された部屋の中で、ポリカーボネート樹脂をストランドの形態で抜き出し、水槽で固化させて、回転式カッターでペレット化した。分析値を表1に示す。 ¡A sensor for measuring the resin temperature was installed in the outlet channel of the filter unit. The temperature of the polycarbonate resin discharged from the die was measured using a thermometer. The resin temperature at the die outlet was directly measured by inserting a thermometer into the die hole. The polycarbonate resin was extracted in the form of a strand in a room maintained at a class 10000 cleanness from the die, solidified in a water tank, and pelletized with a rotary cutter. The analytical values are shown in Table 1.
[実施例2]
 BHEPF/ISB/PEG(平均分子量1000)/DPCのモル比が40.3/59.4/0.3/99になるように原料を調製し、第1重合反応器の内温を194℃、圧力を27.8kPa、第2重合反応器の内温を208℃、圧力を25.8kPa、第3重合反応器の内温を221℃、圧力を23.0kPa、第4重合反応器の入口付近の内温を225℃、出口付近の内温を239℃、圧力を1.3kPaとし、押出機のスクリュー回転数、ポリカーボネート樹脂押出量/押出機バレル断面積、フィルターのヒーター設定温度、フィルター面での溶融樹脂線速を表1の通りに変えた以外は、実施例1と同様に行った。分析値を表1に示す。
[Example 2]
The raw materials were prepared so that the molar ratio of BHEPF / ISB / PEG (average molecular weight 1000) / DPC was 40.3 / 59.4 / 0.3 / 99, and the internal temperature of the first polymerization reactor was 194 ° C. The pressure is 27.8 kPa, the internal temperature of the second polymerization reactor is 208 ° C., the pressure is 25.8 kPa, the internal temperature of the third polymerization reactor is 221 ° C., the pressure is 23.0 kPa, and the vicinity of the inlet of the fourth polymerization reactor The inner temperature of the outlet is 225 ° C., the inner temperature near the outlet is 239 ° C., the pressure is 1.3 kPa, the screw speed of the extruder, the polycarbonate resin extrusion rate / extruder barrel cross-sectional area, the filter heater set temperature, and the filter surface This was performed in the same manner as in Example 1 except that the molten resin linear velocity was changed as shown in Table 1. The analytical values are shown in Table 1.
[実施例3]
 押出機のバレルのヒーター温度の設定を、上流の4ブロックを240℃、下流の6ブロックを220℃とし、押出機のスクリュー回転数、フィルターのヒーター設定温度、ダイスのヒーター設定温度を表1の通りに変えた以外は、実施例2と同様に行った。分析値を表1に示す。
[Example 3]
Set the heater temperature of the barrel of the extruder to 240 ° C for the upstream 4 blocks and 220 ° C for the 6 blocks downstream. Table 1 shows the screw rotation speed of the extruder, the heater setting temperature of the filter, and the heater setting temperature of the die. The procedure was the same as Example 2 except that the procedure was changed. The analytical values are shown in Table 1.
[実施例4]
 第4重合反応器から押出機へポリカーボネート樹脂を供給する配管から一部のポリカーボネート樹脂を抜き出し、押出機への供給樹脂量を減らした他は、実施例1と同様に行った。
[Example 4]
The same procedure as in Example 1 was carried out except that a part of the polycarbonate resin was extracted from the piping for supplying the polycarbonate resin to the extruder from the fourth polymerization reactor, and the amount of the resin supplied to the extruder was reduced.
[実施例5]
 BHEPF/ISB/DPCのモル比が40/60/100になるように原料を調製し、第1重合反応器の圧力を33kPa、第2重合反応器の内温を201℃、圧力を25kPa、第3重合反応器の内温を241℃、圧力を18.3kPa、第4重合反応器の入口付近の内温を235℃、出口付近の内温を250℃、圧力を1.1kPaとし、ポリカーボネート樹脂押出量/押出機バレル断面積、フィルター格納容器の内容積/ポリカーボネート樹脂の流量、フィルター面での溶融樹脂線速を表1の通りに変えた以外は、実施例1と同様に行った。分析値を表1に示す。
[Example 5]
The raw materials were prepared so that the molar ratio of BHEPF / ISB / DPC was 40/60/100, the pressure of the first polymerization reactor was 33 kPa, the internal temperature of the second polymerization reactor was 201 ° C., the pressure was 25 kPa, The internal temperature of the 3 polymerization reactor is 241 ° C., the pressure is 18.3 kPa, the internal temperature near the inlet of the fourth polymerization reactor is 235 ° C., the internal temperature near the outlet is 250 ° C., and the pressure is 1.1 kPa. Except that the amount of extrusion / cross-sectional area of the barrel of the extruder, the inner volume of the filter storage container / the flow rate of the polycarbonate resin, and the linear velocity of the molten resin on the filter surface were changed as shown in Table 1, the same procedure as in Example 1 was performed. The analytical values are shown in Table 1.
[実施例6]
 ベント口の下流にサイドフィーダーを設置し、ペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](商品名:IRGANOX1010)をポリカーボネート樹脂100重量部に対し、0.1重量部、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト(商品名:アデカスタブ2112)を同じく0.05重量部になるよう連続的に供給した他は、実施例2と同様に行った。
[Example 6]
A side feeder is installed downstream of the vent port, and pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (trade name: IRGANOX1010) is added to 100 parts by weight of polycarbonate resin. In contrast to the above, 0.1 parts by weight of tris (2,4-di-t-butylphenyl) phosphite (trade name: ADK STAB 2112) was continuously supplied to the same amount of 0.05 parts by weight. Same as 2.
[実施例7]
 押出機のスクリュー全体を構成するエレメントの長さに占めるニーディングディスクの長さを12%にし、ベント口の下流にサイドフィーダーを設置し、ペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](商品名:IRGANOX1010)をポリカーボネート樹脂100重量部に対し、0.1重量部、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト(商品名:アデカスタブ2112)を同じく0.05重量部になるよう連続的に供給した以外は実施例1と同様に行った。
[Example 7]
The length of the kneading disk occupying the length of the elements constituting the entire screw of the extruder is 12%, a side feeder is installed downstream of the vent port, and pentaerythrityl tetrakis [3- (3,5-dioxy -T-butyl-4-hydroxyphenyl) propionate] (trade name: IRGANOX1010) with respect to 100 parts by weight of polycarbonate resin, 0.1 part by weight of tris (2,4-di-t-butylphenyl) phosphite (product) Name: ADK STAB 2112) was carried out in the same manner as in Example 1 except that 0.05 parts by weight was continuously supplied.
[実施例8]
 第4重合反応器の、入口付近の内温を220℃、出口付近の内温を235℃、圧力を1.2kPaにし、第4重合反応器出口のギアポンプと押出機を繋ぐ配管の熱媒温度を230℃に設定し、押出機のバレルのヒーター温度の設定を、上流の4ブロックを240℃、下流の6ブロックを220℃とし、押出機のスクリュー回転数、フィルターのヒーター設定温度、ダイスのヒーター設定温度を表1の通りに変えた。
[Example 8]
In the fourth polymerization reactor, the internal temperature near the inlet is 220 ° C., the internal temperature near the outlet is 235 ° C., the pressure is 1.2 kPa, and the heat medium temperature of the pipe connecting the gear pump and the extruder at the fourth polymerization reactor outlet Is set to 230 ° C, the heater temperature of the barrel of the extruder is set to 240 ° C for the upstream 4 blocks, and 220 ° C for the 6 blocks downstream, and the screw speed of the extruder, the heater set temperature of the filter, The heater set temperature was changed as shown in Table 1.
 ベント口の下流にサイドフィーダーを設置し、ペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](商品名:IRGANOX1010)をポリカーボネート樹脂100重量部に対し、0.1重量部、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト(商品名:アデカスタブ2112)を同じく0.05重量部になるよう連続的に供給した以外は、実施例1と同様に行った。 A side feeder is installed downstream of the vent port, and pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (trade name: IRGANOX1010) is added to 100 parts by weight of polycarbonate resin. In contrast, 0.1 parts by weight of tris (2,4-di-t-butylphenyl) phosphite (trade name: ADK STAB 2112) was continuously supplied to the same amount of 0.05 parts by weight. 1 was performed.
[実施例9]
 原料モノマーとして、BHEPF/ISB/DEG/DPCのモル比が37.0/52.7/10.3/101になるように調製した原料を使用し、触媒として酢酸マグネシウム4水和物を、全ジヒドロキシ化合物1mol当たり14×10-6mol(マグネシウム金属原子換算)になるように使用し、原料の単位時間当たりの供給量を実施例8より増やし、第1重合反応器の滞留時間を0.9時間、第2重合反応器の滞留時間を0.6時間、第3重合反応器の滞留時間を0.6時間、第4重合反応器の滞留時間を1.1時間、第4重合反応器の圧力を0.7kPaにし、フィルターの目開きを15μmにして、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト(商品名:アデカスタブ2112)を添加しなかった以外は、実施例8と同様に行った。
[Example 9]
As a raw material monomer, a raw material prepared so that the molar ratio of BHEPF / ISB / DEG / DPC was 37.0 / 52.7 / 10.3 / 101 was used, and magnesium acetate tetrahydrate was used as a catalyst. The dihydroxy compound was used in an amount of 14 × 10 −6 mol per 1 mol of the dihydroxy compound (magnesium metal atom equivalent), and the feed rate per unit time of the raw material was increased from that in Example 8, and the residence time of the first polymerization reactor was 0.9. The residence time of the second polymerization reactor is 0.6 hours, the residence time of the third polymerization reactor is 0.6 hours, the residence time of the fourth polymerization reactor is 1.1 hours, Implementation was performed except that the pressure was 0.7 kPa, the filter opening was 15 μm, and tris (2,4-di-t-butylphenyl) phosphite (trade name: ADK STAB 2112) was not added. 8 and was carried out in the same manner.
[実施例10]
 原料モノマーとして、BCF/SPG/CHDM/DPCのモル比が29.3/35.9/34.8/103になるように調製した原料を使用し、触媒として酢酸カルシウム1水和物を、全ジヒドロキシ化合物1mol当たり200×10-6mol(カルシウム金属原子換算)になるように使用し、第4重合反応器出口のギアポンプと押出機を繋ぐ配管の熱媒温度を240℃に設定して、熱安定剤を添加しなかった以外は、実施例1と同様に行った。
[Example 10]
As a raw material monomer, a raw material prepared so that the molar ratio of BCF / SPG / CHDM / DPC was 29.3 / 35.9 / 34.8 / 103 was used, and calcium acetate monohydrate was used as a catalyst. The dihydroxy compound was used at 200 × 10 −6 mol (calcium metal atom equivalent) per mol, and the heat medium temperature of the pipe connecting the gear pump at the outlet of the fourth polymerization reactor and the extruder was set to 240 ° C. The same procedure as in Example 1 was carried out except that no stabilizer was added.
[実施例11]
 原料モノマーとして、BCF/SPG/1,6-HD/DPCのモル比が30.9/47.4/21.7/102になるように調製した原料を使用し、触媒として酢酸カルシウム1水和物を、全ジヒドロキシ化合物1mol当たり250×10-6mol(カルシウム金属原子換算)になるように使用した以外は、実施例10と同様に行った。
[Example 11]
As a raw material monomer, a raw material prepared so that the molar ratio of BCF / SPG / 1,6-HD / DPC was 30.9 / 47.4 / 21.7 / 102 was used, and calcium acetate monohydration was used as a catalyst. The product was used in the same manner as in Example 10, except that the product was used in an amount of 250 × 10 −6 mol (calculated as calcium metal atom) per mol of the total dihydroxy compound.
[比較例1]
 押出機のニーディングエレメントの比率を12%、押出機のスクリュー回転数を285rpm、フィルターのヒーター設定温度、ポリマー配管のヒーター設定温度、ダイスの設定温度をそれぞれ280℃にした以外は、実施例1と同様に実施した。フィルターの入口/出口での圧力差は下がり、濾過しやすくなったが、得られたペレットおよびフィルムの着色が著しく、異物も増加した。
[Comparative Example 1]
Example 1 except that the kneading element ratio of the extruder was 12%, the screw rotation speed of the extruder was 285 rpm, the heater setting temperature of the filter, the heater setting temperature of the polymer pipe, and the die setting temperature were 280 ° C. It carried out like. Although the pressure difference at the inlet / outlet of the filter decreased and it became easier to filter, the obtained pellets and film were markedly colored and foreign matter increased.
 結果を表1および表2に示す。 Results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 なお、日本特許出願2011-78639号の明細書、特許請求の範囲、図面及び要約書の全内容、さらに本明細書に引用した特許文献等に開示された内容の一部又は全部をここに引用し、本発明の明細書の開示内容として、取り入れるものである。 The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2011-78639, as well as part or all of the contents disclosed in the patent documents cited in this specification, are cited here. However, it is incorporated as the disclosure content of the specification of the present invention.
1a 原料(炭酸ジエステル)供給口
1b、1c 原料(ジヒドロキシ化合物)供給口
1d 触媒供給口
2a 原料混合槽
3a アンカー型攪拌翼
4a 原料混合液移送ポンプ
4b、4c、4d ギアポンプ
5a 原料濾過フィルター
6a 第1竪型攪拌反応槽
6b 第2竪型攪拌反応槽
6c 第3竪型攪拌反応槽
6d 第4横型撹拌反応槽
7a、7b、7c マックスブレンド翼
7d 2軸メガネ型攪拌翼
8a、8b 内部熱交換器
9a、9b 還流冷却器
10a、10b 還流管
11a、11b、11c、11d 留出管
12a、12b、12c、12d 凝縮器
13a、13b、13c、13d 減圧装置
14a 留出液回収タンク
15a 押出機
15b ポリマーフィルター
15c ダイス
16a ストランド冷却槽
16b ストランドカッター
16c 空送ブロワー
16d 製品ホッパー
16e 計量器
16f 製品袋(紙袋、フレコンなど)
1a Raw material (carbonic acid diester) supply port 1b, 1c Raw material (dihydroxy compound) supply port 1d Catalyst supply port 2a Raw material mixing tank 3a Anchor type stirring blade 4a Raw material mixed liquid transfer pump 4b, 4c, 4d Gear pump 5a Raw material filtration filter 6a First Vertical stirring reaction tank 6b Second vertical stirring reaction tank 6c Third vertical stirring reaction tank 6d Fourth horizontal stirring reaction tank 7a, 7b, 7c Max blend blade 7d Biaxial glasses stirring blade 8a, 8b Internal heat exchanger 9a, 9b Reflux coolers 10a, 10b Reflux pipes 11a, 11b, 11c, 11d Distillate pipes 12a, 12b, 12c, 12d Condensers 13a, 13b, 13c, 13d Depressurizer 14a Distillate recovery tank 15a Extruder 15b Polymer Filter 15c Die 16a Strand cooling tank 16b Strand cutter 16c Air feed blower 16 Product hopper 16e meter 16f product bag (paper bag, such as a flexible container)

Claims (28)

  1.  ジヒドロキシ化合物および炭酸ジエステルを重縮合させて得られたポリカーボネート樹脂を、フィルターを用いて濾過した後に、冷却固化するポリカーボネート樹脂の製造方法であって、
     前記ジヒドロキシ化合物が下記一般式(1)で表されるジヒドロキシ化合物を少なくとも含み、
     前記フィルターの目開きが50μm以下であり、
     前記フィルターを用いて濾過した後のポリカーボネート樹脂の温度が200℃以上280℃未満となるようにポリカーボネート樹脂を濾過することを特徴とするポリカーボネート樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [上記一般式(1)中、R~Rはそれぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキル基、または、置換若しくは無置換の炭素数6~炭素数20のアリール基を表し、Xは置換若しくは無置換の炭素数2~炭素数10のアルキレン基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキレン基、または、置換若しくは無置換の炭素数6~炭素数20のアリーレン基を表し、m及びnはそれぞれ独立に0~5の整数である。]
    A polycarbonate resin obtained by polycondensation of a dihydroxy compound and a carbonic acid diester is filtered using a filter and then cooled and solidified.
    The dihydroxy compound includes at least a dihydroxy compound represented by the following general formula (1),
    The aperture of the filter is 50 μm or less,
    A method for producing a polycarbonate resin, comprising filtering the polycarbonate resin so that the temperature of the polycarbonate resin after filtration using the filter is 200 ° C. or higher and lower than 280 ° C.
    Figure JPOXMLDOC01-appb-C000001
    [In the general formula (1), R 1 to R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon number 6 to 20 carbon atoms. Or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, and X is a substituted or unsubstituted alkylene group having 2 to 10 carbon atoms, substituted or unsubstituted carbon number It represents a cycloalkylene group having 6 to 20 carbon atoms or a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, and m and n are each independently an integer of 0 to 5. ]
  2.  前記冷却固化して得られたポリカーボネート樹脂のガラス転移温度が50℃以上180℃未満である請求項1に記載のポリカーボネート樹脂の製造方法。 The method for producing a polycarbonate resin according to claim 1, wherein the polycarbonate resin obtained by cooling and solidifying has a glass transition temperature of 50 ° C or higher and lower than 180 ° C.
  3.  前記冷却固化して得られたポリカーボネート樹脂の還元粘度(ηsp/c)が、0.2dL/g以上、0.6dL/g以下である請求項1または2に記載のポリカーボネート樹脂の製造方法。 The method for producing a polycarbonate resin according to claim 1 or 2, wherein the reduced viscosity (ηsp / c) of the polycarbonate resin obtained by cooling and solidifying is 0.2 dL / g or more and 0.6 dL / g or less.
  4.  前記冷却固化して得られたポリカーボネート樹脂の、240℃で測定した剪断速度91.2sec-1での溶融粘度が、1000Pa・s以上5000Pa・s以下である請求項1乃至3の何れか1項に記載のポリカーボネート樹脂の製造方法。 4. The melt viscosity at a shear rate of 91.2 sec −1 measured at 240 ° C. of the polycarbonate resin obtained by cooling and solidifying is 1000 Pa · s or more and 5000 Pa · s or less. 5. A method for producing a polycarbonate resin as described in 1. above.
  5.  前記冷却固化して得られたポリカーボネート樹脂が、原料モノマーとして前記一般式(1)で表されるジヒドロキシ化合物を全ジヒドロキシ化合物に対して18モル%以上用いて得られたものである請求項1乃至4の何れか1項に記載のポリカーボネート樹脂の製造方法。 The polycarbonate resin obtained by cooling and solidifying is obtained by using 18 mol% or more of the dihydroxy compound represented by the general formula (1) as a raw material monomer with respect to the total dihydroxy compound. 5. The method for producing a polycarbonate resin according to any one of 4 above.
  6.  前記ポリカーボネート樹脂の前記フィルターで濾過する前の還元粘度(ηsp/c)をAとし、前記冷却固化して得られたポリカーボネート樹脂の還元粘度(ηsp/c)をBとした場合に、
     下記式(2)を満たす請求項1乃至5の何れか1項に記載のポリカーボネート樹脂の製造方法。
      0.8<B/A<1.1 ・・・(2)
    When the reduced viscosity (ηsp / c) of the polycarbonate resin before filtering through the filter is A, and the reduced viscosity (ηsp / c) of the polycarbonate resin obtained by cooling and solidification is B,
    The manufacturing method of the polycarbonate resin of any one of Claims 1 thru | or 5 which satisfy | fills following formula (2).
    0.8 <B / A <1.1 (2)
  7.  前記ポリカーボネート樹脂が、少なくとも前記一般式(1)で表されるジヒドロキシ化合物と、炭酸ジエステルを触媒の存在下、エステル交換反応により重縮合させて得られたものである請求項1乃至6の何れか1項に記載のポリカーボネート樹脂の製造方法。 The polycarbonate resin is obtained by polycondensation of at least a dihydroxy compound represented by the general formula (1) and a carbonic acid diester by an ester exchange reaction in the presence of a catalyst. 2. A method for producing a polycarbonate resin according to item 1.
  8.  前記重縮合させて得られた前記ポリカーボネート樹脂を、固化させることなく溶融状態のまま前記フィルターに供給し濾過する請求項7に記載のポリカーボネート樹脂の製造方法。 The method for producing a polycarbonate resin according to claim 7, wherein the polycarbonate resin obtained by the polycondensation is supplied to the filter in a molten state without being solidified and filtered.
  9.  前記重縮合が触媒を用いて行われるものであり、
     前記触媒が、長周期型周期表第2族の金属及びリチウムからなる群より選ばれる少なくとも1種の金属化合物である請求項7または8に記載のポリカーボネート樹脂の製造方法。
    The polycondensation is performed using a catalyst;
    The method for producing a polycarbonate resin according to claim 7 or 8, wherein the catalyst is at least one metal compound selected from the group consisting of a metal of Group 2 of the long-period periodic table and lithium.
  10.  前記ポリカーボネート樹脂が、原料モノマーとして前記一般式(1)で表されるジヒドロキシ化合物の他に、構造の一部に下記一般式(3)で表される部位を有するジヒドロキシ化合物を用いる請求項1乃至9の何れか1項に記載のポリカーボネート樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    [但し、上記一般式(3)で表される部位が-CH-O-Hの一部である場合を除く。]
    The said polycarbonate resin uses the dihydroxy compound which has a site | part represented by following General formula (3) in a part of structure other than the dihydroxy compound represented by the said General formula (1) as a raw material monomer. The method for producing a polycarbonate resin according to any one of 9.
    Figure JPOXMLDOC01-appb-C000002
    [However, the case where the moiety represented by the general formula (3) is a part of —CH 2 —O—H is excluded. ]
  11.  前記一般式(3)で表される部位を有するジヒドロキシ化合物が、環状エーテル構造を有する化合物であり、前記一般式(3)で表される部位が環状エーテル構造の一部である請求項10に記載のポリカーボネート樹脂の製造方法。 The dihydroxy compound having a site represented by the general formula (3) is a compound having a cyclic ether structure, and the site represented by the general formula (3) is a part of the cyclic ether structure. The manufacturing method of polycarbonate resin of description.
  12.  前記ポリカーボネート樹脂が、原料モノマーとして前記一般式(1)で表されるジヒドロキシ化合物の他に、下記一般式(4)で表されるジヒドロキシ化合物、下記一般式(5)で表されるジヒドロキシ化合物、及び下記一般式(6)で表されるジヒドロキシ化合物で表されるジヒドロキシ化合物からなる群より選ばれた一種以上のジヒドロキシ化合物を用いる請求項1乃至11の何れか1項に記載のポリカーボネート樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    [上記一般式(4)中、Rは炭素数4から炭素数20の置換若しくは無置換のシクロアルキレン基を示す。] 
    Figure JPOXMLDOC01-appb-C000004
    [上記一般式(5)中、Rは炭素数4から炭素数20の置換若しくは無置換のシクロアルキレン基を示す。]
    Figure JPOXMLDOC01-appb-C000005
    [上記一般式(6)中、R11は炭素数2から炭素数20の鎖状アルキレン基を表す。]
    In addition to the dihydroxy compound represented by the general formula (1) as a raw material monomer, the polycarbonate resin is a dihydroxy compound represented by the following general formula (4), a dihydroxy compound represented by the following general formula (5), The production of a polycarbonate resin according to any one of claims 1 to 11, wherein at least one dihydroxy compound selected from the group consisting of a dihydroxy compound represented by the dihydroxy compound represented by the following general formula (6) is used. Method.
    Figure JPOXMLDOC01-appb-C000003
    [In the general formula (4), R 5 represents a substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms. ]
    Figure JPOXMLDOC01-appb-C000004
    [In the general formula (5), R 6 represents a substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms. ]
    Figure JPOXMLDOC01-appb-C000005
    [In General Formula (6), R 11 represents a chain alkylene group having 2 to 20 carbon atoms. ]
  13.  前記フィルターが容器に格納されており、該格納容器の内容積(m)を、濾過する前記ポリカーボネート樹脂の流量(m/分)で除した値が2~10分である請求項1乃至12の何れか1項に記載のポリカーボネート樹脂の製造方法。 The filter is stored in a container, and a value obtained by dividing the internal volume (m 3 ) of the storage container by the flow rate (m 3 / min) of the polycarbonate resin to be filtered is 2 to 10 minutes. 13. The method for producing a polycarbonate resin according to any one of 12 above.
  14.  前記フィルター面での溶融樹脂の線速が0.01~0.5m/hである請求項1乃至13の何れか1項に記載のポリカーボネート樹脂の製造方法。 The method for producing a polycarbonate resin according to any one of claims 1 to 13, wherein a linear velocity of the molten resin on the filter surface is 0.01 to 0.5 m / h.
  15.  前記冷却固化して得られたポリカーボネート樹脂中に含まれる芳香族モノヒドロキシ化合物含有量が0.0001重量%以上0.2重量%未満である請求項1乃至14の何れか1項に記載のポリカーボネート樹脂の製造方法。 The polycarbonate according to any one of claims 1 to 14, wherein the content of the aromatic monohydroxy compound contained in the polycarbonate resin obtained by cooling and solidifying is 0.0001 wt% or more and less than 0.2 wt%. Manufacturing method of resin.
  16.  前記原料モノマーを、重縮合反応を行う前に原料濾過フィルターで濾過する請求項1乃至15の何れか1項に記載のポリカーボネート樹脂の製造方法。 The method for producing a polycarbonate resin according to any one of claims 1 to 15, wherein the raw material monomer is filtered through a raw material filter before the polycondensation reaction.
  17.  前記フィルターが350℃以上500℃以下の温度であらかじめ焙焼処理を施した金属からなる請求項1乃至16の何れか1項に記載のポリカーボネート樹脂の製造方法。 The method for producing a polycarbonate resin according to any one of claims 1 to 16, wherein the filter is made of a metal that has been previously baked at a temperature of 350 ° C or higher and 500 ° C or lower.
  18.  前記濾過前のポリカーボネート樹脂が前記フィルターの格納容器の下部から供給され、濾過後のポリカーボネート樹脂が該格納容器の上部から排出される請求項1乃至17の何れか1項に記載のポリカーボネート樹脂の製造方法。 18. The production of a polycarbonate resin according to claim 1, wherein the polycarbonate resin before filtration is supplied from a lower part of the storage container of the filter, and the polycarbonate resin after filtration is discharged from an upper part of the storage container. Method.
  19.  前記ポリカーボネート樹脂を、ベント口を有する二軸押出機で脱揮する操作を行った後、前記フィルターに供給し、濾過する請求項1乃至18の何れか1項に記載のポリカーボネート樹脂の製造方法。 The method for producing a polycarbonate resin according to any one of claims 1 to 18, wherein the polycarbonate resin is devolatilized by a twin screw extruder having a vent port, and then supplied to the filter and filtered.
  20.  前記押出機のスクリューが複数のエレメントから構成されており、該エレメントの少なくとも1つがニーディングディスクであり、該ニーディングディスクの合計の長さが、前記スクリュー全体の長さの20%以下である請求項19に記載のポリカーボネート樹脂の製造方法。 The screw of the extruder is composed of a plurality of elements, at least one of the elements is a kneading disk, and the total length of the kneading disk is 20% or less of the total length of the screw. The manufacturing method of the polycarbonate resin of Claim 19.
  21.  前記押出機で1時間当たりに押し出す樹脂の重量をW(kg/h)、前記押出機のバレルの断面積をS(m)とした場合に、下記式(7)を満たす請求項19または20に記載のポリカーボネート樹脂の製造方法。
      12000 ≦ W/S ≦ 60000  (7)
    The following formula (7) is satisfied when the weight of the resin extruded per hour by the extruder is W (kg / h) and the cross-sectional area of the barrel of the extruder is S (m 2 ): 20. A method for producing a polycarbonate resin according to 20.
    12000 ≦ W / S ≦ 60000 (7)
  22.  前記押出機に供給されるポリカーボネート樹脂の温度が200℃以上250℃未満である請求項19乃至21のいずれか1項に記載のポリカーボネート樹脂の製造方法。 The method for producing a polycarbonate resin according to any one of claims 19 to 21, wherein the temperature of the polycarbonate resin supplied to the extruder is 200 ° C or higher and lower than 250 ° C.
  23.  前記フィルターに供給されるポリカーボネート樹脂の温度が230℃以上280℃未満である請求項19乃至22のいずれか1項に記載のポリカーボネート樹脂の製造方法。 The method for producing a polycarbonate resin according to any one of claims 19 to 22, wherein the temperature of the polycarbonate resin supplied to the filter is 230 ° C or higher and lower than 280 ° C.
  24.  前記押出機に供給されるポリカーボネート樹脂の還元粘度(ηsp/c)をa、
     前記冷却固化して得られたポリカーボネート樹脂の還元粘度(ηsp/c)をBとした場合に、
     下記式(8)を満たす請求項19乃至23の何れか1項に記載のポリカーボネート樹脂の製造方法。
      0.8<B/a<1.1・・(8)
    The reduced viscosity (ηsp / c) of the polycarbonate resin supplied to the extruder is a,
    When the reduced viscosity (ηsp / c) of the polycarbonate resin obtained by cooling and solidifying is B,
    The method for producing a polycarbonate resin according to any one of claims 19 to 23, wherein the following formula (8) is satisfied.
    0.8 <B / a <1.1 (8)
  25.  前記押出機と前記フィルターの間に、ギアポンプを配置する請求項19乃至24の何れか1項に記載のポリカーボネート樹脂の製造方法。 The method for producing a polycarbonate resin according to any one of claims 19 to 24, wherein a gear pump is disposed between the extruder and the filter.
  26.  請求項1乃至25の何れか1項に記載の製造方法によって得られたイエローインデックス値が70以下であるポリカーボネート樹脂。 A polycarbonate resin having a yellow index value of 70 or less obtained by the production method according to any one of claims 1 to 25.
  27.  請求項1乃至25の何れか1項に記載の製造方法によって得られたポリカーボネート樹脂、又は請求項26に記載のポリカーボネート樹脂を押出成形して得られる厚さ20μm~200μmのフィルムであって、該フィルムに含まれる最大長が25μm以上の異物が1000個/m以下であるポリカーボネート樹脂フィルム。 A polycarbonate resin obtained by the production method according to any one of claims 1 to 25 or a film having a thickness of 20 µm to 200 µm obtained by extrusion molding of the polycarbonate resin according to claim 26, A polycarbonate resin film having a maximum length of 25 μm or more contained in a film of 1000 / m 2 or less.
  28.  原料モノマーとして下記一般式(1)で表される構造単位を有するジヒドロキシ化合物を用いて得られたポリカーボネート樹脂を、溶融状態でフィルターを用いて濾過して、ダイスから吐出させて、冷却後、ポリカーボネート樹脂ペレットまたはポリカーボネート樹脂フィルムを製造する方法であって、
     前記ジヒドロキシ化合物が構造の一部に下記一般式(1)で表される部位を有するジヒドロキシ化合物を少なくとも含み、
     前記フィルターの目開きが50μm以下であり、
     前記ダイスから吐出される樹脂の温度が200℃以上280℃未満であることを特徴とするポリカーボネート樹脂ペレットまたはポリカーボネート樹脂フィルムの製造方法。
    Figure JPOXMLDOC01-appb-C000006
    [上記一般式(1)中、R~Rはそれぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキル基、または、置換若しくは無置換の炭素数6~炭素数20のアリール基を表し、Xは置換若しくは無置換の炭素数2~炭素数10のアルキレン基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキレン基、または、置換若しくは無置換の炭素数6~炭素数20のアリーレン基を表し、m及びnはそれぞれ独立に0~5の整数である。]
    A polycarbonate resin obtained by using a dihydroxy compound having a structural unit represented by the following general formula (1) as a raw material monomer is filtered using a filter in a molten state, discharged from a die, cooled, and then polycarbonate A method for producing a resin pellet or a polycarbonate resin film,
    The dihydroxy compound includes at least a dihydroxy compound having a site represented by the following general formula (1) in a part of the structure;
    The aperture of the filter is 50 μm or less,
    The method of producing a polycarbonate resin pellet or a polycarbonate resin film, wherein the temperature of the resin discharged from the die is 200 ° C. or higher and lower than 280 ° C.
    Figure JPOXMLDOC01-appb-C000006
    [In the general formula (1), R 1 to R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon number 6 to 20 carbon atoms. Or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, and X is a substituted or unsubstituted alkylene group having 2 to 10 carbon atoms, substituted or unsubstituted carbon number It represents a cycloalkylene group having 6 to 20 carbon atoms or a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, and m and n are each independently an integer of 0 to 5. ]
PCT/JP2012/057622 2011-03-31 2012-03-23 Method for manufacturing polycarbonate resin, polycarbonate resin, polycarbonate-resin film, and methods for manufacturing polycarbonate-resin pellets and polycarbonate-resin films WO2012133237A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2012800156517A CN103459112A (en) 2011-03-31 2012-03-23 Method for manufacturing polycarbonate resin, polycarbonate resin, polycarbonate-resin film, and methods for manufacturing polycarbonate-resin pellets and polycarbonate-resin films
KR1020137025198A KR101380522B1 (en) 2011-03-31 2012-03-23 Method for manufacturing polycarbonate resin, polycarbonate resin, polycarbonate-resin film, and methods for manufacturing polycarbonate-resin pellets and polycarbonate-resin films
KR1020137025278A KR20130122980A (en) 2011-03-31 2012-03-23 Method for manufacturing polycarbonate resin, polycarbonate resin, polycarbonate-resin film, and methods for manufacturing polycarbonate-resin pellets and polycarbonate-resin films

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011078639 2011-03-31
JP2011-078639 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012133237A1 true WO2012133237A1 (en) 2012-10-04

Family

ID=46930959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057622 WO2012133237A1 (en) 2011-03-31 2012-03-23 Method for manufacturing polycarbonate resin, polycarbonate resin, polycarbonate-resin film, and methods for manufacturing polycarbonate-resin pellets and polycarbonate-resin films

Country Status (4)

Country Link
JP (2) JP2012214729A (en)
KR (2) KR20130122980A (en)
CN (1) CN103459112A (en)
WO (1) WO2012133237A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015000918A (en) * 2013-06-14 2015-01-05 三菱化学株式会社 Method for producing polycarbonate resin
JP2015232091A (en) * 2014-06-10 2015-12-24 帝人株式会社 Resin composition

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445652B1 (en) * 2012-10-03 2014-03-19 三菱化学株式会社 Method for producing polycarbonate resin
JP2014169397A (en) * 2013-03-04 2014-09-18 Mitsubishi Chemicals Corp Method for producing polycarbonate resin
JP2015007188A (en) * 2013-06-25 2015-01-15 三菱化学株式会社 Method for producing polycarbonate
CN104607131B (en) * 2013-11-05 2017-12-12 北京化工大学 A kind of continuous stream rotary shaft reactor and its application
CN107075104B (en) 2014-12-08 2019-04-09 Lg化学株式会社 The method for preparing polyalkylene carbonate resin
KR101896019B1 (en) * 2014-12-19 2018-09-07 주식회사 삼양사 Polycarbonate copolymer and method for preparing the same
CN107108873B (en) * 2014-12-19 2020-08-18 三菱化学株式会社 Polycarbonate resin
CN104909177B (en) * 2015-05-21 2017-03-01 六安中财管道科技有限公司 A kind of PVC profile raw material automatic gauge blending transportation storage feed technique
KR102303199B1 (en) * 2019-12-24 2021-09-17 주식회사 삼양사 Polycarbonate copolymer comprising units derived from anhydrosugar alcohol and anhydrosugar alcohol-alkylene glycol, method for preparing the same, and molded article comprising the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083584A1 (en) * 2000-04-13 2001-11-08 Teijin Limited Method for production of polycarbonate and filtering device
JP2008247953A (en) * 2007-03-29 2008-10-16 Mitsubishi Chemicals Corp Method for producing aromatic polycarbonate
WO2009034680A1 (en) * 2007-08-20 2009-03-19 Mitsubishi Chemical Corporation Process for production of aromatic polycarbonate resin
JP2010058410A (en) * 2008-09-04 2010-03-18 Fujifilm Corp Thermoplastic resin composition, method of manufacturing the same, thermoplastic resin film, method of manufacturing the same, polarizing plate, and liquid crystal display
JP2010150540A (en) * 2008-11-28 2010-07-08 Mitsubishi Chemicals Corp Method for storing dihydroxy compound to be used as starting material for polycarbonate, method for preparing starting material for polycarbonate and method for producing polycarbonate
JP2010189581A (en) * 2009-02-19 2010-09-02 Mitsubishi Chemicals Corp Method for producing polycarbonate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03203928A (en) * 1989-12-28 1991-09-05 Nippon G Ii Plast Kk Production of polycarbonate
JP2000219737A (en) * 1999-01-29 2000-08-08 Teijin Ltd Preparation of polycarbonate resin, and molded article
JP2002293913A (en) * 2001-03-29 2002-10-09 Mitsubishi Gas Chem Co Inc Method for manufacturing aromatic-aliphatic copolymerized polycarbonate
JP4196326B2 (en) * 2002-06-12 2008-12-17 三菱瓦斯化学株式会社 Polycarbonate copolymer
JP2007070392A (en) * 2005-09-05 2007-03-22 Mitsubishi Gas Chem Co Inc Araliphatic polycarbonate resin copolymer
CN101416082B (en) * 2006-06-05 2012-07-04 帝人化成株式会社 Polycarbonate resin film and method for production thereof
JP5233203B2 (en) * 2007-08-20 2013-07-10 三菱化学株式会社 Process for producing purified aromatic polycarbonate resin
WO2009075305A1 (en) * 2007-12-13 2009-06-18 Mitsubishi Chemical Corporation Process for production of polycarbonate
KR101651306B1 (en) * 2008-12-05 2016-08-25 테이진 카세이 가부시키가이샤 Optical films

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083584A1 (en) * 2000-04-13 2001-11-08 Teijin Limited Method for production of polycarbonate and filtering device
JP2008247953A (en) * 2007-03-29 2008-10-16 Mitsubishi Chemicals Corp Method for producing aromatic polycarbonate
WO2009034680A1 (en) * 2007-08-20 2009-03-19 Mitsubishi Chemical Corporation Process for production of aromatic polycarbonate resin
JP2010058410A (en) * 2008-09-04 2010-03-18 Fujifilm Corp Thermoplastic resin composition, method of manufacturing the same, thermoplastic resin film, method of manufacturing the same, polarizing plate, and liquid crystal display
JP2010150540A (en) * 2008-11-28 2010-07-08 Mitsubishi Chemicals Corp Method for storing dihydroxy compound to be used as starting material for polycarbonate, method for preparing starting material for polycarbonate and method for producing polycarbonate
JP2010189581A (en) * 2009-02-19 2010-09-02 Mitsubishi Chemicals Corp Method for producing polycarbonate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015000918A (en) * 2013-06-14 2015-01-05 三菱化学株式会社 Method for producing polycarbonate resin
JP2015232091A (en) * 2014-06-10 2015-12-24 帝人株式会社 Resin composition

Also Published As

Publication number Publication date
CN103459112A (en) 2013-12-18
JP2012214729A (en) 2012-11-08
KR20130122980A (en) 2013-11-11
KR20130116376A (en) 2013-10-23
JP2013010965A (en) 2013-01-17
KR101380522B1 (en) 2014-04-01
JP5229418B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5229418B2 (en) Method for producing polycarbonate resin
JP6019652B2 (en) Method for producing polycarbonate resin
JP5962129B2 (en) Method for producing polycarbonate resin
US9353215B2 (en) Production method of polycarbonate resin
WO2012133855A1 (en) Polycarbonate-resin manufacturing method
JP5445652B1 (en) Method for producing polycarbonate resin
JP6163794B2 (en) Method for producing polycarbonate
JP6179318B2 (en) Method for producing polycarbonate resin
JP6264809B2 (en) Method for producing polycarbonate resin
JP6146151B2 (en) Method for producing polycarbonate resin
JP5974583B2 (en) Method for producing polycarbonate resin
JP6019667B2 (en) Method for producing polycarbonate resin
JP5906885B2 (en) Method for producing polycarbonate resin
JP6281358B2 (en) Method for producing polycarbonate resin
JP5928090B2 (en) Method for producing unstretched polycarbonate resin film
JP5906899B2 (en) Method for producing unstretched polycarbonate resin film
JP6083124B2 (en) Method for producing unstretched polycarbonate resin film
JP6083125B2 (en) Method for producing unstretched polycarbonate resin film
JP2015183086A (en) Polycarbonate resin production process
JP2014114442A (en) Method for producing polycarbonate resin pellets
JP2016027182A (en) Method for producing polycarbonate
JP2014104671A (en) Polycarbonate resin non-oriented film and method for producing the same
JP2013209579A (en) Method for producing polycarbonate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765181

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137025198

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765181

Country of ref document: EP

Kind code of ref document: A1