JP2013209579A - Method for producing polycarbonate - Google Patents

Method for producing polycarbonate Download PDF

Info

Publication number
JP2013209579A
JP2013209579A JP2012082143A JP2012082143A JP2013209579A JP 2013209579 A JP2013209579 A JP 2013209579A JP 2012082143 A JP2012082143 A JP 2012082143A JP 2012082143 A JP2012082143 A JP 2012082143A JP 2013209579 A JP2013209579 A JP 2013209579A
Authority
JP
Japan
Prior art keywords
polycarbonate resin
less
dihydroxy compound
polymerization
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012082143A
Other languages
Japanese (ja)
Inventor
Masashi Yokoki
正志 横木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2012082143A priority Critical patent/JP2013209579A/en
Publication of JP2013209579A publication Critical patent/JP2013209579A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polycarbonate resin composition with excellent light resistance, transparency, hue, heat resistance, thermal stability and mechanical strength.SOLUTION: A method for producing polycarbonate, by sequentially supplying a dihydroxy compound represented by formula (1), carbonic diester and a polymerization catalyst to reactors and polycondensing them, is characterized in that there are a plurality of reactors connected in series, and that outlet pressure fluctuation from a gear pump ranges between 0.1% and 20% when a polycarbonate resin is quantitatively discharged from a final polymerization tank through the gear pump.

Description

本発明は、透明性、色相、耐熱性、熱安定性、耐光性、機械的強度などに優れ、かつ異物の少ないポリカーボネートを、効率的かつ安定的に製造する方法及び該製造方法によって得られるポリカーボネートペレットを提供するものである。   The present invention relates to a method for efficiently and stably producing a polycarbonate having excellent transparency, hue, heat resistance, thermal stability, light resistance, mechanical strength and the like and having few foreign matters, and a polycarbonate obtained by the production method. It provides pellets.

ポリカーボネートは一般的にビスフェノール類をモノマー成分とし、透明性、耐熱性、機械的強度等の優位性を生かし、電気・電子部品、自動車用部品、光学記録媒体、レンズ等の光学分野等でいわゆるエンジニアリングプラスチックとして広く利用されている。   Polycarbonate is generally composed of bisphenols as monomer components, making use of superiority such as transparency, heat resistance and mechanical strength, so-called engineering in the optical field such as electrical / electronic parts, automotive parts, optical recording media, and lenses. Widely used as plastic.

従来のポリカーボネートは、石油資源から誘導される原料を用いて製造されるが、近年、石油資源の枯渇が危惧されており、植物などのバイオマス資源から得られる原料を用いたポリカーボネートの提供が求められている。また、二酸化炭素排出量の増加、蓄積による地球温暖化が気候変動などをもたらすことが危惧されていることからも、使用後に廃棄処分をしてもカーボンニュートラルな植物由来モノマーを原料としたポリカーボネートの開発が求められている。   Conventional polycarbonates are manufactured using raw materials derived from petroleum resources. However, in recent years, there is a concern about the exhaustion of petroleum resources, and there is a need to provide polycarbonates using raw materials obtained from biomass resources such as plants. ing. In addition, since there is a concern that global warming due to the increase and accumulation of carbon dioxide emissions will lead to climate change, even if it is disposed of after use, the polycarbonate Development is required.

かかる状況下、バイオマス資源から得られるジヒドロキシ化合物であるイソソルビド(以下、ISBと略記することがある。)をモノマー成分とし、炭酸ジエステルとのエステル交換により、副生するモノヒドロキシ化合物を減圧下で留去しながら、ポリカーボネートを得る方法が提案されている(例えば特許文献1〜6参照)。また、ISBから得られるポリカーボネートは優れた光学特性を有しており、光学材料として有用に用いることができることが知られている。   Under such circumstances, isosorbide (hereinafter sometimes abbreviated as ISB), which is a dihydroxy compound obtained from biomass resources, is used as a monomer component, and the by-product monohydroxy compound is distilled under reduced pressure by transesterification with carbonic acid diester. While leaving, a method of obtaining polycarbonate has been proposed (see, for example, Patent Documents 1 to 6). Moreover, it is known that the polycarbonate obtained from ISB has excellent optical properties and can be usefully used as an optical material.

ところが、ISBのようなジヒドロキシ化合物は、ビスフェノール類に比べると熱安定性が低く、高温下で行う重縮合反応中の熱分解により樹脂が着色する問題があった。   However, a dihydroxy compound such as ISB has a lower thermal stability than bisphenols, and there is a problem that the resin is colored due to thermal decomposition during a polycondensation reaction performed at a high temperature.

この問題を解決するために、連続式の重合プロセスを用いて、より少ない熱履歴で重合反応を行い、得られるポリマーの色調を改善する方法が提案されている(特許文献7参照)。   In order to solve this problem, a method of improving the color tone of a polymer obtained by performing a polymerization reaction with less heat history using a continuous polymerization process has been proposed (see Patent Document 7).

国際公開第04/111106号パンフレットInternational Publication No. 04/111106 Pamphlet 特開2006−232897号公報Japanese Patent Laid-Open No. 2006-232897 特開2006−28441号公報JP 2006-28441 A 特開2008−24919号公報JP 2008-24919 A 特開2009−91404号公報JP 2009-91404 A 特開2009−91417号公報JP 2009-91417 A 特開2009−161745号公報JP 2009-161745 A

一方、ビスフェノールA(以下、BPAと略記することがある。)を原料ジオールとした一般的なBPAポリカーボネートの溶融重合法では、原料のBPAは熱安定性が高く、原料調整槽や重合反応槽中の熱劣化が少なく、安定的に重合が可能であり得られるポリカーボネート樹脂の粘度が安定したものが得られる。しかし、ISBに代表される脂肪族ジ
オールを原料とした場合、脂肪族ジオール類が熱に比較的不安定であり、原料調整槽や重合反応槽中で劣化してしまい安定的に重合することが困難であった。ポリカーボネート樹脂は押出成形や射出成形する際に膜厚や物性を一定にするために樹脂粘度の均一化が求められている。
発明は上記従来の実状に鑑みてなされたものであって、特定の構造を有するポリカーボネート樹脂を色相や溶融粘度、機械物性が均一化された特性を持つポリカーボネートを製造する方法を提供することを課題とする。
On the other hand, in a general BPA polycarbonate melt polymerization method using bisphenol A (hereinafter sometimes abbreviated as BPA) as a raw material diol, the raw material BPA has high thermal stability, and is in a raw material adjustment tank or a polymerization reaction tank. Thus, a polycarbonate resin having a stable viscosity can be obtained. However, when aliphatic diols typified by ISB are used as raw materials, the aliphatic diols are relatively unstable to heat and can be stably polymerized due to deterioration in the raw material adjusting tank and the polymerization reaction tank. It was difficult. The polycarbonate resin is required to have a uniform resin viscosity in order to keep the film thickness and physical properties constant during extrusion molding or injection molding.
The present invention has been made in view of the above-described conventional situation, and it is an object to provide a method for producing a polycarbonate resin having a specific structure of hue, melt viscosity, and mechanical properties from a polycarbonate resin having a specific structure. And

本発明者らは、前記の課題に鑑みて鋭意検討を行った結果、特定の製造方法を用いることにより、特定の構造を有するポリカーボネート樹脂を均一化された特性を持つポリカーボネート樹脂を製造することができることを見出し、本発明を完成するに至った。
即ち本発明は以下を要旨とする。
As a result of intensive studies in view of the above-mentioned problems, the present inventors have been able to produce a polycarbonate resin having uniform characteristics by using a specific production method. The present inventors have found that this can be done and have completed the present invention.
That is, the gist of the present invention is as follows.

[1]下記式(1)で表されるジヒドロキシ化合物と炭酸ジエステルと、重合触媒とを連続的に反応器に供給し、重縮合してポリカーボネートを製造する方法であって、前記反応器は少なくとも直列に複数器接続されるものであり、最終重合槽からギアポンプを介してポリカーボネート樹脂を定量的に排出する際に、ギアポンプの出口圧力変動が0.1%以上、20%以下とすることを特徴とするポリカーボネート樹脂の製造方法。 [1] A method in which a dihydroxy compound represented by the following formula (1), a carbonic acid diester, and a polymerization catalyst are continuously supplied to a reactor and polycondensed to produce a polycarbonate, the reactor comprising at least A plurality of devices are connected in series, and when the polycarbonate resin is quantitatively discharged from the final polymerization tank through the gear pump, the outlet pressure fluctuation of the gear pump is 0.1% or more and 20% or less. A method for producing a polycarbonate resin.

Figure 2013209579
Figure 2013209579

[2]下記式(1)で表されるジヒドロキシ化合物と炭酸ジエステルと、重合触媒とを連続的に反応器に供給し、重縮合してポリカーボネートを製造する方法であって、前記反応器は少なくとも直列に複数器接続されるものであり、最終重合槽の攪拌トルク変動が0.1%以上、20%以下とすることを特徴とするポリカーボネート樹脂の製造方法。   [2] A method for producing a polycarbonate by continuously supplying a dihydroxy compound represented by the following formula (1), a carbonic acid diester, and a polymerization catalyst to a reactor and performing polycondensation, the reactor comprising at least A method for producing a polycarbonate resin, wherein a plurality of devices are connected in series, and the stirring torque fluctuation of the final polymerization tank is 0.1% or more and 20% or less.

Figure 2013209579
Figure 2013209579

[3]下記式(1)で表されるジヒドロキシ化合物と炭酸ジエステルと、重合触媒とを連続的に反応器に供給し、重縮合してポリカーボネートを製造する方法であって、前記反応器は少なくとも直列に複数器接続されるものであり、得られたポリカーボネート樹脂を最終重合反応器から溶融状態で押出機に供給し、その後ギアポンプを介してポリカーボネート樹脂を定量的に排出する際に、ギアポンプの出口圧力変動が0.1%以上、20%以下とすることを特徴とするポリカーボネート樹脂の製造方法。   [3] A method in which a dihydroxy compound represented by the following formula (1), a carbonic acid diester, and a polymerization catalyst are continuously supplied to a reactor and polycondensed to produce a polycarbonate, the reactor comprising at least Multiple units are connected in series, and when the obtained polycarbonate resin is supplied from the final polymerization reactor to the extruder in a molten state, and then the polycarbonate resin is quantitatively discharged through the gear pump, the outlet of the gear pump A method for producing a polycarbonate resin, wherein the pressure fluctuation is 0.1% or more and 20% or less.

Figure 2013209579
Figure 2013209579

[4]下記式(1)で表されるジヒドロキシ化合物と炭酸ジエステルと、重合触媒とを連続的に反応器に供給し、重縮合してポリカーボネートを製造する方法であって、炭酸ジエステルが反応に用いる全ジヒドロキシ化合物に対して0.995〜1.115比率であり、その変動が0.005以下であることを特徴とする[1]〜[3]の何れか1つに記載のポリカーボネート樹脂の製造方法。   [4] A method in which a dihydroxy compound represented by the following formula (1), a carbonic acid diester, and a polymerization catalyst are continuously supplied to a reactor and polycondensed to produce a polycarbonate. The polycarbonate resin according to any one of [1] to [3], wherein the ratio is 0.995 to 1.115 with respect to the total dihydroxy compound used, and the variation thereof is 0.005 or less. Production method.

[5]前記ポリカーボネート樹脂の還元粘度が0.30dL/g以上、1.20dL/g以下、還元粘度の範囲幅を0.04dL/g以下であることを特徴とする[1]〜[4]の何れか1つに記載のポリカーボネート樹脂の製造方法。
[6]一時間当たり30kg以上ポリカーボネート樹脂を製造する連続重合設備であることを特徴とする[1]〜[5]の何れか1つに記載のポリカーボネート樹脂の製造方法。
[5] The reduced viscosity of the polycarbonate resin is 0.30 dL / g or more and 1.20 dL / g or less, and the range of the reduced viscosity is 0.04 dL / g or less [1] to [4] The manufacturing method of the polycarbonate resin as described in any one of these.
[6] The method for producing a polycarbonate resin according to any one of [1] to [5], which is a continuous polymerization facility for producing a polycarbonate resin of 30 kg or more per hour.

<ポリカーボネート樹脂>
本発明に用いるポリカーボネート樹脂は、下記式(1)で表されるジヒドロキシ化合物に由来する構造単位を含有するポリカーボネート樹脂である。当該ポリカーボネート樹脂を用いることで、高透明性、高強度、高耐熱性、高耐候性であり、かつ均一な溶融粘度ポリカーボネート樹脂を得ることができる。
<Polycarbonate resin>
The polycarbonate resin used in the present invention is a polycarbonate resin containing a structural unit derived from a dihydroxy compound represented by the following formula (1). By using the polycarbonate resin, it is possible to obtain a polycarbonate resin having high transparency, high strength, high heat resistance, high weather resistance and uniform melt viscosity.

Figure 2013209579
Figure 2013209579

前記式(1)で表されるジヒドロキシ化合物としては、例えば、立体異性体の関係にある、イソソルビド、イソマンニドおよびイソイデットが挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
これらのジヒドロキシ化合物は、フェノール性水酸基を有しないため、通常界面法で重合させることは困難であり、本発明に係るポリカーボネート樹脂は、通常炭酸ジエステルを用いたエステル交換反応により製造される。
Examples of the dihydroxy compound represented by the formula (1) include isosorbide, isomannide, and isoide which are in a stereoisomeric relationship. These may be used individually by 1 type and may be used in combination of 2 or more type.
Since these dihydroxy compounds do not have a phenolic hydroxyl group, it is usually difficult to polymerize by an interfacial method, and the polycarbonate resin according to the present invention is usually produced by a transesterification reaction using a carbonic acid diester.

これらのジヒドロキシ化合物のうち、中でも植物由来の資源として豊富に存在し、容易に入手可能な種々のデンプンから製造されるソルビトールを脱水縮合して得られるイソソルビドが、入手および製造のし易さ、耐光性、光学特性、成形性、耐熱性並びにカーボンニュートラルの面から最も好ましい。   Among these dihydroxy compounds, isosorbide obtained by dehydrating and condensing sorbitol produced from various starches that are abundant as plant-derived resources, is easy to obtain and manufacture, and is light resistant. Are most preferable from the viewpoints of properties, optical properties, moldability, heat resistance and carbon neutral.

尚、イソソルビドに代表されるような前記式(1)で表される環状エーテル構造を有す
るジヒドロキシ化合物は、酸素によって徐々に酸化されやすい。このため、保管や、製造時の取り扱いの際には、酸素による分解を防ぐため、水分が混入しないようにし、また、脱酸素剤を用いたり、窒素雰囲気下にしたりすることが肝要である。イソソルビドが酸化されると、蟻酸をはじめとする分解物が発生する。例えば、これら分解物を含むイソソルビドを用いてポリカーボネート樹脂を製造すると、得られるポリカーボネート樹脂に着色が発生したり、物性を著しく劣化させたりする原因となる。あるいは重合反応に影響を与え、高分子量の重合体が得られないこともあり好ましくない。ただし、蟻酸の発生を防止するための安定剤を添加した場合、安定剤の種類によっては、得られるポリカーボネート樹脂に着色が発生したり、物性を著しく劣化させたりすることがある。
A dihydroxy compound having a cyclic ether structure represented by the above formula (1) as typified by isosorbide is likely to be gradually oxidized by oxygen. For this reason, when storing or handling during production, it is important to prevent moisture from being mixed, to use an oxygen scavenger, or to be in a nitrogen atmosphere in order to prevent decomposition by oxygen. When isosorbide is oxidized, decomposition products such as formic acid are generated. For example, when a polycarbonate resin is produced using isosorbide containing these decomposition products, the resulting polycarbonate resin may be colored or the physical properties may be significantly deteriorated. Alternatively, the polymerization reaction is affected, and a high molecular weight polymer may not be obtained. However, when a stabilizer for preventing the generation of formic acid is added, depending on the type of the stabilizer, the resulting polycarbonate resin may be colored or the physical properties may be significantly deteriorated.

そこで、本発明では、下記のような特定の安定剤を用いることが好ましい。安定剤としては、還元剤、制酸剤、抗酸化剤、脱酸素剤、光安定剤、pH安定剤、熱安定剤等の安定剤を用いることが好ましく、特に酸性下ではジヒドロキシ化合物が変質しやすいことから、塩基性安定剤を含むことが好ましい。このうち還元剤としては、ナトリウムボロハイドライド、リチウムボロハイドライド等が挙げられ、制酸剤としては水酸化ナトリウム等のアルカリが挙げられる。ただし、アルカリ金属塩の添加は、アルカリ金属が重合触媒となる場合があるので、過剰に添加し過ぎると重合反応を制御できなくなり、好ましくない。   Therefore, in the present invention, the following specific stabilizer is preferably used. As the stabilizer, it is preferable to use a stabilizer such as a reducing agent, an antacid, an antioxidant, an oxygen scavenger, a light stabilizer, a pH stabilizer, a heat stabilizer, and the like. Since it is easy, it is preferable to contain a basic stabilizer. Among these, examples of the reducing agent include sodium borohydride and lithium borohydride, and examples of the antacid include alkalis such as sodium hydroxide. However, the addition of an alkali metal salt is not preferable because an alkali metal may serve as a polymerization catalyst, and if it is excessively added, the polymerization reaction cannot be controlled.

塩基性安定剤としては、長周期型周期表(Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005)における1族又は2族の金属の水酸化物、炭酸塩、リン酸塩、亜リン酸塩、次亜リン酸塩、硼酸塩、脂肪酸塩や、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシド、ブチルトリフェニルアンモニウムヒドロキシド等の塩基性アンモニウム化合物、4−アミノピリジン、2−アミノピリジン、N,N−ジメチル−4−アミノピリジン、4−ジエチルアミノピリジン、2−ヒドロキシピリジン、2−メトキシピリジン、4−メトキシピリジン、2−ジメチルアミノイミダゾール、2−メトキシイミダゾール、イミダゾール、2−メルカプトイミダゾール、2−メチルイミダゾール、アミノキノリン等のアミン系化合物が挙げられる。その中でも、その効果と後述する蒸留除去のしやすさから、ナトリウム又はカリウムのリン酸塩、亜リン酸塩が好ましく、中でもリン酸水素2ナトリウム、亜リン酸水素2ナトリウムが好ましい。   Basic stabilizers include group 1 or group 2 metal hydroxides, carbonates, phosphates, phosphites, hypophosphorous acid in the long-period periodic table (Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005). Salts, borates, fatty acid salts, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylbenzylammonium hydroxide, trimethylphenylammonium hydroxide, Triethylmethylammonium hydroxide, triethylbenzylammonium hydroxide, triethylphenylammonium hydroxide, tributylbenzylammonium hydroxide, tributylphenylammonium Basic ammonium compounds such as monium hydroxide, tetraphenylammonium hydroxide, benzyltriphenylammonium hydroxide, methyltriphenylammonium hydroxide, butyltriphenylammonium hydroxide, 4-aminopyridine, 2-aminopyridine, N, N -Dimethyl-4-aminopyridine, 4-diethylaminopyridine, 2-hydroxypyridine, 2-methoxypyridine, 4-methoxypyridine, 2-dimethylaminoimidazole, 2-methoxyimidazole, imidazole, 2-mercaptoimidazole, 2-methylimidazole And amine compounds such as aminoquinoline. Of these, sodium or potassium phosphates and phosphites are preferable, and disodium hydrogen phosphate and disodium hydrogen phosphite are particularly preferable because of their effects and ease of distillation removal described later.

これら塩基性安定剤のジヒドロキシ化合物中の含有量に特に制限はないが、ジヒドロキシ化合物の変質を防止する効果の発現と、ジヒドロキシ化合物の変性の抑制についてのバランスを取る観点から、通常、ジヒドロキシ化合物に対して、0.0001重量%〜1重量%、好ましくは0.001重量%〜0.1重量%である。   The content of these basic stabilizers in the dihydroxy compound is not particularly limited. However, from the viewpoint of balancing the expression of the effect of preventing alteration of the dihydroxy compound and the suppression of the modification of the dihydroxy compound, the dihydroxy compound is usually On the other hand, it is 0.0001% by weight to 1% by weight, preferably 0.001% by weight to 0.1% by weight.

また、これら塩基性安定剤を含有したジヒドロキシ化合物をポリカーボネート樹脂の製造原料として用いると、塩基性安定剤自体が重合触媒となり、重合速度や品質の制御が困難になるだけでなく、初期色相の悪化を招き、結果的に得られるポリカーボネート樹脂成形品の耐光性を悪化させるおそれがあるため、ポリカーボネート樹脂の製造原料として使用する前に塩基性安定剤をイオン交換樹脂や蒸留等で除去することが好ましい。   In addition, when dihydroxy compounds containing these basic stabilizers are used as raw materials for the production of polycarbonate resin, the basic stabilizer itself becomes a polymerization catalyst, which not only makes it difficult to control the polymerization rate and quality, but also deteriorates the initial hue. Therefore, it is preferable to remove the basic stabilizer by ion exchange resin or distillation before using it as a raw material for the production of polycarbonate resin. .

また、保管、製造時の取り扱いの際に生成した酸化分解物を含まないジヒドロキシ化合物を得るために、或いは、前述の塩基性安定剤を除去するためには、ジヒドロキシ化合物
の蒸留精製を行うことが好ましい。この場合の蒸留とは単蒸留であっても、連続蒸留であってもよく、特に限定されない。蒸留の条件としてはアルゴンや窒素等の不活性ガス雰囲気において、減圧下で蒸留を実施することが好ましく、熱による変性を抑制するためには、250℃以下、好ましくは200℃以下、特には180℃以下の条件で行うことが好ましい。
In addition, in order to obtain a dihydroxy compound that does not contain oxidative decomposition products generated during storage and handling during production, or to remove the aforementioned basic stabilizer, distillation purification of the dihydroxy compound may be performed. preferable. The distillation in this case may be simple distillation or continuous distillation, and is not particularly limited. As distillation conditions, it is preferable to carry out distillation under reduced pressure in an inert gas atmosphere such as argon or nitrogen. In order to suppress thermal denaturation, it is 250 ° C. or lower, preferably 200 ° C. or lower, particularly 180 °. It is preferable to carry out under the conditions of ℃ or less.

このような蒸留精製により、前記式(1)で表されるジヒドロキシ化合物中の蟻酸含有量を20重量ppm以下、好ましくは10重量ppm以下、特に好ましくは5重量ppm以下にすることにより、ポリカーボネート樹脂製造時の重合反応性を損なうことなく、色相や熱安定性に優れたポリカーボネート樹脂の製造が可能となる。蟻酸含有量の測定はイオンクロマトグラフィーを使用し、以下の手順に従い行われる。以下の手順では、代表的なジヒドロキシ化合物として、イソソルビドを例とする。   By such distillation purification, polycarbonate resin is obtained by setting the formic acid content in the dihydroxy compound represented by the formula (1) to 20 ppm by weight or less, preferably 10 ppm by weight or less, particularly preferably 5 ppm by weight or less. A polycarbonate resin excellent in hue and thermal stability can be produced without impairing the polymerization reactivity during production. Formic acid content is measured using ion chromatography according to the following procedure. In the following procedure, isosorbide is taken as an example of a typical dihydroxy compound.

イソソルビド約0.5gを精秤し50mlのメスフラスコに採取して純水で定容する。標準試料として蟻酸ナトリウム水溶液を用い、標準試料とリテンションタイムが一致するピークを蟻酸とし、ピーク面積から絶対検量線法で定量する。
イオンクロマトグラフは、Dionex社製のDX−500型を用い、検出器には電気伝導度検出器を用いる。測定カラムとしては、Dionex社製ガードカラムにAG−15、分離カラムにAS−15を用いる。測定試料を100μlのサンプルループに注入し、溶離液に10mM−NaOHを用い、流速1.2ml/分、恒温槽温度35℃で測定する。サプレッサーには、メンブランサプレッサーを用い、再生液には12.5mM−H2SO4水溶液を用いる。
About 0.5 g of isosorbide is precisely weighed and collected in a 50 ml volumetric flask and made up to volume with pure water. A sodium formate aqueous solution is used as a standard sample, and the peak having the same retention time as that of the standard sample is defined as formic acid, and quantified by an absolute calibration curve method from the peak area.
The ion chromatograph uses DX-500 type manufactured by Dionex, and an electric conductivity detector is used as a detector. As a measurement column, AG-15 is used as a guard column manufactured by Dionex, and AS-15 is used as a separation column. A measurement sample is injected into a 100 μl sample loop, and 10 mM NaOH is used as an eluent, and the measurement is performed at a flow rate of 1.2 ml / min and a thermostat temperature of 35 ° C. A membrane suppressor is used as the suppressor, and a 12.5 mM-H 2 SO 4 aqueous solution is used as the regenerating solution.

前記式(1)で表されるジヒドロキシ化合物に由来する構造は剛直であるため、ポリカーボネート樹脂中の前記式(1)で表されるジヒドロキシ化合物に由来する構造が多すぎると、硬く、脆くなる傾向があり、成形性または機械物性が低下する傾向がある。逆に少なすぎると、ポリカーボネート樹脂の耐熱性が低下し成形品として使用が困難な場合がある。そのため、ポリカーボネート樹脂の製造には、前記式(1)で表されるジヒドロキシ化合物と共に、その他のジヒドロキシ化合物を用いることにより、ポリカーボネート樹脂の柔軟性の改善または成形性の改善などの効果を得ることが好ましい。   Since the structure derived from the dihydroxy compound represented by the formula (1) is rigid, if there are too many structures derived from the dihydroxy compound represented by the formula (1) in the polycarbonate resin, the structure tends to be hard and brittle. There is a tendency for formability or mechanical properties to decrease. On the other hand, if the amount is too small, the heat resistance of the polycarbonate resin is lowered and it may be difficult to use as a molded product. Therefore, in the production of the polycarbonate resin, by using other dihydroxy compounds together with the dihydroxy compound represented by the formula (1), it is possible to obtain effects such as improvement in flexibility or moldability of the polycarbonate resin. preferable.

ポリカーボネート樹脂の柔軟性の付与等のためにポリカーボネート樹脂に前記式(1)で表されるジヒドロキシ化合物に由来する構造単位以外のその他のジヒドロキシ化合物に由来する構造単位を導入する場合、本発明に用いるポリカーボネート樹脂は、ジヒドロキシ化合物に由来する全構造単位に対して、前記式(1)で表されるジヒドロキシ化合物に由来する構造単位を、通常10mol%以上含むことが好ましく、より好ましくは15mol%以上、特に好ましく20mol%以上である。また、通常95mol%以下含むことが好ましく、より好ましくは90mol%以下、特に好ましくは85mol%以下である。   When a structural unit derived from another dihydroxy compound other than the structural unit derived from the dihydroxy compound represented by the above formula (1) is introduced into the polycarbonate resin for imparting flexibility or the like of the polycarbonate resin, it is used in the present invention. The polycarbonate resin preferably contains 10 mol% or more of the structural unit derived from the dihydroxy compound represented by the formula (1) with respect to all the structural units derived from the dihydroxy compound, more preferably 15 mol% or more, Particularly preferred is 20 mol% or more. Moreover, it is preferable to contain normally 95 mol% or less, More preferably, it is 90 mol% or less, Most preferably, it is 85 mol% or less.

ジヒドロキシ化合物に由来する全構造単位に対する、前記式(1)で表されるジヒドロキシ化合物に由来する構造単位の含有量が10mol%以上であれば、耐熱性が不足したり、熱により成形品が変形したりするおそれが小さいため好ましい。一方、この含有量が95mol%以下であれば、吸水率が低くなり、また熱による劣化が少なくなることから、色調が悪化するおそれが小さいため好ましい。また、ポリカーボネート樹脂を十分に高分子量化できるため、耐衝撃性に優れるため好ましい。   If the content of the structural unit derived from the dihydroxy compound represented by the formula (1) with respect to all structural units derived from the dihydroxy compound is 10 mol% or more, the heat resistance is insufficient or the molded product is deformed by heat. This is preferable because there is little risk of damage. On the other hand, if the content is 95 mol% or less, the water absorption rate is low, and deterioration due to heat is reduced, so that the possibility of deterioration of the color tone is small, which is preferable. Moreover, since polycarbonate resin can fully be made into high molecular weight, since it is excellent in impact resistance, it is preferable.

前記ポリカーボネート樹脂に導入される前記式(1)で表されるジヒドロキシ化合物に由来する構造単位以外のその他のジヒドロキシ化合物に由来する構造単位としては、脂肪族ジヒドロキシ化合物に由来する構造単位や脂環式ジヒドロキシ化合物に由来する構造単
位が挙げられる。その脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物としては、具体的には、次のようなものが挙げられる。
As structural units derived from other dihydroxy compounds other than the structural unit derived from the dihydroxy compound represented by the formula (1) introduced into the polycarbonate resin, structural units derived from aliphatic dihydroxy compounds and alicyclic compounds Examples include structural units derived from dihydroxy compounds. Specific examples of the aliphatic dihydroxy compound and the alicyclic dihydroxy compound include the following.

<脂肪族ジヒドロキシ化合物>
脂肪族ジヒドロキシ化合物として、例えば、1,4−ブタンジオール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、2−エチル−1,6−ヘキサンジオール、2,2,4−トリメチル−1,6−ヘキサンジオール、1,10−デカンジオール、水素化ジリノレイルグリコール、水素化ジオレイルグリコール等が挙げられる。
<Aliphatic dihydroxy compound>
Examples of the aliphatic dihydroxy compound include 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, and 2-ethyl. -1,6-hexanediol, 2,2,4-trimethyl-1,6-hexanediol, 1,10-decanediol, hydrogenated dilinoleyl glycol, hydrogenated dioleyl glycol and the like.

尚、前記例示化合物は、本発明に使用し得る脂肪族ジヒドロキシ化合物の一例であって、何らこれらに限定されるものではない。これらの脂肪族ジヒドロキシ化合物は、1種を単独で用いても良く、2種以上を混合して用いても良い。   In addition, the said exemplary compound is an example of the aliphatic dihydroxy compound which can be used for this invention, Comprising: It is not limited to these at all. These aliphatic dihydroxy compounds may be used individually by 1 type, and 2 or more types may be mixed and used for them.

本発明で用いるポリカーボネート樹脂において、前記式(1)で表されるジヒドロキシ化合物に由来する構成単位と脂肪族ジヒドロキシ化合物に由来する構成単位とのモル比率は、任意の割合で選択できるが、前記モル比率を調整することで、剛性と耐衝撃性のバランスを取ったり、適当な成形加工性を設計したりすることができる。   In the polycarbonate resin used in the present invention, the molar ratio between the structural unit derived from the dihydroxy compound represented by the formula (1) and the structural unit derived from the aliphatic dihydroxy compound can be selected at an arbitrary ratio. By adjusting the ratio, it is possible to balance rigidity and impact resistance or to design an appropriate molding processability.

<脂環式ジヒドロキシ化合物>
脂環式ジヒドロキシ化合物としては、特に限定されないが、通常、5員環構造又は6員環構造を含む化合物が挙げられる。脂環式ジヒドロキシ化合物が5員環構造又は6員環構造であることにより、得られるポリカーボネート樹脂の耐熱性が高くなる傾向がある。6員環構造は共有結合によって椅子形もしくは舟形に固定されていてもよい。脂環式ジヒドロキシ化合物に含まれる炭素数は通常70以下であり、好ましくは50以下、さらに好ましくは30以下である。炭素数が70以下の脂環式ジヒドロキシ化合物であれば、合成・精製しやすく、また安価で入手しやすいため好ましい。
<Alicyclic dihydroxy compound>
Although it does not specifically limit as an alicyclic dihydroxy compound, Usually, the compound containing a 5-membered ring structure or a 6-membered ring structure is mentioned. When the alicyclic dihydroxy compound has a 5-membered ring structure or a 6-membered ring structure, the heat resistance of the obtained polycarbonate resin tends to increase. The six-membered ring structure may be fixed in a chair shape or a boat shape by a covalent bond. Carbon number contained in an alicyclic dihydroxy compound is 70 or less normally, Preferably it is 50 or less, More preferably, it is 30 or less. An alicyclic dihydroxy compound having 70 or less carbon atoms is preferable because it is easy to synthesize and purify, and is inexpensive and easily available.

5員環構造又は6員環構造を含む脂環式ジヒドロキシ化合物としては、具体的には、下記一般式(I)又は(II)で表される脂環式ジヒドロキシ化合物が挙げられる。
HOCH−R−CHOH (I)
HO−R10−OH (II)
(但し、式(I),式(II)中、R及びR10は、それぞれ独立に、置換若しくは無置換の炭素数4〜炭素数20のシクロアルキル構造を含む二価の基を表す。)
Specific examples of the alicyclic dihydroxy compound containing a 5-membered ring structure or a 6-membered ring structure include alicyclic dihydroxy compounds represented by the following general formula (I) or (II).
HOCH 2 -R 9 -CH 2 OH ( I)
HO—R 10 —OH (II)
(However, in formula (I) and formula (II), R 9 and R 10 each independently represent a divalent group containing a substituted or unsubstituted cycloalkyl structure having 4 to 20 carbon atoms. )

前記一般式(I)で表される脂環式ジヒドロキシ化合物であるシクロヘキサンジメタノールとしては、一般式(I)において、Rが下記一般式(Ia)(式中、R11は水素原子、又は、置換若しくは無置換の炭素数1〜炭素数12のアルキル基を表す。)で示される種々の異性体を包含する。このようなものとしては、具体的には、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール等が挙げられる。 As cyclohexanedimethanol which is an alicyclic dihydroxy compound represented by the above general formula (I), in general formula (I), R 9 is the following general formula (Ia) (wherein R 11 is a hydrogen atom, or Represents a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms.). Specific examples thereof include 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, and the like.

Figure 2013209579
Figure 2013209579

前記一般式(I)で表される脂環式ジヒドロキシ化合物であるトリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノールとしては、一般式(I)において、Rが下記一般式(Ib)(式中、nは0又は1を表す。)で表される種々の異性体を包含する。 Examples of tricyclodecane dimethanol and pentacyclopentadecane dimethanol, which are alicyclic dihydroxy compounds represented by the above general formula (I), include, in general formula (I), R 9 is represented by the following general formula (Ib) (in the formula: , N represents 0 or 1).

Figure 2013209579
Figure 2013209579

前記一般式(I)で表される脂環式ジヒドロキシ化合物であるデカリンジメタノール又は、トリシクロテトラデカンジメタノールとしては、一般式(I)において、Rが下記一般式(Ic)(式中、mは0、又は1を表す。)で表される種々の異性体を包含する。このようなものとしては、具体的には、2,6−デカリンジメタノール、1,5−デカリンジメタノール、2,3−デカリンジメタノール等が挙げられる。 As decalin dimethanol or tricyclotetradecane dimethanol, which is an alicyclic dihydroxy compound represented by the general formula (I), in general formula (I), R 9 is represented by the following general formula (Ic) (wherein m represents 0 or 1). Specific examples thereof include 2,6-decalin dimethanol, 1,5-decalin dimethanol, 2,3-decalin dimethanol, and the like.

Figure 2013209579
Figure 2013209579

また、前記一般式(I)で表される脂環式ジヒドロキシ化合物であるノルボルナンジメタノールとしては、一般式(I)において、Rが下記一般式(Id)で表される種々の異性体を包含する。このようなものとしては、具体的には、2,3−ノルボルナンジメタノール、2,5−ノルボルナンジメタノール等が挙げられる。 Moreover, as norbornane dimethanol which is an alicyclic dihydroxy compound represented by the general formula (I), various isomers in which R 9 is represented by the following general formula (Id) in the general formula (I) Include. Specific examples thereof include 2,3-norbornane dimethanol, 2,5-norbornane dimethanol and the like.

Figure 2013209579
Figure 2013209579

一般式(I)で表される脂環式ジヒドロキシ化合物であるアダマンタンジメタノールとしては、一般式(I)において、Rが下記一般式(Ie)で表される種々の異性体を包含する。このようなものとしては、具体的には、1,3−アダマンタンジメタノール等が挙げられる。 The adamantane dimethanol, which is an alicyclic dihydroxy compound represented by the general formula (I), includes various isomers in which R 9 is represented by the following general formula (Ie) in the general formula (I). Specific examples of such a material include 1,3-adamantane dimethanol.

Figure 2013209579
Figure 2013209579

また、前記一般式(II)で表される脂環式ジヒドロキシ化合物であるシクロヘキサンジオールは、一般式(II)において、R10が下記一般式(IIa)(式中、R11は水素原子、置換又は無置換の炭素数1〜炭素数12のアルキル基を表す。)で表される種々の異性体を包含する。このようなものとしては、具体的には、1,2−シクロヘキサンジオール、1,3−シクロヘキサンジオール、1,4−シクロヘキサンジオール、2−メチル−1,4−シクロヘキサンジオール等が挙げられる。 In addition, cyclohexanediol, which is an alicyclic dihydroxy compound represented by the general formula (II), in the general formula (II), R 10 is represented by the following general formula (IIa) (wherein R 11 is a hydrogen atom, substituted Or an unsubstituted alkyl group having 1 to 12 carbon atoms). Specific examples thereof include 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 2-methyl-1,4-cyclohexanediol, and the like.

Figure 2013209579
Figure 2013209579

前記一般式(II)で表される脂環式ジヒドロキシ化合物であるトリシクロデカンジオール、ペンタシクロペンタデカンジオールとしては、一般式(II)において、R10が下記一般式(IIb)(式中、nは0又は1を表す。)で表される種々の異性体を包含する。 As tricyclodecanediol and pentacyclopentadecanediol, which are alicyclic dihydroxy compounds represented by the general formula (II), in general formula (II), R 10 is represented by the following general formula (IIb) (wherein n Represents 0 or 1).

Figure 2013209579
Figure 2013209579

前記一般式(II)で表される脂環式ジヒドロキシ化合物であるデカリンジオール又は、トリシクロテトラデカンジオールとしては、一般式(II)において、R10が下記一般式(IIc)(式中、mは0、又は1を表す。)で表される種々の異性体を包含する。このようなものとしては、具体的には、2,6−デカリンジオール、1,5−デカリンジオール、2,3−デカリンジオール等が用いられる。 As decalin diol or tricyclotetradecane diol, which is an alicyclic dihydroxy compound represented by the general formula (II), in general formula (II), R 10 is represented by the following general formula (IIc) (where m is It represents 0 or 1). Specifically, 2,6-decalindiol, 1,5-decalindiol, 2,3-decalindiol and the like are used as such.

Figure 2013209579
Figure 2013209579

前記一般式(II)で表される脂環式ジヒドロキシ化合物であるノルボルナンジオール
としては、一般式(II)において、R10が下記一般式(IId)で表される種々の異性体を包含する。このようなものとしては、具体的には、2,3−ノルボルナンジオール、2,5−ノルボルナンジオール等が用いられる。
The norbornanediol which is an alicyclic dihydroxy compound represented by the general formula (II) includes various isomers in which R 10 is represented by the following general formula (IId) in the general formula (II). Specifically, 2,3-norbornanediol, 2,5-norbornanediol, and the like are used as such.

Figure 2013209579
Figure 2013209579

前記一般式(II)で表される脂環式ジヒドロキシ化合物であるアダマンタンジオールとしては、一般式(II)において、R10が下記一般式(IIe)で表される種々の異性体を包含する。このようなものとしては具体的には、1,3−アダマンタンジオール等が用いられる。 The adamantanediol which is an alicyclic dihydroxy compound represented by the general formula (II) includes various isomers in which R 10 is represented by the following general formula (IIe) in the general formula (II). Specifically, 1,3-adamantanediol etc. are used as such.

Figure 2013209579
Figure 2013209579

上述した脂環式ジヒドロキシ化合物の具体例のうち、シクロヘキサンジメタノール類、トリシクロデカンジメタノール類、アダマンタンジオール類、ペンタシクロペンタデカンジメタノール類が好ましく、入手のしやすさ、取り扱いのしやすさという観点から、1,4−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,2−シクロヘキサンジメタノール、トリシクロデカンジメタノールが特に好ましい。   Among the specific examples of the alicyclic dihydroxy compounds described above, cyclohexane dimethanols, tricyclodecane dimethanols, adamantane diols, and pentacyclopentadecane dimethanols are preferable, and are easily available and easy to handle. From the viewpoint, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,2-cyclohexanedimethanol, and tricyclodecane dimethanol are particularly preferable.

尚、前記例示化合物は、本発明に使用し得る脂環式ジヒドロキシ化合物の一例であって、何らこれらに限定されるものではない。これらの脂環式ジヒドロキシ化合物は、1種を単独で用いても良く、2種以上を混合して用いても良い。   In addition, the said exemplary compound is an example of the alicyclic dihydroxy compound which can be used for this invention, Comprising: It is not limited to these at all. These alicyclic dihydroxy compounds may be used individually by 1 type, and 2 or more types may be mixed and used for them.

本発明で用いるポリカーボネート樹脂において、前記式(1)で表されるジヒドロキシ化合物に由来する構成単位と脂環式ジヒドロキシ化合物に由来する構成単位とのモル比率は、任意の割合で選択できるが、前記モル比率を調整することで、衝撃強度(例えば、ノッチ付きシャルピー衝撃強度)が向上する可能性があり、更にポリカーボネート樹脂の所望のガラス転移温度を得ることが可能である。   In the polycarbonate resin used in the present invention, the molar ratio between the structural unit derived from the dihydroxy compound represented by the formula (1) and the structural unit derived from the alicyclic dihydroxy compound can be selected at any ratio. By adjusting the molar ratio, impact strength (for example, notched Charpy impact strength) may be improved, and a desired glass transition temperature of the polycarbonate resin can be obtained.

本発明で用いるポリカーボネート樹脂において、前記式(1)で表されるジヒドロキシ化合物に由来する構成単位と脂環式ジヒドロキシ化合物に由来する構成単位とのモル比率は、任意の割合で選択できるが、前記モル比率を調整することで、衝撃強度(例えば、ノッチ付きシャルピー衝撃強度)が向上する可能性があり、更にポリカーボネート樹脂の所望のガラス転移温度を得ることが可能である。   In the polycarbonate resin used in the present invention, the molar ratio between the structural unit derived from the dihydroxy compound represented by the formula (1) and the structural unit derived from the alicyclic dihydroxy compound can be selected at any ratio. By adjusting the molar ratio, impact strength (for example, notched Charpy impact strength) may be improved, and a desired glass transition temperature of the polycarbonate resin can be obtained.

本発明に用いるポリカーボネート樹脂において、前記式(1)で表されるジヒドロキシ化合物に由来する構成単位と脂環式ジヒドロキシ化合物に由来する構成単位とのモル比率は、95:5〜30:70であることが好ましく、80:20〜40:60であるのが更に好ましい。モル比率が前記範囲であれば、本発明に用いるポリカーボネート樹脂について熱滞留に起因する着色が生じにくくなり、かつ、高分子量化や衝撃強度の向上、ガラス
転移温度の維持による耐熱性の向上が可能となるため好ましい。
In the polycarbonate resin used in the present invention, the molar ratio between the structural unit derived from the dihydroxy compound represented by the formula (1) and the structural unit derived from the alicyclic dihydroxy compound is 95: 5 to 30:70. It is preferably 80:20 to 40:60, and more preferably. When the molar ratio is within the above range, the polycarbonate resin used in the present invention is less likely to be colored due to heat retention, and can have high molecular weight, improved impact strength, and improved heat resistance by maintaining the glass transition temperature. This is preferable.

本発明に用いるポリカーボネート樹脂においては、前記式(1)で表されるジヒドロキシ化合物に由来する構成単位、脂肪族ジヒドロキシ化合物に由来する構造単位、脂環式ジヒドロキシ化合物に由来する構成単位に加えて、更にその他のジヒドロキシ化合物に由来する構造単位を含んでいても良い。その他のジヒドロキシ化合物としては、前記式(1)で表されるジヒドロキシ化合物以外の、構造の一部に下記一般式(2)で表される部位を有するジヒドロキシ化合物や、芳香族系ジヒドロキシ化合物等が挙げられる。   In the polycarbonate resin used in the present invention, in addition to the structural unit derived from the dihydroxy compound represented by the formula (1), the structural unit derived from the aliphatic dihydroxy compound, the structural unit derived from the alicyclic dihydroxy compound, Furthermore, structural units derived from other dihydroxy compounds may be included. Examples of other dihydroxy compounds include dihydroxy compounds having a site represented by the following general formula (2) in a part of the structure other than the dihydroxy compounds represented by the formula (1), aromatic dihydroxy compounds, and the like. Can be mentioned.

Figure 2013209579
Figure 2013209579

(但し、上記一般式(2)で表される部位が−CH−O−Hの一部である場合を除く。) (However, the site represented by the above general formula (2) unless a part of -CH 2 -O-H.)

前記式(1)で表されるジヒドロキシ化合物以外の、構造の一部に前記一般式(2)で表される部位を有するジヒドロキシ化合物としては、具体的には、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコールなどのオキシアルキレングリコール類、9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−メチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−イソプロピルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−イソブチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−tert−ブチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−シクロヘキシルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−フェニルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3,5−ジメチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−tert−ブチル−6−メチルフェニル)フルオレン、9,9−ビス(4−(3−ヒドロキシ−2,2−ジメチルプロポキシ)フェニル)フルオレン等、側鎖に芳香族基を有し、主鎖に芳香族基に結合したエーテル基が前記一般式(2)で表される部位であるジヒドロキシ化合物が挙げられる。また、下記一般式(3)で表されるスピログリコール等の環状エーテル構造を有する化合物等の複素環基の一部が前記一般式(2)で表される部位であるジヒドロキシ化合物が挙げられる。   Specific examples of the dihydroxy compound having a portion represented by the general formula (2) in a part of the structure other than the dihydroxy compound represented by the formula (1) include diethylene glycol, triethylene glycol, and tetraethylene. Oxyalkylene glycols such as glycol, 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-methylphenyl) fluorene, 9, 9-bis (4- (2-hydroxyethoxy) -3-isopropylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-isobutylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-tert-butylphenyl) fluorene, 9,9-bis (4- (2- Droxyethoxy) -3-cyclohexylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-phenylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3 , 5-Dimethylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-tert-butyl-6-methylphenyl) fluorene, 9,9-bis (4- (3-hydroxy-2) , 2-dimethylpropoxy) phenyl) fluorene, and the like, and dihydroxy compounds having an aromatic group in the side chain and an ether group bonded to the aromatic group in the main chain being the moiety represented by the general formula (2). It is done. Moreover, the dihydroxy compound whose part of heterocyclic groups, such as a compound which has cyclic ether structures, such as spiroglycol represented by following General formula (3), is a site | part represented by the said General formula (2) is mentioned.

Figure 2013209579
Figure 2013209579

(上記一般式(3)中、R〜Rはそれぞれ独立に、炭素数1〜炭素数3のアルキル基である。) (In the general formula (3), R 1 to R 4 are each independently an alkyl group having 1 to 3 carbon atoms.)

上記一般式(3)で表されるジヒドロキシ化合物としては、3,9−ビス(1,1−ジメチル−2−ヒドロキシエチル)−2,4,8,10−テトラオキサスピロ(5.5)ウンデカン(慣用名:スピログリコール)、3,9−ビス(1,1−ジエチル−2−ヒドロキシエチル)−2,4,8,10−テトラオキサスピロ(5.5)ウンデカン、3,9−ビス(1,1−ジプロピル−2−ヒドロキシエチル)−2,4,8,10−テトラオキサスピロ(5.5)ウンデカン、下記式(4)で表されるジオキサングリコールなどが挙げられる。   Examples of the dihydroxy compound represented by the general formula (3) include 3,9-bis (1,1-dimethyl-2-hydroxyethyl) -2,4,8,10-tetraoxaspiro (5.5) undecane. (Common name: spiroglycol), 3,9-bis (1,1-diethyl-2-hydroxyethyl) -2,4,8,10-tetraoxaspiro (5.5) undecane, 3,9-bis ( 1,1-dipropyl-2-hydroxyethyl) -2,4,8,10-tetraoxaspiro (5.5) undecane, dioxane glycol represented by the following formula (4), and the like.

Figure 2013209579
Figure 2013209579

芳香族系ジヒドロキシ化合物としては、ビスフェノール化合物(置換、非置換を含む)が挙げられ、具体的には、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)ペンタン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、3,3−ビス(4−ヒドロキシフェニル)ペンタン、2,2−ビス(4−ヒドロキシフェニル)−3−メチルブタン、1,1−ビス(4−ヒドロキシフェニル)ヘキサン、2,2−ビス(4−ヒドロキシフェニル)ヘキサン、3,3−ビス(4−ヒドロキシフェニル)ヘキサン、2,2−ビス(4−ヒドロキシフェニル)−4−メチルペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン等の芳香族環上に置換基を有しないビスフェノール化合物;ビス(3−フェニル−4−ヒドロキシフェニル)メタン、1,1−ビス(3−フェニル−4−ヒドロキシフェニル)エタン、1,1−ビス(3−フェニル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−フェニル−4−ヒドロキシフェニル)プロパン等の芳香族環上に置換基としてアリール基を有するビスフェノール化合物;ビス(4−ヒドロキシ−3−メチルフェニル)メタン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)エタン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)シクロヘキサン、ビス(4−ヒドロキシ−3−エチルフェニル)メタン、1,1−ビス(4−ヒドロキシ−3−エチルフェニル)エタン、1,1−ビス(4−ヒドロキシ−3−エチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−エチルフェニル)プロパン、1,1−ビス(4−ヒドロキシ−3−エチルフェニル)シクロヘキサン、2,2−ビス(4−ヒドロキシ−3−イソプロピルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−(sec−ブチル)フェニル)プロパン、ビス(4−ヒドロキシ−3,5−ジメチルフェニル)メタン、1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)エタン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)シクロヘキサン、ビス(4−ヒドロキシ−3,6−ジメチルフェニル)メタン、1,1−ビス(4−ヒドロキシ−3,6−ジメチルフェニル)エタン、2,2−ビス(4−ヒドロキシ−3,6−ジメチルフェニル)プロパン、ビス(4−ヒドロキシ−2,3,5−トリメチルフェニル)メタン、1,1−ビス(4−ヒドロキシ−2,3,5−トリメチルフェニル)エタン、2,2−ビス(
4−ヒドロキシ−2,3,5−トリメチルフェニル)プロパン、ビス(4−ヒドロキシ−2,3,5−トリメチルフェニル)フェニルメタン、1,1−ビス(4−ヒドロキシ−2,3,5−トリメチルフェニル)フェニルエタン、1,1−ビス(4−ヒドロキシ−2,3,5−トリメチルフェニル)シクロヘキサン等の芳香族環上に置換基としてアルキル基を有するビスフェノール化合物;ビス(4−ヒドロキシフェニル)フェニルメタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルプロパン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、ビス(4−ヒドロキシフェニル)ジベンジルメタン等の芳香族環を連結する2価基が置換基としてアリール基を有するビスフェノール化合物;4,4’−ジヒドロキシジフェニルエーテル、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルエーテル等の芳香族環をエーテル結合で連結したビスフェノール化合物;4,4’−ジヒドロキシジフェニルスルホン、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルスルホン等の芳香族環をスルホン結合で連結したビスフェノール化合物;4,4’−ジヒドロキシジフェニルスルフィド、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルスルフィド等の芳香族環をスルフィド結合で連結したビスフェノール化合物等が挙げられるが、好ましくは2,2−ビス(4−ヒドロキシフェニル)プロパン(別称:ビスフェノール−A)が挙げられる。
Examples of the aromatic dihydroxy compound include bisphenol compounds (including substituted and unsubstituted). Specifically, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 1 , 1-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) butane 1,1-bis (4-hydroxyphenyl) pentane, 2,2-bis (4-hydroxyphenyl) pentane, 3,3-bis (4-hydroxyphenyl) pentane, 2,2-bis (4-hydroxyphenyl) ) -3-Methylbutane, 1,1-bis (4-hydroxyphenyl) hexane, 2,2-bis (4-hydroxyphenyl) hex 3,3-bis (4-hydroxyphenyl) hexane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 1,1-bis (4-hydroxyphenyl) cyclopentane, 1,1- Bisphenol compounds having no substituent on the aromatic ring such as bis (4-hydroxyphenyl) cyclohexane; bis (3-phenyl-4-hydroxyphenyl) methane, 1,1-bis (3-phenyl-4-hydroxyphenyl) ) Having an aryl group as a substituent on an aromatic ring such as ethane, 1,1-bis (3-phenyl-4-hydroxyphenyl) propane, 2,2-bis (3-phenyl-4-hydroxyphenyl) propane Bisphenol compounds; bis (4-hydroxy-3-methylphenyl) methane, 1,1-bis (4-hydroxy-3-methyl) Enyl) ethane, 1,1-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxy-3-) Methylphenyl) cyclohexane, bis (4-hydroxy-3-ethylphenyl) methane, 1,1-bis (4-hydroxy-3-ethylphenyl) ethane, 1,1-bis (4-hydroxy-3-ethylphenyl) Propane, 2,2-bis (4-hydroxy-3-ethylphenyl) propane, 1,1-bis (4-hydroxy-3-ethylphenyl) cyclohexane, 2,2-bis (4-hydroxy-3-isopropylphenyl) ) Propane, 2,2-bis (4-hydroxy-3- (sec-butyl) phenyl) propane, bis (4-hydroxy-3,5-di) Methylphenyl) methane, 1,1-bis (4-hydroxy-3,5-dimethylphenyl) ethane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 1,1-bis (4 -Hydroxy-3,5-dimethylphenyl) cyclohexane, bis (4-hydroxy-3,6-dimethylphenyl) methane, 1,1-bis (4-hydroxy-3,6-dimethylphenyl) ethane, 2,2- Bis (4-hydroxy-3,6-dimethylphenyl) propane, bis (4-hydroxy-2,3,5-trimethylphenyl) methane, 1,1-bis (4-hydroxy-2,3,5-trimethylphenyl) ) Ethane, 2,2-bis (
4-hydroxy-2,3,5-trimethylphenyl) propane, bis (4-hydroxy-2,3,5-trimethylphenyl) phenylmethane, 1,1-bis (4-hydroxy-2,3,5-trimethyl) Bisphenol compounds having an alkyl group as a substituent on an aromatic ring such as phenyl) phenylethane and 1,1-bis (4-hydroxy-2,3,5-trimethylphenyl) cyclohexane; bis (4-hydroxyphenyl) phenyl Methane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 1,1-bis (4-hydroxyphenyl) -1-phenylpropane, bis (4-hydroxyphenyl) diphenylmethane, bis (4-hydroxy A divalent group connecting aromatic rings such as phenyl) dibenzylmethane is substituted with an aryl group. Bisphenol compounds; 4,4′-dihydroxydiphenyl ether, bisphenol compounds in which aromatic rings such as 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxydiphenyl ether are linked by an ether bond; A bisphenol compound in which aromatic rings such as dihydroxydiphenylsulfone and 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxydiphenylsulfone are linked by a sulfone bond; 4,4′-dihydroxydiphenylsulfide, 3 , 3 ′, 5,5′-tetramethyl-4,4′-dihydroxydiphenyl sulfide, and the like include bisphenol compounds in which aromatic rings are connected by a sulfide bond, preferably 2,2-bis (4-hydroxy Phenyl) propane (other name: bisphenol-A).

但し、前記芳香族系ジヒドロキシ化合物に由来する構造単位をポリカーボネート樹脂中に多量に含むと、屋外で使用した場合等において紫外線吸収により黄変が生じることがある。このため、これを防ぐ必要がある場合は、前記芳香族系ジヒドロキシ化合物に由来する構造単位の含有量は、ポリカーボネート樹脂中の全ジヒドロキシ化合物に由来する構造単位に対して0mol%以上かつ40mol%未満が好ましく、0mol%以上かつ30mol%未満がより好ましく、0mol%以上かつ20mol%未満がさらにより好ましく、0mol%以上かつ10mol%未満が特に好ましく、0mol%以上かつ5mol%未満が最も好ましい。   However, if the polycarbonate resin contains a large amount of structural units derived from the aromatic dihydroxy compound, yellowing may occur due to ultraviolet absorption when used outdoors. For this reason, when it is necessary to prevent this, the content of the structural unit derived from the aromatic dihydroxy compound is 0 mol% or more and less than 40 mol% with respect to the structural unit derived from all dihydroxy compounds in the polycarbonate resin. 0 mol% or more and less than 30 mol% is more preferred, 0 mol% or more and less than 20 mol% is even more preferred, 0 mol% or more and less than 10 mol% is particularly preferred, and 0 mol% or more and less than 5 mol% is most preferred.

一方で、特に紫外線に曝されるおそれのない用途においては、前記芳香族系ジヒドロキシ化合物に由来する構造単位を含むことで、耐熱性、面衝撃性、成形加工性等の改良が期待できる。   On the other hand, in applications where there is no risk of exposure to ultraviolet light, improvements in heat resistance, surface impact resistance, molding processability, and the like can be expected by including a structural unit derived from the aromatic dihydroxy compound.

一般に、前記式(1)で表されるジヒドロキシ化合物は、ビスフェノール−Aなどの芳香族系ジヒドロキシ化合物に比べて、重合反応の平衡定数が重合進行する方向へ傾いており、加熱したりフェノール脱揮したりすると重合反応が急激になり反応制御が難しくなる傾向がある。
このため、重合反応の終末段階で前記芳香族系ジヒドロキシ化合物を少量添加すれば、重合末端を前記芳香族系ジヒドロキシ化合物で塞ぐことで、加熱したりフェノール脱揮したりしても重合反応が急激にならずにすむ効果も期待できる。
In general, the dihydroxy compound represented by the above formula (1) has an equilibrium constant in the polymerization reaction that is inclined toward the progress of polymerization as compared with aromatic dihydroxy compounds such as bisphenol-A. Otherwise, the polymerization reaction tends to be rapid and the reaction control tends to be difficult.
For this reason, if a small amount of the aromatic dihydroxy compound is added at the final stage of the polymerization reaction, the polymerization reaction is rapidly accelerated even when heated or phenol devolatilized by closing the polymerization end with the aromatic dihydroxy compound. You can also expect the effect of not having to.

上述のその他のジヒドロキシ化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   The above-mentioned other dihydroxy compounds may be used alone or in combination of two or more.

<炭酸ジエステル>
本発明に用いるポリカーボネート樹脂は、上述した前記式(1)で表されるジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルを原料として、エステル交換反応により重縮合させて得ることができる。
<Carbonated diester>
The polycarbonate resin used in the present invention can be obtained by polycondensation by a transesterification reaction using a dihydroxy compound containing the dihydroxy compound represented by the above formula (1) and a carbonic acid diester as raw materials.

用いられる炭酸ジエステルとしては、通常、下記一般式(5)で表されるものが挙げられる。これらの炭酸ジエステルは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。   As a carbonic acid diester used, what is normally represented by following General formula (5) is mentioned. These carbonic acid diesters may be used alone or in combination of two or more.

Figure 2013209579
Figure 2013209579

但し、上記一般式(5)において、AおよびAは、それぞれ独立に、置換若しくは無置換の炭素数1〜炭素数18の脂肪族基、または、置換若しくは無置換の芳香族基である。 However, in the above general formula (5), A 1 and A 2 are each independently a substituted or unsubstituted aliphatic group having 1 to 18 carbon atoms or a substituted or unsubstituted aromatic group. .

前記一般式(5)で表される炭酸ジエステルとしては、例えば、ジフェニルカーボネート、ジトリルカーボネートなどのジアリールカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジ−t−ブチルカーボネートなどのジアルキルカーボネートが例示されるが、好ましくは、ジフェニルカーボネート、置換基を有するジフェニルカーボネート等のジアリールカーボネートであり、ジアリールカーボネートの中でもジフェニルカーボネートが好ましい。   Examples of the carbonic acid diester represented by the general formula (5) include diaryl carbonates such as diphenyl carbonate and ditolyl carbonate, and dialkyl carbonates such as dimethyl carbonate, diethyl carbonate, and di-t-butyl carbonate. Preferred are diaryl carbonates such as diphenyl carbonate and diphenyl carbonate having a substituent, and among diaryl carbonates, diphenyl carbonate is preferred.

なお、炭酸ジエステルは、塩化物イオンなどの不純物を含む場合があり、これらの不純物は重合反応を阻害したり、得られるポリカーボネート樹脂の色相を悪化させたりする場合があるため、必要に応じて、蒸留などにより精製したものを使用することが好ましい。   The carbonic acid diester may contain impurities such as chloride ions, and these impurities may inhibit the polymerization reaction or deteriorate the hue of the resulting polycarbonate resin. It is preferable to use one purified by distillation or the like.

<エステル交換反応触媒>
本発明に用いるポリカーボネート樹脂は、上述のように前記式(1)で表されるジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルをエステル交換反応させて得られる。より詳細には、エステル交換させ、副生するモノヒドロキシ化合物等を系外に除去することによって得られる。この場合、通常エステル交換反応触媒の存在下でエステル交換反応により重縮合を行う。
<Transesterification reaction catalyst>
The polycarbonate resin used in the present invention is obtained by transesterifying the dihydroxy compound containing the dihydroxy compound represented by the formula (1) and the carbonic acid diester as described above. More specifically, it can be obtained by transesterification and removing by-product monohydroxy compounds and the like out of the system. In this case, polycondensation is usually carried out by transesterification in the presence of a transesterification catalyst.

本発明に用いるポリカーボネート樹脂の製造時に使用し得るエステル交換反応触媒(以下、単に「触媒」、「重合触媒」と言うことがある)は、特に波長350nmにおける光線透過率またはイエローインデックス(YI)値に影響を与えることがある。   The transesterification reaction catalyst (hereinafter sometimes simply referred to as “catalyst” or “polymerization catalyst”) that can be used in the production of the polycarbonate resin used in the present invention is, in particular, a light transmittance or a yellow index (YI) value at a wavelength of 350 nm. May be affected.

用いる触媒としては、得られるポリカーボネート樹脂の耐光性を満足させ得る、即ち後述のYI値を所定の値以下にし得るものが好ましく、例えば、長周期型周期表における第1族または第2族(以下、単に「1族」、「2族」と表記する。)の金属化合物、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物が挙げられる。これらの中でも、好ましくは1族金属化合物および/又は2族金属化合物が使用される。   The catalyst to be used is preferably one that can satisfy the light resistance of the obtained polycarbonate resin, that is, a YI value that will be described later can be set to a predetermined value or less, such as Group 1 or Group 2 (hereinafter referred to as “Long Periodic Periodic Table”). And basic compounds such as metal compounds, basic boron compounds, basic phosphorus compounds, basic ammonium compounds, amine compounds, and the like. Among these, Preferably a group 1 metal compound and / or a group 2 metal compound are used.

1族金属化合物および/又は2族金属化合物と共に、補助的に、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物を併用することも可能であるが、1族金属化合物および/又は2族金属化合物のみを使用することが特に好ましい。   It is possible to use a basic compound such as a basic boron compound, a basic phosphorus compound, a basic ammonium compound, and an amine compound together with the Group 1 metal compound and / or the Group 2 metal compound. It is particularly preferred to use only Group 1 metal compounds and / or Group 2 metal compounds.

また、1族金属化合物および/又は2族金属化合物の形態としては通常、水酸化物、又は炭酸塩、カルボン酸塩、フェノール塩といった塩の形態で用いられるが、入手のし易さ、取扱いの容易さから、水酸化物、炭酸塩、酢酸塩が好ましく、色相と重合活性の観点からは酢酸塩が好ましい。   In addition, the group 1 metal compound and / or the group 2 metal compound is usually used in the form of a hydroxide or a salt such as a carbonate, a carboxylate, or a phenol salt. From the viewpoint of easiness, a hydroxide, carbonate, and acetate are preferable, and acetate is preferable from the viewpoint of hue and polymerization activity.

1族金属化合物としては、例えば、水酸化ナトリウム、炭酸水素ナトリウム、炭酸ナトリウム、酢酸ナトリウム、ステアリン酸ナトリウム、水素化ホウ素ナトリウム、フェニル化ホウ素ナトリウム、安息香酸ナトリウム、リン酸水素2ナトリウム、フェニルリン酸2ナトリウム、ナトリウムのアルコレートまたはフェノレート、およびビスフェノールAの2ナトリウム塩等のナトリウム化合物、水酸化カリウム、炭酸水素カリウム、炭酸カリウム、酢酸カリウム、ステアリン酸カリウム、水素化ホウ素カリウム、フェニル化ホウ素カリウム、安息香酸カリウム、リン酸水素2カリウム、フェニルリン酸2カリウム、カリウムのアルコレートまたはフェノレート、およびビスフェノールAの2カリウム塩等のカリウム化合物、水酸化リチウム、炭酸水素リチウム、炭酸リチウム、酢酸リチウム、ステアリン酸リチウム、水素化ホウ素リチウム、フェニル化ホウ素リチウム、安息香酸リチウム、リン酸水素2リチウム、フェニルリン酸2リチウム、リチウムのアルコレートまたはフェノレート、およびビスフェノールAの2リチウム塩等のリチウム化合物、並びに水酸化セシウム、炭酸水素セシウム、炭酸セシウム、酢酸セシウム、ステアリン酸セシウム、水素化ホウ素セシウム、フェニル化ホウ素セシウム、安息香酸セシウム、リン酸水素2セシウム、フェニルリン酸2セシウム、セシウムのアルコレートまたはフェノレート、およびビスフェノールAの2セシウム塩等のセシウム化合物等が挙げられる。中でもリチウム化合物が好ましい。   Examples of the Group 1 metal compound include sodium hydroxide, sodium hydrogen carbonate, sodium carbonate, sodium acetate, sodium stearate, sodium borohydride, sodium phenyl borohydride, sodium benzoate, disodium hydrogen phosphate, phenyl phosphoric acid. Sodium compounds such as disodium, sodium alcoholate or phenolate, and disodium salt of bisphenol A, potassium hydroxide, potassium bicarbonate, potassium carbonate, potassium acetate, potassium stearate, potassium borohydride, potassium borohydride Potassium compounds such as potassium benzoate, dipotassium hydrogen phosphate, dipotassium phenyl phosphate, potassium alcoholate or phenolate, and dipotassium salt of bisphenol A, lithium hydroxide, Lithium oxyhydrogen, lithium carbonate, lithium acetate, lithium stearate, lithium borohydride, lithium phenyl borohydride, lithium benzoate, 2 lithium hydrogen phosphate, 2 lithium phenyl phosphate, lithium alcoholate or phenolate, and bisphenol A lithium compound such as dilithium salt of A, and cesium hydroxide, cesium bicarbonate, cesium carbonate, cesium acetate, cesium stearate, cesium borohydride, cesium phenyl borohydride, cesium benzoate, 2 cesium hydrogen phosphate, phenyl Examples include cesium compounds such as 2 cesium phosphate, alcoholate or phenolate of cesium, and 2 cesium salt of bisphenol A. Of these, lithium compounds are preferred.

2族金属化合物としては、例えば、水酸化カルシウム、炭酸水素カルシウム、炭酸カルシウム、酢酸カルシウムおよびステアリン酸カルシウム等のカルシウム化合物、水酸化バリウム、炭酸水素バリウム、炭酸バリウム、酢酸バリウムおよびステアリン酸バリウム等のバリウム化合物、水酸化マグネシウム、炭酸水素マグネシウム、炭酸マグネシウム、酢酸マグネシウムおよびステアリン酸マグネシウム等のマグネシウム化合物、並びに水酸化ストロンチウム、炭酸水素ストロンチウム、炭酸ストロンチウム、酢酸ストロンチウムおよびステアリン酸ストロンチウム等のストロンチウム化合物等が挙げられる。中でもマグネシウム化合物、カルシウム化合物、バリウム化合物が好ましく、重合活性と得られるポリカーボネート樹脂の色相の観点から、マグネシウム化合物およびカルシウム化合物からなる群より選ばれる少なくとも1種の金属化合物が更に好ましく、最も好ましくはカルシウム化合物である。   Examples of the Group 2 metal compound include calcium compounds such as calcium hydroxide, calcium bicarbonate, calcium carbonate, calcium acetate and calcium stearate, and barium such as barium hydroxide, barium bicarbonate, barium carbonate, barium acetate and barium stearate. Compounds, magnesium compounds such as magnesium hydroxide, magnesium hydrogen carbonate, magnesium carbonate, magnesium acetate and magnesium stearate, and strontium compounds such as strontium hydroxide, strontium hydrogen carbonate, strontium carbonate, strontium acetate and strontium stearate, etc. . Among these, a magnesium compound, a calcium compound, and a barium compound are preferable, and at least one metal compound selected from the group consisting of a magnesium compound and a calcium compound is more preferable from the viewpoint of polymerization activity and the hue of the obtained polycarbonate resin, and most preferably calcium. A compound.

塩基性ホウ素化合物としては、例えば、テトラメチルホウ素、テトラエチルホウ素、テトラプロピルホウ素、テトラブチルホウ素、トリメチルエチルホウ素、トリメチルベンジルホウ素、トリメチルフェニルホウ素、トリエチルメチルホウ素、トリエチルベンジルホウ素、トリエチルフェニルホウ素、トリブチルベンジルホウ素、トリブチルフェニルホウ素、テトラフェニルホウ素、ベンジルトリフェニルホウ素、メチルトリフェニルホウ素、ブチルトリフェニルホウ素等のナトリウム塩、カリウム塩、リチウム塩、カルシウム塩、バリウム塩、マグネシウム塩およびストロンチウム塩等が挙げられる。   Examples of the basic boron compound include tetramethyl boron, tetraethyl boron, tetrapropyl boron, tetrabutyl boron, trimethylethyl boron, trimethylbenzyl boron, trimethylphenyl boron, triethylmethyl boron, triethylbenzyl boron, triethylphenyl boron, tributylbenzyl. Examples include sodium salts such as boron, tributylphenyl boron, tetraphenyl boron, benzyltriphenyl boron, methyltriphenyl boron, and butyltriphenyl boron, potassium salts, lithium salts, calcium salts, barium salts, magnesium salts, and strontium salts. .

塩基性リン化合物としては、例えば、トリエチルホスフィン、トリ−n−プロピルホスフィン、トリイソプロピルホスフィン、トリ−n−ブチルホスフィン、トリフェニルホスフィン、トリブチルホスフィンおよび四級ホスホニウム塩等が挙げられる。   Examples of basic phosphorus compounds include triethylphosphine, tri-n-propylphosphine, triisopropylphosphine, tri-n-butylphosphine, triphenylphosphine, tributylphosphine, and quaternary phosphonium salts.

塩基性アンモニウム化合物としては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニル
アンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシドおよびブチルトリフェニルアンモニウムヒドロキシド等が挙げられる。
Examples of the basic ammonium compound include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylbenzylammonium hydroxide, trimethylphenylammonium hydroxide, Triethylmethylammonium hydroxide, triethylbenzylammonium hydroxide, triethylphenylammonium hydroxide, tributylbenzylammonium hydroxide, tributylphenylammonium hydroxide, tetraphenylammonium hydroxide, benzyltriphenylammonium hydroxide, methyltriphenylammonium hydroxide Sid and butyl triphenyl ammonium hydroxide, and the like.

アミン系化合物としては、例えば、4−アミノピリジン、2−アミノピリジン、N,N−ジメチル−4−アミノピリジン、4−ジエチルアミノピリジン、2−ヒドロキシピリジン、2−メトキシピリジン、4−メトキシピリジン、2−ジメチルアミノイミダゾール、2−メトキシイミダゾール、イミダゾール、2−メルカプトイミダゾール、2−メチルイミダゾールおよびアミノキノリン等が挙げられる。   Examples of the amine compound include 4-aminopyridine, 2-aminopyridine, N, N-dimethyl-4-aminopyridine, 4-diethylaminopyridine, 2-hydroxypyridine, 2-methoxypyridine, 4-methoxypyridine, 2 -Dimethylaminoimidazole, 2-methoxyimidazole, imidazole, 2-mercaptoimidazole, 2-methylimidazole, aminoquinoline and the like.

前記重合触媒の使用量は、好ましくは用いる全ジヒドロキシ化合物1mol当たり0.1〜300μmol、より好ましくは0.5〜100μmolである。中でもリチウムおよび長周期型周期表第2族の金属からなる群より選ばれる少なくとも1種の金属化合物を用いる場合、特にはマグネシウム化合物およびカルシウム化合物からなる群より選ばれる少なくとも1種の金属化合物を用いる場合、好ましくは用いる全ジヒドロキシ化合物1mol当たり金属量として0.1〜20μmol、より好ましくは0.5〜10μmol、特に好ましくは0.7〜3μmolである。   The amount of the polymerization catalyst used is preferably 0.1 to 300 μmol, more preferably 0.5 to 100 μmol, per 1 mol of all dihydroxy compounds used. In particular, when using at least one metal compound selected from the group consisting of lithium and a metal of Group 2 of the long-period periodic table, in particular, at least one metal compound selected from the group consisting of a magnesium compound and a calcium compound is used. In this case, the amount of metal is preferably 0.1 to 20 μmol, more preferably 0.5 to 10 μmol, and particularly preferably 0.7 to 3 μmol, per 1 mol of all dihydroxy compounds used.

重合触媒の使用量が0.1μmol以上であれば、重合速度が一定以上となるため、所望の分子量のポリカーボネート樹脂を得ようとする際に、重合温度を高くする必要がなく、得られたポリカーボネート樹脂の色相または耐光性が悪化したり、未反応の原料が重合途中で揮発して前記式(1)で表されるジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルのモル比率が変化し、所望の分子量に到達しなかったりするおそれが小さいため好ましい。一方、重合触媒の使用量が300μmol以下であれば、得られるポリカーボネート樹脂の色相や、ポリカーボネート樹脂の耐光性が悪化する可能性が小さいため好ましい。また、重合反応器内で十分に減圧せずに目標分子量に到達する可能性や、残存するモノマーが十分に脱揮されない可能性が小さいため好ましい。   When the amount of the polymerization catalyst used is 0.1 μmol or more, the polymerization rate becomes a certain level or more, so that it is not necessary to increase the polymerization temperature when trying to obtain a polycarbonate resin having a desired molecular weight. The hue or light resistance of the resin deteriorates, the unreacted raw material volatilizes during the polymerization, and the molar ratio of the dihydroxy compound containing the dihydroxy compound represented by the formula (1) and the carbonic acid diester changes, and the desired molecular weight Since there is little possibility that it will not reach, it is preferable. On the other hand, if the amount of the polymerization catalyst used is 300 μmol or less, the hue of the obtained polycarbonate resin and the light resistance of the polycarbonate resin are less likely to deteriorate, which is preferable. Further, it is preferable because the possibility of reaching the target molecular weight without sufficiently reducing the pressure in the polymerization reactor and the possibility that the remaining monomer is not sufficiently devolatilized are small.

なお、1族金属、特にはリチウム、ナトリウム、カリウムおよびセシウムは、ポリカーボネート樹脂中に多く含まれると色相に悪影響を及ぼす可能性があり、該金属は使用する触媒からのみではなく、原料または反応装置から混入する場合があるため、ポリカーボネート樹脂中のこれらの化合物の合計量は、金属量として、通常1重量ppm以下であることが好ましく、より好ましくは0.8重量ppm以下、更に好ましくは0.7重量ppm以下である。   In addition, when a group 1 metal, especially lithium, sodium, potassium, and cesium are contained in a large amount in the polycarbonate resin, the hue may be adversely affected, and the metal is not only from the catalyst used but also from the raw material or the reactor. In general, the total amount of these compounds in the polycarbonate resin is preferably 1 ppm by weight or less, more preferably 0.8 ppm by weight or less, and still more preferably 0.8 ppm as a metal amount. 7 ppm by weight or less.

ポリカーボネート樹脂中の金属量は、湿式灰化などの方法でポリカーボネート樹脂中の金属を回収した後、原子発光、原子吸光またはInductively Coupled
Plasma(ICP)等の方法を使用して測定することが出来る。
The amount of metal in the polycarbonate resin is determined by atomic emission, atomic absorption or Inductively Coupled after recovering the metal in the polycarbonate resin by a method such as wet ashing.
It can be measured using a method such as Plasma (ICP).

<ポリカーボネート樹脂の製造方法>
本発明に用いるポリカーボネート樹脂は、前記式(1)で表されるジヒドロキシ化合物を含むジヒドロキシ化合物と、前記一般式(5)で表される炭酸ジエステルとを触媒の存在下、エステル交換反応により重縮合させることによって得ることができる。
この時、原料であるジヒドロキシ化合物と炭酸ジエステルは、エステル交換反応前に均一に混合しても良いし、混合せずに重合槽へ同時に投入されても良いが、均一に混合することが好ましい。
<Production method of polycarbonate resin>
The polycarbonate resin used in the present invention is a polycondensation of a dihydroxy compound containing a dihydroxy compound represented by the formula (1) and a carbonic acid diester represented by the general formula (5) by an ester exchange reaction in the presence of a catalyst. Can be obtained.
At this time, the raw material dihydroxy compound and carbonic acid diester may be mixed uniformly before the transesterification reaction, or may be added simultaneously to the polymerization tank without mixing, but they are preferably mixed uniformly.

混合の温度は通常80℃以上であることが好ましく、より好ましくは90℃以上であり、その上限は通常250℃以下であることが好ましく、より好ましくは200℃以下、更に好ましくは150℃以下である。中でも100℃以上120℃以下が好適である。混合
の温度が80℃以上であれば、溶解速度が速くなり、溶解度不足に起因する固化等の運転不具合が生じるおそれが小さいため好ましい。また、混合の温度が250℃以下であれば、ジヒドロキシ化合物の熱劣化が生じるおそれが小さく、得られるポリカーボネート樹脂の色相や耐光性が良好となるため好ましい。
The mixing temperature is usually preferably 80 ° C. or higher, more preferably 90 ° C. or higher, and the upper limit is usually preferably 250 ° C. or lower, more preferably 200 ° C. or lower, still more preferably 150 ° C. or lower. is there. Among these, 100 ° C. or higher and 120 ° C. or lower is preferable. A mixing temperature of 80 ° C. or higher is preferable because the dissolution rate is increased, and there is little risk of operating problems such as solidification due to insufficient solubility. Moreover, if the temperature of mixing is 250 degrees C or less, there exists little possibility that the thermal deterioration of a dihydroxy compound will arise, and since the hue and light resistance of the polycarbonate resin obtained become favorable, it is preferable.

本発明に用いるポリカーボネート樹脂の原料である前記式(1)で表されるジヒドロキシ化合物を含むジヒドロキシ化合物と前記一般式(5)で表される炭酸ジエステルと混合する操作は、酸素濃度が、好ましくは10体積%以下、より好ましくは0.0001体積%〜10体積%、更に好ましくは0.0001体積%〜5体積%、特に好ましくは0.0001体積%〜1体積%である雰囲気下で行うことが、色相悪化防止の観点から好ましい。   The operation of mixing the dihydroxy compound containing the dihydroxy compound represented by the above formula (1) and the carbonic acid diester represented by the above general formula (5), which is a raw material of the polycarbonate resin used in the present invention, preferably has an oxygen concentration. 10 volume% or less, more preferably 0.0001 volume% to 10 volume%, still more preferably 0.0001 volume% to 5 volume%, particularly preferably 0.0001 volume% to 1 volume%. Is preferable from the viewpoint of preventing hue deterioration.

本発明に用いるポリカーボネート樹脂を得るためには、前記一般式(5)で表される炭酸ジエステルは、反応に用いる全ジヒドロキシ化合物に対して、0.900〜1.115のモル比率で用いることが好ましく、さらに好ましくは、0.995〜0.999、又は、1.001〜1.110のモル比率である。   In order to obtain the polycarbonate resin used in the present invention, the carbonic acid diester represented by the general formula (5) should be used in a molar ratio of 0.900 to 1.115 with respect to all dihydroxy compounds used in the reaction. The molar ratio is preferably 0.995 to 0.999 or 1.001 to 1.110.

前記モル比率が0.900以上であれば、製造されたポリカーボネート樹脂の末端水酸基の増加を抑制でき、ポリマーの熱安定性の悪化や、成形時の着色、エステル交換反応の速度の低下などの可能性が小さく、所望する高分子量のポリカーボネート樹脂が得られるため好ましい。
また、前記モル比率が1.115以下であれば、エステル交換反応の速度の低下などの可能性が小さく、所望する高分子量のポリカーボネート樹脂が得られるため好ましい。エステル交換反応速度の低下は、重合反応時の熱履歴を増大させ、結果的に得られたポリカーボネート樹脂の色相または耐光性を悪化させるおそれがある。
If the molar ratio is 0.900 or more, it is possible to suppress an increase in the terminal hydroxyl group of the produced polycarbonate resin, and it is possible to deteriorate the thermal stability of the polymer, color during molding, and decrease in the rate of transesterification. This is preferable because the desired high molecular weight polycarbonate resin can be obtained.
Moreover, if the said molar ratio is 1.115 or less, since possibility of the fall of the rate of transesterification etc. is small and the desired high molecular weight polycarbonate resin is obtained, it is preferable. The decrease in the transesterification reaction rate increases the heat history during the polymerization reaction, and may result in deterioration of the hue or light resistance of the resulting polycarbonate resin.

更には、用いる全ジヒドロキシ化合物に対する炭酸ジエステルのモル比率が1.200以下であれば、得られるポリカーボネート樹脂中の残存炭酸ジエステル量が増加することなく、これらが紫外線を吸収してポリカーボネート樹脂の耐光性を悪化させたり、成形加工時の臭気の原因となったり、金型の付着物が多くなったりするおそれが小さいため、好ましい。   Furthermore, if the molar ratio of the carbonic acid diester to the total dihydroxy compound used is 1.200 or less, the amount of residual carbonic acid diester in the resulting polycarbonate resin does not increase, and these absorb ultraviolet rays and thus the light resistance of the polycarbonate resin. This is preferable because it is less likely to cause deterioration of the odor, cause odor during molding, or increase the amount of deposits on the mold.

また、用いる全ジヒドロキシ化合物に対する炭酸ジエステルのモル比率が0.999以下、又は1.001以上であれば、重合速度が速くなり過ぎず、重合が完結するまでの間に、最終重合槽で残存するモノマーを十分に脱気することが可能となり、樹脂中の残存モノマーの増大に起因する成形時の異臭やガス発生による気泡の発生、成形機での脈動などが発生するおそれが小さいため特に好ましい。   Further, if the molar ratio of the carbonic acid diester to the total dihydroxy compound used is 0.999 or less, or 1.001 or more, the polymerization rate does not become too fast and remains in the final polymerization tank until the polymerization is completed. This is particularly preferable because the monomer can be sufficiently degassed, and there is little possibility of generation of a strange odor at the time of molding due to an increase in residual monomer in the resin, generation of bubbles due to gas generation, pulsation in a molding machine, and the like.

さらに連続重合で連続的に重合槽に原料混合物をフィードする場合は、ジヒドロキシ化合物に対する炭酸ジエステルのモル比の変動幅は通常0.005以下が好ましく、より好ましくは0.003以下、更に好ましくは0.002以下である。
変動幅が0.07以下であれば、均一な重合が進行するために得られる分子量の幅が広くなり過ぎず、均一で成形性の良好なポリカーボネート樹脂が得られ、その結果として均一な成形体が得られるため好ましい。
Further, when continuously feeding the raw material mixture to the polymerization tank by continuous polymerization, the fluctuation range of the molar ratio of the carbonic acid diester to the dihydroxy compound is usually preferably 0.005 or less, more preferably 0.003 or less, and still more preferably 0. 0.002 or less.
If the fluctuation range is 0.07 or less, the molecular weight obtained is not too wide because uniform polymerization proceeds, and a uniform and good moldability polycarbonate resin is obtained. As a result, a uniform molded body Is preferable.

耐光性を高く維持するために、本発明に用いるポリカーボネート樹脂に残存する前記一般式(5)で表される炭酸ジエステルの濃度は、200重量ppm以下であることが好ましく、より好ましくは100重量ppm以下、更に好ましくは60重量ppm以下、特に好ましくは30重量ppm以下である。現実的にポリカーボネート樹脂は未反応の炭酸ジエステルを含むことがあり、炭酸ジエステル含有量の下限値は通常1重量ppmである。   In order to maintain high light resistance, the concentration of the carbonic acid diester represented by the general formula (5) remaining in the polycarbonate resin used in the present invention is preferably 200 ppm by weight or less, more preferably 100 ppm by weight. Hereinafter, it is more preferably 60 ppm by weight or less, particularly preferably 30 ppm by weight or less. Actually, the polycarbonate resin may contain an unreacted carbonic acid diester, and the lower limit value of the carbonic acid diester content is usually 1 ppm by weight.

本発明において、ジヒドロキシ化合物と炭酸ジエステルとを重縮合させる方法は、上述の触媒存在下、通常、複数の反応器を用いて多段階で実施される。反応の形式は、バッチ式、連続式、またはバッチ式と連続式との組み合わせのいずれの方法でもよい。   In the present invention, the method of polycondensing a dihydroxy compound and a carbonic acid diester is usually carried out in multiple stages using a plurality of reactors in the presence of the above-mentioned catalyst. The type of reaction may be any of a batch method, a continuous method, or a combination of a batch method and a continuous method.

重合初期においては、相対的に低温、低真空でプレポリマーを得、重合後期においては相対的に高温、高真空で所定の値まで分子量を上昇させることが好ましいが、各分子量段階でのジャケット温度と内温、反応系内の圧力を適切に選択することが色相または耐光性の観点から重要である。   In the initial stage of polymerization, it is preferable to obtain a prepolymer at a relatively low temperature and low vacuum, and in the latter stage of polymerization, it is preferable to increase the molecular weight to a predetermined value at a relatively high temperature and high vacuum, but the jacket temperature at each molecular weight stage. It is important from the viewpoint of hue or light resistance to appropriately select the internal temperature and pressure in the reaction system.

例えば、重合反応が所定の値に到達する前に温度、圧力のどちらか一方でも早く変化させすぎると、未反応のモノマーが留出し、ジヒドロキシ化合物と炭酸ジエステルとのモル比率を狂わせ、重合速度の低下を招いたり、所定の分子量または末端基を持つポリマーが得られなかったりする可能性がある。さらには、均一な分子量のポリマーが得られない可能性、2つ以上のジヒドロキシ化合物を共重合させた場合にはそのジヒドロキシ化合物の組成比が仕込み通りにならない可能性、均一な組成比のポリマーが得られない可能性があり、結果的に成形性や得られる成形品の物性を低下させ、本発明の目的を達成することができない可能性がある。   For example, if either the temperature or the pressure is changed too quickly before the polymerization reaction reaches a predetermined value, the unreacted monomer is distilled off, and the molar ratio of the dihydroxy compound and the carbonic acid diester is disturbed. There is a possibility that a polymer having a predetermined molecular weight or a terminal group cannot be obtained. Furthermore, there is a possibility that a polymer with a uniform molecular weight cannot be obtained, and when two or more dihydroxy compounds are copolymerized, there is a possibility that the composition ratio of the dihydroxy compounds may not be as prepared, and there is a polymer with a uniform composition ratio. It may not be obtained, and as a result, the moldability and the physical properties of the obtained molded product are lowered, and the object of the present invention may not be achieved.

更には、ポリマーのジヒドロキシ化合物組成を均一にし、得られるポリマーの分子量を一定にするために、重合反応器に還流冷却器を用いることは有効であり、特に未反応モノマー成分が多い重合初期の反応器でその効果は大きい。還流冷却器に導入される冷媒の温度は使用するモノマーに応じて適宜選択することができる。   Furthermore, it is effective to use a reflux condenser in the polymerization reactor in order to make the dihydroxy compound composition of the polymer uniform and to keep the molecular weight of the resulting polymer constant. The effect is great with the vessel. The temperature of the refrigerant introduced into the reflux condenser can be appropriately selected according to the monomer used.

通常、還流冷却器に導入される冷媒の温度は該還流冷却器の入口において45〜180℃であることが好ましく、より好ましくは80〜150℃、特に好ましくは100〜150℃である。冷媒の温度が高すぎると還流量が減り、その効果が低下し、逆に低すぎると、本来留去すべきモノヒドロキシ化合物の留去効率が低下する傾向にある。冷媒としては、例えば、温水、蒸気および熱媒オイル等が挙げられ、蒸気および熱媒オイルが好ましい。   Usually, the temperature of the refrigerant introduced into the reflux cooler is preferably 45 to 180 ° C at the inlet of the reflux cooler, more preferably 80 to 150 ° C, and particularly preferably 100 to 150 ° C. If the temperature of the refrigerant is too high, the amount of reflux decreases and the effect is reduced. On the other hand, if the temperature is too low, the distillation efficiency of the monohydroxy compound that should be distilled off tends to decrease. Examples of the refrigerant include hot water, steam, and heat medium oil, and steam and heat medium oil are preferable.

重合速度を適切に維持し、モノマーの留出を抑制しながら、最終的なポリカーボネート樹脂の色相、熱安定性または耐光性等を損なわないようにするためには、前述の触媒の種類と量の選定が重要である。   In order to maintain the polymerization rate appropriately and suppress the distillation of the monomer, while keeping the hue, thermal stability or light resistance of the final polycarbonate resin, etc. Selection is important.

本発明に用いるポリカーボネート樹脂は、触媒を用いて、複数の反応器を用いて多段階で重合させて製造することが好ましいが、重合を複数の反応器で実施する理由は、重合反応初期においては、反応液中に含まれるモノマーが多いために、必要な重合速度を維持しつつ、モノマーの揮散を抑制してやることが重要であり、重合反応後期においては、平衡を重合側にシフトさせるために、副生するモノヒドロキシ化合物を十分留去させることが重要になるためである。このように、異なった重合反応条件を設定するには、直列に配置された複数の重合反応器を用いることが、生産効率の観点から好ましい。   The polycarbonate resin used in the present invention is preferably produced by polymerizing in a plurality of stages using a plurality of reactors using a catalyst, but the reason for carrying out the polymerization in a plurality of reactors is the initial stage of the polymerization reaction. In order to shift the equilibrium to the polymerization side in the later stage of the polymerization reaction, it is important to suppress the volatilization of the monomer while maintaining the necessary polymerization rate because there are many monomers contained in the reaction solution. This is because it is important to sufficiently distill off the by-produced monohydroxy compound. Thus, in order to set different polymerization reaction conditions, it is preferable from the viewpoint of production efficiency to use a plurality of polymerization reactors arranged in series.

本発明の方法で使用される反応器は、上述の通り、少なくとも2つ以上であればよいが、生産効率などの観点からは、3つ以上であることが好ましく、より好ましくは3〜5つ、特に好ましくは4つである。   The number of reactors used in the method of the present invention may be at least two as described above, but from the viewpoint of production efficiency, it is preferably three or more, more preferably 3-5. Particularly preferably four.

本発明において、反応器が2つ以上であれば、その反応器中で、更に条件の異なる反応段階を複数持たせる、連続的に温度・圧力を変えていくなどしてもよい。   In the present invention, if there are two or more reactors, a plurality of reaction stages having different conditions may be provided in the reactor, or the temperature and pressure may be continuously changed.

本発明において、重合触媒は原料調製槽、原料貯槽に添加することもできるし、重合槽に直接添加することもできるが、供給の安定性、重合の制御の観点からは、重合槽に供給される前の原料ラインの途中に触媒供給ラインを設置し、好ましくは水溶液で供給する。   In the present invention, the polymerization catalyst can be added to the raw material preparation tank, the raw material storage tank, or can be added directly to the polymerization tank. From the viewpoint of supply stability and polymerization control, the polymerization catalyst is supplied to the polymerization tank. A catalyst supply line is installed in the middle of the raw material line before being fed, and preferably supplied as an aqueous solution.

重合反応の温度は、低すぎると生産性の低下または製品への熱履歴の増大を招き、高すぎるとモノマーの揮散を招くだけでなく、ポリカーボネート樹脂の分解または着色を助長する可能性がある。   If the temperature of the polymerization reaction is too low, the productivity is lowered or the thermal history of the product is increased. If the temperature is too high, not only the monomer is volatilized but also decomposition or coloring of the polycarbonate resin may be promoted.

具体的には、第1段目の反応は、重合反応器の内温の最高温度として、好ましくは130℃〜270℃、より好ましくは150℃〜240℃、更に好ましくは180℃〜230℃で、好ましくは110〜1kPa、より好ましくは70〜5kPa、更に好ましくは30〜10kPa(絶対圧力)の圧力下、好ましくは0.1〜10時間、より好ましくは0.5〜3時間、発生するモノヒドロキシ化合物を反応系外へ留去しながら実施する。また、連続重合設備ではこの温度、圧力や時間を可能な限り一定にすることにより均一な組成比で均一な分子量のポリマーが得られる。   Specifically, the first stage reaction is preferably performed at 130 to 270 ° C., more preferably 150 to 240 ° C., and still more preferably 180 to 230 ° C. as the maximum internal temperature of the polymerization reactor. Preferably generated at a pressure of 110 to 1 kPa, more preferably 70 to 5 kPa, even more preferably 30 to 10 kPa (absolute pressure), preferably 0.1 to 10 hours, more preferably 0.5 to 3 hours. The reaction is carried out while distilling the hydroxy compound out of the reaction system. In a continuous polymerization facility, a polymer having a uniform molecular weight can be obtained with a uniform composition ratio by making the temperature, pressure and time as constant as possible.

第2段目以降の反応は、反応系の圧力を第1段目の圧力から徐々に下げ、引き続き発生するモノヒドロキシ化合物を反応系外へ除きながら、最終的には反応系の圧力(絶対圧力)を好ましくは1kPa以下にして、内温の最高温度を好ましくは200℃〜270℃、より好ましくは220℃〜260℃にして、好ましくは0.1〜10時間、より好ましくは1〜6時間、特に好ましくは0.5〜3時間行う。また、連続重合設備ではこの温度、圧力や時間を可能な限り一定にすることにより均一な組成比で均一な分子量のポリマーが得られる。   In the reaction after the second stage, the pressure of the reaction system is gradually lowered from the pressure of the first stage, and subsequently the monohydroxy compound generated is removed from the reaction system, and finally the pressure of the reaction system (absolute pressure) ) Is preferably 1 kPa or less, and the maximum internal temperature is preferably 200 ° C. to 270 ° C., more preferably 220 ° C. to 260 ° C., preferably 0.1 to 10 hours, more preferably 1 to 6 hours. Particularly preferably, it is carried out for 0.5 to 3 hours. In a continuous polymerization facility, a polymer having a uniform molecular weight can be obtained with a uniform composition ratio by making the temperature, pressure and time as constant as possible.

特にポリカーボネート樹脂の着色または熱劣化を抑制し、色相または耐光性の良好なポリカーボネート樹脂を得るには、全反応段階における内温の最高温度が260℃未満であることが好ましく、特に220〜240℃であることが好ましい。また、重合反応後半の重合速度の低下を抑止し、熱履歴による劣化を最小限に抑えるためには、重合の最終段階でプラグフロー性と界面更新性に優れた横型反応器を使用することが好ましい。   In particular, in order to suppress the coloration or thermal deterioration of the polycarbonate resin and obtain a polycarbonate resin having a good hue or light resistance, the maximum internal temperature in all reaction steps is preferably less than 260 ° C, particularly 220 to 240 ° C. It is preferable that In order to suppress the decrease in the polymerization rate in the latter half of the polymerization reaction and minimize degradation due to thermal history, it is necessary to use a horizontal reactor with excellent plug flow and interface renewability at the final stage of polymerization. preferable.

所定の分子量のポリカーボネート樹脂を得るために、重合温度を高く、重合時間を長くし過ぎると、紫外線透過率は下がり、YI値は大きくなる傾向にある。   In order to obtain a polycarbonate resin having a predetermined molecular weight, if the polymerization temperature is increased and the polymerization time is too long, the ultraviolet transmittance decreases and the YI value tends to increase.

所定の分子量範囲でポリカーボネート樹脂を得るためには、圧力や温度を制御して最終重合槽の攪拌を一定にし、攪拌トルクの変動幅を可能な限り一定に保つことが望ましく、20%以下、好ましくは18%以下、より好ましくは15%以下で行う。また、重合槽以降にギアポンプを設置し、定量的に排出し、吐出圧の変動幅を可能な限り一定に保つことが望ましく、20%以下、好ましくは18%以下、より好ましくは15%以下で行う。   In order to obtain a polycarbonate resin within a predetermined molecular weight range, it is desirable to keep the stirring of the final polymerization tank constant by controlling the pressure and temperature, and to keep the fluctuation range of the stirring torque as constant as possible, preferably 20% or less, preferably Is carried out at 18% or less, more preferably 15% or less. In addition, it is desirable to install a gear pump after the polymerization tank, to discharge quantitatively, and to keep the fluctuation range of the discharge pressure as constant as possible, 20% or less, preferably 18% or less, more preferably 15% or less. Do.

副生したモノヒドロキシ化合物は、資源有効活用の観点から、必要に応じ精製を行った後、炭酸ジフェニルまたはビスフェノールA等の原料として再利用することが好ましい。   From the viewpoint of effective utilization of resources, the by-produced monohydroxy compound is preferably reused as a raw material for diphenyl carbonate, bisphenol A, etc. after purification as necessary.

本発明に用いるポリカーボネート樹脂は、上述の通り重縮合後、通常、冷却固化させ、回転式カッター等でペレット化される。   The polycarbonate resin used in the present invention is usually cooled and solidified after polycondensation as described above, and pelletized with a rotary cutter or the like.

ペレット化の方法としては、限定されるものではないが、例えば、最終重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させてペレット化させる方法、最終重合反応器から溶融状態で一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法、又は、最終重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させて一旦ペレット化させた後に、再度一軸または二軸の押出
機に樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法等が挙げられる。
The method of pelletization is not limited, but, for example, a method of extracting from a final polymerization reactor in a molten state, cooling and solidifying in the form of a strand to pelletize, or uniaxially in a molten state from the final polymerization reactor or The resin is supplied to a twin-screw extruder, melt-extruded, and then cooled and solidified to be pelletized, or extracted from the final polymerization reactor in a molten state, cooled and solidified in the form of a strand, and once pelletized. Later, after the resin is again supplied to the single-screw or twin-screw extruder, melt-extruded, and then cooled and solidified, pelletized.

押出機よりポリカーボネート樹脂を排出する際に、押出機の脈動を抑制するためにギアポンプを設置して、定量的に排出することが望ましい。その際にギアポンプの吐出圧変動幅を可能な限り一定に保つことが望ましく、20%以下、好ましくは18%以下、より好ましくは15%以下で行う。   When discharging the polycarbonate resin from the extruder, it is desirable to install a gear pump in order to suppress the pulsation of the extruder and discharge it quantitatively. At this time, it is desirable to keep the discharge pressure fluctuation range of the gear pump as constant as possible, and it is 20% or less, preferably 18% or less, more preferably 15% or less.

その際、押出機中で、残存モノマーの減圧脱揮、または、通常知られている、熱安定剤、中和剤、紫外線吸収剤、離型剤、着色剤、帯電防止剤、滑剤、潤滑剤、可塑剤、相溶化剤若しくは難燃剤等を添加、混練することも出来る。   At that time, in the extruder, the residual monomer is devolatilized under reduced pressure, or a commonly known heat stabilizer, neutralizer, ultraviolet absorber, mold release agent, colorant, antistatic agent, lubricant, lubricant. Further, a plasticizer, a compatibilizing agent, a flame retardant or the like can be added and kneaded.

押出機中の、溶融混練温度は、ポリカーボネート樹脂のガラス転移温度または分子量に依存するが、通常150〜300℃であることが好ましく、より好ましくは200〜270℃、更に好ましくは230〜260℃である。溶融混練温度を150℃以上とすることにより、ポリカーボネート樹脂の溶融粘度を低下し、押出機への負荷が小さくなり、生産性が向上する。また、溶融混練温度を300℃以下とすることにより、ポリカーボネート樹脂の熱劣化を抑え、分子量の低下による機械的強度の低下、着色またはガスの発生を防ぐことができる。   Although the melt kneading temperature in the extruder depends on the glass transition temperature or molecular weight of the polycarbonate resin, it is usually preferably 150 to 300 ° C, more preferably 200 to 270 ° C, still more preferably 230 to 260 ° C. is there. By setting the melt kneading temperature to 150 ° C. or higher, the melt viscosity of the polycarbonate resin is lowered, the load on the extruder is reduced, and the productivity is improved. Further, by setting the melt-kneading temperature to 300 ° C. or lower, it is possible to suppress thermal deterioration of the polycarbonate resin, and to prevent a decrease in mechanical strength due to a decrease in molecular weight, coloring or gas generation.

押出機において、減圧脱揮する場合のベント圧は、通常5kPa〜0.001kPaであることが好ましく、より好ましくは3kPa〜0.005kPa、更に好ましくは2kPa〜0.007kPaである。
ベント圧が上記範囲であれば、残存するモノマーや発生するガスを十分に脱揮することが可能であり、ストランド状に押し出す際に、ストランドが切れたり、押出機においてポリカーボネート樹脂の重合反応や分解が進行したりするおそれが小さいため好ましい。
押出機へ投入される樹脂量、押出機の回転数、バレル温度、ベント圧力を可能な限り一定にすることにより、均一な樹脂を得られるようになる。
また、ベントやベント以降の配管を40℃以上に保温することにより、留出するモノマーがベントやベント以降配管で固化せずに、均一なベント圧力を保持することができる。
In the extruder, the vent pressure when devolatilizing under reduced pressure is preferably preferably 5 kPa to 0.001 kPa, more preferably 3 kPa to 0.005 kPa, and even more preferably 2 kPa to 0.007 kPa.
If the vent pressure is in the above range, it is possible to sufficiently devolatilize the remaining monomer and generated gas, and when extruding into a strand, the strand breaks or the polymerization reaction or decomposition of the polycarbonate resin in the extruder. This is preferable because there is little risk of progress.
A uniform resin can be obtained by making the amount of resin charged into the extruder, the rotational speed of the extruder, the barrel temperature, and the vent pressure as constant as possible.
In addition, by keeping the vent and the pipe after the vent at 40 ° C. or higher, the monomer to be distilled does not solidify in the vent or the pipe after the vent, and a uniform vent pressure can be maintained.

本発明に用いるポリカーボネート樹脂を製造する際には、異物の混入を防止するため、フィルターを設置することが好ましい。フィルターの設置位置は押出機の下流側が好ましく、フィルターの異物除去の大きさ(目開き)は、99%除去の濾過精度として100μm以下が好ましい。特に、微少な異物の混入を嫌う用途の場合は、40μm以下が好ましく、10μm以下がより好ましい。   When the polycarbonate resin used in the present invention is produced, it is preferable to install a filter in order to prevent foreign matter from entering. The filter installation position is preferably on the downstream side of the extruder, and the foreign matter removal size (opening) of the filter is preferably 100 μm or less as the filtration accuracy for 99% removal. In particular, in the case of use that dislikes the entry of minute foreign matter, the thickness is preferably 40 μm or less, and more preferably 10 μm or less.

本発明に用いるポリカーボネート樹脂の押出は、押出後の異物混入を防止するために、好ましくはJIS B9920(2002年)に定義されるクラス7、更に好ましくはクラス6より清浄度の高いクリーンルーム中で実施することが好ましい。   Extrusion of the polycarbonate resin used in the present invention is preferably carried out in a clean room having a higher degree of cleanliness than Class 6, more preferably Class 6 as defined in JIS B9920 (2002) in order to prevent foreign matter from being mixed after extrusion. It is preferable to do.

また、押出されたポリカーボネート樹脂を冷却しチップ化する際は、空冷または水冷等の冷却方法を使用するのが好ましい。空冷の際に使用する空気は、ヘパフィルター等で空気中の異物を事前に取り除いた空気を使用し、空気中の異物の再付着を防ぐのが好ましい。
水冷を使用する際は、イオン交換樹脂等で水中の金属分を取り除き、さらにフィルターにて、水中の異物を取り除いた水を使用することが好ましい。用いるフィルターの目開きは、99%除去の濾過精度として10〜0.45μmであることが好ましい。
Further, when cooling the extruded polycarbonate resin into chips, it is preferable to use a cooling method such as air cooling or water cooling. The air used for air cooling is preferably air from which foreign substances in the air have been removed in advance with a hepa filter or the like to prevent reattachment of foreign substances in the air.
When using water cooling, it is preferable to use water from which metal in water has been removed with an ion exchange resin or the like, and further, foreign matter in water has been removed with a filter. The opening of the filter to be used is preferably 10 to 0.45 μm as 99% removal filtration accuracy.

さらに得られるペレットの形状を一定にすることにより、成形性のよいポリカーボネー
ト樹脂ペレットとなる。
Furthermore, it becomes a polycarbonate resin pellet with good moldability by making the shape of the obtained pellet constant.

<ポリカーボネート樹脂の物性>
本発明に用いるポリカーボネート樹脂の分子量は、還元粘度で表すことができ、本発明に用いるポリカーボネート樹脂の還元粘度は、通常0.30dL/g以上が好ましく、0.35dL/g以上がより好ましく、還元粘度の上限は、1.20dL/g以下が好ましく、1.00dL/g以下がより好ましく、0.80dL/g以下が更に好ましい。
<Physical properties of polycarbonate resin>
The molecular weight of the polycarbonate resin used in the present invention can be expressed by a reduced viscosity, and the reduced viscosity of the polycarbonate resin used in the present invention is usually preferably 0.30 dL / g or more, more preferably 0.35 dL / g or more. The upper limit of the viscosity is preferably 1.20 dL / g or less, more preferably 1.00 dL / g or less, and still more preferably 0.80 dL / g or less.

本発明に用いるポリカーボネート樹脂の還元粘度が低すぎると得られるポリカーボネート樹脂成形品の機械的強度が小さい可能性があり、大きすぎると、成形する際の流動性が低下し、生産性または成形性を低下させる傾向がある。   If the reduced viscosity of the polycarbonate resin used in the present invention is too low, the polycarbonate resin molded product obtained may have a low mechanical strength. If it is too large, the fluidity during molding will decrease, and the productivity or moldability will be reduced. There is a tendency to decrease.

また、本発明に用いるポリカーボネート樹脂は、その還元粘度の範囲幅が小さいことが好ましい。還元粘度の範囲幅は、通常0.05dL/g以下が好ましく、0.04dL/g以下がより好ましい。還元粘度の範囲幅が0.05dL/g以下であれば、押出、射出成形中の脈動や、成形品の機械物性変動の発生するおそれが小さいため好ましい。
なお、本発明においてポリカーボネート樹脂の還元粘度の範囲幅は、該ポリカーボネート樹脂の製造時においてこれを任意に採取し測定した場合の還元粘度の最大値と最小値の差として算出する。
The polycarbonate resin used in the present invention preferably has a small range of reduced viscosity. The range of the reduced viscosity is usually preferably 0.05 dL / g or less, more preferably 0.04 dL / g or less. If the range width of the reduced viscosity is 0.05 dL / g or less, there is little possibility of occurrence of pulsation during extrusion and injection molding and fluctuations in mechanical properties of the molded product.
In the present invention, the range of the reduced viscosity of the polycarbonate resin is calculated as the difference between the maximum value and the minimum value of the reduced viscosity when the polycarbonate resin is arbitrarily collected and measured during the production of the polycarbonate resin.

更に本発明に用いるポリカーボネート樹脂の下記一般式(6)で表される末端基の濃度(「末端フェニル基濃度」という)の下限量は、通常20μeq/gであることが好ましく、より好ましくは40μeq/g、特に好ましくは50μeq/gであり、上限は通常160μeq/gであることが好ましく、より好ましくは140μeq/g、特に好ましくは100μeq/gである。   Further, the lower limit of the concentration of the terminal group represented by the following general formula (6) of the polycarbonate resin used in the present invention (referred to as “terminal phenyl group concentration”) is usually preferably 20 μeq / g, more preferably 40 μeq. / G, particularly preferably 50 μeq / g, and the upper limit is usually preferably 160 μeq / g, more preferably 140 μeq / g, particularly preferably 100 μeq / g.

本発明に用いるポリカーボネート樹脂の下記一般式(6)で表される末端基の濃度が160μeq/g以下であれば、重合直後または成形時の色相と紫外線曝露後の色相がともに良好となるため好ましい。また、20μeq/g以上であれば、十分な熱安定性を有するため好ましい。   If the concentration of the terminal group represented by the following general formula (6) of the polycarbonate resin used in the present invention is 160 μeq / g or less, the hue immediately after polymerization or at the time of molding and the hue after exposure to ultraviolet rays are preferable. . Moreover, if it is 20 microeq / g or more, since it has sufficient thermal stability, it is preferable.

下記一般式(6)で表される末端基の濃度を制御するには、原料である前記式(1)で表されるジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルのモル比率を制御する他、エステル交換反応時の触媒の種類若しくは量、重合圧力または重合温度を制御する方法等が挙げられる。   In order to control the concentration of the terminal group represented by the following general formula (6), in addition to controlling the molar ratio of the dihydroxy compound containing the dihydroxy compound represented by the formula (1) and the carbonic acid diester as a raw material, an ester Examples include a method for controlling the type or amount of the catalyst during the exchange reaction, the polymerization pressure, or the polymerization temperature.

Figure 2013209579
Figure 2013209579

前記一般式(5)で表される炭酸ジエステルとして、ジフェニルカーボネート、ジトリルカーボネート等の置換ジフェニルカーボネートを用いて、本発明に用いるポリカーボネート樹脂を製造する場合は、フェノール、置換フェノールが副生し、ポリカーボネート樹脂中に残存することは避けられないが、フェノール、置換フェノールも芳香環を有することから紫外線を吸収し、耐光性の悪化要因になる場合があるだけでなく、成形時の臭気の原因となる場合がある。   When the polycarbonate resin used in the present invention is produced using a substituted diphenyl carbonate such as diphenyl carbonate and ditolyl carbonate as the carbonic acid diester represented by the general formula (5), phenol and substituted phenol are by-produced, Although it is unavoidable that it remains in the polycarbonate resin, phenol and substituted phenol also have an aromatic ring, which absorbs ultraviolet rays and may cause deterioration of light resistance, as well as causing odor during molding. There is a case.

ポリカーボネート樹脂中には、通常のバッチ反応後は2000重量ppm以上の副生フェノール等の芳香環を有する芳香族モノヒドロキシ化合物が含まれているが、耐光性または臭気低減の観点、または押出成形時の脈動抑制の観点からは、脱揮性能に優れた横型反応器または真空ベント付の押出機を用いて、本発明に用いるポリカーボネート樹脂の芳香族モノヒドロキシ化合物の含有量を、好ましくは1500重量ppm以下、更に好ましくは1000重量ppm以下、特には700重量ppm以下にすることが好ましい。ただし、工業的に完全に芳香族モノヒドロキシ化合物を除去することは困難であり、本発明に用いるポリカーボネート樹脂の芳香族モノヒドロキシ化合物の含有量の下限値は、通常1重量ppmである。   The polycarbonate resin contains an aromatic monohydroxy compound having an aromatic ring such as by-product phenol of 2000 ppm by weight or more after a normal batch reaction, but the light resistance or odor reduction viewpoint, or at the time of extrusion molding From the viewpoint of suppressing pulsation, the content of the aromatic monohydroxy compound in the polycarbonate resin used in the present invention is preferably 1500 ppm by weight, using a horizontal reactor excellent in devolatilization performance or an extruder with a vacuum vent. In the following, it is more preferably 1000 ppm by weight or less, particularly 700 ppm by weight or less. However, it is difficult to completely remove the aromatic monohydroxy compound industrially, and the lower limit of the content of the aromatic monohydroxy compound in the polycarbonate resin used in the present invention is usually 1 ppm by weight.

尚、これら芳香族モノヒドロキシ化合物は、用いる原料により、当然置換基を有していてもよく、例えば、炭素数が5以下であるアルキル基などを有していてもよい。   These aromatic monohydroxy compounds may naturally have a substituent depending on the raw material used, and may have, for example, an alkyl group having 5 or less carbon atoms.

また、本発明に用いるポリカーボネート樹脂の芳香環に結合した水素原子のモル数を(X)、芳香環以外に結合した水素原子のモル数を(Y)とした場合、芳香環に結合した水素原子のモル数の全水素原子のモル数に対する比率は、X/(X+Y)で表されるが、耐光性には上述のように、紫外線吸収能を有する芳香族環が影響を及ぼす可能性があるため、X/(X+Y)は0.1以下であることが好ましく、より好ましくは0.05以下、更に好ましくは0.02以下、特に好ましくは0.01以下である。X/(X+Y)は、H−NMRで定量することができる。 In addition, when the number of hydrogen atoms bonded to the aromatic ring of the polycarbonate resin used in the present invention is (X) and the number of hydrogen atoms bonded to other than the aromatic ring is (Y), the hydrogen atom bonded to the aromatic ring The ratio of the number of moles to the number of moles of all hydrogen atoms is represented by X / (X + Y). However, as described above, there is a possibility that an aromatic ring having an ultraviolet absorbing ability affects the light resistance. Therefore, X / (X + Y) is preferably 0.1 or less, more preferably 0.05 or less, still more preferably 0.02 or less, and particularly preferably 0.01 or less. X / (X + Y) can be quantified by 1 H-NMR.

また、本発明に用いるポリカーボネート樹脂のガラス転移温度(Tg)は、160℃以下が好ましい。ガラス転移温度が160℃以下であれば、押出成形時の熱劣化により着色したり、脆化したりするおそれが小さいため好ましい。また前記式(1)で表されるジヒドロキシ化合物は一般に不活性雰囲気下でも熱分解しやすいため、溶融樹脂温度を過度に高く設定する必要がなければ、著しい熱分解を引き起こすおそれも小さいため好ましい。
本発明に用いるポリカーボネート樹脂のガラス転移温度は、より好ましくは150℃以下、さらに好ましくは148℃以下、特に好ましくは145℃以下である。
また、本発明に用いるポリカーボネート樹脂のガラス転移温度は通常90℃以上であり、好ましくは95℃以上、より好ましくは100℃以上、特に好ましくは110℃以上がよい。
Further, the glass transition temperature (Tg) of the polycarbonate resin used in the present invention is preferably 160 ° C. or lower. A glass transition temperature of 160 ° C. or lower is preferable because it is less likely to be colored or embrittled due to thermal deterioration during extrusion molding. Moreover, since the dihydroxy compound represented by the formula (1) generally tends to be thermally decomposed even under an inert atmosphere, it is preferable that the temperature of the molten resin need not be set too high, since there is little possibility of causing significant thermal decomposition.
The glass transition temperature of the polycarbonate resin used in the present invention is more preferably 150 ° C. or less, further preferably 148 ° C. or less, and particularly preferably 145 ° C. or less.
The glass transition temperature of the polycarbonate resin used in the present invention is usually 90 ° C. or higher, preferably 95 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 110 ° C. or higher.

ポリカーボネート樹脂のガラス転移温度をより低いものとし、160℃以下を達成する方法としては、前記式(1)で表されるジヒドロキシ化合物に由来する構造単位の割合を少なくしたり、耐熱性の低い脂環式ジヒドロキシ化合物を選定したり、ビスフェノール化合物等の芳香族系ジヒドロキシ化合物に由来する構造単位の割合を少なくしたりする方法等が挙げられる。
なお、前記ガラス転移温度は、JIS−K7121に準拠して、示差走査熱量計(エスアイアイ・ナノテクノロジー社製、DSC220)を用いて、10℃/分の昇温速度で加熱して測定する補外ガラス転移開始温度を指す。
As a method for lowering the glass transition temperature of the polycarbonate resin and achieving a temperature of 160 ° C. or lower, the ratio of the structural unit derived from the dihydroxy compound represented by the formula (1) is reduced, or a fat having low heat resistance Examples include a method of selecting a cyclic dihydroxy compound or reducing the proportion of structural units derived from an aromatic dihydroxy compound such as a bisphenol compound.
The glass transition temperature is measured by heating at a rate of temperature increase of 10 ° C./min using a differential scanning calorimeter (DSI220, manufactured by SII Nano Technology) in accordance with JIS-K7121. Refers to the onset temperature of the outer glass transition.

また、本発明に用いるポリカーボネート樹脂の溶融粘度はキャピログラフを用いて測定され、測定温度240℃、剪断速度91.2sec−1において、1500Pa・s以上、3500Pa・s以下となることが好ましく、2000Pa・s以上、3000Pa・s以下であることがさらに好ましい。
ポリカーボネート樹脂の機械物性や色調、あるいは溶融重合時や成形加工時の流動性などの面から、溶融粘度は上記範囲に収めることが好ましい。溶融粘度が3500Pa・s以下であれば、機械物性が向上する上、加工温度を高温にする必要がないことから、樹脂の着色や熱分解を抑制することが可能であるため好ましい。
Further, the melt viscosity of the polycarbonate resin used in the present invention is measured using a capillograph, and is preferably 1500 Pa · s or more and 3500 Pa · s or less at a measurement temperature of 240 ° C. and a shear rate of 91.2 sec −1 , and 2000 Pa · More preferably, it is s or more and 3000 Pa · s or less.
In view of the mechanical properties and color tone of the polycarbonate resin, or the flowability during melt polymerization or molding, the melt viscosity is preferably within the above range. If the melt viscosity is 3500 Pa · s or less, the mechanical properties are improved, and it is not necessary to increase the processing temperature. Therefore, it is possible to suppress coloring and thermal decomposition of the resin, which is preferable.

[リン酸化合物・亜リン酸化合物]
ポリカーボネート樹脂を溶融重合法で製造する際に、着色を防止する目的で、リン酸化合物や亜リン酸化合物の1種又は2種以上を重合時に添加することができる。
[Phosphoric acid compound / phosphorous acid compound]
When a polycarbonate resin is produced by a melt polymerization method, one or more of a phosphoric acid compound and a phosphorous acid compound can be added during polymerization for the purpose of preventing coloring.

リン酸化合物としては、リン酸トリメチル、リン酸トリエチル等のリン酸トリアルキルの1種又は2種以上が好適に用いられる。これらは、ポリカーボネート樹脂の製造に用いる全ヒドロキシ化合物成分に対して、0.0001モル%以上0.005モル%以下添加することが好ましく、0.0003モル%以上0.003モル%以下添加することがより好ましい。リン化合物の添加量が前記下限より少ないと、着色防止効果が小さく、前記上限より多いと、透明性が低下する原因となったり、逆に着色を促進させたり、耐熱性を低下させたりする。   As the phosphoric acid compound, one or more of trialkyl phosphates such as trimethyl phosphate and triethyl phosphate are preferably used. These are preferably added in an amount of 0.0001 mol% or more and 0.005 mol% or less, and 0.0003 mol% or more and 0.003 mol% or less, based on all hydroxy compound components used in the production of the polycarbonate resin. Is more preferable. When the addition amount of the phosphorus compound is less than the lower limit, the effect of preventing coloring is small, and when the addition amount is more than the upper limit, the transparency is lowered, or conversely, the coloring is promoted or the heat resistance is lowered.

又、亜リン酸化合物としては、下記に示す熱安定剤を任意に選択して使用でき、特に、亜リン酸トリメチル、亜リン酸トリエチル、トリスノニルフェニルホスファイト、トリメチルホスフェート、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイトの1種又は2種以上が好適に使用できる。これらの亜リン酸化合物は、ポリカーボネート樹脂の製造に用いる全ヒドロキシ化合物成分に対して、0.0001モル%以上0.005モル%以下添加することが好ましく、0.0003モル%以上0.003モル%以下添加することがより好ましい。亜リン酸化合物の添加量が前記下限より少ないと、着色防止効果が小さく、前記上限より多いと、透明性が低下する原因となったり、逆に着色を促進させたり、耐熱性を低下させたりすることもある。   Further, as the phosphorous acid compound, the following thermal stabilizer can be arbitrarily selected and used, and in particular, trimethyl phosphite, triethyl phosphite, trisnonylphenyl phosphite, trimethyl phosphate, tris (2, 4 One or more of -di-tert-butylphenyl) phosphite and bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite can be suitably used. These phosphite compounds are preferably added in an amount of 0.0001 mol% to 0.005 mol%, based on the total hydroxy compound components used in the production of the polycarbonate resin, and are 0.0003 mol% to 0.003 mol%. % Or less is more preferable. If the addition amount of the phosphorous acid compound is less than the lower limit, the effect of preventing coloring is small, and if it is more than the upper limit, the transparency may be reduced, or conversely, the coloring may be promoted or the heat resistance may be reduced. Sometimes.

リン酸化合物と亜リン酸化合物は併用して添加することができるが、その場合の添加量はリン酸化合物と亜リン酸化合物の総量で、先に記載した、全ヒドロキシ化合物成分に対して、0.0001モル%以上0.005モル%以下とすることが好ましく、更に好ましくは0.0003モル%以上0.003モル%以下である。この添加量が前記下限より少ないと、着色防止効果が小さく、前記上限より多いと、透明性が低下する原因となったり、逆に着色を促進させたり、耐熱性を低下させたりすることもある。   The phosphoric acid compound and the phosphorous acid compound can be added in combination, but the addition amount in that case is the total amount of the phosphoric acid compound and the phosphorous acid compound, and the total hydroxy compound component described above, The content is preferably 0.0001 mol% or more and 0.005 mol% or less, more preferably 0.0003 mol% or more and 0.003 mol% or less. If this addition amount is less than the lower limit, the effect of preventing coloring is small, and if it is more than the upper limit, it may cause a decrease in transparency, or conversely promote coloring or reduce heat resistance. .

[酸化防止剤]
本発明のポリカーボネート樹脂は、酸化防止剤を含有することが好ましい。酸化防止剤の含有により、成形品の着色抑制効果が良好に発現する。ここで、本発明のポリカーボネート樹脂における酸化防止剤の含有量(即ち、本発明のポリカーボネート樹脂無延伸フィルムの押出成形材料であるポリカーボネート樹脂組成物中の含有量)は、ポリカーボネート樹脂100重量部に対し、好ましくは0.0001〜1重量部、より好ましくは0.0001〜0.1重量部、特に好ましくは0.0002〜0.01重量部である。
[Antioxidant]
The polycarbonate resin of the present invention preferably contains an antioxidant. By containing the antioxidant, the coloring suppression effect of the molded product is satisfactorily exhibited. Here, the content of the antioxidant in the polycarbonate resin of the present invention (that is, the content in the polycarbonate resin composition that is an extrusion molding material of the polycarbonate resin unstretched film of the present invention) is 100 parts by weight of the polycarbonate resin. The amount is preferably 0.0001 to 1 part by weight, more preferably 0.0001 to 0.1 part by weight, and particularly preferably 0.0002 to 0.01 part by weight.

酸化防止剤の含有量が0.0001重量部以上であれば、熱履歴を受けたときの着色抑制効果が十分であるため好ましい。また、酸化防止剤の含有量が1重量部以下であれば、押出成形時に口金やロールに析出物が堆積して汚染したり、これらが製品に転写して外観形状を損なったり、これらが製品内に混入して異物欠陥の原因になったり、長期的に製品表面にブリードアウトして製品外観を損なったり、得られるポリカーボネート樹脂成形品の着色や明度が悪化したり等の不具合を生じるおそれが小さいため好ましい。   If the content of the antioxidant is 0.0001 part by weight or more, it is preferable because the effect of suppressing coloration when receiving heat history is sufficient. Moreover, if the content of the antioxidant is 1 part by weight or less, deposits are accumulated on the die or roll during the extrusion molding to cause contamination, or they are transferred to the product and the appearance shape is impaired. Otherwise, it may cause defects such as foreign matter defects, bleed out on the product surface for a long time, impair the appearance of the product, and the resulting polycarbonate resin molded product may be colored or deteriorated in brightness. It is preferable because it is small.

酸化防止剤としては、フェノール系酸化防止剤、ホスファイト系酸化防止剤およびイオウ系酸化防止剤からなる群より選ばれた少なくとも1種であることが好ましく、フェノール系酸化防止剤および/またはホスファイト系酸化防止剤が更に好ましい。中でも、フェノール系酸化防止剤およびホスファイト系酸化防止剤の併用が効果的である。   The antioxidant is preferably at least one selected from the group consisting of phenolic antioxidants, phosphite antioxidants, and sulfur antioxidants, and phenolic antioxidants and / or phosphites. More preferred are system antioxidants. Of these, the combined use of a phenolic antioxidant and a phosphite antioxidant is effective.

フェノール系酸化防止剤としては、例えば、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、グリセロール−3−ステアリルチオプロピオネート、トリエチレングリコール−ビス[3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、N,N−ヘキサメチレンビス(3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロシンナマイド)、3,5−ジ−tert−ブチル−4−ヒドロキシ−ベンジルホスホネート−ジエチルエステル、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、4,4’−ビフェニレンジホスフィン酸テトラキス(2,4−ジ−tert−ブチルフェニル)および3,9−ビス{1,1−ジメチル−2−[β−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]エチル}−2,4,8,10−テトラオキサスピロ(5,5)ウンデカン等の化合物が挙げられる。   Examples of phenolic antioxidants include pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-laurylthiopropionate), glycerol-3-stearylthiopropionate, triethylene glycol-bis. [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate ] Pentaerythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 1,3,5-trimethyl- , 4,6-Tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, N, N-hexamethylenebis (3,5-di-tert-butyl-4-hydroxy-hydrocinnamide) 3,5-di-tert-butyl-4-hydroxy-benzylphosphonate-diethyl ester, tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 4,4′-biphenylenediphosphinic acid tetrakis (2,4-di-tert-butylphenyl) and 3,9-bis {1,1-dimethyl-2- [β- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl } -2,4,8,10-tetraoxaspiro (5,5) undecane and the like.

これらの化合物の中でも、炭素数5以上のアルキル基によって1つ以上置換された芳香族モノヒドロキシ化合物が好ましく、具体的には、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、ペンタエリスリチル−テトラキス{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート}、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]および1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン等が好ましく、ペンタエリスリチル−テトラキス{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネートが更に好ましい。   Among these compounds, an aromatic monohydroxy compound substituted with one or more alkyl groups having 5 or more carbon atoms is preferable. Specifically, octadecyl-3- (3,5-di-tert-butyl-4- Hydroxyphenyl) propionate, pentaerythrityl-tetrakis {3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate}, 1,6-hexanediol-bis [3- (3,5-di- tert-butyl-4-hydroxyphenyl) propionate], 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene and the like, Lithyl-tetrakis {3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate is more preferred

ホスファイト系酸化防止剤としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイトおよびジステアリルペンタエリスリトールジホスファイトが挙げられる。   Examples of the phosphite antioxidant include triphenyl phosphite, tris (nonylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, tridecyl phosphite, trioctyl phosphite, Trioctadecyl phosphite, didecyl monophenyl phosphite, dioctyl monophenyl phosphite, diisopropyl monophenyl phosphite, monobutyl diphenyl phosphite, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite, bis (2,6-di-) tert-butyl-4-methylphenyl) pentaerythritol diphosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite, bis (nonylphenyl) pentaeri Li diphosphite, and bis (2,4-di -tert- butylphenyl) pentaerythritol diphosphite and distearyl pentaerythritol diphosphite.

これらの中でも、トリスノニルフェニルホスファイト、トリメチルホスフェート、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイトおよびビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイトが好ましく、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイトが更に好ましい。   Among these, trisnonylphenyl phosphite, trimethyl phosphate, tris (2,4-di-tert-butylphenyl) phosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite and bis ( 2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite is preferred, and tris (2,4-di-tert-butylphenyl) phosphite is more preferred.

イオウ系酸化防止剤としては、例えば、ジラウリル−3,3’−チオジプロピオン酸エステル、ジトリデシル−3,3’−チオジプロピオン酸エステル、ジミリスチル−3,3’−チオジプロピオン酸エステル、ジステアリル−3,3’−チオジプロピオン酸エステ
ル、ラウリルステアリル−3,3’−チオジプロピオン酸エステル、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、ビス[2−メチル−4−(3−ラウリルチオプロピオニルオキシ)−5−tert−ブチルフェニル]スルフィド、オクタデシルジスルフィドおよびメルカプトベンズイミダゾール、2−メルカプト−6−メチルベンズイミダゾール、1,1’−チオビス(2−ナフトール)などが挙げられる。上記のうち、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)が好ましい。
Examples of the sulfur-based antioxidant include dilauryl-3,3′-thiodipropionate, ditridecyl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, diester Stearyl-3,3′-thiodipropionate, laurylstearyl-3,3′-thiodipropionate, pentaerythritol tetrakis (3-laurylthiopropionate), bis [2-methyl-4- (3 -Laurylthiopropionyloxy) -5-tert-butylphenyl] sulfide, octadecyl disulfide and mercaptobenzimidazole, 2-mercapto-6-methylbenzimidazole, 1,1′-thiobis (2-naphthol) and the like. Among the above, pentaerythritol tetrakis (3-lauryl thiopropionate) is preferable.

本発明において、ポリカーボネート樹脂に配合する前記の酸化防止剤の配合時期、配合方法は特に限定されない。配合時期としては、例えば、エステル交換法でポリカーボネート樹脂を製造した場合は重合反応終了時;さらに、重合法に関わらず、ポリカーボネート樹脂と他の配合剤との混練途中等のポリカーボネート樹脂が溶融した状態のとき;押出機等を用い、ペレット又は粉末等の固体状態のポリカーボネート樹脂とブレンド・混練する際;等が挙げられる。   In the present invention, the blending time and blending method of the antioxidant to be blended with the polycarbonate resin are not particularly limited. As the blending time, for example, when the polycarbonate resin is produced by the transesterification method, at the end of the polymerization reaction; in addition, regardless of the polymerization method, the polycarbonate resin melted during the kneading of the polycarbonate resin and other compounding agents. When blending and kneading with a solid state polycarbonate resin such as pellets or powder using an extruder or the like.

配合方法としては、例えば、ポリカーボネート樹脂に酸化防止剤を直接混合又は混練する方法;少量のポリカーボネート樹脂又は他の樹脂等と酸化防止剤を用いて作成した高濃度のマスターバッチとして混合する方法;などが挙げられる。   As a blending method, for example, a method in which an antioxidant is directly mixed or kneaded with a polycarbonate resin; a method in which a small amount of a polycarbonate resin or other resin or the like is mixed with a high-concentration master batch prepared using an antioxidant; Is mentioned.

[ヒンダードアミン系安定剤]
本発明のポリカーボネート樹脂無延伸フィルムは、ヒンダードアミン系安定剤を含有することが好ましい。
[Hindered amine stabilizer]
The polycarbonate resin unstretched film of the present invention preferably contains a hindered amine stabilizer.

従来のビスフェノールAを主たるジヒドロキシ化合物原料としたポリカーボネート樹脂においては、ヒンダードアミン系安定剤のように塩基性を示す添加剤を入れると容易に分解するおそれがあるため、殆ど添加されることがないか、低塩基性な特定の添加剤を選択して少量添加せざるを得なかった。しかしながら、本発明に用いるポリカーボネート樹脂は、ヒンダードアミン系安定剤を添加してもこうした分解劣化が非常に起こりにくく、その種類に特段の制限もない。これは前記式(1)で表されるジヒドロキシ化合物がフェノール性ヒドロキシ基でなく、アルコール性ヒドロキシ基が主たる成分として選択されているため、塩基性添加剤による攻撃を受けにくいことが要因と推定される。   In the conventional polycarbonate resin using bisphenol A as the main dihydroxy compound raw material, it may be easily decomposed when an additive showing basicity like a hindered amine stabilizer is added. A low basic basic additive was selected and a small amount had to be added. However, the polycarbonate resin used in the present invention is very unlikely to undergo degradation and degradation even when a hindered amine stabilizer is added, and there is no particular limitation on the type. This is presumed to be due to the fact that the dihydroxy compound represented by the formula (1) is not a phenolic hydroxy group but an alcoholic hydroxy group is selected as the main component, so that it is not easily attacked by basic additives. The

本発明のポリカーボネート樹脂無延伸フィルムにおけるヒンダードアミン系安定剤の含有量(即ち、本発明のポリカーボネート樹脂無延伸フィルムの押出成形材料であるポリカーボネート樹脂組成物中の含有量)は、ポリカーボネート樹脂100重量部に対し、通常好ましくは0.0001〜1重量部、より好ましくは0.0001〜0.1重量部、特に好ましくは0.0002〜0.01重量部である。   The content of the hindered amine stabilizer in the polycarbonate resin unstretched film of the present invention (that is, the content in the polycarbonate resin composition that is an extrusion molding material of the polycarbonate resin unstretched film of the present invention) is 100 parts by weight of the polycarbonate resin. On the other hand, it is usually preferably 0.0001 to 1 part by weight, more preferably 0.0001 to 0.1 part by weight, and particularly preferably 0.0002 to 0.01 part by weight.

ヒンダードアミン系安定剤の含有量が0.0001重量部以上であれば、耐光性の向上効果が十分に得られるため好ましい。また、ヒンダードアミン系安定剤の含有量が1重量部以下であれば、押出成形時に口金やロールに析出物が堆積して汚染したり、これらが製品に転写して外観形状を損なったり、これらが製品内に混入して異物欠陥の原因になったり、長期的に製品表面にブリードアウトして製品外観を損なったり、得られるポリカーボネート樹脂成形品の着色や明度が悪化したり等の不具合を生じるおそれが小さいため好ましい。   If the content of the hindered amine stabilizer is 0.0001 part by weight or more, the effect of improving light resistance is sufficiently obtained, which is preferable. Moreover, if the content of the hindered amine stabilizer is 1 part by weight or less, deposits may accumulate on the die or roll during the extrusion molding, or they may be transferred to the product and the appearance shape may be impaired. May cause defects such as contamination of the product and cause foreign matter defects, bleed out on the product surface for a long period of time and the appearance of the product may be impaired, and the resulting polycarbonate resin product may be colored or deteriorated in brightness. Is preferable because it is small.

前記ヒンダードアミン系安定剤としては、例えば、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス−(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、ポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル
)イミノ}]、N,N’−ビス(3−アミノプロピル)エチレンジアミン−2,4−ビス[N−ブチル−N−(1,2,2,6,6−ペンタメチル−4−ピペリジルアミノ)−6−クロロ−1,3,5−トリアジン縮合物およびジブチルアミン・1,3,5−トリアジン・N,N’−ビス(2,2,6,6)−テトラメチル−4−ピペリジル−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物等が挙げられる。
Examples of the hindered amine stabilizer include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis- (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, Poly [{6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl ) Imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}], N, N′-bis (3-aminopropyl) ethylenediamine-2,4-bis [N-butyl- N- (1,2,2,6,6-pentamethyl-4-piperidylamino) -6-chloro-1,3,5-triazine condensate and dibutylamine 1,3,5-triazine N, N ′ -Screws (2, 2, 6 6) - polycondensate of tetramethyl-4-piperidyl-1,6-hexamethylenediamine and N-(2,2,6,6-tetramethyl-4-piperidyl) butylamine, and the like.

これらのヒンダードアミン系安定剤は、複数種を組み合わせて使用してもよい。なかでもビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケートおよびビス−(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケートが好ましい。   These hindered amine stabilizers may be used in combination of two or more. Of these, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate and bis- (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate are preferred.

本発明において、ポリカーボネート樹脂に配合する上記のヒンダードアミン系安定剤の配合時期、配合方法は特に限定されない。配合時期としては、例えば、エステル交換法でポリカーボネート樹脂を製造した場合は重合反応終了時;さらに、重合法に関わらず、ポリカーボネート樹脂と他の配合剤との混練途中等のポリカーボネート樹脂が溶融した状態のとき;押出機等を用い、ペレット又は粉末等の固体状態のポリカーボネート樹脂とブレンド・混練する際;等が挙げられる。   In the present invention, the blending time and blending method of the hindered amine stabilizer to be blended with the polycarbonate resin are not particularly limited. As the blending time, for example, when the polycarbonate resin is produced by the transesterification method, at the end of the polymerization reaction; in addition, regardless of the polymerization method, the polycarbonate resin melted during the kneading of the polycarbonate resin and other compounding agents. When blending and kneading with a solid state polycarbonate resin such as pellets or powder using an extruder or the like.

配合方法としては、例えば、ポリカーボネート樹脂にヒンダードアミン系安定剤を直接混合又は混練する方法;少量のポリカーボネート樹脂又は他の樹脂等とヒンダードアミン系安定剤を用いて作成した高濃度のマスターバッチとして混合する方法;などが挙げられる。   As a blending method, for example, a method in which a hindered amine stabilizer is directly mixed or kneaded with a polycarbonate resin; a method in which a small concentration of a polycarbonate resin or other resin is mixed with a hindered amine stabilizer as a high concentration master batch And so on.

[酸性化合物又はその誘導体]
本発明のポリカーボネート樹脂無延伸フィルムは、酸性化合物又はその誘導体を含有していてもよい。本発明のポリカーボネート樹脂無延伸フィルムにおける酸性化合物又はその誘導体の配合量(即ち、本発明のポリカーボネート樹脂無延伸フィルムの押出成形材料であるポリカーボネート樹脂組成物中の含有量)は、ポリカーボネート樹脂100重量部に対し、少なくとも1種の酸性化合物0.00001重量部以上0.1重量部以下であることが好ましく、より好ましくは0.0001重量部以上0.01重量部以下、さらに好ましくは0.0002重量部以上0.001重量部以下である。
[Acid compound or derivative thereof]
The polycarbonate resin unstretched film of the present invention may contain an acidic compound or a derivative thereof. The compounding amount of the acidic compound or derivative thereof in the polycarbonate resin unstretched film of the present invention (that is, the content in the polycarbonate resin composition that is an extrusion molding material of the polycarbonate resin unstretched film of the present invention) is 100 parts by weight of the polycarbonate resin. Is preferably 0.00001 part by weight or more and 0.1 part by weight or less, more preferably 0.0001 part by weight or more and 0.01 part by weight or less, and still more preferably 0.0002 part by weight. Part to 0.001 part by weight.

酸性化合物又はその誘導体の配合量が0.00001重量部以上であれば、押出成形する際に、ポリカーボネート樹脂組成物の滞留時間が長くなった場合に着色を十分に抑制することが可能であるため好ましい。また、酸性化合物の配合量が0.1重量部以下であれば、ポリカーボネート樹脂組成物の耐加水分解性が低下するおそれが小さいため好ましい。   If the compounding amount of the acidic compound or derivative thereof is 0.00001 part by weight or more, it is possible to sufficiently suppress coloring when the residence time of the polycarbonate resin composition is increased during extrusion molding. preferable. Moreover, if the compounding quantity of an acidic compound is 0.1 weight part or less, since there is little possibility that the hydrolysis resistance of a polycarbonate resin composition may fall, it is preferable.

酸性化合物又はその誘導体としては、例えば、塩酸、硝酸、ホウ酸、硫酸、亜硫酸、リン酸、亜リン酸、次亜リン酸、ポリリン酸、アジピン酸、アスコルビン酸、アスパラギン酸、アゼライン酸、アデノシンリン酸、安息香酸、ギ酸、吉草酸、クエン酸、グリコール酸、グルタミン酸、グルタル酸、ケイ皮酸、コハク酸、酢酸、酒石酸、シュウ酸、p−トルエンスルフィン酸、p−トルエンスルホン酸、ナフタレンスルホン酸、ニコチン酸、ピクリン酸、ピコリン酸、フタル酸、テレフタル酸、プロピオン酸、ベンゼンスルフィン酸、ベンゼンスルホン酸、マロン酸およびマレイン酸等のブレンステッド酸並びにそのエステル類が挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   Examples of acidic compounds or derivatives thereof include hydrochloric acid, nitric acid, boric acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, hypophosphorous acid, polyphosphoric acid, adipic acid, ascorbic acid, aspartic acid, azelaic acid, and adenosine phosphorus. Acid, benzoic acid, formic acid, valeric acid, citric acid, glycolic acid, glutamic acid, glutaric acid, cinnamic acid, succinic acid, acetic acid, tartaric acid, oxalic acid, p-toluenesulfinic acid, p-toluenesulfonic acid, naphthalenesulfonic acid Bronsted acids such as nicotinic acid, picric acid, picolinic acid, phthalic acid, terephthalic acid, propionic acid, benzenesulfinic acid, benzenesulfonic acid, malonic acid and maleic acid, and esters thereof. These may be used individually by 1 type and may be used in combination of 2 or more type.

これらの酸性化合物又はその誘導体の中でも、スルホン酸類又はそのエステル類が好ましく、中でも、p−トルエンスルホン酸、p−トルエンスルホン酸メチル、p−トルエン
スルホン酸ブチルが特に好ましい。
Among these acidic compounds or derivatives thereof, sulfonic acids or esters thereof are preferable, and p-toluenesulfonic acid, methyl p-toluenesulfonate, and butyl p-toluenesulfonate are particularly preferable.

これらの酸性化合物は、上述したポリカーボネート樹脂の重縮合反応において使用される塩基性エステル交換触媒を中和する化合物として、ポリカーボネート樹脂組成物の製造工程において添加することができる。   These acidic compounds can be added in the manufacturing process of a polycarbonate resin composition as a compound which neutralizes the basic transesterification catalyst used in the polycondensation reaction of the polycarbonate resin mentioned above.

[その他の添加成分]
本発明のポリカーボネート樹脂無延伸フィルムは、本発明の目的を損なわない範囲で、帯電防止剤、離型剤、紫外線吸収剤、光安定剤、無機充填剤、着色剤、意匠性付与粒子等を含有していてもよい。更に、本発明の目的を損なわない範囲で、樹脂組成物に通常用いられる核剤、難燃剤、衝撃改良剤、発泡剤、染顔料等が含まれても差し支えない。
[Other additive components]
The polycarbonate resin unstretched film of the present invention contains an antistatic agent, a release agent, an ultraviolet absorber, a light stabilizer, an inorganic filler, a colorant, design imparting particles and the like as long as the object of the present invention is not impaired. You may do it. Furthermore, a nucleating agent, a flame retardant, an impact modifier, a foaming agent, a dyeing pigment, and the like that are usually used in the resin composition may be included as long as the object of the present invention is not impaired.

また、本発明のポリカーボネート樹脂無延伸フィルムにおいては、本発明の目的を損なわない範囲で、前述のポリカーボネート樹脂を例えば、芳香族ポリカーボネート、芳香族ポリエステル、脂肪族ポリエステル、ポリアミド、ポリスチレン、ポリオレフィン、アクリル系樹脂、ABSおよびASなどの合成樹脂、並びに各種エラストマーや各種コア−シェルゴムなどの1種又は2種以上と混練して、ポリマーアロイとしても用いることもできる。   Further, in the polycarbonate resin non-stretched film of the present invention, the above polycarbonate resin is, for example, aromatic polycarbonate, aromatic polyester, aliphatic polyester, polyamide, polystyrene, polyolefin, acrylic, within the range not impairing the object of the present invention. It can also be used as a polymer alloy by kneading with one or more of resins, synthetic resins such as ABS and AS, and various elastomers and various core-shell rubbers.

以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by a following example, unless the summary is exceeded.

[評価方法]
ポリカーボネート樹脂及びポリカーボネート樹脂無延伸フィルムの物性又は特性の評価は次の方法により行った。
[Evaluation method]
The physical properties or characteristics of the polycarbonate resin and the polycarbonate resin unstretched film were evaluated by the following methods.

(1)ガラス転移温度(Tg)
JIS−K7121に準拠して、示差走査熱量計(エスアイアイ・ナノテクノロジー社製、DSC220)を用いて、ポリカーボネート樹脂約10mgを10℃/分の昇温速度で加熱して測定し、低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の曲線の勾配が最大になるような点で引いた接線との交点の温度である、補外ガラス転移開始温度を求め、それをガラス転移温度とした。
(1) Glass transition temperature (Tg)
In accordance with JIS-K7121, using a differential scanning calorimeter (DSC220, manufactured by SII Nano Technology), measured by heating about 10 mg of polycarbonate resin at a heating rate of 10 ° C./min, Obtain the extrapolated glass transition start temperature, which is the temperature at the intersection of the straight line that extends the base line to the high temperature side and the tangent line drawn at the point where the slope of the stepwise change part of the glass transition is maximized, This was taken as the glass transition temperature.

(2)フィルム厚さの測定
JIS一級金尺定規を用いてフィルムの所定位置に50mm間隔で目印を記入し、接触式厚さ計(ミツトヨ社製、デジマチックインジケータID−F125)を用いて目印近傍のフィルム厚さを測定した。
幅方向の厚み精度については、作製したフィルムについて、フィルムの幅方向の両端部からフィルム幅の10%内側の2点間において、該フィルムの幅方向の一端から他端に向かって50mm間隔で測定したフィルム厚さの「最大値Tmax−最小値Tmin」の値を平均値Taで割って百分率で、幅方向の厚み精度(%)を算出した。
また、流れ方向の厚み精度については、フィルムの幅方向の中央において、流れ方向に1mにわたって、50mm間隔で測定したフィルム厚さの「最大値tmax−最小値tmin」の値を平均値taで割って百分率で、流れ方向の厚み精度(%)を算出した。
(2) Measurement of film thickness Using a JIS first-class gold ruler, place marks at predetermined positions on the film at intervals of 50 mm, and use a contact thickness gauge (Mitutoyo, Digimatic Indicator ID-F125). The film thickness in the vicinity was measured.
The thickness accuracy in the width direction was measured at 50 mm intervals from one end of the film in the width direction to the other end between the two points 10% inside the film width from both ends in the width direction of the film. The thickness accuracy (%) in the width direction was calculated as a percentage by dividing the value of “maximum value Tmax−minimum value Tmin” of the film thickness by the average value Ta.
Regarding the thickness accuracy in the flow direction, the value of “maximum value tmax−minimum value tmin” of the film thickness measured at intervals of 50 mm over 1 m in the flow direction at the center in the width direction of the film is divided by the average value ta. The thickness accuracy (%) in the flow direction was calculated as a percentage.

(3)還元粘度の測定
ポリカーボネート樹脂又はポリカーボネート樹脂無延伸フィルムのサンプルを、溶媒として塩化メチレンを用いて溶解し、0.6g/dLの濃度のポリカーボネート溶液を調製した。森友理化工業(株)製:ウベローデ型粘度管を用いて、温度20.0℃±0.1℃
で測定を行い、溶媒の通過時間tと溶液の通過時間tから次式(i)より相対粘度ηrelを求め、相対粘度から次式(ii)より比粘度ηspを求めた。
ηrel=t/t (i)
ηsp=(η−η)/η=ηrel−1 (ii)
比粘度を濃度c(g/dL)で割って、還元粘度ηsp/cを求めた。この値が高いほど分子量が大きい。
(3) Measurement of reduced viscosity A polycarbonate resin or a polycarbonate resin unstretched film sample was dissolved using methylene chloride as a solvent to prepare a polycarbonate solution having a concentration of 0.6 g / dL. Made by Moriyu Rika Kogyo Co., Ltd .: Using an Ubbelohde type viscosity tube, the temperature is 20.0 ° C ± 0.1 ° C
The relative viscosity η rel was determined from the following equation (i) from the passage time t 0 of the solvent and the passage time t of the solution, and the specific viscosity η sp was determined from the following equation (ii) from the relative viscosity.
η rel = t / t 0 (i)
η sp = (η−η 0 ) / η 0 = η rel −1 (ii)
The reduced viscosity η sp / c was determined by dividing the specific viscosity by the concentration c (g / dL). The higher this value, the higher the molecular weight.

(4)ポリカーボネート樹脂中の各ジヒドロキシ化合物に由来する構造単位比及び末端フェニル基濃度の測定
ポリカーボネート樹脂中の各ジヒドロキシ化合物構造単位比は、ポリカーボネート樹脂30mgを秤取し、重クロロホルム約0.7mLに溶解し、溶液とし、これを内径5mmのNMR用チューブに入れ、日本電子社製JNM−AL400(共鳴周波数400MHz)を用いて常温でH NMRスペクトルを測定した。各ジヒドロキシ化合物に由来する
構造単位に基づくシグナル強度比より各ジヒドロキシ化合物に由来する構造単位比を求めた。
(4) Measurement of structural unit ratio and terminal phenyl group concentration derived from each dihydroxy compound in polycarbonate resin Each dihydroxy compound structural unit ratio in polycarbonate resin was obtained by weighing out 30 mg of polycarbonate resin to about 0.7 mL of deuterated chloroform. dissolved, a solution, which was placed in a NMR tube having an inner diameter of 5 mm, was analyzed by 1 H NMR spectrum at room temperature using a Nippon Denshi JNM-AL400 (resonance frequency 400 MHz). The structural unit ratio derived from each dihydroxy compound was determined from the signal intensity ratio based on the structural unit derived from each dihydroxy compound.

(5)ポリカーボネート樹脂中の芳香族モノヒドロキシ化合物含有量の測定
ポリカーボネート樹脂試料1.25gを塩化メチレン7mlに溶解し溶液とした後、総量が25mlになるようにアセトンを添加して再沈殿処理を行った。次いで、該処理液を0.2μmディスクフィルターでろ過して、液体クロマトグラフィーにて定量を行った。
(5) Measurement of content of aromatic monohydroxy compound in polycarbonate resin After dissolving 1.25 g of polycarbonate resin sample in 7 ml of methylene chloride to make a solution, acetone is added so that the total amount becomes 25 ml, and reprecipitation treatment is performed. went. Next, the treatment liquid was filtered through a 0.2 μm disk filter and quantified by liquid chromatography.

また、以下の製造例および実施例で用いた化合物の略号等は以下の通りである。   Moreover, the symbol of the compound used in the following manufacture examples and Examples is as follows.

・ISB:イソソルビド(ロケットフルーレ社製、商品名:POLYSORB)
・CHDM:1,4−シクロヘキサンジメタノール(新日本理化社製、商品名:SKY CHDM)
・DPC:ジフェニルカーボネート(三菱化学社製)
ISB: Isosorbide (Rocket Fleure, trade name: POLYSORB)
CHDM: 1,4-cyclohexanedimethanol (manufactured by Shin Nippon Rika Co., Ltd., trade name: SKY CHDM)
・ DPC: Diphenyl carbonate (Mitsubishi Chemical Corporation)

・酸化防止剤1:ヒンダードフェノール系酸化防止剤(BASFジャパン社製、商品名:イルガノックス1010)
・酸化防止剤2:ホスファイト系酸化防止剤(ADEKA社製、商品名:アデカスタブ2112)
・ヒンダードアミン系安定剤(BASFジャパン社製、商品名:チヌビン765)
Antioxidant 1: hindered phenolic antioxidant (manufactured by BASF Japan, trade name: Irganox 1010)
Antioxidant 2: Phosphite antioxidant (manufactured by ADEKA, trade name: ADK STAB 2112)
-Hindered amine stabilizer (manufactured by BASF Japan, trade name: Tinuvin 765)

[実施例1]
十分に窒素置換した(酸素濃度0.0005vol%〜0.001vol%)原料調製槽において、ISB/CHDM/DPCのモル比が50.00/50.00/99.80になるように6時間おきに調製した原料を、オイルを熱媒体とした熱媒体ジャケット、熱媒体内部コイル、および撹拌翼、真空ポンプに連結された留出管および凝縮器を具備した第1重合反応器に、連続的に一定量供給すると同時に、原料供給配管に連結した触媒供給配管より、水溶液にした酢酸カルシウム1水和物を、全ジヒドロキシ化合物1mol当たり1.25×10−6mol(カルシウム金属原子換算)になるように連続的に供給した。
原料と触媒水溶液を配管で混合した後、第1反応器に入るまでの流路にプリーツ型円筒タイプの原料濾過フィルターを2器設置し、上流側の原料濾過フィルターの目開きを10μm、下流側の目開きを1μmとした。
[Example 1]
Every 6 hours so that the molar ratio of ISB / CHDM / DPC is 50.00 / 50.00 / 99.80 in a raw material preparation tank sufficiently substituted with nitrogen (oxygen concentration 0.0005 vol% to 0.001 vol%) Into the first polymerization reactor equipped with a heat medium jacket using oil as a heat medium, a heat medium internal coil, and a stirring blade, a distillation pipe connected to a vacuum pump and a condenser, continuously. At the same time as supplying a certain amount, the calcium acetate monohydrate made into an aqueous solution from the catalyst supply pipe connected to the raw material supply pipe is 1.25 × 10 −6 mol (calcium metal atom equivalent) per 1 mol of all dihydroxy compounds. Continuously fed.
After mixing the raw material and catalyst aqueous solution by piping, install two pleated cylindrical type raw material filtration filters in the flow path to enter the first reactor, the upstream raw material filtration filter opening is 10 μm, downstream The mesh opening was 1 μm.

第1重合反応器の留出管には、冷媒としてオイル(入口温度130℃)を用いた還流冷却器、更に還流冷却器で凝縮されないフェノール等を凝縮させるため、還流冷却器と真空ポンプの間に冷媒として温水(入口温度45℃)を用いた凝縮器を配置した。
第1重合反応器の撹拌翼の回転数を一定にしながら、内温183〜185℃、圧力23〜25kPa、滞留時間1.4〜1.5時間となるよう制御し、反応液を反応槽槽底から連続的に抜き出し、第2重合反応器に供給した。
In the first polymerization reactor, the distillation pipe is provided with a reflux condenser using oil (inlet temperature 130 ° C.) as a refrigerant, and phenol and the like that are not condensed in the reflux condenser. In addition, a condenser using warm water (inlet temperature 45 ° C.) as a refrigerant was disposed.
While maintaining the rotation speed of the stirring blade of the first polymerization reactor to be constant, the inner temperature is 183 to 185 ° C., the pressure is 23 to 25 kPa, and the residence time is 1.4 to 1.5 hours. It was continuously extracted from the bottom and fed to the second polymerization reactor.

第2重合反応器は、第1重合反応器と同様、熱媒体ジャケット、熱媒体内部コイル、撹拌翼、真空ポンプに連結された留出管および留出管には還流冷却器、凝縮器を具備しており、内温211〜213℃、圧力13〜14kPa、滞留時間0.8〜1時間で一定となるよう制御し、反応液を反応槽槽底から連続的に抜き出し、第3重合反応器に供給した。   Similar to the first polymerization reactor, the second polymerization reactor includes a heat medium jacket, a heat medium internal coil, a stirring blade, a distillation pipe connected to a vacuum pump, and a distillation pipe having a reflux condenser and a condenser. And controlled to be constant at an internal temperature of 211 to 213 ° C., a pressure of 13 to 14 kPa, and a residence time of 0.8 to 1 hour, and the reaction liquid is continuously withdrawn from the bottom of the reaction vessel, and a third polymerization reactor Supplied to.

第3重合反応器は、内温227〜229℃、圧力5〜6kPa、滞留時間1〜1.1時間で一定となるよう制御し、引き続き副生するフェノールを留去しながら重縮合反応を進行させ、反応液を反応槽槽底から連続的に抜き出し、2本の水平な回転軸とこの水平軸にほぼ直角に取り付けられた相互に不連続な攪拌翼とを有する横型攪拌反応器(第4重合反応器)に供給した。   The third polymerization reactor is controlled so as to be constant at an internal temperature of 227 to 229 ° C., a pressure of 5 to 6 kPa, and a residence time of 1 to 1.1 hours, and the polycondensation reaction proceeds while distilling off by-product phenol. The reaction liquid is continuously withdrawn from the bottom of the reaction vessel, and a horizontal stirring reactor (fourth) having two horizontal rotating shafts and mutually discontinuous stirring blades mounted substantially perpendicular to the horizontal shaft. Polymerization reactor).

第4重合反応器は、入口付近の内温を227〜228℃、出口付近の内温を238〜240℃、攪拌翼トルク3.0N・mを平均値として変動を20%の以下に収まるように圧力を0.30〜0.50kPaの範囲で調整し、滞留時間を1.3〜1.5時間になるよう制御し、さらに重縮合反応を進行させた。   In the fourth polymerization reactor, the inner temperature near the inlet is 227 to 228 ° C., the inner temperature near the outlet is 238 to 240 ° C., and the stirring blade torque is 3.0 N · m, so that the fluctuation is within 20%. The pressure was adjusted in the range of 0.30 to 0.50 kPa, the residence time was controlled to be 1.3 to 1.5 hours, and the polycondensation reaction was further advanced.

得られたポリカーボネート樹脂は、添加剤供給口および3つのベント口を有し、L/D=42、押出機のスクリュー全体を構成するエレメントの長さに占めるニーディングディスクの長さが6%の二軸押出機(ニーディングディスクの他のスクリューエレメントは、フルフライトとシールリングで構成)にギアポンプで連続的に供給した。
押出機内に、処理されるポリカーボネート樹脂に対して0.1%の水を供給し、ベント口は、真空ポンプに連結させ0.01〜0.03kPaに減圧し、ポリカーボネート樹脂中に含まれる揮発成分を除去した。
The obtained polycarbonate resin has an additive supply port and three vent ports, L / D = 42, and the kneading disk occupies 6% of the length of the elements constituting the entire screw of the extruder. A twin-screw extruder (the other screw element of the kneading disk is composed of full flight and seal ring) was continuously fed by a gear pump.
In the extruder, 0.1% of water is supplied to the polycarbonate resin to be processed, and the vent port is connected to a vacuum pump and the pressure is reduced to 0.01 to 0.03 kPa. Was removed.

水の供給ノズルとそれに続くベント口の下流にサイドフィーダーを設置し、酸化防止剤1をポリカーボネート樹脂100重量部に対し0.1重量部、酸化防止剤2を同じく0.05重量部、ステアリン酸モノグリセリド(理研ビタミン社製)を同じく0.3重量部になるよう連続的に供給した。
押出機のバレル温度の設定は、上流の4ブロックを245℃、下流の6ブロックを225℃とし、スクリュー回転数は250回転とした。押出機で処理されたポリカーボネート樹脂は、その出口に設置したギアポンプを経て、樹脂の入口が下部、出口が上部にあるフィルターユニットに供給した。
A side feeder is installed downstream of the water supply nozzle and the subsequent vent port, 0.1 parts by weight of the antioxidant 1 with respect to 100 parts by weight of the polycarbonate resin, 0.05 parts by weight of the antioxidant 2 and stearic acid. Monoglyceride (manufactured by Riken Vitamin Co., Ltd.) was continuously fed so as to be 0.3 parts by weight.
The barrel temperature of the extruder was set to 245 ° C. for the 4 blocks upstream, 225 ° C. for the 6 blocks downstream, and the screw rotation speed was 250 rotations. The polycarbonate resin treated by the extruder was supplied to a filter unit having a resin inlet at the bottom and an outlet at the top through a gear pump installed at the outlet.

フィルターユニットの内部には、目開き15μmのリーフディスクフィルター(日本ポール(株)製)を装着し、ポリカーボネート樹脂中の異物を除去した。該フィルターは、使用前に水蒸気雰囲気下、310℃で40時間、続いて空気雰囲気下420℃で52時間、焙焼処理を行い室温まで冷却した後、30重量%の硝酸水溶液に30分間浸漬し、酸化皮膜を形成させ、水洗および乾燥を行ったものを用いた。フィルターユニットは複数のブロックで構成されるヒーターが具備されており、それぞれの温度を230〜240℃に設定した。
フィルターユニットの出口側には、複数のブロックからなるヒーターを具備したポリマー配管を通じてダイスを設置し、ポリマー配管のヒーターの設定温度は220〜230℃、ダイスのヒーターは220℃に設定した。該ダイスからクラス10000の清浄度に保持された部屋の中で、ポリカーボネート樹脂をストランドの形態で抜き出し、水槽で固化させて、回転式カッターで毎時60kgでペレット化した。
A leaf disk filter (manufactured by Nippon Pole Co., Ltd.) having a mesh opening of 15 μm was mounted inside the filter unit to remove foreign substances in the polycarbonate resin. Before use, the filter was roasted at 310 ° C. for 40 hours in a water vapor atmosphere and then at 420 ° C. for 52 hours in an air atmosphere, cooled to room temperature, and then immersed in a 30% by weight nitric acid aqueous solution for 30 minutes. Then, an oxide film was formed, washed and dried. The filter unit was provided with a heater composed of a plurality of blocks, and each temperature was set to 230 to 240 ° C.
On the outlet side of the filter unit, a die was installed through a polymer pipe equipped with a heater composed of a plurality of blocks. The set temperature of the heater of the polymer pipe was set to 220 to 230 ° C, and the heater of the dice was set to 220 ° C. The polycarbonate resin was extracted in the form of strands from the die in a room maintained at a class 10000 cleanness, solidified in a water tank, and pelletized at 60 kg per hour with a rotary cutter.

20時間連続生産を実施し、得られたポリカーボネート樹脂の還元粘度と残存フェノールを1時間目、6時間目、11時間目、16時間目で測定した。その結果を表1に示す。   Continuous production was carried out for 20 hours, and the reduced viscosity and residual phenol of the obtained polycarbonate resin were measured at 1 hour, 6 hours, 11 hours and 16 hours. The results are shown in Table 1.

[実施例2]
ポリカーボネート樹脂を二軸押出機にギアポンプで供給する際に、ギアポンプの吐出圧の平均を1.5MPaとし30分あたりの変動が20%以下になるように、第4重合反応器の圧力を0.30〜0.50kPaの範囲で調整し、第4重合反応器の攪拌翼トルクは成り行きで制御しない以外は製造例1と同様に行った。得られたポリカーボネート樹脂の還元粘度と残存フェノールを1時間目、6時間目、11時間目、16時間目で測定した。その結果を表1に示す。
[Example 2]
When the polycarbonate resin is supplied to the twin screw extruder with a gear pump, the pressure of the fourth polymerization reactor is set to 0. 0 so that the average discharge pressure of the gear pump is 1.5 MPa and the fluctuation per 30 minutes is 20% or less. The adjustment was performed in the range of 30 to 0.50 kPa, and the same procedure as in Production Example 1 was performed except that the stirring blade torque of the fourth polymerization reactor was not controlled due to circumstances. The reduced viscosity and residual phenol of the obtained polycarbonate resin were measured at 1 hour, 6 hours, 11 hours, and 16 hours. The results are shown in Table 1.

[実施例3]
二軸押出機の出口に備えたギアポンプの吐出圧の平均値を16MPaとし、その変動が20%以下になるように、第4重合反応器の圧力を0.30〜0.50kPaの範囲で調整し、第4重合反応器の攪拌翼トルクは成り行きで制御しない以外は製造例1と同様に行った。得られたポリカーボネート樹脂の還元粘度と残存フェノールを1時間目、6時間目、11時間目、16時間目で測定した。その結果を表1に示す。
[Example 3]
The average value of the discharge pressure of the gear pump provided at the outlet of the twin screw extruder is 16 MPa, and the pressure of the fourth polymerization reactor is adjusted in the range of 0.30 to 0.50 kPa so that the fluctuation is 20% or less. The stirring blade torque of the fourth polymerization reactor was the same as in Production Example 1 except that it was not controlled due to circumstances. The reduced viscosity and residual phenol of the obtained polycarbonate resin were measured at 1 hour, 6 hours, 11 hours, and 16 hours. The results are shown in Table 1.

[実施例4]
二軸押出機の出口に備えたギアポンプの吐出圧の平均値を16MPaとし、その変動が10%以下になるように、第4重合反応器の圧力を0.30〜0.50kPaの範囲で調整し、第4重合反応器の攪拌翼トルクは成り行きで制御しない以外は製造例1と同様に行った。得られたポリカーボネート樹脂の還元粘度と残存フェノールを1時間目、6時間目、11時間目、16時間目で測定した。その結果を表1に示す。
[Example 4]
The average value of the discharge pressure of the gear pump provided at the outlet of the twin screw extruder is 16 MPa, and the pressure of the fourth polymerization reactor is adjusted in the range of 0.30 to 0.50 kPa so that the fluctuation is 10% or less. The stirring blade torque of the fourth polymerization reactor was the same as in Production Example 1 except that it was not controlled due to circumstances. The reduced viscosity and residual phenol of the obtained polycarbonate resin were measured at 1 hour, 6 hours, 11 hours, and 16 hours. The results are shown in Table 1.

[製造例5]
十分に窒素置換した(酸素濃度0.0005vol%〜0.001vol%)原料調製槽において、ISB/CHDM/DPCのモル比が50/50/100.0になるよう調製し、その後は50/50/99.8になるように6時間おきに調製した以外は製造例1と同様に行った。得られたポリカーボネート樹脂の還元粘度と残存フェノールを1時間目、6時間目、11時間目、16時間目で測定した。その結果を表1に示す。
[Production Example 5]
In a raw material preparation tank sufficiently substituted with nitrogen (oxygen concentration 0.0005 vol% to 0.001 vol%), the molar ratio of ISB / CHDM / DPC was adjusted to 50/50 / 100.0, and then 50/50 This was carried out in the same manner as in Production Example 1 except that it was prepared every 6 hours so as to be 99.8. The reduced viscosity and residual phenol of the obtained polycarbonate resin were measured at 1 hour, 6 hours, 11 hours, and 16 hours. The results are shown in Table 1.

[比較例1]
第4重合反応器の圧力を0.30kPa一定で制御した以外は製造例1と同様に行った。得られたポリカーボネート樹脂の還元粘度と残存フェノールを1時間目、6時間目、11時間目、16時間目で測定した。その結果を表1に示す。
[Comparative Example 1]
The same procedure as in Production Example 1 was conducted except that the pressure of the fourth polymerization reactor was controlled at a constant 0.30 kPa. The reduced viscosity and residual phenol of the obtained polycarbonate resin were measured at 1 hour, 6 hours, 11 hours, and 16 hours. The results are shown in Table 1.

[比較例2]
第4重合反応器の圧力を0.50kPa一定で制御した以外は製造例1と同様に行った。得られたポリカーボネート樹脂の還元粘度と残存フェノールを1時間目、6時間目、11時間目、16時間目で測定した。その結果を表1に示す。
[Comparative Example 2]
The same process as in Production Example 1 was conducted except that the pressure of the fourth polymerization reactor was controlled at a constant 0.50 kPa. The reduced viscosity and residual phenol of the obtained polycarbonate resin were measured at 1 hour, 6 hours, 11 hours, and 16 hours. The results are shown in Table 1.

[比較例3]
十分に窒素置換した(酸素濃度0.0005vol%〜0.001vol%)原料調製槽において、ISB/CHDM/DPCのモル比が50.00/50.00/99.25になるよう調製し、その後は50.00/50.00/99.80になるように6時間おきに調製し、第4重合反応器の圧力を0.5KPa一定とした以外は製造例1と同様に行った。得られたポリカーボネート樹脂の還元粘度と残存フェノールを1時間目、6時間目、11時間目、16時間目で測定した。
[Comparative Example 3]
In a raw material preparation tank sufficiently substituted with nitrogen (oxygen concentration 0.0005 vol% to 0.001 vol%), the molar ratio of ISB / CHDM / DPC is adjusted to 50.00 / 50.00 / 99.25, and then Was prepared every 6 hours so as to be 50.00 / 50.00 / 99.80, and was carried out in the same manner as in Production Example 1 except that the pressure of the fourth polymerization reactor was kept constant at 0.5 KPa. The reduced viscosity and residual phenol of the obtained polycarbonate resin were measured at 1 hour, 6 hours, 11 hours, and 16 hours.

Figure 2013209579
Figure 2013209579

Claims (6)

下記式(1)で表されるジヒドロキシ化合物と炭酸ジエステルと、重合触媒とを連続的に反応器に供給し、重縮合してポリカーボネートを製造する方法であって、前記反応器は少なくとも直列に複数器接続されるものであり、最終重合槽からギアポンプを介してポリカーボネート樹脂を定量的に排出する際に、ギアポンプの出口圧力変動が0.1%以上、20%以下とすることを特徴とするポリカーボネート樹脂の製造方法。
Figure 2013209579
A dihydroxy compound represented by the following formula (1), a carbonic acid diester, and a polymerization catalyst are continuously supplied to a reactor, and a polycondensation is carried out to produce a polycarbonate. The polycarbonate is characterized in that when the polycarbonate resin is quantitatively discharged from the final polymerization tank through the gear pump, the fluctuation in the outlet pressure of the gear pump is 0.1% or more and 20% or less. Manufacturing method of resin.
Figure 2013209579
下記式(1)で表されるジヒドロキシ化合物と炭酸ジエステルと、重合触媒とを連続的に反応器に供給し、重縮合してポリカーボネートを製造する方法であって、前記反応器は少なくとも直列に複数器接続されるものであり、最終重合槽の攪拌トルク変動が0.1%以上、20%以下とすることを特徴とするポリカーボネート樹脂の製造方法。
Figure 2013209579
A dihydroxy compound represented by the following formula (1), a carbonic acid diester, and a polymerization catalyst are continuously supplied to a reactor, and a polycondensation is carried out to produce a polycarbonate. A method for producing a polycarbonate resin, characterized in that the stirring torque fluctuation of the final polymerization tank is 0.1% or more and 20% or less.
Figure 2013209579
下記式(1)で表されるジヒドロキシ化合物と炭酸ジエステルと、重合触媒とを連続的に反応器に供給し、重縮合してポリカーボネートを製造する方法であって、前記反応器は少なくとも直列に複数器接続されるものであり、得られたポリカーボネート樹脂を最終重合反応器から溶融状態で押出機に供給し、その後ギアポンプを介してポリカーボネート樹脂を定量的に排出する際に、ギアポンプの出口圧力変動が0.1%以上、20%以下とすることを特徴とするポリカーボネート樹脂の製造方法。
Figure 2013209579
A dihydroxy compound represented by the following formula (1), a carbonic acid diester, and a polymerization catalyst are continuously supplied to a reactor, and a polycondensation is carried out to produce a polycarbonate. When the obtained polycarbonate resin is supplied from the final polymerization reactor to the extruder in a molten state, and then the polycarbonate resin is quantitatively discharged through the gear pump, fluctuations in the outlet pressure of the gear pump may occur. A method for producing a polycarbonate resin, characterized by being from 0.1% to 20%.
Figure 2013209579
下記式(1)で表されるジヒドロキシ化合物と炭酸ジエステルと、重合触媒とを連続的に反応器に供給し、重縮合してポリカーボネートを製造する方法であって、炭酸ジエステルが反応に用いる全ジヒドロキシ化合物に対して0.995〜1.115比率であり、その変動が0.005以下であることを特徴とする請求項1〜3の何れか1項に記載のポリカーボネート樹脂の製造方法。 A dihydroxy compound represented by the following formula (1), a carbonic acid diester, and a polymerization catalyst are continuously supplied to a reactor and polycondensed to produce a polycarbonate, wherein the carbonic acid diester is used for the reaction. The method for producing a polycarbonate resin according to any one of claims 1 to 3, wherein the ratio is 0.995 to 1.115 with respect to the compound, and the variation thereof is 0.005 or less. 前記ポリカーボネート樹脂の還元粘度が0.30dL/g以上、1.20dL/g以下、還元粘度の範囲幅を0.04dL/g以下であることを特徴とする請求項1〜4の何れか1項に記載のポリカーボネート樹脂の製造方法。   5. The reduced viscosity of the polycarbonate resin is 0.30 dL / g or more and 1.20 dL / g or less, and the range width of the reduced viscosity is 0.04 dL / g or less, 5. A method for producing a polycarbonate resin as described in 1. above. 一時間当たり30kg以上ポリカーボネート樹脂を製造する連続重合設備であることを特徴とする請求項1〜5のいずれか1項に記載のポリカーボネート樹脂の製造方法。 The method for producing a polycarbonate resin according to any one of claims 1 to 5, which is a continuous polymerization facility for producing a polycarbonate resin of 30 kg or more per hour.
JP2012082143A 2012-03-30 2012-03-30 Method for producing polycarbonate Pending JP2013209579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012082143A JP2013209579A (en) 2012-03-30 2012-03-30 Method for producing polycarbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012082143A JP2013209579A (en) 2012-03-30 2012-03-30 Method for producing polycarbonate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015224162A Division JP2016027182A (en) 2015-11-16 2015-11-16 Method for producing polycarbonate

Publications (1)

Publication Number Publication Date
JP2013209579A true JP2013209579A (en) 2013-10-10

Family

ID=49527720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012082143A Pending JP2013209579A (en) 2012-03-30 2012-03-30 Method for producing polycarbonate

Country Status (1)

Country Link
JP (1) JP2013209579A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026592A (en) * 1998-07-09 2000-01-25 Teijin Ltd Production of polycarbonate resin
WO2010061926A1 (en) * 2008-11-28 2010-06-03 三菱化学株式会社 Method for storing dihydroxy compound to be used as starting material for polycarbonate, method for preparing starting material for polycarbonate and method for producing polycarbonate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026592A (en) * 1998-07-09 2000-01-25 Teijin Ltd Production of polycarbonate resin
WO2010061926A1 (en) * 2008-11-28 2010-06-03 三菱化学株式会社 Method for storing dihydroxy compound to be used as starting material for polycarbonate, method for preparing starting material for polycarbonate and method for producing polycarbonate

Similar Documents

Publication Publication Date Title
CN106883575B (en) Polycarbonate resin composition and molded article
JP5229418B2 (en) Method for producing polycarbonate resin
JP2012214802A (en) Method for producing polycarbonate, and polycarbonate pellet
JP5962129B2 (en) Method for producing polycarbonate resin
JP2012046628A (en) Polycarbonate resin composition and molding
WO2012133855A1 (en) Polycarbonate-resin manufacturing method
JP6163794B2 (en) Method for producing polycarbonate
JP5644243B2 (en) Polycarbonate resin composition and polycarbonate resin molded product
JP6179318B2 (en) Method for producing polycarbonate resin
JP6186796B2 (en) Manufacturing method of polycarbonate resin plate
JP6264809B2 (en) Method for producing polycarbonate resin
JP5445652B1 (en) Method for producing polycarbonate resin
JP6287318B2 (en) Resin composition and method for producing three-dimensional object
JP5928090B2 (en) Method for producing unstretched polycarbonate resin film
JP6083124B2 (en) Method for producing unstretched polycarbonate resin film
JP6083125B2 (en) Method for producing unstretched polycarbonate resin film
JP5906899B2 (en) Method for producing unstretched polycarbonate resin film
JP2016027182A (en) Method for producing polycarbonate
JP2013209579A (en) Method for producing polycarbonate
JP2013049846A (en) Sound-insulating member
JP2014009332A (en) Method for manufacturing polycarbonate
JP5895581B2 (en) Polycarbonate resin composition and molded product
JP2014104671A (en) Polycarbonate resin non-oriented film and method for producing the same
JP6281358B2 (en) Method for producing polycarbonate resin
JP6019667B2 (en) Method for producing polycarbonate resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160913