WO2012133086A1 - Bonding member for solid oxide fuel cell, solid oxide fuel cell, and solid oxide fuel cell module - Google Patents

Bonding member for solid oxide fuel cell, solid oxide fuel cell, and solid oxide fuel cell module Download PDF

Info

Publication number
WO2012133086A1
WO2012133086A1 PCT/JP2012/057284 JP2012057284W WO2012133086A1 WO 2012133086 A1 WO2012133086 A1 WO 2012133086A1 JP 2012057284 W JP2012057284 W JP 2012057284W WO 2012133086 A1 WO2012133086 A1 WO 2012133086A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid oxide
fuel cell
layer
oxide fuel
glass ceramic
Prior art date
Application number
PCT/JP2012/057284
Other languages
French (fr)
Japanese (ja)
Inventor
喜樹 植田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2012133086A1 publication Critical patent/WO2012133086A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a solid oxide fuel cell bonding material, a solid oxide fuel cell, and a solid oxide fuel cell module.
  • fuel cells As a new energy source.
  • the fuel cell include a solid oxide fuel cell (SOFC), a molten carbonate fuel cell, a phosphoric acid fuel cell, and a polymer electrolyte fuel cell.
  • SOFC solid oxide fuel cell
  • molten carbonate fuel cell a molten carbonate fuel cell
  • phosphoric acid fuel cell a phosphoric acid fuel cell
  • polymer electrolyte fuel cell a solid oxide fuel cell
  • solid oxide fuel cells do not necessarily require liquid components, and can be reformed internally when using hydrocarbon fuel. For this reason, research and development on solid oxide fuel cells are actively conducted.
  • a joining material is used for joining a power generation element and a separator.
  • this bonding material for example, the following Patent Document 1 describes a bonding material for a solid oxide fuel cell mainly composed of glass.
  • the bonding material described in Patent Document 1 also shrinks in a direction parallel to the bonding interface when heated to bond the members. For this reason, stress is applied to the members to be joined, for example, warping may occur or the joining material may be damaged.
  • the present invention has been made in view of such points, and an object of the present invention is to join a solid oxide fuel cell having a high joining force and a small shrinkage in a direction parallel to the joining interface at the time of joining. To provide materials.
  • the solid oxide fuel cell bonding material according to the present invention includes a glass ceramic layer and a constraining layer.
  • the glass ceramic layer includes glass ceramics.
  • the constraining layer is laminated on the glass ceramic layer.
  • the constraining layer is made of a metal plate having a plurality of holes.
  • the constraining layer is made of expanded metal, punching metal, wire mesh, or foam metal.
  • expanded metal refers to a group of cuts having a plurality of linear cuts extending in one direction and arranged at intervals along one direction, and perpendicular to the one direction.
  • “Punching metal” refers to a metal plate having a plurality of openings formed in a matrix at predetermined intervals.
  • the “wire mesh” is a plurality of first metal lines that extend in one direction and are spaced apart from each other along another direction perpendicular to the one direction, and extend in the other direction.
  • a plurality of second metal lines that are arranged at intervals along one direction and intersect with the plurality of first metal lines, and the plurality of first metal lines and the plurality of first metal lines
  • the second metal wire is a member fixed in the thickness direction perpendicular to one direction and the other direction.
  • “Foamed metal” refers to a metal member having a plurality of pores inside.
  • the foam metal may have a three-dimensional network structure.
  • the pores may be continuous pores or closed pores.
  • the constraining layer has a melting point of 900 ° C. or higher.
  • the constraining layer does not melt at the firing temperature of the glass ceramic layer.
  • does not melt includes “does not substantially melt”. That is, “does not melt” means that the form of the metal plate having a plurality of through holes is maintained.
  • the glass ceramic includes silica, barium oxide, and alumina.
  • the glass-ceramics include 48 mass% to 75 mass% of Si in terms of SiO 2 and 20 mass% of Ba in terms of BaO. 40% by mass and 5% by mass to 20% by mass in terms of Al 2 O 3 .
  • the glass ceramic layer includes a first glass ceramic layer provided on one main surface of the constraining layer, and a constraining layer. And a second glass ceramic layer provided on the other main surface.
  • the solid oxide fuel cell according to the present invention includes a bonding layer formed by firing the solid oxide fuel cell bonding material according to the present invention.
  • the solid oxide fuel cell includes a plurality of power generation cells.
  • the power generation cell includes a solid oxide electrolyte layer, an air electrode disposed on one main surface of the solid oxide electrolyte layer, and a fuel electrode disposed on the other main surface of the solid oxide electrolyte layer.
  • Have Adjacent power generation cells are joined by a joining layer.
  • the solid oxide fuel cell module according to the present invention includes a bonding layer obtained by firing the solid oxide fuel cell bonding material according to the present invention.
  • the solid oxide fuel cell module includes a fuel cell.
  • the fuel cell includes a solid oxide electrolyte layer, an air electrode disposed on one main surface of the solid oxide electrolyte layer, and a fuel electrode disposed on the other main surface of the solid oxide electrolyte layer.
  • a plurality of power generation cells Adjacent power generation cells are joined by a joining layer.
  • the solid oxide fuel cell module includes a housing and a fuel cell disposed in the housing.
  • the fuel cell and the casing are joined by a joining layer.
  • a bonding material for a solid oxide fuel cell that has a high bonding force and has a small shrinkage in a direction parallel to a bonding interface at the time of bonding, and can suppress generation of warpage and damage to the bonding material. Can be provided.
  • FIG. 1 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a first embodiment.
  • FIG. 2 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a second embodiment.
  • FIG. 3 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a third embodiment.
  • FIG. 4 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a fourth embodiment.
  • FIG. 5 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a fifth embodiment.
  • FIG. 6 is a schematic side view of a solid oxide fuel cell module according to a sixth embodiment.
  • FIG. 7 is a schematic exploded perspective view of the power generation cell according to the sixth embodiment.
  • FIG. 8 is a schematic cross-sectional view of the first bonding layer in the sixth embodiment.
  • FIG. 9 is a schematic cross-sectional view of the second bonding layer in the sixth embodiment.
  • FIG. 10 is a schematic perspective view of a solid oxide fuel cell bonding material according to a first modification.
  • FIG. 11 is a schematic perspective view of a solid oxide fuel cell bonding material according to a second modification.
  • FIG. 12 is a schematic perspective view of a solid oxide fuel cell bonding material according to a third modification.
  • FIG. 1 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a first embodiment.
  • the bonding material 1 is a bonding material used for a solid oxide fuel cell. Specifically, the bonding material 1 is used for, for example, a purpose of bonding power generation cells of a solid oxide fuel cell or bonding a casing of a solid oxide fuel cell module and a fuel cell. It is done.
  • the bonding material 1 has a glass ceramic layer 10 and a constraining layer 11.
  • the glass ceramic layer 10 includes glass ceramics.
  • the glass ceramic layer 10 may be made of only glass ceramics, or may contain, for example, amorphous glass in addition to the glass ceramics.
  • glass ceramics is a mixed material system of glass and ceramics.
  • the glass ceramic contains silica, barium oxide, and alumina.
  • Si is 48 mass% to 75 mass% in terms of SiO 2
  • Ba is 20 mass% to 40 mass% in terms of BaO
  • Al is 5 mass% to 20 mass% in terms of Al 2 O 3. It is preferable that it is included.
  • Glass ceramics further, in terms of 2 mass% to 10 mass% in terms of Mn to MnO, 0.1 wt% to 10 wt% in terms of Ti to TiO 2, and Fe in the Fe 2 O 3 It may further contain 0.1% by mass to 10% by mass. It is preferable that the glass ceramic does not substantially contain Cr oxide or B oxide. In this case, for example, glass ceramics that can be fired at a temperature of 1100 ° C. or lower can be obtained.
  • the thickness of the glass ceramic layer 10 is not particularly limited, but is preferably 10 ⁇ m to 150 ⁇ m, for example, and more preferably 20 ⁇ m to 50 ⁇ m.
  • a constraining layer 11 is laminated on the glass ceramic layer 10.
  • the constraining layer 11 and the glass ceramic layer 10 are in direct contact.
  • the constraining layer 11 is made of a metal plate having a plurality of holes.
  • the constraining layer 11 may be made of a metal plate in which a plurality of through holes penetrating in the thickness direction (z direction) are formed.
  • the constraining layer 11 can be made of, for example, expanded metal, punching metal, wire mesh, foam metal, or the like.
  • a part of the glass ceramic layer 10 diffuses and flows into the constraining layer 11, and the member to be joined and the constraining layer 11 are joined.
  • the expanded metal preferably has a porosity of 30% to 86%, a line width of 30 ⁇ m to 250 ⁇ m, and a thickness of 30 ⁇ m to 500 ⁇ m.
  • the punching metal preferably has a porosity of 10% to 60%, an opening diameter of 50 ⁇ m to 1000 ⁇ m, and a thickness of 30 ⁇ m to 250 ⁇ m.
  • the wire mesh preferably has a porosity of 50% to 85% and a wire diameter of 50 ⁇ m to 200 ⁇ m.
  • the foam metal preferably has a porosity of 10% to 70%.
  • the constraining layer 11 preferably has a melting point of 900 ° C. or higher and does not substantially melt at the firing temperature of the glass ceramic layer 10. For this reason, it is preferable that the constrained layer 11 consists of high melting point metals, such as stainless steel, silver, gold
  • the melting point of the constraining layer 11 is more preferably 1100 ° C. or higher.
  • the thickness of the constraining layer 11 is preferably 30 ⁇ m to 500 ⁇ m, and more preferably 50 ⁇ m to 300 ⁇ m. If the thickness of the constraining layer 11 is less than 30 ⁇ m, the effect of suppressing shrinkage in the surface direction may be reduced. When the thickness of the constraining layer 11 exceeds 500 ⁇ m, it is disadvantageous for the reduction in the height of the solid oxide fuel cell.
  • the bonding material is composed only of a glass ceramic layer. Even in this case, excellent bondability can be realized.
  • the bonding material consisting only of the glass ceramic layer also shrinks in the plane direction during firing. For this reason, a big stress arises in a to-be-joined material and the joining layer formed by baking a glass ceramic layer. Therefore, the material to be bonded may be warped, or a crack or the like may occur in the material to be bonded or the bonding layer. Further, the bonding material is easily peeled off from the material to be bonded. That is, it is difficult to obtain sufficient bonding strength.
  • a constraining layer 11 made of a metal plate in which a plurality of through holes penetrating in the thickness direction is formed is laminated on the glass ceramic layer 10.
  • the constraining layer 11 suppresses shrinkage in the surface direction when the glass ceramic layer 10 is fired. Therefore, when the bonding material 1 of the present embodiment is used, even when the bonding material 1 is baked, the bonding material 1 does not shrink so much in the surface direction. Therefore, it can suppress that a stress is added to a to-be-joined material and a joining layer. As a result, it is possible to suppress warpage of the material to be bonded and occurrence of cracks in the material to be bonded and the bonding layer. Further, the materials to be joined can be joined with high joining strength. That is, the bonding material 1 of the present embodiment has excellent bonding properties and has a small shrinkage during firing.
  • FIG. 2 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a second embodiment.
  • FIG. 3 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a third embodiment.
  • FIG. 4 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a fourth embodiment.
  • FIG. 5 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a fifth embodiment.
  • a plurality of at least one of the glass ceramic layer 10 and the constraining layer 11 may be provided.
  • the first glass ceramic layer 10a is provided on one main surface of the constraining layer 11, and the second glass ceramic layer 10b is provided on the other main surface. . Therefore, both surfaces of the bonding material are composed of glass ceramic layers. Accordingly, both the bonding strength between the bonding material to be bonded to one main surface of the bonding material and the bonding material, and the bonding strength between the bonding material to be bonded to the other main surface of the bonding material and the bonding material. Can be increased.
  • constraining layers 11 a and 11 b are provided on both sides of the glass ceramic layer 10. That is, the glass ceramic layer 10 is sandwiched between the constraining layers 11a and 11b. Therefore, shrinkage during firing of the glass ceramic layer 10 can be more effectively suppressed.
  • both constraining layers 11a and 11b are arranged between three glass ceramic layers 10a to 10c.
  • both surfaces of the bonding material are composed of glass ceramic layers. Accordingly, both the bonding strength between the bonding material to be bonded to one main surface of the bonding material and the bonding material, and the bonding strength between the bonding material to be bonded to the other main surface of the bonding material and the bonding material. Can be increased. Further, since the number of constraining layers relative to the number of glass ceramic layers is larger than that of the bonding material shown in FIG. 2, shrinkage during firing of the glass ceramic layers 10a to 10c can be more effectively suppressed.
  • FIG. 6 is a schematic side view of a solid oxide fuel cell module according to a sixth embodiment.
  • the solid oxide fuel cell module (also referred to as a hot module) 3 includes a housing 3a.
  • a solid oxide fuel cell 2 is disposed inside the housing 3a.
  • the fuel cell 2 has a plurality of power generation cells 20. Specifically, the fuel cell 2 has two power generation cells 20.
  • FIG. 7 is a schematic exploded perspective view of the power generation cell according to the sixth embodiment.
  • the power generation cell 20 includes a first separator 40, a power generation element 46, and a second separator 50.
  • the first separator 40, the power generation element 46, and the second separator 50 are stacked in this order.
  • the power generation element 46 is a portion where the aerobic gas supplied from the aerobic gas manifold 44 and the fuel gas supplied from the fuel manifold 45 react to generate power.
  • the aerobic gas can be composed of an aerobic gas such as oxygen or air.
  • the fuel gas may be a gas containing hydrogen gas or hydrocarbon gas such as methane gas.
  • the power generation element 46 includes a solid oxide electrolyte layer 47. It is preferable that the solid oxide electrolyte layer 47 has high ionic conductivity.
  • the solid oxide electrolyte layer 47 can be formed of, for example, stabilized zirconia or partially stabilized zirconia. Specific examples of the stabilized zirconia include 10 mol% yttria stabilized zirconia (10YSZ), 11 mol% scandia stabilized zirconia (11ScSZ), and the like. Specific examples of the partially stabilized zirconia include 3 mol% yttria partially stabilized zirconia (3YSZ).
  • the solid oxide electrolyte layer 47 is, for example, Sm and Gd or the like ceria oxides doped, a LaGaO 3 as a host, La 0 the part of the La and Ga was substituted with Sr and Mg, respectively. It can also be formed of a perovskite oxide such as 8 Sr 0.2 Ga 0.8 Mg 0.2 O (3- ⁇ ) .
  • the solid oxide electrolyte layer 47 is sandwiched between the air electrode layer 48 and the fuel electrode layer 49. That is, the air electrode layer 48 is formed on one main surface of the solid oxide electrolyte layer 47, and the fuel electrode layer 49 is formed on the other main surface.
  • the air electrode layer 48 has an air electrode 48a.
  • the air electrode 48a is a cathode. In the air electrode 48a, oxygen takes in electrons and oxygen ions are formed.
  • the air electrode 48a is preferably porous, has high electron conductivity, and does not easily cause a solid-solid reaction with the solid oxide electrolyte layer 47 and the like at a high temperature.
  • the air electrode 48a can be formed of, for example, scandia-stabilized zirconia (ScSZ), Sn-doped indium oxide, PrCoO 3 oxide, LaCoO 3 oxide, LaMnO 3 oxide, or the like.
  • LaMnO 3 -based oxides include, for example, La 0.8 Sr 0.2 MnO 3 (common name: LSM), La 0.8 Sr 0.2 Co 0.2 Fe 0.8 O 3 (common name: LSCF) and La 0.6 Ca 0.4 MnO 3 (common name: LCM).
  • the air electrode 48a may be made of a mixed material obtained by mixing two or more of the above materials.
  • the fuel electrode layer 49 has a fuel electrode 49a.
  • the fuel electrode 49a is an anode. In the fuel electrode 49a, oxygen ions and fuel gas react to emit electrons.
  • the fuel electrode 49a is preferably porous, has high electron conductivity, and does not easily cause a solid-solid reaction with the solid oxide electrolyte layer 47 and the like at a high temperature.
  • the fuel electrode 49a can be composed of, for example, NiO, yttria stabilized zirconia (YSZ) / nickel metal porous cermet, scandia stabilized zirconia (ScSZ) / nickel metal porous cermet, or the like.
  • the fuel electrode layer 49 may be made of a mixed material obtained by mixing two or more of the above materials.
  • the first separator 40 On the air electrode layer 48 of the power generation element 46, the first separator 40 constituted by the first separator body 41 and the first flow path forming member 42 is disposed.
  • the first separator 40 is formed with an aerobic gas channel 43 for supplying an aerobic gas to the air electrode 48a.
  • the aerobic gas passage 43 extends from the aerobic gas manifold 44 toward the x2 side from the x1 side in the x direction.
  • the constituent material of the first separator 40 is not particularly limited.
  • the first separator 40 can be formed of, for example, stabilized zirconia such as yttria stabilized zirconia, partially stabilized zirconia, or the like.
  • a second separator 50 On the fuel electrode layer 49 of the power generation element 46, a second separator 50 constituted by a second separator body 51 and a second flow path forming member 52 is disposed.
  • the second separator 50 is formed with a fuel gas passage 53 for supplying fuel gas to the fuel electrode 49a.
  • the fuel gas channel 53 extends from the fuel gas manifold 45 toward the y2 side from the y1 side in the y direction.
  • the constituent material of the second separator 50 is not particularly limited.
  • the second separator 50 can be formed of, for example, stabilized zirconia, partially stabilized zirconia, or the like.
  • via-hole electrodes 40a and 50a connected to the air electrode 48a or the fuel electrode 49a are formed.
  • the air electrode 48a and the fuel electrode 49a are drawn out of the power generation cell 20 by the via-hole electrodes 40a and 50a.
  • the two power generation cells 20 are bonded using the bonding material described in the second embodiment.
  • the bonding material of the second embodiment is bonded by the first bonding layer 21a formed by firing.
  • FIG. 8 is a schematic cross-sectional view of the first bonding layer in the sixth embodiment.
  • the first bonding layer 21 a is configured by a laminate of the two fired layers 22 obtained by firing the glass ceramic layer 10 and the constraining layer 11.
  • the constraining layer 11 is sandwiched between two fired layers 22.
  • the fuel cell 2 is joined to the housing 3a.
  • the fuel cell 2 and the housing 3a are joined by a second joining layer 21b.
  • FIG. 9 is a schematic cross-sectional view of the second bonding layer in the sixth embodiment.
  • the second bonding layer 21b is formed by firing the bonding material of the second embodiment, similarly to the first bonding layer 21a.
  • the second bonding layer 21 b is configured by a laminate of the two fired layers 22 obtained by firing the glass ceramic layer 10 and the constraining layer 11.
  • the adjacent power generation cells 20 are joined by the first joining layer 21 a formed by firing the joining material 1.
  • the fuel cell 2 and the housing 3a are joined together by a second joining layer 21b formed by firing the joining material 1. For this reason, it is possible to suppress the warpage of the power generation cell 20 and the generation of cracks in the power generation cell 20.
  • the bonding layers 21a and 21b are formed by bonding the bonding material 1 has been described.
  • the present invention is not limited to this configuration.
  • the bonding layer may be obtained by firing the bonding materials according to the second to fifth embodiments.
  • the solid oxide fuel cell bonding material may be provided in a U shape in plan view. As shown in FIG. 11, the solid oxide fuel cell bonding material may be provided in an L shape in plan view. As shown in FIG. 12, the solid oxide fuel cell bonding material may be provided in an annular shape.
  • Example 1 (Preparation of solid oxide fuel cell bonding material)
  • the solid oxide fuel cell bonding material shown in FIG. 2 was produced.
  • a glass ceramic green sheet to be a glass ceramic layer was produced.
  • polyvinyl butyral as a binder and di-n-as a plasticizer with respect to glass ceramics having a composition of SiO 2 : 57.0 mass%, BaO: 31.0 mass%, and Al 2 O 3 : 12.0 mass%.
  • a slurry was prepared by adding butyl phthalate and toluene and isopropylene alcohol as solvents.
  • a ceramic green sheet having a glass ceramic layer was produced by a doctor blade method.
  • the thickness of the ceramic green sheet of the glass ceramic layer was 60 ⁇ m.
  • the laminate obtained by laminating the ceramic green sheets of the glass ceramic layer was pressed at a temperature of 50 ° C. and a pressure of 500 kgf / cm 2 to produce two glass ceramic layers.
  • the laminated body obtained by laminating the produced glass ceramic layer, the constraining layer and the glass ceramic layer in this order is pressed at a temperature of 50 ° C. and a pressure of 500 kgf / cm 2 to laminate the glass ceramic layer and the constraining layer.
  • a solid oxide fuel cell bonding material was produced.
  • an expanded metal Fe-22Cr ferrite alloy having a porosity of 40% and a thickness of 0.1 mm cut into a predetermined size was used.
  • the laminated structure of the glass ceramic layers is not limited to the lamination of sheets, and the same effect can be obtained even by a paste method, a printing method, an aerosol deposition, or the like.
  • a power generation cell having a configuration substantially similar to that of the power generation cell according to the sixth embodiment was produced by integrally firing the following constituent members.
  • Constituent material of separator 3YSZ (ZrO 2 stabilized with Y 2 O 3 added in 3 mol%)
  • the material of the solid oxide electrolyte layer ScSZ (amount of 10 mol% Sc 2 O 3, 1 mol% of ZrO 2 stabilized with CeO 2)
  • Air electrode constituent material La 0.8 Sr 0.2 MnO 3 powder 60% by mass and ScSZ 40% by mass of carbon powder added 30% by mass
  • Fuel electrode constituent material NiO 65% by mass And 30% by mass of carbon powder with respect to a mixture of 35% by mass of ScSZ.
  • Constituent material of the interconnector on the fuel electrode side Mixture of 70% by mass of NiO and 30% by mass of TiO 2
  • Constituent material of connector Pd—Ag alloy with Pd content of 30 mass%
  • Interconnector diameter 0.2 mm
  • Fuel electrode thickness 30 ⁇ m
  • Air electrode thickness 30 ⁇ m
  • Solid oxide electrolyte layer thickness 30 ⁇ m
  • Thickness of flow path forming member 240 ⁇ m
  • Separator body thickness 360 ⁇ m Press conditions before firing: 1000 kgf / cm 2 Firing temperature: 1150 ° C
  • Example 2 A fuel cell was fabricated in the same manner as in Example 1 except that a punching metal (Fe-22Cr ferrite alloy) with a porosity of 40% and a thickness of 0.1 mm cut into a predetermined size was used for the constraining layer. did.
  • a punching metal Fe-22Cr ferrite alloy
  • Example 3 A fuel cell was produced in the same manner as in Example 1 except that a foamed silver sheet having a porosity of 80% and a thickness of 0.3 mm cut to a predetermined size was used for the constraining layer.
  • Example 4 A fuel cell was produced in the same manner as in Example 1 except that a 40 mesh wire mesh knitted with a 0.15 mm silver wire cut to a predetermined size was used as the constraining layer.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Provided is a bonding member that is for a solid oxide fuel cell and that has a high bonding strength, has a low contraction in the direction parallel to the bonding interface when bonding, and is able to suppress damage to the bonding member and the occurrence of warping. The bonding member (1) for a solid oxide fuel cell is provided with a glass ceramic layer (10) and a constrained layer (11). The glass ceramic layer (10) contains a glass ceramic. The constrained layer (11) is layered on the glass ceramic layer (10). The constrained layer (11) comprises a metal sheet having a plurality of holes.

Description

固体酸化物形燃料電池用接合材、固体酸化物形燃料電池及び固体酸化物形燃料電池モジュールSolid oxide fuel cell bonding material, solid oxide fuel cell, and solid oxide fuel cell module
 本発明は、固体酸化物形燃料電池用接合材、固体酸化物形燃料電池及び固体酸化物形燃料電池モジュールに関する。 The present invention relates to a solid oxide fuel cell bonding material, a solid oxide fuel cell, and a solid oxide fuel cell module.
 近年、新たなエネルギー源として、燃料電池に対する注目が大きくなってきている。燃料電池には、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)、溶融炭酸塩形燃料電池、リン酸形燃料電池、固体高分子形燃料電池等がある。これらの燃料電池の中でも、固体酸化物形燃料電池では、液体の構成要素を用いる必要が必ずしもなく、炭化水素燃料を用いるときに内部での改質も可能である。このため、固体酸化物形燃料電池に対する研究開発が盛んに行われている。 In recent years, attention has been paid to fuel cells as a new energy source. Examples of the fuel cell include a solid oxide fuel cell (SOFC), a molten carbonate fuel cell, a phosphoric acid fuel cell, and a polymer electrolyte fuel cell. Among these fuel cells, solid oxide fuel cells do not necessarily require liquid components, and can be reformed internally when using hydrocarbon fuel. For this reason, research and development on solid oxide fuel cells are actively conducted.
 固体酸化物形燃料電池では、例えば、発電要素とセパレータとの接合などに接合材が用いられている。この接合材の具体例として、例えば下記の特許文献1には、ガラスを主成分とする固体酸化物形燃料電池用の接合材が記載されている。 In a solid oxide fuel cell, for example, a joining material is used for joining a power generation element and a separator. As a specific example of this bonding material, for example, the following Patent Document 1 describes a bonding material for a solid oxide fuel cell mainly composed of glass.
特開2011-34874号公報JP 2011-34874 A
 しかしながら、特許文献1に記載の接合材は、部材を接合するために加熱した際に接合界面に平行な方向にも収縮する。このため、被接合部材に応力が加わり、例えば反りが発生したり、接合材が損傷したりする場合がある。 However, the bonding material described in Patent Document 1 also shrinks in a direction parallel to the bonding interface when heated to bond the members. For this reason, stress is applied to the members to be joined, for example, warping may occur or the joining material may be damaged.
 本発明は、斯かる点に鑑みてなされたものであり、その目的は、高い接合力を有し、且つ接合時における接合界面に平行な方向への収縮が小さい固体酸化物形燃料電池用接合材を提供することにある。 The present invention has been made in view of such points, and an object of the present invention is to join a solid oxide fuel cell having a high joining force and a small shrinkage in a direction parallel to the joining interface at the time of joining. To provide materials.
 本発明に係る固体酸化物形燃料電池用接合材は、ガラスセラミック層と、拘束層とを備えている。ガラスセラミック層は、ガラスセラミックスを含む。拘束層は、ガラスセラミック層の上に積層されている。拘束層は、複数の孔を有する金属板からなる。 The solid oxide fuel cell bonding material according to the present invention includes a glass ceramic layer and a constraining layer. The glass ceramic layer includes glass ceramics. The constraining layer is laminated on the glass ceramic layer. The constraining layer is made of a metal plate having a plurality of holes.
 本発明に係る固体酸化物形燃料電池用接合材のある特定の局面では、拘束層は、エキスパンドメタル、パンチングメタル、金網または発泡金属からなる。 In a specific aspect of the solid oxide fuel cell bonding material according to the present invention, the constraining layer is made of expanded metal, punching metal, wire mesh, or foam metal.
 ここで、「エキスパンドメタル」とは、一の方向に延び、かつ一の方向に沿って間隔をおいて配列された複数の線状の切り込みを有する切り込み群が、一の方向に対して垂直な他の方向に沿って間隔をおいて複数配列されており、切り込みが他の方向に沿って千鳥状である金属板を、他の方向に延伸してなるものであり、四辺形状や多角形状の開口が斜方行列状に形成された金属板をいう。 Here, “expanded metal” refers to a group of cuts having a plurality of linear cuts extending in one direction and arranged at intervals along one direction, and perpendicular to the one direction. A plurality of metal plates that are arranged at intervals along the other direction, and the cuts are staggered along the other direction, are formed by extending in the other direction. A metal plate having openings formed in an oblique matrix.
 「パンチングメタル」とは、所定の間隔をおいてマトリクス状に形成された複数の開口が形成された金属板をいう。 “Punching metal” refers to a metal plate having a plurality of openings formed in a matrix at predetermined intervals.
 「金網」とは、一の方向に延び、一の方向に対して垂直な他の方向に沿って相互に間隔をおいて配列された複数の第1の金属線と、他の方向に延び、一の方向に沿って相互に間隔をおいて配列されており、複数の第1の金属線と交差している複数の第2の金属線とを有し、複数の第1の金属線と複数の第2の金属線とが一の方向及び他の方向に垂直な厚み方向において固定されている部材をいう。「金網」には、複数の第1の金属線と、複数の第2の金属線とが編まれた部材と、複数の第1の金属線と、複数の第2の金属線とが溶接等によって固定されており、編まれていない部材との両方が含まれる。 The “wire mesh” is a plurality of first metal lines that extend in one direction and are spaced apart from each other along another direction perpendicular to the one direction, and extend in the other direction. A plurality of second metal lines that are arranged at intervals along one direction and intersect with the plurality of first metal lines, and the plurality of first metal lines and the plurality of first metal lines The second metal wire is a member fixed in the thickness direction perpendicular to one direction and the other direction. In the “wire mesh”, a member in which a plurality of first metal wires and a plurality of second metal wires are knitted, a plurality of first metal wires, and a plurality of second metal wires are welded, etc. And both non-knitted members are included.
 「発泡金属」とは、内部に複数の気孔を有する金属部材をいう。発泡金属は、3次元網目状構造を有するものであってもよい。気孔は、連続気孔であってもよいし、閉気孔であってもよい。 “Foamed metal” refers to a metal member having a plurality of pores inside. The foam metal may have a three-dimensional network structure. The pores may be continuous pores or closed pores.
 本発明に係る固体酸化物形燃料電池用接合材の他の特定の局面では、拘束層の融点が900℃以上である。 In another specific aspect of the solid oxide fuel cell bonding material according to the present invention, the constraining layer has a melting point of 900 ° C. or higher.
 本発明に係る固体酸化物形燃料電池用接合材の他の特定の局面では、拘束層は、ガラスセラミック層の焼成温度において融解しない。 In another specific aspect of the solid oxide fuel cell bonding material according to the present invention, the constraining layer does not melt at the firing temperature of the glass ceramic layer.
 ここで、「融解しない」には、「実質的に融解しない」が含まれるものとする。すなわち、「融解しない」とは、複数の貫通孔を有する金属板の形態が保持されることを意味する。 Here, “does not melt” includes “does not substantially melt”. That is, “does not melt” means that the form of the metal plate having a plurality of through holes is maintained.
 本発明に係る固体酸化物形燃料電池用接合材の別の特定の局面では、ガラスセラミックスは、シリカ、バリウム酸化物及びアルミナを含む。 In another specific aspect of the solid oxide fuel cell bonding material according to the present invention, the glass ceramic includes silica, barium oxide, and alumina.
 本発明に係る固体酸化物形燃料電池用接合材のさらに他の特定の局面では、ガラスセラミックスは、SiをSiO換算で48質量%~75質量%と、BaをBaO換算で20質量%~40質量%と、AlをAl換算で5質量%~20質量%とを含む。 In still another specific aspect of the solid oxide fuel cell bonding material according to the present invention, the glass-ceramics include 48 mass% to 75 mass% of Si in terms of SiO 2 and 20 mass% of Ba in terms of BaO. 40% by mass and 5% by mass to 20% by mass in terms of Al 2 O 3 .
 本発明に係る固体酸化物形燃料電池用接合材のさらに別の特定の局面では、ガラスセラミック層は、拘束層の一の主面の上に設けられた第1のガラスセラミック層と、拘束層の他の主面の上に設けられた第2のガラスセラミック層とを含む。 In still another specific aspect of the solid oxide fuel cell bonding material according to the present invention, the glass ceramic layer includes a first glass ceramic layer provided on one main surface of the constraining layer, and a constraining layer. And a second glass ceramic layer provided on the other main surface.
 本発明に係る固体酸化物形燃料電池は、上記本発明に係る固体酸化物形燃料電池用接合材が焼成されてなる接合層を備えている。 The solid oxide fuel cell according to the present invention includes a bonding layer formed by firing the solid oxide fuel cell bonding material according to the present invention.
 本発明に係る固体酸化物形燃料電池のある特定の局面では、固体酸化物形燃料電池は、複数の発電セルを備えている。発電セルは、固体酸化物電解質層と、固体酸化物電解質層の一の主面の上に配された空気極と、固体酸化物電解質層の他の主面の上に配された燃料極とを有する。隣り合う発電セルは、接合層により接合されている。 In a specific aspect of the solid oxide fuel cell according to the present invention, the solid oxide fuel cell includes a plurality of power generation cells. The power generation cell includes a solid oxide electrolyte layer, an air electrode disposed on one main surface of the solid oxide electrolyte layer, and a fuel electrode disposed on the other main surface of the solid oxide electrolyte layer. Have Adjacent power generation cells are joined by a joining layer.
 本発明に係る固体酸化物形燃料電池モジュールは、上記本発明に係る固体酸化物形燃料電池用接合材が焼成されてなる接合層を備えている。 The solid oxide fuel cell module according to the present invention includes a bonding layer obtained by firing the solid oxide fuel cell bonding material according to the present invention.
 本発明に係る固体酸化物形燃料電池モジュールのある特定の局面では、固体酸化物形燃料電池モジュールは、燃料電池を備えている。燃料電池は、固体酸化物電解質層と、固体酸化物電解質層の一の主面の上に配された空気極と、固体酸化物電解質層の他の主面の上に配された燃料極とを有する複数の発電セルを備えている。隣り合う発電セルは、接合層により接合されている。 In a specific aspect of the solid oxide fuel cell module according to the present invention, the solid oxide fuel cell module includes a fuel cell. The fuel cell includes a solid oxide electrolyte layer, an air electrode disposed on one main surface of the solid oxide electrolyte layer, and a fuel electrode disposed on the other main surface of the solid oxide electrolyte layer. A plurality of power generation cells. Adjacent power generation cells are joined by a joining layer.
 本発明に係る固体酸化物形燃料電池モジュールの他の特定の局面では、固体酸化物形燃料電池モジュールは、筐体と、筐体内に配置された燃料電池とを備えている。燃料電池と筐体とは、接合層により接合されている。 In another specific aspect of the solid oxide fuel cell module according to the present invention, the solid oxide fuel cell module includes a housing and a fuel cell disposed in the housing. The fuel cell and the casing are joined by a joining layer.
 本発明によれば、高い接合力を有し、且つ接合時における接合界面に平行な方向への収縮が小さく、反りの発生や接合材の損傷を抑制できる固体酸化物形燃料電池用接合材を提供することができる。 According to the present invention, there is provided a bonding material for a solid oxide fuel cell that has a high bonding force and has a small shrinkage in a direction parallel to a bonding interface at the time of bonding, and can suppress generation of warpage and damage to the bonding material. Can be provided.
図1は、第1の実施形態に係る固体酸化物形燃料電池用接合材の略図的断面図である。FIG. 1 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a first embodiment. 図2は、第2の実施形態に係る固体酸化物形燃料電池用接合材の略図的断面図である。FIG. 2 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a second embodiment. 図3は、第3の実施形態に係る固体酸化物形燃料電池用接合材の略図的断面図である。FIG. 3 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a third embodiment. 図4は、第4の実施形態に係る固体酸化物形燃料電池用接合材の略図的断面図である。FIG. 4 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a fourth embodiment. 図5は、第5の実施形態に係る固体酸化物形燃料電池用接合材の略図的断面図である。FIG. 5 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a fifth embodiment. 図6は、第6の実施形態に係る固体酸化物形燃料電池モジュールの模式的側面図である。FIG. 6 is a schematic side view of a solid oxide fuel cell module according to a sixth embodiment. 図7は、第6の実施形態における発電セルの略図的分解斜視図である。FIG. 7 is a schematic exploded perspective view of the power generation cell according to the sixth embodiment. 図8は、第6の実施形態における第1の接合層の略図的断面図である。FIG. 8 is a schematic cross-sectional view of the first bonding layer in the sixth embodiment. 図9は、第6の実施形態における第2の接合層の略図的断面図である。FIG. 9 is a schematic cross-sectional view of the second bonding layer in the sixth embodiment. 図10は、第1の変形例における固体酸化物形燃料電池用接合材の略図的斜視図である。FIG. 10 is a schematic perspective view of a solid oxide fuel cell bonding material according to a first modification. 図11は、第2の変形例における固体酸化物形燃料電池用接合材の略図的斜視図である。FIG. 11 is a schematic perspective view of a solid oxide fuel cell bonding material according to a second modification. 図12は、第3の変形例における固体酸化物形燃料電池用接合材の略図的斜視図である。FIG. 12 is a schematic perspective view of a solid oxide fuel cell bonding material according to a third modification.
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。 Hereinafter, an example of a preferable embodiment in which the present invention is implemented will be described. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。 In each drawing referred to in the embodiment and the like, members having substantially the same function are referred to by the same reference numerals. The drawings referred to in the embodiments and the like are schematically described, and the ratio of the dimensions of the objects drawn in the drawings may be different from the ratio of the dimensions of the actual objects. The dimensional ratio of the object may be different between the drawings. The specific dimensional ratio of the object should be determined in consideration of the following description.
 《第1の実施形態》
 図1は、第1の実施形態に係る固体酸化物形燃料電池用接合材の略図的断面図である。
<< First Embodiment >>
FIG. 1 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a first embodiment.
 図1に示す固体酸化物形燃料電池用接合材1は、固体酸化物形燃料電池に用いられる接合材である。具体的には、接合材1は、例えば、固体酸化物形燃料電池の発電セル同士を接合したり、固体酸化物形燃料電池モジュールの筐体と燃料電池とを接合したりする用途等に用いられる。 1 is a bonding material used for a solid oxide fuel cell. Specifically, the bonding material 1 is used for, for example, a purpose of bonding power generation cells of a solid oxide fuel cell or bonding a casing of a solid oxide fuel cell module and a fuel cell. It is done.
 接合材1は、ガラスセラミック層10と、拘束層11とを有する。 The bonding material 1 has a glass ceramic layer 10 and a constraining layer 11.
 ガラスセラミック層10は、ガラスセラミックスを含む。ガラスセラミック層10は、ガラスセラミックスのみからなるものであってもよいし、ガラスセラミックスに加えて、例えば、非晶質ガラス等を含んでいてもよい。 The glass ceramic layer 10 includes glass ceramics. The glass ceramic layer 10 may be made of only glass ceramics, or may contain, for example, amorphous glass in addition to the glass ceramics.
 ここで、「ガラスセラミックス」とは、ガラスとセラミックスとの混合材料系である。 Here, “glass ceramics” is a mixed material system of glass and ceramics.
 本実施形態において、ガラスセラミックスは、シリカ、バリウム酸化物及びアルミナを含んでいる。ガラスセラミックスは、SiをSiO換算で48質量%~75質量%と、BaをBaO換算で20質量%~40質量%と、AlをAl換算で5質量%~20質量%とを含むものであることが好ましい。ガラスセラミックスは、さらに、MnをMnOに換算して2質量%~10質量%、TiをTiOに換算して0.1質量%~10質量%、及びFeをFeに換算して0.1質量%~10質量%を更に含んでいてもよい。ガラスセラミックスは、実質的にCr酸化物やB酸化物を含まないことが好ましい。この場合、例えば、1100℃以下という温度で焼成可能なガラスセラミックスを得ることができる。 In the present embodiment, the glass ceramic contains silica, barium oxide, and alumina. In the glass ceramic, Si is 48 mass% to 75 mass% in terms of SiO 2 , Ba is 20 mass% to 40 mass% in terms of BaO, and Al is 5 mass% to 20 mass% in terms of Al 2 O 3. It is preferable that it is included. Glass ceramics, further, in terms of 2 mass% to 10 mass% in terms of Mn to MnO, 0.1 wt% to 10 wt% in terms of Ti to TiO 2, and Fe in the Fe 2 O 3 It may further contain 0.1% by mass to 10% by mass. It is preferable that the glass ceramic does not substantially contain Cr oxide or B oxide. In this case, for example, glass ceramics that can be fired at a temperature of 1100 ° C. or lower can be obtained.
 ガラスセラミック層10の厚みは、特に限定されないが、例えば、10μm~150μmであることが好ましく、20μm~50μmであることがより好ましい。 The thickness of the glass ceramic layer 10 is not particularly limited, but is preferably 10 μm to 150 μm, for example, and more preferably 20 μm to 50 μm.
 ガラスセラミック層10の上には、拘束層11が積層されている。本実施形態では、拘束層11と、ガラスセラミック層10とは直接接触している。 A constraining layer 11 is laminated on the glass ceramic layer 10. In the present embodiment, the constraining layer 11 and the glass ceramic layer 10 are in direct contact.
 拘束層11は、複数の孔を有する金属板からなる。拘束層11は、厚み方向(z方向)に貫通する複数の貫通孔が形成された金属板からなるものであってもよい。具体的には、拘束層11は、例えば、エキスパンドメタル、パンチングメタル、金網、発泡金属等により構成することができる。 The constraining layer 11 is made of a metal plate having a plurality of holes. The constraining layer 11 may be made of a metal plate in which a plurality of through holes penetrating in the thickness direction (z direction) are formed. Specifically, the constraining layer 11 can be made of, for example, expanded metal, punching metal, wire mesh, foam metal, or the like.
 なお、拘束層11にエキスパンドメタル等の気孔を有する金属を使用することにより、ガラスセラミック層10の一部が拘束層11に拡散・流動し、被接合部材と拘束層11とが接合される。 In addition, by using a metal having pores such as expanded metal for the constraining layer 11, a part of the glass ceramic layer 10 diffuses and flows into the constraining layer 11, and the member to be joined and the constraining layer 11 are joined.
 エキスパンドメタルは、空隙率が、30%~86%で、線幅が、30μm~250μmで、厚みが30μm~500μmであるものであることが好ましい。 The expanded metal preferably has a porosity of 30% to 86%, a line width of 30 μm to 250 μm, and a thickness of 30 μm to 500 μm.
 パンチングメタルは、空隙率が、10%~60%で、開口の直径が、50μm~1000μmで、厚みが30μm~250μmであるものであることが好ましい。 The punching metal preferably has a porosity of 10% to 60%, an opening diameter of 50 μm to 1000 μm, and a thickness of 30 μm to 250 μm.
 金網は、空隙率が、50%~85%で、線径が50μm~200μmであるものであることが好ましい。 The wire mesh preferably has a porosity of 50% to 85% and a wire diameter of 50 μm to 200 μm.
 発泡金属は、空隙率が、10%~70%であるものであることが好ましい。 The foam metal preferably has a porosity of 10% to 70%.
 拘束層11は、融点が900℃以上であり、ガラスセラミック層10の焼成温度において実質的に融解しないものであることが好ましい。このため、拘束層11は、例えば、ステンレス、銀、金、ニッケル等の高融点金属からなることが好ましい。拘束層11の融点は、1100℃以上であることがより好ましい。 The constraining layer 11 preferably has a melting point of 900 ° C. or higher and does not substantially melt at the firing temperature of the glass ceramic layer 10. For this reason, it is preferable that the constrained layer 11 consists of high melting point metals, such as stainless steel, silver, gold | metal | money, nickel, for example. The melting point of the constraining layer 11 is more preferably 1100 ° C. or higher.
 拘束層11の厚みは、30μm~500μmであることが好ましく、50μm~300μmであることがより好ましい。拘束層11の厚みが30μm未満であると、面方向への収縮抑制効果が低減してしまう場合がある。拘束層11の厚みが500μmを超えると、固体酸化物形燃料電池の低背化に対して不利である。 The thickness of the constraining layer 11 is preferably 30 μm to 500 μm, and more preferably 50 μm to 300 μm. If the thickness of the constraining layer 11 is less than 30 μm, the effect of suppressing shrinkage in the surface direction may be reduced. When the thickness of the constraining layer 11 exceeds 500 μm, it is disadvantageous for the reduction in the height of the solid oxide fuel cell.
 ところで、接合材を、ガラスセラミック層のみにより構成することも考えられる。この場合であっても、優れた接合性を実現することができる。 By the way, it is conceivable that the bonding material is composed only of a glass ceramic layer. Even in this case, excellent bondability can be realized.
 しかしながら、ガラスセラミック層のみからなる接合材は、焼成時に面方向にも収縮する。このため、被接合材や、ガラスセラミック層が焼成されてなる接合層に大きな応力が生じる。よって、被接合材が反ったり、被接合材や接合層にクラック等が発生したりする場合がある。また、接合材が被接合材から剥離しやすい。すなわち、十分な接合強度が得難い。 However, the bonding material consisting only of the glass ceramic layer also shrinks in the plane direction during firing. For this reason, a big stress arises in a to-be-joined material and the joining layer formed by baking a glass ceramic layer. Therefore, the material to be bonded may be warped, or a crack or the like may occur in the material to be bonded or the bonding layer. Further, the bonding material is easily peeled off from the material to be bonded. That is, it is difficult to obtain sufficient bonding strength.
 それに対して本実施形態では、ガラスセラミック層10の上に、厚み方向に貫通する複数の貫通孔が形成された金属板からなる拘束層11が積層されている。この拘束層11により、ガラスセラミック層10の焼成時の面方向における収縮が抑制される。よって、本実施形態の接合材1を用いた場合は、接合材1の焼成時においても、面方向において、それほど収縮しない。従って、被接合材や接合層に応力が加わることを抑制することができる。その結果、被接合材の反りや、被接合材及び接合層にクラックが発生することを抑制することができる。また、被接合材同士を高い接合強度で接合することができる。つまり、本実施形態の接合材1は、優れた接合性を有しており、且つ焼成時における収縮が小さいものである。 In contrast, in the present embodiment, a constraining layer 11 made of a metal plate in which a plurality of through holes penetrating in the thickness direction is formed is laminated on the glass ceramic layer 10. The constraining layer 11 suppresses shrinkage in the surface direction when the glass ceramic layer 10 is fired. Therefore, when the bonding material 1 of the present embodiment is used, even when the bonding material 1 is baked, the bonding material 1 does not shrink so much in the surface direction. Therefore, it can suppress that a stress is added to a to-be-joined material and a joining layer. As a result, it is possible to suppress warpage of the material to be bonded and occurrence of cracks in the material to be bonded and the bonding layer. Further, the materials to be joined can be joined with high joining strength. That is, the bonding material 1 of the present embodiment has excellent bonding properties and has a small shrinkage during firing.
 なお、本実施形態の接合材1のように、片側に拘束層が露出している場合であっても、ボルトなどを用いることにより十分な接合強度を得ることができる。 Even when the constraining layer is exposed on one side as in the bonding material 1 of the present embodiment, sufficient bonding strength can be obtained by using a bolt or the like.
 以下、本発明を実施した好ましい形態の他の例について説明する。以下の説明において、第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。 Hereinafter, other examples of preferred embodiments in which the present invention is implemented will be described. In the following description, members having substantially the same functions as those of the first embodiment are referred to by common reference numerals, and description thereof is omitted.
 《第2~第5の実施形態》
 図2は、第2の実施形態に係る固体酸化物形燃料電池用接合材の略図的断面図である。図3は、第3の実施形態に係る固体酸化物形燃料電池用接合材の略図的断面図である。図4は、第4の実施形態に係る固体酸化物形燃料電池用接合材の略図的断面図である。図5は、第5の実施形態に係る固体酸化物形燃料電池用接合材の略図的断面図である。
<< Second to Fifth Embodiments >>
FIG. 2 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a second embodiment. FIG. 3 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a third embodiment. FIG. 4 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a fourth embodiment. FIG. 5 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a fifth embodiment.
 第1の実施形態では、1層のガラスセラミック層10と、1層の拘束層11との積層体により接合材1が構成されている例について説明した。但し、本発明は、この構成に限定されない。 1st Embodiment demonstrated the example in which the bonding | jointing material 1 was comprised by the laminated body of the glass-ceramic layer 10 of one layer, and the constrained layer 11 of one layer. However, the present invention is not limited to this configuration.
 例えば図2~図5に示すように、ガラスセラミック層10と拘束層11とのうちの少なくとも一方が複数設けられていてもよい。 For example, as shown in FIGS. 2 to 5, a plurality of at least one of the glass ceramic layer 10 and the constraining layer 11 may be provided.
 図2に示す例では、拘束層11の一の主面の上に第1のガラスセラミック層10aが設けられており、他の主面の上に第2のガラスセラミック層10bが設けられている。よって、接合材の両表面が、ガラスセラミック層により構成されている。従って、接合材の一の主面に接合される被接合材と接合材との接合強度と、接合材の他の主面に接合される被接合材と接合材との接合強度との両方をより高めることができる。 In the example shown in FIG. 2, the first glass ceramic layer 10a is provided on one main surface of the constraining layer 11, and the second glass ceramic layer 10b is provided on the other main surface. . Therefore, both surfaces of the bonding material are composed of glass ceramic layers. Accordingly, both the bonding strength between the bonding material to be bonded to one main surface of the bonding material and the bonding material, and the bonding strength between the bonding material to be bonded to the other main surface of the bonding material and the bonding material. Can be increased.
 図3に示す例では、ガラスセラミック層10の両側に拘束層11a、11bが設けられている。すなわち、ガラスセラミック層10が拘束層11a、11bにより狭持されている。従って、ガラスセラミック層10の焼成時における収縮をより効果的に抑制することができる。 In the example shown in FIG. 3, constraining layers 11 a and 11 b are provided on both sides of the glass ceramic layer 10. That is, the glass ceramic layer 10 is sandwiched between the constraining layers 11a and 11b. Therefore, shrinkage during firing of the glass ceramic layer 10 can be more effectively suppressed.
 図4に示す例では、3つのガラスセラミック層10a~10cの間に2つの拘束層11a、11bが配されている。このため、接合材の両表面が、ガラスセラミック層により構成されている。従って、接合材の一の主面に接合される被接合材と接合材との接合強度と、接合材の他の主面に接合される被接合材と接合材との接合強度との両方をより高めることができる。また、ガラスセラミック層の数に対する拘束層の数が、図2に示す接合材よりも多いため、ガラスセラミック層10a~10cの焼成時における収縮をより効果的に抑制することができる。 In the example shown in FIG. 4, two constraining layers 11a and 11b are arranged between three glass ceramic layers 10a to 10c. For this reason, both surfaces of the bonding material are composed of glass ceramic layers. Accordingly, both the bonding strength between the bonding material to be bonded to one main surface of the bonding material and the bonding material, and the bonding strength between the bonding material to be bonded to the other main surface of the bonding material and the bonding material. Can be increased. Further, since the number of constraining layers relative to the number of glass ceramic layers is larger than that of the bonding material shown in FIG. 2, shrinkage during firing of the glass ceramic layers 10a to 10c can be more effectively suppressed.
 図5に示す例では、2つのガラスセラミック層10a、10bと、2つの拘束層11a、11bとが交互に積層されている。この接合材であっても、第1の実施形態に係る接合材1と同様の効果が奏される。また、接合材の厚みを調整することも可能である。 In the example shown in FIG. 5, two glass ceramic layers 10a and 10b and two constraining layers 11a and 11b are alternately laminated. Even if it is this joining material, the effect similar to the joining material 1 which concerns on 1st Embodiment is show | played. It is also possible to adjust the thickness of the bonding material.
 《第6の実施形態》
 図6は、第6の実施形態に係る固体酸化物形燃料電池モジュールの模式的側面図である。
<< Sixth Embodiment >>
FIG. 6 is a schematic side view of a solid oxide fuel cell module according to a sixth embodiment.
 図6に示すように、固体酸化物形燃料電池モジュール(ホットモジュールとも言う。)3は、筐体3aを備えている。筐体3aの内部には、固体酸化物形燃料電池2が配置されている。 As shown in FIG. 6, the solid oxide fuel cell module (also referred to as a hot module) 3 includes a housing 3a. A solid oxide fuel cell 2 is disposed inside the housing 3a.
 燃料電池2は、複数の発電セル20を有する。具体的には、燃料電池2は、2つの発電セル20を有する。 The fuel cell 2 has a plurality of power generation cells 20. Specifically, the fuel cell 2 has two power generation cells 20.
 図7は、第6の実施形態における発電セルの略図的分解斜視図である。図7に示すように、発電セル20は、第1のセパレータ40と、発電要素46と、第2のセパレータ50とを有する。発電セル20では、第1のセパレータ40と、発電要素46と、第2のセパレータ50とがこの順番で積層されている。 FIG. 7 is a schematic exploded perspective view of the power generation cell according to the sixth embodiment. As shown in FIG. 7, the power generation cell 20 includes a first separator 40, a power generation element 46, and a second separator 50. In the power generation cell 20, the first separator 40, the power generation element 46, and the second separator 50 are stacked in this order.
 (発電要素46)
 発電要素46は、有酸素ガス用マニホールド44から供給される有酸素ガスと、燃料用マニホールド45から供給される燃料ガスとが反応し、発電が行われる部分である。ここで、有酸素ガスは、例えば酸素や空気などの有酸素ガスにより構成することができる。また、燃料ガスは、水素ガスや、メタンガスなどの炭化水素ガス等を含むガスとすることができる。
(Power generation element 46)
The power generation element 46 is a portion where the aerobic gas supplied from the aerobic gas manifold 44 and the fuel gas supplied from the fuel manifold 45 react to generate power. Here, the aerobic gas can be composed of an aerobic gas such as oxygen or air. The fuel gas may be a gas containing hydrogen gas or hydrocarbon gas such as methane gas.
 (固体酸化物電解質層47)
 発電要素46は、固体酸化物電解質層47を備えている。固体酸化物電解質層47は、イオン導電性が高いものであることが好ましい。固体酸化物電解質層47は、例えば、安定化ジルコニアや、部分安定化ジルコニアなどにより形成することができる。安定化ジルコニアの具体例としては、10mol%イットリア安定化ジルコニア(10YSZ)、11mol%スカンジア安定化ジルコニア(11ScSZ)等が挙げられる。部分安定化ジルコニアの具体例としては、3mol%イットリア部分安定化ジルコニア(3YSZ)、等が挙げられる。また、固体酸化物電解質層47は、例えば、SmやGd等がドープされたセリア系酸化物や、LaGaOを母体とし、LaとGaとの一部をそれぞれSr及びMgで置換したLa0.8Sr0.2Ga0.8Mg0.2(3-δ)などのペロブスカイト型酸化物などにより形成することもできる。
(Solid oxide electrolyte layer 47)
The power generation element 46 includes a solid oxide electrolyte layer 47. It is preferable that the solid oxide electrolyte layer 47 has high ionic conductivity. The solid oxide electrolyte layer 47 can be formed of, for example, stabilized zirconia or partially stabilized zirconia. Specific examples of the stabilized zirconia include 10 mol% yttria stabilized zirconia (10YSZ), 11 mol% scandia stabilized zirconia (11ScSZ), and the like. Specific examples of the partially stabilized zirconia include 3 mol% yttria partially stabilized zirconia (3YSZ). Further, the solid oxide electrolyte layer 47 is, for example, Sm and Gd or the like ceria oxides doped, a LaGaO 3 as a host, La 0 the part of the La and Ga was substituted with Sr and Mg, respectively. It can also be formed of a perovskite oxide such as 8 Sr 0.2 Ga 0.8 Mg 0.2 O (3-δ) .
 固体酸化物電解質層47は、空気極層48と燃料極層49とにより挟持されている。すなわち、固体酸化物電解質層47の一主面の上に空気極層48が形成されており、他主面の上に燃料極層49が形成されている。 The solid oxide electrolyte layer 47 is sandwiched between the air electrode layer 48 and the fuel electrode layer 49. That is, the air electrode layer 48 is formed on one main surface of the solid oxide electrolyte layer 47, and the fuel electrode layer 49 is formed on the other main surface.
 (空気極層48)
 空気極層48は、空気極48aを有する。空気極48aは、カソードである。空気極48aにおいては、酸素が電子を取り込んで、酸素イオンが形成される。空気極48aは、多孔質で、電子伝導性が高く、かつ、高温において固体酸化物電解質層47等と固体間反応を起こしにくいものであることが好ましい。空気極48aは、例えば、スカンジア安定化ジルコニア(ScSZ)、Snをドープした酸化インジウム、PrCoO系酸化物、LaCoO系酸化物、LaMnO系酸化物などにより形成することができる。LaMnO系酸化物の具体例としては、例えば、La0.8Sr0.2MnO(通称:LSM)、La0.8Sr0.2Co0.2Fe0.8(通称:LSCF)や、La0.6Ca0.4MnO(通称:LCM)等が挙げられる。空気極48aは、上記材料の2種以上を混合した混合材料により構成されていてもよい。
(Air electrode layer 48)
The air electrode layer 48 has an air electrode 48a. The air electrode 48a is a cathode. In the air electrode 48a, oxygen takes in electrons and oxygen ions are formed. The air electrode 48a is preferably porous, has high electron conductivity, and does not easily cause a solid-solid reaction with the solid oxide electrolyte layer 47 and the like at a high temperature. The air electrode 48a can be formed of, for example, scandia-stabilized zirconia (ScSZ), Sn-doped indium oxide, PrCoO 3 oxide, LaCoO 3 oxide, LaMnO 3 oxide, or the like. Specific examples of LaMnO 3 -based oxides include, for example, La 0.8 Sr 0.2 MnO 3 (common name: LSM), La 0.8 Sr 0.2 Co 0.2 Fe 0.8 O 3 (common name: LSCF) and La 0.6 Ca 0.4 MnO 3 (common name: LCM). The air electrode 48a may be made of a mixed material obtained by mixing two or more of the above materials.
 (燃料極層49)
 燃料極層49は、燃料極49aを有する。燃料極49aは、アノードである。燃料極49aにおいては、酸素イオンと燃料ガスとが反応して電子を放出する。燃料極49aは、多孔質で、電子伝導性が高く、かつ、高温において固体酸化物電解質層47等と固体間反応を起こしにくいものであることが好ましい。燃料極49aは、例えば、NiO、イットリア安定化ジルコニア(YSZ)・ニッケル金属の多孔質サーメットや、スカンジア安定化ジルコニア(ScSZ)・ニッケル金属の多孔質サーメット等により構成することができる。燃料極層49は、上記材料の2種以上を混合した混合材料により構成されていてもよい。
(Fuel electrode layer 49)
The fuel electrode layer 49 has a fuel electrode 49a. The fuel electrode 49a is an anode. In the fuel electrode 49a, oxygen ions and fuel gas react to emit electrons. The fuel electrode 49a is preferably porous, has high electron conductivity, and does not easily cause a solid-solid reaction with the solid oxide electrolyte layer 47 and the like at a high temperature. The fuel electrode 49a can be composed of, for example, NiO, yttria stabilized zirconia (YSZ) / nickel metal porous cermet, scandia stabilized zirconia (ScSZ) / nickel metal porous cermet, or the like. The fuel electrode layer 49 may be made of a mixed material obtained by mixing two or more of the above materials.
 (第1のセパレータ40)
 発電要素46の空気極層48の上には、第1のセパレータ本体41と、第1の流路形成部材42とにより構成されている第1のセパレータ40が配置されている。第1のセパレータ40には、空気極48aに有酸素ガスを供給するための有酸素ガス流路43が形成されている。この有酸素ガス流路43は、有酸素ガス用マニホールド44からx方向のx1側からx2側に向かって延びている。
(First separator 40)
On the air electrode layer 48 of the power generation element 46, the first separator 40 constituted by the first separator body 41 and the first flow path forming member 42 is disposed. The first separator 40 is formed with an aerobic gas channel 43 for supplying an aerobic gas to the air electrode 48a. The aerobic gas passage 43 extends from the aerobic gas manifold 44 toward the x2 side from the x1 side in the x direction.
 第1のセパレータ40の構成材料は、特に限定されない。第1のセパレータ40は、例えば、イットリア安定化ジルコニアなどの安定化ジルコニアや、部分安定化ジルコニア等により形成することができる。 The constituent material of the first separator 40 is not particularly limited. The first separator 40 can be formed of, for example, stabilized zirconia such as yttria stabilized zirconia, partially stabilized zirconia, or the like.
 (第2のセパレータ50)
 発電要素46の燃料極層49の上には、第2のセパレータ本体51と、第2の流路形成部材52とにより構成されている第2のセパレータ50が配置されている。第2のセパレータ50には、燃料極49aに燃料ガスを供給するための燃料ガス流路53が形成されている。この燃料ガス流路53は、燃料ガス用マニホールド45からy方向のy1側からy2側に向かって延びている。
(Second separator 50)
On the fuel electrode layer 49 of the power generation element 46, a second separator 50 constituted by a second separator body 51 and a second flow path forming member 52 is disposed. The second separator 50 is formed with a fuel gas passage 53 for supplying fuel gas to the fuel electrode 49a. The fuel gas channel 53 extends from the fuel gas manifold 45 toward the y2 side from the y1 side in the y direction.
 第2のセパレータ50の構成材料は、特に限定されない。第2のセパレータ50は、例えば、安定化ジルコニアや、部分安定化ジルコニア等により形成することができる。 The constituent material of the second separator 50 is not particularly limited. The second separator 50 can be formed of, for example, stabilized zirconia, partially stabilized zirconia, or the like.
 第1及び第2のセパレータ40,50のそれぞれには、空気極48aまたは燃料極49aに接続されたビアホール電極40a、50aが形成されている。このビアホール電極40a、50aにより、空気極48a、燃料極49aが発電セル20外に引き出されている。 In each of the first and second separators 40 and 50, via- hole electrodes 40a and 50a connected to the air electrode 48a or the fuel electrode 49a are formed. The air electrode 48a and the fuel electrode 49a are drawn out of the power generation cell 20 by the via- hole electrodes 40a and 50a.
 本実施形態では、2つの発電セル20は、第2の実施形態において説明した接合材を用いて接合されている。具体的には、第2の実施形態の接合材が焼成されてなる第1の接合層21aによって接合されている。 In the present embodiment, the two power generation cells 20 are bonded using the bonding material described in the second embodiment. Specifically, the bonding material of the second embodiment is bonded by the first bonding layer 21a formed by firing.
 図8は、第6の実施形態における第1の接合層の略図的断面図である。図8に示すように、第1の接合層21aは、ガラスセラミック層10が焼成されてなる2つの焼成層22と、拘束層11との積層体により構成されている。拘束層11は、2つの焼成層22により挟持されている。 FIG. 8 is a schematic cross-sectional view of the first bonding layer in the sixth embodiment. As shown in FIG. 8, the first bonding layer 21 a is configured by a laminate of the two fired layers 22 obtained by firing the glass ceramic layer 10 and the constraining layer 11. The constraining layer 11 is sandwiched between two fired layers 22.
 図6に示すように、燃料電池2は、筐体3aに接合されている。燃料電池2と筐体3aとは、第2の接合層21bによって接合されている。 As shown in FIG. 6, the fuel cell 2 is joined to the housing 3a. The fuel cell 2 and the housing 3a are joined by a second joining layer 21b.
 図9は、第6の実施形態における第2の接合層の略図的断面図である。図9に示すように、第2の接合層21bも、第1の接合層21aと同様に、第2の実施形態の接合材が焼成されてなるものである。第2の接合層21bは、ガラスセラミック層10が焼成されてなる2つの焼成層22と、拘束層11との積層体により構成されている。 FIG. 9 is a schematic cross-sectional view of the second bonding layer in the sixth embodiment. As shown in FIG. 9, the second bonding layer 21b is formed by firing the bonding material of the second embodiment, similarly to the first bonding layer 21a. The second bonding layer 21 b is configured by a laminate of the two fired layers 22 obtained by firing the glass ceramic layer 10 and the constraining layer 11.
 以上説明したように、本実施形態では、隣り合う発電セル20が、接合材1が焼成されてなる第1の接合層21aによって接合されている。また、燃料電池2と筐体3aとは、接合材1が焼成されてなる第2の接合層21bによって接合されている。このため、発電セル20の反りや、発電セル20にクラックが生じることを抑制することができる。 As described above, in the present embodiment, the adjacent power generation cells 20 are joined by the first joining layer 21 a formed by firing the joining material 1. The fuel cell 2 and the housing 3a are joined together by a second joining layer 21b formed by firing the joining material 1. For this reason, it is possible to suppress the warpage of the power generation cell 20 and the generation of cracks in the power generation cell 20.
 なお、本実施形態では、接合層21a、21bが、接合材1が接合されたものである例について説明した。但し、本発明は、この構成に限定されない。接合層は、例えば、第2~第5の実施形態に係る接合材が焼成されたものであってもよい。 In the present embodiment, the example in which the bonding layers 21a and 21b are formed by bonding the bonding material 1 has been described. However, the present invention is not limited to this configuration. For example, the bonding layer may be obtained by firing the bonding materials according to the second to fifth embodiments.
 図10に示されるように、固体酸化物形燃料電池用接合材は、平面視U字状に設けられていてもよい。図11に示されるように、固体酸化物形燃料電池用接合材は、平面視L字状に設けられていてもよい。図12に示されるように、固体酸化物形燃料電池用接合材は、環状に設けられていてもよい。 As shown in FIG. 10, the solid oxide fuel cell bonding material may be provided in a U shape in plan view. As shown in FIG. 11, the solid oxide fuel cell bonding material may be provided in an L shape in plan view. As shown in FIG. 12, the solid oxide fuel cell bonding material may be provided in an annular shape.
 (実施例1)
 (固体酸化物形燃料電池用接合材の作製)
 実施例1では、図2に示す固体酸化物形燃料電池用接合材を作製した。ガラスセラミック層となるガラスセラミックグリーンシートを作製した。
Example 1
(Preparation of solid oxide fuel cell bonding material)
In Example 1, the solid oxide fuel cell bonding material shown in FIG. 2 was produced. A glass ceramic green sheet to be a glass ceramic layer was produced.
 まず、組成がSiO:57.0質量%、BaO:31.0質量%、Al:12.0質量%のガラスセラミックスに対して、バインダとしてポリビニルブチラールと可塑剤としてジ―n-ブチルフタレートと、溶剤としてトルエンおよびイソプロピレンアルコールとを加えることによりスラリーを作製した。そのスラリーを用いて、ドクターブレード法によりガラスセラミック層のセラミックグリーンシートを作製した。ガラスセラミック層のセラミックグリーンシートの厚みは60μmとした。そのガラスセラミック層のセラミックグリーンシートを積層することにより得た積層体を50℃の温度で500kgf/cmの圧力でプレスし、ガラスセラミック層を2枚作製した。 First, polyvinyl butyral as a binder and di-n-as a plasticizer with respect to glass ceramics having a composition of SiO 2 : 57.0 mass%, BaO: 31.0 mass%, and Al 2 O 3 : 12.0 mass%. A slurry was prepared by adding butyl phthalate and toluene and isopropylene alcohol as solvents. Using the slurry, a ceramic green sheet having a glass ceramic layer was produced by a doctor blade method. The thickness of the ceramic green sheet of the glass ceramic layer was 60 μm. The laminate obtained by laminating the ceramic green sheets of the glass ceramic layer was pressed at a temperature of 50 ° C. and a pressure of 500 kgf / cm 2 to produce two glass ceramic layers.
 次に、作製したガラスセラミック層、拘束層とガラスセラミック層をこの順に積層することにより得た積層体を50℃の温度で500kgf/cmの圧力でプレスし、ガラスセラミック層と拘束層の積層体である固体酸化物形燃料電池用接合材を作製した。 Next, the laminated body obtained by laminating the produced glass ceramic layer, the constraining layer and the glass ceramic layer in this order is pressed at a temperature of 50 ° C. and a pressure of 500 kgf / cm 2 to laminate the glass ceramic layer and the constraining layer. A solid oxide fuel cell bonding material was produced.
 なお、拘束層には、所定の大きさに切り取った、空隙率40%、厚み0.1mmのエキスパンドメタル(Fe-22Cr系フェライト合金)を使用した。 For the constraining layer, an expanded metal (Fe-22Cr ferrite alloy) having a porosity of 40% and a thickness of 0.1 mm cut into a predetermined size was used.
 また、ガラスセラミック層の積層構造は、シートの積層に限定されるものではなく、ペースト工法、印刷工法、エアロゾルデポジション等であっても同様の効果が得られる。 Further, the laminated structure of the glass ceramic layers is not limited to the lamination of sheets, and the same effect can be obtained even by a paste method, a printing method, an aerosol deposition, or the like.
 (発電セルの作製)
 下記に示す条件で、上記第6の実施形態に係る発電セルと実質的に同様の構成を有する発電セルを下記に示す構成部材を一体焼成することにより作製した。
(Production of power generation cell)
Under the conditions shown below, a power generation cell having a configuration substantially similar to that of the power generation cell according to the sixth embodiment was produced by integrally firing the following constituent members.
 セパレータの構成材料:3YSZ(添加量3モル%のYで安定化されたZrO
 固体酸化物電解質層の構成材料:ScSZ(添加量10モル%のSc、1モル%のCeOで安定化されたZrO
 空気極の構成材料:La0.8Sr0.2MnO粉末60質量%と、ScSZ40質量%との混合物に対してカーボン粉末を30質量%添加したもの
 燃料極の構成材料:NiO 65質量%と、ScSZ 35質量%との混合物に対してカーボン粉末を30質量%添加したもの
 燃料極側のインターコネクタの構成材料:NiO 70質量%と、TiO 30質量%との混合物
 空気極側のインターコネクタの構成材料:Pdの含有量が30質量%であるPd-Ag合金
Constituent material of separator: 3YSZ (ZrO 2 stabilized with Y 2 O 3 added in 3 mol%)
The material of the solid oxide electrolyte layer: ScSZ (amount of 10 mol% Sc 2 O 3, 1 mol% of ZrO 2 stabilized with CeO 2)
Air electrode constituent material: La 0.8 Sr 0.2 MnO 3 powder 60% by mass and ScSZ 40% by mass of carbon powder added 30% by mass Fuel electrode constituent material: NiO 65% by mass And 30% by mass of carbon powder with respect to a mixture of 35% by mass of ScSZ. Constituent material of the interconnector on the fuel electrode side: Mixture of 70% by mass of NiO and 30% by mass of TiO 2 Constituent material of connector: Pd—Ag alloy with Pd content of 30 mass%
 インターコネクタの直径:0.2mm
 燃料極の厚み:30μm
 空気極の厚み:30μm
 固体酸化物電解質層の厚み:30μm
 流路形成部材の厚み:240μm
 セパレータ本体の厚み:360μm
 焼成前のプレス条件:1000kgf/cm
 焼成温度:1150℃
Interconnector diameter: 0.2 mm
Fuel electrode thickness: 30 μm
Air electrode thickness: 30 μm
Solid oxide electrolyte layer thickness: 30 μm
Thickness of flow path forming member: 240 μm
Separator body thickness: 360 μm
Press conditions before firing: 1000 kgf / cm 2
Firing temperature: 1150 ° C
 上記の条件で作製した発電セルを2つ用意し、発電セルの間に上記で作製した固体酸化物形燃料電池用接合材を介在させ1kgf/cmの荷重をかけながら1000℃で1時間焼成した。上記第6の実施形態に係る燃料電池と実質的に同様の構成を有する燃料電池を作製した。 Two power generation cells prepared under the above conditions were prepared, and the solid oxide fuel cell bonding material prepared above was interposed between the power generation cells and fired at 1000 ° C. for 1 hour while applying a load of 1 kgf / cm 2. did. A fuel cell having a configuration substantially similar to that of the fuel cell according to the sixth embodiment was produced.
 (実施例2)
 拘束層に、所定の大きさに切り取った空隙率40%、厚み0.1mmのパンチングメタル(Fe-22Cr系フェライト合金)を使用したこと以外は、実施例1と同様の方法で燃料電池を作製した。
(Example 2)
A fuel cell was fabricated in the same manner as in Example 1 except that a punching metal (Fe-22Cr ferrite alloy) with a porosity of 40% and a thickness of 0.1 mm cut into a predetermined size was used for the constraining layer. did.
 (実施例3)
 拘束層に、所定の大きさに切り取った空隙率80%、厚み0.3mmの発泡銀シートを使用したこと以外は、実施例1と同様の方法で燃料電池を作製した。
(Example 3)
A fuel cell was produced in the same manner as in Example 1 except that a foamed silver sheet having a porosity of 80% and a thickness of 0.3 mm cut to a predetermined size was used for the constraining layer.
 (実施例4)
 拘束層に、所定の大きさに切り取ったφ0.15mmの銀線を編んだ40メッシュ金網を使用したこと以外は、実施例1と同様の方法で燃料電池を作製した。
Example 4
A fuel cell was produced in the same manner as in Example 1 except that a 40 mesh wire mesh knitted with a 0.15 mm silver wire cut to a predetermined size was used as the constraining layer.
 (評価)
 実施例1~4で作製した燃料電池を900℃に加熱し、燃料電池の燃料ガス供給用マニホールドと酸化剤ガス供給用マニホールドにそれぞれ室温でNガスを流し、マニホールド内の圧力が10kPaのときのガスリークの有無を市販の界面活性剤からなるリークチェッカー評価し、固体酸化物形燃料電池用接合材のシール性を評価したところ、ガスリークは観測されなかった。
(Evaluation)
When the fuel cells manufactured in Examples 1 to 4 are heated to 900 ° C., N 2 gas is allowed to flow through the fuel gas supply manifold and the oxidant gas supply manifold of the fuel cell at room temperature, and the pressure in the manifold is 10 kPa. The presence or absence of gas leak was evaluated by a leak checker made of a commercially available surfactant, and the sealing property of the solid oxide fuel cell bonding material was evaluated. As a result, no gas leak was observed.
1…固体酸化物形燃料電池用接合材
2…固体酸化物形燃料電池
3a…筐体
10、10a~10c…ガラスセラミック層
11、11a、11b…拘束層
20…発電セル
21a…第1の接合層
21b…第2の接合層
22…焼成層
40…第1のセパレータ
41…第1のセパレータ本体
42…第1の流路形成部材
43…有酸素ガス流路
44…有酸素ガス用マニホールド
45…燃料ガス用マニホールド
46…発電要素
47…固体酸化物電解質層
48…空気極層
48a…空気極
49…燃料極層
49a…燃料極
50…第2のセパレータ
51…第2のセパレータ本体
52…第2の流路形成部材
53…燃料ガス流路
DESCRIPTION OF SYMBOLS 1 ... Joining material for solid oxide fuel cells 2 ... Solid oxide fuel cell 3a ... Case 10, 10a-10c ... Glass ceramic layer 11, 11a, 11b ... Constraining layer 20 ... Power generation cell 21a ... 1st joining Layer 21b ... second bonding layer 22 ... fired layer 40 ... first separator 41 ... first separator body 42 ... first flow path forming member 43 ... aerobic gas flow path 44 ... aerobic gas manifold 45 ... Manifold 46 for fuel gas ... Power generation element 47 ... Solid oxide electrolyte layer 48 ... Air electrode layer 48a ... Air electrode 49 ... Fuel electrode layer 49a ... Fuel electrode 50 ... Second separator 51 ... Second separator body 52 ... Second Flow path forming member 53 ... Fuel gas flow path

Claims (12)

  1.  ガラスセラミックスを含むガラスセラミック層と、
     前記ガラスセラミック層の上に積層されている拘束層と、
    を備え、
     拘束層は、複数の孔を有する金属板からなる、固体酸化物形燃料電池用接合材。
    A glass ceramic layer containing glass ceramics;
    A constraining layer laminated on the glass ceramic layer;
    With
    The constraining layer is a solid oxide fuel cell bonding material comprising a metal plate having a plurality of holes.
  2.  前記拘束層は、エキスパンドメタル、パンチングメタル、金網または発泡金属からなる、請求項1に記載の固体酸化物形燃料電池用接合材。 The solid oxide fuel cell bonding material according to claim 1, wherein the constraining layer is made of expanded metal, punching metal, wire mesh, or foam metal.
  3.  前記拘束層の融点が900℃以上である、請求項1または2に記載の固体酸化物形燃料電池用接合材。 3. The solid oxide fuel cell bonding material according to claim 1, wherein the constraining layer has a melting point of 900 ° C. or higher.
  4.  前記拘束層は、前記ガラスセラミック層の焼成温度において融解しない、請求項1~3のいずれか一項に記載の固体酸化物形燃料電池用接合材。 The bonding material for a solid oxide fuel cell according to any one of claims 1 to 3, wherein the constraining layer does not melt at a firing temperature of the glass ceramic layer.
  5.  前記ガラスセラミックスは、シリカ、バリウム酸化物及びアルミナを含む、請求項1~4のいずれか一項に記載の固体酸化物形燃料電池用接合材。 The solid oxide fuel cell bonding material according to any one of claims 1 to 4, wherein the glass ceramic includes silica, barium oxide, and alumina.
  6.  前記ガラスセラミックスは、SiをSiO換算で48質量%~75質量%と、BaをBaO換算で20質量%~40質量%と、AlをAl換算で5質量%~20質量%とを含む、請求項5に記載の固体酸化物形燃料電池用接合材。 The glass ceramic is composed of 48 mass% to 75 mass% in terms of SiO 2 , 20 mass% to 40 mass% in terms of Ba, and 5 mass% to 20 mass% in terms of Al 2 O 3. The solid oxide fuel cell bonding material according to claim 5, comprising:
  7.  前記ガラスセラミック層は、前記拘束層の一の主面の上に設けられた第1のガラスセラミック層と、前記拘束層の他の主面の上に設けられた第2のガラスセラミック層とを含む、請求項1~6のいずれか一項に記載の固体酸化物形燃料電池用接合材。 The glass ceramic layer includes a first glass ceramic layer provided on one main surface of the constraining layer, and a second glass ceramic layer provided on the other main surface of the constraining layer. The solid oxide fuel cell bonding material according to any one of claims 1 to 6, further comprising:
  8.  請求項1~7のいずれか一項に記載の固体酸化物形燃料電池用接合材が焼成されてなる接合層を備える固体酸化物形燃料電池。 A solid oxide fuel cell comprising a joining layer formed by firing the joining material for a solid oxide fuel cell according to any one of claims 1 to 7.
  9.  固体酸化物電解質層と、前記固体酸化物電解質層の一の主面の上に配された空気極と、前記固体酸化物電解質層の他の主面の上に配された燃料極とを有する複数の発電セルを備え、
     隣り合う前記発電セルが前記接合層により接合されている、請求項8に記載の固体酸化物形燃料電池。
    A solid oxide electrolyte layer; an air electrode disposed on one main surface of the solid oxide electrolyte layer; and a fuel electrode disposed on another main surface of the solid oxide electrolyte layer. With multiple power generation cells,
    The solid oxide fuel cell according to claim 8, wherein the adjacent power generation cells are joined by the joining layer.
  10.  請求項1~7のいずれか一項に記載の固体酸化物形燃料電池用接合材が焼成されてなる接合層を備える固体酸化物形燃料電池モジュール。 A solid oxide fuel cell module comprising a joining layer formed by firing the joining material for a solid oxide fuel cell according to any one of claims 1 to 7.
  11.  固体酸化物電解質層と、前記固体酸化物電解質層の一の主面の上に配された空気極と、前記固体酸化物電解質層の他の主面の上に配された燃料極とを有する複数の発電セルを備え、隣り合う前記発電セルが前記接合層により接合されている燃料電池を備える、請求項10に記載の固体酸化物形燃料電池モジュール。 A solid oxide electrolyte layer; an air electrode disposed on one main surface of the solid oxide electrolyte layer; and a fuel electrode disposed on another main surface of the solid oxide electrolyte layer. The solid oxide fuel cell module according to claim 10, further comprising a fuel cell including a plurality of power generation cells, wherein the adjacent power generation cells are joined by the joining layer.
  12.  筐体と、
     前記筐体内に配置された燃料電池と、
    を備え、
     前記燃料電池と前記筐体とが前記接合層により接合されている、請求項10または11に記載の固体酸化物形燃料電池モジュール。
    A housing,
    A fuel cell disposed in the housing;
    With
    The solid oxide fuel cell module according to claim 10 or 11, wherein the fuel cell and the casing are joined by the joining layer.
PCT/JP2012/057284 2011-03-25 2012-03-22 Bonding member for solid oxide fuel cell, solid oxide fuel cell, and solid oxide fuel cell module WO2012133086A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011068506 2011-03-25
JP2011-068506 2011-03-25

Publications (1)

Publication Number Publication Date
WO2012133086A1 true WO2012133086A1 (en) 2012-10-04

Family

ID=46930814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057284 WO2012133086A1 (en) 2011-03-25 2012-03-22 Bonding member for solid oxide fuel cell, solid oxide fuel cell, and solid oxide fuel cell module

Country Status (1)

Country Link
WO (1) WO2012133086A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582145A (en) * 1991-09-19 1993-04-02 Mitsubishi Heavy Ind Ltd Seal material for fuel cell
JPH06231784A (en) * 1992-09-01 1994-08-19 Fuji Electric Co Ltd Solid electrolyte type fuel cell
JPH0757748A (en) * 1993-07-23 1995-03-03 Mitsubishi Heavy Ind Ltd Gasket material for high temperature and manufacture thereof
JP2002037641A (en) * 2000-05-16 2002-02-06 Nippon Electric Glass Co Ltd Glass for encapsulation of semiconductor, external cylinder for semiconductor encapsulation and method of encapsulation of semiconductor element
JP2005518643A (en) * 2002-02-20 2005-06-23 イオン アメリカ コーポレーション Solid oxide fuel cell and system
JP2007273098A (en) * 2006-03-30 2007-10-18 Nissan Motor Co Ltd Gas seal component for fuel cell and its manufacturing method
JP2008513346A (en) * 2004-09-22 2008-05-01 バッテル メモリアル インスティチュート High strength insulating joints for solid oxide fuel cells and other high temperature applications and methods of making the same
JP2008159428A (en) * 2006-12-25 2008-07-10 Nissan Motor Co Ltd Porous structure, and solid oxide fuel cell and fuel cell stack using the same
JP2009170342A (en) * 2008-01-18 2009-07-30 Honda Motor Co Ltd Fuel cell

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582145A (en) * 1991-09-19 1993-04-02 Mitsubishi Heavy Ind Ltd Seal material for fuel cell
JPH06231784A (en) * 1992-09-01 1994-08-19 Fuji Electric Co Ltd Solid electrolyte type fuel cell
JPH0757748A (en) * 1993-07-23 1995-03-03 Mitsubishi Heavy Ind Ltd Gasket material for high temperature and manufacture thereof
JP2002037641A (en) * 2000-05-16 2002-02-06 Nippon Electric Glass Co Ltd Glass for encapsulation of semiconductor, external cylinder for semiconductor encapsulation and method of encapsulation of semiconductor element
JP2005518643A (en) * 2002-02-20 2005-06-23 イオン アメリカ コーポレーション Solid oxide fuel cell and system
JP2008513346A (en) * 2004-09-22 2008-05-01 バッテル メモリアル インスティチュート High strength insulating joints for solid oxide fuel cells and other high temperature applications and methods of making the same
JP2007273098A (en) * 2006-03-30 2007-10-18 Nissan Motor Co Ltd Gas seal component for fuel cell and its manufacturing method
JP2008159428A (en) * 2006-12-25 2008-07-10 Nissan Motor Co Ltd Porous structure, and solid oxide fuel cell and fuel cell stack using the same
JP2009170342A (en) * 2008-01-18 2009-07-30 Honda Motor Co Ltd Fuel cell

Similar Documents

Publication Publication Date Title
JP5686182B2 (en) Solid oxide fuel cell bonding material, solid oxide fuel cell, and solid oxide fuel cell module
JP5679060B2 (en) Electrical connection material for solid oxide fuel cell, solid oxide fuel cell, solid oxide fuel cell module, and method for producing solid oxide fuel cell
WO2014208730A1 (en) Cell, cell stacker, module, and module storage device
JP5686190B2 (en) Joining material for solid oxide fuel cell, method for producing solid oxide fuel cell, method for producing solid oxide fuel cell module, solid oxide fuel cell and solid oxide fuel cell module
JP7261562B2 (en) Fuel cell, fuel cell stack, and method of making same
KR101857747B1 (en) A method of producing a cell for a metal-supported solid oxide fuel cell and cell for a metal-supported solid oxide fuel cell
JP2008117702A (en) Connector and solid oxide fuel cell
US20120082920A1 (en) Co-fired metal interconnect supported sofc
JP2004362913A (en) Electrolyte for solid oxide fuel cell, and manufacturing method of the same
JP4984802B2 (en) Solid electrolyte fuel cell separator
WO2015025642A1 (en) Ceramic substrate for electrochemical element, method for manufacturing same, fuel cell, and fuel cell stack
WO2015046331A1 (en) Anode for fuel cells and single cell of fuel cell
JP2009245717A (en) Method of manufacturing solid oxide fuel cell, solid oxide fuel cell manufactured by this method, and electrolyte-electrode stack for solid oxide fuel cell
JP7330689B2 (en) Fuel cells and fuel cell stacks
WO2012133087A1 (en) Bonding member for solid oxide fuel cell, solid oxide fuel cell, and solid oxide fuel cell module
WO2012133086A1 (en) Bonding member for solid oxide fuel cell, solid oxide fuel cell, and solid oxide fuel cell module
JP2012009232A (en) Method of manufacturing solid oxide fuel battery cell, solid oxide fuel battery cell and solid oxide fuel battery
WO2012133044A1 (en) Fuel cell
JP2015084281A (en) Solid oxide fuel cell unit and solid oxide fuel cell stack and method of manufacturing solid oxide fuel cell unit
JP6075924B2 (en) Fuel cell single cell and manufacturing method thereof
JP2014007127A (en) Method for manufacturing single cell for solid oxide fuel cell, single cell for solid oxide fuel cell, and solid oxide fuel cell
JP2017107662A (en) Fuel battery single cell and fuel battery cell stack
KR20140087271A (en) A metal-supported solid oxide fuel cell comprising electron blocking layer
JP2013077395A (en) Anode substrate, solid oxide fuel cell and manufacturing method of anode substrate
JP5221619B2 (en) Method for producing solid oxide fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP