WO2012133014A1 - Water treatment agent and water treatment device - Google Patents

Water treatment agent and water treatment device Download PDF

Info

Publication number
WO2012133014A1
WO2012133014A1 PCT/JP2012/057103 JP2012057103W WO2012133014A1 WO 2012133014 A1 WO2012133014 A1 WO 2012133014A1 JP 2012057103 W JP2012057103 W JP 2012057103W WO 2012133014 A1 WO2012133014 A1 WO 2012133014A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
water treatment
treatment material
material according
repellent binder
Prior art date
Application number
PCT/JP2012/057103
Other languages
French (fr)
Japanese (ja)
Inventor
絹川 謙作
三木 慎一郎
千尋 井
橋本 和仁
香矢乃 砂田
維文 蓑島
Original Assignee
パナソニック株式会社
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社, 国立大学法人東京大学 filed Critical パナソニック株式会社
Publication of WO2012133014A1 publication Critical patent/WO2012133014A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • C02F1/505Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment by oligodynamic treatment
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/24Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing ingredients to enhance the sticking of the active ingredients

Definitions

  • the present invention relates to a water treatment material and a water treatment device provided with the water treatment material.
  • Patent Document 1 an ultraviolet light transmitting glass inner tube and a hard glass outer tube are disposed outside the inner tube, and the upper and lower ends of both glass tubes are sealed, and between the inner tube and the outer tube By forming a water flow section and arranging units with groove inlets and outlets above and below the water flow section, by placing sterilization lamps in common to both units inside the inner pipe It is disclosed to construct an ultraviolet water disinfection device for a water purifier.
  • Patent Document 2 discloses a water purifier having an adsorbent provided with a microporous body containing an adsorbent having ion exchange capacity and a hollow fiber membrane module.
  • the present invention has been made in view of the above, and provides a water treatment material having high antibacterial performance and antiviral performance and capable of constituting a simple water treatment device, and a water treatment device provided with the water treatment material.
  • the purpose is to
  • the water treatment material according to the present invention comprises cuprous oxide and a water repellent binder.
  • the surface free energy of the water repellent binder is preferably 40 mJ / m 2 or less.
  • the water repellent binder is preferably a reaction product of a main agent containing at least an acrylic polyol having a side chain containing a polysiloxane skeleton and a curing agent.
  • the water repellent binder is a reaction product of a main agent containing at least an acrylic polyol having a main chain having a fluoroalkyl skeleton or a side chain, and a curing agent.
  • the water repellent binder is a reaction product of a main agent containing at least an acrylic polyol having a side chain containing a polysiloxane skeleton and a fluoroalkyl skeleton, and a curing agent. .
  • the curing agent preferably contains an isocyanate.
  • the curing agent contains an amino resin.
  • the water-repellent binder contains a condensation polymer of a trifunctional or less alkoxysilane.
  • the water treatment apparatus according to the present invention comprises the water treatment material.
  • the water treatment apparatus preferably includes a tank in which the water to be treated is stored, and the water treatment material is provided on the inner surface of the tank.
  • the water treatment apparatus includes a water passage through which the water to be treated flows, and the water treatment material is provided on the inner surface of the water passage.
  • the water treatment apparatus according to the present invention includes a water purification filter, and the water purification material is provided on the water purification filter.
  • the water treatment apparatus which has high antimicrobial performance and antiviral performance, and the water treatment apparatus provided with this water treatment material are obtained.
  • the water treatment material comprises cuprous oxide and a water repellent binder.
  • the water treatment material has, for example, a structure in which cuprous oxide is dispersed in a matrix phase made of a water repellent binder.
  • cuprous oxide is fixed by a water repellent binder.
  • at least a portion of the cuprous oxide contained in the water treatment material is exposed on the surface of the water treatment material.
  • Copper suboxide (copper (I) oxide) has high activity against bacteria and viruses.
  • the water treatment material further includes a water repellent binder in addition to copper suboxide, whereby the antibacterial and antiviral properties of copper suboxide are further improved. Therefore, the water treatment material exhibits very high antibacterial and antiviral performance. The reason is considered to be as follows.
  • Protein molecules constituting bacteria and viruses are polymers having a structure in which an amino acid having a hydrophilic group and an amino acid having a hydrophobic group are bonded.
  • hydrophilic groups and hydrophobic groups are present in a mosaic manner.
  • the hydrophobic groups on the surface of the protein molecule tend to adsorb to hydrophobic groups etc. in other molecules to avoid contact with water molecules.
  • the main factor of the protein adsorption phenomenon is due to the attractive attraction of hydrophobic groups possessed by the protein molecule itself. Therefore, when the water treatment material includes a water repellent binder as in the present embodiment, an interaction attractive force is exerted between the hydrophobic group in the protein molecule and the water repellent binder.
  • the protein is easily adsorbed to the water treatment material.
  • bacteria, viruses and the like are easily adsorbed to the cuprous oxide in the water treatment material. For this reason, it is considered that the antibacterial and antiviral performance by cuprous oxide is improved.
  • the degree of water repellency of the water repellent binder is not limited, it is particularly preferable that the surface free energy of the water repellent binder is 40 mJ / m 2 or less. In this case, the interaction attraction between the protein constituting the bacteria or virus and the water repellent binder is particularly large. For this reason, the antibacterial and antiviral performance of the water treatment material is further improved.
  • the water repellent binder is preferably a reaction product of a main agent containing an acrylic polyol and a curing agent.
  • the proportion of the acrylic polyol in the main agent is preferably in the range of 1 to 100% by mass, and particularly preferably in the range of 10 to 100% by mass. It is also preferred that the main agent is all an acrylic polyol.
  • the acrylic polyol particularly includes at least one of an acrylic polyol having a side chain containing a polysiloxane skeleton, an acrylic polyol having a fluoroalkyl skeleton, and an acrylic polyol having a side chain containing a polysiloxane skeleton and a fluoroalkyl skeleton.
  • an acrylic polyol having a fluoroalkyl skeleton the fluoroalkyl skeleton may be present in the side chain or in the main chain.
  • the water repellent binder is provided with at least one of the polysiloxane skeleton and the fluoroalkyl group.
  • the water repellent binder exhibits high water repellency with excellent durability, and a water repellent binder having a surface free energy of 40 mJ / m 2 or less as described above can also be realized.
  • a water repellent binder having a surface free energy of 40 mJ / m 2 or less as described above can also be realized.
  • the proportion in the main agent is preferably in the range of 1 to 100% by mass, and particularly preferably in the range of 10 to 100% by mass.
  • the proportion in the main agent is preferably in the range of 1 to 100% by mass, and particularly preferably in the range of 10 to 100% by mass.
  • the proportion in the main agent is preferably in the range of 1 to 100% by mass, particularly in the range of 10 to 100% by mass. Is preferred.
  • the ratio of the total amount of the acrylic polyol having a side chain containing a polysiloxane skeleton, the acrylic polyol having a fluoroalkyl skeleton, and the acrylic polyol having a side chain containing a polysiloxane skeleton and a fluoroalkyl skeleton in the main agent is The range of 1 to 100% by mass is preferable, and the range of 10 to 100% by mass is particularly preferable.
  • an acrylic polyol having a side chain containing such a polysiloxane skeleton product number US-270 (hydroxyl group-containing silicone resin, solid content 29% by mass, hydroxyl value 26) manufactured by Toagosei Co., Ltd., etc. may be mentioned .
  • product number US-270 hydroxyl group-containing silicone resin, solid content 29% by mass, hydroxyl value 26
  • hydroxyl value 26 manufactured by Toagosei Co., Ltd., etc.
  • skeleton Lumiflon product number LF200 (A hydroxyl group containing fluorine resin, solid content 60 mass%, the hydroxyl value 32) made from Asahi Glass Co., Ltd., etc. are mentioned.
  • an acrylic polyol having a side chain containing a polysiloxane skeleton and a fluoroalkyl skeleton Part No. ZX-007C (Dimethylsilicon-based / hydroxyl-containing fluorosilicone resin, solid content 35% by mass, manufactured by Fuji Kasei Kogyo Co., Ltd. And hydroxyl value 58).
  • an acrylic polyol is used as the main agent
  • an appropriate curing agent is used.
  • the curing agent preferably contains an isocyanate.
  • the main agent and the curing agent can react at low temperature. For this reason, it becomes easy to form a water treatment material on a member with low heat resistance like a plastic material.
  • the water repellent binder exhibits high water repellency, and bacteria and viruses are more easily adsorbed to the water treatment material. This further improves the antibacterial and antiviral performance of the water treatment material.
  • isocyanate examples include hexamethylene diisocyanate resin (for example, Takenate D-170N, manufactured by Mitsui Chemicals, Inc .; solid content 100% by mass), tolylene diisocyanate resin (for example, Takenate D, manufactured by Mitsui Chemicals, Inc.) 103H: solid content: 50% by mass), xylene diisocyanate, isophorone diisocyanate, and a mixture of two or more of these.
  • the ratio of NCO equivalent of isocyanate to OH equivalent of acrylic polyol is preferably in the range of 0.5 to 3.0, and more preferably in the range of 0.8 to 1.5.
  • the curing agent contains an amino resin.
  • the hardness of the water repellent binder is improved.
  • the antimicrobial property of the water treatment material in water and the sustainability of the antiviral property are improved.
  • the water repellent binder exhibits high water repellency, and bacteria and viruses are more easily adsorbed to the water treatment material. This further improves the antibacterial and antiviral performance of the water treatment material.
  • melamine resin As a specific example of an amino resin, melamine resin (For example, Mitsui Chemicals, Inc. make, brand name Yuvan 228; solid content 60 mass%) is mentioned.
  • the mass ratio of the solid content of the amino resin to the solid content of the acrylic polyol is preferably in the range of 0.1 to 0.8, and more preferably in the range of 0.3 to 0.5.
  • the water repellent binder contains a condensation product of a trifunctional or less alkoxysilane.
  • the water repellent binder when the water repellent binder is provided with a condensation polymer of alkoxysilane, the water repellent binder exhibits high water repellency with excellent durability. Therefore, a water repellent binder having a surface free energy of 40 mJ / m 2 or less as described above can also be realized.
  • bacteria and viruses can be more easily adsorbed to the water treatment material. This further improves the antibacterial and antiviral performance of the water treatment material.
  • trifunctional or lower alkoxysilane examples include methyltriethoxysilane, methyl silicone alkoxy oligomer, methylphenyl silicone alkoxy oligomer and the like.
  • the cuprous oxide is preferably particulate.
  • the particle size of the cuprous oxide is set appropriately.
  • the ratio of cuprous oxide to the water repellent binder in the water treatment material is appropriately set, but the mass ratio of the cuprous oxide to the water repellent binder is preferably in the range of 1:99 to 99: 1, and 20: More preferably, it is in the range of 80 to 80:20.
  • the water treatment material is obtained by molding and curing a composition containing a water-repellent binder material and cuprous oxide.
  • This composition contains, for example, copper suboxide, and can further contain a main agent containing the above-mentioned acrylic polyol as a raw material of a water repellent binder and a curing agent.
  • the composition may further contain an appropriate organic solvent and other additives as required.
  • the composition may contain, for example, copper suboxide, and may further contain at least one selected from the above trifunctional alkoxysilane and its partial hydrolytic condensate as a water-repellent binder material.
  • the composition may further contain water, an acid catalyst or an alkali catalyst, an appropriate organic solvent, and other additives, as required.
  • a water treatment material is obtained by molding such a composition, and further curing by being subjected to a treatment such as heating according to the composition of the composition and the like.
  • the water treatment apparatus 1 includes the water treatment material as described above.
  • FIG. 1 shows an example of the configuration of the water treatment apparatus 1.
  • the water treatment apparatus 1 includes a water passage 2 through which the water 7 to be treated flows. An inlet 5 to which the water 7 to be treated is supplied is formed at one end of the water passage 2, and an outlet 6 for discharging the water treated by the water treatment apparatus 1 is formed at the other end of the water passage 2 There is.
  • a tank 3 for storing the water 7 to be treated and a water purification filter 4 for purifying the water 7 to be treated are provided in the middle of the water passage 2, a tank 3 for storing the water 7 to be treated and a water purification filter 4 for purifying the water 7 to be treated are provided.
  • the water treatment apparatus 1 may further include a pump for causing the flow of water in the water flow passage 2, a valve for opening and closing the flow of water at an appropriate position of the water flow passage 2, and the like.
  • Such a water treatment apparatus 1 includes a water treatment material, bacteria and viruses present in the water 7 to be treated can be adsorbed to the water treatment material and easily inactivated.
  • a water treatment material is provided on the inner surface of the tank 3 in the water treatment apparatus 1.
  • the inner surface of the tank 3 is preferably coated with a water treatment material.
  • a composition containing a water-repellent binder material and cuprous oxide is applied to the inner surface of the tank 3, and the inner surface of the tank 3 is coated with a water treatment material by curing the composition. Is preferred.
  • the water treatment material be contained in the structural material that constitutes the inner surface of the tank 3.
  • the inner surface of the tank 3 can be configured, for example, by mixing granular water treatment material into the raw material of the structural material constituting the inner surface of the tank 3 and molding the raw material of the structural material.
  • the granular water treatment material is embedded in the structural material constituting the inner surface of the tank 3, and the water treatment material is provided on the inner surface of the tank 3 by exposing the water treatment material to the inner surface of the tank 3. .
  • a water treatment material be provided on the inner surface of the water passage 2 in the water treatment apparatus 1.
  • a composition containing a water-repellent binder material and cuprous oxide is applied on the inner surface of water passage 2, and the composition is cured to form a water treatment material on the inner surface of water passage 2. It is preferable to coat with.
  • bacteria and viruses in the water flowing through the water passage 2 can be adsorbed to the water treatment material and inactivated.
  • the water purification material in the water treatment apparatus 1 be provided with a water treatment material.
  • a water treatment material it is preferable to apply a water treatment material to the water purification filter 4 by, for example, applying a composition containing a water repellent binder material and copper suboxide to the water purification filter 4 and curing the composition.
  • a water treatment material may be provided for each of the tank 3, the water flow passage 2 and the water purification filter 4, and of the tank 3, the water passage 2 and the water purification filter 4
  • a water treatment material may be provided for each of the one or two elements.
  • the structure of the water treatment apparatus 1 is not restricted to what is equipped with the above tanks 3, the water flow path 2, and the clean water filter 4.
  • Example 1 Acrylic polyol having a side chain including a polysiloxane skeleton (polydimethylsiloxane skeleton) and a fluoroalkyl group as a main agent (Fuji Kasei Kogyo Co., Ltd., product number ZX-022H; dimethyl silicon group / hydroxy group-containing fluorine silicone resin, solid The mass was 46% by mass, and the hydroxyl value was 120).
  • hexamethylene diisocyanate resin manufactured by Mitsui Chemicals, Inc., trade name Takenate D-170N; solid content 100% by mass
  • Copper (I) oxide fine particles (manufactured by Wako Pure Chemical Industries, Ltd.) were prepared as copper suboxide.
  • Methyl ethyl ketone was prepared as a solvent. The amounts of raw materials used are as shown in Table 1.
  • cuprous oxide was added to the main agent, these were dispersed and mixed with a stirrer. Subsequently, the curing agent and the solvent were added to these and mixed. This gave a composition.
  • the proportion of cuprous oxide to the total solid content of the composition was 50% by mass.
  • Borosilicate crown glass manufactured by Sumita Optical Glass Co., Ltd., product number BK7; thickness 2 mm
  • the composition was applied on this substrate by a bar coater (# 20) and dried at a temperature of 150 ° C. for 10 minutes to form a water treatment material on the substrate.
  • Example 2 the main agent is an acrylic polyol having a side chain containing a polysiloxane skeleton and no fluoroalkyl group (Toho Gosei Co., Ltd., product number GS-1015; hydroxyl group containing resin, solid content 45% by mass, hydroxyl value Changed to 72).
  • the amounts of raw materials used were as shown in Table 1.
  • a water treatment material was formed on the substrate in the same manner and under the same conditions as in Example 1 except for the above.
  • Example 3 In Example 1, the main agent was changed to an acrylic polyol having a fluoroalkyl group (manufactured by DIC Corporation, trade name: Fluonate K-703; hydroxyl group-containing fluororesin, solid content 60 mass%, hydroxyl value 66 to 78). The amounts of raw materials used were as shown in Table 1.
  • a water treatment material was formed on the substrate in the same manner and under the same conditions as in Example 1 except for the above.
  • Example 4 In Example 1, the curing agent was changed to a melamine resin (manufactured by Mitsui Chemicals, Inc., trade name: U-van 225; solid content 60% by mass). The amounts of raw materials used were as shown in Table 1.
  • a water treatment material was formed on the substrate in the same manner and under the same conditions as in Example 1 except for the above.
  • Example 5 Methyltrimethoxysilane (manufactured by Shin-Etsu Silicone Co., Ltd., product number KBM-13), methyl alcohol, and copper (I) oxide fine particles (manufactured by Wako Pure Chemical Industries, Ltd.) were prepared. The amounts of these raw materials used were as shown in Table 1. Furthermore, an appropriate amount of 0.1 N nitric acid aqueous solution was prepared.
  • composition was prepared by adding copper (I) oxide microparticles to this trifunctional alkoxysilane partial hydrolyzate solution and stirring them with a stirrer.
  • Borosilicate crown glass manufactured by Sumita Optical Glass Co., Ltd., product number BK7; thickness 2 mm
  • the composition was applied on this substrate by a bar coater (# 20) and dried at a temperature of 150 ° C. for 10 minutes to form a water treatment material on the substrate.
  • Example 6 A 200 mL glass container was prepared. The container was cleaned by degreasing followed by alkaline cleaning and further neutralization. Subsequently, the composition shown in Example 5 was poured into the container and gently stirred, and then the excess composition was discharged to coat the surface of the container. The glass container was provided with a water treatment material on the inner surface by heating it for 30 minutes at 150 ° C. and drying and curing it.
  • Example 7 A glass tube having an outer diameter of 7 mm and an inner diameter of 5 mm was prepared. The glass tube was cleaned by alkaline cleaning followed by neutralization. Subsequently, the inner wall of the glass tube was coated by repeating pouring the composition described in Example 5 into the glass tube several times. It was heated at 150 ° C. for 30 minutes to be dried and cured to obtain a glass tube provided with a water treatment material on the inner surface.
  • Comparative Example 1 the main agent is an acrylic polyol (manufactured by DIC Corporation, product number 52-668BA; solid content 45% by mass, hydroxyl value 24) having neither a side chain containing a polysiloxane skeleton nor a fluoroalkyl skeleton. changed.
  • the amounts of raw materials used are as shown in Table 1.
  • a water treatment material was formed on the substrate in the same manner and under the same conditions as in Example 1 except for the above.
  • Comparative Example 2 A 200 mL glass container was prepared. The container was cleaned by degreasing, alkaline cleaning and neutralization.
  • a composition containing no cuprous oxide was prepared in the same manner as the method of preparing the composition in each of Examples 1 to 5 and Comparative Example 1 except that cuprous oxide was not used.
  • This composition containing no cuprous oxide is coated on a base material (borosilicate crown glass, manufactured by Sumita Optical Glass Co., Ltd., product number BK7; thickness 2 mm) with a bar coater (# 20), and further at a temperature of 150 ° C. By drying for a minute, a layer of binder was formed on the substrate.
  • a base material borosilicate crown glass, manufactured by Sumita Optical Glass Co., Ltd., product number BK7; thickness 2 mm
  • the contact angle of the measurement solution (using water and diiodomethane) on this binder was measured using a contact angle meter (Model No. DM500, manufactured by Kyowa Interface Science Co., Ltd.). Based on this result, the surface free energy of the binder was calculated using the following equation.
  • a solution containing E. coli was obtained by adding 100 mL of sterilized pure water and 1 mL of E. coli solution (pre-culture (37 ° C./1 day), adding 2 platinum loops to 10 mL of sterilized pure water and stirring. Then, each of the container provided with the water treatment material obtained in Example 6 and the container in Comparative Example 2 was charged and allowed to stand for 10 minutes, and then the antibacterial activity value for E. coli in the solution in each container was measured. The plate dilution method was evaluated.

Abstract

The purpose of the present invention is to provide a water treatment agent that has strong antibacterial performance and antiviral performance and that makes a simple water treatment device possible. This water treatment agent comprises cuprous oxide and a water-repelling binder.

Description

水処理材及び水処理装置Water treatment materials and water treatment equipment
 本発明は、水処理材、及びこの水処理材を備える水処理装置に関する。 The present invention relates to a water treatment material and a water treatment device provided with the water treatment material.
 従来、水中に含まれる菌類等を除去するための種々の水処理装置が、提供されている。例えば特許文献1には、紫外線透過性ガラス内管と、この内管の外側に硬質ガラス製外管を配置し、両ガラス管の上下両端を密閉して、前記内管と外管との間に流水部を形成すると共に、前記流水部の上下に夫々溝の入口又は出口を設けたユニットを、上下に配置すると共に、前記内管の内側に両ユニットに共通に殺菌ランプを配置することで浄水器用紫外線流水殺菌装置を構成することが開示されている。特許文献2には、イオン交換能を有する吸着剤を含む微多孔体を備えた吸着体と、中空糸膜モジュールとを有する浄水器が開示されている。 Heretofore, various water treatment devices for removing fungi and the like contained in water have been provided. For example, in Patent Document 1, an ultraviolet light transmitting glass inner tube and a hard glass outer tube are disposed outside the inner tube, and the upper and lower ends of both glass tubes are sealed, and between the inner tube and the outer tube By forming a water flow section and arranging units with groove inlets and outlets above and below the water flow section, by placing sterilization lamps in common to both units inside the inner pipe It is disclosed to construct an ultraviolet water disinfection device for a water purifier. Patent Document 2 discloses a water purifier having an adsorbent provided with a microporous body containing an adsorbent having ion exchange capacity and a hollow fiber membrane module.
 近年、インドや中国のような新興国などにおいて、簡易な水処理装置の普及が要請されている。これらの新興国では、上水道のインフラ整備が途上にあり、このため飲料水に菌やウイルスが多く含まれる可能性がある。このため、水処理装置により、飲料水等に供される水を浄化する必要性が高い。 In recent years, the spread of simple water treatment equipment has been demanded in emerging countries such as India and China. In these emerging countries, water supply infrastructure is in the process of being developed, and drinking water may therefore be rich in bacteria and viruses. For this reason, there is a high need to purify the water provided for drinking water and the like by the water treatment apparatus.
 しかし、上記のような殺菌ランプや中空糸膜を備える従来の水処理装置の製造コストやランニングコストが高く、このことは水処理装置の普及の妨げとなっている。 However, the manufacturing cost and running cost of the conventional water treatment apparatus provided with the above-mentioned sterilization lamp and hollow fiber membrane are high, which hinders the spread of the water treatment apparatus.
特開平2-222766号公報JP-A-2-222766 特開2001-232361号公報JP 2001-232361 A
 本発明は上記事由に鑑みてなされたものであり、高い抗菌性能及び抗ウイルス性能を有し、簡易な水処理装置を構成し得る水処理材、並びにこの水処理材を備える水処理装置を提供することを目的とする。 The present invention has been made in view of the above, and provides a water treatment material having high antibacterial performance and antiviral performance and capable of constituting a simple water treatment device, and a water treatment device provided with the water treatment material. The purpose is to
 本発明に係る水処理材は、亜酸化銅と撥水性バインダーとを備える。 The water treatment material according to the present invention comprises cuprous oxide and a water repellent binder.
 本発明に係る水処理材において、前記撥水性バインダーの表面自由エネルギーが、40mJ/m以下であることが好ましい。 In the water treatment material according to the present invention, the surface free energy of the water repellent binder is preferably 40 mJ / m 2 or less.
 本発明に係る水処理材において、前記撥水性バインダーが、ポリシロキサン骨格を含む側鎖を有するアクリルポリオールを少なくとも含む主剤と、硬化剤との、反応生成物であることが好ましい。 In the water treatment material according to the present invention, the water repellent binder is preferably a reaction product of a main agent containing at least an acrylic polyol having a side chain containing a polysiloxane skeleton and a curing agent.
 本発明に係る水処理材において、前記撥水性バインダーが、フルオロアルキル骨格を含む主鎖あるいは側鎖を有するアクリルポリオールを少なくとも含む主剤と、硬化剤との、反応生成物であることも好ましい。 In the water treatment material according to the present invention, it is also preferable that the water repellent binder is a reaction product of a main agent containing at least an acrylic polyol having a main chain having a fluoroalkyl skeleton or a side chain, and a curing agent.
 本発明に係る水処理材において、前記撥水性バインダーが、ポリシロキサン骨格を含む
側鎖とフルオロアルキル骨格とを有するアクリルポリオールを少なくとも含む主剤と、硬化剤との、反応生成物であることも好ましい。
In the water treatment material according to the present invention, preferably, the water repellent binder is a reaction product of a main agent containing at least an acrylic polyol having a side chain containing a polysiloxane skeleton and a fluoroalkyl skeleton, and a curing agent. .
 本発明に係る水処理材において、前記硬化剤が、イソシアネートを含むことが好ましい。 In the water treatment material according to the present invention, the curing agent preferably contains an isocyanate.
 本発明に係る水処理材において、前記硬化剤が、アミノ樹脂を含むことも好ましい。 In the water treatment material according to the present invention, it is also preferable that the curing agent contains an amino resin.
 本発明に係る水処理材において、前記撥水性バインダーが、3官能以下のアルコキシシランの縮重合物を含むことも好ましい。 In the water treatment material according to the present invention, it is also preferable that the water-repellent binder contains a condensation polymer of a trifunctional or less alkoxysilane.
 本発明に係る水処理装置は、前記水処理材を備える。 The water treatment apparatus according to the present invention comprises the water treatment material.
 本発明に係る水処理装置は、処理対象の水が貯留されるタンクを備え、前記タンクの内面に前記水処理材が設けられていることが好ましい。 The water treatment apparatus according to the present invention preferably includes a tank in which the water to be treated is stored, and the water treatment material is provided on the inner surface of the tank.
 本発明に係る水処理装置は、処理対象の水が流通する通水路を備え、前記通水路の内面に前記水処理材が設けられていることも好ましい。 It is also preferable that the water treatment apparatus according to the present invention includes a water passage through which the water to be treated flows, and the water treatment material is provided on the inner surface of the water passage.
 本発明に係る水処理装置は、浄水フィルタを備え、前記浄水フィルタに前記水処理材が設けられていることも好ましい。 It is also preferable that the water treatment apparatus according to the present invention includes a water purification filter, and the water purification material is provided on the water purification filter.
 本発明によれば、高い抗菌性能及び抗ウイルス性能を有する水処理装置、並びにこの水処理材を備える水処理装置が得られる。 ADVANTAGE OF THE INVENTION According to this invention, the water treatment apparatus which has high antimicrobial performance and antiviral performance, and the water treatment apparatus provided with this water treatment material are obtained.
本発明の一実施形態における水処理装置の構造を示す概略図である。It is the schematic which shows the structure of the water treatment apparatus in one Embodiment of this invention.
 本実施形態では、水処理材は、亜酸化銅と撥水性バインダーとを備える。水処理材は、例えば撥水性バインダーからなる母相に亜酸化銅が分散している構造を有する。水処理材において、亜酸化銅が撥水性バインダーによって固定されている。水処理材が備える亜酸化銅の少なくとも一部は、水処理材の表面に露出していることが好ましい。 In the present embodiment, the water treatment material comprises cuprous oxide and a water repellent binder. The water treatment material has, for example, a structure in which cuprous oxide is dispersed in a matrix phase made of a water repellent binder. In the water treatment material, cuprous oxide is fixed by a water repellent binder. Preferably, at least a portion of the cuprous oxide contained in the water treatment material is exposed on the surface of the water treatment material.
 亜酸化銅(酸化銅(I))は菌及びウイルスに対し高い活性を有する。本実施形態では、水処理材が亜酸化銅に加えて更に撥水性バインダーを備えることで、亜酸化銅の抗菌、抗ウイルス性能が更に向上する。このため水処理材は非常に高い抗菌、抗ウイルス性能を発揮する。その理由は次の通りであると考えられる。 Copper suboxide (copper (I) oxide) has high activity against bacteria and viruses. In the present embodiment, the water treatment material further includes a water repellent binder in addition to copper suboxide, whereby the antibacterial and antiviral properties of copper suboxide are further improved. Therefore, the water treatment material exhibits very high antibacterial and antiviral performance. The reason is considered to be as follows.
 菌やウイルスを構成するタンパク質分子は、親水性の基を有するアミノ酸と疎水性の基を有するアミノ酸とが結合した構造を有する高分子である。一般にタンパク質分子の表面では、親水性の基と疎水性の基とがモザイク状に存在している。タンパク質分子の表面の疎水性の基は、水分子との接触を避けるために、他の分子における疎水性の基などに吸着する傾向にある。このように、タンパク質の吸着現象の主要因は、タンパク質分子自身が有する疎水性の基による相互作用引力によるものである。そこで、本実施形態のように水処理材が撥水性バインダーを備えると、タンパク質分子における疎水性の基と撥水性バインダーとの間で相互作用引力が働く。このため水処理材にタンパク質が吸着しやすくなる。それに伴って水処理材における亜酸化銅に、菌、ウイルスなどが吸着しやすくなる。このため亜酸化銅による抗菌、抗ウイルス性能が向上すると考えられる。 Protein molecules constituting bacteria and viruses are polymers having a structure in which an amino acid having a hydrophilic group and an amino acid having a hydrophobic group are bonded. Generally, on the surface of a protein molecule, hydrophilic groups and hydrophobic groups are present in a mosaic manner. The hydrophobic groups on the surface of the protein molecule tend to adsorb to hydrophobic groups etc. in other molecules to avoid contact with water molecules. Thus, the main factor of the protein adsorption phenomenon is due to the attractive attraction of hydrophobic groups possessed by the protein molecule itself. Therefore, when the water treatment material includes a water repellent binder as in the present embodiment, an interaction attractive force is exerted between the hydrophobic group in the protein molecule and the water repellent binder. Therefore, the protein is easily adsorbed to the water treatment material. Along with that, bacteria, viruses and the like are easily adsorbed to the cuprous oxide in the water treatment material. For this reason, it is considered that the antibacterial and antiviral performance by cuprous oxide is improved.
 撥水性バインダーの有する撥水性の程度は制限されないが、特に撥水性バインダーの表面自由エネルギーが40mJ/m以下であることが好ましい。この場合、菌やウイルスを構成するタンパク質と撥水性バインダーとの間の相互作用引力が特に大きくなる。このため、水処理材の抗菌、抗ウイルス性能が更に向上する。 Although the degree of water repellency of the water repellent binder is not limited, it is particularly preferable that the surface free energy of the water repellent binder is 40 mJ / m 2 or less. In this case, the interaction attraction between the protein constituting the bacteria or virus and the water repellent binder is particularly large. For this reason, the antibacterial and antiviral performance of the water treatment material is further improved.
 撥水性バインダーは、アクリルポリオールを含む主剤と硬化剤との反応生成物であることが好ましい。主剤中のアクリルポリオールの割合は1~100質量%の範囲であることが好ましく、特に10~100質量%の範囲であることが好ましい。主剤が全てアクリルポリオールであることも好ましい。 The water repellent binder is preferably a reaction product of a main agent containing an acrylic polyol and a curing agent. The proportion of the acrylic polyol in the main agent is preferably in the range of 1 to 100% by mass, and particularly preferably in the range of 10 to 100% by mass. It is also preferred that the main agent is all an acrylic polyol.
 アクリルポリオールは特に、ポリシロキサン骨格を含む側鎖を有するアクリルポリオール、フルオロアルキル骨格を有するアクリルポリオール、並びにポリシロキサン骨格を含む側鎖とフルオロアルキル骨格とを有するアクリルポリオールのうち、少なくとも一種を含むことが好ましい。フルオロアルキル骨格を有するアクリルポリオールにおいては、フルオロアルキル骨格は側鎖に存在していても主鎖に存在していてもよい。このような場合、撥水性バインダーがポリシロキサン骨格とフルオロアルキル基とのうち少なくとも一方を備えるようになる。それにより、撥水性バインダーが持続性に優れた高い撥水性を発揮し、上記のような表面自由エネルギーが40mJ/m以下である撥水性バインダーも実現し得るようになる。このような撥水性バインダーを備えることで、水処理材には菌及びウイルスが更に吸着しやすくなる。このため水処理材の抗菌、抗ウイルス性能が更に向上する。 The acrylic polyol particularly includes at least one of an acrylic polyol having a side chain containing a polysiloxane skeleton, an acrylic polyol having a fluoroalkyl skeleton, and an acrylic polyol having a side chain containing a polysiloxane skeleton and a fluoroalkyl skeleton. Is preferred. In an acrylic polyol having a fluoroalkyl skeleton, the fluoroalkyl skeleton may be present in the side chain or in the main chain. In such a case, the water repellent binder is provided with at least one of the polysiloxane skeleton and the fluoroalkyl group. As a result, the water repellent binder exhibits high water repellency with excellent durability, and a water repellent binder having a surface free energy of 40 mJ / m 2 or less as described above can also be realized. By providing such a water repellent binder, bacteria and viruses can be more easily adsorbed to the water treatment material. This further improves the antibacterial and antiviral performance of the water treatment material.
 ポリシロキサン骨格を含む側鎖を有するアクリルポリオールが使用される場合、その主剤中の割合は1~100質量%の範囲であることが好ましく、特に10~100質量%の範囲であることが好ましい。フルオロアルキル骨格を有するアクリルポリオールが使用される場合、その主剤中の割合は1~100質量%の範囲であることが好ましく、特に10~100質量%の範囲であることが好ましい。ポリシロキサン骨格を含む側鎖とフルオロアルキル骨格とを有するアクリルポリオールが使用される場合、その主剤中の割合は1~100質量%の範囲であることが好ましく、特に10~100質量%の範囲であることが好ましい。更に、主剤中の、ポリシロキサン骨格を含む側鎖を有するアクリルポリオール、フルオロアルキル骨格を有するアクリルポリオール、並びにポリシロキサン骨格を含む側鎖とフルオロアルキル骨格とを有するアクリルポリオールの合計量の割合は、1~100質量%の範囲であることが好ましく、特に10~100質量%の範囲であることが好ましい。 When an acrylic polyol having a side chain containing a polysiloxane skeleton is used, the proportion in the main agent is preferably in the range of 1 to 100% by mass, and particularly preferably in the range of 10 to 100% by mass. When an acrylic polyol having a fluoroalkyl skeleton is used, the proportion in the main agent is preferably in the range of 1 to 100% by mass, and particularly preferably in the range of 10 to 100% by mass. When an acrylic polyol having a side chain containing a polysiloxane skeleton and a fluoroalkyl skeleton is used, the proportion in the main agent is preferably in the range of 1 to 100% by mass, particularly in the range of 10 to 100% by mass. Is preferred. Furthermore, the ratio of the total amount of the acrylic polyol having a side chain containing a polysiloxane skeleton, the acrylic polyol having a fluoroalkyl skeleton, and the acrylic polyol having a side chain containing a polysiloxane skeleton and a fluoroalkyl skeleton in the main agent is The range of 1 to 100% by mass is preferable, and the range of 10 to 100% by mass is particularly preferable.
 このようなポリシロキサン骨格を含む側鎖を有するアクリルポリオールの具体例としては、東亞合成株式会社製の品番US-270(水酸基含有シリコーン樹脂、固形分29質量%、水酸基価26)などが挙げられる。フルオロアルキル骨格を有するアクリルポリオールの具体例としては、旭硝子株式会社製のルミフロン品番LF200(水酸基含有フッ素樹脂、固形分60質量%、水酸基価32)などが挙げられる。ポリシロキサン骨格を含む側鎖とフルオロアルキル骨格とを有するアクリルポリオールの具体例としては、富士化成工業株式会社製の品番ZX-007C(ジメチルシリコン基・水酸基含有フッ素シリコーン樹脂、固形分35質量%、水酸基価58)などが挙げられる。 As a specific example of an acrylic polyol having a side chain containing such a polysiloxane skeleton, product number US-270 (hydroxyl group-containing silicone resin, solid content 29% by mass, hydroxyl value 26) manufactured by Toagosei Co., Ltd., etc. may be mentioned . As a specific example of the acrylic polyol which has a fluoroalkyl frame | skeleton, Lumiflon product number LF200 (A hydroxyl group containing fluorine resin, solid content 60 mass%, the hydroxyl value 32) made from Asahi Glass Co., Ltd., etc. are mentioned. As a specific example of an acrylic polyol having a side chain containing a polysiloxane skeleton and a fluoroalkyl skeleton, Part No. ZX-007C (Dimethylsilicon-based / hydroxyl-containing fluorosilicone resin, solid content 35% by mass, manufactured by Fuji Kasei Kogyo Co., Ltd. And hydroxyl value 58).
 主剤としてアクリルポリオールが用いられる場合、適宜の硬化剤が用いられる。特に硬化剤がイソシアネートを含むことが好ましい。この場合、主剤と硬化剤とが低温で反応可能となる。このためプラスチック材料のように耐熱性の低い部材上に水処理材を形成することが容易になる。また、撥水性バインダーが高い撥水性を発揮し、水処理材には菌及びウイルスが更に吸着しやすくなる。このため水処理材の抗菌、抗ウイルス性能が更に向上する。 When an acrylic polyol is used as the main agent, an appropriate curing agent is used. In particular, the curing agent preferably contains an isocyanate. In this case, the main agent and the curing agent can react at low temperature. For this reason, it becomes easy to form a water treatment material on a member with low heat resistance like a plastic material. In addition, the water repellent binder exhibits high water repellency, and bacteria and viruses are more easily adsorbed to the water treatment material. This further improves the antibacterial and antiviral performance of the water treatment material.
 イソシアネートの具体例としては、ヘキサメチレンジイソシアネート樹脂(例えば三井化学株式会社製、商品名タケネートD-170N;固形分100質量%)、トリレンジイソシアネート樹脂(例えば三井化学株式会社製の商品名タケネートD-103H:固形分50質量%)、キシレンジイソシアネート、イソホロンジイソシアネート、及びこれらのうちの二種以上の混合物が挙げられる。アクリルポリオールのOH当量に対するイソシアネートのNCO当量の比率は、0.5~3.0の範囲が好ましく、0.8~1.5の範囲であれば更に好ましい。 Specific examples of the isocyanate include hexamethylene diisocyanate resin (for example, Takenate D-170N, manufactured by Mitsui Chemicals, Inc .; solid content 100% by mass), tolylene diisocyanate resin (for example, Takenate D, manufactured by Mitsui Chemicals, Inc.) 103H: solid content: 50% by mass), xylene diisocyanate, isophorone diisocyanate, and a mixture of two or more of these. The ratio of NCO equivalent of isocyanate to OH equivalent of acrylic polyol is preferably in the range of 0.5 to 3.0, and more preferably in the range of 0.8 to 1.5.
 主剤としてアクリルポリオールが用いられる場合、硬化剤がアミノ樹脂を含むことも好ましい。この場合、撥水性バインダーの硬度が向上する。このため水中での水処理材の抗菌性、抗ウイルス性の持続性が向上する。また、撥水性バインダーが高い撥水性を発揮し、水処理材には菌及びウイルスが更に吸着しやすくなる。このため水処理材の抗菌、抗ウイルス性能が更に向上する。 When an acrylic polyol is used as the main agent, it is also preferable that the curing agent contains an amino resin. In this case, the hardness of the water repellent binder is improved. For this reason, the antimicrobial property of the water treatment material in water and the sustainability of the antiviral property are improved. In addition, the water repellent binder exhibits high water repellency, and bacteria and viruses are more easily adsorbed to the water treatment material. This further improves the antibacterial and antiviral performance of the water treatment material.
 アミノ樹脂の具体例としては、メラミン樹脂(例えば三井化学株式会社製、商品名ユーバン228;固形分60質量%)が挙げられる。アクリルポリオールの固形分に対するアミノ樹脂の固形分の質量比は、0.1~0.8の範囲であることが好ましく、0.3~0.5の範囲であれば更に好ましい。 As a specific example of an amino resin, melamine resin (For example, Mitsui Chemicals, Inc. make, brand name Yuvan 228; solid content 60 mass%) is mentioned. The mass ratio of the solid content of the amino resin to the solid content of the acrylic polyol is preferably in the range of 0.1 to 0.8, and more preferably in the range of 0.3 to 0.5.
 撥水性バインダーが、3官能以下のアルコキシシランの縮重合物を含むことも好ましい。この場合、撥水性バインダーがアルコキシシランの縮重合物を備えることで、撥水性バインダーが持続性に優れた高い撥水性を発揮する。このため、上記のような表面自由エネルギーが40mJ/m以下である撥水性バインダーも実現し得るようになる。このような撥水性バインダーを備えることで、水処理材には菌及びウイルスが更に吸着しやすくなる。このため水処理材の抗菌、抗ウイルス性能が更に向上する。 It is also preferable that the water repellent binder contains a condensation product of a trifunctional or less alkoxysilane. In this case, when the water repellent binder is provided with a condensation polymer of alkoxysilane, the water repellent binder exhibits high water repellency with excellent durability. Therefore, a water repellent binder having a surface free energy of 40 mJ / m 2 or less as described above can also be realized. By providing such a water repellent binder, bacteria and viruses can be more easily adsorbed to the water treatment material. This further improves the antibacterial and antiviral performance of the water treatment material.
 3官能以下のアルコキシシランの具体例としては、メチルトリエトキシシラン、メチル系シリコーンアルコキシオリゴマー、メチルフェニル系シリコーンアルコキシオリゴマーなどが挙げられる。 Specific examples of the trifunctional or lower alkoxysilane include methyltriethoxysilane, methyl silicone alkoxy oligomer, methylphenyl silicone alkoxy oligomer and the like.
 亜酸化銅は粒状であることが好ましい。亜酸化銅の粒径は適宜設定される。水処理材における、亜酸化銅と撥水性バインダーの割合は適宜設定されるが、亜酸化銅と撥水性バインダーとの質量比が1:99~99:1の範囲であることが好ましく、20:80~80:20の範囲であれば更に好ましい。 The cuprous oxide is preferably particulate. The particle size of the cuprous oxide is set appropriately. The ratio of cuprous oxide to the water repellent binder in the water treatment material is appropriately set, but the mass ratio of the cuprous oxide to the water repellent binder is preferably in the range of 1:99 to 99: 1, and 20: More preferably, it is in the range of 80 to 80:20.
 水処理材は、撥水性バインダーの原料と、亜酸化銅とを含有する組成物を成形し、硬化することで得られる。 The water treatment material is obtained by molding and curing a composition containing a water-repellent binder material and cuprous oxide.
 この組成物は、例えば亜酸化銅を含有し、更に撥水性バインダーの原料として上記のアクリルポリオールを含む主剤と硬化剤とを含有することができる。この組成物は、更に必要に応じて適宜の有機溶剤、その他の添加剤を含有することができる。 This composition contains, for example, copper suboxide, and can further contain a main agent containing the above-mentioned acrylic polyol as a raw material of a water repellent binder and a curing agent. The composition may further contain an appropriate organic solvent and other additives as required.
 また、組成物は、例えば亜酸化銅を含有し、更に撥水性バインダーの原料として上記の3官能以下のアルコキシシランとその部分加水分解縮合物とから選ばれる少なくとも一種を含有することもできる。この組成物は、更に必要に応じて水、酸触媒又はアルカリ触媒、適宜の有機溶剤、その他の添加剤を含有することができる。 In addition, the composition may contain, for example, copper suboxide, and may further contain at least one selected from the above trifunctional alkoxysilane and its partial hydrolytic condensate as a water-repellent binder material. The composition may further contain water, an acid catalyst or an alkali catalyst, an appropriate organic solvent, and other additives, as required.
 このような組成物が成形され、更に組成物の組成などに応じて加熱などの処理が施されることで硬化することによって、水処理材が得られる。 A water treatment material is obtained by molding such a composition, and further curing by being subjected to a treatment such as heating according to the composition of the composition and the like.
 本実施形態では、水処理装置1は、上記のような水処理材を備える。図1は水処理装置1の構成の一例を示す。この水処理装置1は、処理対象の水7が流通する通水路2を備える。通水路2の一端には処理対象の水7が供給される導入口5が形成され、通水路2の他端には水処理装置1による処理後の水を吐出する吐出口6が形成されている。この通水路2の途中には、処理対象の水7を貯留するタンク3と、処理対象の水7を浄化するための浄水フィルタ4とが設けられている。水処理装置1は、更に通水路2内に水の流通を生じさせるためのポンプ、通水路2の適宜の位置での水の流通を開閉するための弁などを、備えてもよい。 In the present embodiment, the water treatment apparatus 1 includes the water treatment material as described above. FIG. 1 shows an example of the configuration of the water treatment apparatus 1. The water treatment apparatus 1 includes a water passage 2 through which the water 7 to be treated flows. An inlet 5 to which the water 7 to be treated is supplied is formed at one end of the water passage 2, and an outlet 6 for discharging the water treated by the water treatment apparatus 1 is formed at the other end of the water passage 2 There is. In the middle of the water passage 2, a tank 3 for storing the water 7 to be treated and a water purification filter 4 for purifying the water 7 to be treated are provided. The water treatment apparatus 1 may further include a pump for causing the flow of water in the water flow passage 2, a valve for opening and closing the flow of water at an appropriate position of the water flow passage 2, and the like.
 このような水処理装置1が水処理材を備えると、処理対象の水7に存在する菌やウイルスを水処理材に吸着させて容易に不活性化させることができる。 When such a water treatment apparatus 1 includes a water treatment material, bacteria and viruses present in the water 7 to be treated can be adsorbed to the water treatment material and easily inactivated.
 水処理装置1におけるタンク3の内面上に水処理材が設けられていることが好ましい。例えばタンク3の内面上が水処理材で被覆されていることが好ましい。この場合、例えばタンク3の内面に撥水性バインダーの原料と亜酸化銅とを含有する組成物を塗布し、この組成物を硬化することで、タンク3の内面上を水処理材で被覆することが好ましい。 Preferably, a water treatment material is provided on the inner surface of the tank 3 in the water treatment apparatus 1. For example, the inner surface of the tank 3 is preferably coated with a water treatment material. In this case, for example, a composition containing a water-repellent binder material and cuprous oxide is applied to the inner surface of the tank 3, and the inner surface of the tank 3 is coated with a water treatment material by curing the composition. Is preferred.
 また、タンク3の内面を構成する構造材中に水処理材が含有されていることも好ましい。この場合、例えばタンク3の内面を構成する構造材の原料中に、粒状の水処理材を混入し、この構造材の原料を成形することで、タンク3の内面を構成することができる。この場合、タンク3の内面を構成する構造材に粒状の水処理材が埋め込まれ、この水処理材がタンク3の内面に露出することで、タンク3の内面上には水処理材が設けられる。 It is also preferable that the water treatment material be contained in the structural material that constitutes the inner surface of the tank 3. In this case, the inner surface of the tank 3 can be configured, for example, by mixing granular water treatment material into the raw material of the structural material constituting the inner surface of the tank 3 and molding the raw material of the structural material. In this case, the granular water treatment material is embedded in the structural material constituting the inner surface of the tank 3, and the water treatment material is provided on the inner surface of the tank 3 by exposing the water treatment material to the inner surface of the tank 3. .
 このようにタンク3の内面上に水処理材が設けられると、タンク3に水を貯留させることで、このタンク3内の水中の菌やウイルスを水処理材に吸着させて不活性化させることができる。このため、水の殺菌処理に要する設備を小型化することが可能となる。 As described above, when the water treatment material is provided on the inner surface of the tank 3, by storing water in the tank 3, bacteria and viruses in the water in the tank 3 are adsorbed to the water treatment material and inactivated. Can. For this reason, it becomes possible to miniaturize the equipment required for the sterilization treatment of water.
 水処理装置1における通水路2の内面上に、水処理材が設けられることも好ましい。この場合、例えば通水路2の内面上に、撥水性バインダーの原料と亜酸化銅とを含有する組成物を塗布し、この組成物を硬化することで、通水路2の内面上を水処理材で被覆することが好ましい。 It is also preferable that a water treatment material be provided on the inner surface of the water passage 2 in the water treatment apparatus 1. In this case, for example, a composition containing a water-repellent binder material and cuprous oxide is applied on the inner surface of water passage 2, and the composition is cured to form a water treatment material on the inner surface of water passage 2. It is preferable to coat with.
 このように通水路2の内面上に水処理材が設けられると、通水路2を流通する水中の菌やウイルスを水処理材に吸着させて不活性化させることができる。 As described above, when the water treatment material is provided on the inner surface of the water passage 2, bacteria and viruses in the water flowing through the water passage 2 can be adsorbed to the water treatment material and inactivated.
 水処理装置1における浄水フィルタ4に水処理材が設けられることも好ましい。この場合、例えば浄水フィルタ4に撥水性バインダーの原料と亜酸化銅とを含有する組成物を塗布し、この組成物を硬化することで、浄水フィルタ4に水処理材を付着させることが好ましい。 It is also preferable that the water purification material in the water treatment apparatus 1 be provided with a water treatment material. In this case, it is preferable to apply a water treatment material to the water purification filter 4 by, for example, applying a composition containing a water repellent binder material and copper suboxide to the water purification filter 4 and curing the composition.
 このように浄水フィルタ4に水処理材が設けられると、浄水フィルタ4を通過する水中の菌やウイルスを水処理材に吸着させて不活性化させることができる。また、このため殺菌性能と浄水性能とを併せ持つ水処理装置1の小型化も可能となる。 Thus, when the water treatment material is provided in the water purification filter 4, bacteria and viruses in water passing through the water purification filter 4 can be adsorbed to the water treatment material and inactivated. Moreover, for this reason, downsizing of the water treatment apparatus 1 having both the sterilization performance and the water purification performance can be achieved.
 尚、上記の水処理装置1において、タンク3、通水路2、及び浄水フィルタ4の各々に、水処理材が設けられてもよいし、タンク3、通水路2、及び浄水フィルタ4のうちの一種の要素又は二種の要素の各々に水処理材が設けられてもよい。 In the above water treatment apparatus 1, a water treatment material may be provided for each of the tank 3, the water flow passage 2 and the water purification filter 4, and of the tank 3, the water passage 2 and the water purification filter 4 A water treatment material may be provided for each of the one or two elements.
 また、水処理装置1の構成は、上記のようなタンク3、通水路2、及び浄水フィルタ4を備えるものには限られない。水処理装置1が、水処理材を備えるタンク3、水処理材を備える通水路2、及び水処理材を備える浄水フィルタ4のうち、少なくとも一種の要素を備えていれば、それ以外の構成は特に制限されない。 Moreover, the structure of the water treatment apparatus 1 is not restricted to what is equipped with the above tanks 3, the water flow path 2, and the clean water filter 4. FIG. If the water treatment apparatus 1 includes at least one element among the tank 3 provided with the water treatment material, the water flow passage 2 provided with the water treatment material, and the water purification filter 4 provided with the water treatment material, It is not particularly limited.
 次に、本発明を実施例によって具体的に説明する。 Next, the present invention will be specifically described by way of examples.
 [実施例1]
 主剤として、ポリシロキサン骨格(ポリジメチルシロキサン骨格)を含む側鎖と、フルオロアルキル基とを有するアクリルポリオール(富士化成工業株式会社製、品番ZX-022H;ジメチルシリコン基・水酸基含有フッ素シリコーン樹脂、固形分46質量%、水酸基価120)を用意した。硬化剤として、ヘキサメチレンジイソシアネート樹脂(三井化学株式会社製、商品名タケネートD-170N;固形分100質量%)を用意した。亜酸化銅として、酸化銅(I)微粒子(和光純薬工業株式会社製)を用意した。溶剤としてメチルエチルケトンを用意した。原料の使用量は、表1に示す通りである。
Example 1
Acrylic polyol having a side chain including a polysiloxane skeleton (polydimethylsiloxane skeleton) and a fluoroalkyl group as a main agent (Fuji Kasei Kogyo Co., Ltd., product number ZX-022H; dimethyl silicon group / hydroxy group-containing fluorine silicone resin, solid The mass was 46% by mass, and the hydroxyl value was 120). As a curing agent, hexamethylene diisocyanate resin (manufactured by Mitsui Chemicals, Inc., trade name Takenate D-170N; solid content 100% by mass) was prepared. Copper (I) oxide fine particles (manufactured by Wako Pure Chemical Industries, Ltd.) were prepared as copper suboxide. Methyl ethyl ketone was prepared as a solvent. The amounts of raw materials used are as shown in Table 1.
 主剤に亜酸化銅を加えてから、これらをスターラ-で分散・混合した。続いて、これらに硬化剤と溶剤とを加えて混合した。これにより、組成物を得た。組成物の全固形分に対する亜酸化銅の割合は50質量%であった。 After cuprous oxide was added to the main agent, these were dispersed and mixed with a stirrer. Subsequently, the curing agent and the solvent were added to these and mixed. This gave a composition. The proportion of cuprous oxide to the total solid content of the composition was 50% by mass.
 基材として、ホウ珪クラウンガラス(住田光学ガラス社製、品番BK7;厚さ2mm)を用意した。この基材上に組成物をバーコータ(#20)によって塗布し、150℃の温度で10分間乾燥することによって、基材上に水処理材を形成した。 Borosilicate crown glass (manufactured by Sumita Optical Glass Co., Ltd., product number BK7; thickness 2 mm) was prepared as a substrate. The composition was applied on this substrate by a bar coater (# 20) and dried at a temperature of 150 ° C. for 10 minutes to form a water treatment material on the substrate.
 [実施例2]
 実施例1において、主剤を、ポリシロキサン骨格を含む側鎖を有すると共にフルオロアルキル基を有しないアクリルポリオール(東亞合成株式会社製、品番GS-1015;水酸基含有樹脂、固形分45質量%、水酸基価72)に変更した。原料の使用量は、表1に示す通りとした。
Example 2
In Example 1, the main agent is an acrylic polyol having a side chain containing a polysiloxane skeleton and no fluoroalkyl group (Toho Gosei Co., Ltd., product number GS-1015; hydroxyl group containing resin, solid content 45% by mass, hydroxyl value Changed to 72). The amounts of raw materials used were as shown in Table 1.
 それ以外は実施例1の場合と同じ方法及び同じ条件で、基材上に水処理材を形成した。 A water treatment material was formed on the substrate in the same manner and under the same conditions as in Example 1 except for the above.
 [実施例3]
 実施例1において、主剤を、フルオロアルキル基を有するアクリルポリオール(DIC株式会社製、商品名フルオネートK-703;水酸基含有フッ素樹脂、固形分60質量%、水酸基価66~78)に変更した。原料の使用量は、表1に示す通りとした。
[Example 3]
In Example 1, the main agent was changed to an acrylic polyol having a fluoroalkyl group (manufactured by DIC Corporation, trade name: Fluonate K-703; hydroxyl group-containing fluororesin, solid content 60 mass%, hydroxyl value 66 to 78). The amounts of raw materials used were as shown in Table 1.
 それ以外は実施例1の場合と同じ方法及び同じ条件で、基材上に水処理材を形成した。 A water treatment material was formed on the substrate in the same manner and under the same conditions as in Example 1 except for the above.
 [実施例4]
 実施例1において、硬化剤を、メラミン樹脂(三井化学株式会社製、商品名ユーバン225;固形分60質量%)に変更した。原料の使用量は、表1に示す通りとした。
Example 4
In Example 1, the curing agent was changed to a melamine resin (manufactured by Mitsui Chemicals, Inc., trade name: U-van 225; solid content 60% by mass). The amounts of raw materials used were as shown in Table 1.
 それ以外は実施例1の場合と同じ方法及び同じ条件で、基材上に水処理材を形成した。 A water treatment material was formed on the substrate in the same manner and under the same conditions as in Example 1 except for the above.
 [実施例5]
 メチルトリメトキシシラン(信越シリコーン株式会社製、品番KBM-13)、メチルアルコール、及び酸化銅(I)微粒子(和光純薬工業株式会社製)を用意した。これらの原料の使用量は表1に示す通りとした。更に適量の0.1Nの硝酸水溶液を用意した。
[Example 5]
Methyltrimethoxysilane (manufactured by Shin-Etsu Silicone Co., Ltd., product number KBM-13), methyl alcohol, and copper (I) oxide fine particles (manufactured by Wako Pure Chemical Industries, Ltd.) were prepared. The amounts of these raw materials used were as shown in Table 1. Furthermore, an appropriate amount of 0.1 N nitric acid aqueous solution was prepared.
 メチルトリメトキシシランにメチルアルコールを加え、これらを撹拌しながら更に緩やかに0.1Nの硝酸水溶液を滴下した。これにより得られた溶液を1時間かけて60℃ま
で昇温させた。これにより、3官能のアルコキシシラン部分加水分解物溶液(固形分1.5質量%)を調製した。
Methyl alcohol was added to methyltrimethoxysilane, and while stirring these, a 0.1 N aqueous nitric acid solution was further dropped slowly. The solution thus obtained was heated to 60 ° C. over 1 hour. Thus, a trifunctional alkoxysilane partial hydrolyzate solution (solid content: 1.5% by mass) was prepared.
 この3官能のアルコキシシラン部分加水分解物溶液に酸化銅(I)微粒子を加え、これらをスターラーにより攪拌することによって、組成物を調製した。 The composition was prepared by adding copper (I) oxide microparticles to this trifunctional alkoxysilane partial hydrolyzate solution and stirring them with a stirrer.
 基材として、ホウ珪クラウンガラス(住田光学ガラス社製、品番BK7;厚さ2mm)を用意した。この基材上に組成物をバーコータ(#20)によって塗布し、150℃の温度で10分間乾燥することによって、基材上に水処理材を形成した。 Borosilicate crown glass (manufactured by Sumita Optical Glass Co., Ltd., product number BK7; thickness 2 mm) was prepared as a substrate. The composition was applied on this substrate by a bar coater (# 20) and dried at a temperature of 150 ° C. for 10 minutes to form a water treatment material on the substrate.
 [実施例6]
 容量200mLのガラス製の容器を用意した。この容器を脱脂し、続いてアルカリ洗浄し、更に中和することで、清浄化した。続いて、この容器に実施例5に示す組成物を流し入れて緩やかに攪拌した後、余分な組成物を排出することで容器の表面をコーティングした。それを150℃で30分間加熱し乾燥・硬化させることで、内面上に水処理材が設けられているガラス容器を得た。
[Example 6]
A 200 mL glass container was prepared. The container was cleaned by degreasing followed by alkaline cleaning and further neutralization. Subsequently, the composition shown in Example 5 was poured into the container and gently stirred, and then the excess composition was discharged to coat the surface of the container. The glass container was provided with a water treatment material on the inner surface by heating it for 30 minutes at 150 ° C. and drying and curing it.
 [実施例7]
 外径7mm、内径5mmのガラス管を用意した。このガラス管をアルカリ洗浄し、続いて中和することで、清浄化した。続いて、このガラス管に実施例5に示す組成物を流し入れることを数回繰り返すことでガラス管内壁をコーティングした。それを150℃で30分間加熱し乾燥・硬化させることで、内面上に水処理材が設けられているガラス管を得た。
[Example 7]
A glass tube having an outer diameter of 7 mm and an inner diameter of 5 mm was prepared. The glass tube was cleaned by alkaline cleaning followed by neutralization. Subsequently, the inner wall of the glass tube was coated by repeating pouring the composition described in Example 5 into the glass tube several times. It was heated at 150 ° C. for 30 minutes to be dried and cured to obtain a glass tube provided with a water treatment material on the inner surface.
 [比較例1]
 実施例1において、主剤を、ポリシロキサン骨格を含む側鎖とフルオロアルキル骨格とをいずれも有さないアクリルポリオール(DIC株式会社製、品番52-668BA;固形分45質量%、水酸基価24)に変更した。原料の使用量は表1に示す通りとした。
Comparative Example 1
In Example 1, the main agent is an acrylic polyol (manufactured by DIC Corporation, product number 52-668BA; solid content 45% by mass, hydroxyl value 24) having neither a side chain containing a polysiloxane skeleton nor a fluoroalkyl skeleton. changed. The amounts of raw materials used are as shown in Table 1.
 それ以外は実施例1の場合と同じ方法及び同じ条件で、基材上に水処理材を形成した。 A water treatment material was formed on the substrate in the same manner and under the same conditions as in Example 1 except for the above.
 [比較例2]
 容量200mLのガラス製の容器を用意した。この容器を脱脂・アルカリ洗浄・中和することで清浄化した。
Comparative Example 2
A 200 mL glass container was prepared. The container was cleaned by degreasing, alkaline cleaning and neutralization.
 [表面自由エネルギー測定]
 亜酸化銅を使用しない以外は、実施例1~5及び比較例1の各々における組成物の調製方法と同じ方法で、亜酸化銅を含有しない組成物を調製した。この亜酸化銅を含有しない組成物を、基材(ホウ珪クラウンガラス、住田光学ガラス社製、品番BK7;厚さ2mm)上にバーコータ(#20)で塗布し、更に150℃の温度で10分間乾燥することによって、基材上にバインダーの層を形成した。
[Surface free energy measurement]
A composition containing no cuprous oxide was prepared in the same manner as the method of preparing the composition in each of Examples 1 to 5 and Comparative Example 1 except that cuprous oxide was not used. This composition containing no cuprous oxide is coated on a base material (borosilicate crown glass, manufactured by Sumita Optical Glass Co., Ltd., product number BK7; thickness 2 mm) with a bar coater (# 20), and further at a temperature of 150 ° C. By drying for a minute, a layer of binder was formed on the substrate.
 このバインダー上での測定用液(水及びジヨードメタンを使用)の接触角を、接触角計(協和界面科学社製、型番DM500)を用いて測定した。この結果に基づき、下記の式を用いてバインダーの表面自由エネルギーを算出した。
(1+cosθ)・γL/2=(γsd・γLd)1/2+(γsp・γLp)1/2
θ:バインダー上の測定用液の接触角
γL:測定用液の表面張力
γLd:測定用液の表面自由エネルギーの分散力成分
γLp:測定用液の表面自由エネルギーの極性力成分
γsd:バインダーの表面自由エネルギーの分散力成分
γsp:バインダーの表面自由エネルギーの極性力成分
 [抗菌試験1]
 実施例1~5及び比較例1の各々で得られた水処理材の大腸菌を対象とした抗菌活性値を、JIS Z2801に従うフィルム法により評価した。暴露時間は1時間とした。
The contact angle of the measurement solution (using water and diiodomethane) on this binder was measured using a contact angle meter (Model No. DM500, manufactured by Kyowa Interface Science Co., Ltd.). Based on this result, the surface free energy of the binder was calculated using the following equation.
(1 + cosθ) · γL / 2 = (γsd · γLd) 1/2 + (γsp · γLp) 1/2
θ: Contact angle of the measurement solution on the binder γL: Surface tension of the measurement solution γLd: Dispersion force component of the surface free energy of the measurement solution γLp: Polarity component of the surface free energy of the measurement solution γsd: Surface of the binder Dispersion force component γsp of free energy: Polarity component of surface free energy of binder [Antibacterial test 1]
The antibacterial activity value for E. coli of the water-treated material obtained in each of Examples 1 to 5 and Comparative Example 1 was evaluated by the film method according to JIS Z2801. The exposure time was 1 hour.
 [抗菌試験2]
 100mLの滅菌済み純水と大腸菌液1mL(前培養(37℃/1日間)し、10mLの滅菌済み純水に2白金耳投入し攪拌することで、大腸菌を含む溶液を得た。この溶液を、実施例6で得られた水処理材を備える容器と比較例2における容器の各々に投入し、10分間放置した。続いて、各容器内の溶液中の大腸菌を対象とする抗菌活性値を、平板希釈法により評価した。
[Antibacterial test 2]
A solution containing E. coli was obtained by adding 100 mL of sterilized pure water and 1 mL of E. coli solution (pre-culture (37 ° C./1 day), adding 2 platinum loops to 10 mL of sterilized pure water and stirring. Then, each of the container provided with the water treatment material obtained in Example 6 and the container in Comparative Example 2 was charged and allowed to stand for 10 minutes, and then the antibacterial activity value for E. coli in the solution in each container was measured. The plate dilution method was evaluated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 1  水処理装置
 2  通水路
 3  タンク
 4  浄水フィルタ
 7  処理対象の水
1 Water treatment device 2 Water passage 3 Tank 4 Water purification filter 7 Water to be treated

Claims (11)

  1. 亜酸化銅と撥水性バインダーとを備える水処理材。 A water treatment material comprising cuprous oxide and a water repellent binder.
  2. 前記撥水性バインダーの表面自由エネルギーが40mJ/m以下である請求項1に記載の水処理材。 The water treatment material according to claim 1, wherein the surface free energy of the water repellent binder is 40 mJ / m 2 or less.
  3. 前記撥水性バインダーが、主剤と硬化剤との反応生成物であり、前記主剤が、ポリシロキサン骨格を含む側鎖を有するアクリルポリオールを少なくとも含む請求項1又は2に記載の水処理材。 The water treatment material according to claim 1 or 2, wherein the water repellent binder is a reaction product of a main agent and a curing agent, and the main agent at least contains an acrylic polyol having a side chain containing a polysiloxane skeleton.
  4. 前記撥水性バインダーが、主剤と硬化剤との反応生成物であり、前記主剤が、フルオロアルキル骨格を有するアクリルポリオールを少なくとも含む請求項1乃至3のいずれか一項に記載の水処理材。 The water treatment material according to any one of claims 1 to 3, wherein the water repellent binder is a reaction product of a main agent and a curing agent, and the main agent contains at least an acrylic polyol having a fluoroalkyl skeleton.
  5. 前記撥水性バインダーが、主剤と硬化剤との反応生成物であり、前記主剤が、ポリシロキサン骨格を含む側鎖とフルオロアルキル骨格とを有するアクリルポリオールを少なくとも含む請求項1乃至4のいずれか一項に記載の水処理材。 The water repellent binder is a reaction product of a main agent and a curing agent, and the main agent at least contains an acrylic polyol having a side chain containing a polysiloxane skeleton and a fluoroalkyl skeleton. The water treatment material as described in a term.
  6. 前記硬化剤が、イソシアネートを含む請求項3乃至5のいずれか一項に記載の水処理材。 The water treatment material according to any one of claims 3 to 5, wherein the curing agent contains an isocyanate.
  7. 前記硬化剤が、アミノ樹脂を含む請求項3乃至6のいずれか一項に記載の水処理材。 The water treatment material according to any one of claims 3 to 6, wherein the curing agent contains an amino resin.
  8. 前記撥水性バインダーが、3官能以下のアルコキシシランの縮重合物を含む請求項1又は2に記載の水処理材。 The water treatment material according to claim 1, wherein the water repellent binder contains a condensation polymer of a trifunctional or less functional alkoxysilane.
  9. 処理対象の水が貯留されるタンクと、前記タンクの内面上に設けられている請求項1乃至8のいずれか一項に記載の水処理材とを備える水処理装置。 A water treatment apparatus comprising: a tank in which water to be treated is stored; and the water treatment material according to any one of claims 1 to 8 provided on an inner surface of the tank.
  10. 処理対象の水が流通する通水路と、前記通水路の内面上に設けられている請求項1乃至8のいずれか一項に記載の水処理材とを備える水処理装置。 A water treatment apparatus comprising: a water passage through which water to be treated flows; and the water treatment material according to any one of claims 1 to 8 provided on an inner surface of the water passage.
  11. 浄水フィルタと、前記浄水フィルタに設けられている請求項1乃至8のいずれか一項に記載の水処理材とを備える水処理装置。 A water treatment apparatus comprising: a water purification filter; and the water treatment material according to any one of claims 1 to 8 provided in the water purification filter.
PCT/JP2012/057103 2011-03-31 2012-03-21 Water treatment agent and water treatment device WO2012133014A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-079643 2011-03-31
JP2011079643A JP2012213689A (en) 2011-03-31 2011-03-31 Water treating material and water treating apparatus

Publications (1)

Publication Number Publication Date
WO2012133014A1 true WO2012133014A1 (en) 2012-10-04

Family

ID=46930746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057103 WO2012133014A1 (en) 2011-03-31 2012-03-21 Water treatment agent and water treatment device

Country Status (2)

Country Link
JP (1) JP2012213689A (en)
WO (1) WO2012133014A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3935946A1 (en) * 2020-07-06 2022-01-12 AgXX Device for the depletion of active microorganisms in fluids

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026217A (en) * 1998-07-10 2000-01-25 Ihara Chem Ind Co Ltd Antifouling agent for fouling organism in water
JP2003238886A (en) * 2002-02-14 2003-08-27 Kansai Paint Co Ltd Antifouling paint composition
JP2007314607A (en) * 2006-05-23 2007-12-06 Matsushita Electric Works Ltd Water repellent and oil repellent resin composition and coated article
JP2009127384A (en) * 2007-11-27 2009-06-11 Panasonic Electric Works Co Ltd Drain outlet of kitchen

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317133A (en) * 1988-06-15 1989-12-21 Mitsubishi Rayon Eng Co Ltd Water-treating agent made from glass
JPH02290291A (en) * 1989-04-28 1990-11-30 Takenaka Komuten Co Ltd Method for sterilization of recycled water
JPH05170486A (en) * 1991-12-25 1993-07-09 Central Glass Co Ltd Water repellent for glass surface and water-repellent glass
JPH06126275A (en) * 1992-10-20 1994-05-10 Matsushita Electric Ind Co Ltd Water purifying device
JPH06142658A (en) * 1992-11-13 1994-05-24 Matsushita Electric Ind Co Ltd Connecting piping member for water purifier
JP3188009B2 (en) * 1993-01-22 2001-07-16 三菱樹脂株式会社 Water pollution prevention method
JP3598529B2 (en) * 1994-03-18 2004-12-08 日本板硝子株式会社 Method for producing water-repellent article
JPH0827848A (en) * 1994-07-13 1996-01-30 Katsuyuki Miwa Water supply mechanism
JP4172171B2 (en) * 2001-10-09 2008-10-29 Toto株式会社 Room temperature curable water repellent composition
JP5090808B2 (en) * 2007-07-10 2012-12-05 アキレス株式会社 Photocatalytic multilayer coating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026217A (en) * 1998-07-10 2000-01-25 Ihara Chem Ind Co Ltd Antifouling agent for fouling organism in water
JP2003238886A (en) * 2002-02-14 2003-08-27 Kansai Paint Co Ltd Antifouling paint composition
JP2007314607A (en) * 2006-05-23 2007-12-06 Matsushita Electric Works Ltd Water repellent and oil repellent resin composition and coated article
JP2009127384A (en) * 2007-11-27 2009-06-11 Panasonic Electric Works Co Ltd Drain outlet of kitchen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3935946A1 (en) * 2020-07-06 2022-01-12 AgXX Device for the depletion of active microorganisms in fluids

Also Published As

Publication number Publication date
JP2012213689A (en) 2012-11-08

Similar Documents

Publication Publication Date Title
Goswami et al. Superhydrophobic films on glass surface derived from trimethylsilanized silica gel nanoparticles
Zhou et al. High-throughput membrane surface modification to control NOM fouling
JP3740736B2 (en) HEAT EXCHANGER AND HEAT EXCHANGER OPERATION METHOD
Bravo et al. Transparent superhydrophobic films based on silica nanoparticles
RU2549065C2 (en) Mask
JP3940983B2 (en) Antifouling member and antifouling coating composition
Baek et al. A facile surface modification for antifouling reverse osmosis membranes using polydopamine under UV irradiation
JP5607915B2 (en) Water / oil repellent resin composition and coated product
CN102131570B (en) Porous membranes made up of organopolysiloxane copolymers
US10202522B2 (en) Superamphiphobic surfaces and compositions and methods of forming the same
Ricoult et al. Humidified microcontact printing of proteins: universal patterning of proteins on both low and high energy surfaces
EP3138880A1 (en) Liquid composition and antibacterial article
JP2017119823A (en) Composition for antifogging coating and coating film containing the same
WO2012133014A1 (en) Water treatment agent and water treatment device
JP4289924B2 (en) Pattern forming body
JP2008530257A5 (en)
JP2017201011A5 (en)
CN103309161A (en) Photosensitive resin composition and application thereof
TW201945062A (en) Polyamide coated filter membrane, filters, and methods
Lin et al. Cotton fabrics modified for use in oil/water separation: A perspective review
Kaneko et al. Smooth and transparent films showing paradoxical surface properties: the lower the static contact angle, the better the water sliding performance
Chen et al. Perfectly hydrophobic silicone nanofiber coatings: preparation from methyltrialkoxysilanes and use as water-collecting substrate
Song et al. Superhydrophobic self-healing coatings comprised of hemispherical particles arrays decorated by fluorocarbon-coated nanoscale Fe2O3 rods and SiO2 particles
Shi et al. Unidirectional moisture delivery via a janus photothermal interface for indoor dehumidification: A smart roof
Nnadiekwe et al. Enhanced filtration characteristics and reduced bacterial attachment for reverse osmosis membranes modified by a facile method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12762929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12762929

Country of ref document: EP

Kind code of ref document: A1