WO2012132853A1 - Organic electroluminescent element - Google Patents

Organic electroluminescent element Download PDF

Info

Publication number
WO2012132853A1
WO2012132853A1 PCT/JP2012/056255 JP2012056255W WO2012132853A1 WO 2012132853 A1 WO2012132853 A1 WO 2012132853A1 JP 2012056255 W JP2012056255 W JP 2012056255W WO 2012132853 A1 WO2012132853 A1 WO 2012132853A1
Authority
WO
WIPO (PCT)
Prior art keywords
dopant
layer
film thickness
organic
average
Prior art date
Application number
PCT/JP2012/056255
Other languages
French (fr)
Japanese (ja)
Inventor
博之 佐々木
博也 辻
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012132853A1 publication Critical patent/WO2012132853A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the present invention relates to an organic electroluminescence element having a light emitting surface.
  • organic EL element that emits light in a planar shape
  • organic electroluminescence element organic electroluminescence element
  • the light emission is planar, there is an advantage that the light emission area can be made larger than that emitted in a spot shape and the light can be emitted brightly.
  • the organic EL element which has such a light emission surface attracts attention as a next-generation light emitting element since it has characteristics such as low power and long life.
  • an organic EL element having a light emitting surface there is a problem that uneven chromaticity and uneven brightness called color unevenness occur in the light emitting surface of a panel or the like. That is, there may be a difference in luminance and chromaticity between one region and another region in the light emitting surface, such as the central portion and the end portion, the corner portions, the one end portion and the other end portion. In particular, as the light emitting area becomes larger, luminance unevenness and chromaticity unevenness become more prominent. If the luminance unevenness or chromaticity unevenness is large, there is a problem that uniform light emission cannot be obtained in the surface and the light emission performance is deteriorated.
  • Patent Document 1 discloses a technique for adjusting a film thickness to suppress a dark spot, but does not improve chromaticity unevenness and luminance unevenness on a light emitting surface.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide an organic EL element in which color unevenness in a light emitting surface is suppressed.
  • An organic electroluminescence device includes an organic layer including two or more dopant-containing layers and one or more dopant-free layers, and the light-emitting surface is divided into a plurality of elements in a predetermined size section.
  • the average film thickness of each element in the dopant-containing layer is in the range of 90 to 110% of the average film thickness of the entire dopant-containing layer.
  • the average chromaticity of each element represented by the u ′ value and the v ′ value in the CIE 1976 (u ′, v ′) chromaticity diagram is the entire light emitting surface in both the u ′ value and the v ′ value.
  • the total thickness of the two or more dopant-containing layers is more than the total thickness of the one or more dopant-free layers. Is also small.
  • the total thickness of the two or more dopant-containing layers is preferably 25 to 35% with respect to the thickness of the organic layer.
  • Each dopant-containing layer in the two or more dopant-containing layers has an average film thickness of each element in each dopant-containing layer within a range of 93 to 107% of an average film thickness of the entire dopant-containing layer
  • Each dopant non-containing layer in the one or more dopant non-containing layers has an average film thickness of each element in each of the dopant non-containing layers within a range of 90 to 110% of an average film thickness of each of the dopant non-containing layers.
  • a reflective electrode is provided adjacent to the organic layer, and the adjacent organic layer adjacent to the reflective electrode among the organic layers has a total film thickness of 30 to 50 nm, and each element in the adjacent organic layer
  • the average film thickness is preferably in the range of 93 to 107% of the average film thickness of the entire adjacent organic layer.
  • the element showing the minimum luminance among the plurality of elements shows 70% or more of luminance with respect to the element showing the maximum luminance.
  • the organic layer is provided between a reflective electrode and a transparent electrode, and the transparent electrode is provided on the inner surface of a light-transmitting substrate having a light scattering layer provided on the outer surface, and CIE 1976 (u ′, v ′)
  • the average chromaticity of each element represented by the u ′ value and the v ′ value is 98.5 to 101.10 of the average chromaticity of the entire light emitting surface in both the u ′ value and the v ′ value. It is preferable to be within the range of 5%.
  • an organic EL element in which color unevenness in the light emitting surface is suppressed and the in-plane uniformity of light emission is improved.
  • FIG. 2 is an example of a layer configuration of the organic electroluminescence element (organic EL element) of the present embodiment.
  • This organic EL element includes an organic layer 3 including two or more dopant-containing layers 1 and one or more dopant-free layers 2.
  • the organic layer 3 is disposed between the first electrode 4 and the second electrode 5.
  • the dopant-containing layer 1 is composed of m dopant-containing layers 1, the dopant-containing layer 1 a is disposed closest to the first electrode 4 side, and the dopant-containing layer is closest to the second electrode 5 side. 1b is arranged.
  • m is a positive integer of 2 or more.
  • the dopant non-containing layer 2 is composed of n dopant non-containing layers 2, the dopant non-containing layer 2 a is arranged on the most first electrode 4 side, and the dopant non-containing is most on the second electrode 5 side.
  • Layer 2b is disposed.
  • n is a positive integer of 1 or more.
  • the dopant-containing layer 1 is a layer that contains a light-emitting dopant and functions as a light-emitting layer.
  • the two or more dopant-containing layers 1 preferably include at least two dopant-containing layers 1 having different emission colors. Colors with different emission colors are likely to cause color unevenness, but in this embodiment, such color unevenness can be further reduced. Further, if there are a plurality of emission colors, particularly three or more emission colors, it is possible to create appropriate emission colors by combining red, blue and green emission, which is preferable. In this case, for example, white light emission can be obtained.
  • the dopant non-containing layer 2 is a layer not containing a light emitting dopant.
  • the dopant-free layer 2 functions as an appropriate layer selected from an electron injection layer, an electron transport layer, a hole transport layer, a hole injection layer, an intermediate layer, a bonding layer, and the like.
  • the dopant-free layer 2 is one of the layers constituting the organic layer 3 and is basically a layer containing an organic substance.
  • the above-described layers such as an electron injection layer and an electron transport layer
  • it is defined as the dopant non-containing layer 2 even when it is made of a metal or the like without containing organic substances. That is, the organic layer 3 refers to the entire layer sandwiched between the first electrode 4 and the second electrode 5.
  • the film thickness of the dopant-containing layer 1 can be set to 1 to 40 nm, for example.
  • the film thickness of the dopant-free layer 2 can be set to 1 to 60 nm, for example. When the film thicknesses of these layers are in an appropriate range, both electrical specification and light emission characteristics can be improved.
  • FIG. 1 is a schematic plan view of the organic EL element as viewed from a direction perpendicular to the light emitting surface A.
  • FIG. Light emitted by the organic layer 3 is extracted from the first electrode 4 side (or the second electrode 5 side) which is a light extraction electrode.
  • the organic EL element of the present embodiment emits light in a planar shape
  • the light emitting surface A is a planar shape having a relatively large area. Size of the light emitting surface A is, for example, may be an area to the extent 25 cm 2 or more 900 cm 2 or less, but is not limited thereto.
  • the shape of the light emitting surface A is not particularly limited, and may be rectangular (square or rectangular), circular, or other shapes. However, the element division described below is easier to perform in the rectangular shape.
  • the light emitting surface A is divided into a plurality of elements S in sections of a predetermined size.
  • the plurality of elements S are configured in a square shape in which each element S has the same area.
  • the element S may have a rectangular shape, but is preferably a square shape from the viewpoint of reducing color unevenness.
  • the light emitting surface A is divided into n elements S.
  • n is a positive integer. This n is not related to n in FIG.
  • the size of the element S can be appropriately set to a predetermined size. However, if the size of the element S is too large, gradients such as chromaticity and luminance within the element are averaged. There is a risk that the above will be evaluated as no gradient and will not reflect the actual situation. In addition, when used as a surface light source with a large area, what is required is uniformity of the entire surface (chromaticity, brightness, etc.), and uniformity between the minimum areas is not necessarily required, and is also unnecessary from the viewpoint of visibility. Therefore, it is not necessary to make the size of the element S too small. In this way, the size of the element S is set on the basis of the sensitivity given to the person by the light emission on the light emitting surface A.
  • the size of the element S can be, for example, a square of 5 mm ⁇ 5 mm, but is not limited thereto, and when configured in a square shape, for example, larger than a square of 0.2 mm ⁇ 0.2 mm, 30 mm ⁇ 30 mm It is preferably smaller than the square.
  • the size of the element S is more preferably larger than a 1 mm ⁇ 1 mm square and smaller than a 10 mm ⁇ 10 mm square or a 20 mm ⁇ 20 mm square.
  • the element S may be obtained by equally dividing the light emitting surface A by a predetermined number.
  • the light emitting surface A is divided into 3 ⁇ 3 (total 9) squares, divided into 4 ⁇ 4 (total 16) squares, or 5 ⁇ 5 (total 25).
  • a plurality of elements S can be obtained.
  • p elements are arranged in the horizontal direction and q elements are arranged in the vertical direction.
  • p and q are positive integers.
  • the element S of the upper left corner and the elements S 1 a laterally arranged elements in order from left to right of the stage (first stage), S 2, S 3, ⁇ ⁇ ⁇ , as such S p Define.
  • the vertical elements S of the left end of the next stage (second stage), as the next element S of S p if indicated as element S p + 1, element arranged in the horizontal direction of the stage from the left , S P + 2 , S P + 3 ,..., S 2p in order.
  • This m is not related to m in FIG.
  • the light emitting surface A is divided into n elements S from the element S 1 to the elements S n.
  • the organic EL element of this embodiment when the element is divided in this way, at least one dopant-containing layer 1 out of two or more dopant-containing layers 1 satisfies a specific film thickness condition.
  • the dopant-containing layer 1 that satisfies this specific film thickness condition will be described as a specific dopant-containing layer.
  • the specific dopant-containing layer is divided into n elements S when viewed from the direction perpendicular to the light emitting surface A as described above.
  • the average film thickness of the specific dopant-containing layer in each element S is in the range of 90 to 110% of the average film thickness of the entire specific dopant-containing layer.
  • the average thickness of a particular dopant-containing layer in any element S m and D Sm is expressed as D S1
  • the average thickness of a particular dopant-containing layer in the element S 2 can be expressed as D S2
  • the elements S n The average film thickness of the specific dopant-containing layer can be expressed as DSn .
  • the average film thickness Dav of the whole specific dopant content layer can be expressed as follows.
  • the average film thickness D Sm of any element S m selected from the n elements S satisfies the following relationship in all the elements S.
  • the specific dopant-containing layer is designed to have a specific film thickness condition.
  • the organic EL element of the present embodiment has the u ′ value and v ′ of the CIE 1976 (u ′, v ′) chromaticity diagram when the chromaticity of the light emitting surface A is measured from the direction perpendicular to the light emitting surface A.
  • the average chromaticity of each element S represented by the value is within the range of 98 to 102% of the average chromaticity of the entire light emitting surface A in both the u ′ value and the v ′ value.
  • CIE-u the u 'value of the CIE 1976 (u', v ') chromaticity diagram
  • CIE-v' the v 'value of the CIE 1976 (u', v ') chromaticity diagram
  • the average chromaticity of the entire light emitting surface A can be expressed as follows.
  • the average chromaticity (u ′ m , v ′ m ) of an arbitrary element S m selected from the n elements S with respect to the average chromaticity (u ′ 0 , v ′ 0 ) of the entire light emitting surface A is The following relationship is satisfied in all elements S.
  • the chromaticity is measured by, for example, a two-dimensional color luminance meter (CA-2000) manufactured by Konica Minolta.
  • the organic EL element of the present embodiment is designed so that the average chromaticity of the light emitting surface A is in a specific condition.
  • the specific dopant-containing layer has a specific film thickness condition, and the average chromaticity of the light-emitting surface A is a specific condition, so that the in-plane light emission can be made closer to uniform, and the color unevenness Is suppressed, and an excellent planar light-emitting organic EL device can be constructed.
  • the specific dopant-containing layer may be at least one dopant-containing layer 1 out of two or more dopant-containing layers 1, but preferably two or more, more preferably three or more dopant-containing layers 1 are specific dopant-containing layers. It will be. When some dopant content layers 1 are specific dopant content layers, it is preferred that dopant content layer 1 with high contribution in the whole luminescent color is a specific dopant content layer. For example, when graphing the relationship between the emission wavelength and the emission intensity, the dopant-containing layer 1 having a high intensity peak is preferably a specific dopant-containing layer. By setting the dopant-containing layer 1 having high emission intensity to a specific film thickness condition, color unevenness can be effectively reduced. And it is preferable that all the dopant content layers 1 in the organic layer 3 become a specific dopant content layer. When all the dopant-containing layers 1 have specific film thickness conditions, color unevenness can be further suppressed.
  • each element S is such that the total thickness of the two or more dopant-containing layers 1 is thinner than the total thickness of the one or more dopant-free layers 2.
  • the total thickness of the film thickness is a total thickness obtained by adding the thicknesses of the individual layers when a plurality of layers (dopant-containing layer 1 or non-dopant-containing layer 2) are present in the organic layer 3.
  • the total thickness is calculated by the sum of the average thickness of each element in each layer.
  • the dopant-containing layer 1 has a film thickness D.
  • the film thicknesses are defined as D 1 , D 2 ,..., D m in order from the dopant-containing layer 1 on the first electrode 4 side.
  • the total thickness of the dopant-containing layer 1 can be expressed as follows.
  • the film thickness, d 1, d 2, ⁇ ⁇ ⁇ , defined as d n the film thickness, d 1, d 2, ⁇ ⁇ ⁇ , defined as d n. Then, the total thickness of the dopant non-containing layer 2 can be expressed as follows.
  • the total thickness of the two or more dopant-containing layers 1 is preferably 25 to 35% with respect to the thickness of the organic layer 3.
  • each of the dopant-containing layers 1 in the two or more dopant-containing layers 1 has an average film thickness of each element S in each of the dopant-containing layers 1 and an average film thickness of each of the dopant-containing layers 1 as a whole. Preferably, it is within the range of 93 to 107%. That is, in a preferable form, when the element is divided, all the dopant-containing layers 1 of the two or more dopant-containing layers 1 satisfy a specific film thickness condition. In other words, all of the dopant-containing layers 1a, ..., 1b in the organic layer 3 satisfy a specific film thickness condition.
  • each dopant-containing layer 1 the dopant-containing layer 1 is divided into n elements S when viewed from the direction perpendicular to the light emitting surface A as described above.
  • the average film thickness of each dopant-containing layer 1 in each element S is in the range of 93 to 107% of the average film thickness of the entire dopant-containing layer 1 to which the element S belongs.
  • each element S 1, S 2, ⁇ ⁇ ⁇ , the dopant-containing layer 1 in the S n The average film thickness can be expressed as D S1 , D S2 ,..., D Sn , respectively.
  • the average film thickness D av of the entire individual dopant-containing layer 1 can be expressed as follows.
  • the average film thickness D Sm of any element S m selected from the n elements S satisfies the following relationship in all the elements S with respect to the average film thickness D av of the entire individual dopant-containing layer 1. .
  • all the dopant-containing layers 1 are designed to have a specific film thickness condition. In that case, color unevenness is further suppressed.
  • each dopant non-containing layer 2 in the one or more dopant non-containing layers 2 is such that the average film thickness of each element S in each of the dopant non-containing layers 2 is 90 of the average film thickness of each of the dopant non-containing layers 2 as a whole. It is preferably in the range of ⁇ 110%. That is, in a preferable embodiment, when the element is divided, all the dopant-free layers 2 of the one or more dopant-free layers 2 satisfy a specific film thickness condition. In other words, the dopant-free layers 1a,..., 1b in the organic layer 3 all satisfy a specific film thickness condition.
  • each dopant non-containing layer 2 the dopant non-containing layer 2 is divided into n elements S when viewed from the direction perpendicular to the light emitting surface A as described above.
  • the average film thickness of the individual dopant-free layer 2 in each element S is in the range of 90 to 110% of the average film thickness of the entire dopant-free layer 2 to which it belongs.
  • each element S 1, S 2, ⁇ ⁇ ⁇ , dopants in S n-free layer 2 can be expressed as d S1 , d S2 ,..., D Sn , respectively.
  • each individual dopant non-containing layer 2 can be expressed as follows.
  • all the dopant-free layers 2 are designed to have a specific film thickness condition. In that case, color unevenness is further suppressed.
  • one of the electrodes is formed as a transparent electrode and the other electrode is formed as a reflective electrode.
  • the other electrode is formed as a reflective electrode.
  • a transparent electrode is an electrode that transmits light.
  • a reflective electrode is an electrode having a function of reflecting light. In the form of FIG. 2, for example, the first electrode 4 is a transparent electrode and the second electrode 5 is a reflective electrode.
  • the adjacent organic layer 3a adjacent to the reflective electrode in the organic layer 3 has a total film thickness of 30 to 50 nm, and the average film thickness of each element S in the adjacent organic layer 3a is equal to the adjacent organic layer. It is preferably in the range of 93 to 107% of the average film thickness of the entire 3a. Thereby, color unevenness is further suppressed.
  • the adjacent organic layer 3 a adjacent to the reflective electrode (second electrode 5) in the organic layer 3 is not included in the dopant non-containing layer 2 and is located closest to the second electrode 5.
  • the film thickness of the dopant-free layer 2b is 30 to 50 nm.
  • each element S 1, S 2, ⁇ ⁇ ⁇ , dopants in S n-free layer 2b can be expressed as d S1 , d S2 ,..., D Sn , respectively.
  • each individual dopant non-containing layer 2b can be expressed as follows.
  • the average thickness d av of the entire non-dopant-containing layer 2b, the average thickness d Sm of n for any chosen from the elements S component S m is satisfied in all the elements S the following relation.
  • the dopant non-containing layer 2b which is a layer adjacent to the reflective electrode is designed to have a specific film thickness condition. In that case, color unevenness is further suppressed.
  • the layer in contact with each electrode in the organic layer 3 may be the dopant-containing layer 1, but is preferably the dopant-free layer 2.
  • the adjacent organic layer 3 a that is a layer adjacent to the reflective electrode is preferably the dopant-free layer 2. This facilitates injection of charges (electrons or holes) into the light-emitting layer, and can improve light-emitting properties.
  • the element S indicating the minimum luminance among the plurality of elements S indicates 70% or more luminance with respect to the element S indicating the maximum luminance. Is preferred.
  • the luminance at each element S is measured as the average luminance of the segment range of element S.
  • each element S 1, S 2, ⁇ ⁇ ⁇ , average luminance for S n, respectively, L S1, L S2, ⁇ ⁇ ⁇ , can be expressed as L Sn.
  • the average luminance of the element S having the highest luminance is expressed as L max
  • the average luminance of the element S having the lowest luminance is expressed as L min .
  • the luminance of the light emitting surface A approaches uniformly and color unevenness is further suppressed.
  • the luminance is measured, for example, with a two-dimensional color luminance meter (CA-2000) manufactured by Konica Minolta.
  • CA-2000 two-dimensional color luminance meter manufactured by Konica Minolta.
  • the transparent electrode when one of the electrodes is formed as a transparent electrode and the other electrode is formed as a reflective electrode, the transparent electrode has an inner surface of a light-transmitting substrate provided with a light scattering layer on the outer surface (back surface). It is preferably provided on the (surface). Thereby, the extracted light is scattered and color unevenness is suppressed.
  • the first electrode 4 is a transparent electrode and the second electrode 5 is a reflective electrode
  • the first electrode 4 is formed on the surface of the light transmissive substrate. That is, in the form as shown in FIG. 2, the entire layer of the organic EL element composed of the two electrodes and the organic layer 3 is formed on the surface of the light-transmitting substrate.
  • a light scattering layer is provided on the surface of the light transmissive substrate opposite to the first electrode 4.
  • the emitted light passes through the light transmissive electrode and the light scattering layer and is emitted from the element. At this time, the emitted light is scattered by the light scattering layer.
  • the light transmissive electrode is not particularly limited as long as it transmits light and is preferably transparent, but may be translucent.
  • the average chromaticity of each element S represented by CIE-u ′ and CIE-v ′ is 98.5 to about the average chromaticity of the entire light emitting surface A in both CIE-u ′ and CIE-v ′. It is preferable to be within the range of 101.5%. That is, the average chromaticity (u ′ m , v ′ m ) of an arbitrary element S m selected from the n elements S with respect to the average chromaticity (u ′ 0 , v ′ 0 ) of the entire light emitting surface A is The following relationship is preferably satisfied in all the elements S.
  • the organic EL element is preferably designed so that the average chromaticity of the light emitting surface A is in a specific condition. Thereby, in-plane light emission can be made more uniform, color unevenness can be suppressed, and an excellent planar light-emitting organic EL element can be constructed.
  • the first electrode 4 and the second electrode 5 are formed using an appropriate conductive material. Thereby, the 1st electrode 4 and the 2nd electrode 5 are formed as a transparent electrode or a reflective electrode.
  • the material for the transparent electrode is not limited, but includes, for example, ITO, tin oxide, zinc oxide, IZO (IndiumZinc Oxide), copper iodide, conductive polymers such as PEDOT and polyaniline, and arbitrary acceptors. And conductive light-transmitting materials such as carbon nanotubes and the like.
  • the material of the reflective electrode examples include, but are not limited to, aluminum, silver, magnesium, gold, copper, chromium, molybdenum, palladium, tin, and alloys of these with other metals, such as magnesium
  • examples thereof include a silver mixture, a magnesium-indium mixture, and an aluminum-lithium alloy.
  • it consists of a metal, a metal oxide, etc., and a mixture of these and other metals, for example, an ultra-thin film made of aluminum oxide (here, a thin film of 1 nm or less capable of flowing electrons by tunnel injection) and aluminum.
  • a laminated film with a thin film can be used.
  • the dopant-containing layer 1 is formed including a dopant compound and a host material containing the dopant compound.
  • the dopant compound is not limited, but, for example, a fluorescent light emitting dopant or a phosphorescent light emitting dopant can be used as appropriate. Since the phosphorescent dopant emits light from the triplet state, it has a luminous efficiency approximately four times higher than that of the fluorescent dopant that emits light only from the singlet state, and ideally has an internal quantum efficiency of 100%. High efficiency light emission becomes possible.
  • fluorescent light-emitting dopant examples include TBP (1-tert-butyl-perylene), BCzVBi, perylene, C545T (coumarin C545T; 10-2- (benzothiazolyl) -2,3,6,7-tetrahydro-1,1 , 7,7-tetramethyl-1H, 5H, 11H- (1) benzopyrrolopyrano (6,7, -8-ij) quinolidin-11-one)), DMQA, coumarin6, rubrene, and the like. Is not to be done.
  • Examples of phosphorescent dopants include Ir (ppy) 3 (factory (2-phenylpyridine) iridium), Ir (ppy) 2 (acac), Ir (mppy) 3, Btp2Ir (acac) (bis- (3 -(2- (2-pyridyl) benzothienyl) mono-acetylacetonate) iridium (III))), Bt2Ir (acac), PtOEP, and the like, but are not limited thereto. In order to obtain white light emission, these dopants may be appropriately combined.
  • the host material is not limited, and for example, any of an electron transporting material, a hole transporting material, and a material having both electron transporting property and hole transporting property can be used.
  • an electron transporting material and a hole transporting material may be used in combination.
  • the host material include Alq 3 (tris (8-oxoquinoline) aluminum (III)), TBADN (2-tert-butyl-9,10-di (2-naphthyl) anthracene), ADN, BDAF, CBP, CzTT, TCTA, mCP, CDBP and the like can be mentioned.
  • the dopant non-containing layer 2 is formed of an electron injecting material, an electron transporting material, a hole transporting material, a hole injecting material, or the like according to the purpose.
  • Examples of the electron injecting material and the electron transporting material include, but are not limited to, Alq3, oxadiazole derivatives, starburst oxadiazoles, triazole derivatives, phenylquinoxaline derivatives, silole derivatives, and the like.
  • Specific examples of the electron transporting material include fluorene, bathophenanthroline, bathocuproine, anthraquinodimethane, diphenoquinone, oxazole, oxadiazole, triazole, imidazole, anthraquinodimethane, 4,4′-N, N′-dicarbazole.
  • Biphenyl (CBP) and the like, compounds thereof, metal complex compounds, nitrogen-containing five-membered ring derivatives and the like can be mentioned.
  • the metal complex compound include tris (8-hydroxyquinolinato) aluminum, tri (2-methyl-8-hydroxyquinolinato) aluminum, tris (8-hydroxyquinolinato) gallium, bis ( 10-hydroxybenzo [h] quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) (o-cresolate) gallium, bis (2-methyl-8-quinolinato) ) (1-naphtholato) aluminum, bis (2-methyl-8-quinolinato) -4-phenylphenolate and the like, but are not limited thereto.
  • oxazole, thiazole, oxadiazole, thiadiazole, triazole derivatives and the like are preferable.
  • 2,5-bis (1-phenyl) -1,3,4-oxazole, 2 5-bis (1-phenyl) -1,3,4-thiazole, 2,5-bis (1-phenyl) -1,3,4-oxadiazole, 2- (4′-tert-butylphenyl) -5- (4 ′′ -biphenyl) 1,3,4-oxadiazole, 2,5-bis (1-naphthyl) -1,3,4-oxadiazole, 1,4-bis [2- (5 -Phenylthiadiazolyl)] benzene, 2,5-bis (1-naphthyl) -1,3,4-triazole, 3- (4-biphenylyl) -4-phenyl-5- (4-t-butyl
  • the hole transporting material and the hole injecting material are not limited, and examples thereof include polyaniline, 4,4′-bis [N- (naphthyl) -N-phenyl-amino] biphenyl ( ⁇ -NPD). ), N, N′-bis (3-methylphenyl)-(1,1′-biphenyl) -4,4′-diamine (TPD), 2-TNATA, 4,4 ′, 4 ′′ -tris (N— (3-methylphenyl) N-phenylamino) triphenylamine (MTDATA), 4,4′-N, N′-dicarbazole biphenyl (CBP), spiro-NPD, spiro-TPD, spiro-TAD, TNB, etc.
  • polyaniline 4,4′-bis [N- (naphthyl) -N-phenyl-amino] biphenyl
  • TPD N, N′-bis (3-methylphenyl)-(1,1
  • Representative examples include triarylamine compounds, amine compounds containing carbazole groups, amine compounds containing fluorene derivatives, starburst amines (m-MTDATA), TDA 1-TMATA, 2-TNATA as an A-based materials, p-PMTDATA, and the like TFATA.
  • an organic EL element having a layer structure as shown in FIG. 2 can be manufactured by sequentially forming and stacking the above materials in an appropriate order by an appropriate method.
  • the film thickness of each electrode can be about 10 to 300 nm, for example.
  • the total film thickness of the organic layer 3 can be, for example, about 60 to 300 nm.
  • the film forming method is not particularly limited, and examples thereof include a vacuum deposition method, a sputtering method, and a coating method.
  • the thickness variation can be reduced by appropriately adjusting the evaporation source angle, the distance between the substrate and the evaporation source (height), the distance between the substrate rotation center and the evaporation source (offset), and the like. And a layer having a desired film thickness condition can be obtained.
  • FIG. 3 is a schematic view showing an example of film thickness adjustment in the vacuum deposition method.
  • the substrate 11 When a material is stacked on the substrate 11 by vapor deposition, the substrate 11 is horizontally rotated around a rotation center C that is an axis perpendicular to the surface of the substrate 11. Then, the material is evaporated from the vapor deposition source 12 toward the substrate 11. At this time, the distance in the vertical direction between the emission port 12a of the evaporation source 12 from which the material is emitted and the substrate 11 is the distance (height) H between the substrate and the evaporation source. Further, the horizontal distance between the emission port 12a of the evaporation source 12 and the rotation center C is the distance (offset) ⁇ between the substrate rotation center and the evaporation source.
  • the emission direction of the evaporation source 12 may form a predetermined angle from the vertical direction, and the angle formed by the emission direction of the evaporation source 12 and the vertical direction becomes the evaporation source angle ⁇ .
  • the emission direction of the evaporation source 12 is preferably directed upward from the intersection of the rotation center C and the surface of the substrate 11. As described above, by appropriately setting the evaporation source angle ⁇ , the substrate-evaporation source distance H, and the substrate rotation center-evaporation source distance ⁇ , a layer having a small thickness variation is formed on the surface of the substrate 11. be able to.
  • the organic EL element has different light emission characteristics depending on the electrical / optical design.
  • the following three were considered as factors of color unevenness on the light emitting surface A, that is, luminance unevenness and chromaticity unevenness. These three are all due to in-plane variations in the light emitting surface A.
  • Voltage variation (2) Variation in film thickness of each layer. (3) Variation in temperature distribution.
  • the element was designed by paying attention to the above (2).
  • Organic EL elements are roughly classified into high-molecular EL elements and low-molecular EL elements, and the former is generally manufactured by a coating process and the latter by a vapor deposition process.
  • a hybrid element structure has been proposed in which a high molecular material is formed by a coating process and a low molecular material is formed by a vapor deposition process. Regardless of which process is used, uniform film formation within the panel is difficult (film thickness / concentration), which causes variations in the characteristics of the in-plane organic EL elements.
  • an organic EL element such as a display, it is relatively possible to reduce the influence of the characteristic variation of the organic EL element of each pixel by compensation in a drive circuit.
  • organic EL elements such as lighting are required to emit light in a single area with a large area. For this reason, it is impossible to compensate for the in-plane characteristic variation, causing a deterioration in quality.
  • the electrical characteristics and optical characteristics change between a certain part and another part in the plane due to variations in the film thickness of each layer in the organic EL element (changes in one layer).
  • optical characteristics are governed by an index called an optical film thickness (n ⁇ d) obtained by multiplying a film thickness d and a refractive index n.
  • the film thickness nd is greatly affected.
  • the organic EL element which is a charge injection type element is greatly affected in light emission characteristics by changing the injection / transport state of charges (holes, electrons) due to a change in the physical film thickness d.
  • the film thickness governing such electrical characteristics and optical characteristics is set by the management width setting by the robust design.
  • the organic EL element is formed by stacking multilayer films, and each layer dominates the light emission characteristics through interaction.
  • each layer has an interaction, and the light emission characteristic and the characteristic influence of each layer cannot be clearly defined on a one-to-one basis.
  • the layers cannot be considered separately because of the interaction between the layers, it has been found that there is a clear difference in the degree of contribution that each layer affects the characteristics.
  • the element design described above was performed as an element structure that reduces the influence of in-plane variation. That is, conditions such as the film thickness are defined for a layer having a greater contribution to the optical characteristics and electrical characteristics.
  • the dopant-containing layer 1 that directly participates in light emission has a higher contribution to light emission than the dopant-free layer 2.
  • the contribution degree of the adjacent organic layer 3a adjacent to a reflective electrode is larger than another layer.
  • Electron transport layer (dopant-free layer 2): phenanthroline derivative, film thickness 30 nm.
  • Intermediate layer Li 2 O (lithium oxide) / quinoline complex / hexaazatriphenylene derivative, film thickness 1.5 nm / 3 nm / 10 nm.
  • Hole transport layer (dopant-free layer 4): triphenylamine derivative, film thickness 40 nm.
  • Second light emitting layer (dopant-containing layer 2): carbazole derivative (host), Ir complex (dopant), film thickness 3 nm.
  • Third light emitting layer (dopant-containing layer 3): carbazole derivative (host), Ir complex (dopant), film thickness 40 nm.
  • Electron transport layer (dopant-free layer 5): phenanthroline derivative, film thickness 40 nm.
  • Electron injection layer (dopant-free layer 6): LiF (lithium fluoride), film thickness 1.5 nm.
  • Second electrode 5 (reflective electrode): Al (aluminum) film thickness 150 nm.
  • Example 1 An organic EL element having a light emitting surface A of 100 ⁇ 100 mm was produced by the above-described layer structure example 1.
  • each dopant-containing layer 1 has a range in which the average film thickness of each element S in each dopant-containing layer 1 is 93 to 107% of the average film thickness of each dopant-containing layer 1 Is within.
  • each dopant non-containing layer 2 has an average film thickness of each element S in each dopant non-containing layer 2 of 90 to the average film thickness of each of the dopant non-containing layers 2 Within the range of 110%.
  • the average chromaticity of each element S is in the range of 98 to 102% of the average chromaticity of the entire light emitting surface A in both CIE-u ′ and CIE-v ′.
  • each dopant-containing layer 1 has an average film thickness of 93 to 107% of the average film thickness of each dopant-containing layer 1 in each element S in each dopant-containing layer 1
  • the average chromaticity of either CIE-u ′ or CIE-v ′ is about 30% of elements S that are not within the range of 98 to 102% of the average chromaticity of the entire light emitting surface A. It exists in the above number.
  • FIG. 4A and 4B are photographs of the light emitting surface A
  • FIG. 4A shows the organic EL element of Example 1
  • FIG. 4B shows the organic EL element of Comparative Example 1.
  • the light emitting area is 100 mm ⁇
  • the size of each element S is 20 mm ⁇ .
  • the boundary lines of the elements S with respect to the light emitting surface A are indicated by dotted lines.
  • the light emission according to Example 1 is close to uniform with reduced chromaticity unevenness as compared with the light emission according to Comparative Example 1 that is not uniform.
  • the organic EL device of Example 1 was excellent in in-plane uniform light-emitting properties with suppressed color unevenness (luminance unevenness and chromaticity unevenness).

Abstract

An organic electroluminescent element, in which color variation on a light emitting surface is suppressed, is provided. The organic electroluminescent element is provided with an organic layer (3) containing two or more dopant-containing layers (1), and one or more non-dopant-containing layers (2). The light emitting surface (A) is divided into blocks of a predetermined size representing a plurality of elements (S). In at least one of the of the dopant-containing layers (1) of the two or more dopant-containing layers (1), the average film thickness of each element (S) in said dopant-containing layer (1) is within a range of 90 to 110% of the overall average film thickness of said dopant-containing layer. The average chromaticity of each element represented by u' and v' values in the CIE 1976 (u', v') chromaticity diagram is within a range of 98 to 102% of the overall average chromaticity of the light emitting surface (A) for both the u' and v' values. For each element (S), the total film thickness of the two or more dopant-containing layers (1) is less than the total film thickness of the one or more non-dopant-containing layers (2).

Description

有機エレクトロルミネッセンス素子Organic electroluminescence device
 本発明は、発光面を有する有機エレクトロルミネッセンス素子に関する。 The present invention relates to an organic electroluminescence element having a light emitting surface.
 近年、照明装置などに用いられる有機エレクトロルミネッセンス素子(有機EL素子)として、面状に発光する有機EL素子が開発されている。発光が面状になることにより、点状に発光されるものよりも発光面積を大きくすることができ、明るく発光することができるという利点がある。そして、このような発光面を有する有機EL素子は、低電力、長寿命などの特性を有することから、次世代の発光素子として注目されている。 Recently, an organic EL element that emits light in a planar shape has been developed as an organic electroluminescence element (organic EL element) used in a lighting device or the like. When the light emission is planar, there is an advantage that the light emission area can be made larger than that emitted in a spot shape and the light can be emitted brightly. And the organic EL element which has such a light emission surface attracts attention as a next-generation light emitting element since it has characteristics such as low power and long life.
特開2007-048732号公報JP 2007-048732 A
 発光面を有する有機EL素子においては、パネルなどの発光面内において、色ムラなどと呼ばれる、色度のムラや輝度のムラが生じるという問題がある。すなわち、中央部と端部や、隅部同士、一端部と他端部など、発光面内のある一領域と別の領域とにおいて、輝度や色度に差が生じる場合がある。特に発光面積が大きくなればなるほど、輝度ムラや色度ムラが顕著になる。輝度ムラや色度ムラが大きいと、面内において均一な発光性が得られず、発光性能が低下してしまうという問題がある。 In an organic EL element having a light emitting surface, there is a problem that uneven chromaticity and uneven brightness called color unevenness occur in the light emitting surface of a panel or the like. That is, there may be a difference in luminance and chromaticity between one region and another region in the light emitting surface, such as the central portion and the end portion, the corner portions, the one end portion and the other end portion. In particular, as the light emitting area becomes larger, luminance unevenness and chromaticity unevenness become more prominent. If the luminance unevenness or chromaticity unevenness is large, there is a problem that uniform light emission cannot be obtained in the surface and the light emission performance is deteriorated.
 特許文献1には、膜厚を調整してダークスポットを抑制する技術が開示されているが、発光面の色度ムラや輝度ムラを改善するものではなかった。 Patent Document 1 discloses a technique for adjusting a film thickness to suppress a dark spot, but does not improve chromaticity unevenness and luminance unevenness on a light emitting surface.
 本発明は、上記の事情に鑑みてなされたものであり、発光面内の色ムラが抑制された有機EL素子を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and an object thereof is to provide an organic EL element in which color unevenness in a light emitting surface is suppressed.
 本発明に係る有機エレクトロルミネッセンス素子は、二以上のドーパント含有層と、一以上のドーパント非含有層とを含む有機層を備え、発光面が所定の大きさの区画に複数の要素として分割されたときに、前記二以上のドーパント含有層のうちの少なくとも一つのドーパント含有層は、当該ドーパント含有層における各要素の平均膜厚が、当該ドーパント含有層全体の平均膜厚の90~110%の範囲内であり、CIE1976(u’,v’)色度図の、u’値およびv’値で表される各要素の平均色度は、u’値およびv’値の両方において、発光面全体の平均色度の98~102%の範囲内であり、前記各要素は、前記二以上のドーパント含有層の膜厚の総厚が、前記一以上のドーパント非含有層の膜厚の総厚よりも小さい。 An organic electroluminescence device according to the present invention includes an organic layer including two or more dopant-containing layers and one or more dopant-free layers, and the light-emitting surface is divided into a plurality of elements in a predetermined size section. Sometimes, in at least one of the two or more dopant-containing layers, the average film thickness of each element in the dopant-containing layer is in the range of 90 to 110% of the average film thickness of the entire dopant-containing layer. The average chromaticity of each element represented by the u ′ value and the v ′ value in the CIE 1976 (u ′, v ′) chromaticity diagram is the entire light emitting surface in both the u ′ value and the v ′ value. The total thickness of the two or more dopant-containing layers is more than the total thickness of the one or more dopant-free layers. Is also small.
 前記各要素は、前記二以上のドーパント含有層の膜厚の総厚が、前記有機層の膜厚に対して25~35%であることが好ましい。 In each of the above elements, the total thickness of the two or more dopant-containing layers is preferably 25 to 35% with respect to the thickness of the organic layer.
 前記二以上のドーパント含有層における各ドーパント含有層は、当該各ドーパント含有層における各要素の平均膜厚が、当該各ドーパント含有層全体の平均膜厚の93~107%の範囲内であり、前記一以上のドーパント非含有層における各ドーパント非含有層は、当該各ドーパント非含有層における各要素の平均膜厚が、当該各ドーパント非含有層全体の平均膜厚の90~110%の範囲内であることが好ましい。 Each dopant-containing layer in the two or more dopant-containing layers has an average film thickness of each element in each dopant-containing layer within a range of 93 to 107% of an average film thickness of the entire dopant-containing layer, Each dopant non-containing layer in the one or more dopant non-containing layers has an average film thickness of each element in each of the dopant non-containing layers within a range of 90 to 110% of an average film thickness of each of the dopant non-containing layers. Preferably there is.
 また、前記有機層に隣接して反射性電極を備え、前記有機層のうち前記反射性電極に隣接する隣接有機層は、全体の膜厚が30~50nmであり、当該隣接有機層における各要素の平均膜厚が、当該隣接有機層全体の平均膜厚の93~107%の範囲内であることが好ましい。 Further, a reflective electrode is provided adjacent to the organic layer, and the adjacent organic layer adjacent to the reflective electrode among the organic layers has a total film thickness of 30 to 50 nm, and each element in the adjacent organic layer The average film thickness is preferably in the range of 93 to 107% of the average film thickness of the entire adjacent organic layer.
 前記複数の要素のうち最小輝度を示す要素は、最大輝度を示す要素に対して70%以上の輝度を示すことが好ましい。 It is preferable that the element showing the minimum luminance among the plurality of elements shows 70% or more of luminance with respect to the element showing the maximum luminance.
 また、前記有機層を反射性電極と透明電極との間に備え、前記透明電極は、外面に光散乱層が設けられた光透過性基板の内面に設けられ、CIE1976(u’,v’)色度図の、u’値およびv’値で表される前記各要素の平均色度は、u’値およびv’値の両方において、発光面全体の平均色度の98.5~101.5%の範囲内であることが好ましい。 The organic layer is provided between a reflective electrode and a transparent electrode, and the transparent electrode is provided on the inner surface of a light-transmitting substrate having a light scattering layer provided on the outer surface, and CIE 1976 (u ′, v ′) In the chromaticity diagram, the average chromaticity of each element represented by the u ′ value and the v ′ value is 98.5 to 101.10 of the average chromaticity of the entire light emitting surface in both the u ′ value and the v ′ value. It is preferable to be within the range of 5%.
 本発明によれば、発光面内の色ムラが抑制され、発光の面内均一性が向上した有機EL素子を得ることができる。 According to the present invention, it is possible to obtain an organic EL element in which color unevenness in the light emitting surface is suppressed and the in-plane uniformity of light emission is improved.
本発明の有機EL素子の発光面の一例を示す概略平面図である。It is a schematic plan view which shows an example of the light emission surface of the organic EL element of this invention. 本発明の有機EL素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the organic EL element of this invention. 真空蒸着法における膜厚調整の一例を示す概略図である。It is the schematic which shows an example of the film thickness adjustment in a vacuum evaporation method. 発光面の写真であり、実施例1の有機EL素子の発光面を示している。It is the photograph of the light emission surface, and has shown the light emission surface of the organic EL element of Example 1. FIG. 発光面の写真であり、比較例1の有機EL素子の発光面を示している。It is a photograph of the light emission surface, and shows the light emission surface of the organic EL element of Comparative Example 1.
 図2は、本実施形態の有機エレクトロルミネッセンス素子(有機EL素子)の層構成の一例である。この有機EL素子は、二以上のドーパント含有層1と、一以上のドーパント非含有層2とを含む有機層3を備えている。 FIG. 2 is an example of a layer configuration of the organic electroluminescence element (organic EL element) of the present embodiment. This organic EL element includes an organic layer 3 including two or more dopant-containing layers 1 and one or more dopant-free layers 2.
 有機層3は、第一電極4と第二電極5の間に配置されている。図示の形態では、ドーパント含有層1は、m個のドーパント含有層1からなっており、最も第一電極4側にはドーパント含有層1aが配置され、最も第二電極5側にはドーパント含有層1bが配置されている。なお、mは二以上の正の整数である。また、ドーパント非含有層2は、n個のドーパント非含有層2からなっており、最も第一電極4側にはドーパント非含有層2aが配置され、最も第二電極5側にはドーパント非含有層2bが配置されている。なお、nは一以上の正の整数である。 The organic layer 3 is disposed between the first electrode 4 and the second electrode 5. In the illustrated form, the dopant-containing layer 1 is composed of m dopant-containing layers 1, the dopant-containing layer 1 a is disposed closest to the first electrode 4 side, and the dopant-containing layer is closest to the second electrode 5 side. 1b is arranged. Note that m is a positive integer of 2 or more. The dopant non-containing layer 2 is composed of n dopant non-containing layers 2, the dopant non-containing layer 2 a is arranged on the most first electrode 4 side, and the dopant non-containing is most on the second electrode 5 side. Layer 2b is disposed. Note that n is a positive integer of 1 or more.
 ドーパント含有層1は、発光ドーパントを含有する層であり、発光層として機能する層である。二以上のドーパント含有層1は、発光色の異なる少なくとも二つのドーパント含有層1を含んでいることが好ましい。発光色が異なるものは色ムラが発生しやすいが、本実施形態では、そのような色ムラをより低減することができる。また、複数の発光色、特に三色以上の発光色があれば、赤、青、緑の発光の組み合わせにより、適宜の発光色を作り出すことが可能であり、好ましい。この場合、例えば、白色発光を得ることが可能である。 The dopant-containing layer 1 is a layer that contains a light-emitting dopant and functions as a light-emitting layer. The two or more dopant-containing layers 1 preferably include at least two dopant-containing layers 1 having different emission colors. Colors with different emission colors are likely to cause color unevenness, but in this embodiment, such color unevenness can be further reduced. Further, if there are a plurality of emission colors, particularly three or more emission colors, it is possible to create appropriate emission colors by combining red, blue and green emission, which is preferable. In this case, for example, white light emission can be obtained.
 ドーパント非含有層2は、発光ドーパントを含有しない層である。ドーパント非含有層2は、電子注入層、電子輸送層、正孔輸送層、正孔注入層、中間層、結合層、などから選ばれる適宜の層として機能する。ドーパント非含有層2は、有機層3を構成する層の一つであり、基本的に、有機物を含む層であるが、本明細書では、電子注入層や電子輸送層など前記に掲げた層が、有機物を含まず金属などにより構成される場合もドーパント非含有層2と定義する。すなわち、有機層3は、第一電極4と第二電極5とに挟まれた層全体をいうものとする。 The dopant non-containing layer 2 is a layer not containing a light emitting dopant. The dopant-free layer 2 functions as an appropriate layer selected from an electron injection layer, an electron transport layer, a hole transport layer, a hole injection layer, an intermediate layer, a bonding layer, and the like. The dopant-free layer 2 is one of the layers constituting the organic layer 3 and is basically a layer containing an organic substance. In the present specification, the above-described layers such as an electron injection layer and an electron transport layer However, it is defined as the dopant non-containing layer 2 even when it is made of a metal or the like without containing organic substances. That is, the organic layer 3 refers to the entire layer sandwiched between the first electrode 4 and the second electrode 5.
 ドーパント含有層1の膜厚は、例えば、1~40nmにすることができる。また、ドーパント非含有層2の膜厚は、例えば、1~60nmにすることができる。これらの層の膜厚が適宜の範囲になることにより、電気特定及び発光特性の両方を良好にすることができる。 The film thickness of the dopant-containing layer 1 can be set to 1 to 40 nm, for example. The film thickness of the dopant-free layer 2 can be set to 1 to 60 nm, for example. When the film thicknesses of these layers are in an appropriate range, both electrical specification and light emission characteristics can be improved.
 図1は、上記の有機EL素子を発光面Aに垂直な方向から見た平面概略図である。有機層3による発光は、光取り出し電極である第一電極4側(又は第二電極5側)から取り出される。このように本実施形態の有機EL素子は、面状に発光するものであり、発光面Aが比較的面積の広い面状となっている。発光面Aの大きさは、例えば、面積が25cm以上900cm以下程度にすることができるが、これに限定されるものではない。発光面Aの形状は、特に限定されるものではなく、矩形状(正方形又は長方形)であっても、円状であっても、その他の形状であってもよい。ただし、次に説明する要素分割は、矩形状の方が行いやすい。 FIG. 1 is a schematic plan view of the organic EL element as viewed from a direction perpendicular to the light emitting surface A. FIG. Light emitted by the organic layer 3 is extracted from the first electrode 4 side (or the second electrode 5 side) which is a light extraction electrode. As described above, the organic EL element of the present embodiment emits light in a planar shape, and the light emitting surface A is a planar shape having a relatively large area. Size of the light emitting surface A is, for example, may be an area to the extent 25 cm 2 or more 900 cm 2 or less, but is not limited thereto. The shape of the light emitting surface A is not particularly limited, and may be rectangular (square or rectangular), circular, or other shapes. However, the element division described below is easier to perform in the rectangular shape.
 発光面Aは、所定の大きさの区画に複数の要素Sとして分割される。図1では、複数の要素Sは、各要素Sが面積の同じ正方形形状で構成されている。なお、要素Sは長方形形状であってもよいが、色ムラを低減する観点からは正方形形状である方がよい。そして、発光面Aは、n個の要素Sに分割されている。ここで、nは、正の整数である。なお、このnは、図2におけるnとは関係ない。 The light emitting surface A is divided into a plurality of elements S in sections of a predetermined size. In FIG. 1, the plurality of elements S are configured in a square shape in which each element S has the same area. The element S may have a rectangular shape, but is preferably a square shape from the viewpoint of reducing color unevenness. The light emitting surface A is divided into n elements S. Here, n is a positive integer. This n is not related to n in FIG.
 要素Sの大きさは、適宜所定の大きさに設定することができるが、要素Sの大きさが大きすぎる場合、要素内での色度・輝度などの勾配が平均化されてしまうため、評価上は勾配なしと評価されてしまい実情を反映しなくなるおそれがある。また、大きい面積の面光源として用いる場合、必要なのは面全体としての均一性(色度・輝度など)であって、極小領域間の均一性は必ずしも必要でなく、また視認性の観点からも不要であることから、要素Sの大きさを小さくしすぎなくてもよい。このように要素Sは、発光面Aにおける発光が人に与える感度を基準として、その大きさが設定されるものである。 The size of the element S can be appropriately set to a predetermined size. However, if the size of the element S is too large, gradients such as chromaticity and luminance within the element are averaged. There is a risk that the above will be evaluated as no gradient and will not reflect the actual situation. In addition, when used as a surface light source with a large area, what is required is uniformity of the entire surface (chromaticity, brightness, etc.), and uniformity between the minimum areas is not necessarily required, and is also unnecessary from the viewpoint of visibility. Therefore, it is not necessary to make the size of the element S too small. In this way, the size of the element S is set on the basis of the sensitivity given to the person by the light emission on the light emitting surface A.
 要素Sの大きさは、例えば、5mm×5mmの正方形にすることができるが、この限りではなく、正方形形状で構成する場合、例えば、0.2mm×0.2mmの正方形より大きく、30mm×30mmの正方形より小さいことが好ましい。要素Sの大きさは、より好ましくは、1mm×1mmの正方形より大きく、10mm×10mmの正方形又は20mm×20mmの正方形より小さいものである。 The size of the element S can be, for example, a square of 5 mm × 5 mm, but is not limited thereto, and when configured in a square shape, for example, larger than a square of 0.2 mm × 0.2 mm, 30 mm × 30 mm It is preferably smaller than the square. The size of the element S is more preferably larger than a 1 mm × 1 mm square and smaller than a 10 mm × 10 mm square or a 20 mm × 20 mm square.
 また、発光面Aを所定の個数で等分に分割して要素Sを得るようにしてもよい。例えば、発光面Aを、3×3個(計9個)の正方形に分割したり、4×4個(計16個)の正方形に分割したり、あるいは、5×5個(計25個)の正方形に分割したりして、複数の要素Sを得ることができる。 Further, the element S may be obtained by equally dividing the light emitting surface A by a predetermined number. For example, the light emitting surface A is divided into 3 × 3 (total 9) squares, divided into 4 × 4 (total 16) squares, or 5 × 5 (total 25). Or a plurality of elements S can be obtained.
 図1においては、要素Sは、横方向にp個で配列され、縦方向にq個で配列されている。p、qは正の整数である。ここで、左上の隅部の要素Sを要素Sとし、この段(一段目)の横方向に並ぶ要素を左から右に順に、S、S、・・・、Sといったように定義する。このとき、縦方向の次の段(二段目)の左端部の要素Sを、Sの次の要素Sとして、要素Sp+1と表せば、この段の横方向に並ぶ要素は左から右に順に、SP+2、SP+3、・・・、S2pと表すことができる。このようにすると、横方向にα番目、縦方向にβ番目の任意の要素Sは、要素S、m=(β-1)p+α、と表すことができる。α、βは正の整数である。このmは、図2におけるmとは関係ない。こうして、横方向及び縦方向の要素を順に番号付けすると、右下の隅部の要素Sは、要素S、n=p×qと表すことができる。このようにして、発光面Aは、要素Sから要素Sまでのn個の要素Sに分割される。 In FIG. 1, p elements are arranged in the horizontal direction and q elements are arranged in the vertical direction. p and q are positive integers. Here, the element S of the upper left corner and the elements S 1, a laterally arranged elements in order from left to right of the stage (first stage), S 2, S 3, · · ·, as such S p Define. Right this time, the vertical elements S of the left end of the next stage (second stage), as the next element S of S p, if indicated as element S p + 1, element arranged in the horizontal direction of the stage from the left , S P + 2 , S P + 3 ,..., S 2p in order. In this way, the arbitrary element S which is α-th in the horizontal direction and β-th in the vertical direction can be expressed as element S m , m = (β−1) p + α. α and β are positive integers. This m is not related to m in FIG. Thus, when the elements in the horizontal direction and the vertical direction are numbered in order, the element S in the lower right corner can be expressed as element S n , n = p × q. Thus, the light emitting surface A is divided into n elements S from the element S 1 to the elements S n.
 本実施形態の有機EL素子では、このように要素分割したときに、二以上のドーパント含有層1のうちの少なくとも一つのドーパント含有層1が特定の膜厚条件を満たす。この特定の膜厚条件を満たすドーパント含有層1を特定ドーパント含有層として説明する。 In the organic EL element of this embodiment, when the element is divided in this way, at least one dopant-containing layer 1 out of two or more dopant-containing layers 1 satisfies a specific film thickness condition. The dopant-containing layer 1 that satisfies this specific film thickness condition will be described as a specific dopant-containing layer.
 特定ドーパント含有層においては、上記のように発光面Aに垂直な方向から見た場合に、特定ドーパント含有層が、n個の要素Sに分割されている。そして、各要素Sにおける特定ドーパント含有層の平均膜厚は、特定ドーパント含有層全体の平均膜厚の90~110%の範囲内となっている。 In the specific dopant-containing layer, the specific dopant-containing layer is divided into n elements S when viewed from the direction perpendicular to the light emitting surface A as described above. The average film thickness of the specific dopant-containing layer in each element S is in the range of 90 to 110% of the average film thickness of the entire specific dopant-containing layer.
 ここで、任意の要素Sにおける特定ドーパント含有層の平均膜厚をDSmと表す。すると、例えば、要素Sにおける特定ドーパント含有層の平均膜厚はDS1と表すことができ、要素Sにおける特定ドーパント含有層の平均膜厚はDS2と表すことができ、要素Sにおける特定ドーパント含有層の平均膜厚はDSnと表すことができる。 Here, it represents the average thickness of a particular dopant-containing layer in any element S m and D Sm. Then, for example, the average thickness of a particular dopant-containing layer in the element S 1 can be expressed as D S1, the average thickness of a particular dopant-containing layer in the element S 2 can be expressed as D S2, the elements S n The average film thickness of the specific dopant-containing layer can be expressed as DSn .
 また、特定ドーパント含有層全体の平均膜厚Davは次のように表すことができる。 Moreover, the average film thickness Dav of the whole specific dopant content layer can be expressed as follows.
  Dav = (DS1+DS2+・・・+DSn)/n D av = (D S1 + D S2 +... + D Sn ) / n
 そして、特定ドーパント含有層全体の平均膜厚Davに対して、n個の要素Sから選んだ任意の要素Sの平均膜厚DSmは、次の関係を全ての要素Sにおいて満たす。 And with respect to the average film thickness D av of the entire specific dopant-containing layer, the average film thickness D Sm of any element S m selected from the n elements S satisfies the following relationship in all the elements S.
  Dav×0.9 ≦ DSm ≦ Dav×1.1 D av × 0.9 ≦ D Sm ≦ D av × 1.1
 この関係は、
  Dav×0.9 ≦ DS1,DS2,・・・,DSn≦ Dav×1.1
 と示してもよい。
This relationship
D av × 0.9 ≦ D S1 , D S2 ,..., D Sn ≦ D av × 1.1
May be indicated.
 あるいは、
  Dav×0.9 ≦ DS1~Sn≦ Dav×1.1
 と示してもよい。
Or
D av × 0.9 ≦ D S1 to Sn ≦ D av × 1.1
May be indicated.
 このように本実施形態の有機EL素子では、特定ドーパント含有層が特定の膜厚条件になるように設計される。 Thus, in the organic EL element of the present embodiment, the specific dopant-containing layer is designed to have a specific film thickness condition.
 また、本実施形態の有機EL素子は、発光面Aに垂直な方向から発光面Aの色度を測定したときに、CIE1976(u’,v’)色度図の、u’値およびv’値で表される各要素Sの平均色度は、u’値およびv’値の両方において、発光面A全体の平均色度の98~102%の範囲内である。以下、CIE1976(u’,v’)色度図のu’値をCIE-u’と記載し、CIE1976(u’,v’)色度図のv’値をCIE-v’と記載する。 Further, the organic EL element of the present embodiment has the u ′ value and v ′ of the CIE 1976 (u ′, v ′) chromaticity diagram when the chromaticity of the light emitting surface A is measured from the direction perpendicular to the light emitting surface A. The average chromaticity of each element S represented by the value is within the range of 98 to 102% of the average chromaticity of the entire light emitting surface A in both the u ′ value and the v ′ value. Hereinafter, the u 'value of the CIE 1976 (u', v ') chromaticity diagram is referred to as CIE-u', and the v 'value of the CIE 1976 (u', v ') chromaticity diagram is referred to as CIE-v'.
 ここで、任意の要素Sの平均色度は、次のように表すことができる。 Here, the average chromaticity of any element S m can be expressed as follows.
  (CIE-u’,CIE-v’)=(u’,v’(CIE-u ′, CIE-v ′) = (u ′ m , v ′ m )
 すると、要素Sの平均色度は、
  (CIE-u’,CIE-v’)=(u’,v’
 と表すことができ、
 要素Sの平均色度は、
  (CIE-u’,CIE-v’)=(u’,v’
 と表すことができ、
 要素Sの平均色度は、
  (CIE-u’,CIE-v’)=(u’,v’
 と表すことができる。
Then, the average chromaticity of the element S 1 is
(CIE-u ′, CIE-v ′) = (u ′ 1 , v ′ 1 )
Can be expressed as
Average chromaticity component S 2 is
(CIE-u ′, CIE-v ′) = (u ′ 2 , v ′ 2 )
Can be expressed as
Average chromaticity component S n is
(CIE-u ′, CIE-v ′) = (u ′ n , v ′ n )
It can be expressed as.
 また、発光面A全体の平均色度は、次のように表すことができる。 Further, the average chromaticity of the entire light emitting surface A can be expressed as follows.
  (CIE-u’,CIE-v’)=(u’,v’
  ここで、u’ = (u’+u’+・・・+u’)/n
      v’ = (v’+v’+・・・+v’)/n
 である。
(CIE-u ′, CIE-v ′) = (u ′ 0 , v ′ 0 )
Where u ′ 0 = (u ′ 1 + u ′ 2 +... + U ′ n ) / n
v ′ 0 = (v ′ 1 + v ′ 2 +... + v ′ n ) / n
It is.
 そして、発光面A全体の平均色度(u’,v’)に対して、n個の要素Sから選んだ任意の要素Sの平均色度(u’,v’)は、次の関係を全ての要素Sにおいて満たす。 The average chromaticity (u ′ m , v ′ m ) of an arbitrary element S m selected from the n elements S with respect to the average chromaticity (u ′ 0 , v ′ 0 ) of the entire light emitting surface A is The following relationship is satisfied in all elements S.
    u’×0.98 ≦ u’ ≦ u’×1.02
 かつ、v’×0.98 ≦ v’ ≦ v’×1.02
u ′ 0 × 0.98 ≦ u ′ m ≦ u ′ 0 × 1.02
And, v '0 × 0.98 ≦ v ' m ≦ v '0 × 1.02
 この関係は、
    u’×0.98 ≦ u’,u’,・・・,u’ ≦ u’×1.02
 かつ、v’×0.98 ≦ v’,v’,・・・,v’ ≦ v’×1.02
 と示してもよい。
This relationship
u ′ 0 × 0.98 ≦ u ′ 1 , u ′ 2 ,..., u ′ n ≦ u ′ 0 × 1.02
And v ′ 0 × 0.98 ≦ v ′ 1 , v ′ 2 ,..., V ′ n ≦ v ′ 0 × 1.02
May be indicated.
 あるいは、
    u’×0.98 ≦ u’1~n ≦ u’×1.02
 かつ、v’×0.98 ≦ v’1~n ≦ v’×1.02
 と示してもよい。
Or
u ′ 0 × 0.98 ≦ u ′ 1 to n ≦ u ′ 0 × 1.02
And v ′ 0 × 0.98 ≦ v ′ 1 to n ≦ v ′ 0 × 1.02
May be indicated.
 すなわち、CIE-u’及びCIE-v’の両方において、発光面A全体に対する各要素Sの平均色度が上記の範囲となるようにするものである。 That is, in both CIE-u ′ and CIE-v ′, the average chromaticity of each element S with respect to the entire light emitting surface A is within the above range.
 色度は、例えば、コニカミノルタ社製二次元色彩輝度計(CA-2000)により測定される。 The chromaticity is measured by, for example, a two-dimensional color luminance meter (CA-2000) manufactured by Konica Minolta.
 このように本実施形態の有機EL素子では、発光面Aの平均色度が特定の条件になるように設計される。 Thus, the organic EL element of the present embodiment is designed so that the average chromaticity of the light emitting surface A is in a specific condition.
 そして、上記のように、特定ドーパント含有層が特定の膜厚条件になり、発光面Aの平均色度が特定の条件になることにより、面内の発光を均一に近づけることができ、色ムラが抑制され、優れた面状発光性の有機EL素子を構築することができるのである。 As described above, the specific dopant-containing layer has a specific film thickness condition, and the average chromaticity of the light-emitting surface A is a specific condition, so that the in-plane light emission can be made closer to uniform, and the color unevenness Is suppressed, and an excellent planar light-emitting organic EL device can be constructed.
 特定ドーパント含有層は、二以上のドーパント含有層1のうちの少なくとも一つのドーパント含有層1であればよいが、好ましくは、二以上、さらに好ましくは三以上のドーパント含有層1が特定ドーパント含有層となるものである。一部のドーパント含有層1が特定ドーパント含有層である場合は、全体の発光色における寄与度の高いドーパント含有層1が、特定ドーパント含有層であることが好ましい。例えば、発光波長と発光強度との関係をグラフ化した際に、強度ピークが高いドーパント含有層1が、特定ドーパント含有層であるようにすることが好ましい。発光強度の高いドーパント含有層1を特定の膜厚条件にすることで、色ムラを効果的に低減することができる。そして、さらに、有機層3における全てのドーパント含有層1が、特定ドーパント含有層となることが好ましい。全てのドーパント含有層1が、特定の膜厚条件となることにより、さらに色ムラを抑制することができる。 The specific dopant-containing layer may be at least one dopant-containing layer 1 out of two or more dopant-containing layers 1, but preferably two or more, more preferably three or more dopant-containing layers 1 are specific dopant-containing layers. It will be. When some dopant content layers 1 are specific dopant content layers, it is preferred that dopant content layer 1 with high contribution in the whole luminescent color is a specific dopant content layer. For example, when graphing the relationship between the emission wavelength and the emission intensity, the dopant-containing layer 1 having a high intensity peak is preferably a specific dopant-containing layer. By setting the dopant-containing layer 1 having high emission intensity to a specific film thickness condition, color unevenness can be effectively reduced. And it is preferable that all the dopant content layers 1 in the organic layer 3 become a specific dopant content layer. When all the dopant-containing layers 1 have specific film thickness conditions, color unevenness can be further suppressed.
 有機EL素子においては、各要素Sは、二以上のドーパント含有層1の膜厚の総厚が、一以上のドーパント非含有層2の膜厚の総厚よりも薄いものである。膜厚の総厚とは、有機層3内に複数の層(ドーパント含有層1又はドーパント非含有層2)が存在する場合、その個々の層の厚みを足した合計の厚みのことである。膜厚の総厚は、個々の層における各要素の平均膜厚の合計により計算される。 In the organic EL element, each element S is such that the total thickness of the two or more dopant-containing layers 1 is thinner than the total thickness of the one or more dopant-free layers 2. The total thickness of the film thickness is a total thickness obtained by adding the thicknesses of the individual layers when a plurality of layers (dopant-containing layer 1 or non-dopant-containing layer 2) are present in the organic layer 3. The total thickness is calculated by the sum of the average thickness of each element in each layer.
 図2で示すように、有機EL素子は、ドーパント含有層1は、それぞれの膜厚Dを有している。ここで、第一電極4側のドーパント含有層1から順に、その膜厚を、D、D、・・・、Dと定義する。すると、ドーパント含有層1の膜厚の総厚は次のように表すことができる。 As shown in FIG. 2, in the organic EL element, the dopant-containing layer 1 has a film thickness D. Here, the film thicknesses are defined as D 1 , D 2 ,..., D m in order from the dopant-containing layer 1 on the first electrode 4 side. Then, the total thickness of the dopant-containing layer 1 can be expressed as follows.
  T = D+D+・・・+D T D = D 1 + D 2 +... + D m
 また、第一電極4側のドーパント非含有層2から順に、その膜厚を、d、d、・・・、dと定義する。すると、ドーパント非含有層2の膜厚の総厚は次のように表すことができる。 Also, in order from the dopant-free layer 2 of the first electrode 4 side, the film thickness, d 1, d 2, · · ·, defined as d n. Then, the total thickness of the dopant non-containing layer 2 can be expressed as follows.
  T = d+d+・・・+d T d = d 1 + d 2 + ··· + d n
 このとき、有機EL素子では、個々の要素Sの全てにおいて、次の関係を満たすことが好ましい。 At this time, in the organic EL element, it is preferable that all the individual elements S satisfy the following relationship.
  T > T T d > T D
 上記のような関係を満たせば、色ムラがさらに抑制される。 If the above relationship is satisfied, color unevenness is further suppressed.
 さらには、各要素Sは、二以上のドーパント含有層1の膜厚の総厚が、有機層3の膜厚に対して25~35%であることが好ましい。 Furthermore, in each element S, the total thickness of the two or more dopant-containing layers 1 is preferably 25 to 35% with respect to the thickness of the organic layer 3.
 有機層3の膜厚Tallは、ドーパント含有層1の膜厚の総厚とドーパント非含有層2の膜厚の総厚との合計になる。すなわち、
  Tall = T + T
 の関係となる。
The film thickness T all of the organic layer 3 is the sum of the total thickness of the dopant-containing layer 1 and the total thickness of the non-dopant-containing layer 2. That is,
T all = T D + T d
It becomes the relationship.
 このとき、有機EL素子では、個々の要素Sの全てにおいて、次の関係を満たすことが好ましい。 At this time, in the organic EL element, it is preferable that all the individual elements S satisfy the following relationship.
  0.25×Tall ≦ T ≦ 0.35×Tall 0.25 × T all ≦ T D ≦ 0.35 × T all
 上記のような関係を満たせば、色ムラがさらに抑制される。 If the above relationship is satisfied, color unevenness is further suppressed.
 有機EL素子においては、さらに、二以上のドーパント含有層1における各ドーパント含有層1は、当該各ドーパント含有層1における各要素Sの平均膜厚が、当該各ドーパント含有層1全体の平均膜厚の93~107%の範囲内であることが好ましい。すなわち、好ましい形態においては、要素分割したときに、二以上のドーパント含有層1の全ての各ドーパント含有層1が、特定の膜厚条件を満たす。言い換えれば、有機層3内のドーパント含有層1a、・・・、1bが全て、特定の膜厚条件を満たす。 In the organic EL element, each of the dopant-containing layers 1 in the two or more dopant-containing layers 1 has an average film thickness of each element S in each of the dopant-containing layers 1 and an average film thickness of each of the dopant-containing layers 1 as a whole. Preferably, it is within the range of 93 to 107%. That is, in a preferable form, when the element is divided, all the dopant-containing layers 1 of the two or more dopant-containing layers 1 satisfy a specific film thickness condition. In other words, all of the dopant-containing layers 1a, ..., 1b in the organic layer 3 satisfy a specific film thickness condition.
 個々のドーパント含有層1においては、上記のように発光面Aに垂直な方向から見た場合に、ドーパント含有層1が、n個の要素Sに分割されている。そして、各要素Sにおける個々のドーパント含有層1の平均膜厚は、自己の属するドーパント含有層1全体の平均膜厚の93~107%の範囲内となっている。 In each dopant-containing layer 1, the dopant-containing layer 1 is divided into n elements S when viewed from the direction perpendicular to the light emitting surface A as described above. The average film thickness of each dopant-containing layer 1 in each element S is in the range of 93 to 107% of the average film thickness of the entire dopant-containing layer 1 to which the element S belongs.
 ここで、上述の場合と同様、任意の要素Sにおけるドーパント含有層1の平均膜厚をDSmと表せば、各要素S、S、・・・、Sにおけるドーパント含有層1の平均膜厚は、それぞれ、DS1、DS2、・・・、DSnと表すことができる。 Here, as in the case described above, if indicated an average film thickness of the dopant-containing layer 1 in any element S m and D Sm, each element S 1, S 2, · · ·, the dopant-containing layer 1 in the S n The average film thickness can be expressed as D S1 , D S2 ,..., D Sn , respectively.
 また、個々のドーパント含有層1全体の平均膜厚Davは次のように表すことができる。 Further, the average film thickness D av of the entire individual dopant-containing layer 1 can be expressed as follows.
  Dav = (DS1+DS2+・・・+DSn)/n D av = (D S1 + D S2 +... + D Sn ) / n
 そして、個々のドーパント含有層1全体の平均膜厚Davに対して、n個の要素Sから選んだ任意の要素Sの平均膜厚DSmは、次の関係を全ての要素Sにおいて満たす。 The average film thickness D Sm of any element S m selected from the n elements S satisfies the following relationship in all the elements S with respect to the average film thickness D av of the entire individual dopant-containing layer 1. .
  Dav×0.93 ≦ DSm ≦ Dav×1.07 D av × 0.93 ≦ D Sm ≦ D av × 1.07
 この関係は、次のように示してもよい。 This relationship may be shown as follows.
  Dav×0.93 ≦ DS1,DS2,・・・,DSn≦ Dav×1.07
 と示してもよい。
D av × 0.93 ≦ D S1 , D S2 ,..., D Sn ≦ D av × 1.07
May be indicated.
 あるいは、
  Dav×0.93 ≦ DS1~Sn≦ Dav×1.07
 と示してもよい。
Or
D av × 0.93 ≦ D S1 to Sn ≦ D av × 1.07
May be indicated.
 このように有機EL素子の好ましい形態では、全てのドーパント含有層1が特定の膜厚条件になるように設計される。その場合、色ムラが一層抑制される。 Thus, in a preferable form of the organic EL element, all the dopant-containing layers 1 are designed to have a specific film thickness condition. In that case, color unevenness is further suppressed.
 また、一以上のドーパント非含有層2における各ドーパント非含有層2は、当該各ドーパント非含有層2における各要素Sの平均膜厚が、当該各ドーパント非含有層2全体の平均膜厚の90~110%の範囲内であることが好ましい。すなわち、好ましい形態においては、要素分割したときに、一以上のドーパント非含有層2の全てのドーパント非含有層2が、特定の膜厚条件を満たす。言い換えれば、有機層3内のドーパント非含有層1a、・・・、1bが全て、特定の膜厚条件を満たす。 Moreover, each dopant non-containing layer 2 in the one or more dopant non-containing layers 2 is such that the average film thickness of each element S in each of the dopant non-containing layers 2 is 90 of the average film thickness of each of the dopant non-containing layers 2 as a whole. It is preferably in the range of ~ 110%. That is, in a preferable embodiment, when the element is divided, all the dopant-free layers 2 of the one or more dopant-free layers 2 satisfy a specific film thickness condition. In other words, the dopant-free layers 1a,..., 1b in the organic layer 3 all satisfy a specific film thickness condition.
 個々のドーパント非含有層2においては、上記のように発光面Aに垂直な方向から見た場合に、ドーパント非含有層2が、n個の要素Sに分割されている。そして、各要素Sにおける個々のドーパント非含有層2の平均膜厚は、自己の属するドーパント非含有層2全体の平均膜厚の90~110%の範囲内となっている。 In each dopant non-containing layer 2, the dopant non-containing layer 2 is divided into n elements S when viewed from the direction perpendicular to the light emitting surface A as described above. The average film thickness of the individual dopant-free layer 2 in each element S is in the range of 90 to 110% of the average film thickness of the entire dopant-free layer 2 to which it belongs.
 ここで、上述の場合と同様、任意の要素Sにおけるドーパント非含有層2の平均膜厚をdSmと表せば、各要素S、S、・・・、Sにおけるドーパント非含有層2の平均膜厚は、それぞれ、dS1、dS2、・・・、dSnと表すことができる。 Here, as in the case described above, if indicated an average film thickness of the dopant-free layer 2 at an arbitrary element S m and d Sm, each element S 1, S 2, · · ·, dopants in S n-free layer 2 can be expressed as d S1 , d S2 ,..., D Sn , respectively.
 また、個々のドーパント非含有層2全体の平均膜厚davは次のように表すことができる。 Moreover, the average film thickness dav of each individual dopant non-containing layer 2 can be expressed as follows.
  dav = (dS1+dS2+・・・+dSn)/n d av = (d S1 + d S2 +... + d Sn ) / n
 そして、ドーパント非含有層2全体の平均膜厚davに対して、n個の要素Sから選んだ任意の要素Sの平均膜厚dSmは、次の関係を全ての要素Sにおいて満たす。 Then, the average thickness d av of the entire non-dopant-containing layer 2, an average thickness d Sm of n for any chosen from the elements S component S m is satisfied in all the elements S the following relation.
  dav×0.9 ≦ DSm ≦ Dav×1.1 d av × 0.9 ≦ D Sm ≦ D av × 1.1
 この関係は、
  dav×0.9 ≦ dS1,dS2,・・・,dSn≦ dav×1.1
 と示してもよい。
This relationship
d av × 0.9 ≦ d S1 , d S2 ,..., d Sn ≦ d av × 1.1
May be indicated.
 あるいは、
  dav×0.9 ≦ dS1~Sn≦ dav×1.1
 と示してもよい。
Or
d av × 0.9 ≦ d S1 to Sn ≦ d av × 1.1
May be indicated.
 このように有機EL素子の好ましい形態では、全てのドーパント非含有層2が特定の膜厚条件になるように設計される。その場合、色ムラが一層抑制される。 Thus, in a preferable form of the organic EL element, all the dopant-free layers 2 are designed to have a specific film thickness condition. In that case, color unevenness is further suppressed.
 有機EL素子では、電極の一方は透明電極に、電極の他方は反射性電極に形成されていることが好ましい。それにより、反射性電極において光を反射させ、透明電極から発光層の直接光及び反射光を取り出すことができる。透明電極とは光を透過させる電極である。反射性電極とは光を反射する機能を有する電極である。図2の形態においては、例えば、第一電極4を透明電極とし、第二電極5を反射性電極とする。 In the organic EL element, it is preferable that one of the electrodes is formed as a transparent electrode and the other electrode is formed as a reflective electrode. Thereby, light can be reflected in a reflective electrode, and the direct light and reflected light of a light emitting layer can be taken out from a transparent electrode. A transparent electrode is an electrode that transmits light. A reflective electrode is an electrode having a function of reflecting light. In the form of FIG. 2, for example, the first electrode 4 is a transparent electrode and the second electrode 5 is a reflective electrode.
 このとき、有機層3のうち反射性電極に隣接する隣接有機層3aは、全体の膜厚が30~50nmであり、当該隣接有機層3aにおける各要素Sの平均膜厚が、当該隣接有機層3a全体の平均膜厚の93~107%の範囲内であることが好ましい。それにより色ムラが一層抑制される。 At this time, the adjacent organic layer 3a adjacent to the reflective electrode in the organic layer 3 has a total film thickness of 30 to 50 nm, and the average film thickness of each element S in the adjacent organic layer 3a is equal to the adjacent organic layer. It is preferably in the range of 93 to 107% of the average film thickness of the entire 3a. Thereby, color unevenness is further suppressed.
 図2の形態においては、有機層3のうち反射性電極(第二電極5)に隣接する隣接有機層3aは、ドーパント非含有層2のうちもっとも第二電極5側に配置されるドーパント非含有層2bである。好ましい形態では、このドーパント非含有層2bの膜厚が30~50nmであるようにする。 In the form of FIG. 2, the adjacent organic layer 3 a adjacent to the reflective electrode (second electrode 5) in the organic layer 3 is not included in the dopant non-containing layer 2 and is located closest to the second electrode 5. Layer 2b. In a preferred embodiment, the film thickness of the dopant-free layer 2b is 30 to 50 nm.
 そして、上述の場合と同様、任意の要素Sにおけるドーパント非含有層2bの平均膜厚をdSmと表せば、各要素S、S、・・・、Sにおけるドーパント非含有層2bの平均膜厚は、それぞれ、dS1、dS2、・・・、dSnと表すことができる。 Then, as in the case described above, if indicated an average film thickness of the dopant-free layer 2b at an arbitrary element S m and d Sm, each element S 1, S 2, · · ·, dopants in S n-free layer 2b Can be expressed as d S1 , d S2 ,..., D Sn , respectively.
 また、個々のドーパント非含有層2b全体の平均膜厚davは次のように表すことができる。 Moreover, the average film thickness dav of each individual dopant non-containing layer 2b can be expressed as follows.
  dav = (dS1+dS2+・・・+dSn)/n d av = (d S1 + d S2 +... + d Sn ) / n
 そして、ドーパント非含有層2b全体の平均膜厚davに対して、n個の要素Sから選んだ任意の要素Sの平均膜厚dSmは、次の関係を全ての要素Sにおいて満たす。 Then, the average thickness d av of the entire non-dopant-containing layer 2b, the average thickness d Sm of n for any chosen from the elements S component S m is satisfied in all the elements S the following relation.
  dav×0.93 ≦ DSm ≦ Dav×1.07 d av × 0.93 ≦ D Sm ≦ D av × 1.07
 この関係は、
  dav×0.93 ≦ dS1,dS2,・・・,dSn≦ dav×1.07
 と示してもよい。
This relationship
d av × 0.93 ≦ d S1 , d S2 ,..., d Sn ≦ d av × 1.07
May be indicated.
 あるいは、
  dav×0.93 ≦ dS1~Sn≦ dav×1.07
 と示してもよい。
Or
d av × 0.93 ≦ d S1 to Sn ≦ d av × 1.07
May be indicated.
 このように有機EL素子のさらに好ましい形態では、反射性電極に隣接する層であるドーパント非含有層2bが特定の膜厚条件になるように設計される。その場合、色ムラが一層抑制される。 Thus, in a more preferable form of the organic EL element, the dopant non-containing layer 2b which is a layer adjacent to the reflective electrode is designed to have a specific film thickness condition. In that case, color unevenness is further suppressed.
 なお、有機層3において各電極に接する層は、ドーパント含有層1であってもよいが、ドーパント非含有層2であることがより好ましい。特に、反射性電極に隣接する層である隣接有機層3aは、ドーパント非含有層2であることが好ましい。それにより、発光性の層への電荷(電子又は正孔)の注入が容易になり、発光性を高めることができる。 In addition, the layer in contact with each electrode in the organic layer 3 may be the dopant-containing layer 1, but is preferably the dopant-free layer 2. In particular, the adjacent organic layer 3 a that is a layer adjacent to the reflective electrode is preferably the dopant-free layer 2. This facilitates injection of charges (electrons or holes) into the light-emitting layer, and can improve light-emitting properties.
 有機EL素子では、発光面Aに垂直な方向で輝度を測定した場合、複数の要素Sのうち最小輝度を示す要素Sは、最大輝度を示す要素Sに対して70%以上の輝度を示すことが好ましい。各要素Sにおける輝度は、要素Sの区画範囲の平均輝度として測定される。 In the organic EL element, when the luminance is measured in a direction perpendicular to the light emitting surface A, the element S indicating the minimum luminance among the plurality of elements S indicates 70% or more luminance with respect to the element S indicating the maximum luminance. Is preferred. The luminance at each element S is measured as the average luminance of the segment range of element S.
 ここで、上述の場合に準じて、任意の要素Sにおける平均輝度をLSmと表す。すると、各要素S、S、・・・、Sにおける平均輝度は、それぞれ、LS1、LS2、・・・、LSnと表すことができる。そして、n個の要素Sのうち、最も輝度が大きい要素Sの平均輝度をLmaxと表し、最も輝度が小さい要素Sの平均輝度をLminと表す。すると、好ましい形態では、次の関係を満たす。 Here, according to the case described above, it represents the average luminance for arbitrary elements S m and L Sm. Then, each element S 1, S 2, · · ·, average luminance for S n, respectively, L S1, L S2, · · ·, can be expressed as L Sn. Of the n elements S, the average luminance of the element S having the highest luminance is expressed as L max, and the average luminance of the element S having the lowest luminance is expressed as L min . Then, in the preferred embodiment, the following relationship is satisfied.
  Lmin ≧ Lmax×0.70 L min ≧ L max × 0.70
 このように有機EL素子のさらに好ましい形態では、発光面Aの輝度が均一に近づき、色ムラが一層抑制される。 As described above, in a more preferable form of the organic EL element, the luminance of the light emitting surface A approaches uniformly and color unevenness is further suppressed.
 輝度は、例えば、コニカミノルタ社製二次元色彩輝度計(CA-2000)により測定される。 The luminance is measured, for example, with a two-dimensional color luminance meter (CA-2000) manufactured by Konica Minolta.
 有機EL素子において、電極の一方が透明電極に、電極の他方が反射性電極に形成されている場合、この透明電極は、外面(裏面)に光散乱層が設けられた光透過性基板の内面(表面)に設けられていることが好ましい。それにより、取り出される光が散乱され色ムラが抑制される。 In the organic EL element, when one of the electrodes is formed as a transparent electrode and the other electrode is formed as a reflective electrode, the transparent electrode has an inner surface of a light-transmitting substrate provided with a light scattering layer on the outer surface (back surface). It is preferably provided on the (surface). Thereby, the extracted light is scattered and color unevenness is suppressed.
 例えば、図2の形態において、第一電極4が透明電極であり、第二電極5が反射性電極であれば、第一電極4は、光透過性基板の表面に形成されるようにする。すなわち、図2のような形態では、二つの電極及び有機層3により構成される有機EL素子の層全体が、光透過性基板の表面に形成される。そして、光透過性基板の第一電極4とは反対側の表面に光散乱層が設けられるようにする。これにより、発光した光は、光透過性電極と光散乱層を通過して、素子から出射することになる。このとき、出射光は光散乱層により散乱されるのである。なお、光透過性電極は光を透過するものであればよく、透明であることが好ましいが、半透明であってもよい。 For example, in the embodiment of FIG. 2, if the first electrode 4 is a transparent electrode and the second electrode 5 is a reflective electrode, the first electrode 4 is formed on the surface of the light transmissive substrate. That is, in the form as shown in FIG. 2, the entire layer of the organic EL element composed of the two electrodes and the organic layer 3 is formed on the surface of the light-transmitting substrate. A light scattering layer is provided on the surface of the light transmissive substrate opposite to the first electrode 4. Thus, the emitted light passes through the light transmissive electrode and the light scattering layer and is emitted from the element. At this time, the emitted light is scattered by the light scattering layer. The light transmissive electrode is not particularly limited as long as it transmits light and is preferably transparent, but may be translucent.
 そして、CIE-u’及びCIE-v’で表される各要素Sの平均色度は、CIE-u’及びCIE-v’の両方において、発光面A全体の平均色度の98.5~101.5%の範囲内であることが好ましい。すなわち、発光面A全体の平均色度(u’,v’)に対して、n個の要素Sから選んだ任意の要素Sの平均色度(u’,v’)は、次の関係を全ての要素Sにおいて満たすことが好ましい。 The average chromaticity of each element S represented by CIE-u ′ and CIE-v ′ is 98.5 to about the average chromaticity of the entire light emitting surface A in both CIE-u ′ and CIE-v ′. It is preferable to be within the range of 101.5%. That is, the average chromaticity (u ′ m , v ′ m ) of an arbitrary element S m selected from the n elements S with respect to the average chromaticity (u ′ 0 , v ′ 0 ) of the entire light emitting surface A is The following relationship is preferably satisfied in all the elements S.
    u’×0.985 ≦ u’ ≦ u’×1.015
 かつ、v’×0.985 ≦ v’ ≦ v’×1.015
u ′ 0 × 0.985 ≦ u ′ m ≦ u ′ 0 × 1.015
And v ′ 0 × 0.985 ≦ v ′ m ≦ v ′ 0 × 1.015
 この関係は、
    u’×0.985 ≦ u’,u’,・・・,u’≦ u’×1.015
 かつ、v’×0.985 ≦ v’,v’,・・・,v’≦ v’×1.015
 と示してもよい。
This relationship
u ′ 0 × 0.985 ≦ u ′ 1 , u ′ 2 ,..., u ′ n ≦ u ′ 0 × 1.015
And v ′ 0 × 0.985 ≦ v ′ 1 , v ′ 2 ,..., V ′ n ≦ v ′ 0 × 1.015
May be indicated.
 あるいは、
    u’×0.985 ≦ u’1~n ≦ u’×1.015
 かつ、v’×0.985 ≦ v’1~n ≦ v’×1.015
 と示してもよい。
Or
u ′ 0 × 0.985 ≦ u ′ 1 to n ≦ u ′ 0 × 1.015
And v ′ 0 × 0.985 ≦ v ′ 1 to n ≦ v ′ 0 × 1.015
May be indicated.
 このように有機EL素子は、好ましくは、発光面Aの平均色度が特定の条件になるように設計される。それにより、面内の発光をさらに均一に近づけることができ、色ムラが抑制され、優れた面状発光性の有機EL素子を構築することができるのである。 Thus, the organic EL element is preferably designed so that the average chromaticity of the light emitting surface A is in a specific condition. Thereby, in-plane light emission can be made more uniform, color unevenness can be suppressed, and an excellent planar light-emitting organic EL element can be constructed.
 有機EL素子を構成する材料、有機EL素子の製造について説明する。 The material constituting the organic EL element and the production of the organic EL element will be described.
 第一電極4及び第二電極5は適宜の導電性材料を用いて形成される。それにより、透明電極又は反射性電極として、第一電極4及び第二電極5が形成される。 The first electrode 4 and the second electrode 5 are formed using an appropriate conductive material. Thereby, the 1st electrode 4 and the 2nd electrode 5 are formed as a transparent electrode or a reflective electrode.
 透明電極の材料としては、限定されるものではないが、例えば、ITO、酸化錫、酸化亜鉛、IZO(IndiumZinc Oxide)、ヨウ化銅など、PEDOT、ポリアニリンなどの導電性高分子および任意のアクセプタなどでドープした導電性高分子、カーボンナノチューブなどの導電性光透過性材料などを挙げることができる。 The material for the transparent electrode is not limited, but includes, for example, ITO, tin oxide, zinc oxide, IZO (IndiumZinc Oxide), copper iodide, conductive polymers such as PEDOT and polyaniline, and arbitrary acceptors. And conductive light-transmitting materials such as carbon nanotubes and the like.
 反射性電極の材料としては、限定されるものではないが、例えば、アルミニウム、銀、マグネシウム、金、銅、クロム、モリブデン、パラジウム、錫など、およびこれらと他の金属との合金、例えばマグネシウム-銀混合物、マグネシウム-インジウム混合物、アルミニウム-リチウム合金を例として挙げることができる。また、金属、金属酸化物など、およびこれらと他の金属との混合物、例えば、酸化アルミニウムからなる極薄膜(ここでは、トンネル注入により電子を流すことが可能な1nm以下の薄膜)とアルミニウムからなる薄膜との積層膜などを挙げることができる。 Examples of the material of the reflective electrode include, but are not limited to, aluminum, silver, magnesium, gold, copper, chromium, molybdenum, palladium, tin, and alloys of these with other metals, such as magnesium Examples thereof include a silver mixture, a magnesium-indium mixture, and an aluminum-lithium alloy. Moreover, it consists of a metal, a metal oxide, etc., and a mixture of these and other metals, for example, an ultra-thin film made of aluminum oxide (here, a thin film of 1 nm or less capable of flowing electrons by tunnel injection) and aluminum. A laminated film with a thin film can be used.
 ドーパント含有層1は、ドーパント化合物と、ドーパント化合物を含有させるホスト材料を含んで形成される。 The dopant-containing layer 1 is formed including a dopant compound and a host material containing the dopant compound.
 ドーパント化合物としては、限定されるものではないが、例えば、蛍光発光性のドーパント、燐光発光性のドーパントを適宜用いることが可能である。燐光発光性のドーパントは、三重項状態から発光するため、一重項状態からのみ発光する蛍光発光性のドーパントに比べ、約4倍高い発光効率を有し、理想的には内部量子効率100%の高効率発光が可能となる。蛍光発光性ドーパントとしては、例えば、TBP(1-tert-ブチル-ペリレン)、BCzVBi、perylene、C545T(クマリンC545T;10-2-(ベンゾチアゾリル)-2,3,6,7-テトラヒドロ-1,1,7,7-テトラメチル-1H,5H,11H-(1)ベンゾピロピラノ(6,7,-8-ij)キノリジン-11-オン))、DMQA、coumarin6、rubreneなどが挙げられるが、これらに限定されるものではない。燐光発光性ドーパントとしては、例えば、Ir(ppy)3(ファクトリス(2-フェニルピリジン)イリジウム)、Ir(ppy)2(acac)、Ir(mppy)3、Btp2Ir(acac)(ビス-(3-(2-(2-ピリジル)ベンゾチエニル)モノ-アセチルアセトネート)イリジウム(III)))、Bt2Ir(acac)、PtOEPなどが挙げられるが、これらに限定されるものではない。また、白色発光を得るために、これらドーパントを適宜組み合わせてもよい。 The dopant compound is not limited, but, for example, a fluorescent light emitting dopant or a phosphorescent light emitting dopant can be used as appropriate. Since the phosphorescent dopant emits light from the triplet state, it has a luminous efficiency approximately four times higher than that of the fluorescent dopant that emits light only from the singlet state, and ideally has an internal quantum efficiency of 100%. High efficiency light emission becomes possible. Examples of the fluorescent light-emitting dopant include TBP (1-tert-butyl-perylene), BCzVBi, perylene, C545T (coumarin C545T; 10-2- (benzothiazolyl) -2,3,6,7-tetrahydro-1,1 , 7,7-tetramethyl-1H, 5H, 11H- (1) benzopyrrolopyrano (6,7, -8-ij) quinolidin-11-one)), DMQA, coumarin6, rubrene, and the like. Is not to be done. Examples of phosphorescent dopants include Ir (ppy) 3 (factory (2-phenylpyridine) iridium), Ir (ppy) 2 (acac), Ir (mppy) 3, Btp2Ir (acac) (bis- (3 -(2- (2-pyridyl) benzothienyl) mono-acetylacetonate) iridium (III))), Bt2Ir (acac), PtOEP, and the like, but are not limited thereto. In order to obtain white light emission, these dopants may be appropriately combined.
 ホスト材料としては、限定されるものではないが、例えば、電子輸送性の材料、ホール輸送性の材料、電子輸送性とホール輸送性とを併せ持つ材料の、いずれも使用され得る。ホスト材料として電子輸送性の材料とホール輸送性の材料とが併用されてもよい。ホスト材料としては、例えば、Alq(トリス(8-オキソキノリン)アルミニウム(III))、TBADN(2-t-ブチル-9,10-ジ(2-ナフチル)アントラセン)、ADN、BDAF、CBP、CzTT、TCTA、mCP、CDBPなどを挙げることができる。 The host material is not limited, and for example, any of an electron transporting material, a hole transporting material, and a material having both electron transporting property and hole transporting property can be used. As the host material, an electron transporting material and a hole transporting material may be used in combination. Examples of the host material include Alq 3 (tris (8-oxoquinoline) aluminum (III)), TBADN (2-tert-butyl-9,10-di (2-naphthyl) anthracene), ADN, BDAF, CBP, CzTT, TCTA, mCP, CDBP and the like can be mentioned.
 ドーパント非含有層2は、その目的に合わせて、電子注入性材料、電子輸送性材料、正孔輸送性材料、正孔注入性材料などにより形成される。 The dopant non-containing layer 2 is formed of an electron injecting material, an electron transporting material, a hole transporting material, a hole injecting material, or the like according to the purpose.
 電子注入性材料及び電子輸送性材料としては、限定されるものではないが、例えば、Alq3、オキサジアゾール誘導体、スターバーストオキサジアゾール、トリアゾール誘導体、フェニルキノキサリン誘導体、シロール誘導体などが挙げられる。電子輸送性材料の具体例として、フルオレン、バソフェナントロリン、バソクプロイン、アントラキノジメタン、ジフェノキノン、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、アントラキノジメタン、4,4’-N,N’-ジカルバゾールビフェニル(CBP)等やそれらの化合物、金属錯体化合物、含窒素五員環誘導体などが挙げられる。金属錯体化合物としては、具体的には、トリス(8-ヒドロキシキノリナート)アルミニウム、トリ(2-メチル-8-ヒドロキシキノリナート)アルミニウム、トリス(8-ヒドロキシキノリナート)ガリウム、ビス(10-ヒドロキシベンゾ[h]キノリナート)ベリリウム、ビス(10-ヒドロキシベンゾ[h]キノリナート)亜鉛、ビス(2-メチル-8-キノリナート)(o-クレゾラート)ガリウム、ビス(2-メチル-8-キノリナート)(1-ナフトラート)アルミニウム、ビス(2-メチル-8-キノリナート)-4-フェニルフェノラート等が挙げられるが、これらに限定されない。含窒素五員環誘導体としては、オキサゾール、チアゾール、オキサジアゾール、チアジアゾール、トリアゾール誘導体などが好ましく、具体的には、2,5-ビス(1-フェニル)-1,3,4-オキサゾール、2,5-ビス(1-フェニル)-1,3,4-チアゾール、2,5-ビス(1-フェニル)-1,3,4-オキサジアゾール、2-(4’-tert-ブチルフェニル)-5-(4”-ビフェニル)1,3,4-オキサジアゾール、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール、1,4-ビス[2-(5-フェニルチアジアゾリル)]ベンゼン、2,5-ビス(1-ナフチル)-1,3,4-トリアゾール、3-(4-ビフェニルイル)-4-フェニル-5-(4-t-ブチルフェニル)-1,2,4-トリアゾールなどを挙げることができる。 Examples of the electron injecting material and the electron transporting material include, but are not limited to, Alq3, oxadiazole derivatives, starburst oxadiazoles, triazole derivatives, phenylquinoxaline derivatives, silole derivatives, and the like. Specific examples of the electron transporting material include fluorene, bathophenanthroline, bathocuproine, anthraquinodimethane, diphenoquinone, oxazole, oxadiazole, triazole, imidazole, anthraquinodimethane, 4,4′-N, N′-dicarbazole. Biphenyl (CBP) and the like, compounds thereof, metal complex compounds, nitrogen-containing five-membered ring derivatives and the like can be mentioned. Specific examples of the metal complex compound include tris (8-hydroxyquinolinato) aluminum, tri (2-methyl-8-hydroxyquinolinato) aluminum, tris (8-hydroxyquinolinato) gallium, bis ( 10-hydroxybenzo [h] quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) (o-cresolate) gallium, bis (2-methyl-8-quinolinato) ) (1-naphtholato) aluminum, bis (2-methyl-8-quinolinato) -4-phenylphenolate and the like, but are not limited thereto. As the nitrogen-containing five-membered ring derivative, oxazole, thiazole, oxadiazole, thiadiazole, triazole derivatives and the like are preferable. Specifically, 2,5-bis (1-phenyl) -1,3,4-oxazole, 2 , 5-bis (1-phenyl) -1,3,4-thiazole, 2,5-bis (1-phenyl) -1,3,4-oxadiazole, 2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl) 1,3,4-oxadiazole, 2,5-bis (1-naphthyl) -1,3,4-oxadiazole, 1,4-bis [2- (5 -Phenylthiadiazolyl)] benzene, 2,5-bis (1-naphthyl) -1,3,4-triazole, 3- (4-biphenylyl) -4-phenyl-5- (4-t-butylphenyl) ) -1,2,4-Triazo Or the like can be mentioned Le.
 正孔輸送性材料、正孔注入性材料としては、限定されるものではないが、例えば、ポリアニリン、4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)、2-TNATA、4,4’,4”-トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(MTDATA)、4,4’-N,N’-ジカルバゾールビフェニル(CBP)、スピロ-NPD、スピロ-TPD、スピロ-TAD、TNBなどを代表例とする、トリアリールアミン系化合物、カルバゾール基を含むアミン化合物、フルオレン誘導体を含むアミン化合物、スターバーストアミン類(m-MTDATA)、TDATA系材料として1-TMATA、2-TNATA、p-PMTDATA、TFATAなどを挙げることができる。 The hole transporting material and the hole injecting material are not limited, and examples thereof include polyaniline, 4,4′-bis [N- (naphthyl) -N-phenyl-amino] biphenyl (α-NPD). ), N, N′-bis (3-methylphenyl)-(1,1′-biphenyl) -4,4′-diamine (TPD), 2-TNATA, 4,4 ′, 4 ″ -tris (N— (3-methylphenyl) N-phenylamino) triphenylamine (MTDATA), 4,4′-N, N′-dicarbazole biphenyl (CBP), spiro-NPD, spiro-TPD, spiro-TAD, TNB, etc. Representative examples include triarylamine compounds, amine compounds containing carbazole groups, amine compounds containing fluorene derivatives, starburst amines (m-MTDATA), TDA 1-TMATA, 2-TNATA as an A-based materials, p-PMTDATA, and the like TFATA.
 そして、上記のような材料を適宜の順序で適宜の方法により順に成膜して積層することにより、図2のような層構成の有機EL素子を製造することができる。 Then, an organic EL element having a layer structure as shown in FIG. 2 can be manufactured by sequentially forming and stacking the above materials in an appropriate order by an appropriate method.
 各電極の膜厚は、例えば、10~300nm程度にすることができる。有機層3の全体の膜厚は、例えば、60~300nm程度にすることができる。 The film thickness of each electrode can be about 10 to 300 nm, for example. The total film thickness of the organic layer 3 can be, for example, about 60 to 300 nm.
 成膜方法としては、特に限定されるものではないが、例えば、真空蒸着法やスパッタリング法、塗布法などを挙げることができる。 The film forming method is not particularly limited, and examples thereof include a vacuum deposition method, a sputtering method, and a coating method.
 ここで、上述のような膜厚の条件を満たすように、各層の面内での厚みが均一に近づくように成膜することが好ましい。例えば、真空蒸着法においては、蒸発源角度、基板-蒸発源間の距離(高さ)や、基板回転中心-蒸発源間の距離(オフセット)などを適宜調整することにより、厚みのバラツキを小さくすることができ、所望の膜厚条件となった層を得ることができる。 Here, it is preferable to form the film so that the in-plane thicknesses of the layers approach uniformly so as to satisfy the film thickness conditions as described above. For example, in the vacuum deposition method, the thickness variation can be reduced by appropriately adjusting the evaporation source angle, the distance between the substrate and the evaporation source (height), the distance between the substrate rotation center and the evaporation source (offset), and the like. And a layer having a desired film thickness condition can be obtained.
 図3は、真空蒸着法における膜厚調整の一例を示す概略図である。 FIG. 3 is a schematic view showing an example of film thickness adjustment in the vacuum deposition method.
 蒸着によって基板11に材料を積層する場合、基板11表面に垂直な軸である回転中心Cを中心として基板11を水平回転させる。そして、蒸着源12から基板11に向けて材料を蒸発させる。このとき、材料が出射する蒸発源12の出射口12aと基板11との垂直方向の距離が、基板-蒸発源間の距離(高さ)Hとなる。また、蒸発源12の出射口12aと回転中心Cとの水平方向の距離が、基板回転中心-蒸発源間の距離(オフセット)δとなる。また、蒸発源12の出射方向は、垂直方向から所定の角度をなしていてもよく、蒸発源12の出射方向と垂直方向とのなす角度が、蒸発源角度θとなる。なお、蒸発源12の出射方向は、回転中心Cと基板11表面との交点よりも上方に向いていることが好ましい。このように、蒸発源角度θや、基板-蒸発源間の距離Hや、基板回転中心-蒸発源間の距離δを適宜設定することにより、基板11表面に厚みのバラツキが小さい層を形成することができる。 When a material is stacked on the substrate 11 by vapor deposition, the substrate 11 is horizontally rotated around a rotation center C that is an axis perpendicular to the surface of the substrate 11. Then, the material is evaporated from the vapor deposition source 12 toward the substrate 11. At this time, the distance in the vertical direction between the emission port 12a of the evaporation source 12 from which the material is emitted and the substrate 11 is the distance (height) H between the substrate and the evaporation source. Further, the horizontal distance between the emission port 12a of the evaporation source 12 and the rotation center C is the distance (offset) δ between the substrate rotation center and the evaporation source. Further, the emission direction of the evaporation source 12 may form a predetermined angle from the vertical direction, and the angle formed by the emission direction of the evaporation source 12 and the vertical direction becomes the evaporation source angle θ. Note that the emission direction of the evaporation source 12 is preferably directed upward from the intersection of the rotation center C and the surface of the substrate 11. As described above, by appropriately setting the evaporation source angle θ, the substrate-evaporation source distance H, and the substrate rotation center-evaporation source distance δ, a layer having a small thickness variation is formed on the surface of the substrate 11. be able to.
 以上のような有機EL素子についての設計の論理を説明する。本発明がこの論理によって限定されるものでないことは言うまでもない。 The design logic for the organic EL element as described above will be described. Of course, the present invention is not limited by this logic.
 有機EL素子は、電気的/光学的設計により、発光特性が変わる。ここで、発光面Aにおける色ムラ、すなわち、輝度ムラ及び色度ムラの要因として、次の三つが考えられた。この三つは、すべて発光面Aにおける面内のバラツキによるものである。
(1)電圧のバラツキ。
(2)各層の膜厚のバラツキ。
(3)温度分布のバラツキ。
The organic EL element has different light emission characteristics depending on the electrical / optical design. Here, the following three were considered as factors of color unevenness on the light emitting surface A, that is, luminance unevenness and chromaticity unevenness. These three are all due to in-plane variations in the light emitting surface A.
(1) Voltage variation.
(2) Variation in film thickness of each layer.
(3) Variation in temperature distribution.
 本実施形態の有機EL素子においては、上記(2)に着目し、素子の設計を行った。 In the organic EL element of the present embodiment, the element was designed by paying attention to the above (2).
 有機EL素子には高分子型EL素子と、低分子型EL素子とに大きく大別され、前者は塗布プロセス、後者は蒸着プロセスによって、作製されることが一般的である。その他にも、高分子材料を塗布プロセスで、低分子材料を蒸着プロセスで形成し、両者の特徴を併せ持った、ハイブリッド型素子構造も提案されている。いずれのプロセスを用いても、パネル内均一成膜は困難(膜厚/濃度)であり、面内の有機EL素子の特性にバラつきが生じる要因となっていた。ディスプレイなどの有機EL素子では、駆動回路での補償により各ピクセルの有機EL素子の特性バラつきの影響を低減することが比較的可能であった。一方、照明などの有機EL素子では、大面積での一面発光が求められる。そのため、面内の特性バラつきを補償することが不可能であり、質の低下を引き起こしていた。 Organic EL elements are roughly classified into high-molecular EL elements and low-molecular EL elements, and the former is generally manufactured by a coating process and the latter by a vapor deposition process. In addition, a hybrid element structure has been proposed in which a high molecular material is formed by a coating process and a low molecular material is formed by a vapor deposition process. Regardless of which process is used, uniform film formation within the panel is difficult (film thickness / concentration), which causes variations in the characteristics of the in-plane organic EL elements. In an organic EL element such as a display, it is relatively possible to reduce the influence of the characteristic variation of the organic EL element of each pixel by compensation in a drive circuit. On the other hand, organic EL elements such as lighting are required to emit light in a single area with a large area. For this reason, it is impossible to compensate for the in-plane characteristic variation, causing a deterioration in quality.
 有機EL素子内の各層の膜厚がバラツク(一つの層で変化する)ことにより、面内におけるある部分と他の部分とで電気特性及び光学特性が変わることが考えられる。特に、有機EL素子においては、膜厚dと、屈折率nとを掛け合せた光学膜厚(n×d)という指標により、光学特性が支配され、物理的な膜厚dが少しでも変化すると光学膜厚ndが大きく影響を受ける。また、電荷注入型素子である有機EL素子は、物理的な膜厚dの変化により、電荷(正孔、電子)の注入・輸送状態が変わることによって発光特性が大きく影響を受ける。このような電気特性及び光学特性を支配する膜厚をロバスト設計による管理幅設定で行うのである。 It is conceivable that the electrical characteristics and optical characteristics change between a certain part and another part in the plane due to variations in the film thickness of each layer in the organic EL element (changes in one layer). In particular, in an organic EL element, optical characteristics are governed by an index called an optical film thickness (n × d) obtained by multiplying a film thickness d and a refractive index n. The film thickness nd is greatly affected. In addition, the organic EL element which is a charge injection type element is greatly affected in light emission characteristics by changing the injection / transport state of charges (holes, electrons) due to a change in the physical film thickness d. The film thickness governing such electrical characteristics and optical characteristics is set by the management width setting by the robust design.
 そして、有機EL素子は、多層膜の積層によって形成され、各層は相互作用をもって、発光特性を支配する。このように、各層は相互作用をもっており、発光特性と各層の特性影響は1対1で明確に定義できるものではない。しかしながら、層間の相互作用のために各層を個別に分けて考えることはできないものの、各層が特性に影響を与える寄与度について明確に違いがあることが分かった。 The organic EL element is formed by stacking multilayer films, and each layer dominates the light emission characteristics through interaction. Thus, each layer has an interaction, and the light emission characteristic and the characteristic influence of each layer cannot be clearly defined on a one-to-one basis. However, although the layers cannot be considered separately because of the interaction between the layers, it has been found that there is a clear difference in the degree of contribution that each layer affects the characteristics.
 そこで、面内バラツキの影響を低減する素子構造として、以上で説明した素子設計を行った。すなわち、より光学特性及び電気特性に対しての寄与度が大きい層について、膜厚等の条件を規定するようにした。例えば、ドーパント非含有層2よりも、発光に直接関与するドーパント含有層1の方が発光への寄与度が大きい。また、有機層3の中では反射性電極に隣接する隣接有機層3aの寄与度が他の層よりも大きい。このようにようにして、本実施形態の有機EL素子が完成されたものであり、これにより、発光の面内均一性が向上するものである。 Therefore, the element design described above was performed as an element structure that reduces the influence of in-plane variation. That is, conditions such as the film thickness are defined for a layer having a greater contribution to the optical characteristics and electrical characteristics. For example, the dopant-containing layer 1 that directly participates in light emission has a higher contribution to light emission than the dopant-free layer 2. Moreover, in the organic layer 3, the contribution degree of the adjacent organic layer 3a adjacent to a reflective electrode is larger than another layer. Thus, the organic EL element of this embodiment is completed, and thereby the in-plane uniformity of light emission is improved.
 (層構成例1)
 積層した材料を積層順に示す。
・光透過性基板:無アルカリガラス、厚み0.7mm。
・第一電極4(透明電極):ITO、膜厚110nm。
・正孔輸送層(ドーパント非含有層1):トリフェニルアミン誘導体、膜厚60nm。
・第一発光層(ドーパント含有層1):材料トリフェニルアミン誘導体(ホスト)、ジスチリルアリーレン誘導体(ドーパント)、膜厚30nm。
・電子輸送層(ドーパント非含有層2):フェナントロリン誘導体、膜厚30nm。
・中間層(ドーパント非含有層3):LiO(酸化リチウム)/キノリン錯体/ヘキサアザトリフェニレン誘導体、膜厚1.5nm/3nm/10nm。
・正孔輸送層(ドーパント非含有層4):トリフェニルアミン誘導体、膜厚40nm。
・第二発光層(ドーパント含有層2):カルバゾール誘導体(ホスト)、Ir錯体(ドーパント)、膜厚3nm。
・第三発光層(ドーパント含有層3):カルバゾール誘導体(ホスト)、Ir錯体(ドーパント)、膜厚40nm。
・電子輸送層(ドーパント非含有層5):フェナントロリン誘導体、膜厚40nm。
・電子注入層(ドーパント非含有層6):LiF(フッ化リチウム)、膜厚1.5nm。
・第二電極5(反射性電極):Al(アルミニウム)膜厚150nm。
(Layer configuration example 1)
The laminated materials are shown in the order of lamination.
-Light transmissive substrate: alkali-free glass, thickness 0.7 mm.
First electrode 4 (transparent electrode): ITO, film thickness 110 nm.
Hole transport layer (dopant non-containing layer 1): triphenylamine derivative, film thickness 60 nm.
First light emitting layer (dopant-containing layer 1): material triphenylamine derivative (host), distyrylarylene derivative (dopant), film thickness 30 nm.
Electron transport layer (dopant-free layer 2): phenanthroline derivative, film thickness 30 nm.
Intermediate layer (dopant-free layer 3): Li 2 O (lithium oxide) / quinoline complex / hexaazatriphenylene derivative, film thickness 1.5 nm / 3 nm / 10 nm.
Hole transport layer (dopant-free layer 4): triphenylamine derivative, film thickness 40 nm.
Second light emitting layer (dopant-containing layer 2): carbazole derivative (host), Ir complex (dopant), film thickness 3 nm.
Third light emitting layer (dopant-containing layer 3): carbazole derivative (host), Ir complex (dopant), film thickness 40 nm.
Electron transport layer (dopant-free layer 5): phenanthroline derivative, film thickness 40 nm.
Electron injection layer (dopant-free layer 6): LiF (lithium fluoride), film thickness 1.5 nm.
Second electrode 5 (reflective electrode): Al (aluminum) film thickness 150 nm.
 (実施例1)
 上記の層構成例1により、発光面Aが100×100mmの有機EL素子を作製した。
Example 1
An organic EL element having a light emitting surface A of 100 × 100 mm was produced by the above-described layer structure example 1.
 ここで、作製にあたっては、要素Sの大きさを20×20mmとして、発光面Aを要素分割したとき、次の条件を満たすように成膜した。
・全てのドーパント含有層1において、各ドーパント含有層1は、その各ドーパント含有層1における各要素Sの平均膜厚が、その各ドーパント含有層1全体の平均膜厚の93~107%の範囲内である。
・全てのドーパント非含有層2において、各ドーパント非含有層2は、その各ドーパント非含有層2における各要素Sの平均膜厚が、その各ドーパント非含有層2全体の平均膜厚の90~110%の範囲内である。
・各要素Sの平均色度は、CIE-u’及びCIE-v’の両方において、発光面A全体の平均色度の98~102%の範囲内である。
Here, in manufacturing, when the size of the element S was 20 × 20 mm and the light emitting surface A was divided into elements, the film was formed so as to satisfy the following conditions.
In all dopant-containing layers 1, each dopant-containing layer 1 has a range in which the average film thickness of each element S in each dopant-containing layer 1 is 93 to 107% of the average film thickness of each dopant-containing layer 1 Is within.
In all the dopant non-containing layers 2, each dopant non-containing layer 2 has an average film thickness of each element S in each dopant non-containing layer 2 of 90 to the average film thickness of each of the dopant non-containing layers 2 Within the range of 110%.
The average chromaticity of each element S is in the range of 98 to 102% of the average chromaticity of the entire light emitting surface A in both CIE-u ′ and CIE-v ′.
 (比較例1)
 上記の層構成例1により、発光面Aが100×100mmの有機EL素子を作製した。
(Comparative Example 1)
An organic EL element having a light emitting surface A of 100 × 100 mm was produced by the above-described layer structure example 1.
 ここで、作製にあたっては、要素Sの大きさを20×20mmとして、発光面Aを要素分割したとき、次の条件を満たすように成膜した。
・全てのドーパント含有層1において、各ドーパント含有層1は、その各ドーパント含有層1における各要素Sのうち、平均膜厚がその各ドーパント含有層1全体の平均膜厚の93~107%の範囲内にない要素Sが約30%以上の個数で存在する。
・各要素Sのうち、平均色度がCIE-u’及びCIE-v’のいずれか一方において、発光面A全体の平均色度の98~102%の範囲内にない要素Sが約30%以上の個数で存在する。
Here, in manufacturing, when the size of the element S was 20 × 20 mm and the light emitting surface A was divided into elements, the film was formed so as to satisfy the following conditions.
In all the dopant-containing layers 1, each dopant-containing layer 1 has an average film thickness of 93 to 107% of the average film thickness of each dopant-containing layer 1 in each element S in each dopant-containing layer 1 There are about 30% or more elements S that are not within the range.
Of the elements S, the average chromaticity of either CIE-u ′ or CIE-v ′ is about 30% of elements S that are not within the range of 98 to 102% of the average chromaticity of the entire light emitting surface A. It exists in the above number.
 (評価)
 電圧を印加し、発光面Aにおける発光を視認した。
(Evaluation)
A voltage was applied, and light emission on the light emitting surface A was visually confirmed.
 図4A及び図4Bは、発光面Aの写真であり、図4Aは実施例1の有機EL素子、図4Bは比較例1の有機EL素子を示している。発光面積は100mm□であり、各要素Sの大きさは20mm□である。図4A及び図4Bでは、発光面Aについて各要素Sの境界線を点線で示している。図4A及び図4Bに示されるように、比較例1による発光は均一でないのに比べ、実施例1による発光は色度ムラが低減され均一に近づいている。このように、実施例1の有機EL素子は、色ムラ(輝度ムラ及び色度ムラ)が抑制され、面内の均一な発光性に優れたものであることが確認された。 4A and 4B are photographs of the light emitting surface A, FIG. 4A shows the organic EL element of Example 1, and FIG. 4B shows the organic EL element of Comparative Example 1. The light emitting area is 100 mm □, and the size of each element S is 20 mm □. 4A and 4B, the boundary lines of the elements S with respect to the light emitting surface A are indicated by dotted lines. As shown in FIG. 4A and FIG. 4B, the light emission according to Example 1 is close to uniform with reduced chromaticity unevenness as compared with the light emission according to Comparative Example 1 that is not uniform. As described above, it was confirmed that the organic EL device of Example 1 was excellent in in-plane uniform light-emitting properties with suppressed color unevenness (luminance unevenness and chromaticity unevenness).
 A   発光面
 S   要素
 1   ドーパント含有層
 2   ドーパント非含有層
 3   有機層
 4   第一電極
 5   第二電極
A light emitting surface S element 1 dopant containing layer 2 dopant free layer 3 organic layer 4 first electrode 5 second electrode

Claims (6)

  1.  二以上のドーパント含有層と、一以上のドーパント非含有層とを含む有機層を備え、
     発光面が所定の大きさの区画に複数の要素として分割されたときに、
     前記二以上のドーパント含有層のうちの少なくとも一つのドーパント含有層は、当該ドーパント含有層における各要素の平均膜厚が、当該ドーパント含有層全体の平均膜厚の90~110%の範囲内であり、
     CIE1976(u’,v’)色度図の、u’値およびv’値で表される各要素の平均色度は、u’値およびv’値の両方において、発光面全体の平均色度の98~102%の範囲内であり、
     前記各要素は、前記二以上のドーパント含有層の膜厚の総厚が、前記一以上のドーパント非含有層の膜厚の総厚よりも小さい、有機エレクトロルミネッセンス素子。
    Comprising an organic layer comprising two or more dopant-containing layers and one or more dopant-free layers;
    When the light-emitting surface is divided as a plurality of elements into sections of a predetermined size,
    In at least one of the two or more dopant-containing layers, the average film thickness of each element in the dopant-containing layer is in the range of 90 to 110% of the average film thickness of the entire dopant-containing layer. ,
    In the CIE 1976 (u ′, v ′) chromaticity diagram, the average chromaticity of each element represented by the u ′ value and the v ′ value is the average chromaticity of the entire light emitting surface in both the u ′ value and the v ′ value. Of 98 to 102% of
    Each element is an organic electroluminescence element in which the total thickness of the two or more dopant-containing layers is smaller than the total thickness of the one or more dopant-free layers.
  2.  前記各要素は、前記二以上のドーパント含有層の膜厚の総厚が、前記有機層の膜厚に対して25~35%である、請求項1に記載の有機エレクトロルミネッセンス素子。 2. The organic electroluminescence device according to claim 1, wherein each of the elements has a total thickness of the two or more dopant-containing layers of 25 to 35% with respect to the thickness of the organic layer.
  3.  前記二以上のドーパント含有層における各ドーパント含有層は、当該各ドーパント含有層における各要素の平均膜厚が、当該各ドーパント含有層全体の平均膜厚の93~107%の範囲内であり、
     前記一以上のドーパント非含有層における各ドーパント非含有層は、当該各ドーパント非含有層における各要素の平均膜厚が、当該各ドーパント非含有層全体の平均膜厚の90~110%の範囲内である、請求項1又は2に記載の有機エレクトロルミネッセンス素子。
    Each dopant-containing layer in the two or more dopant-containing layers has an average film thickness of each element in each dopant-containing layer within a range of 93 to 107% of the average film thickness of each dopant-containing layer as a whole.
    Each of the non-dopant-containing layers in the one or more non-dopant-containing layers has an average film thickness of each element in each of the non-dopant-containing layers within a range of 90 to 110% of the average film thickness of each of the non-dopant-containing layers. The organic electroluminescence device according to claim 1 or 2, wherein
  4.  前記有機層に隣接して反射性電極を備え、
     前記有機層のうち前記反射性電極に隣接する隣接有機層は、全体の膜厚が30~50nmであり、当該隣接有機層における各要素の平均膜厚が、当該隣接有機層全体の平均膜厚の93~107%の範囲内である、請求項1~3のいずれか1項に記載の有機エレクトロルミネッセンス素子。
    A reflective electrode adjacent to the organic layer;
    Among the organic layers, the adjacent organic layer adjacent to the reflective electrode has an overall film thickness of 30 to 50 nm, and the average film thickness of each element in the adjacent organic layer is the average film thickness of the entire adjacent organic layer. The organic electroluminescence device according to any one of claims 1 to 3, which is within a range of 93 to 107% of the above.
  5.  前記複数の要素のうち最小輝度を示す要素は、最大輝度を示す要素に対して70%以上の輝度を示す、請求項1~4のいずれか1項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence element according to any one of claims 1 to 4, wherein an element showing the minimum luminance among the plurality of elements shows a luminance of 70% or more with respect to an element showing the maximum luminance.
  6.  前記有機層を反射性電極と透明電極との間に備え、
     前記透明電極は、外面に光散乱層が設けられた光透過性基板の内面に設けられ、
     CIE1976(u’,v’)色度図の、u’値およびv’値で表される前記各要素の平均色度は、u’値およびv’値の両方において、発光面全体の平均色度の98.5~101.5%の範囲内である、請求項1~5のいずれかに記載の有機エレクトロルミネッセンス素子。
    The organic layer is provided between a reflective electrode and a transparent electrode,
    The transparent electrode is provided on the inner surface of a light transmissive substrate provided with a light scattering layer on the outer surface,
    In the CIE1976 (u ′, v ′) chromaticity diagram, the average chromaticity of each element represented by the u ′ value and the v ′ value is the average color of the entire light emitting surface in both the u ′ value and the v ′ value. The organic electroluminescence device according to any one of claims 1 to 5, which is within a range of 98.5 to 101.5% of the degree.
PCT/JP2012/056255 2011-03-31 2012-03-12 Organic electroluminescent element WO2012132853A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-077505 2011-03-31
JP2011077505A JP2012212778A (en) 2011-03-31 2011-03-31 Organic el element

Publications (1)

Publication Number Publication Date
WO2012132853A1 true WO2012132853A1 (en) 2012-10-04

Family

ID=46930590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056255 WO2012132853A1 (en) 2011-03-31 2012-03-12 Organic electroluminescent element

Country Status (2)

Country Link
JP (1) JP2012212778A (en)
WO (1) WO2012132853A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019230617A1 (en) * 2018-05-31 2021-06-10 コニカミノルタ株式会社 Manufacturing method of surface emitting panel and surface emitting panel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297479A (en) * 1995-04-25 1999-10-29 Citizen Watch Co Ltd Organic electroluminescence device
JP2006111965A (en) * 2004-09-14 2006-04-27 Showa Shinku:Kk Organic material evaporation source and vapor deposition system using the same
JP2008248301A (en) * 2007-03-30 2008-10-16 Canon Inc Vapor deposition apparatus and vapor deposition method
JP2009054608A (en) * 2007-08-23 2009-03-12 Dainippon Printing Co Ltd Organic electroluminescent element and its manufacturing method
JP2009197259A (en) * 2008-02-19 2009-09-03 Fuji Electric Holdings Co Ltd Vapor deposition source and film deposition method
JP2009259457A (en) * 2008-04-14 2009-11-05 Seiko Epson Corp Organic electroluminescent device and method of manufacturing the same, and electronic apparatus
JP2010108652A (en) * 2008-10-28 2010-05-13 Panasonic Electric Works Co Ltd Manufacturing method of organic electroluminescent element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297479A (en) * 1995-04-25 1999-10-29 Citizen Watch Co Ltd Organic electroluminescence device
JP2006111965A (en) * 2004-09-14 2006-04-27 Showa Shinku:Kk Organic material evaporation source and vapor deposition system using the same
JP2008248301A (en) * 2007-03-30 2008-10-16 Canon Inc Vapor deposition apparatus and vapor deposition method
JP2009054608A (en) * 2007-08-23 2009-03-12 Dainippon Printing Co Ltd Organic electroluminescent element and its manufacturing method
JP2009197259A (en) * 2008-02-19 2009-09-03 Fuji Electric Holdings Co Ltd Vapor deposition source and film deposition method
JP2009259457A (en) * 2008-04-14 2009-11-05 Seiko Epson Corp Organic electroluminescent device and method of manufacturing the same, and electronic apparatus
JP2010108652A (en) * 2008-10-28 2010-05-13 Panasonic Electric Works Co Ltd Manufacturing method of organic electroluminescent element

Also Published As

Publication number Publication date
JP2012212778A (en) 2012-11-01

Similar Documents

Publication Publication Date Title
US9859340B2 (en) Organic electroluminescent display device having bent type or curved surface type display
US9105873B2 (en) Organic electroluminescent element
CN106449714B (en) organic light-emitting display panel and manufacturing method thereof
TWI539590B (en) Organic light emitting display device and method of manufacturing the same
US8941102B2 (en) Organic electroluminescent element
US8941103B2 (en) Organic electroluminescent element
WO2018061987A1 (en) Display device and production method for same
WO2018062058A1 (en) Display device and production method for same
US9431624B2 (en) Organic electroluminescent element
KR101262816B1 (en) Light-Emitting Component
US20220231095A1 (en) Organic light emitting diode display
WO2012132782A1 (en) Organic electroluminescent element and organic electroluminescent unit, and lighting fixture
JP5167380B2 (en) Organic electroluminescence device
WO2012132853A1 (en) Organic electroluminescent element
JP5180338B2 (en) Organic electroluminescence device
JP5662991B2 (en) Organic electroluminescence device
JP2014022099A (en) Organic electroluminescent element
JP2014022100A (en) Organic electroluminescent element
JP2008218320A (en) Organic electroluminescent element
JP5870304B2 (en) Organic electroluminescence device
JP5879526B2 (en) Organic electroluminescence device
JP2013069702A (en) Organic electroluminescent element
JP2013084986A (en) Organic electroluminescent element
JP2014225414A (en) Organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764174

Country of ref document: EP

Kind code of ref document: A1