WO2012132309A1 - ガラス板の製造方法及びガラス板製造装置 - Google Patents

ガラス板の製造方法及びガラス板製造装置 Download PDF

Info

Publication number
WO2012132309A1
WO2012132309A1 PCT/JP2012/001900 JP2012001900W WO2012132309A1 WO 2012132309 A1 WO2012132309 A1 WO 2012132309A1 JP 2012001900 W JP2012001900 W JP 2012001900W WO 2012132309 A1 WO2012132309 A1 WO 2012132309A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded body
glass plate
glass
temperature
support member
Prior art date
Application number
PCT/JP2012/001900
Other languages
English (en)
French (fr)
Inventor
浩幸 苅谷
Original Assignee
AvanStrate株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AvanStrate株式会社 filed Critical AvanStrate株式会社
Priority to KR1020127013152A priority Critical patent/KR20120132676A/ko
Priority to CN201280000557.4A priority patent/CN102811959B/zh
Priority to JP2012514669A priority patent/JPWO2012132309A1/ja
Publication of WO2012132309A1 publication Critical patent/WO2012132309A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/18Controlling or regulating the temperature of the float bath; Composition or purification of the float bath
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Definitions

  • the present invention relates to a glass plate manufacturing method and a glass plate manufacturing apparatus.
  • the overflow downdraw method which is one method for producing a glass plate
  • the molten glass that has flowed into the molded body is caused to overflow from the molded body.
  • the molten glass overflowed is joined at the lower end of the molded body to form a continuous sheet-like glass (sheet glass).
  • sheet glass merged at the lower end of the formed body is further conveyed downward.
  • sheet glass is cut
  • the molded body is often supported at the lower end to prevent creep due to its own weight or the weight of high-temperature molten glass.
  • the flow control structures are respectively supported at the lower ends of both ends in the longitudinal direction of the flow control structure (corresponding to a molded body).
  • a support member is disposed. And one support member is pressurized by a pressurization apparatus.
  • the temperature around the molded body is raised before operation to raise the temperature of the molded body.
  • the pressure applied to the support member by the pressurizing device and the temperature rise of the temperature around the molded body cause a positional shift of the molded body, that is, a relative positional shift with respect to other components in the molding apparatus.
  • the traction force received from the rollers may be non-uniform due to the deviation of the sheet glass conveyance path due to the positional deviation. For this reason, there is a concern that the quality of the glass plate deteriorates, for example, the warp of the glass plate or the thickness deviation of the glass plate increases.
  • flat panel displays such as liquid crystal displays and organic EL displays have been required to have high-definition and lightweight screen displays.
  • FPDs flat panel displays
  • the glass plate included in the FPD In order to reduce the weight of the flat panel display, it is also required to reduce the weight of the glass plate included in the FPD. Therefore, the glass plate tends to be further thinned.
  • the deformation such as the above-described warpage of the glass plate and the thickness deviation of the glass plate are further reduced.
  • glass plates for FPDs such as liquid crystal displays and organic EL displays are required to achieve both reduction in thickness and reduction of warpage, but there is a problem that deformation including warpage becomes larger as a thin glass plate. It was.
  • the subject of this invention is the manufacturing method of a glass plate, and a glass plate manufacturing apparatus which can suppress the fall of the quality of a glass plate (for example, the deformation
  • the manufacturing method of the glass plate which concerns on this invention is a manufacturing method of the glass plate by a downdraw method, Comprising: A press process, a temperature rising process, a melt
  • the pressing step the molded body is pressed along one direction of the molded body so that the relative displacement of the molded body due to the temperature rise of the molded body is regulated.
  • the temperature raising step the temperature around the pressed molded body is raised by a temperature raising device.
  • the glass raw material is melted to obtain molten glass.
  • the molten glass is formed into a sheet glass by using a heated body.
  • the cutting step the sheet glass is cut to form a glass plate.
  • the deterioration of the quality of the glass plate can be further suppressed.
  • the molded body is long in one direction, and in the pressing step, the molded body is pressed through support members that respectively support both side ends in the longitudinal direction of the molded body.
  • the temperature around the molded body is preferably raised at a temperature raising rate of 5 ° C. to 30 ° C./h.
  • the thickness of the glass plate is preferably 0.5 mm or less.
  • the curvature of the glass plate is less than 0.2 mm.
  • the pressing step it is preferable to press the molded body by applying a load to the support member from the outside of the molded body to the molding side.
  • the glass plate is preferably a glass plate for a liquid crystal display or an organic EL display.
  • the devitrification temperature of the glass used for the glass plate is preferably 1050 ° C. to 1250 ° C.
  • the glass plate a SiO 2 50 - 70 wt%, the B 2 O 3 0 to 15 wt%, the Al 2 O 3 5 ⁇ 25 wt%, 0 to 10% by weight of MgO, CaO 0 to 20% by mass, SrO 0-20% by mass, BaO 0-10% by mass, RO (R is selected from Mg, Ca, Sr and Ba, all components contained in the glass plate, It is preferable to contain 5 to 20% by mass of each of them.
  • the strain point of the glass used for the glass plate is preferably 675 ° C. or higher.
  • the glass plate manufacturing apparatus is a down-draw method for forming a sheet glass by causing the molten glass that has flowed into the molded body to overflow from the molded body and joining the overflowed molten glass at the lower end of the molded body.
  • the glass plate manufacturing apparatus used is assumed.
  • the glass plate manufacturing apparatus includes a support member, a temperature raising device, a pressure device, and a control unit.
  • the support member supports both side ends in one direction of the molded body.
  • the temperature raising device raises the temperature around the molded body.
  • the pressure device presses the molded body through a support member from at least one of both end portions of the molded body.
  • the control unit controls the pressing device to press the molded body before the temperature around the molded body is raised by the temperature raising device.
  • deterioration of the quality of the glass plate for example, increase in deformation including warpage of the glass plate and increase in thickness deviation of the glass plate can be further suppressed.
  • deterioration of the quality of the glass plate for example, increase in deformation including warpage of the glass plate and increase in thickness deviation of the glass plate can be further suppressed.
  • FIG. 1 is a partial flowchart of the glass plate manufacturing method according to the present embodiment. Hereinafter, the manufacturing method of a glass plate is demonstrated using FIG.
  • the glass plate is manufactured through various processes including a melting process ST1, a refining process ST2, a homogenizing process ST3, a supplying process ST4, and a forming process ST5.
  • a melting process ST1 a refining process ST2
  • a homogenizing process ST3 a homogenizing process ST3
  • a supplying process ST4 a supplying process ST5
  • a forming process ST5 a forming process ST5.
  • the glass raw material is heated and melted.
  • the glass raw material has a composition such as SiO 2 or Al 2 O 3 .
  • the completely melted glass raw material becomes molten glass.
  • the molten glass is clarified. Specifically, the gas component contained in the molten glass is released from the molten glass, or the gas component contained in the molten glass is absorbed into the molten glass.
  • the molten glass is homogenized.
  • the temperature of the molten glass that has been clarified is adjusted.
  • the molten glass is supplied to a molding apparatus 300 (described later) for molding molten glass.
  • the molten glass is cooled to a temperature suitable for starting the forming of the sheet glass SG (see FIG. 3).
  • the molten glass is formed into a sheet-like sheet glass SG.
  • the molten glass is continuously formed into a sheet shape by an overflow downdraw method to become a sheet glass SG.
  • the sheet glass plate SG is cut into a glass plate G (see FIG. 3) in a cutting process for each predetermined length.
  • disconnected by the predetermined length in the cutting process is cut
  • FIG. 2 is a schematic diagram mainly showing a melting apparatus 200 included in the glass plate manufacturing apparatus 100.
  • FIG. 3 is a cross-sectional view of the forming apparatus 300 included in the glass plate manufacturing apparatus 100 and the devices and members arranged around the forming apparatus 300 when cut in a direction perpendicular to the horizontal plane.
  • the glass plate manufacturing apparatus 100 will be described.
  • the glass plate manufacturing apparatus 100 mainly includes a melting apparatus 200 (see FIG. 2) and a forming apparatus 300 (see FIGS. 2 and 3).
  • the dissolution apparatus 200 is an apparatus for performing the dissolution process ST1, the clarification process ST2, the homogenization process ST3, and the supply process ST4.
  • the dissolution apparatus 200 includes a dissolution tank 201, a clarification tank 202, a stirring tank 203, a first pipe 204, and a second pipe 205.
  • the melting tank 201 is a tank for melting the glass raw material. In the melting tank 201, the melting step ST1 is performed.
  • the clarification tank 202 is a tank for removing bubbles from the glass melted in the melting tank 201. By further heating the molten glass fed from the melting tank 201 in the clarification tank 202, defoaming of bubbles in the molten glass is promoted. In the clarification tank 202, a clarification step ST2 is performed.
  • the stirring tank 203 has a stirring device including a container for containing molten glass, a rotating shaft, and a plurality of stirring blades attached to the rotating shaft.
  • a container a rotating shaft, and a stirring blade, although the thing made from platinum group elements, such as platinum, or a platinum group element alloy, can be applied, for example, it is not specifically limited.
  • the stirring blade attached to the rotating shaft stirs the molten glass.
  • the homogenization step ST3 is performed.
  • the first pipe 204 and the second pipe 205 are, for example, platinum or platinum alloy pipes.
  • the first pipe 204 is a pipe that connects the clarification tank 202 and the stirring tank 203.
  • the second pipe 205 is a pipe that connects the stirring tank 203 and the molding apparatus 300.
  • the molding device 300 is a device for performing the molding step ST5.
  • the molding apparatus 300 includes a molded body 310, cooling rollers 330 and 330, and feed rollers 350a to 350h.
  • a molded body 310 As shown in FIG. 3, the molding apparatus 300 includes a molded body 310, cooling rollers 330 and 330, and feed rollers 350a to 350h.
  • cooling rollers 330 and 330 As shown in FIG. 3, these configurations will be described.
  • FIG. 4 is a schematic front view of a molded body 310 included in the molding apparatus 300.
  • the molded body 310 is located in the upper part of the molding apparatus 300 and has a function of molding the molten glass flowing from the melting apparatus 200 into a sheet-like glass (that is, sheet glass SG). .
  • the molded body 310 has a wedge-shaped cross section cut in the vertical direction, and is made of, for example, bricks having fire resistance.
  • a supply port 311 is formed in the molded body 310 on the upstream side in the direction in which the molten glass flows (hereinafter referred to as the first direction).
  • the molten glass flowing from the melting device 200 is supplied to the molded body 310 (forming device 300) through the supply port 311.
  • the molded body 310 is formed with a groove portion 312 opened upward along the longitudinal direction thereof.
  • the groove 312 is formed so as to gradually become shallower from the upstream side in the first direction toward the downstream side in the first direction.
  • a molded body temperature sensor (not shown) as a detecting means for detecting the temperature of the molded body 310 is disposed on the upstream side portion and the downstream side portion of the molded body 310 in the first direction.
  • the molten glass overflowed in the groove portion 312 flows downward along both side surfaces thereof and merges at the lower end portion 313.
  • the molten glass that has joined at the lower end 313 then becomes a sheet-like sheet glass plate SG and further flows downward.
  • Cooling rollers 330 and 330 are disposed below the molded body 310.
  • the cooling rollers 330 and 330 are disposed on both sides in the thickness direction of the sheet glass plate SG and on both sides in the width direction of the sheet glass plate SG.
  • the cooling rollers 330 and 330 cool the sheet glass plate SG by contacting the sheet glass plate SG joined at the lower end portion 313 of the molded body 310.
  • the cooling rollers 330 and 330 extend the sheet glass plate SG to a desired thickness, and at the same time, cool both ends of the sheet glass plate SG to increase the viscosity, thereby suppressing contraction in the width direction of the sheet.
  • Feed rollers 350a to 350h are arranged below the cooling rollers 330 and 330 with a predetermined interval in the vertical direction.
  • the feed rollers 350a to 350h are arranged on both sides of the sheet glass plate SG in the thickness direction, and pull the sheet glass plate SG downward in the vertical direction. As a result, the sheet glass plate SG is gradually cooled from the viscous region to the elastic region through the viscoelastic region.
  • the glass plate manufacturing apparatus 100 includes the following members / equipment in addition to the melting apparatus 200 and the forming apparatus 300.
  • Partition member 320, 320 As shown in FIG. 3, the partition members 320 and 320 are plate-like members disposed in the vicinity of the lower end portion 313 of the molded body 310. Specifically, the partition members 320 and 320 are disposed between the molded body 310 and the cooling rollers 330 and 330. The partition members 320 and 320 are disposed so as to be substantially horizontal on both sides in the thickness direction of the sheet glass plate SG. The partition members 320 and 320 function as heat insulating materials. That is, the partition members 320 and 320 suppress the movement of heat from the upper side to the lower side of the partition members 320 and 320 by partitioning the upper and lower spaces thereof.
  • Thermal insulation members 340a to 340h are plate-like members that are arranged below the cooling rollers 330 and 330 at a predetermined interval in the vertical direction and are alternately arranged in the vertical direction with each of the feed rollers 350a to 350h.
  • the heat insulating members 340a to 340h are arranged so as to be substantially horizontal on both sides in the thickness direction of the sheet glass plate SG.
  • the first heater is a device that raises the ambient temperature in the vicinity of the sheet glass plate SG, and a plurality of first heaters are arranged in the vertical direction and the width direction of the sheet glass plate SG.
  • the first heater is used to appropriately control the temperature of the sheet glass plate SG pulled by the feed rollers 350a to 350h.
  • FIG. 5 is a diagram for illustrating the arrangement of the second heater 380 when the molded body 310 is viewed from the front.
  • the second heater 380 functions as a temperature raising device that indirectly raises the temperature of the molded body 310 by raising the temperature around the molded body 310 (hereinafter referred to as ambient temperature).
  • the ambient temperature includes the ambient temperature of the space surrounding the molded body 310.
  • a plurality of second heaters 380 are arranged in the vicinity of the molded body 310. Thereby, the surface temperature of the molded object 310 can be raised substantially uniformly, and the generation
  • First support member 410 and second support member 420 As shown in FIG. 4, the first support member 410 and the second support member 420 are in contact with lower portions on both side ends in the longitudinal direction of the molded body 310, as a countermeasure against creep in the lower portion of the central portion of the molded body 310. So that each is arranged. Thereby, the lower part of the both ends of the longitudinal direction of the molded object 310 is supported. The lower part refers to a part below the neutral line (or neutral surface) of the bending moment generated in the molded body 310. In general, it is considered that creep of a molded body occurs due to its own weight, the weight of high-temperature molten glass, or the like.
  • the first support member 410 and the second support member 420 for example, bricks having a thermal expansion coefficient different from that of the bricks constituting the molded body 310 are used, but the present invention is not limited to this.
  • the pressurizing device is a pressurizing device that applies a load to the first support member and the second support member 420 by pressurizing one of the first support member 410 and the second support member.
  • the pressure device 422 is disposed in the vicinity of the second support member 420. Specifically, the pressurizing device 422 is disposed outside the longitudinal direction of the molded body 310 of the second support member 420 via a plate member 421 having high heat resistance.
  • a fixing member / apparatus for fixing a support member that is not pressurized is disposed in the vicinity of.
  • a fixing member / device 511 is disposed in the vicinity of the first support member 410 that is not pressurized. More specifically, the fixing member / device 511 is disposed outside the first support member 410 in the longitudinal direction of the molded body 310 via a plate member 411 having high heat resistance.
  • the support member that is not pressurized (here, the first support member 410) is a fixed member.
  • a reaction force (here, an arrow P1 shown in FIG. 4) is received from a fixed device (here, a fixing member / device 511). That is, the first support member 410 and the second support member 420 are in a state where a load (arrows P1 and P2 shown in FIG. 4) is applied to the molded body 310 side by the pressurizing device 422. Therefore, the molded body 310 is pressed from the outside in the longitudinal direction of the molded body 310 via the first support member 410 and the second support member 420.
  • Control device (not shown)
  • the control device includes a CPU, ROM, RAM, hard disk, and the like.
  • the control device controls a drive motor (not shown) for driving the cooling rollers 330 and 330 and the feed rollers 350a to 350h, a first heater, a second heater 380, a pressurizing device 422, and the like. That is, the control device functions as a control unit that controls the above-described devices. The control device can also perform various controls in response to input from the user. Further, for example, only one control device may be provided, or a plurality of control devices for controlling each of the drive motor, the heater, and the pressurizing device may be provided. The control of the second heater 380 and the pressure device 422 will be described later.
  • the molten glass supplied from the melting device 200 to the molded body 310 via the supply port 311 flows into the groove portion 312 of the molded body 310. And it overflows in the groove part 312.
  • the molten glass overflowed in the groove 312 flows downward along the both side surfaces of the molded body 310 and merges at the lower end 313 as shown in FIG.
  • the molten glass that has joined at the lower end 313 then becomes a sheet-like sheet glass plate SG and further flows downward.
  • the sheet glass plate SG is cooled while being pulled downward in the vertical direction by sandwiching both ends in the width direction by the cooling rollers 330 and 330 disposed on both sides in the thickness direction.
  • the sheet glass plate SG pulled down by the cooling rollers 330 and 330 is further pulled down by the feed rollers 350a to 350h. Thereafter, the sheet glass plate SG pulled down by the feed rollers 350a to 350h is cut into predetermined lengths.
  • the molded body 310 is installed in the first position where the molded body 310 should be properly attached in consideration of the positions of the cooling rollers 330 and 330, the feed rollers 350a to 350h, and the like.
  • the first position is determined by fixing a thread to the lower end 313 of the molded body 310 and hanging the thread vertically downward. More specifically, the first position is such that the threads hanging downward from the lower end 313 of the molded body 310 are the partition members 320 and 320, the cooling rollers 330 and 330, the heat insulating members 340a to 340h, and the feed rollers 350a to 350a.
  • the position is such that the sheet glass plate SG passes through the space where the sheet glass plate SG is cut without being in contact with 350h or the like.
  • the method for determining the first position is not limited to this.
  • the first support member 410 and the second support member 420 which are arranged in advance on both sides in the longitudinal direction of the molded body 310, are in contact with lower portions on both side ends of the molded body 310.
  • a load is applied to the first support member 410 and the second support member 420, and the first support member 410 and the second support member 420 are pressed against the molded body 310. Yes. That is, the molded body 310 is pressed along one direction. Specifically, the molded body 310 is pressed from the outside in the longitudinal direction via the first support member 410 and the second support member 420.
  • the temperature of the molded body 310 is at room temperature (for example, about 0 to 30 ° C.) or near room temperature. desirable.
  • the temperature of the molded body 310 is preferably 150 ° C. or lower, more preferably 100 ° C. or lower, 80 ° C. or lower, 50 ° C. or lower, 30 ° C. or lower, or 25 ° C. or lower. .
  • the pressurizing device 422 is stopped, for example, the molded body 310 and the first support member 410 or the second support member.
  • the position of the molded body 310 is adjusted by adding cement or the like to 420.
  • the adjustment method of the position of the molded object 310 is not limited to this.
  • a predetermined pressure is applied to the second support member 420 by the pressure device 422 (that is, the molded body 310 is pressed). ), The heating process of the molded body 310 is started.
  • the control device determines that the temperature of the molded body 310 is predetermined.
  • the ambient temperature of the molded body 310 is controlled by the second heater 380 so that the temperature becomes (for example, 1000 ° C. to 1200 ° C.). That is, the control device controls the second heater 380 based on the temperature of the molded body 310. This is because the molten glass flowing into the molded body 310 after the start of operation is at a high temperature of about 1000 ° C. to 1400 ° C., and therefore it is necessary to raise the temperature of the molded body 310 in advance.
  • the ambient temperature of the molded body 310 is increased at a predetermined temperature increase rate.
  • the ambient temperature of the molded body 310 and the surface temperature of the molded body 310 are substantially the same temperature. That is, it can be said that the surface temperature of the molded body 310 is increased at a predetermined temperature increase rate.
  • the predetermined rate of temperature rise is desirably 5 ° C. to 30 ° C./h.
  • the upper limit of the temperature rising rate is preferably 30 ° C./h in order to suppress damage to the molded body due to heat shock.
  • the upper limit of the temperature rising rate is more desirable in the order of 10 ° C./h, 12 ° C./h, and 15 ° C./h. In this case, since the temperature difference between the surface and the inside of the molded body 310 does not become too large, the possibility of damage to the molded body 310 can be further reduced.
  • the lower limit of the heating rate is preferably 5 ° C./h, because there is a concern that the productivity of the glass plate may be affected if the temperature rising time of the ambient temperature of the molded body is long, so that it can be avoided. is there.
  • the lower limit of the temperature increase rate is more desirably 7 ° C./h. In this case, the productivity of the glass plate can be further improved.
  • the thickness of the glass plate is preferably 0.1 mm to 3 mm. Furthermore, 0.01 to 1.0 mm is preferable as a glass plate for a flat display. And a more preferable upper limit value is 0.4 mm, 0.5 mm, 0.8 mm, 1.0 mm, and 1.5 mm in a preferable order. Furthermore, more preferable lower limit values are 0.3 mm and 0.2 mm in a preferable order. For example, since the glass plate for flat displays is required to be light and thin, the glass plate is preferably as thin as possible. On the other hand, the thinner the glass plate is, the more easily the glass plate is broken in the display manufacturing process.
  • the thickness of the glass plate for flat display is preferably 0.01 to 1.0 mm, more preferably 0.1 to 0.8 mm, and 0.2 to 0.00 mm. More preferably, it is 8 mm.
  • the thickness of the glass plate is 0.5 mm or less, particularly less than 0.5 mm, the influence of the misalignment of the formed body becomes significant with respect to deformation and breakage of the glass plate. Due to variations in the traction force of the rollers (cooling roller and feed roller) applied to the glass plate, which occurs due to the misalignment of the molded body, stress distribution occurs in the glass plate, and in the worst case, the glass plate is deformed or broken.
  • the effect of the present invention that suppresses misalignment of the molded body becomes more prominent. That is, when the thickness of the glass plate is 0.01 mm or more and 0.5 mm or less, the effect of the present invention becomes remarkable, and when it is 0.01 mm or more and less than 0.5 mm, the effect of the present invention becomes more remarkable, and 0.01 mm or more. The effect of this invention becomes more remarkable if it is 0.4 mm or less.
  • the thickness deviation of the glass plate is preferably 0 to 20 ⁇ m.
  • a more preferable upper limit value of the thickness deviation of the glass plate is 5 ⁇ m or less (for example, 0 to 5 ⁇ m) or 10 ⁇ m or less (for example, 0 to 10 ⁇ m) in a preferable order. In the present invention, such a thickness deviation can be realized.
  • the maximum warpage of the glass plate is in the range of 0 to 0.2 mm when measurement is performed. Further, more preferable upper limit values of the warpage of the glass plate are 0.01 mm or less (0 to 0.01 mm), 0.05 mm or less (0 to 0.005 mm), 0.1 mm or less (0 to 0) in a preferable order. 0.1 mm) and 0.15 mm or less (0 to 0.15 mm).
  • a plurality of small plates (about 400 mm square) are cut out from the glass plate.
  • the warpage of the four corners and the four central portions is measured on each of the front and back sides (that is, a total of 16 warpages are measured).
  • measurement data of 128 warpages is obtained at 16 locations ⁇ 8.
  • the maximum value in the said measurement data is the above-mentioned range.
  • the maximum value of warpage measured with a plurality of small plates is taken as the warpage of the glass plate.
  • the glass plate has a length in the width direction of 500 mm to 3500 mm and a length in the longitudinal direction of 500 mm to 3500 mm.
  • borosilicate glass As for the type of the glass plate, borosilicate glass, aluminosilicate glass, aluminoborosilicate glass, soda lime glass, alkali silicate glass, alkali aluminosilicate glass, and alkali aluminogermanate glass are suitable.
  • the glass plate is preferably used for a glass plate for a flat panel display (liquid crystal display, organic EL display, plasma display or the like), a panel for solar cell, or a cover glass.
  • the cover glass is, for example, tempered glass obtained by chemically or physically strengthening a glass plate in order to protect a display screen or housing of an AV device (such as a portable terminal).
  • liquid crystal displays or organic EL displays are required to have high-precision screen display, and therefore, it is required to reduce the warpage and thickness deviation of glass plates used in liquid crystal displays or organic EL displays. Yes. For this reason, this invention which suppresses the position shift of a molded object and can reduce the curvature and thickness deviation of a glass plate becomes more suitable.
  • the glass plate is a mass% display and the thing containing the following components is illustrated.
  • the indication in the following parentheses is the preferred content of each component.
  • the% display means mass%.
  • SiO 2 50 to 70% (55 to 65%, 57 to 64%, 58 to 62%), Al 2 O 3 : 5 to 25% (10 to 20%, 12 to 18%, 15 to 18%), B 2 O 3 : 0 to 15% (5 to 15%, 6 to 13%, 7 to 12%).
  • MgO 0 to 10% (lower limit is 0.01%, lower limit is 0.5%, upper limit is 5%, upper limit is 4%, upper limit is 2%), CaO: 0 to 20% (lower limit is 1%, lower limit is 3%, lower limit is 4%, upper limit is 9%, upper limit is 8%, upper limit is 7%, upper limit is 6%), SrO: 0 to 20% (lower limit is 0.5%, lower limit is 3%, upper limit is 9%, upper limit is 8%, upper limit is 7%, upper limit is 6%), BaO: 0 to 10% (upper limit is 8%, upper limit is 3%, upper limit is 1%, upper limit is 0.2%), ZrO 2 : 0 to 10% (0 to 5%, 0 to 4%, 0 to 1%, 0 to 0.1%).
  • R ′ 2 O exceeds 0.20% and is 2.0% or less (provided that R ′ is all components contained in the glass plate selected from Li, Na and K, and is at least one). It is preferable to include.
  • the total amount of fining agents is 0.05 to 1.5% and substantially free of As 2 O 3 , Sb 2 O 3 and PbO. More preferably, the iron oxide content in the glass is 0.01 to 0.2%.
  • R is all components contained in the glass plate selected from Mg, Ca, Sr and Ba, and is at least one kind.
  • alkali-free glass substantially alkali components are used from the viewpoint of suppressing the destruction of TFT (Thin Film Transistor) formed on the glass substrate of the flat panel display. It is preferable that the glass is not included.
  • R ′ 2 O exceeds 0.05% and is 2.0% or less (where R ′ is all components contained in the glass plate selected from Li, Na and K, and is at least one). More preferably, it contains more than 0.1% of R ′ 2 O and 2.0% or less. Moreover, it is preferable that As 2 O 3 and PbO are not substantially contained as a clarifier. Further, it is preferable that the fining agent contains at least tin oxide. More preferably, the iron oxide content in the glass is 0.01 to 0.2%.
  • SrO + BaO is preferably 0 to 10%. Further, considering the environmental load in addition to the weight reduction, BaO is more preferably 0 to 2% by mass.
  • the glass composition of the glass plate By setting the glass composition of the glass plate to the composition range as described above, the characteristics required for a glass substrate of a flat panel display such as a liquid crystal display or an organic EL display (inhibition of TFT destruction and weight reduction) are satisfied.
  • It can be a glass plate. More specifically, a glass plate having a strain point of 650 ° C. or higher can be realized. In addition, a glass plate having a density of 2.6 g / cm 3 or less can be realized. Moreover, the glass plate whose Young's modulus is 70 GPa or more is realizable. Furthermore, a glass plate having a devitrification temperature of 1250 ° C. or less can be realized. A glass plate having a devitrification temperature of 1250 ° C.
  • the devitrification temperature is less than 1050 ° C., it is difficult to satisfy the above-described characteristics (inhibition of TFT destruction and weight reduction) required for the glass substrate of the flat panel display.
  • the temperature is preferably 1050 ° C to 1250 ° C.
  • the temperature of the molten glass flowing down near the wall surface of the molded body 310 is preferably higher by 10 ° C.
  • the devitrification temperature is as high as 1050 ° C. to 1250 ° C.
  • the temperature of the molded body 310 also needs to be 1050 ° C. to 1350 ° C.
  • the temperature of the molded body 310 is raised from room temperature, when the molten glass starts to flow through the molded body 310, if there is a difference between the molten glass temperature and the molded body temperature, the molded body 310 is damaged by the temperature difference. End up. For this reason, it is preferable to raise the temperature of the molded body 310 in advance, but as the glass with a high devitrification temperature is manufactured, the temperature to be raised increases. As a result, the above-described misalignment of the molded body 310 during the temperature rise tends to occur.
  • the molded body 310 is raised to 1050 ° C. to 1350 ° C.
  • the present invention that can suppress the displacement of the molded body 310 even when heated is suitable.
  • a glass plate is a mass% display and the thing containing the following components is illustrated, for example.
  • the indication in the following parentheses is the preferred content of each component.
  • SiO 2 50 to 70% (55 to 65%, 57 to 64%, 57 to 62%),
  • Al 2 O 3 5 to 20% (9 to 18%, 12 to 17%),
  • the following composition may be included as an optional component.
  • cover glass and solar cell glass plate to be chemically strengthened SiO 2 50 to 70%, Al 2 O 3 5 to 20%, Na 2 O 6 to 30%, K 2 O 0 to 10%, MgO It is preferable to contain 0 to 10% and CaO 0 to 20%.
  • a glass having a high strain point tends to have a high devitrification temperature.
  • the atmosphere in the molding apparatus 300 and molding The temperature of the body 310 needs to be increased.
  • the atmospheric temperature in the molding apparatus 300 increases, a gap is generated between the molded body 310 and the support member due to the occurrence of twisting and frictional resistance between the molded body 310 and the support member. The problem of being able to do it and the problem of misalignment tend to occur.
  • the present invention is suitable for manufacturing a glass plate using glass having a strain point of 655 ° C. or higher.
  • the production of glass plates using is particularly preferred.
  • the present invention is suitable for the production of a glass plate using a glass having a devitrification temperature of 1100 ° C. to 1250 ° C., and the production of a glass plate using a glass having a devitrification temperature of 1150 to 1250 ° C. is suitable according to the present invention.
  • the production of a glass plate using a glass having a devitrification temperature of 1180 to 1250 ° C. is more preferred, and the production of a glass plate using a glass having a devitrification temperature of 1200 to 1250 ° C. is particularly preferred.
  • examples of the glass composition include those in which the glass plate is expressed by mass% and contains the following components: The The% shown below is mass%.
  • the mass ratio (SiO 2 + Al 2 O 3 ) / RO is preferably 7.5 or more.
  • it is preferable to set the ⁇ -OH value to 0.1 to 0.3 mm.
  • non-alkali glass glass substantially free of alkali components is preferable.
  • R 2 O (where R is all components contained in the glass plate selected from Li, Na and K, so that no current flows through the melting tank 201 instead of the glass during melting, and at least The specific resistance of the glass may be reduced by adding 0.01 to 0.8% of a single type). Alternatively, it is preferable to contain 0.01 to 1% Fe 2 O 3 in order to reduce the specific resistance of the glass.
  • CaO / RO is preferably 0.65 or more in order to prevent the devitrification temperature from increasing while realizing a high strain point. Further, by setting the devitrification temperature to 1250 ° C. or less, the overflow down draw method can be applied. Further, considering that the glass plate is applied to mobile devices such as mobile communication terminals, the total content of SrO and BaO is preferably 0% or more and less than 2% from the viewpoint of weight reduction.
  • SiO 2 is a component constituting the glass skeleton of the glass plate, and has the effect of increasing the chemical durability and heat resistance of the glass. If the content of SiO 2 is too low, the effects of chemical durability and heat resistance cannot be sufficiently obtained, and if the content of SiO 2 is too high, the glass tends to be devitrified and molding becomes difficult. At the same time, the viscosity increases and it becomes difficult to homogenize the glass.
  • Al 2 O 3 is a component forming a glass skeleton, and has an effect of improving the chemical durability and heat resistance of the glass. It also has the effect of increasing the etching rate. When the content of Al 2 O 3 is too low, the chemical durability and heat resistance effects of the glass cannot be obtained sufficiently. On the other hand, when the content of Al 2 O 3 is too high, the viscosity of the glass is increased and dissolution becomes difficult, and the acid resistance is lowered.
  • B 2 O 3 is a component that lowers the viscosity of the glass and promotes melting and clarification of the glass. When the content of B 2 O 3 is too low, the acid resistance of the glass is lowered and it becomes difficult to homogenize the glass.
  • MgO and CaO are components that lower the viscosity of the glass and promote glass melting and fining. Further, Mg and Ca are advantageous components for improving the meltability while reducing the weight of the obtained glass because the ratio of increasing the density of the glass is small in the alkaline earth metal. However, if the content of MgO and CaO is too high, the chemical durability of the glass is lowered.
  • SrO and BaO are components that lower the viscosity of the glass and promote glass melting and fining. Moreover, it is also a component which improves the oxidizability of a glass raw material and improves clarity. However, if the content of SrO and BaO becomes too high, the density of the glass increases, the weight of the glass plate cannot be reduced, and the chemical durability of the glass decreases.
  • Li 2 O is a component that lowers the viscosity of the glass and improves the meltability and moldability of the glass.
  • Li 2 O is a component that improves the Young's modulus of glass.
  • the glass tends to devitrify, making it difficult to apply the downdraw method.
  • Na 2 O and K 2 O are components that lower the high temperature viscosity of the glass and improve the meltability and formability of the glass. Moreover, it is a component which improves the devitrification resistance of glass. If Na 2 O or K 2 O content is too low it reduces the melting properties of the glass, the higher the cost for the melting. Further, the glass is liable to be devitrified and the devitrification resistance is also lowered, so that it is difficult to apply the downdraw method for overflowing the glass. On the other hand, if the content of Na 2 O or K 2 O becomes too high, the devitrification resistance is lowered due to the deterioration of the glass balance.
  • Li 2 O, Na 2 O, and K 2 O may be eluted from the glass to deteriorate the TFT characteristics, and may increase the thermal expansion coefficient of the glass and damage the substrate during heat treatment. Therefore, when it is applied as a glass substrate of a flat panel display (for example, a glass substrate of a liquid crystal display, a glass substrate of an organic LE display), it is not preferable to contain a large amount, and the total amount is 2.0. Should be regulated to less than mass%. However, by deliberately containing a specific amount of the above components in the glass, the basicity of the glass is increased and the oxidation of the metal whose valence fluctuates is increased while suppressing deterioration of TFT characteristics and thermal expansion of the glass within a certain range. It is possible to make it clear and exhibit clarity.
  • ZrO 2 is a component that increases the viscosity and strain point near the devitrification temperature of glass. ZrO 2 is also a component that improves the heat resistance of the glass. However, if the content of ZrO 2 becomes too high, the devitrification temperature increases and the devitrification resistance decreases.
  • TiO 2 is a component that lowers the high temperature viscosity of the glass.
  • the content of TiO 2 is too high, devitrification resistance is decreased.
  • the glass is colored, application to a cover glass of a display screen of an electronic device is not preferable. Further, since the glass is colored, the ultraviolet transmittance is reduced, and therefore, when the treatment using the ultraviolet curable resin is performed, there is a disadvantage that the ultraviolet curable resin cannot be sufficiently cured.
  • a clarifier can be added as a component for defoaming bubbles in the glass.
  • the fining agent is not particularly limited as long as it has a small environmental burden and excellent glass fining properties.
  • a metal oxide such as tin oxide, iron oxide, cerium oxide, terbium oxide, molybdenum oxide and tungsten oxide.
  • a glass substrate of a flat panel display such as a liquid crystal display or an organic EL display has particularly severe requirements for bubbles.
  • the fining agent used for the production of the glass plate may contain at least tin oxide having a particularly high fining effect among metal oxides such as tin oxide, iron oxide, cerium oxide, terpium oxide, molybdenum oxide and tungsten oxide. preferable.
  • Sb 2 O 3 and PbO are substances having an effect of clarifying the glass by causing a reaction accompanied by valence fluctuation in the molten glass, but As 2 O 3 , Sb 2 O 3 and Since PbO is a substance with a large environmental load, the glass plate of this embodiment does not substantially contain As 2 O 3 , Sb 2 O 3 and PbO in the glass.
  • substantially not containing As 2 O 3 , Sb 2 O 3, and PbO means less than 0.01% by mass and intentionally not containing impurities.
  • a molded body is often supported at the lower end portion for creep countermeasures due to its own weight or the weight of high-temperature molten glass.
  • the flow control structures are respectively supported at the lower ends of both ends in the longitudinal direction of the flow control structure (corresponding to a molded body).
  • a support member is disposed. And one support member is pressurized by a pressurization apparatus.
  • the molten glass supplied to the molded body is generally a high temperature of about 1000 ° C. to 1400 ° C.
  • the molten glass starts to flow through the molded body 310 without raising the temperature of the molded body 310
  • the molten glass The molded body 310 is damaged by a temperature difference between the molded body 310 and the molded body 310.
  • the temperature around the molded body is raised after the molded body is started up.
  • the sheet glass conveyance path may be shifted due to the misalignment of the molded body. For this reason, the traction force received from the rollers (cooling roller and feed roller) becomes non-uniform, and there is a concern that the quality of the glass plate is deteriorated.
  • glass plates manufactured using the downdraw method tend to be thinner.
  • the thinner the glass plate the easier the deformation occurs.
  • transformation of the glass plate resulting from the position shift of the said molded object becomes remarkable as a thin glass plate.
  • the control device presses the molded body 310 along one direction (corresponding to a pressing step) before raising the ambient temperature of the molded body 310.
  • the control device controls the pressurizing device 422 so that the molded body 310 is pressed in one direction. More specifically, the molded body 310 is pressed in the longitudinal direction.
  • the pressurizing device 422 pressurizes the second support member 420 toward the molded body 310, thereby applying a load to the first support member 410 and the second support member 420.
  • the 2nd support member 420 pressurized by the pressurization apparatus 422 is pressing the both ends of the longitudinal direction of the molded object 310.
  • the relative displacement caused by the temperature rise of the molded body 310 is regulated via the first support member 410 and the second support member 420, and as a result, the molded body 310 is fixed.
  • the control device is in a state where the second support member 420 is pressurized by the pressure device 422 and a load is applied to the first support member 410 and the second support member 420 (that is, the molded body 310 is pressed). Then, the ambient temperature of the molded body 310 is raised by the second heater 380 (corresponding to a temperature raising step).
  • the second heater 380 corresponding to a temperature raising step.
  • the first support member 410 and the second support member 420 are loaded in the direction of the molded body 310, first, the movement of the first support member 410 and the second support member 420 is restricted. Yes. And when the load which goes to the molded object 310 side from the outer side of the molded object 310 is applied to the 1st support member 410 and the 2nd support member 420 in such a state, the 1st support member 410 and the 2nd support member 420 are interposed.
  • the positional deviation (relative positional deviation caused by the temperature rise of the molded body 310) of the lower part (and thus the entire molded body 310) at both ends in the longitudinal direction of the molded body 310 is regulated, and the molded body 310 is fixed. is doing. And since the surrounding temperature of the molded object 310 is heated in this state, the position shift including the inclination of the molded object 310 can be suppressed.
  • the position shift of the molded object 310 can be suppressed, the quality of the glass plate can be maintained. That is, it is possible to suppress the deformation including the thickness deviation or warpage of the glass plate.
  • the above-described misalignment of the molded body is caused, for example, when the temperature around the molded body is increased, and the support member and the molded body that are arranged as a countermeasure against creep of the molded body expand. At this time, it is assumed that the molded body is displaced due to frictional resistance and twisting generated between the support member and the molded body. In this state, when the supporting member is pressed by the pressing device, it is assumed that a positional deviation such as tilting of the molded body occurs.
  • the brick used for the molded body 310 is preferably a brick dedicated to the molded body containing not only fire resistance and heat resistance but also ZrO 2 capable of suppressing creep.
  • the brick used for the support member including the second support member 420 is preferably a brick having fire resistance and heat resistance. For example, if there is no restriction at the time of expansion of the molded body 310 due to heating, the molded body 310 and the support member can be moved freely and individually, and there is no twisting or frictional resistance between the molded body 310 and the support member. As a result, a problem that a gap is formed between the molded body 310 and the support member and a problem of displacement occur.
  • the molded body 310 when the molded body 310 is pressed in one direction, preferably along the longitudinal direction, before the molded body 310 is heated as in the present embodiment, the molded body 310 and the support member are integrated with each other. Therefore, the expansion direction can be regulated.
  • the first support member 410 and the second support member 420 are loaded by applying a load toward the molded body 310 to the first support member 410 and the second support member 420. Therefore, the relative displacement caused by the temperature rise of the molded body 310 is regulated, and the molded body 310 is fixed. And since the surrounding temperature of the molded object 310 is heated in this state, the position shift including the inclination of the molded object 310 can be suppressed.
  • the temperature increase rate of the ambient temperature of the molded body 310 is 5 ° C. to 30 ° C./h. Thereby, breakage of the molded body 310 can be suppressed, and a decrease in productivity of the glass plate can be suppressed.
  • the temperature increase rate of the ambient temperature of the molded body 310 is more desirably 5 to 20 ° C./h, more preferably 5 to 15 ° C./h, still more preferably 6 to 10 ° C./h. In this case, the productivity of the glass plate can be improved while reducing the possibility of damage to the molded body 310.
  • the pressure device 422 pressurizes the second support member 420 to apply a load to the first support member 410 and the second support member 420.
  • a pressurizing device 422 such as an air cylinder.
  • FIG. 6 is a schematic front view of a molded body 310 according to Modification 1A.
  • first support member 410 and the second support member 420 are pressed by the pressurizing device.
  • the present invention is not limited to this, and the first support member 410 and the second support member 420 Any of them may be pressurized by a pressure device.
  • a pressurizing device 412 is also disposed near the first support member 410 via the plate member 411.
  • the first support member 410 and the second support member 420 are pressed toward the molded body 310 by the pressure devices 412 and 422 (arrows P3 and P2 shown in FIG. 6), respectively. Thereby, the relative positional deviation resulting from the temperature rise of the molded body 310 is regulated, and the molded body 310 is fixed. Therefore, even in this case, the positional deviation of the molded body 310 can be suppressed.
  • FIG. 7 is a schematic front view of a molded body 310 according to Modification 1B.
  • the mounting member may be any member that performs the function of mounting the support member.
  • the mounting member may be a floor, or may be block members 611 and 612 as shown in FIG. Good. A plurality of block members 611 and 612 may be arranged.
  • the molded body 310 is pressurized in one direction, preferably in the longitudinal direction, before the molded body 310 is heated.
  • the expansion direction can be regulated. That is, the relative displacement caused by the temperature rise of the molded body 310 is restricted via the first support member 410 and the second support member 420, and as a result, the ambient temperature rises with the molded body 310 fixed.
  • the brick used for the molded body 310 is preferably a brick dedicated to the molded body containing not only fire resistance and heat resistance but also ZrO 2 capable of suppressing creep. It is preferable that the brick used for the supporting member including the supporting member 410 and the second supporting member 420 and the block members 611 and 612 is a brick having fire resistance and heat resistance.
  • Example 1 the inventors started pressing the molded body 310 via the first support member 410 and the second support member 420 before raising the ambient temperature of the molded body 310. And after pressing to the molded object 310, the ambient temperature of the molded object 310 was heated at the temperature increase rate of 10 degree-C / h. Thereafter, the glass raw material was melted to obtain molten glass so that the composition shown below was obtained, and the molten glass was clarified. Next, the molten glass after clarification was stirred in a stirring vessel, and the molten glass after stirring was supplied to the molded body 310 that had been heated by the method described above to form a sheet glass.
  • the sheet glass was cut to produce a glass plate for a liquid crystal display having a thickness of 0.7 mm and a size of 2200 mm ⁇ 2500 mm.
  • the produced glass plate for display had a devitrification temperature of 1170 ° C. and a strain point of 670 ° C.
  • Example 2 the inventor manufactured a glass plate for a liquid crystal display by the same method as in Example 1 except that the thickness of the glass plate to be manufactured was 0.4 mm.
  • the glass plate for liquid crystal displays manufactured in Example 1 and Example 2 was cut out, respectively, and the curvature of these glass plates was measured. At this time, the warpage of these glass plates was 0.15 mm or less. Therefore, the warp of the glass plate for a 2200 mm ⁇ 2500 mm liquid crystal display is also 0.15 mm or less.
  • Example 3 the inventor started pressing the molded body 310 via the first support member 410 and the second support member 420 before raising the ambient temperature of the molded body 310. And after pressing to the molded object 310, the ambient temperature of the molded object 310 was heated at the temperature increase rate of 10 degree-C / h. Then, the glass raw material was melt
  • the sheet glass was cut to produce a glass plate for a liquid crystal display having a thickness of 0.7 mm and a size of 2200 mm ⁇ 2500 mm.
  • the devitrification temperature of the manufactured glass plate for liquid crystal displays was 1230 degreeC, and the strain point was 715 degreeC.
  • Example 4 the inventor manufactured a glass plate for a liquid crystal display in the same manner as in Example 3 except that the thickness of the glass plate to be manufactured was 0.4 mm.
  • the glass plate for liquid crystal displays manufactured in Example 3 and Example 4 was cut out, respectively, and the curvature of these glass plates was measured. At this time, the warpage of these glass plates was 0.15 mm or less. Therefore, the warp of the glass plate for a 2200 mm ⁇ 2500 mm liquid crystal display is also 0.15 mm or less.
  • the present inventor raised the ambient temperature of the molded body 310 at a predetermined speed (here, 10 ° C./h) to a predetermined temperature (here, 1200 ° C.), and then molded body 310.
  • a glass plate was produced in the same manner as in Example 1 except that the pressing of the glass was started.
  • the present inventor increased the ambient temperature of the molded body 310 at a predetermined speed (here, 10 ° C./h) to a predetermined temperature (here, 1200 ° C.), and then the molded body 310.
  • a glass plate was produced in the same manner as in Example 2 except that the pressing of the glass was started.
  • the inventor increased the ambient temperature of the molded body 310 at a predetermined speed (here, 10 ° C./h) to a predetermined temperature (here, 1200 ° C.), and then molded body 310 A glass plate was produced in the same manner as in Example 3 except that the pressing of the was started.
  • the present inventor increased the ambient temperature of the molded body 310 at a predetermined rate (here, 10 ° C./h) to a predetermined temperature (here, 1200 ° C.), and then molded body 310 A glass plate was produced in the same manner as in Example 4 except that the pressing of the was started.
  • a glass plate of 380 mm ⁇ 420 mm was cut out from the manufactured glass plate for liquid crystal display (2200 mm ⁇ 2500 mm), and the warpage of the glass plate was measured.
  • the maximum value of the warpage of the glass plates of Comparative Example 1 and Comparative Example 3 was more than 0.20 mm.
  • the maximum value of the curvature of the glass plate of the comparative example 2 and the comparative example 4 was more than 0.30 mm.
  • the present invention is useful for improving the quality of the glass plate.
  • the present invention can be variously applied to a glass plate manufacturing method and a glass plate manufacturing apparatus for manufacturing a glass plate using a forming apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)

Abstract

 ダウンドロー法によるガラス板の製造方法であって、押圧工程と、昇温工程と、溶解工程と、成形工程と、切断工程とを備える。押圧工程では、成形体の昇温に起因する成形体の相対的な位置ずれが規制されるように、成形体の一方向に沿って成形体を押圧する。昇温工程では、押圧された成形体の周辺温度を昇温装置によって昇温する。溶解工程では、ガラス原料を溶解して溶融ガラスとする。成形工程では、昇温された成形体により、溶融ガラスをシートガラスに成形する。切断工程では、シートガラスを切断してガラス板を形成する。これにより、ガラス板の品質の低下をより抑制する。

Description

ガラス板の製造方法及びガラス板製造装置
 本発明は、ガラス板の製造方法及びガラス板製造装置に関する。
 従来、ダウンドロー法等の種々の方法を用いてガラス板を製造する方法がある。例えば、ガラス板を製造する1つの方法であるオーバーフローダウンドロー法では、まず、成形体に流入させた溶融ガラスを成形体からオーバーフローさせる。そして、オーバーフローさせた溶融ガラスを成形体の下端部で合流させて連続したシート状のガラス(シートガラス)を成形する。なお、成形体の下端部で合流したシートガラスは、さらに下方に搬送される。そして、シートガラスは、所望の大きさに切断され、ガラス板となる。
 ここで、成形体は、自重や高温の溶融ガラスの重み等によるクリープ対策のために下端部が支持されることが多い。例えば、特許文献1(特許第4193115号公報)に開示の発明では、流量調節構造体(成形体に相当)の長手方向の両側端の下端部に、それぞれ、流量調節構造体を支持するための支持部材が配置されている。そして、一方の支持部材は、加圧装置によって加圧される。
 一般的に、成形時の溶融ガラスは高温であるため、操業前に成形体の周辺の温度を昇温し、成形体の温度を上昇させている。しかし、加圧装置による支持部材への加圧と成形体の周辺の温度の昇温が、成形体の位置ずれ、すなわち成形装置内の他の構成部材に対する相対的な位置ずれを生じさせ、この位置ずれに起因するシートガラスの搬送経路のズレにより、ローラから受ける牽引力が不均一となる虞れがある。このため、ガラス板の品質が低下する、例えば、ガラス板の反りあるいはガラス板の板厚偏差が大きくなることが懸念される。
 また、近年、ダウンドロー法を用いて製造されるガラス板は、薄型化の傾向にある。ここで、薄いガラス板ほど小さな応力でも変形が生じやすい。このため、薄いガラス板ほど、高温に昇温させることにより生じる成形体の位置ずれ(成形装置内の他の構成部材に対する位置ずれ)に起因するガラス板の変形の問題が顕著となる。
 上述の特許文献1では、上記成形体の位置ずれについては考慮していないため、成形体の位置ずれに起因するガラス板の反りなどの変形を十分に防止することができないという問題があった。
 近年、液晶ディスプレイや有機ELディスプレイなどのフラットパネルディスプレイ(FPDともいう)では、画面表示の高精細化及び軽量化が求められている。フラットパネルディスプレイの軽量化を図るために、FPDに含まれるガラス板の軽量化も求められるため、ガラス板はさらに薄板化される傾向にある。一方、FPDの画面表示の高精細化を図るために、上述したガラス板の反りなどの変形及びガラス板の板厚偏差が一層小さいことも求められている。このように液晶ディスプレイや有機ELディスプレイなどのFPD用ガラス板には薄型化と反りの低減との両立が求められているが、薄いガラス板ほど反りを含む変形が大きくなってしまうという問題があった。
 そこで、本発明の課題は、ガラス板の品質の低下(例えば、ガラス板の反りを含む変形あるいはガラス板の板厚偏差の増大)をより抑制できる、ガラス板の製造方法及びガラス板製造装置を提供することにある。
 本発明に係るガラス板の製造方法は、ダウンドロー法によるガラス板の製造方法であって、押圧工程と、昇温工程と、溶解工程と、成形工程と、切断工程とを備える。押圧工程では、成形体の昇温に起因する成形体の相対的な位置ずれが規制されるように、前記成形体の一方向に沿って前記成形体を押圧する。昇温工程では、押圧された成形体の周辺温度を昇温装置によって昇温する。溶解工程では、ガラス原料を溶解して溶融ガラスとする。成形工程では、昇温された成形体により、溶融ガラスをシートガラスに成形する。切断工程では、シートガラスを切断してガラス板を形成する。ここでは、ガラス板の品質の低下をより抑制できる。
 前記成形体は、一方向に長く、前記押圧工程では、前記成形体の長手方向の両側端をそれぞれ支持する支持部材を介して前記成形体を押圧することが好ましい。
 また、昇温工程では、成形体の周辺の温度が、5℃~30℃/hの昇温速度で昇温されることが好ましい。
 また、ガラス板の板厚が0.5mm以下であることが好ましい。
 また、ガラス板の反りが0.2mm未満であることが好ましい。
 また、押圧工程では、支持部材に成形体の外側から成形側へ向く荷重がかかることによって、成形体を押圧することが好ましい。
 また、前記ガラス板は、液晶ディスプレイ用あるいは有機ELディスプレイ用のガラス板であることが好ましい。
 また、前記ガラス板に用いるガラスの失透温度が、1050℃~1250℃であることが好ましい。
 また、前記ガラス板は、SiO2を50~70質量%、B23を0~15質量%、Al23を5~25質量%、MgOを0~10質量%、CaOを0~20質量%、SrOを0~20質量%、BaOを0~10質量%、RO(Rは、Mg,Ca,Sr及びBaから選択される、ガラス板が含有する全ての成分であって、少なくとも1種である)を5~20質量%、それぞれ含有することが好ましい。
 さらに、前記ガラス板に用いるガラスの歪点が675℃以上であることが好ましい。
 本発明に係るガラス板製造装置は、成形体に流入させた溶融ガラスを成形体からオーバーフローさせ、オーバーフローさせた溶融ガラスを成形体の下端部で合流させることでシートガラスを成形するダウンドロー法を用いたガラス板製造装置を前提とする。ガラス板製造装置は、支持部材と、昇温装置と、加圧装置と、制御部とを備える。
 支持部材は、成形体の一方向における両側端を支持する。
 昇温装置は、成形体の周辺の温度を昇温する。
 加圧装置は、成形体の両端部の少なくとも一方から支持部材を介して成形体を押圧する。
 制御部は、昇温装置による成形体の周辺の温度を昇温する前に加圧装置によって成形体への押圧を行うように制御する。このガラス板製造装置では、ガラス板の品質の低下、例えば、ガラス板の反りを含む変形の増大及びガラス板の板厚偏差の増大をより抑制できる。
 本発明では、ガラス板の品質の低下、例えば、ガラス板の反りを含む変形の増大及びガラス板の板厚偏差の増大をより抑制できる。
本実施形態に係るガラス板の製造方法のフローチャートである。 ガラス板製造装置に含まれる溶解装置を主として示す模式図である。 ガラス板製造装置に含まれる成形装置や成形装置の周辺に配置される機器・部材の、水平面に垂直な方向で切断した場合の断面図である。 成形体の概略の正面模式図である。 第2ヒータの、成形体を正面から視た場合の配置を示すための模式図である。 変形例1Aに係る成形体の概略の正面模式図である。 変形例1Bに係る成形体の概略の正面模式図である。
 以下、図面を参照しながら、本実施形態に係るガラス板製造装置100を用いてガラス板を製造するガラス板の製造方法について説明する。
 (1)ガラス板の製造方法の概要
 図1は、本実施形態に係るガラス板の製造方法の一部のフローチャートである。以下、図1を用いてガラス板の製造方法について説明する。
 ガラス板は、図1に示すように、溶解工程ST1、清澄工程ST2、均質化工程ST3、供給工程ST4、及び、成形工程ST5を含む種々の工程を経て製造される。以下、これらの工程について詳細する。
 溶解工程ST1では、ガラス原料を加熱して溶解する。ガラス原料は、SiO2、Al23等の組成からなる。完全に溶解したガラス原料は、溶融ガラスとなる。
 清澄工程ST2では、溶融ガラスを清澄する。具体的には、溶融ガラス中に含まれるガス成分を溶融ガラスから放出する、或いは、溶融ガラス中に含まれるガス成分を溶融ガラス中に吸収する。
 均質化工程ST3では、溶融ガラスを均質化する。なお、この工程では、清澄が済んだ溶融ガラスの温度調整を行う。
 供給工程ST4では、溶融ガラスを成形する成形装置300(後述する)に供給する。この工程では、シートガラスSG(図3を参照)の成形を開始するのに適した温度になるように溶融ガラスを冷却する。
 成形工程ST5では、溶融ガラスをシート状のシートガラスSGに成形する。本実施形態では、溶融ガラスは、オーバーフローダウンドロー法により連続的にシート状に成形されてシートガラスSGとなる。シートガラス板SGは、その後、切断工程において、所定の長さ毎に切断されて、ガラス板G(図3を参照)となる。
 なお、切断工程において所定の長さに切断されたガラス板Gは、その後、さらに切断されて、研削・研磨、洗浄、検査が行われてガラス板(記号を付与せず単にガラス板と表現するものは、最終的に製造されたガラス板を意味している)となり、例えば、液晶ディスプレイ等のフラットパネルディスプレイなどの製造に適用される。
 (2)ガラス板製造装置100の概要
 図2は、ガラス板製造装置100に含まれる溶解装置200を主として示す模式図である。図3は、ガラス板製造装置100に含まれる成形装置300や成形装置300の周辺に配置される機器・部材の、水平面に垂直な方向で切断した場合の断面図である。以下、ガラス板製造装置100について説明する。
 ガラス板製造装置100は、主として、溶解装置200(図2を参照)と、成形装置300(図2及び図3を参照)とを有する。
 (2-1)溶解装置200の構成
 溶解装置200は、溶解工程ST1、清澄工程ST2、均質化工程ST3、及び、供給工程ST4を行うための装置である。
 溶解装置200は、図2に示すように、溶解槽201と、清澄槽202と、攪拌槽203と、第1配管204、第2配管205とを有する。
 溶解槽201は、ガラス原料を溶解するための槽である。溶解槽201では、溶解工程ST1が行われる。
 清澄槽202は、溶解槽201で溶解されたガラスから泡を除去する為の槽である。溶解槽201より送り込まれた溶融ガラスを、清澄槽202でさらに加熱することで、溶融ガラス中の気泡の脱泡が促進される。清澄槽202では、清澄工程ST2を行う。
 攪拌槽203は、溶融ガラスを収容する容器と、回転軸と、当該回転軸に取り付けられた複数の攪拌翼とを含む攪拌装置を有している。容器、回転軸、及び、攪拌翼としては、例えば、白金等の白金族元素又は白金族元素合金製のものを適用できるが、特に限定されない。駆動部(図示せず)の駆動によって回転軸が回転することによって、回転軸に取り付けられた攪拌翼が、溶融ガラスを攪拌する。攪拌槽203では、均質化工程ST3を行う。
 第1配管204、及び、第2配管205は、例えば、白金又は白金合金製の配管である。第1配管204は、清澄槽202と攪拌槽203とを接続する配管である。第2配管205は、攪拌槽203と成形装置300とを接続する配管である。
 (2-2)成形装置300の構成
 成形装置300は、成形工程ST5を行うための装置である。
 成形装置300は、図3に示すように、成形体310と、冷却ローラ330,330と、送りローラ350a~350hとを有する。以下、これらの構成について説明する。
 (2-2-1)成形体310
 図4は、成形装置300に含まれる成形体310の概略正面図である。
 成形体310は、図3に示すように、成形装置300の上方部分に位置し、溶解装置200から流れてくる溶融ガラスを、シート状のガラス(すなわち、シートガラスSG)に成形する機能を有する。成形体310は、垂直方向に切断した断面形状が楔形形状を有し、例えば、耐火性のあるレンガにより構成されている。
 成形体310には、図4に示すように、溶融ガラスが流れる方向(以下、第1方向という)の上流側に、供給口311が形成されている。当該供給口311を介して、溶解装置200から流れてくる溶融ガラスが成形体310(成形装置300)に供給される。
 成形体310には、図3や図4に示すように、その長手方向に沿って、上方に開放された溝部312が形成される。溝部312は、第1方向の上流側から第1方向の下流側に向かうにつれ、徐々に浅くなるように形成されている。
 なお、成形体310の第1方向の上流側部分及び下流側部分には、成形体310の温度を検出する検出手段としての成形体温度センサ(図示せず)がそれぞれ配置されている。
 成形体310では、溝部312においてオーバーフローされた溶融ガラスが、その両側面に沿って下方に流れて、下端部313において合流する。下端部313において合流した溶融ガラスは、その後、シート状のシートガラス板SGになって、さらに下方に流下する。
 (2-2-2)冷却ローラ330,330
 冷却ローラ330,330は、成形体310の下方に配置されている。また、冷却ローラ330,330は、シートガラス板SGの厚み方向の両側、且つ、シートガラス板SGの幅方向の両側部に配置されている。冷却ローラ330,330は、成形体310の下端部313で合流したシートガラス板SGに接触することにより、当該シートガラス板SGを冷却する。また、冷却ローラ330,330は、シートガラス板SGを所望の厚さに引き伸ばすと同時に、シートガラス板SGの両端部を冷却、高粘度化しシートの幅方向の収縮を抑える。
 (2-2-3)送りローラ350a~350h
 送りローラ350a~350hは、冷却ローラ330,330の下方に、上下方向に所定の間隔をもって配置される。また、送りローラ350a~350hは、シートガラス板SGの厚み方向の両側に配置され、シートガラス板SGを鉛直方向下方に牽引する。これにより、シートガラス板SGが粘性域から粘弾性域を経て弾性域へと推移する徐冷が行われる。
 (2-3)成形装置300の周辺に配置される機器・部材
 ガラス板製造装置100は、溶解装置200及び成形装置300以外にも、下記の部材・機器等を有する。
 (2-3-1)仕切り部材320,320
 図3に示すように、仕切り部材320,320は、成形体310の下端部313の近傍に配置される板状の部材である。具体的には、仕切り部材320,320は、成形体310と冷却ローラ330,330との間に配置されている。仕切り部材320,320は、シートガラス板SGの厚み方向の両側に、略水平となるように配置されている。仕切り部材320,320は、断熱材として機能する。すなわち、仕切り部材320,320は、その上下の空間を仕切ることにより、仕切り部材320,320の上側から下側への熱の移動を抑制している。
 (2-3-2)断熱部材340a~340h
 断熱部材340a~340hは、冷却ローラ330,330の下方に、上下方向に所定の間隔をもって配置され、送りローラ350a~350hのそれぞれと上下方向に交互に配置される板状の部材である。断熱部材340a~340hは、シートガラス板SGの厚み方向の両側に、略水平となるように配置される。断熱部材を複数設けることで、独立して制御できる空間(複数の断熱部材の上下に隣り合う断熱部材同士の間の空間)が増え、徐冷条件の調整が容易となる。つまり、ガラス板に内部歪が発生することを効率よく抑制できる。
 (2-3-3)第1ヒータ(図示せず)
 第1ヒータは、シートガラス板SGの近傍の雰囲気温度を昇温する機器であり、上下方向及びシートガラス板SGの幅方向に複数配置されている。第1ヒータは、送りローラ350a~350hによって牽引されるシートガラス板SGの温度制御を適切に行うために用いられる。
 (2-3-4)第2ヒータ380
 図5は、第2ヒータ380の、成形体310を正面から視た場合の配置を示すための図である。
 第2ヒータ380は、成形体310の周辺の温度(以下、周辺温度という)を昇温することによって、間接的に成形体310の温度を昇温する昇温装置として機能する。なお、周辺温度は、成形体310を囲む空間の雰囲気温度を含む。第2ヒータ380は、図5に示すように、成形体310の近傍に複数配置される。これにより、成形体310の表面温度を略均一に昇温させることができ、昇温時の成形体310の部分的な温度差から生じる応力によるヒートショックによる成形体310の破損の発生を低減することができる。
 (2-3-5)第1支持部材410及び第2支持部材420
 第1支持部材410及び第2支持部材420は、成形体310の中央部の下方部分のクリープ対策のために、図4に示すように、成形体310の長手方向の両側端の下方部分に接触するように、それぞれ配置されている。これにより、成形体310の長手方向の両側端の下方部分を支持している。下方部分とは、成形体310に生じる曲げモーメントの中立線(または中立面)より下方の部分を言う。なお、一般に、成形体のクリープは、その自重や高温の溶融ガラスの重み等によって発生すると考えられる。第1支持部材410及び第2支持部材420には、例えば、成形体310を構成するレンガとは熱膨張係数の異なるレンガが使用されるが、これに限定されない。
 (2-3-6)加圧装置
 加圧装置には、エアシリンダーが使用される。加圧装置は、第1支持部材410及び第2支持部材の一方を加圧することによって、第1支持部材及び第2支持部材420に荷重をかける加圧装置である。本実施形態では、第2支持部材420の近傍に加圧装置422が配置される。具体的には、加圧装置422は、耐熱性の高い板部材421を介して、第2支持部材420の、成形体310の長手方向の外側に配置される。
 なお、加圧装置422が第2支持部材420を加圧した場合に成形体310に長手方向の圧縮応力をかけるために、加圧がされていない支持部材(ここでは、第1支持部材410)の近傍には、加圧がされていない支持部材を固定するための固定部材・機器が配置されている。本実施形態では、加圧がされていない第1支持部材410の近傍には、固定部材・機器511が配置される。より具体的には、固定部材・機器511は、耐熱性の高い板部材411を介して、第1支持部材410の、成形体310の長手方向の外側に配置される。
 これにより、第1支持部材410及び第2支持部材420の少なくとも一方が加圧される場合であっても、加圧がされていない支持部材(ここでは、第1支持部材410)は、固定部材や固定機器(ここでは、固定部材・機器511)から反力(ここでは、図4に示す矢印P1)を受ける。すなわち、第1支持部材410及び第2支持部材420は、加圧装置422によって成形体310側への荷重(図4に示す矢印P1、P2)がかかる状態になる。よって、成形体310は、第1支持部材410及び第2支持部材420を介して、成形体310の長手方向の外側から押圧される状態になる。
 (3)制御装置(図示せず)
 制御装置は、CPU、ROM、RAM、ハードディスク等から構成される。
 制御装置は、冷却ローラ330,330や送りローラ350a~350hを駆動するための駆動モータ(図示せず)、第1ヒータ、第2ヒータ380、加圧装置422等の制御を行う。すなわち、制御装置は、上述の機器を制御する制御部として機能する。制御装置は、ユーザからの入力を受けて各種の制御を行うこともできる。また、制御装置は、例えば、1つのみ設けられていてもよいし、上記駆動モータ、上記ヒータ、加圧装置、のそれぞれを制御する制御装置が複数設けられていてもよい。第2ヒータ380及び加圧装置422の制御については、後述する。
 (4)成形装置300におけるシートガラス板SGの成形
 以下、成形装置300においてシートガラス板SGが成形される過程を説明する。
 まず、図4に示すように、溶解装置200から供給口311を介して成形体310に供給される溶融ガラスは、成形体310の溝部312に流れる。そして、溝部312においてオーバーフローされる。溝部312においてオーバーフローされた溶融ガラスは、成形体310の両側面に沿って下方に流れて、図3に示すように、下端部313において合流する。下端部313において合流した溶融ガラスは、その後、シート状のシートガラス板SGになって、さらに下方に流下する。
 シートガラス板SGは、厚み方向の両側に配置される冷却ローラ330,330によって、幅方向の両端部が挟まれて鉛直方向下方に引き下げられると共に冷却される。冷却ローラ330,330によって引き下げられたシートガラス板SGは、送りローラ350a~350hによってさらに下方に引き下げられる。送りローラ350a~350hによって引き下げられたシートガラス板SGは、その後、所定の長さ毎に切断される。
 (5)成形体310の設置
 成形体310の設置は、冷却ローラ330,330や送りローラ350a~350h等の位置を考慮して、成形体310が、正規に取り付けられるべき第1位置に位置するように行われる。第1位置は、具体的には、例えば、成形体310の下端部313に糸を固定し、当該糸を鉛直下方に垂らすことで決定される。より具体的には、第1位置は、成形体310の下端部313から下方に垂らした糸が、仕切り部材320,320、冷却ローラ330,330、断熱部材340a~340h、及び、送りローラ350a~350h等に接触することなく、シートガラス板SGが切断される空間まで通り抜けるような位置である。なお、第1位置の決定の方法はこれに限られるものではない。
 なお、成形体310を設置した後に、予め成形体310の長手方向の両側方に配置しておいた第1支持部材410及び第2支持部材420を、成形体310の両側端の下方部分に接触させる。具体的には、加圧装置422を制御することで第1支持部材410及び第2支持部材420に荷重をかけて、第1支持部材410及び第2支持部材420を成形体310に押圧させている。すなわち、成形体310は、一方向に沿って押圧される。具体的には、成形体310は、第1支持部材410及び第2支持部材420を介して長手方向の外側から押圧される。
 なお、加圧装置422の第2支持部材420への加圧を開始する時期は、成形体310の温度が室温(例えば、0~30℃程度を示す)又は室温の近傍となっていることが望ましい。例えば、施工者の作業性を考慮すると、成形体310の温度が、150℃以下であることが望ましく、100℃以下、80℃以下、50℃以下、30℃以下、25℃以下であるほど望ましい。
 そして、加圧装置422によって第2支持部材420に所定の圧力をかけている状態で、再度、成形体310の位置が第1位置にあるかを確認する。このとき、成形体310の位置が第1位置よりもずれている(傾きを含む)場合には、加圧装置422を停止し、例えば、成形体310と第1支持部材410や第2支持部材420との間にセメント等を足すことによって成形体310の位置を調整する。なお、成形体310の位置の調整方法は、これに限定されない。他方、成形体310が第1位置に配置されている場合は、加圧装置422によって第2支持部材420に所定の圧力をかけている状態で(すなわち、成形体310が押圧されている状態で)、成形体310の昇温処理を開始する。
 (6)成形体310の昇温
 成形体310が、第1位置に設置され、加圧装置422及び固定部材・機器511によって押圧されている状態で、制御装置は、成形体310の温度が所定の温度(例えば、1000℃~1200℃)となるように、第2ヒータ380によって成形体310の周辺温度を制御する。すなわち、制御装置は、成形体310の温度に基づいて、第2ヒータ380を制御している。これは、操業を開始した後に成形体310に流れる溶融ガラスは、約1000℃~1400℃と高温であるため、予め成形体310の温度を昇温する必要があるからである。
 ここで、成形体310の周辺温度は、所定の昇温速度で昇温される。なお、成形体310の周辺温度と、成形体310の表面温度とは、略同じ温度となる。つまり、成形体310の表面温度は、所定の昇温速度で昇温されるということもできる。
 所定の昇温速度とは、5℃~30℃/hが望ましい。昇温速度の上限が30℃/hが望ましいのは、ヒートショックによる成形体の破損を抑制するためである。なお、昇温速度の上限は、10℃/h、12℃/h、15℃/hの順でより望ましい。この場合、成形体310の表面と内部での温度差が大きくなりすぎないため、より成形体310の破損の虞れを低減できる。
 また、昇温速度の下限が5℃/hが望ましいのは、成形体の周辺温度の昇温時間が長くなるとガラス板の生産性に影響が出ることが懸念されるので、それを避けるためである。なお、昇温速度の下限は、より望ましくは、7℃/hである。この場合、より、ガラス板の生産性を向上できる。
 (7)ガラス板の好ましい形態
 本発明を用いて製造されるガラス板の好ましい形態について以下に説明する。なお、下記の形態に限られるものではない。
 ガラス板の厚みは、0.1mm~3mmとすることが好適である。さらには、フラットディスプレイ用のガラス板として、0.01~1.0mmが好適である。そして、より好ましい上限値は、好ましい順にいうと、0.4mm、0.5mm、0.8mm、1.0mm、1.5mmである。さらに、より好ましい下限値は、好ましい順にいうと、0.3mm、0.2mmである。例えば、フラットディスプレイ用のガラス板は、軽量化及び薄板化が求められるためガラス板の厚みは薄いほど好ましい。他方、ガラス板の厚みが薄くなるほどディスプレイ製造工程でガラス板の破損が生じやすくなる。これらのことを考慮すると、フラットディスプレイ用のガラス板の厚みは、0.01~1.0mmであることが好ましく、0.1~0.8mmであることがより好ましく、0.2~0.8mmであることがさらに好ましい。
 ここで、ガラス板の厚みが0.5mm以下、特に0.5mm未満となると、ガラス板の変形や破損に関して、成形体の位置ずれの影響が顕著となる。成形体の位置ずれによって発生する、ガラス板に与えるローラ(冷却ローラ及び送りローラ)の牽引力のばらつきにより、ガラス板に応力分布が発生し、最悪の場合、ガラス板の変形や破損に至るが、厚みが0.5mm以下のガラス板の場合、小さな応力分布でも変形が生じ破損しやすい。つまり、ガラス板の厚みが0.5mm未満、0.4mm以下となるほど、成形体の位置ずれを抑制する本発明の効果が顕著となる。つまり、ガラス板の厚みが0.01mm以上0.5mm以下であると本発明の効果が顕著となり、0.01mm以上0.5mm未満であるとより本発明の効果が顕著となり、0.01mm以上0.4mm以下であるとさらに本発明の効果が顕著となる。
 また、ガラス板の板厚偏差は、0~20μmであることが好適である。そして、より好ましいガラス板の板厚偏差の上限値は、好ましい順にいうと、5μm以下(例えば、0~5μm)、10μm以下(例えば、0~10μm)である。本発明では、このような板厚偏差を実現できる。
 また、ガラス板の反りは、測定を行った場合に、反りの最大値が0から0.2mmまでの範囲であることが好適である。そして、より好ましいガラス板の反りの上限値は、好ましい順にいうと、0.01mm以下(0~0.01mm)、0.05mm以下(0~0.005mm)、0.1mm以下(0~0.1mm)、0.15mm以下(0~0.15mm)である。
 ガラス板の反りの測定に関してより詳細に説明すると、まず、ガラス板から複数枚の小板(約400mm四方)を切り出す。次に、各小板につき、角4箇所と中央部4箇所との反りを、表裏のそれぞれにおいて測定する(すなわち、計16箇所の反りを測定する)。例えば、小板8枚の反りを測定した場合、16箇所×8枚で128箇所の反りの測定データが得られる。そして、当該測定データの中の最大値が、上述の範囲であることが好ましい。なお、本実施形態では、複数の小板で測定した反りの最大値を、ガラス板の反りとする。
 また、ガラス板の大きさは、幅方向の長さが500mm-3500mmであり、長手方向の長さが500mm-3500mmである、ことが好適である。
 また、ガラス板の種類については、ボロシリケイトガラス、アルミノシリケイトガラス、アルミノボロシリケイトガラス、ソーダライムガラス、アルカリシリケイトガラス、アルカリアルミノシリケイトガラス、アルカリアルミノゲルマネイトガラスが好適である。
 また、ガラス板は、フラットパネルディスプレイ(液晶ディスプレイ、有機ELディスプレイ、あるいはプラズマディスプレイ等)用のガラス板、太陽電池用のパネル、カバーガラスに使用されることが好適である。なお、カバーガラスとは、例えば、AV機器(携帯端末等)の表示画面や筐体を保護するために、ガラス板を化学的あるいは物理的に強化した強化ガラスである。ここで、近年、液晶ディスプレイあるいは有機ELディスプレイは高精度な画面表示が求められているため、液晶ディスプレイあるいは有機ELディスプレイに用いられるガラス板の反りや板厚の偏差を低減することが要求されている。このため、成形体の位置ずれを抑制し、ガラス板の反りや板厚偏差を低減できる本発明がより好適となる。また、表示部などのカバーなどとして用いられるカバーガラスには、高い表面品質が求められる。このため、カバーガラスに用いられるガラス板は、反りや板厚偏差を低減することが求められるので、成形体の位置ずれを抑制し、ガラス板の反りや板厚偏差を低減できる本発明がより好適となる。
 また、フラットパネルディスプレイ(液晶ディスプレイやプラズマディスプレイ等)用のガラス基板としては、ガラス板が質量%表示で、以下の成分を含むものが例示される。下記括弧内の表示は各成分の好ましい含有率である。以降、%表示は質量%を意味する。
SiO2:50~70%(55~65%,57~64%、58~62%)、
Al23:5~25%(10~20%,12~18%,15~18%)、
23:0~15%(5~15%,6~13%,7~12%)。
 このとき、任意成分として、下記の組成を含んでもよい。
MgO:0~10%(下限は0.01%、下限は0.5%、上限は5%、上限は4%、上限は2%)、
CaO:0~20%(下限は1%、下限は3%、下限は4%、上限は9%、上限は8%、上限は7%、上限は6%)、
SrO:0~20%(下限は0.5%、下限は3%、上限は9%、上限は8%、上限は7%、上限は6%)、
BaO:0~10%(上限は8%、上限は3%、上限は1%、上限は0.2%)、
ZrO2:0~10%(0~5%,0~4%,0~1%,0~0.1%)。
 また、特に、SiO2 50~70%、B23 5~18%、Al23 10~25%、MgO 0~10%、CaO 0~20%、SrO 0~20%、BaO 0~10%、RO 5~20%(ただし、RはMg、Ca、Sr及びBaから選ばれるガラス板が含有する全ての成分であって、少なくとも1種である)を含有することが好ましい。さらに、R’2O 0.20%を超え2.0%以下(ただし、R’はLi、Na及びKから選ばれるガラス板が含有する全ての成分であって、少なくとも1種である)を含むことが好ましい。また、清澄剤を合計で0.05~1.5%含み、As23、Sb23及びPbOを実質的に含まないことが好ましい。また、ガラス中の酸化鉄の含有量が0.01~0.2%であることがさらに好ましい。
 また、SiO2 50~70%、B23 0~15%、Al23 5~25%、MgO 0~10%、CaO 0~20%、SrO 0~20%、BaO 0~10%、RO 5~20% (但し、RはMg、Ca,Sr及びBaから選ばれるガラス板が含有する全ての成分であって、少なくとも1種である)を含有することが好ましい。
 さらに、ガラス板がフラットパネルディスプレイのガラス基板に用いられる場合、フラットパネルディスプレイのガラス基板に形成されるTFT(Thin Film Transistor)の破壊を抑制する観点からは、無アルカリガラス(アルカリ成分を実質的に含まないガラス)であることが好ましい。他方、ガラスの溶解性を向上させるために、あえてアルカリ成分を微量含有させるようにしてもよい。この場合、R’2O 0.05%を超え2.0%以下(ただし、R’はLi、Na及びKから選ばれるガラス板が含有する全ての成分であって、少なくとも1種である)、より好ましくはR’2O 0.1%を超え2.0%以下を含むことが好ましい。また、清澄剤としてAs23及びPbOを実質的に含まないことが好ましい。また、清澄剤としては少なくとも酸化スズを含有することが好ましい。また、ガラス中の酸化鉄の含有量が0.01~0.2%であることがさらに好ましい。
 フラットパネルディスプレイの軽量化のために、SrO+BaOが0~10%であることが好ましい。また、軽量化の観点に加え、環境負荷を考慮して、BaOは0~2質量%であることがさらに好ましい。
 ガラス板のガラス組成を上述したような組成範囲とすることで、液晶ディスプレイあるいは有機ELディスプレイなどのフラットパネルディスプレイのガラス基板に要求される特性(TFTの破壊の抑制及び軽量化)を満たすようなガラス板とすることができる。より詳細には、歪点が650℃以上を満たすガラス板を実現できる。また、密度が2.6g/cm3以下となるガラス板を実現できる。また、ヤング率が70GPa以上のガラス板を実現できる。さらに、失透温度が1250℃以下のガラス板を実現できる。失透温度が1250℃以下のガラス板は、オーバーフローダウンドロー法を用いて製造することができる。ただし、失透温度が1050℃未満を実現しつつ、フラットパネルディスプレイのガラス基板に要求される上述した特性(TFTの破壊の抑制及び軽量化)を満たすことは困難であるため、失透温度を1050℃~1250℃とすることが好ましい。
 ここで、溶融ガラスを失透温度付近で長時間保持すると、溶融ガラス中に結晶が析出し、失透が生じる。このため、成形体310の壁面近くを流下する溶融ガラスの温度は失透温度よりも高く保持する必要がある。このため、成形体310から流下する溶融ガラスが離れた後に、溶融ガラスの温度を失透温度付近とし、さらに、溶融ガラスの温度を急速に冷却することで熔融ガラスに失透が生じないようにすることが求められる。つまり、成形体310のの壁面近くを流れる溶融ガラスの温度は、失透温度よりも10℃以上高いことが好ましく、20℃以上高いことがさらに好ましい。失透温度よりも10℃以上高くすることで、成形体310の支持レンガから放熱が生じて溶融ガラスの温度にバラツキが生じたとしても、また支持レンガから成分が溶出することで生じるガラス組成のばらつきにより失透温度のバラツキが生じたとしても、失透の発生を十分に抑制することができる。
 このように、液晶ディスプレイあるいは有機ELディスプレイなどのフラットパネルディスプレイのガラス基板としてガラス板を製造する場合は、失透温度が1050℃~1250℃と高温にすることが好ましいため、ガラス基板製造中の成形体310の温度も1050℃~1350℃にする必要がある。ここで、成形体310を常温から昇温させた後、溶融ガラスを成形体310に流し始める際に、熔融ガラス温度と成形体温度に差があると、その温度差で成形体310が損傷してしまう。このため、予め成形体310を昇温させることが好ましいが、失透温度の高いガラスを製造する場合ほど、昇温させる温度が大きくなる。この結果、上述した昇温時の成形体310の位置ずれが生じやすくなる。このため、失透温度が1050℃~1250℃と高温になる液晶ディスプレイや有機ELディスプレイなどのフラットパネルディスプレイのガラス基板としてガラス板を製造する場合に、成形体310を1050℃~1350℃に昇温しても成形体310の位置ずれを抑えることができる本発明が好適となる。
 また、太陽電池用のガラス基板に適用されるガラス板としては、例えば、ガラス板が質量%表示で、以下の成分を含むものが例示される。下記括弧内の表示は各成分の好ましい含有率である。
SiO2:50~70%(55~65%,57~64%,57~62%)、
Al23:5~20%(9~18%,12~17%)、
Na2O:6~30%(7~20%,8~18%,10~15%)。
 このとき、任意成分として、下記の組成を含んでもよい。
Li2O:0~8%(0~6%,0~2%,0~0.6%,0~0.4%,0~0.2%)、B23:0~5%(0~2%,0~1%,0~0.8%)、
2O:0~10%(下限は1%、下限は2%、上限は6%、上限は5%、上限は4%)、
MgO:0~10%(下限は1%、下限は2%、下限は3%、下限は4%、上限は9%、
上限は8%、上限は7%)、
CaO:0~20%(下限は0.1%、下限は1%、下限は2%、上限は10%、上限は
5%、上限は4%、上限は3%)、
ZrO2:0~10%(0~5%、0~4%、0~1%、0~0.1%)。
 特に、化学強化されるカバーガラスや太陽電池用ガラス板としては、SiO2  50~70%、Al23 5~20%、Na2O 6~30%、K2O 0~10%、MgO 0~10%、CaO 0~20%を含有することが好ましい。
 なお、近年フラットパネルディスプレイの画面表示のさらなる高精細化を実現するために、α-Si(アモルファスシリコン)・TFTではなく、P-Si(低温ポリシリコン)・TFTや酸化物半導体を用いたディスプレイが求められている。ここで、P-Si(低温ポリシリコン)TFTや酸化物半導体の形成工程では、α-Si・TFTの形成工程よりも高温な熱処理工程が存在する。このため、P-Si・TFTや酸化物半導体が形成されるガラス板には、熱収縮率が小さいことが求められている。熱収縮率を小さくするためには、歪点を高くすることが好ましいが、歪点が高いガラスは、失透温度が高くなる傾向にある。失透を抑制するためには、成形時の溶融ガラス温度を失透温度よりも高く保つ必要があるので、失透温度が高いガラス板を製造するためには、成形装置300内の雰囲気及び成形体310の温度を高くする必要がある。ここで、成形装置300内の雰囲気温度が高くなると、成形体310と支持部材との間でこじれや摩擦抵抗が発生することに起因してで、成形体310と支持部材との間に間隙ができるという問題や、位置ずれの問題が生じやすくなる。つまり、例えば歪点が655℃以上のガラスを用いたガラス板の製造には本発明が好適となる。特に、P-Si・TFTや酸化物半導体に好適な歪点が675℃以上、歪点が680℃以上のガラスを用いたガラス板の製造がさらに好適であり、歪点が690℃以上のガラスを用いたガラス板の製造が特に好適である。
 また、失透温度が1100℃~1250℃のガラスを用いたガラス板の製造には本発明が好適となり、失透温度が1150~1250℃のガラスを用いたガラス板の製造が本発明により好適であり、失透温度が1180~1250℃のガラスを用いたガラス板の製造がさらに好適であり、失透温度が1200℃~1250℃のガラスを用いたガラス板の製造が特に好適である。
 歪点が675℃以上(あるいは失透温度が1150~1250℃)のガラスをガラス板に用いる場合、ガラス組成としては、例えば、ガラス板が質量%表示で、以下の成分を含むものが例示される。以下で示す%は、質量%である。
 SiO2 52~78%、Al23 3~25%、B23 3~15%、RO (但し、RはMg、Ca,Sr及びBaから選ばれる、ガラス板が含有する全ての成分であって、少なくとも1種である) 3~20%を含み、質量比(SiO2+Al23)/B23は7~20の範囲にある。
 さらに、歪点をより上昇するために、質量比(SiO2+Al23)/ROは7.5以上であることが好ましい。さらに、歪点を上昇させるために、β-OH値を0.1~0.3mmとすることが好ましい。さらに、TFTの破壊を抑制する観点からは、無アルカリガラス(アルカリ成分を実質的に含まないガラス)であることが好ましい。他方、溶解時にガラスではなく溶解槽201に電流が流れてしまわないように、R2O(但し、RはLi、Na及びKから選ばれる、ガラス板が含有する全ての成分であって、少なくとも1種である)を0.01~0.8%含有させてガラスの比抵抗を低下させてもよい。あるいは、ガラスの比抵抗を低下させるためにFe23を0.01~1%含有することが好ましい。さらに、高い歪点を実現しつつ失透温度の上昇を防止するためにCaO/ROは0.65以上とすることが好ましい。また、失透温度を1250℃以下とすることにより、オーバーフローダウンドロー法の適用が可能となる。また、ガラス板が、モバイル通信端末等のモバイル機器に適用されることを考慮すると、軽量化の観点からはSrO及びBaOの合計含有量が0%以上2%未満であることが好ましい。
 (各成分)
 SiO2はガラス板のガラスの骨格をなす成分であり、ガラスの化学的耐久性と耐熱性を高める効果を有している。SiO2の含有率が低すぎる場合には化学的耐久性と耐熱性の効果が十分に得られず、SiO2の含有率が高すぎるとガラスが失透を起こしやすくなり、成形が困難になるとともに、粘性が上昇してガラスの均質化が困難になる。
 Al23はガラスの骨格をなす成分であり、ガラスの化学的耐久性と耐熱性を高める効果を有している。また、エッチング速度を高める効果を有している。Al23の含有率が低すぎる場合にはガラスの化学的耐久性と耐熱性の効果が十分に得られない。一方、Al23の含有率が高すぎると、ガラスの粘性が上昇して溶解が困難になるとともに、耐酸性が低下する。
 B23はガラスの粘性を下げて、ガラスの熔解及び清澄を促進する成分である。B23の含有率が低すぎると、ガラスの耐酸性が低下してガラスの均質化が困難になる。
 MgO及びCaOは、ガラスの粘性を下げて、ガラスの熔解及び清澄を促進する成分である。また、Mg及びCaは、アルカリ土類金属の中ではガラスの密度を上昇させる割合が小さいため、得られるガラスを軽量化しつつ熔解性を向上するためには有利な成分である。ただしそのMgO及びCaOの含有率が高くなりすぎると、ガラスの化学的耐久性が低下する。
 SrO及びBaOは、ガラスの粘性を下げて、ガラスの熔解及び清澄を促進する成分である。また、ガラス原料の酸化性を高めて清澄性を高める成分でもある。ただし、SrO及びBaOの含有率が高くなりすぎると、ガラスの密度が上昇し、ガラス板の軽量化が図れないととともに、ガラスの化学的耐久性が低下する。
 Li2Oは、ガラスの粘度を低下させて、ガラスの熔解性や成形性を向上させる成分である。また、Li2Oは、ガラスのヤング率を向上させる成分である。しかし、Li2Oの含有率が高くなり過ぎると、ガラスが失透しやすくなるため、ダウンドロー法の適用が困難となる。
 Na2O及びK2Oは、ガラスの高温粘度を低下させて、ガラスの熔融性や成形性を向上させる成分である。また、ガラスの耐失透性を改善する成分である。Na2OやK2Oの含有率が低すぎる場合にはガラスの熔解性が低下し、熔解のためのコストが高くなる。また、ガラスが失透を起こしやすくなり、耐失透性も低下するので、ガラスをオーバーフローさせるダウンドロー法の適用が困難となる。他方、Na2OやK2Oの含有率が高くなり過ぎると、ガラスバランスの悪化による耐失透性低下も生じる。
 なお、Li2O、Na2O、K2Oは、ガラスから溶出してTFT特性を劣化させるおそれがあり、また、ガラスの熱膨張係数を大きくして熱処理時に基板を破損するおそれがある成分であることから、フラットパネルディスプレイのガラス基板(例えば、液晶ディスプレイのガラス基板、有機LEディスプレイのガラス基板)として適用する場合には、多量に含有することは好ましくなく、その合量は2.0質量%以下に規制すべきである。しかし、ガラス中に上記成分を敢えて特定量含有させることによって、TFT特性の劣化やガラスの熱膨張を一定範囲内に抑制しつつ、ガラスの塩基性度を高め、価数変動する金属の酸化を容易にして、清澄性を発揮させることが可能である。
 ZrO2は、ガラスの失透温度付近の粘性や歪点を高くする成分である。また、ZrO2は、ガラスの耐熱性を向上させる成分でもある。しかし、ZrO2の含有率が高くなりすぎると、失透温度が上昇し、耐失透性が低下する。
 TiO2は、ガラスの高温粘度を低下させる成分である。しかし、TiO2の含有率が高くなり過ぎると、耐失透性が低下してしまう。さらに、ガラスが着色し、電子機器の表示画面のカバーガラスなどへの適用は好ましくない。また、ガラスが着色することから、紫外線透過率が低下するので、紫外線硬化樹脂を使用した処理を行う場合に、紫外線硬化樹脂を十分に硬化することができないという不都合が生じる。
 ガラス板のガラス原料において、ガラス中の気泡を脱泡させる成分として清澄剤を添加することができる。清澄剤としては、環境負荷が小さく、ガラスの清澄性に優れたものであれば特に制限されないが、例えば、酸化スズ、酸化鉄、酸化セリウム、酸化テルビウム、酸化モリブデン及び酸化タングステンといった金属酸化物から選ばれる少なくとも1種を挙げることができる。
 ここで、液晶ディスプレイや有機ELディスプレイなどのフラットパネルディスプレイのガラス基板は、泡に対する要求が特に厳しい。このため、ガラス板の製造に用いる清澄剤としては、酸化スズ、酸化鉄、酸化セリウム、酸化テルピウム、酸化モリブデン及び酸化タングステンといった金属酸化物の中でも特に清澄効果の高い酸化スズを少なくとも含有することが好ましい。
 なお、As23、Sb23及びPbOは、溶融ガラス中で価数変動を伴う反応を生じ、ガラスを清澄する効果を有する物質であるが、As23、Sb23及びPbOは環境負荷が大きい物質であることから、本実施形態のガラス板においては、ガラス中にAs23、Sb23及びPbOを実質的に含まない。なお、本明細書において、As23、Sb23及びPbOを実質的に含まないとは、0.01%質量未満であって不純物を除き意図的に含有させないことを意味する。
 (8)特徴
 (8-1)
 従来、成形体は、自重や高温の溶融ガラスの重み等によるクリープ対策のために下端部が支持されることが多い。例えば、特許文献1(特許第4193115号公報)に開示の発明では、流量調節構造体(成形体に相当)の長手方向の両側端の下端部に、それぞれ、流量調節構造体を支持するための支持部材が配置されている。そして、一方の支持部材は、加圧装置によって加圧される。
 ここで、一般的に、成形体に供給される溶融ガラスは約1000℃~1400℃と高温であるため、成形体310を昇温させない状態で溶融ガラスを成形体310に流し始めると、溶融ガラスと成形体310との温度差で成形体310が損傷してしまう。このため、成形体の立ち上げ後成形体の周辺の温度を昇温している。しかし、加圧装置による支持部材への加圧と、成形体の周辺の温度の昇温によっては、成形体の位置ずれに起因して、シートガラスの搬送経路がずれる虞れがある。このため、ローラ(冷却ローラ及び送りローラ)から受ける牽引力が不均一となり、ガラス板の品質が低下する
ことが懸念される。
 また、近年、ダウンドロー法を用いて製造されるガラス板は、薄型化の傾向にある。ここで、薄いガラス板ほど小さな応力でも変形が生じやすい。このため、薄いガラス板ほど、上記成形体の位置ずれに起因するガラス板の変形の問題が顕著となる。
 そこで、本実施形態では、制御装置は、成形体310の周辺温度を昇温する前に、成形体310へ一方向に沿って押圧を行う(押圧工程に相当)。具体的には、制御装置が、加圧装置422を制御することによって、成形体310は一方向に押圧される。より具体的には、成形体310は長手方向に押圧される。その際、加圧装置422が第2支持部材420を成形体310側に加圧することによって、第1支持部材410及び第2支持部材420に荷重をかける(荷重がかかる)。そして、加圧装置422によって加圧された第2支持部材420が、成形体310の長手方向の両側端を押圧している。これにより、第1支持部材410及び第2支持部材420を介して、成形体310の昇温に起因する相対的な位置ずれが規制、ひいては、成形体310が固定される。特に、成形体310の長手方向の両側端の下方部分を押圧することにより、成形体310の下方部分のクリープを抑制することができる。
 そして、制御装置は、加圧装置422によって第2支持部材420が加圧され第1支持部材410及び第2支持部材420に荷重がかかった状態(すなわち、成形体310が押圧された状態)において、成形体310の周辺温度を第2ヒータ380によって昇温する(昇温工程に相当)。成形体310の長手方向に沿って成形体310が押圧されることにより、成形体310の昇温に起因する位置ずれを効果的に抑制することができる。
 本実施形態では、第1支持部材410及び第2支持部材420に、成形体310の方向に向く荷重がかかることによって、まず、第1支持部材410及び第2支持部材420の動きを規制している。そして、このような状態の第1支持部材410及び第2支持部材420に成形体310の外側から成形体310側へ向く荷重がかかることによって、第1支持部材410及び第2支持部材420を介して成形体310の長手方向の両側端の下方部分(ひいては、成形体310全体)の位置ずれ(成形体310の昇温に起因する相対的な位置ずれ)を規制、ひいては、成形体310を固定している。そして、この状態で成形体310の周辺温度を昇温するので、成形体310の傾きを含んだ位置ずれを抑制できる。
 ここで、成形体の位置ずれが生じると、少なくとも以下の影響が懸念される。まず、シートガラスの成形の際、シートガラスの表裏や幅方向の温度分布にばらつきが生じ、シートガラスの板厚のばらつき(板厚偏差)が生じやすくなる。シートガラスの板厚のばらつきが生じると、当該流下する溶融ガラスあるいはシートガラスと成形体等を覆う炉の炉壁やヒータとの距離が想定している距離からずれてしまう。このため、シートガラスの幅方向で、実際のシートガラスの温度と基準温度(成形体が理想的な位置に設置された場合のガラス板の温度)との差が発生する。この場合、徐冷工程(本実施形態では、送りローラ350a~350hによってシートガラスが下方に牽引される工程が相当)において、シートガラスの幅方向の温度の制御にも影響が出ることがある。このため、ガラス板の内部歪を十分に除去できないことが懸念される。また、想定していたシートガラスの搬送経路にズレが生じるため、シートガラスが送りローラから受ける牽引力が一定でなくなり、ガラス板が反ることが懸念される。さらに、成形体下端での溶融ガラスの張り合わせに不具合が生じるということが懸念される。
 なお、発生する成形体の位置ずれとしては、例えば、成形体の第1方向の上流側と下流側とのいずれかがずれて、下方に配置される各種のローラと「ねじれ」の位置関係となることが想定される。この場合、上述したように、下方に設置されたヒータやローラ等とシートガラスとの位置関係が成形体が正規の位置にある場合に比べてずれるため、シートガラスの温度分布にばらつきが生じることが懸念される。
 一方、本実施形態では、成形体310の位置ずれを抑制できるので、ガラス板の品質を維持できる。すなわち、ガラス板の板厚偏差あるいは反りを含む変形を抑制することができる。
 上述したような成形体の位置ずれは、例えば、成形体の周辺の温度が昇温されると、成形体のクリープ対策のために配置される支持部材や成形体が膨張することに起因する。このとき、支持部材と成形体との間に生じる摩擦抵抗やこじれにより、成形体の位置ずれが生じることが想定される。そして、この状態で加圧装置によって支持部材を加圧すると、成形体が傾く等の位置ずれが生じることが想定される。
 一般的に、成形体310に用いられるレンガは耐火性・耐熱性だけでなく、クリープを抑制できるZrO2などを含有した成形体専用のレンガであることが好ましく、他方、第1支持部材410及び第2支持部材420を含む支持部材に用いられるレンガは、耐火性・耐熱性を有するレンガであることが好ましい。例えば、成形体310の加熱による膨張時に規制が無いと、成形体310と支持部材とが、自由に、個別に移動できるようになり、成形体310と支持部材との間でこじれや摩擦抵抗が発生することで、成形体310と支持部材との間に間隙ができるという問題や、位置ずれの問題が発生する。他方、本実施形態のように成形体310の加熱前に成形体310を一方向、好ましくは長手方向に沿って加圧しておくと、成形体310と支持部材が一体となり成形体310と支持部材との間の接触面が維持できるため、膨張方向の規制が可能となる。
 一方、本実施形態では、上述したように、第1支持部材410及び第2支持部材420に、成形体310の方向に向く荷重がかかることによって、第1支持部材410及び第2支持部材420を介して成形体310の昇温に起因する相対的な位置ずれを規制、ひいては、成形体310を固定している。そして、この状態で成形体310の周辺温度を昇温するので、成形体310の傾きを含んだ位置ずれを抑制できる。
 (8-2)
 成形体310の周辺温度の昇温速度は、5℃~30℃/hである。これにより、成形体310の破損を抑制し、且つ、ガラス板の生産性の低下を抑制できる。
 なお、成形体310の周辺温度の昇温速度は、より望ましくは、5~20℃/h、さらに好ましくは、5~15℃/h、さらに好ましくは、6℃~10℃/hである。この場合、より成形体310の破損の虞れを低減しながら、ガラス板の生産性を向上できる。
 (8-3)
 本実施形態では、加圧装置422が第2支持部材420を加圧することによって、第1支持部材410及び第2支持部材420に荷重をかける。
 ここでは、エアシリンダー等の加圧装置422を用いることによって、簡易に第1支持部材410及び第2支持部材420に荷重をかけることができる。
 (9)変形例
 以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、上記の実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
 (9-1)変形例1A
 図6は、本変形例1Aに係る成形体310の概略正面図である。
 上記実施形態では、第1支持部材410及び第2支持部材420の一方を加圧装置によって加圧すると説明したが、これに限られるものではなく、第1支持部材410及び第2支持部材420のいずれをも加圧装置によって加圧してもよい。
 この場合、図6に示すように、第1支持部材410の近傍にも、板部材411を介して加圧装置412が配置される。
 そして、第1支持部材410及び第2支持部材420は、それぞれ、加圧装置412、422によって成形体310側に押圧(図6に示す矢印P3、P2)される。これにより、成形体310の昇温に起因する相対的な位置ずれが規制、ひいては、成形体310が固定される。よって、この場合であっても、成形体310の位置ずれを抑制できる。
 (9-2)変形例1B
 図7は、本変形例1Bに係る成形体310の概略正面図である。
 例えば、第1支持部材410や第2支持部材420のような成形体310を支持する支持部材が載置部材に載置されている場合、支持部材と載置部材との間に生じる摩擦抵抗やこじれにより、支持部材の位置ずれが生じることが想定される。そして、この状態で加圧装置によって支持部材を加圧すると、成形体が傾く等の位置ずれが生じることが懸念される。
 ここで、載置部材とは、支持部材を載置する機能を果たすものであればよく、例えば、床であってもよいし、図7に示すように、ブロック部材611、612であってもよい。なお、ブロック部材611、612は、複数配置されていてもよい。
 しかし、このような場合であっても、上記実施形態と同様の構成・方法を採ることにより、成形体310の加熱前に成形体310を一方向、好ましくは長手方向に沿って加圧しておくと、成形体310と支持部材が一体となり成形体310と支持部材との間の接触面が維持できるため、膨張方向の規制が可能となる。すなわち、第1支持部材410及び第2支持部材420を介して成形体310の昇温に起因する相対的な位置ずれが規制され、ひいては、成形体310が固定された状態で周辺温度が昇温されるので、成形体310の位置ずれを抑制でき、ガラス板の品質を維持できる、すなわち、ガラス板の反りや、内部歪に起因する変形の増大を防止でき、さらに傷の発生を防止できる。よって、本発明はこのような場合であっても、有用である。
 なお、本変形例においても、成形体310に用いられるレンガは耐火性・耐熱性だけでなく、クリープを抑制できるZrO2などを含有した成形体専用のレンガであることが好ましく、他方、第1支持部材410及び第2支持部材420を含む支持部材、さらにはブロック部材611、612に用いられるレンガは、耐火性・耐熱性を有するレンガであることが好ましい。
 (9-3)変形例1C
 上記実施形態では、成形体310を支持する部材は、第1支持部材410と第2支持部材420との2つであると説明したが、これに限られるものではなく、これ以上であってもよい。また、第1支持部材410と第2支持部材420とは、一体的に構成されるものであってもよい。
 (9-4)変形例1D
 上記実施形態の他に、例えば、成形体310、第1支持部材410、及び、第2支持部材420の膨張量を予め計算しておき、加圧装置として使用されるエアシリンダーのピストンの移動距離を少なくしてもよい。
 (9-5)変形例1E
 上記実施形態では、加圧装置にエアシリンダーを用いているが、これに限定されず、既知の加圧装置を適用できる。
 以下、本発明の実施例について説明する。
 実施例1では、発明者は、成形体310の周辺温度を昇温する前に、成形体310への第1支持部材410及び第2支持部材420を介した押圧を開始した。そして、成形体310への押圧の後に、成形体310の周辺温度を、10℃/hの昇温速度で昇温した。その後、下記の示す組成となるように、ガラス原料を溶解して溶融ガラスとし、溶融ガラスの清澄をおこなった。次に、清澄後の溶融ガラスを攪拌槽にて攪拌し、攪拌後の溶融ガラスを上記のような方法で昇温した成形体310に供給し、シートガラスを成形した。さらに、シートガラスを切断して、厚さが0.7mm、大きさが2200mm×2500mmの液晶ディスプレイ用のガラス板を製造した。なお、製造したディスプレイ用のガラス板の失透温度は1170℃であり、歪点は670℃であった。
 SiO2 60%
 Al23 19.5%
 B23 10%
 CaO 5%
 SrO 5%
 SnO2 0.5%
 また、本発明者は、実施例2として、製造するガラス板の厚さを0.4mmとする以外、上記実施例1と同様の方法で、液晶ディスプレイ用のガラス板を製造した。
 そして、実施例1及び実施例2で製造された液晶ディスプレイ用のガラス板から、それぞれ、380mm×420mmのガラス板を切り出し、これらのガラス板の反りを測定した。このとき、これらのガラス板の反りは、いずれも、0.15mm以下であった。よって、2200mm×2500mmの液晶ディスプレイ用のガラス板の反りも、0.15mm以下である。
 本発明者は、実施例3として、成形体310の周辺温度を昇温する前に、成形体310への第1支持部材410及び第2支持部材420を介して押圧を開始した。そして、成形体310への押圧の後に、成形体310の周辺温度を、10℃/hの昇温速度で昇温した。この後、下記の示す組成(質量%表示)となるように、ガラス原料を溶解して溶融ガラスとし、溶融ガラスの清澄を行った。次に、清澄後の溶融ガラスを撹持槽にて撹枠し、撹持後の溶融ガラスを上記のような方法で昇温した成形体310に供給し、シートガラスを成形した。さらに、シートガラスを切断して、厚さが0.7mm、大きさが2200mm×2500mmの液晶ディスプレイ用のガラス板を製造した。なお、製造した液晶ディスプレイ用のガラス板の失透温度は1230℃であり、歪点は715℃であった。
 SiO2 61.5%
 Al23 20%
 B23 8.4%
 CaO 10%
 SnO2 0.1%
 また、本発明者は、実施例4として、製造するガラス板の厚さを0.4mmとする以外、上記実施例3と同様の方法で、液晶ディスプレイ用のガラス板を製造した。
 そして、実施例3及び実施例4で製造された液晶ディスプレイ用のガラス板から、それぞれ、380mm×420mmのガラス板を切り出し、これらのガラス板の反りを測定した。このとき、これらのガラス板の反りは、いずれも、0.15mm以下であった。よって、2200mm×2500mmの液晶ディスプレイ用のガラス板の反りも、0.15mm以下である。
 なお、本発明者は、比較例1として、成形体310の周辺温度を所定速度(ここでは、10℃/h)で、所定温度(ここでは、1200℃)まで昇温した後、成形体310への押圧を開始する点以外は実施例1と同様の方法でガラス板の製造を行った。
 また、本発明者は、比較例2として、成形体310の周辺温度を所定速度(ここでは、10℃/h)で、所定温度(ここでは、1200℃)まで昇温した後、成形体310への押圧を開始する点以外は実施例2と同様の方法でガラス板の製造を行った。
 さらに、本発明者は、比較例3として、成形体310の周辺温度を所定速度(ここでは、10℃/h)で、所定温度(ここでは、1200℃) まで昇温した後、成形体310への押圧を開始する点以外は実施例3と同様の方法でガラス板の製造を行った。
 さらに、本発明者は、比較例4として、成形体310の周辺温度を所定速度(ここでは、10℃/h)で、所定温度(ここでは、1200℃) まで昇温した後、成形体310への押圧を開始する点以外は実施例4と同様の方法でガラス板の製造を行った。
 そして、製造された液晶ディスプレイ用のガラス板(2200mm×2500mm)から380mm×420mmのガラス板を切り出し、ガラス板の反りを測定した。このとき、比較例1及び比較例3のガラス板の反りは、最大値が0.20mm超であった。また、比較例2及び比較例4のガラス板の反りは、最大値が0.30mm超であった。
 よって、本発明は、ガラス板の品質の向上に有用である。
 本発明は、成形装置を用いてガラス板を製造するガラス板の製造方法及びガラス板製造装置に種々適用可能である。
  100     ガラス板製造装置
  300     成形装置
  310     成形体
  380     第2ヒータ(昇温装置)
  410     第1支持部材(支持部材)
  412、422 加圧装置
  420     第2支持部材(支持部材)
  G       ガラス板
  SG      シートガラス

Claims (11)

  1.  ダウンドロー法によるガラス板の製造方法であって、
     成形体の昇温に起因する成形体の相対的な位置ずれが規制されるように、前記成形体の一方向に沿って前記成形体を押圧する押圧工程と、
     押圧された前記成形体の周辺温度を昇温装置によって昇温する昇温工程と、
     ガラス原料を溶解して溶融ガラスとする溶解工程と、
     昇温された前記成形体により、前記溶融ガラスをシートガラスに成形する成形工程と、
     前記シートガラスを切断してガラス板を形成する切断工程と、
    を備えるガラス板の製造方法。
  2. (現請求項1)
     前記成形体は、一方向に長く、
     前記押圧工程では、前記成形体の長手方向の両側端をそれぞれ支持する支持部材を介して前記成形体を押圧する、請求項1に記載のガラス板の製造方法。
  3.  前記昇温工程では、前記成形体の周辺の温度が、5℃~30℃/hの昇温速度で昇温される、
    請求項1または2に記載のガラス板の製造方法。
  4.  前期ガラス板の板厚が0.5mm以下である、
    請求項1~3のいずれか1項に記載のガラス板の製造方法。
  5.  前記ガラス板の反りが0.2mm未満である、
    請求項1~4のいずれか1項に記載のガラス板の製造方法。
  6.  前記押圧工程では、前記支持部材に前記成形体の外側から前記成形体側へ向く荷重がかかることによって、前記成形体を押圧する、
    請求項1~5の何れか1項に記載のガラス板の製造方法。
  7.  前記ガラス板は、フラットパネルディスプレイ用のガラス板である、
    請求項1~6のいずれか1項に記載のガラス板の製造方法。
  8.  前記ガラス板に用いるガラスの失透温度が、1050℃~1250℃である、
    請求項1~7のいずれか1項に記載のガラス板の製造方法。
  9.  前記ガラス板は、SiO2を50~70質量%、B23を0~15質量%、Al23を5~25質量%、MgOを0~10質量%、CaOを0~20質量%、SrOを0~20質量%、BaOを0~10質量%、RO(Rは、Mg,Ca,Sr及びBaから選択される、前記ガラス板が含有する少なくとも1種である)を5~20質量%、それぞれ含有する、請求項1~8のいずれか1項に記載のガラス板の製造方法。
  10.  前記ガラス板に用いるガラスの歪点が、675℃以上である、
    請求項1~9のいずれか1項に記載のガラス板の製造方法。
  11.  成形体に流入させた溶融ガラスを前記成形体からオーバーフローさせ、前記オーバーフローさせた溶融ガラスを前記成形体の下端部で合流させることでシートガラスを成形するダウンドロー法を用いたガラス板製造装置であって、
     前記成形体の一方向における両側端を支持する支持部材と、
     前記成形体の周辺の温度を昇温する昇温装置と、
     前記成形体の前記両端部の少なくとも一方から前記支持部材を介して前記成形体を押圧する加圧装置と、
     前記昇温装置による前記成形体の周辺の温度を昇温する前に前記加圧装置によって前記成形体への押圧を行うように制御する制御部と、
    を備える、
    ガラス板製造装置。
PCT/JP2012/001900 2011-03-28 2012-03-19 ガラス板の製造方法及びガラス板製造装置 WO2012132309A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127013152A KR20120132676A (ko) 2011-03-28 2012-03-19 유리판의 제조 방법 및 유리판 제조 장치
CN201280000557.4A CN102811959B (zh) 2011-03-28 2012-03-19 玻璃板的制造方法以及玻璃板制造装置
JP2012514669A JPWO2012132309A1 (ja) 2011-03-28 2012-03-19 ガラス板の製造方法及びガラス板製造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011070992 2011-03-28
JP2011-070992 2011-03-28

Publications (1)

Publication Number Publication Date
WO2012132309A1 true WO2012132309A1 (ja) 2012-10-04

Family

ID=46930097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001900 WO2012132309A1 (ja) 2011-03-28 2012-03-19 ガラス板の製造方法及びガラス板製造装置

Country Status (5)

Country Link
JP (1) JPWO2012132309A1 (ja)
KR (1) KR20120132676A (ja)
CN (1) CN102811959B (ja)
TW (1) TW201247561A (ja)
WO (1) WO2012132309A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9187365B2 (en) 2013-02-25 2015-11-17 Corning Incorporated Methods for measuring the asymmetry of a glass-sheet manufacturing process
WO2016100432A1 (en) * 2014-12-19 2016-06-23 Corning Incorporated Method and apparatus for isopipe support and sag mitigation
CN112566874A (zh) * 2018-08-13 2021-03-26 Agc株式会社 玻璃板的制造装置及玻璃板的制造装置所使用的成型部件
WO2021158460A1 (en) * 2020-02-03 2021-08-12 Corning Incorporated Methods and apparatus for manufacturing a glass ribbon
US20210300807A1 (en) * 2018-08-10 2021-09-30 Corning Incorporated Apparatus and methods for fabricating glass ribbon
CN113677636A (zh) * 2019-06-07 2021-11-19 日本电气硝子株式会社 玻璃板制造装置以及玻璃板制造方法
WO2022014288A1 (ja) * 2020-07-16 2022-01-20 日本電気硝子株式会社 ガラス物品の製造方法
WO2022131179A1 (ja) * 2020-12-16 2022-06-23 日本電気硝子株式会社 ガラス成形装置
WO2022131177A1 (ja) * 2020-12-16 2022-06-23 日本電気硝子株式会社 ガラス成形装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6346485B2 (ja) * 2014-03-31 2018-06-20 AvanStrate株式会社 ガラス基板の製造方法およびガラス基板の製造装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001031434A (ja) * 1999-07-19 2001-02-06 Nippon Electric Glass Co Ltd 板ガラスの成形方法および成形装置
JP2004203691A (ja) * 2002-12-26 2004-07-22 Nippon Electric Glass Co Ltd 板ガラス成形装置及び板ガラス成形方法
JP2004284843A (ja) * 2003-03-20 2004-10-14 Nippon Electric Glass Co Ltd 板ガラス成形装置及び板ガラス成形方法
JP2007112665A (ja) * 2005-10-20 2007-05-10 Nippon Electric Glass Co Ltd 液晶板ガラス用加熱装置および液晶板ガラス用炉ならびに液晶板ガラスの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001031434A (ja) * 1999-07-19 2001-02-06 Nippon Electric Glass Co Ltd 板ガラスの成形方法および成形装置
JP2004203691A (ja) * 2002-12-26 2004-07-22 Nippon Electric Glass Co Ltd 板ガラス成形装置及び板ガラス成形方法
JP2004284843A (ja) * 2003-03-20 2004-10-14 Nippon Electric Glass Co Ltd 板ガラス成形装置及び板ガラス成形方法
JP2007112665A (ja) * 2005-10-20 2007-05-10 Nippon Electric Glass Co Ltd 液晶板ガラス用加熱装置および液晶板ガラス用炉ならびに液晶板ガラスの製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9840436B2 (en) 2013-02-25 2017-12-12 Corning Incorporated Methods for measuring the asymmetry of a glass-sheet manufacturing process
US9187365B2 (en) 2013-02-25 2015-11-17 Corning Incorporated Methods for measuring the asymmetry of a glass-sheet manufacturing process
WO2016100432A1 (en) * 2014-12-19 2016-06-23 Corning Incorporated Method and apparatus for isopipe support and sag mitigation
US10745312B2 (en) 2014-12-19 2020-08-18 Corning Incorporated Method and apparatus for isopipe support and sag mitigation
JP2020193148A (ja) * 2014-12-19 2020-12-03 コーニング インコーポレイテッド アイソパイプ支持及びたわみ緩和のための方法及び装置
US20210300807A1 (en) * 2018-08-10 2021-09-30 Corning Incorporated Apparatus and methods for fabricating glass ribbon
CN112566874A (zh) * 2018-08-13 2021-03-26 Agc株式会社 玻璃板的制造装置及玻璃板的制造装置所使用的成型部件
CN113677636A (zh) * 2019-06-07 2021-11-19 日本电气硝子株式会社 玻璃板制造装置以及玻璃板制造方法
KR20220016823A (ko) 2019-06-07 2022-02-10 니폰 덴키 가라스 가부시키가이샤 유리판 제조 장치 및 유리판 제조 방법
WO2021158460A1 (en) * 2020-02-03 2021-08-12 Corning Incorporated Methods and apparatus for manufacturing a glass ribbon
CN115190869A (zh) * 2020-02-03 2022-10-14 康宁公司 用于制造玻璃带的方法和设备
WO2022014288A1 (ja) * 2020-07-16 2022-01-20 日本電気硝子株式会社 ガラス物品の製造方法
WO2022131179A1 (ja) * 2020-12-16 2022-06-23 日本電気硝子株式会社 ガラス成形装置
WO2022131177A1 (ja) * 2020-12-16 2022-06-23 日本電気硝子株式会社 ガラス成形装置
KR20230115289A (ko) 2020-12-16 2023-08-02 니폰 덴키 가라스 가부시키가이샤 유리 성형 장치
KR20230121597A (ko) 2020-12-16 2023-08-18 니폰 덴키 가라스 가부시키가이샤 유리 성형 장치

Also Published As

Publication number Publication date
CN102811959A (zh) 2012-12-05
KR20120132676A (ko) 2012-12-07
CN102811959B (zh) 2015-04-29
JPWO2012132309A1 (ja) 2014-07-24
TW201247561A (en) 2012-12-01

Similar Documents

Publication Publication Date Title
WO2012132309A1 (ja) ガラス板の製造方法及びガラス板製造装置
JP5189224B2 (ja) ガラス板の製造方法及びガラス板製造装置
JP6125572B2 (ja) ガラス板の製造方法及びガラス板の製造装置
JP6365826B2 (ja) ガラス
JP5162725B2 (ja) ガラス板の製造方法及びガラス板製造装置
WO2013099855A1 (ja) 無アルカリガラス
CN102001825A (zh) 一种用于平板显示器的无碱玻璃及其熔制工艺
JP5848329B2 (ja) ガラス板の製造方法及びガラス板製造装置
WO2009081740A1 (ja) ガラス板の製造方法及び製造設備
JP6629920B2 (ja) ガラス基板の製造方法、及びガラス基板製造装置
JP6276218B2 (ja) ガラス板の製造方法
JP6577215B2 (ja) ガラス基板の製造方法
CN114685043A (zh) 一种高液相线粘度的电子玻璃和制备方法
JP5651634B2 (ja) ガラス板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000557.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012514669

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20127013152

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764779

Country of ref document: EP

Kind code of ref document: A1