WO2012132216A1 - Signal processing circuit and signal processing method - Google Patents

Signal processing circuit and signal processing method Download PDF

Info

Publication number
WO2012132216A1
WO2012132216A1 PCT/JP2012/001278 JP2012001278W WO2012132216A1 WO 2012132216 A1 WO2012132216 A1 WO 2012132216A1 JP 2012001278 W JP2012001278 W JP 2012001278W WO 2012132216 A1 WO2012132216 A1 WO 2012132216A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
error signal
output
subtractor
processing circuit
Prior art date
Application number
PCT/JP2012/001278
Other languages
French (fr)
Japanese (ja)
Inventor
元紀 水田
Original Assignee
ルネサスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルネサスエレクトロニクス株式会社 filed Critical ルネサスエレクトロニクス株式会社
Publication of WO2012132216A1 publication Critical patent/WO2012132216A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals

Definitions

  • the present invention relates to a signal processing circuit and a signal processing method, and more particularly to a signal processing circuit and a signal processing method for removing an error signal.
  • FIG. 22 is a block diagram showing a configuration of a filter circuit 600 according to Patent Document 1. As shown in FIG. The filter circuit 600 is a filter circuit for the purpose of equalizing the signal delays of the two paths and accurately removing the error signal.
  • the sampler 610 when a signal including an error signal is input from the frequency converter 601, the sampler 610 generates an analog discrete time signal.
  • the analog discrete time signal is converted into a digital signal by an A / D converter (ADC) 621.
  • ADC A / D converter
  • the digital signal passes through a digital filter 622 that extracts signals outside the desired band.
  • the digital signal is then converted to an analog signal by a D / A converter (DAC) 630.
  • the subtracter 650 subtracts the analog signal generated by the DAC 630 from the analog discrete time signal that has passed through the delay unit 640.
  • the subtraction result of the subtracter 650 is converted into a digital signal by an A / D converter (ADC) 602 and output.
  • ADC A / D converter
  • FIG. 23 is a block diagram showing a configuration of a noise cancellation circuit 700 according to Patent Document 3.
  • a signal including a noise signal in a desired wave signal is input from the antenna 701.
  • the filter 702 attenuates the desired wave signal included in the input signal and extracts only the noise signal.
  • the phase inverting unit 703 inverts the phase of the noise signal.
  • the oscillation unit 706 oscillates a noise signal at a predetermined frequency.
  • the level adjustment unit 705 adjusts the level of the oscillated noise signal.
  • the phase synchronization unit 704 synchronizes the phase of the noise signal whose phase is inverted and the noise signal subjected to level adjustment.
  • Adder 707 adds the input signal and the output of phase synchronization section 704.
  • the output of the phase synchronization unit 704 is output to a reception circuit or the like through the LNA 708.
  • the filter 702, the phase inversion unit 703, the phase synchronization unit 704, the level adjustment unit 705, and the oscillation unit 706 constitute an interference wave countermeasure unit 750.
  • the inventors have studied the above-described technique and found that, depending on the above-described circuit, the error signal cannot be removed when the frequency of the error signal is the same as or close to the frequency of the desired wave signal. This problem occurs because when the error signal is extracted, if the frequency band of the desired wave signal is attenuated, an error signal having the same frequency as or close to that of the desired wave signal is attenuated.
  • the signal processing circuit which is one embodiment of the present invention is the same as the signal output by the signal source output from the sensor circuit when the sensor circuit connected to the signal source does not detect the signal to be detected.
  • a storage device for storing a signal waveform of a frequency error signal for a predetermined period, and a reproduction error signal for repeatedly outputting a reproduction error signal obtained by reproducing the error signal from the signal waveform stored in the storage device for each predetermined period
  • a signal processing circuit which is one embodiment of the present invention extracts an error signal having a frequency that is the same as or close to that of a desired wave signal. Then, the error signal is subtracted by the extracted error signal. Thereby, an error signal can be removed.
  • the signal processing method is the same as the signal output from the signal source that is output from the sensor circuit when the sensor circuit connected to the signal source does not detect the signal to be detected.
  • a signal waveform of a frequency error signal for a predetermined period is stored in a storage device, and a reproduction error signal obtained by reproducing the error signal from the signal waveform stored in the storage device is repeatedly output for each predetermined period.
  • the first subtracter outputs a signal obtained by subtracting the reproduction error signal from the error signal to an output terminal, and the output of the first subtracter is not detected by the sensor circuit.
  • the supply timing of the reproduction error signal to the first subtracter is adjusted so that the signal level of the signal is minimized.
  • the signal processing method extracts an error signal having a frequency that is the same as or close to that of the desired wave signal. Then, the error signal is subtracted by the extracted error signal. Thereby, an error signal can be removed.
  • the present invention it is possible to provide a signal processing circuit and a signal processing method capable of removing an error signal that is the same as or close to that of a desired wave signal.
  • FIG. 1 is a block diagram schematically showing a configuration of a signal processing circuit 100 according to a first exemplary embodiment.
  • 3 is a flowchart showing an error signal removal operation of the signal processing circuit 100 according to the first exemplary embodiment;
  • FIG. 3 is a block diagram showing ON / OFF of first to third switches of the signal processing circuit 100 according to the first exemplary embodiment;
  • FIG. 3 is a block diagram showing ON / OFF of first to third switches of the signal processing circuit 100 according to the first exemplary embodiment;
  • FIG. 3 is a block diagram showing ON / OFF of first to third switches of the signal processing circuit 100 according to the first exemplary embodiment;
  • 6 is a timing chart illustrating an operation of the signal processing circuit 200 according to the second exemplary embodiment;
  • FIG. 3 is a block diagram schematically showing a configuration of a signal processing circuit 200 according to a second exemplary embodiment.
  • 6 is a flowchart showing an error signal removal operation of the signal processing circuit 200 according to the second exemplary embodiment;
  • FIG. 6 is a block diagram showing ON / OFF of first to third switches of a signal processing circuit 200 according to a second exemplary embodiment.
  • FIG. 6 is a block diagram showing ON / OFF of first to third switches of a signal processing circuit 200 according to a second exemplary embodiment.
  • FIG. 6 is a block diagram showing ON / OFF of first to third switches of a signal processing circuit 200 according to a second exemplary embodiment.
  • 6 is a timing chart illustrating an operation of the signal processing circuit 200 according to the second exemplary embodiment;
  • FIG. 6 is a block diagram schematically showing a configuration of a signal processing circuit 300 according to a third exemplary embodiment.
  • 10 is a flowchart showing an error signal removal operation of the signal processing circuit 300 according to the third exemplary embodiment.
  • FIG. 6 is a block diagram showing ON / OFF of first to third switches of a signal processing circuit 300 according to a third exemplary embodiment.
  • FIG. 6 is a block diagram showing ON / OFF of first to third switches of a signal processing circuit 300 according to a third exemplary embodiment.
  • FIG. 6 is a block diagram showing ON / OFF of first to third switches of a signal processing circuit 300 according to a third exemplary embodiment.
  • 10 is a timing chart illustrating an operation of the signal processing circuit 300 according to the third exemplary embodiment.
  • FIG. 6 is a block diagram schematically showing a configuration of a signal processing circuit 400 according to a fourth exemplary embodiment.
  • 10 is a flowchart illustrating an error signal removal operation of the signal processing circuit 400 according to the fourth embodiment.
  • FIG. 6 is a block diagram showing ON / OFF of first to third switches of a signal processing circuit 400 according to a fourth exemplary embodiment.
  • FIG. 6 is a block diagram showing ON / OFF of first to third switches of a signal processing circuit 400 according to a fourth exemplary embodiment.
  • FIG. 6 is a block diagram showing ON / OFF of first to third switches of a signal processing circuit 400 according to a fourth exemplary embodiment.
  • 10 is a timing chart illustrating an operation of the signal processing circuit 400 according to the fourth embodiment.
  • FIG. 10 is a timing chart illustrating an operation of the signal processing circuit 400 according to the fourth embodiment.
  • FIG. 10 is a block diagram schematically showing a configuration of a signal processing circuit 500 according to a fifth embodiment. 10 is a flowchart showing an error signal removal operation of the signal processing circuit 500 according to the fifth exemplary embodiment.
  • FIG. 10 is a block diagram showing on / off of first to third switches of a signal processing circuit 500 according to a fifth exemplary embodiment;
  • FIG. 10 is a block diagram showing on / off of first to third switches of a signal processing circuit 500 according to a fifth exemplary embodiment;
  • FIG. 10 is a block diagram showing on / off of first to third switches of a signal processing circuit 500 according to a fifth exemplary embodiment;
  • 10 is a timing chart illustrating an operation of the signal processing circuit 500 according to the fifth embodiment;
  • FIG. 10 is a block diagram schematically showing a configuration of a signal processing circuit 500 according to a fifth embodiment. 10 is a flowchart showing an error signal removal operation of the signal processing circuit 500 according to the fifth exemplary embodiment.
  • FIG. 10 is a block diagram
  • 10 is a block diagram schematically showing a configuration of a signal processing system 1000 according to a sixth exemplary embodiment.
  • 10 is a block diagram illustrating a configuration of a filter circuit 600 according to Patent Document 1.
  • FIG. 10 is a block diagram showing a configuration of a noise cancellation circuit 700 according to Patent Document 3.
  • FIG. 10 is a block diagram schematically showing a configuration of a signal processing system 1000 according to a sixth exemplary embodiment.
  • 10 is a block diagram illustrating a configuration of a filter circuit 600 according to Patent Document 1.
  • FIG. 10 is a block diagram showing a configuration of a noise cancellation circuit 700 according to Patent Document 3.
  • FIG. 1 is a block diagram schematically illustrating the configuration of the signal processing circuit 100 according to the first embodiment.
  • the signal processing circuit 100 is connected to the signal source 101 via the sensor circuit 102a.
  • the signal source 101 outputs a desired wave signal Sd.
  • the sensor circuit 102a detects a detected signal generated by an operation of a user of an apparatus in which the signal processing circuit 100 is incorporated.
  • the sensor circuit 102a is an ideal circuit whose output is zero when there is no user operation, that is, when no detected signal is detected.
  • the signal processing circuit 100 includes a first subtractor 11, a second subtractor 12, an analog / digital converter (hereinafter referred to as ADC) 13, a multi-input OR circuit 14, a storage device 15, a digital / digital converter It has an analog converter (Digital-to-Analog Converter: hereinafter referred to as DAC) 16, a filter 17, a control circuit 18, first to third switches SW11 to SW13, an output terminal Tout, and signal terminals Ten and Tend.
  • ADC analog / digital converter
  • DAC Digital-to-Analog Converter
  • the first subtractor 11 has a non-inverting input terminal connected to the output of the sensor circuit 102a, and an inverting input terminal connected to the output of the filter 17 via the second switch SW12.
  • the output of the first subtractor 11 is connected to the output terminal Tout and outputs an output signal Vout.
  • the output of the first subtractor 11 is connected to the input of the ADC 13 via the third switch SW13.
  • the second subtracter 12 has a non-inverting input terminal connected to the output of the sensor circuit 102a and an inverting input terminal connected to the ground.
  • the output of the second subtractor 12 is connected to the input of the ADC 13 via the first switch SW11.
  • the output of the ADC 13 is connected to the inputs of the multi-input OR circuit 14 and the storage device 15.
  • the number of outputs of the ADC 13 is set according to the number of bits of the output of the ADC 13.
  • An output OR_out of the multi-input OR circuit 14 is connected to a corresponding input of the control circuit 18.
  • the output of the storage device 15 is connected to the input of the DAC 16.
  • the output of the DAC 16 is connected to the input of the filter 17.
  • the control circuit 18 receives the enable signal en from the outside of the signal processing circuit 100 via the signal terminal Ten.
  • the control circuit 18 outputs control signals SIG11 to SIG13 to the first to third switches SW11 to SW13 and a control signal SIGm to the storage device 15.
  • the control circuit 18 outputs a completion signal end to the outside of the signal processing circuit 100 via the signal terminal Tend.
  • FIG. 2 is a flowchart showing the error signal removal operation of the signal processing circuit 100.
  • 3A to 3C are block diagrams showing ON / OFF of the first to third switches SW11 to SW13 of the signal processing circuit 100.
  • FIG. 4 is a timing chart showing the operation of the signal processing circuit 100.
  • the sensor circuit 102a is a circuit in which the output is ideally 0 when the detected signal is not detected (when not detected), but actually, even when the detected signal is detected.
  • An error signal is output.
  • This error signal is a signal that depends on the circuit configuration such as between the signal source and the sensor circuit, and has the same frequency as the desired wave signal output from the signal source. As shown in FIG. 4, in the initial state, the error signal err1 having the same frequency as the desired wave signal is output from the sensor circuit 102a.
  • the control circuit 18 determines whether or not the enable signal en is High (Step S101 in FIG. 2). If the enable signal is High, the control circuit 18 shifts to the error signal extraction mode (Step S102 in FIG. 2, timing T11 in FIG. 4). The control circuit 18 switches the storage device 15 to the write mode by the control signal SIGm (step S103 in FIG. 2).
  • the control circuit 18 turns on the first switch SW11 by the control signal SIG11 as shown in FIG. 3A. Further, the control circuit 18 turns off the second switch SW12 and the third switch SW13 by the control signals SIG12 and SIG13 (step S104 in FIG. 2).
  • the ADC 13 outputs a digital error signal err1_D obtained by A / D converting the error signal err1 output from the first subtractor 11 to the storage device 15 (step S105 in FIG. 2).
  • the storage device 15 stores the value of each bit of the digital error signal err1_D.
  • the storage device 15 stores a digital error signal err1_D for a period of at least one cycle of the desired wave signal Sd.
  • a period in which the storage device 15 stores the digital error signal err1_D is at least one period of the desired wave signal Sd is referred to as an error signal extraction period.
  • the storage device 15 stores the digital error signal err1_D according to the storage timing determined by dividing the error signal extraction period into a predetermined time (step S106 in FIG. 2).
  • the storage device 15 stores the digital error signal err1_D multiple times during the cycle T, for example.
  • the number of times the digital error signal err1_D is stored during the period T it is possible to reflect the fluctuation of the digital error signal err1_D during the period T.
  • a plurality of storage operations can be performed at regular intervals, for example. In this case, for example, the storage operation can be performed based on the clock signal CLK from the control circuit 18. Thereby, the waveform of the digital error signal err1_D during one cycle can be stored as a digital value.
  • control circuit 18 can also control the number of set repetitions by a control signal SIGm.
  • the control circuit 18 determines whether a predetermined time has elapsed since the storage device 15 started the storage operation (step S107 in FIG. 2). In this determination, it is determined whether a predetermined error signal extraction period has elapsed or a storage operation has been performed for a predetermined number of sets.
  • control circuit 18 shifts to the timing adjustment mode (step S108 in FIG. 2).
  • the control circuit 18 switches the storage device 15 to the read mode by the control signal SIGm (step S109 in FIG. 2).
  • the control circuit 18 turns off the first switch SW11 by the control signal SIG11.
  • the control circuit 18 turns on the second switch SW12 and the third switch SW13 by the control signals SIG12 and SIG13 (step S110 in FIG. 2, timing T12 in FIG. 4).
  • the control circuit 18 outputs the digital error signal err1_D stored in the storage device 15 by the control signal SIGm.
  • the DAC 16 outputs a reproduction error signal err1_R obtained by D / A converting the digital error signal err1_D to the filter 17. That is, the reproduction error signal err1_R output from the DAC 16 is an analog signal reproduced from the digital error signal err1_D stored in the storage device 15.
  • the filter 17 outputs the reproduction error signal err1_F obtained by removing the high frequency component from the reproduction error signal err1_R to the inverting input terminal of the first subtractor 11 via the second switch SW12 (step S111 in FIG. 2). .
  • the error signal err1 from the sensor circuit 102a is supplied to the non-inverting input terminal of the first subtractor 11. Therefore, the first subtractor 11 subtracts the reproduction error signal err1_RD from the error signal err1 (step S112 in FIG. 2).
  • the reproduction error signal err1_F is a reproduction of the digital error signal err1_D stored in the storage device 15. Therefore, even if a certain amount of waveform change occurs due to D / A conversion, A / D conversion, and filtering, the waveforms of the reproduction error signal err1_F and the error signal err1 are approximate or match. Therefore, if the timings of the error signal err1 and the reproduction error signal err1_F coincide with each other, the output of the first subtractor 11 is minimized and can be ideally zero. Therefore, in order to minimize the output of the first subtractor 11, it is necessary to match the timings of the error signal err1 and the reproduction error signal err1_F. Therefore, the output signal Vout of the first subtractor 11 is supplied to the ADC 13 via the third switch SW13. The ADC 13 outputs a digital signal Vout_D obtained by A / D converting the output signal Vout to the multi-input OR circuit 14.
  • the output signal Vout is 0 level. Therefore, when any bit of the digital signal Vout_D is “1”, it means that the timing of the error signal err1 and the reproduction error signal err1_F is shifted.
  • the output OR_out of the multi-input OR circuit 14 is “1” when any bit of the digital signal Vout_D is “1”, and “0” when all the bits of the digital signal Vout_D are “0”. " That is, the multi-input OR circuit 14 can detect whether or not there is a timing shift between the error signal err1 and the reproduction error signal err1_F (step S113 in FIG. 2).
  • the control circuit 18 delays the output timing of the storage device 15 by one step by the control signal SIGm (step S114 in FIG. 2, timing T13 in FIG. 4).
  • the delay amount (step) of the output timing may be specified by the control circuit 18 or may be one cycle or half cycle of the clock signal input to the storage device 15. Step S114 is repeated until the output OR_out of the multi-input OR circuit 14 becomes “0”.
  • the control circuit 18 turns on the second switch SW12 by the control signal SIG12 as shown in FIG. 3C. Further, the control circuit 18 turns off the first switch SW11 and the third switch SW13 by the control signals SIG11 and SIG13 (step S115 in FIG. 2). Then, the control circuit 18 outputs a completion signal end indicating that the timing adjustment has been completed, and ends the error signal removal process (step S116 in FIG. 2, timing T14 in FIG. 4).
  • the signal processing circuit 100 performs a normal operation. As described above, the signal processing circuit 100 removes the error signal of the output signal Vout by subtracting the reproduction error signal err1_F from the error signal err1 at an appropriate timing. Therefore, only the detected signal is reflected in the output signal Vout. Therefore, according to this configuration, it is possible to remove an error signal having a frequency that is the same as or close to that of the desired wave signal.
  • FIG. 5 is a block diagram schematically illustrating a configuration of the signal processing circuit 200 according to the second embodiment.
  • the signal processing circuit 200 has a configuration in which the second subtracter 12 and the first switch SW11 of the signal processing circuit 100 are deleted, and the first switch SW21 is added.
  • the first switch SW21 is connected between the inverting input terminal of the first subtractor 11 and the ground.
  • the first switch SW21 is turned on / off by a control signal SIG21 from the control circuit 18. Since the other configuration of the signal processing circuit 200 is the same as that of the signal processing circuit 100, description thereof is omitted.
  • FIG. 6 is a flowchart showing the error signal removal operation of the signal processing circuit 200.
  • 7A to 7C are block diagrams showing on / off of the first to third switches SW21, SW12, and SW13 of the signal processing circuit 200.
  • FIG. FIG. 8 is a timing chart showing the operation of the signal processing circuit 200. Timings T21 to T24 in FIG. 8 correspond to timings T11 to T14 in FIG. 4, respectively.
  • Steps S201 to S203 are the same as steps S101 to S103 in FIG.
  • the control circuit 18 turns on the first switch SW21 and the third switch SW13 by the control signals SIG21 and SIG13. Further, the control circuit 18 turns off the second switch SW12 by the control signal SIG12 (step S204 in FIG. 6).
  • steps S205 to S209 are the same as steps S105 to S109 in FIG.
  • the control circuit 18 After switching the storage device 15 to the write mode, as shown in FIG. 7B, the control circuit 18 turns off the first switch SW21 by the control signal SIG21. Further, the control circuit 18 turns on the second switch SW12 and the third switch SW13 by the control signals SIG12 and SIG13 (step S210 in FIG. 6). Subsequent steps S211 to S214 are the same as steps S111 to S114 in FIG.
  • step S216 is the same as step S116 of FIG.
  • the signal processing circuit 200 performs a normal operation in the same manner as the signal processing circuit 100.
  • the signal processing circuit 200 removes the error signal of the output signal Vout by subtracting the reproduction error signal err1_F from the error signal err1 at an appropriate timing. Therefore, only the detected signal is reflected in the output signal Vout. Therefore, according to this configuration, similarly to the first embodiment, it is possible to remove an error signal having a frequency that is the same as or close to that of the desired wave signal.
  • FIG. 9 is a block diagram schematically illustrating the configuration of the signal processing circuit 300 according to the third embodiment.
  • the signal processing circuit 300 has a configuration in which the filter 17 of the signal processing circuit 200 is removed and another filter 27 is added.
  • the filter 27 is inserted between the output of the first subtractor 11 and the output terminal Tout. Since the other configuration of the signal processing circuit 300 is the same as that of the signal processing circuit 200, description thereof is omitted.
  • the signal processing circuit 300 is a modification of the signal processing circuit 200 according to the second embodiment.
  • FIG. 10 is a flowchart showing the error signal removal operation of the signal processing circuit 300.
  • 11A to 11C are block diagrams showing on / off of the first to third switches SW21, SW12, and SW13 of the signal processing circuit 300.
  • FIG. FIG. 12 is a timing chart showing the operation of the signal processing circuit 300. Timings T31 to T34 in FIG. 12 correspond to timings T11 to T14 in FIG. 4, respectively.
  • Steps S301 to S303 are the same as steps S101 to S103 in FIG.
  • the control circuit 18 turns on the first switch SW21 and the third switch SW13 by the control signals SIG21 and SIG13. Further, the control circuit 18 turns off the second switch SW12 by the control signal SIG12 (step S304 in FIG. 10).
  • the first subtractor 11 outputs an error signal err1 to the filter 27.
  • the filter 27 is a filter that passes a signal having a frequency that is the same as or close to that of the desired wave signal Sd. Therefore, the error signal err1 passes through the filter 27 and is input to the ADC 13 via the third switch SW13.
  • the ADC 13 outputs a digital error signal err1_D obtained by A / D converting the error signal err1 to the storage device 15 (step S305 in FIG. 10).
  • Subsequent steps S306 to S309 are the same as steps S106 to S109 in FIG.
  • control circuit 18 After switching the storage device 15 to the read mode, the control circuit 18 turns off the first switch SW21 by the control signal SIG21 as shown in FIG. 11B. Further, the control circuit 18 turns on the second switch SW12 and the third switch SW13 by the control signals SIG12 and SIG13 (step S310 in FIG. 10).
  • control circuit 18 outputs the digital error signal err1_D stored in the storage device 15 by the control signal SIGm.
  • the DAC 16 outputs the reproduction error signal err1_R obtained by D / A converting the digital error signal err1_D to the inverting input terminal of the first subtractor 11 via the second switch SW12 (step S311 in FIG. 10).
  • the error signal err1 from the sensor circuit 102a is supplied to the non-inverting input terminal of the first subtractor 11. Therefore, the first subtracter 11 subtracts the reproduction error signal err1_R from the error signal err1 (step S312 in FIG. 10).
  • the filter 27 outputs a signal obtained by removing the high frequency component from the output of the first subtracter 11 as the output signal Vout.
  • the reproduction error signal err1_R is a reproduction of the digital error signal err1_D stored in the storage device 15. Therefore, even if the waveform changes to some extent by D / A conversion and A / D conversion, the waveforms of the reproduction error signal err1_R and the error signal err1 are approximated.
  • the signal processing circuit 300 does not filter the reproduction error signal err1_R, a high frequency component remains in the reproduction error signal err1_R.
  • the filter 27 is connected between the output of the first subtractor 11 and the output terminal Tout, the high frequency component resulting from the D / A conversion is removed from the output of the first subtractor 11. The Therefore, in this case, the output signal Vout of the signal processing circuit 300 is equivalent to that of the signal processing circuit 200.
  • the output of the first subtractor 11 is minimized and can be ideally zero. Therefore, in order to minimize the output of the first subtractor 11, it is necessary to match the timings of the error signal err1 and the reproduction error signal err1_R.
  • step S316 is the same as step S116 of FIG.
  • the signal processing circuit 300 After completion of the timing adjustment, the signal processing circuit 300 performs a normal operation in the same manner as the signal processing circuit 200. As described above, the signal processing circuit 300 removes the error signal of the output signal Vout by subtracting the reproduction error signal err1_R from the error signal err1 at an appropriate timing. Therefore, only the detected signal is reflected in the output signal Vout. Therefore, according to this configuration, similarly to the signal processing circuits 100 and 200, an error signal having a frequency that is the same as or close to that of the desired wave signal can be removed.
  • FIG. 13 is a block diagram schematically illustrating a configuration of the signal processing circuit 400 according to the fourth embodiment.
  • the signal processing circuit 400 has a configuration in which a delay line 40 is added to the signal processing circuit 300.
  • the delay line 40 is connected between the DAC 16 and the third switch SW13. Since the other configuration of the signal processing circuit 400 is the same as that of the signal processing circuit 300, description thereof is omitted.
  • FIG. 14 is a flowchart showing the error signal removal operation of the signal processing circuit 400.
  • 15A to 15C are block diagrams showing on / off of the first to third switches SW21, SW12, and SW13 of the signal processing circuit 400.
  • FIG. FIG. 16 is a timing chart showing the operation of the signal processing circuit 400. Timings T41 to T44 in FIG. 16 correspond to timings T11 to T14 in FIG. 4, respectively.
  • Steps S401 to S410 are the same as steps S101 to S110 in FIG.
  • the control circuit 18 outputs the digital error signal err1_D stored in the storage device 15 by the control signal SIGm.
  • the DAC 16 outputs a reproduction error signal err1_R obtained by D / A converting the digital error signal err1_D to the delay line 40.
  • the delay line 40 receives the reproduction error signal err1_RD, the output timing of the reproduction error signal err1_R having been adjusted by the control signal SIG40 from the control circuit 18, via the second switch SW12, and the inverting input terminal of the first subtractor 11. Output to.
  • the reproduction error signal err1_RD is an analog signal reproduced from the digital error signal err1_D stored in the storage device 15 (step S411 in FIG. 14).
  • the error signal err1 from the sensor circuit 102a is supplied to the non-inverting input terminal of the first subtractor 11. Therefore, the first subtracter 11 subtracts the reproduction error signal err1_RD from the error signal err1 (step S412 in FIG. 14).
  • the reproduction error signal err1_RD is a reproduction of the digital error signal err1_D stored in the storage device 15. Therefore, even if the waveform changes to some extent by D / A conversion and A / D conversion, the waveforms of the reproduction error signal err1_RD and the error signal err1 are approximated. Since the signal processing circuit 400 does not filter the reproduction error signal err1_RD, a high frequency component remains in the reproduction error signal err1_RD. However, since the filter 27 is connected between the output of the first subtractor 11 and the output terminal Tout, the high-frequency component due to D / A conversion is removed from the output signal Vout. Therefore, in this case, the output signal Vout of the signal processing circuit 400 is equivalent to that of the signal processing circuit 300.
  • the output of the first subtracter 11 is minimized and can be ideally zero. Therefore, in order to minimize the output of the first subtractor 11, it is necessary to match the timings of the error signal err1 and the reproduction error signal err1_RD.
  • step S413 is the same as step S113 in FIG.
  • the control circuit 18 delays the output timing of the delay line 40 by one step by the control signal SIG40 (step S414 in FIG. 14, timing T43 in FIG. 16).
  • the control circuit 18 may specify the output timing delay amount (step). Step S414 is repeated until the output OR_out of the multi-input OR circuit 14 becomes “0”.
  • step S416 is the same as step S116 of FIG.
  • the signal processing circuit 400 After the timing adjustment, the signal processing circuit 400 performs a normal operation in the same manner as the signal processing circuit 300. As described above, the signal processing circuit 400 removes the error signal of the output signal Vout by subtracting the reproduction error signal err1_RD from the error signal err1 at an appropriate timing. Therefore, only the detected signal is reflected in the output signal Vout. Therefore, according to this configuration, similarly to the signal processing circuits 100, 200, and 300, an error signal having a frequency that is the same as or close to that of the desired wave signal can be removed.
  • the delay line 40 adjusts the output timing of the reproduction error signal err1 which is an analog signal. Therefore, it is possible to finely adjust the output timing by using the delay line.
  • Embodiment 5 a signal processing circuit 500 according to a fifth embodiment of the present invention will be described.
  • a touch panel is used as a sensor circuit
  • the size of touch panels may be increased.
  • a capacitive touch panel for example, a uniform electric field is generated on the entire touch panel, so that power consumption increases as the size of the touch panel increases.
  • the area is 25 times and the power consumption is 25 times. Therefore, the performance of the IC corresponding to the 50-inch touch panel is also required 25 times.
  • the power consumption is not limited to a simple area doubled, and the power consumption can be further increased.
  • FIG. 17 is a block diagram schematically showing the configuration of the signal processing circuit 500 according to the fifth embodiment.
  • the signal processing circuit 500 is a modification of the signal processing circuit 300.
  • the signal processing circuit 500 has a configuration in which a third subtracter 50 and a fourth switch SW54 are added to the signal processing circuit 300.
  • the signal processing circuit 500 has a configuration in which the first switch SW21 of the signal processing circuit 300 is replaced with a first switch SW51.
  • a capacitive touch panel 102b is displayed as a sensor circuit.
  • the signal processing circuits 500 and 501 to 503 correspond to signal processing circuits that detect touch positions of the touch panel from four corners.
  • Each of the signal processing circuits 501 to 503 is a circuit equivalent to the signal processing circuit 500.
  • the inverting input terminal of the third subtracter 50 is connected to the output of the DAC 16, and the non-inverting input terminal is connected to the output terminal Tout.
  • the fourth switch SW54 is connected between the output of the third subtracter 50 and the input of the ADC 13.
  • the first switch SW51 is connected between the inverting input terminal of the first subtractor 11 and the signal source 101.
  • the first switch SW51 and the fourth switch SW54 are turned on / off by control signals SIG51 and SIG54 from the control circuit 18, respectively. Since the other configuration of the signal processing circuit 500 is the same as that of the signal processing circuit 300, the description thereof is omitted.
  • FIG. 18 is a flowchart showing the error signal removal operation of the signal processing circuit 500.
  • 19A to 19C are block diagrams showing on / off of the first to fourth switches SW51, SW12, SW13, and SW54 of the signal processing circuit 500.
  • FIG. FIG. 20 is a timing chart showing the operation of the signal processing circuit 500. Note that timings T51 to T54 in FIG. 20 correspond to timings T11 to T14 in FIG. 4, respectively.
  • the touch panel 102b which is the sensor circuit in this embodiment is ON
  • the touch panel 102b when the touch is not detected, that is, when the detected signal is not detected, ideally the same signal as the input is output. That is, the touch panel 102b when not detected ideally outputs the desired wave signal Sd as it is.
  • Steps S501 to S503 are the same as steps S301 to S303 in FIG.
  • the control circuit 18 turns on the first switch SW51 and the third switch SW13 by the control signals SIG51 and SIG13 as shown in FIG. 19A. Further, the control circuit 18 turns off the second switch SW12 and the fourth switch SW54 by the control signals SIG12 and SIG54 (step S504 in FIG. 18).
  • the first subtracter 11 subtracts the desired wave signal Sd from the output signal S_out of the sensor circuit including the error signal. As a result, the first subtractor 11 extracts the error signal err5. The extracted error signal err5 is supplied to the ADC 13 via the filter 27 and the third switch SW13.
  • the ADC 13 outputs a digital error signal err5_D obtained by A / D converting the error signal err5 to the storage device 15 (step S505 in FIG. 18).
  • the storage device 15 stores the value of each bit of the digital error signal err5_D (step S506 in FIG. 8). Note that the specific storage operation of the storage device 15 is the same as that of the first embodiment, and thus the description thereof is omitted. Subsequent steps S507 to S509 are the same as steps S307 to 309 in FIG.
  • control circuit 18 turns on the first switch SW51 and the fourth switch SW54 by the control signals SIG51 and SIG54 as shown in FIG. 19B. Further, the control circuit 18 turns off the second switch SW12 and the third switch SW13 by the control signals SIG12 and SIG13 (step S510 in FIG. 18).
  • control circuit 18 outputs the digital error signal err5_D stored in the storage device 15 by the control signal SIGm.
  • the DAC 16 outputs a reproduction error signal err5_R obtained by D / A converting the digital error signal err5_D to the inverting input terminal of the third subtracter 50 (step S511 in FIG. 18).
  • the third subtracter 50 outputs the output signal AMP_out obtained by subtracting the reproduction error signal err5_R from the error signal err5 to the ADC 13 via the fourth switch SW54 (step S512 in FIG. 18).
  • the reproduction error signal err5_R is a reproduction of the digital error signal err5_D stored in the storage device 15. Therefore, even if the waveform changes to some extent by D / A conversion and A / D conversion, the waveforms of the reproduction error signal err5_R and the error signal err5 are approximated.
  • the error signal component included in the output signal Vout can be minimized, and can be ideally zero. Therefore, in order to minimize the error signal component included in the output signal Vout, it is necessary to match the timings of the error signal err5 and the reproduction error signal err5_R.
  • the output signal Vout is 0 level. Therefore, when any bit of the digital signal AMP_out_D generated by the ADC 13 is “1”, it means that the timing of the error signal err5 and the reproduction error signal err5_R is shifted.
  • the output OR_out of the multi-input OR circuit 14 is “1” when any bit of the digital signal AMP_out_D is “1”, and “0” when all the bits of the digital signal AMP_out_D are “0”.
  • the multi-input OR circuit 14 can detect the presence / absence of a timing shift between the error signal err5 and the reproduction error signal err5_R (step S513 in FIG. 18).
  • step S514 is the same as step S214 in FIG.
  • step S516 is the same as step S216 in FIG.
  • the signal processing circuit 500 does not filter the reproduction error signal err5_R, a high frequency component remains in the reproduction error signal err5_R.
  • the filter 27 is connected between the output of the first subtractor 11 and the output terminal Tout, the D / A conversion is performed from the output of the first subtractor 11 in the same manner as the signal processing circuit 300.
  • the high-frequency component resulting from is removed. Therefore, in this case, the output signal Vout of the signal processing circuit 500 is equivalent to that of the signal processing circuit 300.
  • the signal processing circuit 500 After completion of timing adjustment, the signal processing circuit 500 performs a normal operation in the same manner as the signal processing circuit 300. As described above, the signal processing circuit 500 removes the error signal of the output signal Vout by subtracting the reproduction error signal err5_R from the error signal err5 at an appropriate timing. Thereby, even when the output of the sensor circuit when the detected signal is not detected is not 0, the error signal component included in the output signal Vout can be removed. Therefore, only the detected signal is reflected in the output signal Vout. Therefore, according to this configuration, similarly to the signal processing circuit 300, it is possible to remove an error signal having a frequency that is the same as or close to that of the desired wave signal.
  • the third subtracter 50 performs the subtraction operation only at the time of timing adjustment. That is, the third subtracter 50 does not function except during timing adjustment. Therefore, the circuit configuration of the signal processing circuit 500 other than the timing adjustment is substantially the same as that of the signal processing circuit 300. Therefore, the output signal Vout can be obtained even when the output of the sensor circuit is not 0 by simply adding the third subtractor 50 and the fourth switch SW54 to the signal processing circuit 300 and the detected signal is not easily detected. It is possible to realize a signal processing circuit that can remove the error signal component included in the.
  • the detected signal can be easily detected simply by adding the third subtractor 50 and the fourth switch SW54 between the third switch SW13 of the signal processing circuits 100, 200 and 400 and the input of the ADC 13. Even when the output of the sensor circuit when it is not performed is not 0, it is possible to realize a signal processing circuit that can remove the error signal component included in the output signal Vout.
  • the first switch SW 21 of the signal processing circuit 100 corresponds to the first switch SW 51 of the signal processing circuit 500. Further, the inverting input of the second subtractor 12 of the signal processing circuit 100 is connected to the signal source 101.
  • FIG. 21 is a block diagram schematically illustrating a configuration of a signal processing system 1000 according to the sixth embodiment.
  • the signal processing system 1000 has a configuration in which a CPU 1001 is connected to the signal processing circuit 300 according to the third embodiment.
  • the CPU 1001 supplies an enable signal en to the signal terminal Ten of the signal processing circuit 300. Further, the CPU 1001 receives a completion signal end from the signal terminal Tend of the signal processing circuit 300.
  • the CPU 1001 can instruct the signal processing circuit 300 to start the error signal removal operation by the enable signal en.
  • This start command can be issued by the CPU 1001 in response to an instruction from the user of the system. Further, the CPU 1001 monitors the environmental temperature, and can issue a start command when there is a certain temperature fluctuation.
  • the CPU 1001 recognizes the completion of the error signal removal operation by receiving the completion signal end from the signal processing circuit 300. Then, the CPU 1001 can transition the level of the enable signal en, and cause the signal processing circuit 300 to end the error signal removal operation.
  • the signal processing circuit 300 is used, but it goes without saying that the signal processing circuit 100, 200, 300, or 500 can be used.
  • the CPU is connected to the signal processing circuit.
  • the signal processing circuit it is connected to another computer or a microcomputer to construct a system. It is also possible to do.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.
  • the filter 27 according to the third embodiment can be applied.
  • the delay line 40 according to the fourth embodiment can be applied to the signal processing circuits 100 and 200.
  • the signal processing circuit 500 is a signal processing in which the first switch SW51, the fourth switch SW54, and the third subtracter 50 are appropriately applied to the signal processing circuits 100, 200, 300, 400, and the above configuration change examples. It can also be replaced by a circuit.
  • the signal processing circuit 300 according to the sixth embodiment can be replaced not only with the signal processing circuits 100, 200, 400, and 500 but also with the signal processing circuit according to the above-described configuration change example.
  • a touch panel is used as a sensor circuit, but this is only an example. Therefore, the above-described signal processing circuit can be applied to any sensor circuit other than the touch panel.
  • the storage device 15 may be any storage device capable of writing / reading, and for example, a storage element such as a flash memory or other storage device capable of writing / reading may be used.
  • Second subtractor 13 ADC 14 Multi-input OR circuit 15 Storage device 16 DAC 17, 27 Filter 18 Control circuit 40 Delay line 50 Third subtractor 100, 200, 300, 400, 500 to 503 Signal processing circuit 101 Signal source 102a Sensor circuit 102b Touch panel 600 Filter circuit 601 Frequency converter 602, 621 A / D converter 610 Sampler 622 Digital filter 630 D / A converter 640 Delay unit 650 Subtractor 700 Noise cancellation circuit 701 Antenna 702 Filter 703 Phase inversion unit 704 Phase synchronization unit 705 Level adjustment unit 706 Oscillation unit 707 Adder 708 LNA 750 Interference wave countermeasure unit 1000 Signal processing system OR_out Output of multi-input OR circuit S_out Output signal of sensor circuit SIG11 to 13, SIG21, SIG40, SIG51, SIG54, SIGm Control signal SW11 to SW13, SW21, SW51, SW54 Switch Sd Desired wave Signal Ten, Tend signal terminal Tout output terminal Vout output signal Vout_

Abstract

When a sensor circuit (102a) which is connected to a signal source (101) does not detect a signal which is an object of detection, a storage device (15) stores a signal waveform of a prescribed interval of an error signal having the same frequency as that of a desired signal (Sd), which is outputted from the sensor circuit (102a). A D/A converter (16) repeatedly outputs a play error signal, which plays the error signal from a digital error signal which is stored in the storage unit (15), at prescribed intervals. A first subtraction device (11) outputs an output signal (Vout), wherein the play error signal is subtracted from the error signal, to an output terminal (Tout). In the state wherein the sensor circuit (102a) does not detect the signal which is the object of detection, a control circuit (18) adjusts the timing of the supply of the play error signal to the first subtraction device (11) such that the signal level of the output signal (Vout) of the first subtraction device (11) is minimized.

Description

信号処理回路及び信号処理方法Signal processing circuit and signal processing method
 本発明は信号処理回路及び信号処理方法に関し、特に誤差信号を除去する信号処理回路及び信号処理方法に関する。 The present invention relates to a signal processing circuit and a signal processing method, and more particularly to a signal processing circuit and a signal processing method for removing an error signal.
 電化製品での信号検出のため、センサ回路が広く用いられている。近年、センサ回路の高精度化が進展しており、希望波信号に乗った誤差信号の影響が問題となっている。そのため、誤差信号を除去する技術の重要性が増している。 Sensor circuits are widely used for signal detection in electrical appliances. In recent years, the accuracy of sensor circuits has been improved, and the influence of an error signal on a desired wave signal has become a problem. For this reason, the importance of techniques for removing error signals is increasing.
 誤差信号除去のため、フィルタ回路により誤差信号を除去する構成が知られている(特許文献1及び2)。図22は、特許文献1にかかるフィルタ回路600の構成を示すブロック図である。フィルタ回路600は、2つの経路の信号遅延を等しくし、誤差信号を精度よく除去することを目的としたフィルタ回路である。 A configuration is known in which an error signal is removed by a filter circuit in order to remove an error signal (Patent Documents 1 and 2). FIG. 22 is a block diagram showing a configuration of a filter circuit 600 according to Patent Document 1. As shown in FIG. The filter circuit 600 is a filter circuit for the purpose of equalizing the signal delays of the two paths and accurately removing the error signal.
 より具体的には、周波数変換器601から誤差信号を含む信号が入力された際、サンプラ610はアナログ離散時間信号を生成する。アナログ離散時間信号は、A/Dコンバータ(ADC)621でデジタル信号に変換される。デジタル信号は、所望帯域外の信号を抽出するデジタルフィルタ622を通過する。デジタル信号は、その後D/Aコンバータ(DAC)630でアナログ信号に変換される。そして、減算器650は、遅延器640を通過したアナログ離散時間信号から、DAC630で生成されたアナログ信号を減算する。減算器650の減算結果は、A/Dコンバータ(ADC)602によりデジタル信号に変換され、出力される。サンプラ610で生成されるアナログ離散時間信号は所定クロック分保持されて出力される。そのため、遅延器640により正確な信号遅延が生成され、減算器650において精度よく誤差信が除去される。この他にも、サンプラによって信号遅延を発生させるだけでなく、デジタルフィルタも制御することにより、正確な信号遅延を発生させる構成が知られている(特許文献2)。 More specifically, when a signal including an error signal is input from the frequency converter 601, the sampler 610 generates an analog discrete time signal. The analog discrete time signal is converted into a digital signal by an A / D converter (ADC) 621. The digital signal passes through a digital filter 622 that extracts signals outside the desired band. The digital signal is then converted to an analog signal by a D / A converter (DAC) 630. Then, the subtracter 650 subtracts the analog signal generated by the DAC 630 from the analog discrete time signal that has passed through the delay unit 640. The subtraction result of the subtracter 650 is converted into a digital signal by an A / D converter (ADC) 602 and output. The analog discrete time signal generated by the sampler 610 is held for a predetermined clock and output. Therefore, an accurate signal delay is generated by the delay unit 640, and the error signal is accurately removed by the subtractor 650. In addition to this, there is known a configuration in which an accurate signal delay is generated by controlling not only a signal delay by a sampler but also a digital filter (Patent Document 2).
 また、希望波信号の周波数と近接する所定の周波数のノイズ信号の影響を少なくすることを目的とし、適正に希望波信号を受信可能にするノイズキャンセル回路が知られている(特許文献3)。以下、例としてノイズキャンセル回路700について説明する。図23は、特許文献3にかかるノイズキャンセル回路700の構成を示すブロック図である。ノイズキャンセル回路700では、希望波信号にノイズ信号を含む信号がアンテナ701から入力される。フィルタ702は、入力信号に含まれる希望波信号を減衰させ、ノイズ信号のみを取り出す。位相反転部703は、ノイズ信号の位相を反転させる。一方、発振部706では所定の周波数でノイズ信号を発振する。レベル調節部705は、発振されたノイズ信号のレベルを調節する。位相同期部704は、位相を反転したノイズ信号とレベル調節を受けたノイズ信号の位相の同期を行う。加算器707は、入力信号と位相同期部704の出力とを加算する。位相同期部704の出力は、LNA708を通じて、受信回路等に出力される。上述のフィルタ702、位相反転部703、位相同期部704、レベル調節部705及び発振部706は、妨害波対策部750を構成している。 Also, a noise canceling circuit that makes it possible to appropriately receive a desired wave signal is known for the purpose of reducing the influence of a noise signal having a predetermined frequency close to the frequency of the desired wave signal (Patent Document 3). Hereinafter, the noise cancellation circuit 700 will be described as an example. FIG. 23 is a block diagram showing a configuration of a noise cancellation circuit 700 according to Patent Document 3. As shown in FIG. In the noise cancellation circuit 700, a signal including a noise signal in a desired wave signal is input from the antenna 701. The filter 702 attenuates the desired wave signal included in the input signal and extracts only the noise signal. The phase inverting unit 703 inverts the phase of the noise signal. On the other hand, the oscillation unit 706 oscillates a noise signal at a predetermined frequency. The level adjustment unit 705 adjusts the level of the oscillated noise signal. The phase synchronization unit 704 synchronizes the phase of the noise signal whose phase is inverted and the noise signal subjected to level adjustment. Adder 707 adds the input signal and the output of phase synchronization section 704. The output of the phase synchronization unit 704 is output to a reception circuit or the like through the LNA 708. The filter 702, the phase inversion unit 703, the phase synchronization unit 704, the level adjustment unit 705, and the oscillation unit 706 constitute an interference wave countermeasure unit 750.
特開2009-65278号公報JP 2009-65278 A 特開2009-212587号公報JP 2009-212587 A 特開2008-206103号公報JP 2008-206103 A
 しかし、発明者が上述の技術について検討を行ったところ、上述の回路によっては、誤差信号の周波数が希望波信号の周波数と同じ又は近接する場合に、誤差信号を除去できないことを見出した。この問題は、誤差信号を抽出する際に、希望波信号の周波数帯を減衰させると、希望波信号と同じ又は近接する周波数の誤差信号まで減衰させてしまうために発生する。 However, the inventors have studied the above-described technique and found that, depending on the above-described circuit, the error signal cannot be removed when the frequency of the error signal is the same as or close to the frequency of the desired wave signal. This problem occurs because when the error signal is extracted, if the frequency band of the desired wave signal is attenuated, an error signal having the same frequency as or close to that of the desired wave signal is attenuated.
 例えば、特許文献1及び2にかかる回路に希望波信号と同じ周波数の誤差信号を含む信号が入力された場合について検討する。この場合、誤差信号抽出のためにデジタルフィルタで希望波信号の周波数を除去すると、希望波信号と同じ又は近接する周波数の誤差信号まで除去されてしまう。そのため、減算器からは、入力された信号と同じ又は近接する周波数の誤差信号を含んだ信号が出力されてしまう。よって、例えば希望波信号と振幅が異なる信号が出力されることとなる。 For example, consider the case where a signal including an error signal having the same frequency as the desired wave signal is input to the circuits according to Patent Documents 1 and 2. In this case, if the frequency of the desired wave signal is removed by the digital filter for extracting the error signal, an error signal having the same frequency as or close to the desired wave signal is also removed. For this reason, the subtracter outputs a signal including an error signal having a frequency that is the same as or close to that of the input signal. Therefore, for example, a signal having an amplitude different from that of the desired wave signal is output.
 また、例えば、特許文献特3にかかる回路に希望波信号と同じ周波数の誤差信号を含む信号が入力された場合について検討する。この場合、上述と同様に、誤差信号抽出のためにデジタルフィルタで希望波信号の周波数を除去すると、希望波信号と同じ又は近接する周波数の誤差信号まで除去されてしまう。そのため、その後の位相同期部704で誤差信号の位相を同期することができない。よって、加算器からは、入力された信号と同じ又は近接する周波数の誤差信号を含んだ信号が出力されてしまう。よって、例えば希望波信号と振幅が異なる信号が出力されることとなる。 Also, for example, a case where a signal including an error signal having the same frequency as that of the desired wave signal is input to the circuit according to Patent Document No. 3 will be considered. In this case, as described above, when the frequency of the desired wave signal is removed by the digital filter for extracting the error signal, an error signal having the same frequency as or close to the desired wave signal is also removed. Therefore, the subsequent phase synchronization unit 704 cannot synchronize the phase of the error signal. Therefore, the adder outputs a signal including an error signal having a frequency that is the same as or close to that of the input signal. Therefore, for example, a signal having an amplitude different from that of the desired wave signal is output.
 本発明の一態様である信号処理回路は、信号源と接続されるセンサ回路が検出対象となる信号を検出していない場合において、前記センサ回路から出力される前記信号源が出力する信号と同じ周波数の誤差信号の所定期間の信号波形を記憶する記憶装置と、前記記憶装置に記憶された前記信号波形から前記誤差信号を再生した再生誤差信号を、前記所定期間ごとに繰り返し出力する再生誤差信号出力部と、前記誤差信号から前記再生誤差信号を減算した信号を、出力端子へ出力する第1の減算器と、前記センサ回路が検出対象となる信号を検出していない状態で、前記第1の減算器の出力信号の信号レベルが最小化するように、前記第1の減算器への前記再生誤差信号の供給タイミングを調整する制御回路と、を備えるものである。本発明の一態様である信号処理回路は、希望波信号と同じ又は近接する周波数の誤差信号を抽出する。そして、誤差信号を抽出した誤差信号で減算する。これにより、誤差信号を除去することができる。 The signal processing circuit which is one embodiment of the present invention is the same as the signal output by the signal source output from the sensor circuit when the sensor circuit connected to the signal source does not detect the signal to be detected. A storage device for storing a signal waveform of a frequency error signal for a predetermined period, and a reproduction error signal for repeatedly outputting a reproduction error signal obtained by reproducing the error signal from the signal waveform stored in the storage device for each predetermined period An output unit; a first subtracter that outputs a signal obtained by subtracting the reproduction error signal from the error signal to an output terminal; and the first detection circuit in a state where the sensor circuit does not detect a signal to be detected. And a control circuit that adjusts the supply timing of the reproduction error signal to the first subtractor so as to minimize the signal level of the output signal of the subtractor. A signal processing circuit which is one embodiment of the present invention extracts an error signal having a frequency that is the same as or close to that of a desired wave signal. Then, the error signal is subtracted by the extracted error signal. Thereby, an error signal can be removed.
 本発明の一態様である信号処理方法は、信号源と接続されるセンサ回路が検出対象となる信号を検出していない場合において、前記センサ回路から出力される前記信号源が出力する信号と同じ周波数の誤差信号の所定期間の信号波形を、記憶装置に記憶させ、前記記憶装置に記憶された前記信号波形から前記誤差信号を再生した再生誤差信号を、前記所定期間ごとに繰り返し出力し、第1の減算器が前記誤差信号から前記再生誤差信号を減算した信号を、出力端子へ出力し、前記センサ回路が検出対象となる信号を検出していない状態で、前記第1の減算器の出力信号の信号レベルが最小化するように、前記第1の減算器への前記再生誤差信号の供給タイミングを調整するものである。本発明の一態様である信号処理方法は、希望波信号と同じ又は近接する周波数の誤差信号を抽出する。そして、誤差信号を抽出した誤差信号で減算する。これにより、誤差信号を除去することができる。 The signal processing method according to one embodiment of the present invention is the same as the signal output from the signal source that is output from the sensor circuit when the sensor circuit connected to the signal source does not detect the signal to be detected. A signal waveform of a frequency error signal for a predetermined period is stored in a storage device, and a reproduction error signal obtained by reproducing the error signal from the signal waveform stored in the storage device is repeatedly output for each predetermined period. The first subtracter outputs a signal obtained by subtracting the reproduction error signal from the error signal to an output terminal, and the output of the first subtracter is not detected by the sensor circuit. The supply timing of the reproduction error signal to the first subtracter is adjusted so that the signal level of the signal is minimized. The signal processing method according to one embodiment of the present invention extracts an error signal having a frequency that is the same as or close to that of the desired wave signal. Then, the error signal is subtracted by the extracted error signal. Thereby, an error signal can be removed.
 本発明によれば、希望波信号と同じ又は近接する誤差信号を除去することができる信号処理回路及び信号処理方法を提供することができる。 According to the present invention, it is possible to provide a signal processing circuit and a signal processing method capable of removing an error signal that is the same as or close to that of a desired wave signal.
実施の形態1にかかる信号処理回路100の構成を模式的に示すブロック図である。1 is a block diagram schematically showing a configuration of a signal processing circuit 100 according to a first exemplary embodiment. 実施の形態1にかかる信号処理回路100の誤差信号除去動作を示すフローチャートである。3 is a flowchart showing an error signal removal operation of the signal processing circuit 100 according to the first exemplary embodiment; 実施の形態1にかかる信号処理回路100の第1~第3のスイッチのオン/オフを示すブロック図である。FIG. 3 is a block diagram showing ON / OFF of first to third switches of the signal processing circuit 100 according to the first exemplary embodiment; 実施の形態1にかかる信号処理回路100の第1~第3のスイッチのオン/オフを示すブロック図である。FIG. 3 is a block diagram showing ON / OFF of first to third switches of the signal processing circuit 100 according to the first exemplary embodiment; 実施の形態1にかかる信号処理回路100の第1~第3のスイッチのオン/オフを示すブロック図である。FIG. 3 is a block diagram showing ON / OFF of first to third switches of the signal processing circuit 100 according to the first exemplary embodiment; 実施の形態2にかかる信号処理回路200の動作を示すタイミングチャートである。6 is a timing chart illustrating an operation of the signal processing circuit 200 according to the second exemplary embodiment; 実施の形態2にかかる信号処理回路200の構成を模式的に示すブロック図である。FIG. 3 is a block diagram schematically showing a configuration of a signal processing circuit 200 according to a second exemplary embodiment. 実施の形態2にかかる信号処理回路200の誤差信号除去動作を示すフローチャートである。6 is a flowchart showing an error signal removal operation of the signal processing circuit 200 according to the second exemplary embodiment; 実施の形態2にかかる信号処理回路200の第1~第3のスイッチのオン/オフを示すブロック図である。FIG. 6 is a block diagram showing ON / OFF of first to third switches of a signal processing circuit 200 according to a second exemplary embodiment. 実施の形態2にかかる信号処理回路200の第1~第3のスイッチのオン/オフを示すブロック図である。FIG. 6 is a block diagram showing ON / OFF of first to third switches of a signal processing circuit 200 according to a second exemplary embodiment. 実施の形態2にかかる信号処理回路200の第1~第3のスイッチのオン/オフを示すブロック図である。FIG. 6 is a block diagram showing ON / OFF of first to third switches of a signal processing circuit 200 according to a second exemplary embodiment. 実施の形態2にかかる信号処理回路200の動作を示すタイミングチャートである。6 is a timing chart illustrating an operation of the signal processing circuit 200 according to the second exemplary embodiment; 実施の形態3にかかる信号処理回路300の構成を模式的に示すブロック図である。FIG. 6 is a block diagram schematically showing a configuration of a signal processing circuit 300 according to a third exemplary embodiment. 実施の形態3にかかる信号処理回路300の誤差信号除去動作を示すフローチャートである。10 is a flowchart showing an error signal removal operation of the signal processing circuit 300 according to the third exemplary embodiment. 実施の形態3にかかる信号処理回路300の第1~第3のスイッチのオン/オフを示すブロック図である。FIG. 6 is a block diagram showing ON / OFF of first to third switches of a signal processing circuit 300 according to a third exemplary embodiment. 実施の形態3にかかる信号処理回路300の第1~第3のスイッチのオン/オフを示すブロック図である。FIG. 6 is a block diagram showing ON / OFF of first to third switches of a signal processing circuit 300 according to a third exemplary embodiment. 実施の形態3にかかる信号処理回路300の第1~第3のスイッチのオン/オフを示すブロック図である。FIG. 6 is a block diagram showing ON / OFF of first to third switches of a signal processing circuit 300 according to a third exemplary embodiment. 実施の形態3にかかる信号処理回路300の動作を示すタイミングチャートである。10 is a timing chart illustrating an operation of the signal processing circuit 300 according to the third exemplary embodiment. 実施の形態4にかかる信号処理回路400の構成を模式的に示すブロック図である。FIG. 6 is a block diagram schematically showing a configuration of a signal processing circuit 400 according to a fourth exemplary embodiment. 実施の形態4にかかる信号処理回路400の誤差信号除去動作を示すフローチャートである。10 is a flowchart illustrating an error signal removal operation of the signal processing circuit 400 according to the fourth embodiment. 実施の形態4にかかる信号処理回路400の第1~第3のスイッチのオン/オフを示すブロック図である。FIG. 6 is a block diagram showing ON / OFF of first to third switches of a signal processing circuit 400 according to a fourth exemplary embodiment. 実施の形態4にかかる信号処理回路400の第1~第3のスイッチのオン/オフを示すブロック図である。FIG. 6 is a block diagram showing ON / OFF of first to third switches of a signal processing circuit 400 according to a fourth exemplary embodiment. 実施の形態4にかかる信号処理回路400の第1~第3のスイッチのオン/オフを示すブロック図である。FIG. 6 is a block diagram showing ON / OFF of first to third switches of a signal processing circuit 400 according to a fourth exemplary embodiment. 実施の形態4にかかる信号処理回路400の動作を示すタイミングチャートである。10 is a timing chart illustrating an operation of the signal processing circuit 400 according to the fourth embodiment. 実施の形態5にかかる信号処理回路500の構成を模式的に示すブロック図である。FIG. 10 is a block diagram schematically showing a configuration of a signal processing circuit 500 according to a fifth embodiment. 実施の形態5にかかる信号処理回路500の誤差信号除去動作を示すフローチャートである。10 is a flowchart showing an error signal removal operation of the signal processing circuit 500 according to the fifth exemplary embodiment. 実施の形態5にかかる信号処理回路500の第1~第3のスイッチのオン/オフを示すブロック図である。FIG. 10 is a block diagram showing on / off of first to third switches of a signal processing circuit 500 according to a fifth exemplary embodiment; 実施の形態5にかかる信号処理回路500の第1~第3のスイッチのオン/オフを示すブロック図である。FIG. 10 is a block diagram showing on / off of first to third switches of a signal processing circuit 500 according to a fifth exemplary embodiment; 実施の形態5にかかる信号処理回路500の第1~第3のスイッチのオン/オフを示すブロック図である。FIG. 10 is a block diagram showing on / off of first to third switches of a signal processing circuit 500 according to a fifth exemplary embodiment; 実施の形態5にかかる信号処理回路500の動作を示すタイミングチャートである。10 is a timing chart illustrating an operation of the signal processing circuit 500 according to the fifth embodiment; 実施の形態6にかかる信号処理システム1000の構成を模式的に示すブロック図である。FIG. 10 is a block diagram schematically showing a configuration of a signal processing system 1000 according to a sixth exemplary embodiment. 特許文献1にかかるフィルタ回路600の構成を示すブロック図である。10 is a block diagram illustrating a configuration of a filter circuit 600 according to Patent Document 1. FIG. 特許文献3にかかるノイズキャンセル回路700の構成を示すブロック図である。10 is a block diagram showing a configuration of a noise cancellation circuit 700 according to Patent Document 3. FIG.
 以下、図面を参照して本発明の実施の形態について説明する。各図面においては、同一要素には同一の符号が付されており、必要に応じて重複説明は省略される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted as necessary.
 実施の形態1
 まず、本発明の実施の形態1にかかる信号処理回路100について説明する。図1は、実施の形態1にかかる信号処理回路100の構成を模式的に示すブロック図である。信号処理回路100は、センサ回路102aを介して、信号源101と接続される。信号源101は、希望波信号Sdを出力する。センサ回路102aは、信号処理回路100が組み込まれた装置の使用者の操作などにより生じた被検出信号を検出する。センサ回路102aは、使用者の操作などが無い場合、すなわち被検出信号を検出していない場合には、理想的にはその出力が0となる回路である。
Embodiment 1
First, the signal processing circuit 100 according to the first exemplary embodiment of the present invention will be described. FIG. 1 is a block diagram schematically illustrating the configuration of the signal processing circuit 100 according to the first embodiment. The signal processing circuit 100 is connected to the signal source 101 via the sensor circuit 102a. The signal source 101 outputs a desired wave signal Sd. The sensor circuit 102a detects a detected signal generated by an operation of a user of an apparatus in which the signal processing circuit 100 is incorporated. The sensor circuit 102a is an ideal circuit whose output is zero when there is no user operation, that is, when no detected signal is detected.
 信号処理回路100は、第1の減算器11、第2の減算器12、アナログ/デジタル変換器(Analog to Digital Converter:以下ADCと称する)13、多入力OR回路14、記憶装置15、デジタル/アナログ変換器(Digital to Analog Converter:以下DACと称する)16、フィルタ17、制御回路18、第1~第3のスイッチSW11~SW13、出力端子Tout及び信号端子Ten及びTendを有する。 The signal processing circuit 100 includes a first subtractor 11, a second subtractor 12, an analog / digital converter (hereinafter referred to as ADC) 13, a multi-input OR circuit 14, a storage device 15, a digital / digital converter It has an analog converter (Digital-to-Analog Converter: hereinafter referred to as DAC) 16, a filter 17, a control circuit 18, first to third switches SW11 to SW13, an output terminal Tout, and signal terminals Ten and Tend.
 第1の減算器11は、非反転入力端子がセンサ回路102aの出力と接続され、反転入力端子が第2のスイッチSW12を介してフィルタ17の出力と接続される。第1の減算器11の出力は、出力端子Toutと接続され、出力信号Voutを出力する。また、第1の減算器11の出力は、第3のスイッチSW13を介してADC13の入力と接続される。 The first subtractor 11 has a non-inverting input terminal connected to the output of the sensor circuit 102a, and an inverting input terminal connected to the output of the filter 17 via the second switch SW12. The output of the first subtractor 11 is connected to the output terminal Tout and outputs an output signal Vout. The output of the first subtractor 11 is connected to the input of the ADC 13 via the third switch SW13.
 第2の減算器12は、非反転入力端子がセンサ回路102aの出力と接続され、反転入力端子がグランドと接続される。第2の減算器12の出力は、第1のスイッチSW11を介して、ADC13の入力と接続される。 The second subtracter 12 has a non-inverting input terminal connected to the output of the sensor circuit 102a and an inverting input terminal connected to the ground. The output of the second subtractor 12 is connected to the input of the ADC 13 via the first switch SW11.
 ADC13の出力は、多入力OR回路14及び記憶装置15の入力と接続される。ADC13の出力は、ADC13の出力のビット数に応じた本数が設けられる。多入力OR回路14の出力OR_outは、制御回路18の対応する入力と接続される。記憶装置15の出力は、DAC16の入力と接続される。DAC16の出力はフィルタ17の入力と接続される。 The output of the ADC 13 is connected to the inputs of the multi-input OR circuit 14 and the storage device 15. The number of outputs of the ADC 13 is set according to the number of bits of the output of the ADC 13. An output OR_out of the multi-input OR circuit 14 is connected to a corresponding input of the control circuit 18. The output of the storage device 15 is connected to the input of the DAC 16. The output of the DAC 16 is connected to the input of the filter 17.
 制御回路18は、信号端子Tenを介して、信号処理回路100の外部からイネーブル信号enが入力される。制御回路18は、第1~第3のスイッチSW11~SW13への制御信号SIG11~SIG13、記憶装置15への制御信号SIGmを出力する。制御回路18は、信号端子Tendを介して、信号処理回路100の外部へ完了信号endを出力する。 The control circuit 18 receives the enable signal en from the outside of the signal processing circuit 100 via the signal terminal Ten. The control circuit 18 outputs control signals SIG11 to SIG13 to the first to third switches SW11 to SW13 and a control signal SIGm to the storage device 15. The control circuit 18 outputs a completion signal end to the outside of the signal processing circuit 100 via the signal terminal Tend.
 続いて、信号処理回路100の誤差信号除去動作について説明する。図2は、信号処理回路100の誤差信号除去動作を示すフローチャートである。図3A~図3Cは、信号処理回路100の第1~第3のスイッチSW11~SW13のオン/オフを示すブロック図である。図4は、信号処理回路100の動作を示すタイミングチャートである。 Subsequently, the error signal removal operation of the signal processing circuit 100 will be described. FIG. 2 is a flowchart showing the error signal removal operation of the signal processing circuit 100. 3A to 3C are block diagrams showing ON / OFF of the first to third switches SW11 to SW13 of the signal processing circuit 100. FIG. FIG. 4 is a timing chart showing the operation of the signal processing circuit 100.
 上述のように、センサ回路102aは、被検出信号を検出していない場合(非検出時)には、理想的にはその出力が0となる回路であるが、実際には、被検出時でも誤差信号を出力している。この誤差信号は、信号源及びセンサ回路間などの回路構成に依存する信号であり、信号源が出力する希望波信号と同じ周波数を有する。図4に示すように、初期状態において、センサ回路102aからは、希望波信号と同じ周波数の誤差信号err1が出力されている。 As described above, the sensor circuit 102a is a circuit in which the output is ideally 0 when the detected signal is not detected (when not detected), but actually, even when the detected signal is detected. An error signal is output. This error signal is a signal that depends on the circuit configuration such as between the signal source and the sensor circuit, and has the same frequency as the desired wave signal output from the signal source. As shown in FIG. 4, in the initial state, the error signal err1 having the same frequency as the desired wave signal is output from the sensor circuit 102a.
 まず、制御回路18は、イネーブル信号enがHighであるか否かを判定する(図2のステップS101)。イネーブル信号がHighであるならば、制御回路18は誤差信号抽出モードへ移行する(図2のステップS102、図4のタイミングT11)。制御回路18は、制御信号SIGmにより、記憶装置15を書き込みモードに切り替える(図2のステップS103)。 First, the control circuit 18 determines whether or not the enable signal en is High (Step S101 in FIG. 2). If the enable signal is High, the control circuit 18 shifts to the error signal extraction mode (Step S102 in FIG. 2, timing T11 in FIG. 4). The control circuit 18 switches the storage device 15 to the write mode by the control signal SIGm (step S103 in FIG. 2).
 制御回路18は、図3Aに示すように、制御信号SIG11により、第1のスイッチSW11をオンにする。また、制御回路18は、制御信号SIG12及びSIG13により、第2のスイッチSW12及び第3のスイッチSW13をオフにする(図2のステップS104)。 The control circuit 18 turns on the first switch SW11 by the control signal SIG11 as shown in FIG. 3A. Further, the control circuit 18 turns off the second switch SW12 and the third switch SW13 by the control signals SIG12 and SIG13 (step S104 in FIG. 2).
 ADC13は、第1の減算器11から出力される誤差信号err1をA/D変換したデジタル誤差信号err1_Dを、記憶装置15に出力する(図2のステップS105)。記憶装置15は、デジタル誤差信号err1_Dの各ビットの値を記憶する。なお、記憶装置15は、少なくとも希望波信号Sdの1周期以上の期間のデジタル誤差信号err1_Dを記憶する。記憶装置15がデジタル誤差信号err1_Dを記憶する、少なくとも希望波信号Sdの1周期以上の期間を、誤差信号抽出期間と称する。記憶装置15は、誤差信号抽出期間を所定の時間に分割して定められた記憶タイミングに応じて、デジタル誤差信号err1_Dを記憶する(図2のステップS106)。 The ADC 13 outputs a digital error signal err1_D obtained by A / D converting the error signal err1 output from the first subtractor 11 to the storage device 15 (step S105 in FIG. 2). The storage device 15 stores the value of each bit of the digital error signal err1_D. The storage device 15 stores a digital error signal err1_D for a period of at least one cycle of the desired wave signal Sd. A period in which the storage device 15 stores the digital error signal err1_D is at least one period of the desired wave signal Sd is referred to as an error signal extraction period. The storage device 15 stores the digital error signal err1_D according to the storage timing determined by dividing the error signal extraction period into a predetermined time (step S106 in FIG. 2).
 記憶装置15の動作について、具体例を説明する。希望波信号Sdの周期をTとすると、記憶装置15は、例えば周期Tの間に、複数回のデジタル誤差信号err1_Dの記憶動作を行う。周期Tの間のデジタル誤差信号err1_Dの記憶回数を好適に設定することにより、周期Tの間のデジタル誤差信号err1_Dの変動を反映することが可能である。複数回の記憶動作は、例えば時間的に等間隔で行うことが可能である。この場合、例えば、制御回路18からのクロック信号CLKに基づいて、記憶動作を行うことが可能である。これにより、1周期の間のデジタル誤差信号err1_Dの波形をデジタル値として記憶することができる。 A specific example of the operation of the storage device 15 will be described. Assuming that the cycle of the desired wave signal Sd is T, the storage device 15 stores the digital error signal err1_D multiple times during the cycle T, for example. By suitably setting the number of times the digital error signal err1_D is stored during the period T, it is possible to reflect the fluctuation of the digital error signal err1_D during the period T. A plurality of storage operations can be performed at regular intervals, for example. In this case, for example, the storage operation can be performed based on the clock signal CLK from the control circuit 18. Thereby, the waveform of the digital error signal err1_D during one cycle can be stored as a digital value.
 また、周期Tの間の記憶動作を1セットとして、複数回のセットを繰り返してデジタル誤差信号err1_Dの平均値を取ることにより、デジタル誤差信号err1_Dを記憶することも可能である。制御回路18は、制御信号SIGmにより、セットの繰り返し数を制御することも可能である。 It is also possible to store the digital error signal err1_D by taking the average value of the digital error signal err1_D by repeating a plurality of sets and setting the storage operation during the period T as one set. The control circuit 18 can also control the number of set repetitions by a control signal SIGm.
 制御回路18は、記憶装置15が記憶動作を開始してから所定の時間が経過したかを判断する(図2のステップS107)。この判断では、予め定められた誤差信号抽出期間が経過したか、あるいは予め定められたセット数だけ記憶動作を行ったかを判断する。 The control circuit 18 determines whether a predetermined time has elapsed since the storage device 15 started the storage operation (step S107 in FIG. 2). In this determination, it is determined whether a predetermined error signal extraction period has elapsed or a storage operation has been performed for a predetermined number of sets.
 所定期間が経過していたならば、制御回路18はタイミング調整モードへ移行する(図2のステップS108)。制御回路18は、制御信号SIGmにより、記憶装置15を読み出しモードに切り替える(図2のステップS109)。そして、制御回路18は、図3Bに示すように、制御信号SIG11により、第1のスイッチSW11をオフにする。また、制御回路18は、制御信号SIG12及びSIG13により、第2のスイッチSW12及び第3のスイッチSW13をオンにする(図2のステップS110、図4のタイミングT12)。 If the predetermined period has elapsed, the control circuit 18 shifts to the timing adjustment mode (step S108 in FIG. 2). The control circuit 18 switches the storage device 15 to the read mode by the control signal SIGm (step S109 in FIG. 2). Then, as shown in FIG. 3B, the control circuit 18 turns off the first switch SW11 by the control signal SIG11. Further, the control circuit 18 turns on the second switch SW12 and the third switch SW13 by the control signals SIG12 and SIG13 (step S110 in FIG. 2, timing T12 in FIG. 4).
 次いで、制御回路18は、制御信号SIGmにより、記憶装置15に記憶されたデジタル誤差信号err1_Dを出力させる。DAC16は、デジタル誤差信号err1_DをD/A変換した再生誤差信号err1_Rを、フィルタ17へ出力する。すなわち、DAC16から出力された再生誤差信号err1_Rは、記憶装置15に記憶されたデジタル誤差信号err1_Dから再生されたアナログ信号である。フィルタ17は、再生誤差信号err1_Rから高周波成分を取りのぞいた再生誤差信号err1_Fを、第2のスイッチSW12を介して、第1の減算器11の反転入力端子へ出力する(図2のステップS111)。 Next, the control circuit 18 outputs the digital error signal err1_D stored in the storage device 15 by the control signal SIGm. The DAC 16 outputs a reproduction error signal err1_R obtained by D / A converting the digital error signal err1_D to the filter 17. That is, the reproduction error signal err1_R output from the DAC 16 is an analog signal reproduced from the digital error signal err1_D stored in the storage device 15. The filter 17 outputs the reproduction error signal err1_F obtained by removing the high frequency component from the reproduction error signal err1_R to the inverting input terminal of the first subtractor 11 via the second switch SW12 (step S111 in FIG. 2). .
 第1の減算器11の非反転入力端子には、センサ回路102aからの誤差信号err1が供給される。よって、第1の減算器11は、誤差信号err1から再生誤差信号err1_RDを減算する(図2のステップS112)。 The error signal err1 from the sensor circuit 102a is supplied to the non-inverting input terminal of the first subtractor 11. Therefore, the first subtractor 11 subtracts the reproduction error signal err1_RD from the error signal err1 (step S112 in FIG. 2).
 上述のように、再生誤差信号err1_Fは記憶装置15に記憶したデジタル誤差信号err1_Dを再生したものである。そのため、D/A変換、A/D変換及びフィルタリングにより、ある程度の波形の変化が生じるとしても、再生誤差信号err1_F及び誤差信号err1の波形は近似ないしは一致する。従って、誤差信号err1及び再生誤差信号err1_Fのタイミングが一致していれば、第1の減算器11の出力は最小となり、理想的には0とすることができる。よって、第1の減算器11の出力を最小化するためには、誤差信号err1及び再生誤差信号err1_Fのタイミングを一致させる必要がある。そのため、第1の減算器11の出力信号Voutは、第3のスイッチSW13を介して、ADC13に供給される。ADC13は、出力信号VoutをA/D変換したデジタル信号Vout_Dを多入力OR回路14に出力する。 As described above, the reproduction error signal err1_F is a reproduction of the digital error signal err1_D stored in the storage device 15. Therefore, even if a certain amount of waveform change occurs due to D / A conversion, A / D conversion, and filtering, the waveforms of the reproduction error signal err1_F and the error signal err1 are approximate or match. Therefore, if the timings of the error signal err1 and the reproduction error signal err1_F coincide with each other, the output of the first subtractor 11 is minimized and can be ideally zero. Therefore, in order to minimize the output of the first subtractor 11, it is necessary to match the timings of the error signal err1 and the reproduction error signal err1_F. Therefore, the output signal Vout of the first subtractor 11 is supplied to the ADC 13 via the third switch SW13. The ADC 13 outputs a digital signal Vout_D obtained by A / D converting the output signal Vout to the multi-input OR circuit 14.
 誤差信号err1及び再生誤差信号err1_Fのタイミングが一致している場合には出力信号Voutは0レベルである。従って、デジタル信号Vout_Dのいずれかのビットが「1」である場合には、誤差信号err1及び再生誤差信号err1_Fのタイミングがずれていることを意味する。多入力OR回路14の出力OR_outは、デジタル信号Vout_Dのいずれかのビットが「1」である場合には「1」となり、デジタル信号Vout_Dの全てのビットが「0」である場合には「0」となる。すなわち、多入力OR回路14は、誤差信号err1及び再生誤差信号err1_Fのタイミングのずれの有無を検出することができる(図2のステップS113)。 When the timings of the error signal err1 and the reproduction error signal err1_F coincide with each other, the output signal Vout is 0 level. Therefore, when any bit of the digital signal Vout_D is “1”, it means that the timing of the error signal err1 and the reproduction error signal err1_F is shifted. The output OR_out of the multi-input OR circuit 14 is “1” when any bit of the digital signal Vout_D is “1”, and “0” when all the bits of the digital signal Vout_D are “0”. " That is, the multi-input OR circuit 14 can detect whether or not there is a timing shift between the error signal err1 and the reproduction error signal err1_F (step S113 in FIG. 2).
 多入力OR回路14の出力が「1」であるならば、制御回路18は、制御信号SIGmにより、記憶装置15の出力タイミングを1ステップ遅らせる(図2のステップS114、図4のタイミングT13)。出力タイミングの遅れ量(ステップ)は、制御回路18が指定してもよいし、記憶装置15に入力されるクロック信号の1周期又は半周期分であってもよい。ステップS114は、多入力OR回路14の出力OR_outが「0」となるまで繰り返される。 If the output of the multi-input OR circuit 14 is “1”, the control circuit 18 delays the output timing of the storage device 15 by one step by the control signal SIGm (step S114 in FIG. 2, timing T13 in FIG. 4). The delay amount (step) of the output timing may be specified by the control circuit 18 or may be one cycle or half cycle of the clock signal input to the storage device 15. Step S114 is repeated until the output OR_out of the multi-input OR circuit 14 becomes “0”.
 多入力OR回路14の出力OR_outが「0」であるならば、誤差信号err1及び再生誤差信号err1_Fのタイミングが一致している。この場合、制御回路18は、図3Cに示すように、制御信号SIG12により、第2のスイッチSW12をオンにする。また、制御回路18は、制御信号SIG11及びSIG13により、第1のスイッチSW11及び第3のスイッチSW13をオフにする(図2のステップS115)。そして、制御回路18は、タイミング調整が完了したことを知らせる完了信号endを出力して、誤差信号除去処理を終了する(図2のステップS116、図4のタイミングT14)。 If the output OR_out of the multi-input OR circuit 14 is “0”, the timings of the error signal err1 and the reproduction error signal err1_F match. In this case, the control circuit 18 turns on the second switch SW12 by the control signal SIG12 as shown in FIG. 3C. Further, the control circuit 18 turns off the first switch SW11 and the third switch SW13 by the control signals SIG11 and SIG13 (step S115 in FIG. 2). Then, the control circuit 18 outputs a completion signal end indicating that the timing adjustment has been completed, and ends the error signal removal process (step S116 in FIG. 2, timing T14 in FIG. 4).
 その後、信号処理回路100は、通常動作を行う。以上のように、信号処理回路100は、誤差信号err1から再生誤差信号err1_Fを適切なタイミングで減算することにより、出力信号Voutの誤差信号を除去している。よって、出力信号Voutには、被検出信号のみが反映される。従って、本構成によれば、希望波信号と同じ又は近接する周波数の誤差信号を除去することができる。 Thereafter, the signal processing circuit 100 performs a normal operation. As described above, the signal processing circuit 100 removes the error signal of the output signal Vout by subtracting the reproduction error signal err1_F from the error signal err1 at an appropriate timing. Therefore, only the detected signal is reflected in the output signal Vout. Therefore, according to this configuration, it is possible to remove an error signal having a frequency that is the same as or close to that of the desired wave signal.
 実施の形態2
 次に、本発明の実施の形態2にかかる信号処理回路200について説明する。信号処理回路200は、実施の形態1にかかる信号処理回路100の変形例である。図5は、実施の形態2にかかる信号処理回路200の構成を模式的に示すブロック図である。信号処理回路200は、信号処理回路100の第2の減算器12及び第1のスイッチSW11が削除され、第1のスイッチSW21が追加された構成を有する。第1のスイッチSW21は、第1の減算器11の反転入力端子とグランドとの間に接続される。第1のスイッチSW21は、制御回路18からの制御信号SIG21によりオン/オフする。信号処理回路200のその他の構成は信号処理回路100と同様であるので、説明を省略する。
Embodiment 2
Next, the signal processing circuit 200 according to the second exemplary embodiment of the present invention will be described. The signal processing circuit 200 is a modification of the signal processing circuit 100 according to the first embodiment. FIG. 5 is a block diagram schematically illustrating a configuration of the signal processing circuit 200 according to the second embodiment. The signal processing circuit 200 has a configuration in which the second subtracter 12 and the first switch SW11 of the signal processing circuit 100 are deleted, and the first switch SW21 is added. The first switch SW21 is connected between the inverting input terminal of the first subtractor 11 and the ground. The first switch SW21 is turned on / off by a control signal SIG21 from the control circuit 18. Since the other configuration of the signal processing circuit 200 is the same as that of the signal processing circuit 100, description thereof is omitted.
 続いて、信号処理回路200の誤差信号除去動作について説明する。図6は、信号処理回路200の誤差信号除去動作を示すフローチャートである。図7A~図7Cは、信号処理回路200の第1~第3のスイッチSW21、SW12及びSW13のオン/オフを示すブロック図である。図8は、信号処理回路200の動作を示すタイミングチャートである。図8におけるタイミングT21~T24は、それぞれ図4のタイミングT11~T14に対応する。 Subsequently, the error signal removal operation of the signal processing circuit 200 will be described. FIG. 6 is a flowchart showing the error signal removal operation of the signal processing circuit 200. 7A to 7C are block diagrams showing on / off of the first to third switches SW21, SW12, and SW13 of the signal processing circuit 200. FIG. FIG. 8 is a timing chart showing the operation of the signal processing circuit 200. Timings T21 to T24 in FIG. 8 correspond to timings T11 to T14 in FIG. 4, respectively.
 ステップS201~S203は、図2のステップS101~S103と同様であるので、説明を省略する。記憶装置15を書き込みモードへ切り替えた後、図7Aに示すように、制御回路18は、制御信号SIG21及びSIG13により、第1のスイッチSW21及び第3のスイッチSW13をオンにする。また、制御回路18は、制御信号SIG12により、第2のスイッチSW12をオフにする(図6のステップS204)。その後のステップS205~S209は、図2のステップS105~S109と同様であるので、説明を省略する。 Steps S201 to S203 are the same as steps S101 to S103 in FIG. After switching the storage device 15 to the write mode, as shown in FIG. 7A, the control circuit 18 turns on the first switch SW21 and the third switch SW13 by the control signals SIG21 and SIG13. Further, the control circuit 18 turns off the second switch SW12 by the control signal SIG12 (step S204 in FIG. 6). Subsequent steps S205 to S209 are the same as steps S105 to S109 in FIG.
 記憶装置15を書き込みモードへ切り替えた後、図7Bに示すように、制御回路18は、制御信号SIG21により、第1のスイッチSW21をオフにする。また、制御回路18は、制御信号SIG12及びSIG13により、第2のスイッチSW12及び第3のスイッチSW13をオンにする(図6のステップS210)。その後のステップS211~S214は、図2のステップS111~S114と同様であるので、説明を省略する。 After switching the storage device 15 to the write mode, as shown in FIG. 7B, the control circuit 18 turns off the first switch SW21 by the control signal SIG21. Further, the control circuit 18 turns on the second switch SW12 and the third switch SW13 by the control signals SIG12 and SIG13 (step S210 in FIG. 6). Subsequent steps S211 to S214 are the same as steps S111 to S114 in FIG.
 多入力OR回路14の出力OR_outが「0」である場合には、図7Cに示すように、制御回路18は、制御信号SIG21及びSIG13により、第1のスイッチSW21及び第3のスイッチSW13をオフにする。また、制御回路18は、制御信号SIG12により、第2のスイッチSW12をオンにする(図6のステップS215)。その後のステップS216は、図2のステップS116と同様であるので、説明を省略する。 When the output OR_out of the multi-input OR circuit 14 is “0”, as shown in FIG. 7C, the control circuit 18 turns off the first switch SW21 and the third switch SW13 by the control signals SIG21 and SIG13. To. Further, the control circuit 18 turns on the second switch SW12 by the control signal SIG12 (step S215 in FIG. 6). Subsequent step S216 is the same as step S116 of FIG.
 その後、信号処理回路200は、信号処理回路100と同様に通常動作を行う。以上のように、信号処理回路200は、誤差信号err1から再生誤差信号err1_Fを適切なタイミングで減算することにより、出力信号Voutの誤差信号を除去している。よって、出力信号Voutには、被検出信号のみが反映される。従って、本構成によれば、実施の形態1と同様に、希望波信号と同じ又は近接する周波数の誤差信号を除去することができる。 Thereafter, the signal processing circuit 200 performs a normal operation in the same manner as the signal processing circuit 100. As described above, the signal processing circuit 200 removes the error signal of the output signal Vout by subtracting the reproduction error signal err1_F from the error signal err1 at an appropriate timing. Therefore, only the detected signal is reflected in the output signal Vout. Therefore, according to this configuration, similarly to the first embodiment, it is possible to remove an error signal having a frequency that is the same as or close to that of the desired wave signal.
 さらに、信号処理回路200、信号処理回路100と比べて、減算器が一つ削減されている。従って、本構成によれば、信号処理回路100よりも回路面積を縮小することができるので、小型かつ低コストの信号処理回路を提供することができる。 Furthermore, compared with the signal processing circuit 200 and the signal processing circuit 100, one subtracter is reduced. Therefore, according to this configuration, since the circuit area can be reduced as compared with the signal processing circuit 100, a small and low-cost signal processing circuit can be provided.
 実施の形態3
 次に、本発明の実施の形態3にかかる信号処理回路300について説明する。図9は、実施の形態3にかかる信号処理回路300の構成を模式的に示すブロック図である。信号処理回路300は、信号処理回路200のフィルタ17を除去し、別のフィルタ27を追加した構成を有する。フィルタ27は、第1の減算器11の出力と、出力端子Toutとの間に挿入される。信号処理回路300のその他の構成は信号処理回路200と同様であるので、説明を省略する。
Embodiment 3
Next, a signal processing circuit 300 according to the third embodiment of the present invention will be described. FIG. 9 is a block diagram schematically illustrating the configuration of the signal processing circuit 300 according to the third embodiment. The signal processing circuit 300 has a configuration in which the filter 17 of the signal processing circuit 200 is removed and another filter 27 is added. The filter 27 is inserted between the output of the first subtractor 11 and the output terminal Tout. Since the other configuration of the signal processing circuit 300 is the same as that of the signal processing circuit 200, description thereof is omitted.
 続いて、信号処理回路300の誤差信号除去動作について説明する。信号処理回路300は、実施の形態2にかかる信号処理回路200の変形例である。図10は、信号処理回路300の誤差信号除去動作を示すフローチャートである。図11A~図11Cは、信号処理回路300の第1~第3のスイッチSW21、SW12及びSW13のオン/オフを示すブロック図である。図12は、信号処理回路300の動作を示すタイミングチャートである。図12におけるタイミングT31~T34は、それぞれ図4のタイミングT11~T14に対応する。 Subsequently, the error signal removal operation of the signal processing circuit 300 will be described. The signal processing circuit 300 is a modification of the signal processing circuit 200 according to the second embodiment. FIG. 10 is a flowchart showing the error signal removal operation of the signal processing circuit 300. 11A to 11C are block diagrams showing on / off of the first to third switches SW21, SW12, and SW13 of the signal processing circuit 300. FIG. FIG. 12 is a timing chart showing the operation of the signal processing circuit 300. Timings T31 to T34 in FIG. 12 correspond to timings T11 to T14 in FIG. 4, respectively.
 ステップS301~S303は、図2のステップS101~S103と同様であるので、説明を省略する。記憶装置15を書き込みモードへ切り替えた後、図11Aに示すように、制御回路18は、制御信号SIG21及びSIG13により、第1のスイッチSW21及び第3のスイッチSW13をオンにする。また、制御回路18は、制御信号SIG12により、第2のスイッチSW12をオフにする(図10のステップS304)。 Steps S301 to S303 are the same as steps S101 to S103 in FIG. After switching the storage device 15 to the write mode, as shown in FIG. 11A, the control circuit 18 turns on the first switch SW21 and the third switch SW13 by the control signals SIG21 and SIG13. Further, the control circuit 18 turns off the second switch SW12 by the control signal SIG12 (step S304 in FIG. 10).
 第1の減算器11は、フィルタ27に誤差信号err1を出力する。フィルタ27は、希望波信号Sdと同一又は近接する周波数の信号を通過させるフィルタである。従って、誤差信号err1は、フィルタ27を通過し、第3のスイッチSW13を介して、ADC13に入力される。ADC13は、誤差信号err1をA/D変換したデジタル誤差信号err1_Dを、記憶装置15に出力する(図10のステップS305)。その後のステップS306~S309は、図2のステップS106~S109と同様であるので、説明を省略する。 The first subtractor 11 outputs an error signal err1 to the filter 27. The filter 27 is a filter that passes a signal having a frequency that is the same as or close to that of the desired wave signal Sd. Therefore, the error signal err1 passes through the filter 27 and is input to the ADC 13 via the third switch SW13. The ADC 13 outputs a digital error signal err1_D obtained by A / D converting the error signal err1 to the storage device 15 (step S305 in FIG. 10). Subsequent steps S306 to S309 are the same as steps S106 to S109 in FIG.
 記憶装置15を読み出しモードへ切り換えた後、図11Bに示すように、制御回路18は、制御信号SIG21により、第1のスイッチSW21をオフにする。また、制御回路18は、制御信号SIG12及びSIG13により、第2のスイッチSW12及び第3のスイッチSW13をオンにする(図10のステップS310)。 After switching the storage device 15 to the read mode, the control circuit 18 turns off the first switch SW21 by the control signal SIG21 as shown in FIG. 11B. Further, the control circuit 18 turns on the second switch SW12 and the third switch SW13 by the control signals SIG12 and SIG13 (step S310 in FIG. 10).
 次いで、制御回路18は、制御信号SIGmにより、記憶装置15に記憶されたデジタル誤差信号err1_Dを出力させる。DAC16は、デジタル誤差信号err1_DをD/A変換した再生誤差信号err1_Rを、第2のスイッチSW12を介して、第1の減算器11の反転入力端子へ出力する(図10のステップS311)。 Next, the control circuit 18 outputs the digital error signal err1_D stored in the storage device 15 by the control signal SIGm. The DAC 16 outputs the reproduction error signal err1_R obtained by D / A converting the digital error signal err1_D to the inverting input terminal of the first subtractor 11 via the second switch SW12 (step S311 in FIG. 10).
 第1の減算器11の非反転入力端子には、センサ回路102aからの誤差信号err1が供給される。よって、第1の減算器11は、誤差信号err1から再生誤差信号err1_Rを減算する(図10のステップS312)。フィルタ27は、第1の減算器11の出力から高周波成分を取り除いた信号を、出力信号Voutとして出力する。 The error signal err1 from the sensor circuit 102a is supplied to the non-inverting input terminal of the first subtractor 11. Therefore, the first subtracter 11 subtracts the reproduction error signal err1_R from the error signal err1 (step S312 in FIG. 10). The filter 27 outputs a signal obtained by removing the high frequency component from the output of the first subtracter 11 as the output signal Vout.
 上述のように、再生誤差信号err1_Rは記憶装置15に記憶したデジタル誤差信号err1_Dを再生したものである。そのため、D/A変換、A/D変換により、ある程度の波形の変化が生じるとしても、再生誤差信号err1_R及び誤差信号err1の波形は近似する。しかし、信号処理回路300では、再生誤差信号err1_Rをフィルタリングしないので、再生誤差信号err1_Rには高周波成分が残存している。しかし、フィルタ27が第1の減算器11の出力と出力端子Toutとの間に接続されているので、第1の減算器11の出力からは、D/A変換に起因する高周波成分は除去される。従って、この場合、信号処理回路300の出力信号Voutは、信号処理回路200と同等となる。 As described above, the reproduction error signal err1_R is a reproduction of the digital error signal err1_D stored in the storage device 15. Therefore, even if the waveform changes to some extent by D / A conversion and A / D conversion, the waveforms of the reproduction error signal err1_R and the error signal err1 are approximated. However, since the signal processing circuit 300 does not filter the reproduction error signal err1_R, a high frequency component remains in the reproduction error signal err1_R. However, since the filter 27 is connected between the output of the first subtractor 11 and the output terminal Tout, the high frequency component resulting from the D / A conversion is removed from the output of the first subtractor 11. The Therefore, in this case, the output signal Vout of the signal processing circuit 300 is equivalent to that of the signal processing circuit 200.
 従って、誤差信号err1及び再生誤差信号err1_Rのタイミングが一致していれば、第1の減算器11の出力は最小となり、理想的には0とすることができる。よって、第1の減算器11の出力を最小化するためには、誤差信号err1及び再生誤差信号err1_Rのタイミングを一致させる必要がある。 Therefore, if the timings of the error signal err1 and the reproduction error signal err1_R coincide with each other, the output of the first subtractor 11 is minimized and can be ideally zero. Therefore, in order to minimize the output of the first subtractor 11, it is necessary to match the timings of the error signal err1 and the reproduction error signal err1_R.
 そのため、第1の減算器11の出力信号Voutは、第3のスイッチSW13を介して、ADC13に供給される。その後のステップS313及びS314は、図2のステップS113及びS114と同様であるので、説明を省略する。 Therefore, the output signal Vout of the first subtractor 11 is supplied to the ADC 13 via the third switch SW13. Subsequent steps S313 and S314 are the same as steps S113 and S114 in FIG.
 多入力OR回路14の出力OR_outが「0」であるならば、誤差信号err1及び再生誤差信号err1_Rのタイミングが一致している。この場合、制御回路18は、制御信号SIG2により、第2のスイッチSW12をオンにする。また、制御回路18は、制御信号SIG21及びSIG13により、第1のスイッチSW21及び第3のスイッチSW13をオフにする(図10のステップS315)。その後のステップS316は、図2のステップS116と同様であるので、説明を省略する。 If the output OR_out of the multi-input OR circuit 14 is “0”, the timings of the error signal err1 and the reproduction error signal err1_R match. In this case, the control circuit 18 turns on the second switch SW12 by the control signal SIG2. Further, the control circuit 18 turns off the first switch SW21 and the third switch SW13 by the control signals SIG21 and SIG13 (step S315 in FIG. 10). Subsequent step S316 is the same as step S116 of FIG.
 タイミング調整の終了後、信号処理回路300は、信号処理回路200と同様に、通常動作を行う。以上のように、信号処理回路300は、誤差信号err1から再生誤差信号err1_Rを適切なタイミングで減算することにより、出力信号Voutの誤差信号を除去している。よって、出力信号Voutには、被検出信号のみが反映される。従って、本構成によれば、信号処理回路100及び200と同様に、希望波信号と同じ又は近接する周波数の誤差信号を除去することができる。 After completion of the timing adjustment, the signal processing circuit 300 performs a normal operation in the same manner as the signal processing circuit 200. As described above, the signal processing circuit 300 removes the error signal of the output signal Vout by subtracting the reproduction error signal err1_R from the error signal err1 at an appropriate timing. Therefore, only the detected signal is reflected in the output signal Vout. Therefore, according to this configuration, similarly to the signal processing circuits 100 and 200, an error signal having a frequency that is the same as or close to that of the desired wave signal can be removed.
 実施の形態4
 次に、本発明の実施の形態4にかかる信号処理回路400について説明する。信号処理回路400は、実施の形態3にかかる信号処理回路300の変形例である。図13は、実施の形態4にかかる信号処理回路400の構成を模式的に示すブロック図である。信号処理回路400は、信号処理回路300にディレイライン40を追加した構成を有する。ディレイライン40は、DAC16と第3のスイッチSW13との間に接続される。信号処理回路400のその他の構成は信号処理回路300と同様であるので、説明を省略する。
Embodiment 4
Next, a signal processing circuit 400 according to the fourth embodiment of the present invention will be described. The signal processing circuit 400 is a modification of the signal processing circuit 300 according to the third embodiment. FIG. 13 is a block diagram schematically illustrating a configuration of the signal processing circuit 400 according to the fourth embodiment. The signal processing circuit 400 has a configuration in which a delay line 40 is added to the signal processing circuit 300. The delay line 40 is connected between the DAC 16 and the third switch SW13. Since the other configuration of the signal processing circuit 400 is the same as that of the signal processing circuit 300, description thereof is omitted.
 続いて、信号処理回路400の誤差信号除去動作について説明する。図14は、信号処理回路400の誤差信号除去動作を示すフローチャートである。図15A~図15Cは、信号処理回路400の第1~第3のスイッチSW21、SW12及びSW13のオン/オフを示すブロック図である。図16は、信号処理回路400の動作を示すタイミングチャートである。図16におけるタイミングT41~T44は、それぞれ図4のタイミングT11~T14に対応する。 Subsequently, the error signal removal operation of the signal processing circuit 400 will be described. FIG. 14 is a flowchart showing the error signal removal operation of the signal processing circuit 400. 15A to 15C are block diagrams showing on / off of the first to third switches SW21, SW12, and SW13 of the signal processing circuit 400. FIG. FIG. 16 is a timing chart showing the operation of the signal processing circuit 400. Timings T41 to T44 in FIG. 16 correspond to timings T11 to T14 in FIG. 4, respectively.
 ステップS401~S410は、図2のステップS101~S110と同様であるので、説明を省略する。ステップS410の後、制御回路18は、制御信号SIGmにより、記憶装置15に記憶されたデジタル誤差信号err1_Dを出力させる。DAC16は、デジタル誤差信号err1_DをD/A変換した再生誤差信号err1_Rを、ディレイライン40へ出力する。ディレイライン40は、制御回路18からの制御信号SIG40により、再生誤差信号err1_Rの出力タイミングを調整した再生誤差信号err1_RDを、第2のスイッチSW12を介して、第1の減算器11の反転入力端子に出力する。再生誤差信号err1_RDは、記憶装置15に記憶されたデジタル誤差信号err1_Dから再生されたアナログ信号である(図14のステップS411)。 Steps S401 to S410 are the same as steps S101 to S110 in FIG. After step S410, the control circuit 18 outputs the digital error signal err1_D stored in the storage device 15 by the control signal SIGm. The DAC 16 outputs a reproduction error signal err1_R obtained by D / A converting the digital error signal err1_D to the delay line 40. The delay line 40 receives the reproduction error signal err1_RD, the output timing of the reproduction error signal err1_R having been adjusted by the control signal SIG40 from the control circuit 18, via the second switch SW12, and the inverting input terminal of the first subtractor 11. Output to. The reproduction error signal err1_RD is an analog signal reproduced from the digital error signal err1_D stored in the storage device 15 (step S411 in FIG. 14).
 第1の減算器11の非反転入力端子には、センサ回路102aからの誤差信号err1が供給される。よって、第1の減算器11は、誤差信号err1から再生誤差信号err1_RDを減算する(図14のステップS412)。 The error signal err1 from the sensor circuit 102a is supplied to the non-inverting input terminal of the first subtractor 11. Therefore, the first subtracter 11 subtracts the reproduction error signal err1_RD from the error signal err1 (step S412 in FIG. 14).
 上述のように、再生誤差信号err1_RDは記憶装置15に記憶したデジタル誤差信号err1_Dを再生したものである。そのため、D/A変換、A/D変換により、ある程度の波形の変化が生じるとしても、再生誤差信号err1_RD及び誤差信号err1の波形は近似する。信号処理回路400では、再生誤差信号err1_RDをフィルタリングしないので、再生誤差信号err1_RDには高周波成分が残存している。しかし、フィルタ27が第1の減算器11の出力と出力端子Toutとの間に接続されているので、出力信号Voutからは、D/A変換に起因する高周波成分は除去される。従って、この場合、信号処理回路400の出力信号Voutは、信号処理回路300と同等となる。 As described above, the reproduction error signal err1_RD is a reproduction of the digital error signal err1_D stored in the storage device 15. Therefore, even if the waveform changes to some extent by D / A conversion and A / D conversion, the waveforms of the reproduction error signal err1_RD and the error signal err1 are approximated. Since the signal processing circuit 400 does not filter the reproduction error signal err1_RD, a high frequency component remains in the reproduction error signal err1_RD. However, since the filter 27 is connected between the output of the first subtractor 11 and the output terminal Tout, the high-frequency component due to D / A conversion is removed from the output signal Vout. Therefore, in this case, the output signal Vout of the signal processing circuit 400 is equivalent to that of the signal processing circuit 300.
 従って、誤差信号err1及び再生誤差信号err1_RDのタイミングが一致していれば、第1の減算器11の出力は最小となり、理想的には0とすることができる。よって、第1の減算器11の出力を最小化するためには、誤差信号err1及び再生誤差信号err1_RDのタイミングを一致させる必要がある。 Therefore, if the timings of the error signal err1 and the reproduction error signal err1_RD coincide with each other, the output of the first subtracter 11 is minimized and can be ideally zero. Therefore, in order to minimize the output of the first subtractor 11, it is necessary to match the timings of the error signal err1 and the reproduction error signal err1_RD.
 そのため、フィルタ27からの出力信号Voutは、第3のスイッチSW13を介して、ADC13に供給される。その後のステップS413は、図2のステップS113と同様であるので、説明を省略する。 Therefore, the output signal Vout from the filter 27 is supplied to the ADC 13 via the third switch SW13. Subsequent step S413 is the same as step S113 in FIG.
 多入力OR回路14の出力が「1」であるならば、制御回路18は、制御信号SIG40により、ディレイライン40の出力タイミングを1ステップ遅らせる(図14のステップS414、図16のタイミングT43)。出力タイミングの遅れ量(ステップ)は、制御回路18が指定してもよい。ステップS414は、多入力OR回路14の出力OR_outが「0」となるまで繰り返される。 If the output of the multi-input OR circuit 14 is “1”, the control circuit 18 delays the output timing of the delay line 40 by one step by the control signal SIG40 (step S414 in FIG. 14, timing T43 in FIG. 16). The control circuit 18 may specify the output timing delay amount (step). Step S414 is repeated until the output OR_out of the multi-input OR circuit 14 becomes “0”.
 多入力OR回路14の出力OR_outが「0」であるならば、誤差信号err1及び再生誤差信号err1_RDのタイミングが一致している。この場合、制御回路18は、制御信号SIG2により、第2のスイッチSW12をオンにする。また、制御回路18は、制御信号SIG21及びSIG13により、第1のスイッチSW21及び第3のスイッチSW13をオフにする(図14のステップS415)。その後のステップS416は、図2のステップS116と同様であるので、説明を省略する。 If the output OR_out of the multi-input OR circuit 14 is “0”, the timings of the error signal err1 and the reproduction error signal err1_RD match. In this case, the control circuit 18 turns on the second switch SW12 by the control signal SIG2. Further, the control circuit 18 turns off the first switch SW21 and the third switch SW13 by the control signals SIG21 and SIG13 (step S415 in FIG. 14). Subsequent step S416 is the same as step S116 of FIG.
 タイミング調整の終了後、信号処理回路400は、信号処理回路300と同様に、通常動作を行う。以上のように、信号処理回路400は、誤差信号err1から再生誤差信号err1_RDを適切なタイミングで減算することにより、出力信号Voutの誤差信号を除去している。よって、出力信号Voutには、被検出信号のみが反映される。従って、本構成によれば、信号処理回路100、200及び300と同様に、希望波信号と同じ又は近接する周波数の誤差信号を除去することができる。 After the timing adjustment, the signal processing circuit 400 performs a normal operation in the same manner as the signal processing circuit 300. As described above, the signal processing circuit 400 removes the error signal of the output signal Vout by subtracting the reproduction error signal err1_RD from the error signal err1 at an appropriate timing. Therefore, only the detected signal is reflected in the output signal Vout. Therefore, according to this configuration, similarly to the signal processing circuits 100, 200, and 300, an error signal having a frequency that is the same as or close to that of the desired wave signal can be removed.
 さらに、ディレイライン40は、アナログ信号である再生誤差信号err1の出力タイミングを調整するものである。従って、ディレイラインを使用することによって微細な出力タイミングの調整を行うことが可能である。 Furthermore, the delay line 40 adjusts the output timing of the reproduction error signal err1 which is an analog signal. Therefore, it is possible to finely adjust the output timing by using the delay line.
 実施の形態5
 次に、本発明の実施の形態5にかかる信号処理回路500について説明する。本実施の形態では、センサ回路としてタッチパネルが用いられる例について述べる。近年、タッチパネルの普及が進展し、将来的にはタッチパネルの大型化が考えられる。しかし、例えば静電容量方式のタッチパネルでは、タッチパネル全体に一様な電界を発生させるため、タッチパネルのサイズが大型化すればするほど消費電力が増加してしまう。具体的には、10インチのタッチパネルと50インチのタッチパネルとを比較すると、面積は25倍となるため消費電力が25倍となる。そのため、50インチのタッチパネルに対応するICの性能も、同様に25倍必要となる。また、実際には、タッチした位置から検出部までの距離も増加するため、単純な面積倍にとどまらず、更なる消費電力の増加も考えられる。
Embodiment 5
Next, a signal processing circuit 500 according to a fifth embodiment of the present invention will be described. In this embodiment, an example in which a touch panel is used as a sensor circuit will be described. In recent years, the spread of touch panels has progressed, and in the future, the size of touch panels may be increased. However, in a capacitive touch panel, for example, a uniform electric field is generated on the entire touch panel, so that power consumption increases as the size of the touch panel increases. Specifically, when a 10-inch touch panel and a 50-inch touch panel are compared, the area is 25 times and the power consumption is 25 times. Therefore, the performance of the IC corresponding to the 50-inch touch panel is also required 25 times. In practice, since the distance from the touched position to the detection unit also increases, the power consumption is not limited to a simple area doubled, and the power consumption can be further increased.
 タッチパネルの大型化による消費電力の増加を解決する方法として、タッチパネル全体に発生している電界の振幅を下げることが考えられる。しかし、振幅を下げると、希望波信号がノイズに埋もれてしまう。特に大きなタッチパネルの場合、影響はさらに大きなものになる。このようにノイズ耐性に対する要求がシビアになるほど、希望波信号と同じ周波数の誤差信号が問題となってくると思われる。 As a method for solving the increase in power consumption due to the enlargement of the touch panel, it is conceivable to reduce the amplitude of the electric field generated in the entire touch panel. However, when the amplitude is lowered, the desired wave signal is buried in noise. Especially in the case of a large touch panel, the influence is even greater. As the demand for noise immunity becomes more severe, an error signal having the same frequency as the desired wave signal seems to be a problem.
 また、この問題はタッチパネルの大型化だけではなく、液晶パネルの高解像度化においても同様に発生する。例えば、現在のフルハイビジョンに対し、その4倍の解像度でのテレビ放送への移行が予定されている。さらに将来的には16倍の解像度になるなど、液晶パネルはより一層高解像度化される方向にある。そのため、タッチパネルの高精度化が必要となった際にも、希望波信号と同じ周波数の誤差信号が問題となってくると思われる。 This problem occurs not only when the touch panel is enlarged, but also when the resolution of the liquid crystal panel is increased. For example, the current full high-definition is scheduled to shift to television broadcasting at a resolution four times that of the current full high-definition. Furthermore, in the future, the resolution of liquid crystal panels is in the direction of higher resolution, such as 16 times the resolution. For this reason, even when the touch panel needs to be highly accurate, an error signal having the same frequency as the desired wave signal seems to be a problem.
 図17は、実施の形態5にかかる信号処理回路500の構成を模式的に示すブロック図である。信号処理回路500は、信号処理回路300の変形例である。信号処理回路500は、信号処理回路300に第3の減算器50及び第4のスイッチSW54を追加した構成を有する。また、信号処理回路500は、信号処理回路300の第1のスイッチSW21を第1のスイッチSW51に置換した構成を有する。図17では、センサ回路として、静電容量方式のタッチパネル102bを表示している。また、信号処理回路500及び501~503は、タッチパネルのタッチ位置を4隅から検出する信号処理回路に相当する。信号処理回路501~503は、それぞれ信号処理回路500と同等の回路である。 FIG. 17 is a block diagram schematically showing the configuration of the signal processing circuit 500 according to the fifth embodiment. The signal processing circuit 500 is a modification of the signal processing circuit 300. The signal processing circuit 500 has a configuration in which a third subtracter 50 and a fourth switch SW54 are added to the signal processing circuit 300. The signal processing circuit 500 has a configuration in which the first switch SW21 of the signal processing circuit 300 is replaced with a first switch SW51. In FIG. 17, a capacitive touch panel 102b is displayed as a sensor circuit. The signal processing circuits 500 and 501 to 503 correspond to signal processing circuits that detect touch positions of the touch panel from four corners. Each of the signal processing circuits 501 to 503 is a circuit equivalent to the signal processing circuit 500.
 第3の減算器50の反転入力端子はDAC16の出力と接続され、非反転入力端子は出力端子Tout接続される。第4のスイッチSW54は、第3の減算器50の出力とADC13の入力との間に接続される。第1のスイッチSW51は、第1の減算器11の反転入力端子と信号源101との間に接続される。第1のスイッチSW51及び第4のスイッチSW54は、それぞれ制御回路18からの制御信号SIG51及びSIG54により、オン/オフする。信号処理回路500のその他の構成は信号処理回路300と同様であるので、説明を省略する。 The inverting input terminal of the third subtracter 50 is connected to the output of the DAC 16, and the non-inverting input terminal is connected to the output terminal Tout. The fourth switch SW54 is connected between the output of the third subtracter 50 and the input of the ADC 13. The first switch SW51 is connected between the inverting input terminal of the first subtractor 11 and the signal source 101. The first switch SW51 and the fourth switch SW54 are turned on / off by control signals SIG51 and SIG54 from the control circuit 18, respectively. Since the other configuration of the signal processing circuit 500 is the same as that of the signal processing circuit 300, the description thereof is omitted.
 続いて、信号処理回路500の誤差信号除去動作について説明する。図18は、信号処理回路500の誤差信号除去動作を示すフローチャートである。図19A~図19Cは、信号処理回路500の第1~第4のスイッチSW51、SW12、SW13及びSW54のオン/オフを示すブロック図である。図20は、信号処理回路500の動作を示すタイミングチャートである。なお、図20におけるタイミングT51~T54は、それぞれ図4のタイミングT11~T14に対応する。 Subsequently, the error signal removal operation of the signal processing circuit 500 will be described. FIG. 18 is a flowchart showing the error signal removal operation of the signal processing circuit 500. 19A to 19C are block diagrams showing on / off of the first to fourth switches SW51, SW12, SW13, and SW54 of the signal processing circuit 500. FIG. FIG. 20 is a timing chart showing the operation of the signal processing circuit 500. Note that timings T51 to T54 in FIG. 20 correspond to timings T11 to T14 in FIG. 4, respectively.
 本実施の形態におけるセンサ回路であるタッチパネル102bがONの場合、タッチを検出していないとき、すなわち被検出信号の未検出時には、理想的には入力と同じ信号を出力する。すなわち、未検出時のタッチパネル102bは、理想的には希望波信号Sdをそのまま出力する。ところが、実際にはタッチパネル102bに起因する、希望波信号とお同じ周波数の誤差信号も出力される。従って、実施の形態1~4と同様に、この誤差信号を除去する必要が生じる。 When the touch panel 102b which is the sensor circuit in this embodiment is ON, when the touch is not detected, that is, when the detected signal is not detected, ideally the same signal as the input is output. That is, the touch panel 102b when not detected ideally outputs the desired wave signal Sd as it is. However, an error signal having the same frequency as that of the desired wave signal, which is actually caused by the touch panel 102b, is also output. Therefore, it is necessary to remove this error signal as in the first to fourth embodiments.
 ステップS501~S503は、図10のステップS301~S303と同様であるので、説明を省略する。ステップS503の後、制御回路18は、図19Aに示すように、制御信号SIG51及びSIG13により、第1のスイッチSW51及び第3のスイッチSW13をオンにする。また、制御回路18は、制御信号SIG12及びSIG54により、第2のスイッチSW12及び第4のスイッチSW54をオフにする(図18のステップS504)。 Steps S501 to S503 are the same as steps S301 to S303 in FIG. After step S503, the control circuit 18 turns on the first switch SW51 and the third switch SW13 by the control signals SIG51 and SIG13 as shown in FIG. 19A. Further, the control circuit 18 turns off the second switch SW12 and the fourth switch SW54 by the control signals SIG12 and SIG54 (step S504 in FIG. 18).
 この際、図20に示すように、第1の減算器11は、誤差信号を含むセンサ回路の出力信号S_outから希望波信号Sdを減算する。これにより、第1の減算器11は、誤差信号err5を抽出する。抽出された誤差信号err5は、フィルタ27及び第3のスイッチSW13を介して、ADC13供給される。 At this time, as shown in FIG. 20, the first subtracter 11 subtracts the desired wave signal Sd from the output signal S_out of the sensor circuit including the error signal. As a result, the first subtractor 11 extracts the error signal err5. The extracted error signal err5 is supplied to the ADC 13 via the filter 27 and the third switch SW13.
 ADC13は、誤差信号err5をA/D変換したデジタル誤差信号err5_Dを、記憶装置15に出力する(図18のステップS505)。記憶装置15は、デジタル誤差信号err5_Dの各ビットの値を記憶する(図8のステップS506)。なお、記憶装置15の具体的な記憶動作については、実施の形態1と同様であるので、説明を省略する。その後のステップS507~S509については、図10のステップS307~309と同様であるので、説明を省略する。 The ADC 13 outputs a digital error signal err5_D obtained by A / D converting the error signal err5 to the storage device 15 (step S505 in FIG. 18). The storage device 15 stores the value of each bit of the digital error signal err5_D (step S506 in FIG. 8). Note that the specific storage operation of the storage device 15 is the same as that of the first embodiment, and thus the description thereof is omitted. Subsequent steps S507 to S509 are the same as steps S307 to 309 in FIG.
 ステップS509の後、制御回路18は、図19Bに示すように、制御信号SIG51及びSIG54により、第1のスイッチSW51及び第4のスイッチSW54をオンにする。また、制御回路18は、制御信号SIG12及びSIG13により、第2のスイッチSW12及び第3のスイッチSW13をオフにする(図18のステップS510)。 After step S509, the control circuit 18 turns on the first switch SW51 and the fourth switch SW54 by the control signals SIG51 and SIG54 as shown in FIG. 19B. Further, the control circuit 18 turns off the second switch SW12 and the third switch SW13 by the control signals SIG12 and SIG13 (step S510 in FIG. 18).
 次いで、制御回路18は、制御信号SIGmにより、記憶装置15に記憶されたデジタル誤差信号err5_Dを出力させる。DAC16は、デジタル誤差信号err5_DをD/A変換した再生誤差信号err5_Rを、第3の減算器50の反転入力端子へ出力する(図18のステップS511)。 Next, the control circuit 18 outputs the digital error signal err5_D stored in the storage device 15 by the control signal SIGm. The DAC 16 outputs a reproduction error signal err5_R obtained by D / A converting the digital error signal err5_D to the inverting input terminal of the third subtracter 50 (step S511 in FIG. 18).
 第3の減算器50は、誤差信号err5から再生誤差信号err5_Rを減算した出力信号AMP_outを、第4のスイッチSW54を介してADC13へ出力する(図18のステップS512)。 The third subtracter 50 outputs the output signal AMP_out obtained by subtracting the reproduction error signal err5_R from the error signal err5 to the ADC 13 via the fourth switch SW54 (step S512 in FIG. 18).
 上述のように、再生誤差信号err5_Rは記憶装置15に記憶したデジタル誤差信号err5_Dを再生したものである。そのため、D/A変換、A/D変換により、ある程度の波形の変化が生じるとしても、再生誤差信号err5_R及び誤差信号err5の波形は近似する。 As described above, the reproduction error signal err5_R is a reproduction of the digital error signal err5_D stored in the storage device 15. Therefore, even if the waveform changes to some extent by D / A conversion and A / D conversion, the waveforms of the reproduction error signal err5_R and the error signal err5 are approximated.
 誤差信号err5及び再生誤差信号err5_Rのタイミングが一致していれば、出力信号Voutに含まれる誤差信号成分も最小化することができ、理想的には0とすることができる。よって、出力信号Voutに含まれる誤差信号成分を最小化するためには、誤差信号err5及び再生誤差信号err5_Rのタイミングを一致させる必要がある。 If the timings of the error signal err5 and the reproduction error signal err5_R coincide with each other, the error signal component included in the output signal Vout can be minimized, and can be ideally zero. Therefore, in order to minimize the error signal component included in the output signal Vout, it is necessary to match the timings of the error signal err5 and the reproduction error signal err5_R.
 誤差信号err5及び再生誤差信号err5_Rのタイミングが一致している場合には出力信号Voutは0レベルである。従って、ADC13により生成されたデジタル信号AMP_out_Dのいずれかのビットが「1」である場合には、誤差信号err5及び再生誤差信号err5_Rのタイミングがずれていることを意味する。多入力OR回路14の出力OR_outは、デジタル信号AMP_out_Dのいずれかのビットが「1」である場合には「1」となり、デジタル信号AMP_out_Dの全てのビットが「0」である場合には「0」となる。すなわち、多入力OR回路14は、誤差信号err5及び再生誤差信号err5_Rのタイミングのずれの有無を検出することができる(図18のステップS513)。その後のステップS514は、図10のステップS214と同様であるので、説明を省略する。 When the timings of the error signal err5 and the reproduction error signal err5_R match, the output signal Vout is 0 level. Therefore, when any bit of the digital signal AMP_out_D generated by the ADC 13 is “1”, it means that the timing of the error signal err5 and the reproduction error signal err5_R is shifted. The output OR_out of the multi-input OR circuit 14 is “1” when any bit of the digital signal AMP_out_D is “1”, and “0” when all the bits of the digital signal AMP_out_D are “0”. " That is, the multi-input OR circuit 14 can detect the presence / absence of a timing shift between the error signal err5 and the reproduction error signal err5_R (step S513 in FIG. 18). Subsequent step S514 is the same as step S214 in FIG.
 多入力OR回路14の出力OR_outが「0」であるならば、誤差信号err5及び再生誤差信号err5_Rのタイミングが一致している。この場合、制御回路18は、制御信号SIG2により、第2のスイッチSW12をオンにする。また、制御回路18は、制御信号SIG51、SIG13及びSIG54により、第1、第3及び第4のスイッチSW51、SW13及びSW54をオフにする(図18のステップS515)。その後のステップS516は、図10のステップS216同様であるので、説明を省略する。 If the output OR_out of the multi-input OR circuit 14 is “0”, the timings of the error signal err5 and the reproduction error signal err5_R match. In this case, the control circuit 18 turns on the second switch SW12 by the control signal SIG2. Further, the control circuit 18 turns off the first, third and fourth switches SW51, SW13 and SW54 by the control signals SIG51, SIG13 and SIG54 (step S515 in FIG. 18). Subsequent step S516 is the same as step S216 in FIG.
 信号処理回路500では、再生誤差信号err5_Rをフィルタリングしないので、再生誤差信号err5_Rには高周波成分が残存している。しかし、フィルタ27が第1の減算器11の出力と出力端子Toutとの間に接続されているので、第1の減算器11の出力からは、信号処理回路300と同様に、D/A変換に起因する高周波成分は除去される。従って、この場合、信号処理回路500の出力信号Voutは、信号処理回路300と同等となる。 Since the signal processing circuit 500 does not filter the reproduction error signal err5_R, a high frequency component remains in the reproduction error signal err5_R. However, since the filter 27 is connected between the output of the first subtractor 11 and the output terminal Tout, the D / A conversion is performed from the output of the first subtractor 11 in the same manner as the signal processing circuit 300. The high-frequency component resulting from is removed. Therefore, in this case, the output signal Vout of the signal processing circuit 500 is equivalent to that of the signal processing circuit 300.
 タイミング調整の終了後、信号処理回路500は、信号処理回路300と同様に、通常動作を行う。以上のように、信号処理回路500は、誤差信号err5から再生誤差信号err5_Rを適切なタイミングで減算することにより、出力信号Voutの誤差信号を除去している。これにより、被検出信号が検出されていない場合のセンサ回路の出力が0ではない場合でも、出力信号Voutに含まれる誤差信号成分を除去することができる。よって、出力信号Voutには、被検出信号のみが反映される。従って、本構成によれば、信号処理回路300と同様に、希望波信号と同じ又は近接する周波数の誤差信号を除去することができる。 After completion of timing adjustment, the signal processing circuit 500 performs a normal operation in the same manner as the signal processing circuit 300. As described above, the signal processing circuit 500 removes the error signal of the output signal Vout by subtracting the reproduction error signal err5_R from the error signal err5 at an appropriate timing. Thereby, even when the output of the sensor circuit when the detected signal is not detected is not 0, the error signal component included in the output signal Vout can be removed. Therefore, only the detected signal is reflected in the output signal Vout. Therefore, according to this configuration, similarly to the signal processing circuit 300, it is possible to remove an error signal having a frequency that is the same as or close to that of the desired wave signal.
 上述のように、信号処理回路500では、タイミング調整時にのみ、第3の減算器50が減算動作を行う。つまり、タイミング調整時以外では、第3の減算器50は機能しない。よって、タイミング調整時以外の信号処理回路500の回路構成は、実質的に信号処理回路300と同様である。従って、信号処理回路300に第3の減算器50及び第4のスイッチSW54を追加するだけで、容易に被検出信号が検出されていない場合のセンサ回路の出力が0ではない場合でも出力信号Voutに含まれる誤差信号成分を除去することができる信号処理回路を実現できる。 As described above, in the signal processing circuit 500, the third subtracter 50 performs the subtraction operation only at the time of timing adjustment. That is, the third subtracter 50 does not function except during timing adjustment. Therefore, the circuit configuration of the signal processing circuit 500 other than the timing adjustment is substantially the same as that of the signal processing circuit 300. Therefore, the output signal Vout can be obtained even when the output of the sensor circuit is not 0 by simply adding the third subtractor 50 and the fourth switch SW54 to the signal processing circuit 300 and the detected signal is not easily detected. It is possible to realize a signal processing circuit that can remove the error signal component included in the.
 同様に、信号処理回路100、200及び400の第3のスイッチSW13とADC13の入力との間に第3の減算器50及び第4のスイッチSW54を追加するだけで、容易に被検出信号が検出されていない場合のセンサ回路の出力が0ではない場合でも出力信号Voutに含まれる誤差信号成分を除去することができる信号処理回路を実現できる。 Similarly, the detected signal can be easily detected simply by adding the third subtractor 50 and the fourth switch SW54 between the third switch SW13 of the signal processing circuits 100, 200 and 400 and the input of the ADC 13. Even when the output of the sensor circuit when it is not performed is not 0, it is possible to realize a signal processing circuit that can remove the error signal component included in the output signal Vout.
 信号処理回路100に第3減算器50及び第4のスイッチSW54を追加する場合には、信号処理回路100の第1のスイッチSW21が、信号処理回路500の第1のスイッチSW51に相当する。また、信号処理回路100の第2の減算器12の反転入力が、信号源101と接続される。 When adding the third subtractor 50 and the fourth switch SW 54 to the signal processing circuit 100, the first switch SW 21 of the signal processing circuit 100 corresponds to the first switch SW 51 of the signal processing circuit 500. Further, the inverting input of the second subtractor 12 of the signal processing circuit 100 is connected to the signal source 101.
 信号処理回路200又は400に第2の減算器50及び第4のスイッチSW54を追加する場合には、信号処理回路200又は400の第1のスイッチSW21を、信号源101と第1の減算器11の反転入力との間に接続する。 When the second subtractor 50 and the fourth switch SW54 are added to the signal processing circuit 200 or 400, the first switch SW21 of the signal processing circuit 200 or 400 is replaced with the signal source 101 and the first subtractor 11. Connect to the inverting input of.
 実施の形態6
 次に、本発明の実施の形態6にかかる信号処理システム1000について説明する。図21は、実施の形態6にかかる信号処理システム1000の構成を模式的に示すブロック図である。信号処理システム1000は、実施の形態3にかかる信号処理回路300にCPU1001が接続された構成を有する。
Embodiment 6
Next, a signal processing system 1000 according to the sixth exemplary embodiment of the present invention will be described. FIG. 21 is a block diagram schematically illustrating a configuration of a signal processing system 1000 according to the sixth embodiment. The signal processing system 1000 has a configuration in which a CPU 1001 is connected to the signal processing circuit 300 according to the third embodiment.
 CPU1001は、信号処理回路300の信号端子Tenに、イネーブル信号enを供給する。また、CPU1001は、信号処理回路300の信号端子Tendから、完了信号endを受ける。 The CPU 1001 supplies an enable signal en to the signal terminal Ten of the signal processing circuit 300. Further, the CPU 1001 receives a completion signal end from the signal terminal Tend of the signal processing circuit 300.
 CPU1001は、イネーブル信号enにより、信号処理回路300に誤差信号除去動作の開始を命ずることができる。この開始命令は、CPU1001がシステムのユーザの指示を受けて行うことができる。また、CPU1001が、環境温度を監視し、一定の温度変動が有った場合に、開始命令を発することも可能である。 The CPU 1001 can instruct the signal processing circuit 300 to start the error signal removal operation by the enable signal en. This start command can be issued by the CPU 1001 in response to an instruction from the user of the system. Further, the CPU 1001 monitors the environmental temperature, and can issue a start command when there is a certain temperature fluctuation.
 また、CPU1001は、信号処理回路300から完了信号endを受けることにより、誤差信号除去動作の完了を認識する。そして、CPU1001は、イネーブル信号enのレベルを遷移させ、信号処理回路300に誤差信号除去動作を終了させることができる。 The CPU 1001 recognizes the completion of the error signal removal operation by receiving the completion signal end from the signal processing circuit 300. Then, the CPU 1001 can transition the level of the enable signal en, and cause the signal processing circuit 300 to end the error signal removal operation.
 なお、本実施の形態では、信号処理回路300を用いたが、信号処理回路100、200、300又は500を用いることができることは言うまでもない。 In the present embodiment, the signal processing circuit 300 is used, but it goes without saying that the signal processing circuit 100, 200, 300, or 500 can be used.
 また、本実施の形態では、信号処理回路にCPUが接続される構成としたが、信号処理回路との信号の受け渡しが可能であれば、他のコンピュータやマイコンなどと接続して、シスムを構築することも可能である。 In this embodiment, the CPU is connected to the signal processing circuit. However, if a signal can be exchanged with the signal processing circuit, it is connected to another computer or a microcomputer to construct a system. It is also possible to do.
 よって、本構成によれば、上述の実施の形態1~5にかかる信号処理回路を好適に運用することができる信号処理システムを提供することができる。 Therefore, according to this configuration, it is possible to provide a signal processing system that can suitably operate the signal processing circuit according to the first to fifth embodiments.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、信号処理回路のフィルタ17に代えて、実施の形態3にかかるフィルタ27を適用することも可能である。また、信号処理回路100及び200に、実施の形態4にかかるディレイライン40を適用することも可能である。 Note that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention. For example, instead of the filter 17 of the signal processing circuit, the filter 27 according to the third embodiment can be applied. Also, the delay line 40 according to the fourth embodiment can be applied to the signal processing circuits 100 and 200.
 また、信号処理回路500は、第1のスイッチSW51、第4のスイッチSW54及び第3の減算器50を、信号処理回路100、200、300、400及び上述の構成転換例に適宜適用した信号処理回路により、置換することも可能である。 Further, the signal processing circuit 500 is a signal processing in which the first switch SW51, the fourth switch SW54, and the third subtracter 50 are appropriately applied to the signal processing circuits 100, 200, 300, 400, and the above configuration change examples. It can also be replaced by a circuit.
 さらに、実施の形態6における信号処理回路300を、信号処理回路100、200、400及び500のみならず、上述の構成転換例にかかる信号処理回路に置換することも可能である。 Furthermore, the signal processing circuit 300 according to the sixth embodiment can be replaced not only with the signal processing circuits 100, 200, 400, and 500 but also with the signal processing circuit according to the above-described configuration change example.
 実施の形態5においては、センサ回路としてタッチパネルを用いたが、例示に過ぎない。従って、上述の信号処理回路は、タッチパネル以外の任意のセンサ回路に適用することも可能である。 In Embodiment 5, a touch panel is used as a sensor circuit, but this is only an example. Therefore, the above-described signal processing circuit can be applied to any sensor circuit other than the touch panel.
 記憶装置15は、書き込み/読み出しが可能な記憶装置であればよく、例えばフラッシュメモリや、その他の書き込み/読み出しが可能な記憶装置などの記憶素子を用いることが可能である。 The storage device 15 may be any storage device capable of writing / reading, and for example, a storage element such as a flash memory or other storage device capable of writing / reading may be used.
 この出願は、2011年3月31日に出願された日本出願特願2011-79865を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2011-79865 filed on March 31, 2011, the entire disclosure of which is incorporated herein.
11 第1の減算器
12 第2の減算器
13 ADC
14 多入力OR回路
15 記憶装置
16 DAC
17、27 フィルタ
18 制御回路
40 ディレイライン
50 第3の減算器
100、200、300、400、500~503 信号処理回路
101 信号源
102a センサ回路
102b タッチパネル
600 フィルタ回路
601 周波数変換器
602、621 A/Dコンバータ
610 サンプラ
622 デジタルフィルタ
630 D/Aコンバータ
640 遅延器
650 減算器
700 ノイズキャンセル回路
701 アンテナ
702 フィルタ
703 位相反転部
704 位相同期部
705 レベル調節部
706 発振部
707 加算器
708 LNA
750 妨害波対策部
1000 信号処理システム
OR_out 多入力OR回路の出力
S_out センサ回路の出力信号
SIG11~13、SIG21、SIG40、SIG51、SIG54、SIGm 制御信号
SW11~SW13、SW21、SW51、SW54 スイッチ
Sd 希望波信号
Ten、Tend 信号端子
Tout 出力端子
Vout 出力信号
Vout_D デジタル信号
en イネーブル信号
end 完了信号
err1、err5 誤差信号
err1_D、err5_D デジタル誤差信号
err1_F、err1_R、err1_RD、err5_R 再生誤差信号
11 First subtractor 12 Second subtractor 13 ADC
14 Multi-input OR circuit 15 Storage device 16 DAC
17, 27 Filter 18 Control circuit 40 Delay line 50 Third subtractor 100, 200, 300, 400, 500 to 503 Signal processing circuit 101 Signal source 102a Sensor circuit 102b Touch panel 600 Filter circuit 601 Frequency converter 602, 621 A / D converter 610 Sampler 622 Digital filter 630 D / A converter 640 Delay unit 650 Subtractor 700 Noise cancellation circuit 701 Antenna 702 Filter 703 Phase inversion unit 704 Phase synchronization unit 705 Level adjustment unit 706 Oscillation unit 707 Adder 708 LNA
750 Interference wave countermeasure unit 1000 Signal processing system OR_out Output of multi-input OR circuit S_out Output signal of sensor circuit SIG11 to 13, SIG21, SIG40, SIG51, SIG54, SIGm Control signal SW11 to SW13, SW21, SW51, SW54 Switch Sd Desired wave Signal Ten, Tend signal terminal Tout output terminal Vout output signal Vout_D digital signal en enable signal end completion signal err1, err5 error signal err1_D, err5_D digital error signal err1_F, err1_R, err1_RD, err5_R reproduction error signal

Claims (19)

  1.  信号源と接続されるセンサ回路が検出対象となる信号を検出していない場合において、前記センサ回路から出力される前記信号源が出力する信号と同じ周波数の誤差信号の所定期間の信号波形を記憶する記憶装置と、
     前記記憶装置に記憶された前記信号波形から前記誤差信号を再生した再生誤差信号を、前記所定期間ごとに繰り返し出力する再生誤差信号出力部と、
     前記誤差信号から前記再生誤差信号を減算した信号を、出力端子へ出力する第1の減算器と、
     前記センサ回路が検出対象となる信号を検出していない状態で、前記第1の減算器の出力信号の信号レベルが最小化するように、前記第1の減算器への前記再生誤差信号の供給タイミングを調整する制御回路と、を備える、
     信号処理回路。
    When the sensor circuit connected to the signal source does not detect the signal to be detected, the signal waveform of the error signal having the same frequency as the signal output from the signal source output from the sensor circuit is stored for a predetermined period. A storage device to
    A reproduction error signal output unit that repeatedly outputs a reproduction error signal obtained by reproducing the error signal from the signal waveform stored in the storage device every predetermined period;
    A first subtractor that outputs a signal obtained by subtracting the reproduction error signal from the error signal to an output terminal;
    Supplying the reproduction error signal to the first subtractor so that the signal level of the output signal of the first subtractor is minimized while the sensor circuit is not detecting a signal to be detected. A control circuit for adjusting the timing,
    Signal processing circuit.
  2.  前記誤差信号をA/D変換したデジタル誤差信号を前記記憶装置へ出力するA/Dコンバータを更に備え、
     再生誤差信号出力部は、前記記憶装置からの出力をD/A変換するD/Aコンバータであり、
     前記記憶装置は、前記デジタル誤差信号を記憶し、
     前記制御回路は、前記記憶装置に記憶された前記デジタル誤差信号を前記D/Aコンバータへ出力させることを特徴とする、
     請求項1に記載の信号処理回路。
    An A / D converter that outputs a digital error signal obtained by A / D converting the error signal to the storage device;
    The reproduction error signal output unit is a D / A converter that D / A converts the output from the storage device,
    The storage device stores the digital error signal;
    The control circuit outputs the digital error signal stored in the storage device to the D / A converter.
    The signal processing circuit according to claim 1.
  3.  前記制御回路は、前記記憶装置が前記再生誤差信号出力部へ前記デジタル誤差信号を出力するタイミングを調整することを特徴とする、
     請求項2に記載の信号処理回路。
    The control circuit adjusts a timing at which the storage device outputs the digital error signal to the reproduction error signal output unit.
    The signal processing circuit according to claim 2.
  4.  前記制御回路は、前記記憶装置に記憶された前記デジタル誤差信号を前記D/Aコンバータへ出力させるタイミングを調整することを特徴とする、
     請求項3に記載の信号処理回路。
    The control circuit adjusts a timing for outputting the digital error signal stored in the storage device to the D / A converter.
    The signal processing circuit according to claim 3.
  5.  前記D/Aコンバータと前記第1の減算器との間に挿入され、前記再生誤差信号を遅延させる遅延部を更に備え、
     前記制御回路は、前記遅延部が前記再生誤差信号に与える遅延量を制御することを特徴とする、
     請求項2に記載の信号処理回路。
    A delay unit inserted between the D / A converter and the first subtractor for delaying the reproduction error signal;
    The control circuit controls a delay amount given to the reproduction error signal by the delay unit,
    The signal processing circuit according to claim 2.
  6.  前記第1の減算器の反転入力端子と前記D/Aコンバータの出力との間に接続される第2のスイッチと、
     前記第1の減算器の出力端子と前記A/Dコンバータの入力との間に接続される第3のスイッチと、を更に備えることを特徴とする、
     請求項2乃至5のいずれか一項に記載の信号処理回路。
    A second switch connected between an inverting input terminal of the first subtractor and an output of the D / A converter;
    A third switch connected between an output terminal of the first subtractor and an input of the A / D converter;
    The signal processing circuit according to claim 2.
  7.  非反転入力端子が前記センサ回路の出力と接続され、反転入力端子がグランドと接続される第2の減算器と、
     前記第2の減算器の出力端子と、前記A/Dコンバータの前記入力との間に接続される第1のスイッチと、を更に備え、
     前記制御回路は、前記第1のスイッチをオン、前記第2及び第3のスイッチをオフにすることにより、前記A/Dコンバータへ前記誤差信号を供給し、
     前記A/Dコンバータは、前記第2の減算器からの前記誤差信号を前記デジタル誤差信号に変換することを特徴とする、
     請求項6に記載の信号処理回路。
    A second subtractor having a non-inverting input terminal connected to the output of the sensor circuit and an inverting input terminal connected to ground;
    A first switch connected between the output terminal of the second subtractor and the input of the A / D converter;
    The control circuit supplies the error signal to the A / D converter by turning on the first switch and turning off the second and third switches,
    The A / D converter converts the error signal from the second subtractor into the digital error signal.
    The signal processing circuit according to claim 6.
  8.  前記第1の減算器の前記反転入力端子とグランドとの間に接続される第1のスイッチを更に備え、
     前記第1の減算器の非反転入力端子は前記センサ回路の出力と接続され、前記第1の減算器の前記出力端子は、前記A/Dコンバータの前記入力と接続され、 
     前記制御回路は、前記第1及び第3のスイッチをオン、前記第2のスイッチをオフにすることにより、前記A/Dコンバータへ前記誤差信号を供給し、
     前記A/Dコンバータは、前記第1の減算器からの前記誤差信号を前記デジタル誤差信号に変換することを特徴とする、
     請求項6に記載の信号処理回路。
    A first switch connected between the inverting input terminal of the first subtractor and ground;
    A non-inverting input terminal of the first subtractor is connected to an output of the sensor circuit, and an output terminal of the first subtractor is connected to the input of the A / D converter;
    The control circuit supplies the error signal to the A / D converter by turning on the first and third switches and turning off the second switch,
    The A / D converter converts the error signal from the first subtractor into the digital error signal.
    The signal processing circuit according to claim 6.
  9.  前記制御回路は、前記第1のスイッチをオフ、前記第2及び第3のスイッチをオンにし、前記D/Aコンバータから前記再生誤差信号を出力させ、
     前記第1の減算器は、前記誤差信号から前記再生誤差信号を減算した信号を出力することを特徴とする、
     請求項7又は8に記載の信号処理回路。
    The control circuit turns off the first switch, turns on the second and third switches, and outputs the reproduction error signal from the D / A converter,
    The first subtractor outputs a signal obtained by subtracting the reproduction error signal from the error signal.
    The signal processing circuit according to claim 7 or 8.
  10.  前記第1の減算器から出力される信号のレベルを検出する検出回路を更に備え、
     前記制御回路は、前記検出回路が検出した前記第1の減算器から出力される前記信号のレベルに応じて、前記第1の減算器への前記再生誤差信号の供給タイミングを調整することを特徴とする、
     請求項7乃至9のいずれか一項に記載の信号処理回路。
    A detection circuit for detecting a level of a signal output from the first subtractor;
    The control circuit adjusts the supply timing of the reproduction error signal to the first subtracter according to the level of the signal output from the first subtractor detected by the detection circuit. And
    The signal processing circuit according to claim 7.
  11.  前記検出回路は前記A/Dコンバータの出力と前記制御回路との間に接続された多入力OR回路であり、
     前記制御回路は、前記多入力OR回路が、前記デジタル誤差信号のいずれかのビットが1である場合には、前記第1の減算器への前記再生誤差信号の供給タイミングを遅らせることを特徴とする、
     請求項10に記載の信号処理回路。
    The detection circuit is a multi-input OR circuit connected between the output of the A / D converter and the control circuit;
    The control circuit is characterized in that the multi-input OR circuit delays the supply timing of the reproduction error signal to the first subtracter when any bit of the digital error signal is 1. To
    The signal processing circuit according to claim 10.
  12.  前記第1の減算器の前記反転入力端子と前記信号源との間に接続される第1のスイッチを更に備え、
     前記第1の減算器の非反転入力端子は前記センサ回路の出力と接続され、前記第1の減算器の前記出力端子は、前記A/Dコンバータの前記入力と接続され、
     前記制御回路は、前記第1及び第3のスイッチをオン、前記第2のスイッチをオフにすることにより、前記A/Dコンバータへ前記誤差信号を供給し、
     前記A/Dコンバータは、前記第1の減算器からの前記誤差信号を前記デジタル誤差信号に変換することを特徴とする、
     請求項6に記載の信号処理回路。
    A first switch connected between the inverting input terminal of the first subtractor and the signal source;
    A non-inverting input terminal of the first subtractor is connected to an output of the sensor circuit, and an output terminal of the first subtractor is connected to the input of the A / D converter;
    The control circuit supplies the error signal to the A / D converter by turning on the first and third switches and turning off the second switch,
    The A / D converter converts the error signal from the first subtractor into the digital error signal.
    The signal processing circuit according to claim 6.
  13.  反転入力端子が前記D/Aコンバータと接続され、非反転入力端子が前記第1の減算器の前記出力端子と接続される第3の減算器と、
     前記第3の減算器の出力端子と前記A/Dコンバータの前記入力との間に接続される第4のスイッチと、を備え、
     前記制御回路が前記第1及び第4のスイッチをオン、前記第2及び第3のスイッチをオフにし、
     前記第3の減算器は前記誤差信号から前記再生誤差信号を減算した信号を、前記A/Dコンバータに出力する、
     請求項12に記載の信号処理回路。
    A third subtractor having an inverting input terminal connected to the D / A converter and a non-inverting input terminal connected to the output terminal of the first subtractor;
    A fourth switch connected between the output terminal of the third subtractor and the input of the A / D converter;
    The control circuit turns on the first and fourth switches, turns off the second and third switches,
    The third subtracter outputs a signal obtained by subtracting the reproduction error signal from the error signal to the A / D converter;
    The signal processing circuit according to claim 12.
  14.  前記第3の減算器から出力される信号のレベルを検出する検出回路を更に備え、
     前記制御回路は、前記検出回路が検出した前記第3の減算器から出力される前記信号のレベルに応じて、前記第3の減算器からの信号の信号レベルが最小になるように、前記第3の減算器への前記再生誤差信号の供給タイミングを調整することを特徴とする、
     請求項13に記載の信号処理回路。
    A detection circuit for detecting a level of a signal output from the third subtractor;
    The control circuit is configured to reduce the signal level of the signal from the third subtractor according to the level of the signal output from the third subtractor detected by the detection circuit. Adjusting the supply timing of the reproduction error signal to the subtractor of No. 3;
    The signal processing circuit according to claim 13.
  15.  前記検出回路は前記A/Dコンバータの出力と前記制御回路との間に接続された多入力OR回路であり、
     前記制御回路は、前記多入力OR回路が、前記デジタル誤差信号のいずれかのビットが1である場合には、前記第3の減算器への前記再生誤差信号の供給タイミングを遅らせることを特徴とする、
     請求項14に記載の信号処理回路。
    The detection circuit is a multi-input OR circuit connected between the output of the A / D converter and the control circuit;
    The control circuit is characterized in that the multi-input OR circuit delays the supply timing of the reproduction error signal to the third subtracter when any bit of the digital error signal is 1. To
    The signal processing circuit according to claim 14.
  16.  前記制御回路は、前記第3の減算器からの前記信号の信号レベルが最小である状態で、前記第2のスイッチをオン、前記第1、第3及び第4のスイッチをオフにする、
     請求項15に記載の信号処理回路。
    The control circuit turns on the second switch and turns off the first, third, and fourth switches in a state where the signal level of the signal from the third subtractor is minimum.
    The signal processing circuit according to claim 15.
  17.  前記D/Aコンバータと前記第1の減算器との間に挿入され、前記信号源が出力する前記信号と同じ周波数の信号を通過させるフィルタを更に備えることを特徴とする、
     請求項2乃至16のいずれか一項に記載の信号処理回路。
    It further includes a filter inserted between the D / A converter and the first subtracter and passing a signal having the same frequency as the signal output from the signal source.
    The signal processing circuit according to claim 2.
  18.  前記第1の減算器の前記出力端子と当該信号処理回路の前記出力端子との間に挿入され、前記信号源が出力する前記信号と同じ周波数の信号を通過させるフィルタを更に備えることを特徴とする、
     請求項2乃至16のいずれか一項に記載の信号処理回路。
    A filter that is inserted between the output terminal of the first subtractor and the output terminal of the signal processing circuit and passes a signal having the same frequency as the signal output from the signal source; To
    The signal processing circuit according to claim 2.
  19.  信号源と接続されるセンサ回路が検出対象となる信号を検出していない場合において、前記センサ回路から出力される前記信号源が出力する信号と同じ周波数の誤差信号の所定期間の信号波形を、記憶装置に記憶させ、
     前記記憶装置に記憶された前記信号波形から前記誤差信号を再生した再生誤差信号を、前記所定期間ごとに繰り返し出力し、
     第1の減算器が前記誤差信号から前記再生誤差信号を減算した信号を、出力端子へ出力し、
     前記センサ回路が検出対象となる信号を検出していない状態で、前記第1の減算器の出力信号の信号レベルが最小化するように、前記第1の減算器への前記再生誤差信号の供給タイミングを調整する、
     信号処理方法。
    When the sensor circuit connected to the signal source does not detect the signal to be detected, the signal waveform of the error signal of the same frequency as the signal output from the signal source output from the sensor circuit is a predetermined period, Store it in a storage device,
    A reproduction error signal obtained by reproducing the error signal from the signal waveform stored in the storage device is repeatedly output every predetermined period,
    A first subtracter outputs a signal obtained by subtracting the reproduction error signal from the error signal to an output terminal,
    Supplying the reproduction error signal to the first subtractor so that the signal level of the output signal of the first subtractor is minimized while the sensor circuit is not detecting a signal to be detected. Adjust the timing,
    Signal processing method.
PCT/JP2012/001278 2011-03-31 2012-02-24 Signal processing circuit and signal processing method WO2012132216A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-079865 2011-03-31
JP2011079865 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012132216A1 true WO2012132216A1 (en) 2012-10-04

Family

ID=46930012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001278 WO2012132216A1 (en) 2011-03-31 2012-02-24 Signal processing circuit and signal processing method

Country Status (1)

Country Link
WO (1) WO2012132216A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223897A (en) * 1983-06-01 1984-12-15 帝人株式会社 Noise processing method and apparatus
JPS6277719A (en) * 1985-09-30 1987-04-09 Nec Corp Interference wave eliminating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223897A (en) * 1983-06-01 1984-12-15 帝人株式会社 Noise processing method and apparatus
JPS6277719A (en) * 1985-09-30 1987-04-09 Nec Corp Interference wave eliminating device

Similar Documents

Publication Publication Date Title
US6934215B2 (en) Semiconductor memory device having duty cycle correction circuit and interpolation circuit interpolating clock signal in the semiconductor memory device
JP2010062304A (en) Semiconductor integrated circuit and method of leveling switching noise thereof
CN108021269B (en) Touch sensor controller
JP5759581B2 (en) Apparatus and method for reducing timing mismatch in a sampling circuit
JP2009509226A (en) Bus circuit
KR20130028629A (en) Touch screen sensor integrated circuit, method thereof, and system having the same
US7656980B2 (en) Clock switching circuit
KR20060003026A (en) Signal transmitting apparatus, power supplying system, and serial communication apparatus
US9935786B2 (en) Low power bidirectional bus
KR20180075198A (en) Calculation code generation circuit and digital correction circuit comprising the same
US10826454B2 (en) Audio signal muting apparatus, and digital signal conversion apparatus equipped with same
KR20110134159A (en) Method for processing the image data, the image sensor and image data processor system using the method
WO2012132216A1 (en) Signal processing circuit and signal processing method
JP2003208400A (en) Clock switching circuit
US8471752B2 (en) A/D conversion apparatus having an N-stage pulse circulating circuit
JP2019212956A (en) Semiconductor device
JP2018137705A (en) A/d conversion device
JP4886900B2 (en) Electrical circuit and signal processing method
KR102544182B1 (en) Semiconductor Apparatus
JP2010219679A (en) Volume adjusting device
US20230353937A1 (en) Circuitry for and Methods of Gain Control
KR100635873B1 (en) Embedded system for eliminating a glich
US20240154592A1 (en) Circuitry for and methods of gain control
US8436651B2 (en) Command control circuit for semiconductor integrated device
WO2023209333A1 (en) Circuitry for and methods of gain control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP