WO2012132030A1 - Control method for safe continuous manufacturing of polycarbonate oligomer - Google Patents
Control method for safe continuous manufacturing of polycarbonate oligomer Download PDFInfo
- Publication number
- WO2012132030A1 WO2012132030A1 PCT/JP2011/064828 JP2011064828W WO2012132030A1 WO 2012132030 A1 WO2012132030 A1 WO 2012132030A1 JP 2011064828 W JP2011064828 W JP 2011064828W WO 2012132030 A1 WO2012132030 A1 WO 2012132030A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phosgene
- oligomer
- reactor
- flow rate
- gas
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/20—General preparatory processes
- C08G64/36—General preparatory processes using carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/20—General preparatory processes
- C08G64/22—General preparatory processes using carbonyl halides
- C08G64/24—General preparatory processes using carbonyl halides and phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
Definitions
- the present invention relates to a control method for safe continuous production of polycarbonate oligomer.
- an interfacial method in which dihydric phenols (bisphenols) and phosgene are directly reacted and a transesterification method in which bisphenols and diphenyl carbonate are reacted under a solvent-free condition are known.
- the interface method has become the mainstream from the viewpoint of obtaining a polycarbonate with good quality (see, for example, Patent Document 1).
- bisphenols, alkali compounds such as sodium hydroxide and phosgene are used as raw materials for polycarbonate, and a terminal terminator (molecular weight regulator) or the like is added as necessary.
- phosgene is generally blown into an alkaline aqueous solution of bisphenols to produce a polycarbonate oligomer having a reactive chloroformate group.
- Polycarbonate is produced by reacting with an alkaline aqueous solution of bisphenols.
- Patent Document 2 discloses a method of storing liquefied phosgene obtained by distillation purification of phosgene and producing a polycarbonate using the liquefied phosgene.
- phosgene is highly toxic, it is not desirable to store it from the viewpoint of safety.
- phosgene storage tank is damaged due to corrosion or the like, there is a risk that phosgene leaks.
- Such risks can be reduced by installing phosgene abatement equipment, but it takes time to remove phosgene due to the large amount of phosgene held, but to eliminate it in a short time. Requires large-scale equipment and is costly.
- Patent Document 3 discloses a continuous production method of a polycarbonate oligomer that is directly used for producing a polycarbonate oligomer without liquefying phosgene gas obtained by reacting chlorine and carbon monoxide. According to this method, the amount of phosgene retained in the system can be reduced as compared with the method using liquefied phosgene.
- the problem to be solved by the present invention is that in the method of continuously producing a polycarbonate oligomer during the production of polycarbonate, even when an abnormality occurs, the apparatus is automatically stopped and harmful phosgene is leaked out of the system. It is to provide a method for abatement without doing.
- Step (1) for continuously producing phosgene gas containing unreacted carbon monoxide by supplying chlorine and carbon monoxide to the phosgene reactor, and phosgene gas continuously produced in step (1), divalent A method for controlling polycarbonate oligomer continuous production comprising the step (2) of continuously producing a reaction mixture containing a polycarbonate oligomer by continuously supplying an alkaline aqueous solution of phenol and an organic solvent to an oligomer reactor, When the following conditions (i) and / or (ii) are satisfied, the supply of chlorine and carbon monoxide in the step (1) is stopped, the supply of phosgene gas to the oligomer reactor is stopped, and the phosgene gas A control method for continuous production of polycarbonate oligomers, wherein a toxic gas containing is transferred to a detoxifying means and rendered harmless.
- the phosgene raw material is used.
- the supply of certain chlorine and carbon monoxide and the supply of phosgene to the oligomer reactor are automatically stopped and the phosgene in the system is automatically controlled so as to be transferred to the detoxifying means, so that phosgene does not leak out of the system.
- Polycarbonate oligomer can be produced safely.
- the method for controlling the continuous production of polycarbonate oligomer according to the present invention includes the flow rate of phosgene gas (F1), the flow rate of solvent (F2) supplied to the oligomer reactor, the flow rate of alkaline aqueous solution of dihydric phenol compound (F3). ) And dihydric phenol compound concentration (a [mass%]) are constantly monitored, and supply of chlorine and carbon monoxide as the phosgene raw material and oligomer reaction when the conditions (i) and / or (ii) described below are satisfied In this method, the supply of phosgene to the vessel is automatically stopped and the phosgene in the system is automatically controlled so as to be transferred to the abatement means.
- the method for controlling the continuous production of polycarbonate oligomer of the present invention is applied to an interfacial method in which a dihydric phenol and phosgene are directly reacted, and is applied in a continuous reaction system.
- the method for continuously producing a polycarbonate oligomer in the present invention includes a step (1) of continuously supplying phosgene gas containing unreacted carbon monoxide by supplying chlorine and carbon monoxide to a phosgene reactor, and the above-described step.
- Step (2) for continuously producing a reaction mixture containing a polycarbonate oligomer by continuously supplying the phosgene gas continuously produced in (1), an alkaline aqueous solution of dihydric phenol and an organic solvent to an oligomer reactor. It is a method including.
- Step (1) is a step of continuously producing phosgene gas containing unreacted carbon monoxide by supplying chlorine and carbon monoxide to the phosgene reactor.
- carbon monoxide is preferably produced by reacting coke, petroleum, natural gas, alcohol or the like with oxygen and purified to a purity of 95% by volume or more.
- the sulfur component content is preferably 50 ppm or less.
- the chlorine (carbon monoxide) ratio (molar ratio) is preferably 1: 1.01 to 1: 1.3, more preferably 1: 1.02 to 1: 1.2.
- the reaction can be carried out by a known method described in, for example, Japanese Patent Publication No. 55-14044.
- As the catalyst a catalyst mainly composed of activated carbon can be used.
- the reaction is an exothermic reaction, it is preferable to cool the phosgene reactor and keep the reactor internal temperature at 350 ° C. or lower.
- the phosgene gas obtained in step (1) usually contains unreacted carbon monoxide.
- the content of carbon monoxide in the phosgene gas is preferably 1 to 30% by volume, more preferably 2 to 20% by volume, from the viewpoint of cost and the quality of the polycarbonate oligomer. That is, phosgene gas having a purity of 99 to 70% by volume is preferable.
- Step (2) the phosgene gas continuously produced in the step (1), the alkaline aqueous solution of dihydric phenol and the organic solvent are continuously supplied to the oligomer reactor, and the reaction mixture containing the polycarbonate oligomer is continuously added. Manufacturing process.
- Examples of raw materials in the production of polycarbonate include phosgene gas, dihydric phenols (bisphenols), alkali compounds used to dissolve dihydric phenols, and organic solvents. Polyhydric phenols and other additives may be used.
- the phosgene gas the phosgene gas continuously produced in the step (1) is used.
- dihydric phenols 2,2-bis (4-hydroxyphenyl) propane (common name, bisphenol A; BPA) is preferable from the viewpoint of the physical properties of the polycarbonate.
- dihydric phenols other than bisphenol A include bis (4-hydroxyphenyl) methane; 1,1-bis (4-hydroxyphenyl) ethane; bis (1,2-bis (4-hydroxyphenyl) ethane, etc.
- Sodium hydroxide is preferred as the alkaline compound used to dissolve the dihydric phenols.
- the alkaline aqueous solution of dihydric phenol is supplied after being adjusted to a predetermined concentration in advance. At this time, the concentration (a [mass%]) is monitored online using an analyzer such as titration.
- an analyzer such as titration.
- the organic solvent only needs to dissolve the polycarbonate oligomer, and examples thereof include chlorinated solvents such as methylene chloride, dichloroethane, chloroform, chlorobenzene, and carbon tetrachloride, and cyclic oxy compounds such as dioxane.
- chlorinated solvents such as methylene chloride, dichloroethane, chloroform, chlorobenzene, and carbon tetrachloride, and cyclic oxy compounds such as dioxane.
- a chlorinated solvent is preferable, and methylene chloride is particularly preferably used from the viewpoint of the solubility of the polycarbonate oligomer.
- solvents such as alkanes called poor solvents may be used as long as the solubility of the polycarbonate oligomer is not lowered.
- An organic solvent may be used individually by 1 type, and may mix and use 2 or more types.
- Examples of the monohydric phenol used as the molecular weight regulator include phenol, p-cresol, p-tert-butylphenol, p-tert-octylphenol, p-cumylphenol, nonylphenol and the like. Of these, p-tert-butylphenol and phenol are preferable from the viewpoints of cost and availability.
- a polymerization catalyst such as a tertiary amine or a quaternary amine can be used as necessary.
- TEA triethylamine
- the oligomer reactor a continuous reaction type reactor is used, and a reactor having a tubular structure having a mixing section for mixing reaction raw materials is preferably used.
- the oligomer reactor is installed in the building and isolated from the outside. The inside of the building is constantly changing air, and the ventilation air inside is sent to the abatement means by a blower or the like.
- the amount of raw material supplied to the oligomer reactor and the reaction conditions in the step (2) are appropriately determined depending on the scale of the apparatus and the production amount. As an example, preferable conditions for producing about 200 kg of polycarbonate oligomer per hour will be described below, but the present invention is not limited thereto.
- the flow rate (F1) of the phosgene gas obtained by the step (1) is preferably 3.7 to 4.1 kg / h.
- the flow rate (F2) of an organic solvent such as methylene chloride is preferably 20 to 24 kg / h.
- the temperature of the phosgene gas is preferably in the range of the boiling point of phosgene (7.8 ° C.) to 90 ° C.
- a sodium hydroxide aqueous solution of bisphenol A is preferable, and is adjusted and supplied in advance to have a predetermined concentration.
- the preferred bisphenol A concentration (a) is 12.5 to 14.0% by mass, and the preferred sodium hydroxide concentration is 5.1 to 6.1% by mass.
- the flow rate (F3) of the aqueous sodium hydroxide solution of bisphenol A is preferably 42 to 46 kg / h.
- step (2) a reaction mixture containing a polycarbonate oligomer having a chloroformate group is obtained.
- the properties of the polycarbonate oligomer are not particularly limited, and the reaction conditions may be set as appropriate so that the properties are appropriate, but the molecular weight measured by a VPO (vapor pressure osmometer) is about 600 to 5000. Those are preferred.
- the reaction mixture containing the polycarbonate oligomer is a mixture of an organic phase in which the polycarbonate oligomer is dissolved in the organic solvent and an aqueous phase containing an alkaline aqueous solution.
- a polycarbonate can be produced by introducing this reaction mixture into a condensation reactor and subjecting it to a condensation reaction.
- the reaction solution is washed by a known method, concentrated, and pulverized to obtain a powdery polycarbonate, which is further pelletized by processing with an extruder or the like. can do.
- Control method for continuous production of polycarbonate oligomer A predetermined amount of phosgene gas, an aqueous alkali solution of dihydric phenol, and an organic solvent are continuously supplied to the oligomer reactor.
- the supply pressure of phosgene gas and the inlet pressure in the oligomer reactor are appropriately set according to the size, shape, etc. of the phosgene reactor and oligomer reactor.
- the supply pressure (P1) of phosgene gas is 0.4 to 0.00.
- the phosgene gas flow rate (F1), the solvent flow rate (F2), the alkaline aqueous solution flow rate (F3) of the dihydric phenol compound and the dihydric phenol compound concentration (a [ Mass%]) is constantly monitored whether the following conditions (i) and / or (ii) are satisfied, and when the conditions are satisfied, the automatic system stops the production and supply of phosgene, Toxic gas containing phosgene gas is transferred to the detoxification means to make it harmless.
- Condition (i) is that the solvent flow rate (F2 [kg / h]) supplied to the oligomer reactor, the alkaline aqueous solution flow rate of the dihydric phenol compound (F3 [kg / h]) and the dihydric phenol compound concentration (a [mass%] ])
- ⁇ F2 / (F3 ⁇ a / 100)> is 3.27 or less. This parameter defines the balance between the solvent flow rate supplied to the oligomer reactor and the alkaline aqueous solution flow rate of the dihydric phenol compound.
- a predetermined amount of phosgene gas, an alkaline aqueous solution of dihydric phenol, and an organic solvent are continuously supplied to the oligomer reactor.
- the solvent supply amount is insufficient due to a trouble such as a solvent supply pump, the polycarbonate produced in the oligomer reactor There is a possibility that the oligomer concentration becomes high, and as a result, the polycarbonate oligomer precipitates and closes the outlet of the oligomer reactor.
- the flow rate of the solvent supplied to the oligomer reactor (F2 [kg / h]), the alkaline aqueous solution flow rate of the dihydric phenol compound (F3 [kg / h]), and the dihydric phenol compound
- the automatic system is activated when the value of the parameter ⁇ F2 / (F3 ⁇ a / 100)> using the concentration (a [mass%]) becomes 3.27 or less.
- the automatic system May be set when the value of the parameter ⁇ F2 / (F3 ⁇ a / 100)> is 2.52 or less, and may be set when the value is 2.43 or less.
- the value of the parameter ⁇ F2 / (F3 ⁇ a / 100)> is preferably 3.30 to 4.60, more preferably 3.60 to 4 from the viewpoint of productivity and the like. .10.
- Condition (ii) is as follows: the flow rate of phosgene gas supplied to the oligomer reactor (F1 [kg / h]), the flow rate of alkaline aqueous solution of dihydric phenol compound (F3 [kg / h]), and the concentration of dihydric phenol compound (a [mass%) ]) Using the parameter ⁇ (F3 ⁇ a / 100) / F1> is 1.23 or less. This parameter defines the balance between the phosgene gas flow rate supplied to the oligomer reactor and the alkaline aqueous solution flow rate of the dihydric phenol compound.
- the oligomer reactor is continuously supplied with a predetermined amount of phosgene gas, an alkaline aqueous solution of dihydric phenol, and an organic solvent.
- phosgene gas an alkaline aqueous solution of dihydric phenol
- organic solvent an organic solvent
- the phosgene gas flow rate (F1 [kg / h]) supplied to the oligomer reactor, the alkaline aqueous solution flow rate (F3 [kg / h]) of the dihydric phenol compound, and the dihydric phenol compound When the value of the parameter ⁇ (F3 ⁇ a / 100) / F1> using the concentration (a [mass%]) becomes 1.23 or less, the automatic system is activated. However, if the automatic system is frequently started due to temporary troubles, etc., it will be difficult to operate efficiently. From the viewpoint of operating efficiently while ensuring safety, the automatic system May be set when the value of the parameter ⁇ (F3 ⁇ a / 100) / F1> is 1.05 or less, and may be set when the value is 1.00 or less.
- the value of the parameter ⁇ (F3 ⁇ a / 100) / F1> is preferably 1.28 to 2.00, more preferably 1.40 to 1 from the viewpoint of productivity and the like. .80.
- Toxic gas containing phosgene gas in the system is transferred to an abatement means and rendered harmless.
- This is an operation of detoxifying the phosgene gas in the system from the viewpoint of higher safety, in addition to preventing the increase and leakage of phosgene by the above operations (a) and (b) and confining it in the system. .
- the detoxifying means is equipment for detoxifying toxic gas containing phosgene gas with a detoxifying agent, and a known one can be used. Specific examples include a spraying device for a pesticide, an absorption tower for bringing a toxic gas into contact with the pesticide, and the like. In addition, tower-type detoxification equipment described in JP-A-6-319946, JP-A-2005-305414 and the like can also be used.
- alkaline substances are used as a detoxifying agent.
- the alkaline substance used as the detoxifying agent is not particularly limited, but sodium hydroxide and potassium hydroxide are generally used. These are usually used as an aqueous solution.
- the structure of the detoxification tower is not particularly limited, but as a typical example, the detoxifying agent is sprayed from the top of the tower in the form of a shower, etc. There are those that are removed by contact with gas.
- a filler such as Raschig ring may be filled between the detoxifying agent injection port and the gas inflow port.
- the number of detoxification towers is not particularly limited, and the toxic gas concentration in the detoxification treatment gas is preferably reduced to a level that is not detected so that the concentration is less than or equal to a predetermined concentration defined by environmental standards. Designed to.
- Detoxification means always operate in case of unforeseen circumstances even if no toxic gas leaks.
- the ventilation air in the building where the oligomer reactor is installed is sent to an abatement means by a blower or the like to be rendered harmless and then released to the outside.
- FIG. 1 is a process diagram showing an outline of a preferred embodiment of the method for controlling the continuous production of polycarbonate oligomer of the present invention.
- phosgene production raw material chlorine and carbon monoxide are supplied to the phosgene reactor through a control valve, and phosgene gas is produced in the phosgene reactor. Since the reaction is exothermic, the phosgene reactor is cooled by cooling water. Phosgene gas (reaction product) containing unreacted carbon monoxide is introduced into the oligomer reactor through a control valve.
- an alkaline aqueous solution of dihydric phenol specifically, for example, a sodium hydroxide aqueous solution of bisphenol A
- an organic solvent specifically, for example, methylene chloride
- the control valve provided in the supply path of chlorine and carbon monoxide automatically controls these flow rates, and the control valve provided in the supply path to the oligomer reactor of phosgene gas supplies to the oligomer reactor. The supply pressure of phosgene gas is controlled.
- the phosgene gas flow rate (F1), the solvent flow rate (F2), and the alkaline aqueous solution flow rate (F3) of the dihydric phenol compound supplied to the oligomer reactor are constantly monitored using a flow meter.
- the dihydric phenol alkaline aqueous solution has the dihydric phenol compound concentration (a) adjusted in advance to a predetermined concentration, and the concentration (a) is constantly monitored using a densitometer.
- the control valve provided in the supply path of chlorine and carbon monoxide from the automatic control device Signals are sent all at once to the control valve provided in the supply path to the oligomer reactor of phosgene gas and the control valve provided in the flow path to the abatement apparatus (thick solid line arrow in the figure).
- the control valve provided in the supply path for chlorine and carbon monoxide is closed by a signal from the automatic control device, and the supply of chlorine and carbon monoxide is stopped.
- control valve provided in the supply path to the oligomer reactor of phosgene gas is closed, and the supply of phosgene gas to the oligomer reactor is stopped.
- the control valve provided in the flow path to the abatement device is closed during normal operation, but is opened by a signal from the automatic control device, and toxic gas including phosgene gas in the system is transferred to the abatement device. . In the abatement apparatus, toxic gas including phosgene gas is rendered harmless.
- shutoff valve for stopping fluid supply may be provided in addition to the control valve.
- Example 1-1 (Automatic control device) As shown in FIG. 1, the solvent flow rate (F2 [kg / h]) supplied to the oligomer reactor, the alkaline aqueous solution flow rate of the dihydric phenol compound (F3 [kg / h]), and the dihydric phenol compound concentration (a [mass] %])
- the value of the parameter ⁇ F2 / (F3 ⁇ a / 100)> is 3.27 or less (condition (i)) or the phosgene gas flow rate (F1 [kg / h])
- the value of the parameter ⁇ (F3 ⁇ a / 100) / F1> using the flow rate of the alkaline aqueous solution of the dihydric phenol compound (F3 [kg / h]) and the concentration of the dihydric phenol compound (a [mass%]) Is 1.23 or less (condition (ii))
- abatement apparatus As the abatement apparatus, an abatement tower having a tower diameter of 600 mm and a packed bed height of 10 m packed with Cascade Mini Ring (CMR) (trade name, manufactured by Matsui Machine Co., Ltd.) was used. A sodium hydroxide aqueous solution having a concentration of 10% by mass was circulated at 2 m 3 / h as a detoxifying agent in the detoxifying tower. Sodium hydroxide aqueous solution was supplied from the top of the tower, and toxic gas was supplied from the bottom.
- CMR Cascade Mini Ring
- phosgene reactor a shell and tube reactor in which a commercially available granular activated carbon (coconut shell activated carbon pulverized to a diameter of 1.2 to 1.4 mm) was filled in a tube was used. Carbon monoxide 1.2 kg / h and chlorine 2.8 kg / h were supplied to the phosgene reactor to produce phosgene gas 3.9 kg / h. 90 ° C. water was passed through the shell portion of the phosgene reactor to remove heat of reaction.
- oligomer reactor a tubular reactor having an inner diameter of 6 mm and a length of 30 m was used.
- the oligomer reactor was immersed in a cooling bath at 20 ° C.
- the phosgene gas was continuously supplied from the upstream phosgene production process to the oligomer reactor, and the supply pressure of the phosgene gas supplied to the oligomer reactor was set to 0.45 MPaG.
- Concentration (a) obtained by dissolving bisphenol A (BPA) in phosgene gas and 6% strength by weight sodium hydroxide aqueous solution in an oligomer reactor, 13.5% by weight BPA aqueous sodium hydroxide solution, methylene chloride, for molecular weight adjustment A methylene chloride solution of p-tert-butylphenol having a concentration of 25% by mass was fed to prepare a polycarbonate oligomer solution.
- BPA bisphenol A
- the supply flow rate (F1) of phosgene gas was 3.9 kg / h
- the supply flow rate (F3) of the BPA sodium hydroxide aqueous solution was 44 kg / h
- the supply flow rate (F2) of methylene chloride was 22 kg / h
- p-tert- The supply flow rate of the methylene chloride solution of butylphenol was 0.46 kg / h.
- the value of F2 / (F3 ⁇ a / 100) is 3.70
- the value of (F3 ⁇ a / 100) / F1 is 1.52.
- the inlet pressure in the oligomer reactor was 0.20 MPaG.
- the methylene chloride flow rate (F2) supplied to the oligomer reactor was decreased to 19.3 kg / h, and the value of F2 / (F3 ⁇ a / 100) was intentionally set to 3.25.
- the automatic control device stops the supply of chlorine and carbon monoxide to the phosgene reactor and the supply of phosgene gas to the oligomer reactor, and the phosgene gas generated in the phosgene reactor is removed from the abatement device. It was transferred to.
- phosgene was not detected and was rendered harmless.
- Example 1-2 Example 1 except that the methylene chloride flow rate (F2) supplied to the oligomer reactor was reduced to 14.9 kg / h and the value of F2 / (F3 ⁇ a / 100) was intentionally 2.51.
- Polycarbonate oligomer was produced in the same manner as -1.
- the supply of chlorine and carbon monoxide to the phosgene reactor was stopped and the supply of phosgene gas to the oligomer reactor was stopped by the automatic controller, and the phosgene reaction
- the phosgene gas generated in the vessel was transferred to the abatement device. When components were measured for the gas discharged from the exit of the detoxification tower, phosgene was not detected and was rendered harmless.
- Example 1-3 Example 1 except that the methylene chloride flow rate (F2) supplied to the oligomer reactor was decreased to 14.4 kg / h and the value of F2 / (F3 ⁇ a / 100) was intentionally set to 2.42. Polycarbonate oligomer was produced in the same manner as -1. As a result, as in Example 1-1, the supply of chlorine and carbon monoxide to the phosgene reactor was stopped and the supply of phosgene gas to the oligomer reactor was stopped by the automatic controller, and the phosgene reaction The phosgene gas generated in the vessel was transferred to the abatement device. When components were measured for the gas discharged from the exit of the detoxification tower, phosgene was not detected and was rendered harmless.
- F2 methylene chloride flow rate
- Comparative Example 1-1 A polycarbonate oligomer was produced in the same manner as in Example 1-1 except that the automatic controller was not used. However, when the automatic control was not performed, the pressure in the oligomer reactor rapidly increased. If the operation is continued further, the reaction liquid inside the oligomer reactor flows backward to the phosgene reactor, the methylene chloride evaporates and the pressure in the phosgene reactor rises, the phosgene reactor breaks down, and the phosgene becomes a system. This operation was canceled because it was assumed to leak outside.
- Example 2-1 The BPA sodium hydroxide aqueous solution flow rate (F3) supplied to the oligomer reactor was decreased to 35.5 kg / h, and the value of (F3 ⁇ a / 100) / F1 was intentionally set to 1.23, A polycarbonate oligomer was produced in the same manner as in Example 1-1.
- Example 1-1 the supply of chlorine and carbon monoxide to the phosgene reactor was stopped and the supply of phosgene gas to the oligomer reactor was stopped by the automatic controller, and the phosgene reaction The phosgene gas generated in the vessel was transferred to the abatement device. When components were measured for the gas discharged from the exit of the detoxification tower, phosgene was not detected and was rendered harmless.
- Example 2-2 The BPA sodium hydroxide aqueous solution flow rate (F3) supplied to the oligomer reactor is decreased to 30.1 kg / h, and the value of (F3 ⁇ a / 100) / F1 is intentionally set to 1.04, A polycarbonate oligomer was produced in the same manner as in Example 2-1.
- the automatic control device stopped the supply of chlorine and carbon monoxide to the phosgene reactor and the supply of phosgene gas to the oligomer reactor, and the phosgene reaction
- the phosgene gas generated in the vessel was transferred to the abatement device.
- phosgene was not detected and was rendered harmless.
- Example 2-3 The BPA sodium hydroxide aqueous solution flow rate (F3) supplied to the oligomer reactor was decreased to 28.7 kg / h, and the value of (F3 ⁇ a / 100) / F1 was intentionally set to 0.99, A polycarbonate oligomer was produced in the same manner as in Example 2-1.
- the automatic control device stopped the supply of chlorine and carbon monoxide to the phosgene reactor and the supply of phosgene gas to the oligomer reactor, and the phosgene reaction
- the phosgene gas generated in the vessel was transferred to the abatement device. When components were measured for the gas discharged from the exit of the detoxification tower, phosgene was not detected and was rendered harmless.
- Comparative Example 2-1 A polycarbonate oligomer was produced in the same manner as in Example 2-1, except that the automatic controller was not used. However, if automatic control is not performed, since the BPA sodium hydroxide aqueous solution flow rate is smaller than the phosgene gas flow rate supplied to the oligomer reactor, a phosgene gas having a stoichiometric ratio or more is supplied to the oligomer reactor. This operation was stopped because it was assumed that phosgene leaked out of the system by flowing into the downstream process without being consumed without being consumed.
- a polycarbonate oligomer can be continuously produced safely.
- an accident such as oligomer precipitation due to a raw material supply trouble to the oligomer reactor occurs and the inside of the reactor is blocked, the production and supply of phosgene is stopped urgently by automatic control.
- Toxic gas containing phosgene gas is made harmless, and toxic gas does not leak out of the system.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyesters Or Polycarbonates (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
A control method for safely manufacturing a polycarbonate oligomer, wherein the control method automatically detoxifies toxic phosgene without leakage to outside the system in the event of an abnormality.
Description
本発明は、ポリカーボネートオリゴマーの安全な連続製造のための制御方法に関する。
The present invention relates to a control method for safe continuous production of polycarbonate oligomer.
一般に、ポリカーボネートの製造方法としては、二価フェノール類(ビスフェノール類)とホスゲンとを直接反応させる界面法、ビスフェノール類とジフェニルカーボネートとを無溶媒条件下で反応させるエステル交換法が知られているが、品質が良好なポリカーボネートが得られる点から、界面法が主流となっている(例えば特許文献1を参照)。
界面法では、ポリカーボネートの原料としては、ビスフェノール類、水酸化ナトリウム等のアルカリ化合物及びホスゲンが用いられ、必要に応じて末端停止剤(分子量調節剤)等が添加される。また、ポリカーボネートの工業的製造プラントでは、一般に、ビスフェノール類のアルカリ水溶液にホスゲンを吹き込んで反応性のクロロフォーメート基を有するポリカーボネートオリゴマーを生成させ、この生成と同時にあるいは逐次的に、さらにポリカーボネートオリゴマーとビスフェノール類のアルカリ水溶液とを反応させることにより、ポリカーボネートが製造されている。 In general, as a method for producing polycarbonate, an interfacial method in which dihydric phenols (bisphenols) and phosgene are directly reacted and a transesterification method in which bisphenols and diphenyl carbonate are reacted under a solvent-free condition are known. The interface method has become the mainstream from the viewpoint of obtaining a polycarbonate with good quality (see, for example, Patent Document 1).
In the interfacial method, bisphenols, alkali compounds such as sodium hydroxide and phosgene are used as raw materials for polycarbonate, and a terminal terminator (molecular weight regulator) or the like is added as necessary. Further, in an industrial production plant for polycarbonate, phosgene is generally blown into an alkaline aqueous solution of bisphenols to produce a polycarbonate oligomer having a reactive chloroformate group. Polycarbonate is produced by reacting with an alkaline aqueous solution of bisphenols.
界面法では、ポリカーボネートの原料としては、ビスフェノール類、水酸化ナトリウム等のアルカリ化合物及びホスゲンが用いられ、必要に応じて末端停止剤(分子量調節剤)等が添加される。また、ポリカーボネートの工業的製造プラントでは、一般に、ビスフェノール類のアルカリ水溶液にホスゲンを吹き込んで反応性のクロロフォーメート基を有するポリカーボネートオリゴマーを生成させ、この生成と同時にあるいは逐次的に、さらにポリカーボネートオリゴマーとビスフェノール類のアルカリ水溶液とを反応させることにより、ポリカーボネートが製造されている。 In general, as a method for producing polycarbonate, an interfacial method in which dihydric phenols (bisphenols) and phosgene are directly reacted and a transesterification method in which bisphenols and diphenyl carbonate are reacted under a solvent-free condition are known. The interface method has become the mainstream from the viewpoint of obtaining a polycarbonate with good quality (see, for example, Patent Document 1).
In the interfacial method, bisphenols, alkali compounds such as sodium hydroxide and phosgene are used as raw materials for polycarbonate, and a terminal terminator (molecular weight regulator) or the like is added as necessary. Further, in an industrial production plant for polycarbonate, phosgene is generally blown into an alkaline aqueous solution of bisphenols to produce a polycarbonate oligomer having a reactive chloroformate group. Polycarbonate is produced by reacting with an alkaline aqueous solution of bisphenols.
特許文献2には、ホスゲンを蒸留精製して得られる液化ホスゲンを貯蔵し、該液化ホスゲンを用いてポリカーボネートを製造する方法が開示されている。
しかしながら、ホスゲンは毒性が高いため、貯蔵しておくことは安全性の観点から望ましくなく、例えば液化ホスゲン貯槽が腐食等により破損した場合にはホスゲンが漏洩するというリスクが存在する。そのようなリスクは、ホスゲン除害設備を設置することで低減することができるが、ホスゲンの保有量が多いためにホスゲンを除害するのに時間がかかる一方、短時間で除害するためには大規模の設備が必要となりコストがかかる。 Patent Document 2 discloses a method of storing liquefied phosgene obtained by distillation purification of phosgene and producing a polycarbonate using the liquefied phosgene.
However, since phosgene is highly toxic, it is not desirable to store it from the viewpoint of safety. For example, when a liquefied phosgene storage tank is damaged due to corrosion or the like, there is a risk that phosgene leaks. Such risks can be reduced by installing phosgene abatement equipment, but it takes time to remove phosgene due to the large amount of phosgene held, but to eliminate it in a short time. Requires large-scale equipment and is costly.
しかしながら、ホスゲンは毒性が高いため、貯蔵しておくことは安全性の観点から望ましくなく、例えば液化ホスゲン貯槽が腐食等により破損した場合にはホスゲンが漏洩するというリスクが存在する。そのようなリスクは、ホスゲン除害設備を設置することで低減することができるが、ホスゲンの保有量が多いためにホスゲンを除害するのに時間がかかる一方、短時間で除害するためには大規模の設備が必要となりコストがかかる。 Patent Document 2 discloses a method of storing liquefied phosgene obtained by distillation purification of phosgene and producing a polycarbonate using the liquefied phosgene.
However, since phosgene is highly toxic, it is not desirable to store it from the viewpoint of safety. For example, when a liquefied phosgene storage tank is damaged due to corrosion or the like, there is a risk that phosgene leaks. Such risks can be reduced by installing phosgene abatement equipment, but it takes time to remove phosgene due to the large amount of phosgene held, but to eliminate it in a short time. Requires large-scale equipment and is costly.
特許文献3には、塩素及び一酸化炭素を反応させて得られるホスゲンガスを液化することなく、そのままポリカーボネートオリゴマーの製造に用いるポリカーボネートオリゴマーの連続製造方法が開示されている。この方法によれば、液化ホスゲンを用いる方法に比べて、系内のホスゲンの保有量が少なく済む。
Patent Document 3 discloses a continuous production method of a polycarbonate oligomer that is directly used for producing a polycarbonate oligomer without liquefying phosgene gas obtained by reacting chlorine and carbon monoxide. According to this method, the amount of phosgene retained in the system can be reduced as compared with the method using liquefied phosgene.
しかしながら、上記特許文献のいずれにも、オリゴマー反応器への原料供給トラブルによってオリゴマーが析出し、反応器内が閉塞する等の事故が起きた場合については想定されておらず、有害なホスゲンを系外に漏洩することなく除害しつつポリカーボネートを製造する方法については開示されていない。
However, in any of the above patent documents, it is not assumed that an accident such as the precipitation of the oligomer due to a trouble in the supply of the raw material to the oligomer reactor and the blockage of the inside of the reactor occurs. It does not disclose a method for producing polycarbonate while detoxifying without leaking outside.
本発明が解決しようとする課題は、ポリカーボネートを製造する際のポリカーボネートオリゴマーを連続的に製造する方法において、異常時においても、自動的に装置を停止し、かつ、有害なホスゲンを系外に漏洩することなく除害する方法を提供することにある。
The problem to be solved by the present invention is that in the method of continuously producing a polycarbonate oligomer during the production of polycarbonate, even when an abnormality occurs, the apparatus is automatically stopped and harmful phosgene is leaked out of the system. It is to provide a method for abatement without doing.
前記課題は、下記のポリカーボネートオリゴマー連続製造の制御方法によって解決される。
塩素及び一酸化炭素をホスゲン反応器に供給し未反応の一酸化炭素を含有するホスゲンガスを連続的に製造する工程(1)、並びに前記工程(1)で連続的に製造されたホスゲンガス、二価フェノールのアルカリ水溶液及び有機溶媒をオリゴマー反応器に連続的に供給して、ポリカーボネートオリゴマーを含有する反応混合物を連続的に製造する工程(2)を含むポリカーボネートオリゴマー連続製造の制御方法であって、
下記の条件(i)及び/又は(ii)を満たす場合に、前記工程(1)における塩素及び一酸化炭素の供給を停止すると共に、オリゴマー反応器へのホスゲンガスの供給を停止させ、かつ、ホスゲンガスを含む有毒ガスを除害手段に移送して無害化する、ポリカーボネートオリゴマー連続製造の制御方法。
条件(i):オリゴマー反応器に供給する溶媒流量(F2[kg/h])、二価フェノール化合物のアルカリ水溶液流量(F3[kg/h])及び二価フェノール化合物濃度(a[質量%])を用いたパラメータ<F2/(F3×a/100)>の値が、3.27以下となった場合。
条件(ii):オリゴマー反応器に供給するホスゲンガス流量(F1[kg/h])、二価フェノール化合物のアルカリ水溶液流量(F3[kg/h])及び二価フェノール化合物濃度(a[質量%])を用いたパラメータ<(F3×a/100)/F1>の値が、1.23以下となった場合。 The said subject is solved by the control method of the following polycarbonate oligomer continuous manufacture.
Step (1) for continuously producing phosgene gas containing unreacted carbon monoxide by supplying chlorine and carbon monoxide to the phosgene reactor, and phosgene gas continuously produced in step (1), divalent A method for controlling polycarbonate oligomer continuous production comprising the step (2) of continuously producing a reaction mixture containing a polycarbonate oligomer by continuously supplying an alkaline aqueous solution of phenol and an organic solvent to an oligomer reactor,
When the following conditions (i) and / or (ii) are satisfied, the supply of chlorine and carbon monoxide in the step (1) is stopped, the supply of phosgene gas to the oligomer reactor is stopped, and the phosgene gas A control method for continuous production of polycarbonate oligomers, wherein a toxic gas containing is transferred to a detoxifying means and rendered harmless.
Condition (i): Flow rate of solvent supplied to the oligomer reactor (F2 [kg / h]), alkaline aqueous solution flow rate of dihydric phenol compound (F3 [kg / h]), and dihydric phenol compound concentration (a [mass%]) When the value of the parameter <F2 / (F3 × a / 100)> using) is 3.27 or less.
Condition (ii): phosgene gas flow rate (F1 [kg / h]) supplied to the oligomer reactor, alkaline aqueous solution flow rate of dihydric phenol compound (F3 [kg / h]) and dihydric phenol compound concentration (a [mass%]) The value of the parameter <(F3 × a / 100) / F1> using) is 1.23 or less.
塩素及び一酸化炭素をホスゲン反応器に供給し未反応の一酸化炭素を含有するホスゲンガスを連続的に製造する工程(1)、並びに前記工程(1)で連続的に製造されたホスゲンガス、二価フェノールのアルカリ水溶液及び有機溶媒をオリゴマー反応器に連続的に供給して、ポリカーボネートオリゴマーを含有する反応混合物を連続的に製造する工程(2)を含むポリカーボネートオリゴマー連続製造の制御方法であって、
下記の条件(i)及び/又は(ii)を満たす場合に、前記工程(1)における塩素及び一酸化炭素の供給を停止すると共に、オリゴマー反応器へのホスゲンガスの供給を停止させ、かつ、ホスゲンガスを含む有毒ガスを除害手段に移送して無害化する、ポリカーボネートオリゴマー連続製造の制御方法。
条件(i):オリゴマー反応器に供給する溶媒流量(F2[kg/h])、二価フェノール化合物のアルカリ水溶液流量(F3[kg/h])及び二価フェノール化合物濃度(a[質量%])を用いたパラメータ<F2/(F3×a/100)>の値が、3.27以下となった場合。
条件(ii):オリゴマー反応器に供給するホスゲンガス流量(F1[kg/h])、二価フェノール化合物のアルカリ水溶液流量(F3[kg/h])及び二価フェノール化合物濃度(a[質量%])を用いたパラメータ<(F3×a/100)/F1>の値が、1.23以下となった場合。 The said subject is solved by the control method of the following polycarbonate oligomer continuous manufacture.
Step (1) for continuously producing phosgene gas containing unreacted carbon monoxide by supplying chlorine and carbon monoxide to the phosgene reactor, and phosgene gas continuously produced in step (1), divalent A method for controlling polycarbonate oligomer continuous production comprising the step (2) of continuously producing a reaction mixture containing a polycarbonate oligomer by continuously supplying an alkaline aqueous solution of phenol and an organic solvent to an oligomer reactor,
When the following conditions (i) and / or (ii) are satisfied, the supply of chlorine and carbon monoxide in the step (1) is stopped, the supply of phosgene gas to the oligomer reactor is stopped, and the phosgene gas A control method for continuous production of polycarbonate oligomers, wherein a toxic gas containing is transferred to a detoxifying means and rendered harmless.
Condition (i): Flow rate of solvent supplied to the oligomer reactor (F2 [kg / h]), alkaline aqueous solution flow rate of dihydric phenol compound (F3 [kg / h]), and dihydric phenol compound concentration (a [mass%]) When the value of the parameter <F2 / (F3 × a / 100)> using) is 3.27 or less.
Condition (ii): phosgene gas flow rate (F1 [kg / h]) supplied to the oligomer reactor, alkaline aqueous solution flow rate of dihydric phenol compound (F3 [kg / h]) and dihydric phenol compound concentration (a [mass%]) The value of the parameter <(F3 × a / 100) / F1> using) is 1.23 or less.
本発明の方法によれば、界面法によるポリカーボネートオリゴマーの連続製造において、オリゴマー反応器への原料供給トラブルによってオリゴマーが析出し、反応器内が閉塞する等の事故が起きた場合でも、ホスゲン原料である塩素及び一酸化炭素の供給並びにオリゴマー反応器へのホスゲンの供給を自動停止すると共に、系内のホスゲンを除害手段に移送するように自動制御して、ホスゲンを系外に漏洩することなく安全にポリカーボネートオリゴマーを製造することができる。
According to the method of the present invention, in the continuous production of polycarbonate oligomer by the interfacial method, even when an accident such as the oligomer being deposited due to the trouble of supplying the raw material to the oligomer reactor and the inside of the reactor clogging occurs, the phosgene raw material is used. The supply of certain chlorine and carbon monoxide and the supply of phosgene to the oligomer reactor are automatically stopped and the phosgene in the system is automatically controlled so as to be transferred to the detoxifying means, so that phosgene does not leak out of the system. Polycarbonate oligomer can be produced safely.
本発明のポリカーボネートオリゴマー連続製造の制御方法は、界面法によるポリカーボネートオリゴマーの連続製造において、オリゴマー反応器に供給するホスゲンガス流量(F1)、溶媒流量(F2)、二価フェノール化合物のアルカリ水溶液流量(F3)及び二価フェノール化合物濃度(a[質量%])を常時監視し、後述する条件(i)及び/又は(ii)を満たす場合に、ホスゲン原料である塩素及び一酸化炭素の供給並びにオリゴマー反応器へのホスゲンの供給を自動停止すると共に、系内のホスゲンを除害手段に移送するように自動制御する方法である。
The method for controlling the continuous production of polycarbonate oligomer according to the present invention includes the flow rate of phosgene gas (F1), the flow rate of solvent (F2) supplied to the oligomer reactor, the flow rate of alkaline aqueous solution of dihydric phenol compound (F3). ) And dihydric phenol compound concentration (a [mass%]) are constantly monitored, and supply of chlorine and carbon monoxide as the phosgene raw material and oligomer reaction when the conditions (i) and / or (ii) described below are satisfied In this method, the supply of phosgene to the vessel is automatically stopped and the phosgene in the system is automatically controlled so as to be transferred to the abatement means.
[ポリカーボネートの製造]
本発明のポリカーボネートオリゴマー連続製造の制御方法は、二価フェノール類とホスゲンとを直接反応させる界面法に適用され、連続反応方式において適用される。
本発明におけるポリカーボネートオリゴマーを連続的に製造する方法は、塩素及び一酸化炭素をホスゲン反応器に供給し未反応の一酸化炭素を含有するホスゲンガスを連続的に製造する工程(1)、並びに前記工程(1)で連続的に製造されたホスゲンガス、二価フェノールのアルカリ水溶液及び有機溶媒をオリゴマー反応器に連続的に供給して、ポリカーボネートオリゴマーを含有する反応混合物を連続的に製造する工程(2)を含む方法である。 [Manufacture of polycarbonate]
The method for controlling the continuous production of polycarbonate oligomer of the present invention is applied to an interfacial method in which a dihydric phenol and phosgene are directly reacted, and is applied in a continuous reaction system.
The method for continuously producing a polycarbonate oligomer in the present invention includes a step (1) of continuously supplying phosgene gas containing unreacted carbon monoxide by supplying chlorine and carbon monoxide to a phosgene reactor, and the above-described step. Step (2) for continuously producing a reaction mixture containing a polycarbonate oligomer by continuously supplying the phosgene gas continuously produced in (1), an alkaline aqueous solution of dihydric phenol and an organic solvent to an oligomer reactor. It is a method including.
本発明のポリカーボネートオリゴマー連続製造の制御方法は、二価フェノール類とホスゲンとを直接反応させる界面法に適用され、連続反応方式において適用される。
本発明におけるポリカーボネートオリゴマーを連続的に製造する方法は、塩素及び一酸化炭素をホスゲン反応器に供給し未反応の一酸化炭素を含有するホスゲンガスを連続的に製造する工程(1)、並びに前記工程(1)で連続的に製造されたホスゲンガス、二価フェノールのアルカリ水溶液及び有機溶媒をオリゴマー反応器に連続的に供給して、ポリカーボネートオリゴマーを含有する反応混合物を連続的に製造する工程(2)を含む方法である。 [Manufacture of polycarbonate]
The method for controlling the continuous production of polycarbonate oligomer of the present invention is applied to an interfacial method in which a dihydric phenol and phosgene are directly reacted, and is applied in a continuous reaction system.
The method for continuously producing a polycarbonate oligomer in the present invention includes a step (1) of continuously supplying phosgene gas containing unreacted carbon monoxide by supplying chlorine and carbon monoxide to a phosgene reactor, and the above-described step. Step (2) for continuously producing a reaction mixture containing a polycarbonate oligomer by continuously supplying the phosgene gas continuously produced in (1), an alkaline aqueous solution of dihydric phenol and an organic solvent to an oligomer reactor. It is a method including.
<工程(1)>
工程(1)は、塩素及び一酸化炭素をホスゲン反応器に供給し未反応の一酸化炭素を含有するホスゲンガスを連続的に製造する工程である。
ポリカーボネートオリゴマーの品質の観点から、一酸化炭素は、コークス、石油、天然ガス、アルコール等と酸素とを反応させて製造し、純度95容量%以上に精製したものが好ましい。特に、硫黄成分の含有量が50ppm以下のものが好ましい。また、塩素:一酸化炭素の比率(モル比)は、好ましくは1:1.01~1:1.3、より好ましくは1:1.02~1:1.2である。
なお、反応は、例えば特公昭55-14044号公報等に記載の公知の方法によって行うことができる。触媒として、活性炭を主成分とする触媒を用いることができる。また、反応は発熱反応であるため、ホスゲン反応器を冷却し、反応器内部温度を350℃以下に保つことが好ましい。 <Step (1)>
Step (1) is a step of continuously producing phosgene gas containing unreacted carbon monoxide by supplying chlorine and carbon monoxide to the phosgene reactor.
From the viewpoint of the quality of the polycarbonate oligomer, carbon monoxide is preferably produced by reacting coke, petroleum, natural gas, alcohol or the like with oxygen and purified to a purity of 95% by volume or more. In particular, the sulfur component content is preferably 50 ppm or less. The chlorine (carbon monoxide) ratio (molar ratio) is preferably 1: 1.01 to 1: 1.3, more preferably 1: 1.02 to 1: 1.2.
The reaction can be carried out by a known method described in, for example, Japanese Patent Publication No. 55-14044. As the catalyst, a catalyst mainly composed of activated carbon can be used. Moreover, since the reaction is an exothermic reaction, it is preferable to cool the phosgene reactor and keep the reactor internal temperature at 350 ° C. or lower.
工程(1)は、塩素及び一酸化炭素をホスゲン反応器に供給し未反応の一酸化炭素を含有するホスゲンガスを連続的に製造する工程である。
ポリカーボネートオリゴマーの品質の観点から、一酸化炭素は、コークス、石油、天然ガス、アルコール等と酸素とを反応させて製造し、純度95容量%以上に精製したものが好ましい。特に、硫黄成分の含有量が50ppm以下のものが好ましい。また、塩素:一酸化炭素の比率(モル比)は、好ましくは1:1.01~1:1.3、より好ましくは1:1.02~1:1.2である。
なお、反応は、例えば特公昭55-14044号公報等に記載の公知の方法によって行うことができる。触媒として、活性炭を主成分とする触媒を用いることができる。また、反応は発熱反応であるため、ホスゲン反応器を冷却し、反応器内部温度を350℃以下に保つことが好ましい。 <Step (1)>
Step (1) is a step of continuously producing phosgene gas containing unreacted carbon monoxide by supplying chlorine and carbon monoxide to the phosgene reactor.
From the viewpoint of the quality of the polycarbonate oligomer, carbon monoxide is preferably produced by reacting coke, petroleum, natural gas, alcohol or the like with oxygen and purified to a purity of 95% by volume or more. In particular, the sulfur component content is preferably 50 ppm or less. The chlorine (carbon monoxide) ratio (molar ratio) is preferably 1: 1.01 to 1: 1.3, more preferably 1: 1.02 to 1: 1.2.
The reaction can be carried out by a known method described in, for example, Japanese Patent Publication No. 55-14044. As the catalyst, a catalyst mainly composed of activated carbon can be used. Moreover, since the reaction is an exothermic reaction, it is preferable to cool the phosgene reactor and keep the reactor internal temperature at 350 ° C. or lower.
工程(1)で得られるホスゲンガスは、通常、未反応の一酸化炭素を含有する。ホスゲンガス中の一酸化炭素の含有量は、コスト及びポリカーボネートオリゴマーの品質の観点から、好ましくは1~30容量%、より好ましくは2~20容量%である。すなわち、純度99~70容量%のホスゲンガスが好ましい。
The phosgene gas obtained in step (1) usually contains unreacted carbon monoxide. The content of carbon monoxide in the phosgene gas is preferably 1 to 30% by volume, more preferably 2 to 20% by volume, from the viewpoint of cost and the quality of the polycarbonate oligomer. That is, phosgene gas having a purity of 99 to 70% by volume is preferable.
<工程(2)>
工程(2)は、前記工程(1)で連続的に製造されたホスゲンガス、二価フェノールのアルカリ水溶液及び有機溶媒をオリゴマー反応器に連続的に供給して、ポリカーボネートオリゴマーを含有する反応混合物を連続的に製造する工程である。 <Step (2)>
In the step (2), the phosgene gas continuously produced in the step (1), the alkaline aqueous solution of dihydric phenol and the organic solvent are continuously supplied to the oligomer reactor, and the reaction mixture containing the polycarbonate oligomer is continuously added. Manufacturing process.
工程(2)は、前記工程(1)で連続的に製造されたホスゲンガス、二価フェノールのアルカリ水溶液及び有機溶媒をオリゴマー反応器に連続的に供給して、ポリカーボネートオリゴマーを含有する反応混合物を連続的に製造する工程である。 <Step (2)>
In the step (2), the phosgene gas continuously produced in the step (1), the alkaline aqueous solution of dihydric phenol and the organic solvent are continuously supplied to the oligomer reactor, and the reaction mixture containing the polycarbonate oligomer is continuously added. Manufacturing process.
ポリカーボネートの製造における原料としては、ホスゲンガス、二価フェノール類(ビスフェノール類)、二価フェノール類を溶解するために使用するアルカリ化合物、有機溶媒が挙げられ、必要に応じて、分子量調節剤としての一価フェノールや、その他の添加剤を使用してもよい。
ホスゲンガスとしては、前記工程(1)で連続的に製造されたホスゲンガスが用いられる。 Examples of raw materials in the production of polycarbonate include phosgene gas, dihydric phenols (bisphenols), alkali compounds used to dissolve dihydric phenols, and organic solvents. Polyhydric phenols and other additives may be used.
As the phosgene gas, the phosgene gas continuously produced in the step (1) is used.
ホスゲンガスとしては、前記工程(1)で連続的に製造されたホスゲンガスが用いられる。 Examples of raw materials in the production of polycarbonate include phosgene gas, dihydric phenols (bisphenols), alkali compounds used to dissolve dihydric phenols, and organic solvents. Polyhydric phenols and other additives may be used.
As the phosgene gas, the phosgene gas continuously produced in the step (1) is used.
二価フェノール類としては、ポリカーボネートの物性の点から、2,2-ビス(4-ヒドロキシフェニル)プロパン(通称、ビスフェノールA;BPA)が好ましい。ビスフェノールA以外の二価フェノール類としては、例えばビス(4-ヒドロキシフェニル)メタン;1,1-ビス(4-ヒドロキシフェニル)エタン;1,2-ビス(4-ヒドロキシフェニル)エタン等のビス(4-ヒドロキシフェニル)アルカン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン;1,1-ビス(4-ヒドロキシフェニル)シクロデカン等のビス(4-ヒドロキシフェニル)シクロアルカン、4,4’-ジヒドロキシジフェニル、ビス(4-ヒドロキシフェニル)オキシド、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルホキシド、ビス(4-ヒドロキシフェニル)エーテル、ビス(4-ヒドロキシフェニル)ケトン、ハイドロキノン等が挙げられる。これらの二価フェノール類は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。
二価フェノール類を溶解するために使用するアルカリ化合物としては、水酸化ナトリウムが好適である。
二価フェノールのアルカリ水溶液は、予め所定濃度に調整された後に供給される。このとき、その濃度(a[質量%])は滴定等による分析機を用いてオンラインで監視している。測定方法には特に制限はないが、例えば塩酸を用いた滴定によってその濃度を求める方法等が挙げられる。 As the dihydric phenols, 2,2-bis (4-hydroxyphenyl) propane (common name, bisphenol A; BPA) is preferable from the viewpoint of the physical properties of the polycarbonate. Examples of dihydric phenols other than bisphenol A include bis (4-hydroxyphenyl) methane; 1,1-bis (4-hydroxyphenyl) ethane; bis (1,2-bis (4-hydroxyphenyl) ethane, etc. 4-hydroxyphenyl) alkane, 1,1-bis (4-hydroxyphenyl) cyclohexane; bis (4-hydroxyphenyl) cycloalkane such as 1,1-bis (4-hydroxyphenyl) cyclodecane, 4,4′-dihydroxy Diphenyl, bis (4-hydroxyphenyl) oxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) ether, bis (4 -Hydroxyphenyl) ketone, hydroxy Non etc. are mentioned. These dihydric phenols may be used individually by 1 type, and may mix and use 2 or more types.
Sodium hydroxide is preferred as the alkaline compound used to dissolve the dihydric phenols.
The alkaline aqueous solution of dihydric phenol is supplied after being adjusted to a predetermined concentration in advance. At this time, the concentration (a [mass%]) is monitored online using an analyzer such as titration. Although there is no restriction | limiting in particular in the measuring method, For example, the method etc. which obtain | require the density | concentration by titration using hydrochloric acid are mentioned.
二価フェノール類を溶解するために使用するアルカリ化合物としては、水酸化ナトリウムが好適である。
二価フェノールのアルカリ水溶液は、予め所定濃度に調整された後に供給される。このとき、その濃度(a[質量%])は滴定等による分析機を用いてオンラインで監視している。測定方法には特に制限はないが、例えば塩酸を用いた滴定によってその濃度を求める方法等が挙げられる。 As the dihydric phenols, 2,2-bis (4-hydroxyphenyl) propane (common name, bisphenol A; BPA) is preferable from the viewpoint of the physical properties of the polycarbonate. Examples of dihydric phenols other than bisphenol A include bis (4-hydroxyphenyl) methane; 1,1-bis (4-hydroxyphenyl) ethane; bis (1,2-bis (4-hydroxyphenyl) ethane, etc. 4-hydroxyphenyl) alkane, 1,1-bis (4-hydroxyphenyl) cyclohexane; bis (4-hydroxyphenyl) cycloalkane such as 1,1-bis (4-hydroxyphenyl) cyclodecane, 4,4′-dihydroxy Diphenyl, bis (4-hydroxyphenyl) oxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) ether, bis (4 -Hydroxyphenyl) ketone, hydroxy Non etc. are mentioned. These dihydric phenols may be used individually by 1 type, and may mix and use 2 or more types.
Sodium hydroxide is preferred as the alkaline compound used to dissolve the dihydric phenols.
The alkaline aqueous solution of dihydric phenol is supplied after being adjusted to a predetermined concentration in advance. At this time, the concentration (a [mass%]) is monitored online using an analyzer such as titration. Although there is no restriction | limiting in particular in the measuring method, For example, the method etc. which obtain | require the density | concentration by titration using hydrochloric acid are mentioned.
有機溶媒としては、ポリカーボネートオリゴマーが溶解するものであればよく、例えば、塩化メチレン,ジクロロエタン,クロロホルム,クロロベンゼン,四塩化炭素等の塩素系溶媒、ジオキサン等の環状オキシ化合物等が挙げられる。本発明においては、塩素系溶媒が好ましく、ポリカーボネートオリゴマーの溶解性等の点から塩化メチレンが特に好ましく使用される。上記で挙げた有機溶媒以外にも、ポリカーボネートオリゴマーの溶解性を低下させない範囲であれば、貧溶媒と呼ばれるアルカン類等の溶媒を使用してもよい。
有機溶媒は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。 The organic solvent only needs to dissolve the polycarbonate oligomer, and examples thereof include chlorinated solvents such as methylene chloride, dichloroethane, chloroform, chlorobenzene, and carbon tetrachloride, and cyclic oxy compounds such as dioxane. In the present invention, a chlorinated solvent is preferable, and methylene chloride is particularly preferably used from the viewpoint of the solubility of the polycarbonate oligomer. In addition to the organic solvents mentioned above, solvents such as alkanes called poor solvents may be used as long as the solubility of the polycarbonate oligomer is not lowered.
An organic solvent may be used individually by 1 type, and may mix and use 2 or more types.
有機溶媒は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。 The organic solvent only needs to dissolve the polycarbonate oligomer, and examples thereof include chlorinated solvents such as methylene chloride, dichloroethane, chloroform, chlorobenzene, and carbon tetrachloride, and cyclic oxy compounds such as dioxane. In the present invention, a chlorinated solvent is preferable, and methylene chloride is particularly preferably used from the viewpoint of the solubility of the polycarbonate oligomer. In addition to the organic solvents mentioned above, solvents such as alkanes called poor solvents may be used as long as the solubility of the polycarbonate oligomer is not lowered.
An organic solvent may be used individually by 1 type, and may mix and use 2 or more types.
分子量調節剤として用いる一価フェノールとしては、例えばフェノール、p-クレゾール、p-tert-ブチルフェノール、p-tert-オクチルフェノール、p-クミルフェノール、ノニルフェノール等が挙げられる。中でも、コストや入手の容易性等の観点から、p-tert-ブチルフェノール及びフェノールが好ましい。
Examples of the monohydric phenol used as the molecular weight regulator include phenol, p-cresol, p-tert-butylphenol, p-tert-octylphenol, p-cumylphenol, nonylphenol and the like. Of these, p-tert-butylphenol and phenol are preferable from the viewpoints of cost and availability.
ポリカーボネートオリゴマーの製造には、必要に応じて、三級アミン、四級アミンなどの重合触媒を使用することもできる。重合触媒としては、TEA(トリエチルアミン)が好ましい。
オリゴマー反応器としては、連続反応方式の反応器が用いられ、反応原料を混合する混合部を有する管型構造をした反応器が好ましく用いられる。
なお、オリゴマー反応器は建物内に設置されており、外部と隔離されている。建物内は常時空気の入れ替えを行っており、内部の換気空気はブロア等で除害手段へ送られる。 For the production of the polycarbonate oligomer, a polymerization catalyst such as a tertiary amine or a quaternary amine can be used as necessary. As the polymerization catalyst, TEA (triethylamine) is preferable.
As the oligomer reactor, a continuous reaction type reactor is used, and a reactor having a tubular structure having a mixing section for mixing reaction raw materials is preferably used.
The oligomer reactor is installed in the building and isolated from the outside. The inside of the building is constantly changing air, and the ventilation air inside is sent to the abatement means by a blower or the like.
オリゴマー反応器としては、連続反応方式の反応器が用いられ、反応原料を混合する混合部を有する管型構造をした反応器が好ましく用いられる。
なお、オリゴマー反応器は建物内に設置されており、外部と隔離されている。建物内は常時空気の入れ替えを行っており、内部の換気空気はブロア等で除害手段へ送られる。 For the production of the polycarbonate oligomer, a polymerization catalyst such as a tertiary amine or a quaternary amine can be used as necessary. As the polymerization catalyst, TEA (triethylamine) is preferable.
As the oligomer reactor, a continuous reaction type reactor is used, and a reactor having a tubular structure having a mixing section for mixing reaction raw materials is preferably used.
The oligomer reactor is installed in the building and isolated from the outside. The inside of the building is constantly changing air, and the ventilation air inside is sent to the abatement means by a blower or the like.
工程(2)におけるオリゴマー反応器への原料の供給量や反応条件は、装置の規模や生産量等によって適宜決定される。
例として、1時間当たり約200kgのポリカーボネートオリゴマーを製造する場合における好ましい条件を以下に記載するが、これに限定されるものではない。工程(1)により得られるホスゲンガスの流量(F1)は、好ましくは3.7~4.1kg/hである。塩化メチレン等の有機溶媒の流量(F2)は、好ましくは20~24kg/hである。ホスゲンガスの温度は、ホスゲンの沸点(7.8℃)~90℃の範囲が好ましい。二価フェノールのアルカリ水溶液としては、ビスフェノールAの水酸化ナトリウム水溶液が好ましく、予め所定濃度になるように調整され供給される。ビスフェノールAの水酸化ナトリウム水溶液において、好ましいビスフェノールA濃度(a)は12.5~14.0質量%であり、好ましい水酸化ナトリウム濃度は5.1~6.1質量%である。ビスフェノールAの水酸化ナトリウム水溶液の流量(F3)は、好ましくは42~46kg/hである。 The amount of raw material supplied to the oligomer reactor and the reaction conditions in the step (2) are appropriately determined depending on the scale of the apparatus and the production amount.
As an example, preferable conditions for producing about 200 kg of polycarbonate oligomer per hour will be described below, but the present invention is not limited thereto. The flow rate (F1) of the phosgene gas obtained by the step (1) is preferably 3.7 to 4.1 kg / h. The flow rate (F2) of an organic solvent such as methylene chloride is preferably 20 to 24 kg / h. The temperature of the phosgene gas is preferably in the range of the boiling point of phosgene (7.8 ° C.) to 90 ° C. As the alkaline aqueous solution of dihydric phenol, a sodium hydroxide aqueous solution of bisphenol A is preferable, and is adjusted and supplied in advance to have a predetermined concentration. In the aqueous sodium hydroxide solution of bisphenol A, the preferred bisphenol A concentration (a) is 12.5 to 14.0% by mass, and the preferred sodium hydroxide concentration is 5.1 to 6.1% by mass. The flow rate (F3) of the aqueous sodium hydroxide solution of bisphenol A is preferably 42 to 46 kg / h.
例として、1時間当たり約200kgのポリカーボネートオリゴマーを製造する場合における好ましい条件を以下に記載するが、これに限定されるものではない。工程(1)により得られるホスゲンガスの流量(F1)は、好ましくは3.7~4.1kg/hである。塩化メチレン等の有機溶媒の流量(F2)は、好ましくは20~24kg/hである。ホスゲンガスの温度は、ホスゲンの沸点(7.8℃)~90℃の範囲が好ましい。二価フェノールのアルカリ水溶液としては、ビスフェノールAの水酸化ナトリウム水溶液が好ましく、予め所定濃度になるように調整され供給される。ビスフェノールAの水酸化ナトリウム水溶液において、好ましいビスフェノールA濃度(a)は12.5~14.0質量%であり、好ましい水酸化ナトリウム濃度は5.1~6.1質量%である。ビスフェノールAの水酸化ナトリウム水溶液の流量(F3)は、好ましくは42~46kg/hである。 The amount of raw material supplied to the oligomer reactor and the reaction conditions in the step (2) are appropriately determined depending on the scale of the apparatus and the production amount.
As an example, preferable conditions for producing about 200 kg of polycarbonate oligomer per hour will be described below, but the present invention is not limited thereto. The flow rate (F1) of the phosgene gas obtained by the step (1) is preferably 3.7 to 4.1 kg / h. The flow rate (F2) of an organic solvent such as methylene chloride is preferably 20 to 24 kg / h. The temperature of the phosgene gas is preferably in the range of the boiling point of phosgene (7.8 ° C.) to 90 ° C. As the alkaline aqueous solution of dihydric phenol, a sodium hydroxide aqueous solution of bisphenol A is preferable, and is adjusted and supplied in advance to have a predetermined concentration. In the aqueous sodium hydroxide solution of bisphenol A, the preferred bisphenol A concentration (a) is 12.5 to 14.0% by mass, and the preferred sodium hydroxide concentration is 5.1 to 6.1% by mass. The flow rate (F3) of the aqueous sodium hydroxide solution of bisphenol A is preferably 42 to 46 kg / h.
工程(2)では、クロロフォーメート基を有するポリカーボネートオリゴマーを含有する反応混合物が得られる。上記ポリカーボネートオリゴマーの性状は特に制限されるものではなく、適宜最適な性状となるように反応条件を設定すればよいが、VPO(蒸気圧浸透圧計)で測定した分子量が約600~5000程度であるものが好ましい。
In step (2), a reaction mixture containing a polycarbonate oligomer having a chloroformate group is obtained. The properties of the polycarbonate oligomer are not particularly limited, and the reaction conditions may be set as appropriate so that the properties are appropriate, but the molecular weight measured by a VPO (vapor pressure osmometer) is about 600 to 5000. Those are preferred.
なお、ポリカーボネートオリゴマーを含有する反応混合物は、ポリカーボネートオリゴマーが前記有機溶媒に溶解した有機相と、アルカリ水溶液を含有する水相の混合物である。この反応混合物を縮合反応器に導入し、縮合反応させることでポリカーボネートを製造することができる。
また、縮合反応が終了した後、反応溶液を公知の方法で洗浄し、濃縮し、粉末化等を行うことにより粉末状のポリカーボネートを得ることができ、さらに押出機等で処理することによりペレット化することができる。 The reaction mixture containing the polycarbonate oligomer is a mixture of an organic phase in which the polycarbonate oligomer is dissolved in the organic solvent and an aqueous phase containing an alkaline aqueous solution. A polycarbonate can be produced by introducing this reaction mixture into a condensation reactor and subjecting it to a condensation reaction.
In addition, after the condensation reaction is completed, the reaction solution is washed by a known method, concentrated, and pulverized to obtain a powdery polycarbonate, which is further pelletized by processing with an extruder or the like. can do.
また、縮合反応が終了した後、反応溶液を公知の方法で洗浄し、濃縮し、粉末化等を行うことにより粉末状のポリカーボネートを得ることができ、さらに押出機等で処理することによりペレット化することができる。 The reaction mixture containing the polycarbonate oligomer is a mixture of an organic phase in which the polycarbonate oligomer is dissolved in the organic solvent and an aqueous phase containing an alkaline aqueous solution. A polycarbonate can be produced by introducing this reaction mixture into a condensation reactor and subjecting it to a condensation reaction.
In addition, after the condensation reaction is completed, the reaction solution is washed by a known method, concentrated, and pulverized to obtain a powdery polycarbonate, which is further pelletized by processing with an extruder or the like. can do.
[ポリカーボネートオリゴマー連続製造の制御方法]
オリゴマー反応器には所定量のホスゲンガス、二価フェノールのアルカリ水溶液及び有機溶媒が連続的に供給される。ホスゲンガスの供給圧力及びオリゴマー反応器内の入口圧力は、ホスゲン反応器やオリゴマー反応器の大きさ、形状等によって適宜設定されるが、通常、ホスゲンガスの供給圧力(P1)が0.4~0.5MPaG、オリゴマー反応器内の入口圧力(P2)が0.15~0.35MPaG、両者の圧力差(P1-P2)の値が0.105MPa~0.35MPaの差圧となるように連続運転される。 [Control method for continuous production of polycarbonate oligomer]
A predetermined amount of phosgene gas, an aqueous alkali solution of dihydric phenol, and an organic solvent are continuously supplied to the oligomer reactor. The supply pressure of phosgene gas and the inlet pressure in the oligomer reactor are appropriately set according to the size, shape, etc. of the phosgene reactor and oligomer reactor. Usually, the supply pressure (P1) of phosgene gas is 0.4 to 0.00. Continuous operation was performed so that the pressure in the oligomer reactor was 5 MPaG, the inlet pressure (P2) in the oligomer reactor was 0.15 to 0.35 MPaG, and the pressure difference between the two (P1−P2) was 0.105 MPa to 0.35 MPa. The
オリゴマー反応器には所定量のホスゲンガス、二価フェノールのアルカリ水溶液及び有機溶媒が連続的に供給される。ホスゲンガスの供給圧力及びオリゴマー反応器内の入口圧力は、ホスゲン反応器やオリゴマー反応器の大きさ、形状等によって適宜設定されるが、通常、ホスゲンガスの供給圧力(P1)が0.4~0.5MPaG、オリゴマー反応器内の入口圧力(P2)が0.15~0.35MPaG、両者の圧力差(P1-P2)の値が0.105MPa~0.35MPaの差圧となるように連続運転される。 [Control method for continuous production of polycarbonate oligomer]
A predetermined amount of phosgene gas, an aqueous alkali solution of dihydric phenol, and an organic solvent are continuously supplied to the oligomer reactor. The supply pressure of phosgene gas and the inlet pressure in the oligomer reactor are appropriately set according to the size, shape, etc. of the phosgene reactor and oligomer reactor. Usually, the supply pressure (P1) of phosgene gas is 0.4 to 0.00. Continuous operation was performed so that the pressure in the oligomer reactor was 5 MPaG, the inlet pressure (P2) in the oligomer reactor was 0.15 to 0.35 MPaG, and the pressure difference between the two (P1−P2) was 0.105 MPa to 0.35 MPa. The
本発明のポリカーボネートオリゴマー連続製造の制御方法では、オリゴマー反応器に供給するホスゲンガス流量(F1)、溶媒流量(F2)、二価フェノール化合物のアルカリ水溶液流量(F3)及び二価フェノール化合物濃度(a[質量%])について、下記の条件(i)及び/又は(ii)を満たしているかどうか常時監視し、該条件を満たした場合に、自動システムにより、ホスゲンの製造及び供給を停止すると共に、系内のホスゲンガスを含む有毒ガスを除害手段に移送して無害化する。
条件(i):オリゴマー反応器に供給する溶媒流量(F2[kg/h])、二価フェノール化合物のアルカリ水溶液流量(F3[kg/h])及び二価フェノール化合物濃度(a[質量%])を用いたパラメータ<F2/(F3×a/100)>の値が、3.27以下となった場合。
条件(ii):オリゴマー反応器に供給するホスゲンガス流量(F1[kg/h])、二価フェノール化合物のアルカリ水溶液流量(F3[kg/h])及び二価フェノール化合物濃度(a[質量%])を用いたパラメータ<(F3×a/100)/F1>の値が、1.23以下となった場合。 In the method for controlling the continuous production of polycarbonate oligomer of the present invention, the phosgene gas flow rate (F1), the solvent flow rate (F2), the alkaline aqueous solution flow rate (F3) of the dihydric phenol compound and the dihydric phenol compound concentration (a [ Mass%]) is constantly monitored whether the following conditions (i) and / or (ii) are satisfied, and when the conditions are satisfied, the automatic system stops the production and supply of phosgene, Toxic gas containing phosgene gas is transferred to the detoxification means to make it harmless.
Condition (i): Flow rate of solvent supplied to the oligomer reactor (F2 [kg / h]), alkaline aqueous solution flow rate of dihydric phenol compound (F3 [kg / h]), and dihydric phenol compound concentration (a [mass%]) When the value of the parameter <F2 / (F3 × a / 100)> using) is 3.27 or less.
Condition (ii): phosgene gas flow rate (F1 [kg / h]) supplied to the oligomer reactor, alkaline aqueous solution flow rate of dihydric phenol compound (F3 [kg / h]) and dihydric phenol compound concentration (a [mass%]) The value of the parameter <(F3 × a / 100) / F1> using) is 1.23 or less.
条件(i):オリゴマー反応器に供給する溶媒流量(F2[kg/h])、二価フェノール化合物のアルカリ水溶液流量(F3[kg/h])及び二価フェノール化合物濃度(a[質量%])を用いたパラメータ<F2/(F3×a/100)>の値が、3.27以下となった場合。
条件(ii):オリゴマー反応器に供給するホスゲンガス流量(F1[kg/h])、二価フェノール化合物のアルカリ水溶液流量(F3[kg/h])及び二価フェノール化合物濃度(a[質量%])を用いたパラメータ<(F3×a/100)/F1>の値が、1.23以下となった場合。 In the method for controlling the continuous production of polycarbonate oligomer of the present invention, the phosgene gas flow rate (F1), the solvent flow rate (F2), the alkaline aqueous solution flow rate (F3) of the dihydric phenol compound and the dihydric phenol compound concentration (a [ Mass%]) is constantly monitored whether the following conditions (i) and / or (ii) are satisfied, and when the conditions are satisfied, the automatic system stops the production and supply of phosgene, Toxic gas containing phosgene gas is transferred to the detoxification means to make it harmless.
Condition (i): Flow rate of solvent supplied to the oligomer reactor (F2 [kg / h]), alkaline aqueous solution flow rate of dihydric phenol compound (F3 [kg / h]), and dihydric phenol compound concentration (a [mass%]) When the value of the parameter <F2 / (F3 × a / 100)> using) is 3.27 or less.
Condition (ii): phosgene gas flow rate (F1 [kg / h]) supplied to the oligomer reactor, alkaline aqueous solution flow rate of dihydric phenol compound (F3 [kg / h]) and dihydric phenol compound concentration (a [mass%]) The value of the parameter <(F3 × a / 100) / F1> using) is 1.23 or less.
<条件(i)>
条件(i)は、オリゴマー反応器に供給する溶媒流量(F2[kg/h])、二価フェノール化合物のアルカリ水溶液流量(F3[kg/h])及び二価フェノール化合物濃度(a[質量%])を用いたパラメータ<F2/(F3×a/100)>の値が、3.27以下となった場合である。当該パラメータは、オリゴマー反応器に供給する溶媒流量と二価フェノール化合物のアルカリ水溶液流量とのバランスを規定したものである。 <Condition (i)>
Condition (i) is that the solvent flow rate (F2 [kg / h]) supplied to the oligomer reactor, the alkaline aqueous solution flow rate of the dihydric phenol compound (F3 [kg / h]) and the dihydric phenol compound concentration (a [mass%] ]) Using the parameter <F2 / (F3 × a / 100)> is 3.27 or less. This parameter defines the balance between the solvent flow rate supplied to the oligomer reactor and the alkaline aqueous solution flow rate of the dihydric phenol compound.
条件(i)は、オリゴマー反応器に供給する溶媒流量(F2[kg/h])、二価フェノール化合物のアルカリ水溶液流量(F3[kg/h])及び二価フェノール化合物濃度(a[質量%])を用いたパラメータ<F2/(F3×a/100)>の値が、3.27以下となった場合である。当該パラメータは、オリゴマー反応器に供給する溶媒流量と二価フェノール化合物のアルカリ水溶液流量とのバランスを規定したものである。 <Condition (i)>
Condition (i) is that the solvent flow rate (F2 [kg / h]) supplied to the oligomer reactor, the alkaline aqueous solution flow rate of the dihydric phenol compound (F3 [kg / h]) and the dihydric phenol compound concentration (a [mass%] ]) Using the parameter <F2 / (F3 × a / 100)> is 3.27 or less. This parameter defines the balance between the solvent flow rate supplied to the oligomer reactor and the alkaline aqueous solution flow rate of the dihydric phenol compound.
オリゴマー反応器には所定量のホスゲンガス、二価フェノールのアルカリ水溶液及び有機溶媒が連続的に供給されるが、溶媒供給ポンプ等のトラブルにより溶媒供給量が不足すると、オリゴマー反応器内で生成するポリカーボネートオリゴマー濃度が高くなり、その結果ポリカーボネートオリゴマーが析出してオリゴマー反応器の出口を閉塞する可能性がある。そして、オリゴマー反応器内の圧力が上昇し、ホスゲン反応器に溶媒やオリゴマー原料が逆流し、溶媒の蒸発等により運転圧が設計圧以上に上昇して、系外にホスゲンが漏洩する危険がある。
そのため、本発明では、安全上の観点から、オリゴマー反応器に供給する溶媒流量(F2[kg/h])、二価フェノール化合物のアルカリ水溶液流量(F3[kg/h])及び二価フェノール化合物濃度(a[質量%])を用いたパラメータ<F2/(F3×a/100)>の値が、3.27以下となった場合に自動システムを起動させる。ただし、一過性のトラブル等により頻繁に自動システムが起動してしまうと、効率よく操業することが難しくなってしまうため、安全性を確保した上で効率よく操業するという観点からは、自動システムが起動する条件は、前記パラメータ<F2/(F3×a/100)>の値が、2.52以下の場合に設定してもよく、更に2.43以下の場合に設定してもよい。 A predetermined amount of phosgene gas, an alkaline aqueous solution of dihydric phenol, and an organic solvent are continuously supplied to the oligomer reactor. However, when the solvent supply amount is insufficient due to a trouble such as a solvent supply pump, the polycarbonate produced in the oligomer reactor There is a possibility that the oligomer concentration becomes high, and as a result, the polycarbonate oligomer precipitates and closes the outlet of the oligomer reactor. Then, the pressure in the oligomer reactor rises, the solvent or oligomer raw material flows back into the phosgene reactor, the operating pressure rises above the design pressure due to evaporation of the solvent, etc., and there is a risk that phosgene leaks out of the system .
Therefore, in the present invention, from the viewpoint of safety, the flow rate of the solvent supplied to the oligomer reactor (F2 [kg / h]), the alkaline aqueous solution flow rate of the dihydric phenol compound (F3 [kg / h]), and the dihydric phenol compound The automatic system is activated when the value of the parameter <F2 / (F3 × a / 100)> using the concentration (a [mass%]) becomes 3.27 or less. However, if the automatic system is frequently started due to temporary troubles, etc., it will be difficult to operate efficiently. From the viewpoint of operating efficiently while ensuring safety, the automatic system May be set when the value of the parameter <F2 / (F3 × a / 100)> is 2.52 or less, and may be set when the value is 2.43 or less.
そのため、本発明では、安全上の観点から、オリゴマー反応器に供給する溶媒流量(F2[kg/h])、二価フェノール化合物のアルカリ水溶液流量(F3[kg/h])及び二価フェノール化合物濃度(a[質量%])を用いたパラメータ<F2/(F3×a/100)>の値が、3.27以下となった場合に自動システムを起動させる。ただし、一過性のトラブル等により頻繁に自動システムが起動してしまうと、効率よく操業することが難しくなってしまうため、安全性を確保した上で効率よく操業するという観点からは、自動システムが起動する条件は、前記パラメータ<F2/(F3×a/100)>の値が、2.52以下の場合に設定してもよく、更に2.43以下の場合に設定してもよい。 A predetermined amount of phosgene gas, an alkaline aqueous solution of dihydric phenol, and an organic solvent are continuously supplied to the oligomer reactor. However, when the solvent supply amount is insufficient due to a trouble such as a solvent supply pump, the polycarbonate produced in the oligomer reactor There is a possibility that the oligomer concentration becomes high, and as a result, the polycarbonate oligomer precipitates and closes the outlet of the oligomer reactor. Then, the pressure in the oligomer reactor rises, the solvent or oligomer raw material flows back into the phosgene reactor, the operating pressure rises above the design pressure due to evaporation of the solvent, etc., and there is a risk that phosgene leaks out of the system .
Therefore, in the present invention, from the viewpoint of safety, the flow rate of the solvent supplied to the oligomer reactor (F2 [kg / h]), the alkaline aqueous solution flow rate of the dihydric phenol compound (F3 [kg / h]), and the dihydric phenol compound The automatic system is activated when the value of the parameter <F2 / (F3 × a / 100)> using the concentration (a [mass%]) becomes 3.27 or less. However, if the automatic system is frequently started due to temporary troubles, etc., it will be difficult to operate efficiently. From the viewpoint of operating efficiently while ensuring safety, the automatic system May be set when the value of the parameter <F2 / (F3 × a / 100)> is 2.52 or less, and may be set when the value is 2.43 or less.
なお、通常運転時においては、生産性等の観点から、前記パラメータ<F2/(F3×a/100)>の値は、好ましくは3.30~4.60、より好ましくは3.60~4.10である。
During normal operation, the value of the parameter <F2 / (F3 × a / 100)> is preferably 3.30 to 4.60, more preferably 3.60 to 4 from the viewpoint of productivity and the like. .10.
<条件(ii)>
条件(ii)は、オリゴマー反応器に供給するホスゲンガス流量(F1[kg/h])、二価フェノール化合物のアルカリ水溶液流量(F3[kg/h])及び二価フェノール化合物濃度(a[質量%])を用いたパラメータ<(F3×a/100)/F1>の値が、1.23以下となった場合である。当該パラメータは、オリゴマー反応器に供給するホスゲンガス流量と二価フェノール化合物のアルカリ水溶液流量とのバランスを規定したものである。 <Condition (ii)>
Condition (ii) is as follows: the flow rate of phosgene gas supplied to the oligomer reactor (F1 [kg / h]), the flow rate of alkaline aqueous solution of dihydric phenol compound (F3 [kg / h]), and the concentration of dihydric phenol compound (a [mass%) ]) Using the parameter <(F3 × a / 100) / F1> is 1.23 or less. This parameter defines the balance between the phosgene gas flow rate supplied to the oligomer reactor and the alkaline aqueous solution flow rate of the dihydric phenol compound.
条件(ii)は、オリゴマー反応器に供給するホスゲンガス流量(F1[kg/h])、二価フェノール化合物のアルカリ水溶液流量(F3[kg/h])及び二価フェノール化合物濃度(a[質量%])を用いたパラメータ<(F3×a/100)/F1>の値が、1.23以下となった場合である。当該パラメータは、オリゴマー反応器に供給するホスゲンガス流量と二価フェノール化合物のアルカリ水溶液流量とのバランスを規定したものである。 <Condition (ii)>
Condition (ii) is as follows: the flow rate of phosgene gas supplied to the oligomer reactor (F1 [kg / h]), the flow rate of alkaline aqueous solution of dihydric phenol compound (F3 [kg / h]), and the concentration of dihydric phenol compound (a [mass%) ]) Using the parameter <(F3 × a / 100) / F1> is 1.23 or less. This parameter defines the balance between the phosgene gas flow rate supplied to the oligomer reactor and the alkaline aqueous solution flow rate of the dihydric phenol compound.
オリゴマー反応器には所定量のホスゲンガス、二価フェノールのアルカリ水溶液、及び有機溶媒が連続的に供給されるが、二価フェノール化合物供給ポンプ等のトラブルにより二価フェノールのアルカリ水溶液供給量が不足すると、一部のホスゲンが、オリゴマー反応器内で消費されず未反応のまま下流の工程に流れて、系外にホスゲンが漏洩する危険がある。
そのため、本発明では、安全上の観点から、オリゴマー反応器に供給するホスゲンガス流量(F1[kg/h])、二価フェノール化合物のアルカリ水溶液流量(F3[kg/h])及び二価フェノール化合物濃度(a[質量%])を用いたパラメータ<(F3×a/100)/F1>の値が、1.23以下となった場合に自動システムを起動させる。ただし、一過性のトラブル等により頻繁に自動システムが起動してしまうと、効率よく操業することが難しくなってしまうため、安全性を確保した上で効率よく操業するという観点からは、自動システムが起動する条件は、前記パラメータ<(F3×a/100)/F1>の値が、1.05以下の場合に設定してもよく、更に1.00以下の場合に設定してもよい。 The oligomer reactor is continuously supplied with a predetermined amount of phosgene gas, an alkaline aqueous solution of dihydric phenol, and an organic solvent. However, when the supply amount of the alkaline aqueous solution of dihydric phenol is insufficient due to a trouble such as a dihydric phenol compound supply pump. Some phosgene is not consumed in the oligomer reactor, but flows unreacted to the downstream process, and there is a risk that phosgene leaks out of the system.
Therefore, in the present invention, from the viewpoint of safety, the phosgene gas flow rate (F1 [kg / h]) supplied to the oligomer reactor, the alkaline aqueous solution flow rate (F3 [kg / h]) of the dihydric phenol compound, and the dihydric phenol compound When the value of the parameter <(F3 × a / 100) / F1> using the concentration (a [mass%]) becomes 1.23 or less, the automatic system is activated. However, if the automatic system is frequently started due to temporary troubles, etc., it will be difficult to operate efficiently. From the viewpoint of operating efficiently while ensuring safety, the automatic system May be set when the value of the parameter <(F3 × a / 100) / F1> is 1.05 or less, and may be set when the value is 1.00 or less.
そのため、本発明では、安全上の観点から、オリゴマー反応器に供給するホスゲンガス流量(F1[kg/h])、二価フェノール化合物のアルカリ水溶液流量(F3[kg/h])及び二価フェノール化合物濃度(a[質量%])を用いたパラメータ<(F3×a/100)/F1>の値が、1.23以下となった場合に自動システムを起動させる。ただし、一過性のトラブル等により頻繁に自動システムが起動してしまうと、効率よく操業することが難しくなってしまうため、安全性を確保した上で効率よく操業するという観点からは、自動システムが起動する条件は、前記パラメータ<(F3×a/100)/F1>の値が、1.05以下の場合に設定してもよく、更に1.00以下の場合に設定してもよい。 The oligomer reactor is continuously supplied with a predetermined amount of phosgene gas, an alkaline aqueous solution of dihydric phenol, and an organic solvent. However, when the supply amount of the alkaline aqueous solution of dihydric phenol is insufficient due to a trouble such as a dihydric phenol compound supply pump. Some phosgene is not consumed in the oligomer reactor, but flows unreacted to the downstream process, and there is a risk that phosgene leaks out of the system.
Therefore, in the present invention, from the viewpoint of safety, the phosgene gas flow rate (F1 [kg / h]) supplied to the oligomer reactor, the alkaline aqueous solution flow rate (F3 [kg / h]) of the dihydric phenol compound, and the dihydric phenol compound When the value of the parameter <(F3 × a / 100) / F1> using the concentration (a [mass%]) becomes 1.23 or less, the automatic system is activated. However, if the automatic system is frequently started due to temporary troubles, etc., it will be difficult to operate efficiently. From the viewpoint of operating efficiently while ensuring safety, the automatic system May be set when the value of the parameter <(F3 × a / 100) / F1> is 1.05 or less, and may be set when the value is 1.00 or less.
なお、通常運転時においては、生産性等の観点から、前記パラメータ<(F3×a/100)/F1>の値は、好ましくは1.28~2.00、より好ましくは1.40~1.80である。
During normal operation, the value of the parameter <(F3 × a / 100) / F1> is preferably 1.28 to 2.00, more preferably 1.40 to 1 from the viewpoint of productivity and the like. .80.
本発明のポリカーボネートオリゴマー連続製造の制御方法では、上記の条件(i)及び/又は(ii)を満たす場合に、下記(a)、(b)及び(c)の操作が自動的に行われ、有毒なホスゲンの漏洩を防止すると共に無害化する。
(a)ホスゲンガスを連続的に製造する工程(1)における塩素及び一酸化炭素の供給を停止する。これは、系内におけるホスゲンガスの量を増加させないことを目的として、ホスゲンガスの製造を中止する操作である。
(b)オリゴマー反応器へのホスゲンガスの供給を停止する。これは、一部のホスゲンがオリゴマー反応器内で消費されずに未反応のまま下流の工程に流れるおそれがあるため、ホスゲンの漏洩を防止するための操作である。
(c)系内のホスゲンガスを含む有毒ガスを除害手段に移送して無害化する。これは、上記(a)及び(b)の操作によりホスゲンの増加及び漏洩を防止して系内に封じ込めることに加えて、より高い安全性の観点から系内のホスゲンガスを無害化する操作である。 In the method for controlling the continuous production of polycarbonate oligomer of the present invention, when the above conditions (i) and / or (ii) are satisfied, the following operations (a), (b) and (c) are automatically performed: Prevents toxic phosgene leakage and renders it harmless.
(A) The supply of chlorine and carbon monoxide in the step (1) for continuously producing phosgene gas is stopped. This is an operation of stopping the production of phosgene gas for the purpose of not increasing the amount of phosgene gas in the system.
(B) The supply of phosgene gas to the oligomer reactor is stopped. This is an operation for preventing leakage of phosgene because a part of phosgene may flow into a downstream process without being consumed in the oligomer reactor without being consumed.
(C) Toxic gas containing phosgene gas in the system is transferred to an abatement means and rendered harmless. This is an operation of detoxifying the phosgene gas in the system from the viewpoint of higher safety, in addition to preventing the increase and leakage of phosgene by the above operations (a) and (b) and confining it in the system. .
(a)ホスゲンガスを連続的に製造する工程(1)における塩素及び一酸化炭素の供給を停止する。これは、系内におけるホスゲンガスの量を増加させないことを目的として、ホスゲンガスの製造を中止する操作である。
(b)オリゴマー反応器へのホスゲンガスの供給を停止する。これは、一部のホスゲンがオリゴマー反応器内で消費されずに未反応のまま下流の工程に流れるおそれがあるため、ホスゲンの漏洩を防止するための操作である。
(c)系内のホスゲンガスを含む有毒ガスを除害手段に移送して無害化する。これは、上記(a)及び(b)の操作によりホスゲンの増加及び漏洩を防止して系内に封じ込めることに加えて、より高い安全性の観点から系内のホスゲンガスを無害化する操作である。 In the method for controlling the continuous production of polycarbonate oligomer of the present invention, when the above conditions (i) and / or (ii) are satisfied, the following operations (a), (b) and (c) are automatically performed: Prevents toxic phosgene leakage and renders it harmless.
(A) The supply of chlorine and carbon monoxide in the step (1) for continuously producing phosgene gas is stopped. This is an operation of stopping the production of phosgene gas for the purpose of not increasing the amount of phosgene gas in the system.
(B) The supply of phosgene gas to the oligomer reactor is stopped. This is an operation for preventing leakage of phosgene because a part of phosgene may flow into a downstream process without being consumed in the oligomer reactor without being consumed.
(C) Toxic gas containing phosgene gas in the system is transferred to an abatement means and rendered harmless. This is an operation of detoxifying the phosgene gas in the system from the viewpoint of higher safety, in addition to preventing the increase and leakage of phosgene by the above operations (a) and (b) and confining it in the system. .
<除害手段>
除害手段は、ホスゲンガスを含む有毒ガスを除害剤により無害化するための設備であり、公知のものを用いることができる。具体例としては、除害剤の散布設備、有毒ガスと除害剤とを接触させる吸収塔等が挙げられる。また、特開平6-319946号公報や特開2005-305414号公報等に記載された塔型の除害設備を用いることもできる。 <Disinfection means>
The detoxifying means is equipment for detoxifying toxic gas containing phosgene gas with a detoxifying agent, and a known one can be used. Specific examples include a spraying device for a pesticide, an absorption tower for bringing a toxic gas into contact with the pesticide, and the like. In addition, tower-type detoxification equipment described in JP-A-6-319946, JP-A-2005-305414 and the like can also be used.
除害手段は、ホスゲンガスを含む有毒ガスを除害剤により無害化するための設備であり、公知のものを用いることができる。具体例としては、除害剤の散布設備、有毒ガスと除害剤とを接触させる吸収塔等が挙げられる。また、特開平6-319946号公報や特開2005-305414号公報等に記載された塔型の除害設備を用いることもできる。 <Disinfection means>
The detoxifying means is equipment for detoxifying toxic gas containing phosgene gas with a detoxifying agent, and a known one can be used. Specific examples include a spraying device for a pesticide, an absorption tower for bringing a toxic gas into contact with the pesticide, and the like. In addition, tower-type detoxification equipment described in JP-A-6-319946, JP-A-2005-305414 and the like can also be used.
ホスゲンや塩素等の酸性ガスに対しては、除害剤としてアルカリ性物質が用いられる。除害剤として用いられるアルカリ性物質は、特に限定されないが、水酸化ナトリウム、水酸化カリウムが一般的に用いられる。また、通常これらは水溶液として用いられる。
For acidic gases such as phosgene and chlorine, alkaline substances are used as a detoxifying agent. The alkaline substance used as the detoxifying agent is not particularly limited, but sodium hydroxide and potassium hydroxide are generally used. These are usually used as an aqueous solution.
除害手段が除害塔の場合、除害塔の構造は特に限定されないが、代表的な例として、除害剤を塔の上部からスプレー等でシャワー状に噴射し、下部から供給された有害ガスと接触させて除害するものが挙げられる。除害剤とガスとの接触効率を高めるために、除害剤の噴射口とガスの流入口との間にラシヒリング等の充填剤を充填してもよい。また、除害塔の本数は特に限定されず、除害処理ガス中の有毒ガス濃度が、環境基準等で規定された所定濃度以下となるように、好ましくは検出されないレベルにまで低減されるように設計される。
When the detoxification means is a detoxification tower, the structure of the detoxification tower is not particularly limited, but as a typical example, the detoxifying agent is sprayed from the top of the tower in the form of a shower, etc. There are those that are removed by contact with gas. In order to improve the contact efficiency between the detoxifying agent and the gas, a filler such as Raschig ring may be filled between the detoxifying agent injection port and the gas inflow port. The number of detoxification towers is not particularly limited, and the toxic gas concentration in the detoxification treatment gas is preferably reduced to a level that is not detected so that the concentration is less than or equal to a predetermined concentration defined by environmental standards. Designed to.
除害手段は、有毒ガスの漏洩がなくても不測の事態に備え常時運転する。なお、オリゴマー反応器が設置された建物内の換気空気は、ブロア等で除害手段に送られて無害化した上で外部に放出される。
Detoxification means always operate in case of unforeseen circumstances even if no toxic gas leaks. In addition, the ventilation air in the building where the oligomer reactor is installed is sent to an abatement means by a blower or the like to be rendered harmless and then released to the outside.
本発明の好ましい一実施態様について、図面を参照しながら説明する。図1は、本発明のポリカーボネートオリゴマー連続製造の制御方法の好ましい一実施態様の概略を示す工程図である。
通常運転時は、ホスゲン製造原料の塩素及び一酸化炭素は調節弁を通してホスゲン反応器に供給され、ホスゲン反応器においてホスゲンガスが製造される。反応は発熱反応であるため、ホスゲン反応器は冷却水によって冷却される。
未反応の一酸化炭素を含有するホスゲンガス(反応生成物)は、調節弁を通してオリゴマー反応器に導入される。オリゴマー反応器には、ホスゲンガスに加えて、二価フェノールのアルカリ水溶液(具体的には、例えばビスフェノールAの水酸化ナトリウム水溶液)及び有機溶媒(具体的には、例えば塩化メチレン)も導入され、これらの反応により、ポリカーボネートオリゴマーを含有するエマルション溶液が製造される。
なお、塩素及び一酸化炭素の供給路に設けられた調節弁は、これらの流量を自動制御しており、ホスゲンガスのオリゴマー反応器への供給路に設けられた調節弁は、オリゴマー反応器に供給するホスゲンガスの供給圧力を制御している。 A preferred embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a process diagram showing an outline of a preferred embodiment of the method for controlling the continuous production of polycarbonate oligomer of the present invention.
During normal operation, phosgene production raw material chlorine and carbon monoxide are supplied to the phosgene reactor through a control valve, and phosgene gas is produced in the phosgene reactor. Since the reaction is exothermic, the phosgene reactor is cooled by cooling water.
Phosgene gas (reaction product) containing unreacted carbon monoxide is introduced into the oligomer reactor through a control valve. In addition to phosgene gas, an alkaline aqueous solution of dihydric phenol (specifically, for example, a sodium hydroxide aqueous solution of bisphenol A) and an organic solvent (specifically, for example, methylene chloride) are also introduced into the oligomer reactor. By this reaction, an emulsion solution containing a polycarbonate oligomer is produced.
In addition, the control valve provided in the supply path of chlorine and carbon monoxide automatically controls these flow rates, and the control valve provided in the supply path to the oligomer reactor of phosgene gas supplies to the oligomer reactor. The supply pressure of phosgene gas is controlled.
通常運転時は、ホスゲン製造原料の塩素及び一酸化炭素は調節弁を通してホスゲン反応器に供給され、ホスゲン反応器においてホスゲンガスが製造される。反応は発熱反応であるため、ホスゲン反応器は冷却水によって冷却される。
未反応の一酸化炭素を含有するホスゲンガス(反応生成物)は、調節弁を通してオリゴマー反応器に導入される。オリゴマー反応器には、ホスゲンガスに加えて、二価フェノールのアルカリ水溶液(具体的には、例えばビスフェノールAの水酸化ナトリウム水溶液)及び有機溶媒(具体的には、例えば塩化メチレン)も導入され、これらの反応により、ポリカーボネートオリゴマーを含有するエマルション溶液が製造される。
なお、塩素及び一酸化炭素の供給路に設けられた調節弁は、これらの流量を自動制御しており、ホスゲンガスのオリゴマー反応器への供給路に設けられた調節弁は、オリゴマー反応器に供給するホスゲンガスの供給圧力を制御している。 A preferred embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a process diagram showing an outline of a preferred embodiment of the method for controlling the continuous production of polycarbonate oligomer of the present invention.
During normal operation, phosgene production raw material chlorine and carbon monoxide are supplied to the phosgene reactor through a control valve, and phosgene gas is produced in the phosgene reactor. Since the reaction is exothermic, the phosgene reactor is cooled by cooling water.
Phosgene gas (reaction product) containing unreacted carbon monoxide is introduced into the oligomer reactor through a control valve. In addition to phosgene gas, an alkaline aqueous solution of dihydric phenol (specifically, for example, a sodium hydroxide aqueous solution of bisphenol A) and an organic solvent (specifically, for example, methylene chloride) are also introduced into the oligomer reactor. By this reaction, an emulsion solution containing a polycarbonate oligomer is produced.
In addition, the control valve provided in the supply path of chlorine and carbon monoxide automatically controls these flow rates, and the control valve provided in the supply path to the oligomer reactor of phosgene gas supplies to the oligomer reactor. The supply pressure of phosgene gas is controlled.
オリゴマー反応器に供給するホスゲンガス流量(F1)、溶媒流量(F2)、及び二価フェノール化合物のアルカリ水溶液流量(F3)は、流量計を用いて常時監視されている。また、二価フェノールのアルカリ水溶液は、二価フェノール化合物濃度(a)が予め所定濃度に調整されており、その濃度(a)は濃度計を用いて常時監視されている。これらのデータは自動制御装置に送られ(図中の点線の矢印)、自動制御装置では、送られてきたデータに基づいて、上記の条件(i)及び(ii)で規定されたパラメータについて算出される。
異常事態が発生した場合、すなわち、前記パラメータについて、上記の条件(i)及び/又は(ii)を満たす場合には、自動制御装置から、塩素及び一酸化炭素の供給路に設けられた調節弁、ホスゲンガスのオリゴマー反応器への供給路に設けられた調節弁、並びに除害装置への流路に設けられた調節弁に一斉に信号が送られる(図中の太い実線の矢印)。
自動制御装置からの信号により、塩素及び一酸化炭素の供給路に設けられた調節弁が閉じられ、塩素及び一酸化炭素の供給が停止される。また、ホスゲンガスのオリゴマー反応器への供給路に設けられた調節弁が閉じられ、オリゴマー反応器へのホスゲンガスの供給が停止される。
除害装置への流路に設けられた調節弁は、通常運転時には閉じられているが、自動制御装置からの信号により開けられ、系内のホスゲンガスを含む有毒ガスは除害装置に移送される。除害装置において、ホスゲンガスを含む有毒ガスは無害化される。 The phosgene gas flow rate (F1), the solvent flow rate (F2), and the alkaline aqueous solution flow rate (F3) of the dihydric phenol compound supplied to the oligomer reactor are constantly monitored using a flow meter. In addition, the dihydric phenol alkaline aqueous solution has the dihydric phenol compound concentration (a) adjusted in advance to a predetermined concentration, and the concentration (a) is constantly monitored using a densitometer. These data are sent to the automatic control device (dotted arrows in the figure), and the automatic control device calculates the parameters defined in the above conditions (i) and (ii) based on the sent data. Is done.
When an abnormal situation occurs, that is, when the above condition (i) and / or (ii) is satisfied with respect to the parameter, the control valve provided in the supply path of chlorine and carbon monoxide from the automatic control device Signals are sent all at once to the control valve provided in the supply path to the oligomer reactor of phosgene gas and the control valve provided in the flow path to the abatement apparatus (thick solid line arrow in the figure).
The control valve provided in the supply path for chlorine and carbon monoxide is closed by a signal from the automatic control device, and the supply of chlorine and carbon monoxide is stopped. Moreover, the control valve provided in the supply path to the oligomer reactor of phosgene gas is closed, and the supply of phosgene gas to the oligomer reactor is stopped.
The control valve provided in the flow path to the abatement device is closed during normal operation, but is opened by a signal from the automatic control device, and toxic gas including phosgene gas in the system is transferred to the abatement device. . In the abatement apparatus, toxic gas including phosgene gas is rendered harmless.
異常事態が発生した場合、すなわち、前記パラメータについて、上記の条件(i)及び/又は(ii)を満たす場合には、自動制御装置から、塩素及び一酸化炭素の供給路に設けられた調節弁、ホスゲンガスのオリゴマー反応器への供給路に設けられた調節弁、並びに除害装置への流路に設けられた調節弁に一斉に信号が送られる(図中の太い実線の矢印)。
自動制御装置からの信号により、塩素及び一酸化炭素の供給路に設けられた調節弁が閉じられ、塩素及び一酸化炭素の供給が停止される。また、ホスゲンガスのオリゴマー反応器への供給路に設けられた調節弁が閉じられ、オリゴマー反応器へのホスゲンガスの供給が停止される。
除害装置への流路に設けられた調節弁は、通常運転時には閉じられているが、自動制御装置からの信号により開けられ、系内のホスゲンガスを含む有毒ガスは除害装置に移送される。除害装置において、ホスゲンガスを含む有毒ガスは無害化される。 The phosgene gas flow rate (F1), the solvent flow rate (F2), and the alkaline aqueous solution flow rate (F3) of the dihydric phenol compound supplied to the oligomer reactor are constantly monitored using a flow meter. In addition, the dihydric phenol alkaline aqueous solution has the dihydric phenol compound concentration (a) adjusted in advance to a predetermined concentration, and the concentration (a) is constantly monitored using a densitometer. These data are sent to the automatic control device (dotted arrows in the figure), and the automatic control device calculates the parameters defined in the above conditions (i) and (ii) based on the sent data. Is done.
When an abnormal situation occurs, that is, when the above condition (i) and / or (ii) is satisfied with respect to the parameter, the control valve provided in the supply path of chlorine and carbon monoxide from the automatic control device Signals are sent all at once to the control valve provided in the supply path to the oligomer reactor of phosgene gas and the control valve provided in the flow path to the abatement apparatus (thick solid line arrow in the figure).
The control valve provided in the supply path for chlorine and carbon monoxide is closed by a signal from the automatic control device, and the supply of chlorine and carbon monoxide is stopped. Moreover, the control valve provided in the supply path to the oligomer reactor of phosgene gas is closed, and the supply of phosgene gas to the oligomer reactor is stopped.
The control valve provided in the flow path to the abatement device is closed during normal operation, but is opened by a signal from the automatic control device, and toxic gas including phosgene gas in the system is transferred to the abatement device. . In the abatement apparatus, toxic gas including phosgene gas is rendered harmless.
以上、本発明の好ましい一実施態様について図面を参照しながら説明したが、本発明はこれに限定されない。例えば、図1には示されていないが、調節弁の他に各流体供給停止用の遮断弁を設けてもよい。
The preferred embodiment of the present invention has been described above with reference to the drawings, but the present invention is not limited to this. For example, although not shown in FIG. 1, a shutoff valve for stopping fluid supply may be provided in addition to the control valve.
以下に、実施例に基づいて本発明を更に具体的に説明するが、本発明はこれらの実施例により何ら制限されるものではない。
Hereinafter, the present invention will be more specifically described based on examples, but the present invention is not limited to these examples.
実施例1-1
(自動制御装置)
図1に示すように、オリゴマー反応器に供給する溶媒流量(F2[kg/h])、二価フェノール化合物のアルカリ水溶液流量(F3[kg/h])及び二価フェノール化合物濃度(a[質量%])を用いたパラメータ<F2/(F3×a/100)>の値が、3.27以下となった場合(条件(i))又はオリゴマー反応器に供給するホスゲンガス流量(F1[kg/h])、二価フェノール化合物のアルカリ水溶液流量(F3[kg/h])及び二価フェノール化合物濃度(a[質量%])を用いたパラメータ<(F3×a/100)/F1>の値が、1.23以下となった場合(条件(ii))に、塩素及び一酸化炭素の供給路に設けられた調節弁並びにホスゲンガスのオリゴマー反応器への供給路に設けられた調節弁を閉止し、かつ、除害装置への流路に設けられた調節弁を開放するように制御を行う自動制御装置を設計した。 Example 1-1
(Automatic control device)
As shown in FIG. 1, the solvent flow rate (F2 [kg / h]) supplied to the oligomer reactor, the alkaline aqueous solution flow rate of the dihydric phenol compound (F3 [kg / h]), and the dihydric phenol compound concentration (a [mass] %]) When the value of the parameter <F2 / (F3 × a / 100)> is 3.27 or less (condition (i)) or the phosgene gas flow rate (F1 [kg / h]), the value of the parameter <(F3 × a / 100) / F1> using the flow rate of the alkaline aqueous solution of the dihydric phenol compound (F3 [kg / h]) and the concentration of the dihydric phenol compound (a [mass%]) Is 1.23 or less (condition (ii)), the control valve provided in the supply path for chlorine and carbon monoxide and the control valve provided in the supply path for the oligomer reactor of phosgene gas are closed. And We designed an automatic control device that performs control to open the control valve provided in the flow path to the abatement device.
(自動制御装置)
図1に示すように、オリゴマー反応器に供給する溶媒流量(F2[kg/h])、二価フェノール化合物のアルカリ水溶液流量(F3[kg/h])及び二価フェノール化合物濃度(a[質量%])を用いたパラメータ<F2/(F3×a/100)>の値が、3.27以下となった場合(条件(i))又はオリゴマー反応器に供給するホスゲンガス流量(F1[kg/h])、二価フェノール化合物のアルカリ水溶液流量(F3[kg/h])及び二価フェノール化合物濃度(a[質量%])を用いたパラメータ<(F3×a/100)/F1>の値が、1.23以下となった場合(条件(ii))に、塩素及び一酸化炭素の供給路に設けられた調節弁並びにホスゲンガスのオリゴマー反応器への供給路に設けられた調節弁を閉止し、かつ、除害装置への流路に設けられた調節弁を開放するように制御を行う自動制御装置を設計した。 Example 1-1
(Automatic control device)
As shown in FIG. 1, the solvent flow rate (F2 [kg / h]) supplied to the oligomer reactor, the alkaline aqueous solution flow rate of the dihydric phenol compound (F3 [kg / h]), and the dihydric phenol compound concentration (a [mass] %]) When the value of the parameter <F2 / (F3 × a / 100)> is 3.27 or less (condition (i)) or the phosgene gas flow rate (F1 [kg / h]), the value of the parameter <(F3 × a / 100) / F1> using the flow rate of the alkaline aqueous solution of the dihydric phenol compound (F3 [kg / h]) and the concentration of the dihydric phenol compound (a [mass%]) Is 1.23 or less (condition (ii)), the control valve provided in the supply path for chlorine and carbon monoxide and the control valve provided in the supply path for the oligomer reactor of phosgene gas are closed. And We designed an automatic control device that performs control to open the control valve provided in the flow path to the abatement device.
(除害装置)
除害装置として、カスケード・ミニ・リング(CMR)(商品名、マツイマシン(株)製)を充填した塔径600mm、充填層高さ10mの除害塔を使用した。除害塔には、除害剤として濃度10質量%の水酸化ナトリウム水溶液を2m3/hで循環させた。水酸化ナトリウム水溶液は塔の上部から、有毒なガスは下部から供給した。 (Abatement equipment)
As the abatement apparatus, an abatement tower having a tower diameter of 600 mm and a packed bed height of 10 m packed with Cascade Mini Ring (CMR) (trade name, manufactured by Matsui Machine Co., Ltd.) was used. A sodium hydroxide aqueous solution having a concentration of 10% by mass was circulated at 2 m 3 / h as a detoxifying agent in the detoxifying tower. Sodium hydroxide aqueous solution was supplied from the top of the tower, and toxic gas was supplied from the bottom.
除害装置として、カスケード・ミニ・リング(CMR)(商品名、マツイマシン(株)製)を充填した塔径600mm、充填層高さ10mの除害塔を使用した。除害塔には、除害剤として濃度10質量%の水酸化ナトリウム水溶液を2m3/hで循環させた。水酸化ナトリウム水溶液は塔の上部から、有毒なガスは下部から供給した。 (Abatement equipment)
As the abatement apparatus, an abatement tower having a tower diameter of 600 mm and a packed bed height of 10 m packed with Cascade Mini Ring (CMR) (trade name, manufactured by Matsui Machine Co., Ltd.) was used. A sodium hydroxide aqueous solution having a concentration of 10% by mass was circulated at 2 m 3 / h as a detoxifying agent in the detoxifying tower. Sodium hydroxide aqueous solution was supplied from the top of the tower, and toxic gas was supplied from the bottom.
(ホスゲンの製造)
ホスゲン反応器として、チューブ内に市販の粒状活性炭(直径1.2~1.4mmに粉砕した椰子殻活性炭)を充填したシェルアンドチューブ型反応器を使用した。
ホスゲン反応器に一酸化炭素1.2kg/h、塩素2.8kg/hを供給し、ホスゲンガス3.9kg/hを製造した。ホスゲン反応器のシェル部には、90℃の水を通水して反応熱を除去した。 (Manufacture of phosgene)
As the phosgene reactor, a shell and tube reactor in which a commercially available granular activated carbon (coconut shell activated carbon pulverized to a diameter of 1.2 to 1.4 mm) was filled in a tube was used.
Carbon monoxide 1.2 kg / h and chlorine 2.8 kg / h were supplied to the phosgene reactor to produce phosgene gas 3.9 kg / h. 90 ° C. water was passed through the shell portion of the phosgene reactor to remove heat of reaction.
ホスゲン反応器として、チューブ内に市販の粒状活性炭(直径1.2~1.4mmに粉砕した椰子殻活性炭)を充填したシェルアンドチューブ型反応器を使用した。
ホスゲン反応器に一酸化炭素1.2kg/h、塩素2.8kg/hを供給し、ホスゲンガス3.9kg/hを製造した。ホスゲン反応器のシェル部には、90℃の水を通水して反応熱を除去した。 (Manufacture of phosgene)
As the phosgene reactor, a shell and tube reactor in which a commercially available granular activated carbon (coconut shell activated carbon pulverized to a diameter of 1.2 to 1.4 mm) was filled in a tube was used.
Carbon monoxide 1.2 kg / h and chlorine 2.8 kg / h were supplied to the phosgene reactor to produce phosgene gas 3.9 kg / h. 90 ° C. water was passed through the shell portion of the phosgene reactor to remove heat of reaction.
(ポリカーボネートオリゴマーの製造)
オリゴマー反応器として、内径6mm、長さ30mの管型反応器を使用した。オリゴマー反応器は20℃の冷却槽に浸した。ホスゲンガスは、上流のホスゲン製造工程から連続的にオリゴマー反応器に供給し、オリゴマー反応器に供給するホスゲンガスの供給圧力は0.45MPaGに設定した。
オリゴマー反応器に、ホスゲンガス、濃度6質量%水酸化ナトリウム水溶液にビスフェノールA(BPA)を溶解して得られた濃度(a)13.5質量%のBPA水酸化ナトリウム水溶液、塩化メチレン、分子量調節用の濃度25質量%のp-tert-ブチルフェノールの塩化メチレン溶液を供給し、ポリカーボネートオリゴマー溶液を製造した。このとき、ホスゲンガスの供給流量(F1)は3.9kg/h、BPA水酸化ナトリウム水溶液の供給流量(F3)は44kg/h、塩化メチレンの供給流量(F2)は22kg/h、p-tert-ブチルフェノールの塩化メチレン溶液の供給流量は0.46kg/hとした。F2/(F3×a/100)の値は3.70であり、(F3×a/100)/F1の値は1.52である。なお、オリゴマー反応器内の入口圧力は0.20MPaGであった。 (Production of polycarbonate oligomer)
As the oligomer reactor, a tubular reactor having an inner diameter of 6 mm and a length of 30 m was used. The oligomer reactor was immersed in a cooling bath at 20 ° C. The phosgene gas was continuously supplied from the upstream phosgene production process to the oligomer reactor, and the supply pressure of the phosgene gas supplied to the oligomer reactor was set to 0.45 MPaG.
Concentration (a) obtained by dissolving bisphenol A (BPA) in phosgene gas and 6% strength by weight sodium hydroxide aqueous solution in an oligomer reactor, 13.5% by weight BPA aqueous sodium hydroxide solution, methylene chloride, for molecular weight adjustment A methylene chloride solution of p-tert-butylphenol having a concentration of 25% by mass was fed to prepare a polycarbonate oligomer solution. At this time, the supply flow rate (F1) of phosgene gas was 3.9 kg / h, the supply flow rate (F3) of the BPA sodium hydroxide aqueous solution was 44 kg / h, the supply flow rate (F2) of methylene chloride was 22 kg / h, p-tert- The supply flow rate of the methylene chloride solution of butylphenol was 0.46 kg / h. The value of F2 / (F3 × a / 100) is 3.70, and the value of (F3 × a / 100) / F1 is 1.52. The inlet pressure in the oligomer reactor was 0.20 MPaG.
オリゴマー反応器として、内径6mm、長さ30mの管型反応器を使用した。オリゴマー反応器は20℃の冷却槽に浸した。ホスゲンガスは、上流のホスゲン製造工程から連続的にオリゴマー反応器に供給し、オリゴマー反応器に供給するホスゲンガスの供給圧力は0.45MPaGに設定した。
オリゴマー反応器に、ホスゲンガス、濃度6質量%水酸化ナトリウム水溶液にビスフェノールA(BPA)を溶解して得られた濃度(a)13.5質量%のBPA水酸化ナトリウム水溶液、塩化メチレン、分子量調節用の濃度25質量%のp-tert-ブチルフェノールの塩化メチレン溶液を供給し、ポリカーボネートオリゴマー溶液を製造した。このとき、ホスゲンガスの供給流量(F1)は3.9kg/h、BPA水酸化ナトリウム水溶液の供給流量(F3)は44kg/h、塩化メチレンの供給流量(F2)は22kg/h、p-tert-ブチルフェノールの塩化メチレン溶液の供給流量は0.46kg/hとした。F2/(F3×a/100)の値は3.70であり、(F3×a/100)/F1の値は1.52である。なお、オリゴマー反応器内の入口圧力は0.20MPaGであった。 (Production of polycarbonate oligomer)
As the oligomer reactor, a tubular reactor having an inner diameter of 6 mm and a length of 30 m was used. The oligomer reactor was immersed in a cooling bath at 20 ° C. The phosgene gas was continuously supplied from the upstream phosgene production process to the oligomer reactor, and the supply pressure of the phosgene gas supplied to the oligomer reactor was set to 0.45 MPaG.
Concentration (a) obtained by dissolving bisphenol A (BPA) in phosgene gas and 6% strength by weight sodium hydroxide aqueous solution in an oligomer reactor, 13.5% by weight BPA aqueous sodium hydroxide solution, methylene chloride, for molecular weight adjustment A methylene chloride solution of p-tert-butylphenol having a concentration of 25% by mass was fed to prepare a polycarbonate oligomer solution. At this time, the supply flow rate (F1) of phosgene gas was 3.9 kg / h, the supply flow rate (F3) of the BPA sodium hydroxide aqueous solution was 44 kg / h, the supply flow rate (F2) of methylene chloride was 22 kg / h, p-tert- The supply flow rate of the methylene chloride solution of butylphenol was 0.46 kg / h. The value of F2 / (F3 × a / 100) is 3.70, and the value of (F3 × a / 100) / F1 is 1.52. The inlet pressure in the oligomer reactor was 0.20 MPaG.
ここで、オリゴマー反応器に供給する塩化メチレン流量(F2)を低下させて19.3kg/hとし、意図的にF2/(F3×a/100)の値を3.25とした。
その結果、自動制御装置により、ホスゲン反応器への塩素及び一酸化炭素の供給が停止されるとともにオリゴマー反応器へのホスゲンガスの供給が停止され、また、ホスゲン反応器で生成したホスゲンガスは除害装置へ移送された。除害塔の出口から排出されたガスについて成分測定を行ったところ、ホスゲンは検出されず無害化されていた。 Here, the methylene chloride flow rate (F2) supplied to the oligomer reactor was decreased to 19.3 kg / h, and the value of F2 / (F3 × a / 100) was intentionally set to 3.25.
As a result, the automatic control device stops the supply of chlorine and carbon monoxide to the phosgene reactor and the supply of phosgene gas to the oligomer reactor, and the phosgene gas generated in the phosgene reactor is removed from the abatement device. It was transferred to. When components were measured for the gas discharged from the exit of the detoxification tower, phosgene was not detected and was rendered harmless.
その結果、自動制御装置により、ホスゲン反応器への塩素及び一酸化炭素の供給が停止されるとともにオリゴマー反応器へのホスゲンガスの供給が停止され、また、ホスゲン反応器で生成したホスゲンガスは除害装置へ移送された。除害塔の出口から排出されたガスについて成分測定を行ったところ、ホスゲンは検出されず無害化されていた。 Here, the methylene chloride flow rate (F2) supplied to the oligomer reactor was decreased to 19.3 kg / h, and the value of F2 / (F3 × a / 100) was intentionally set to 3.25.
As a result, the automatic control device stops the supply of chlorine and carbon monoxide to the phosgene reactor and the supply of phosgene gas to the oligomer reactor, and the phosgene gas generated in the phosgene reactor is removed from the abatement device. It was transferred to. When components were measured for the gas discharged from the exit of the detoxification tower, phosgene was not detected and was rendered harmless.
実施例1-2
オリゴマー反応器に供給する塩化メチレン流量(F2)を低下させて14.9kg/hとし、意図的にF2/(F3×a/100)の値を2.51としたこと以外は、実施例1-1と同様にしてポリカーボネートオリゴマーの製造を行った。
その結果、実施例1-1と同様に、自動制御装置により、ホスゲン反応器への塩素及び一酸化炭素の供給が停止されるとともにオリゴマー反応器へのホスゲンガスの供給が停止され、また、ホスゲン反応器で生成したホスゲンガスは除害装置へ移送された。除害塔の出口から排出されたガスについて成分測定を行ったところ、ホスゲンは検出されず無害化されていた。 Example 1-2
Example 1 except that the methylene chloride flow rate (F2) supplied to the oligomer reactor was reduced to 14.9 kg / h and the value of F2 / (F3 × a / 100) was intentionally 2.51. Polycarbonate oligomer was produced in the same manner as -1.
As a result, as in Example 1-1, the supply of chlorine and carbon monoxide to the phosgene reactor was stopped and the supply of phosgene gas to the oligomer reactor was stopped by the automatic controller, and the phosgene reaction The phosgene gas generated in the vessel was transferred to the abatement device. When components were measured for the gas discharged from the exit of the detoxification tower, phosgene was not detected and was rendered harmless.
オリゴマー反応器に供給する塩化メチレン流量(F2)を低下させて14.9kg/hとし、意図的にF2/(F3×a/100)の値を2.51としたこと以外は、実施例1-1と同様にしてポリカーボネートオリゴマーの製造を行った。
その結果、実施例1-1と同様に、自動制御装置により、ホスゲン反応器への塩素及び一酸化炭素の供給が停止されるとともにオリゴマー反応器へのホスゲンガスの供給が停止され、また、ホスゲン反応器で生成したホスゲンガスは除害装置へ移送された。除害塔の出口から排出されたガスについて成分測定を行ったところ、ホスゲンは検出されず無害化されていた。 Example 1-2
Example 1 except that the methylene chloride flow rate (F2) supplied to the oligomer reactor was reduced to 14.9 kg / h and the value of F2 / (F3 × a / 100) was intentionally 2.51. Polycarbonate oligomer was produced in the same manner as -1.
As a result, as in Example 1-1, the supply of chlorine and carbon monoxide to the phosgene reactor was stopped and the supply of phosgene gas to the oligomer reactor was stopped by the automatic controller, and the phosgene reaction The phosgene gas generated in the vessel was transferred to the abatement device. When components were measured for the gas discharged from the exit of the detoxification tower, phosgene was not detected and was rendered harmless.
実施例1-3
オリゴマー反応器に供給する塩化メチレン流量(F2)を低下させて14.4kg/hとし、意図的にF2/(F3×a/100)の値を2.42としたこと以外は、実施例1-1と同様にしてポリカーボネートオリゴマーの製造を行った。
その結果、実施例1-1と同様に、自動制御装置により、ホスゲン反応器への塩素及び一酸化炭素の供給が停止されるとともにオリゴマー反応器へのホスゲンガスの供給が停止され、また、ホスゲン反応器で生成したホスゲンガスは除害装置へ移送された。除害塔の出口から排出されたガスについて成分測定を行ったところ、ホスゲンは検出されず無害化されていた。 Example 1-3
Example 1 except that the methylene chloride flow rate (F2) supplied to the oligomer reactor was decreased to 14.4 kg / h and the value of F2 / (F3 × a / 100) was intentionally set to 2.42. Polycarbonate oligomer was produced in the same manner as -1.
As a result, as in Example 1-1, the supply of chlorine and carbon monoxide to the phosgene reactor was stopped and the supply of phosgene gas to the oligomer reactor was stopped by the automatic controller, and the phosgene reaction The phosgene gas generated in the vessel was transferred to the abatement device. When components were measured for the gas discharged from the exit of the detoxification tower, phosgene was not detected and was rendered harmless.
オリゴマー反応器に供給する塩化メチレン流量(F2)を低下させて14.4kg/hとし、意図的にF2/(F3×a/100)の値を2.42としたこと以外は、実施例1-1と同様にしてポリカーボネートオリゴマーの製造を行った。
その結果、実施例1-1と同様に、自動制御装置により、ホスゲン反応器への塩素及び一酸化炭素の供給が停止されるとともにオリゴマー反応器へのホスゲンガスの供給が停止され、また、ホスゲン反応器で生成したホスゲンガスは除害装置へ移送された。除害塔の出口から排出されたガスについて成分測定を行ったところ、ホスゲンは検出されず無害化されていた。 Example 1-3
Example 1 except that the methylene chloride flow rate (F2) supplied to the oligomer reactor was decreased to 14.4 kg / h and the value of F2 / (F3 × a / 100) was intentionally set to 2.42. Polycarbonate oligomer was produced in the same manner as -1.
As a result, as in Example 1-1, the supply of chlorine and carbon monoxide to the phosgene reactor was stopped and the supply of phosgene gas to the oligomer reactor was stopped by the automatic controller, and the phosgene reaction The phosgene gas generated in the vessel was transferred to the abatement device. When components were measured for the gas discharged from the exit of the detoxification tower, phosgene was not detected and was rendered harmless.
比較例1-1
自動制御装置を使用しなかったこと以外は、実施例1-1と同様にしてポリカーボネートオリゴマーの製造を行おうとした。
しかし、自動制御しなかった場合、オリゴマー反応器内の圧力が急激に上昇していった。そして、これ以上操作を続けると、オリゴマー反応器内部の反応液がホスゲン反応器に逆流し、塩化メチレンが蒸発してホスゲン反応器内の圧力が上昇してホスゲン反応器が破損してホスゲンが系外に漏洩することが想定されたため、この操作を中止した。 Comparative Example 1-1
A polycarbonate oligomer was produced in the same manner as in Example 1-1 except that the automatic controller was not used.
However, when the automatic control was not performed, the pressure in the oligomer reactor rapidly increased. If the operation is continued further, the reaction liquid inside the oligomer reactor flows backward to the phosgene reactor, the methylene chloride evaporates and the pressure in the phosgene reactor rises, the phosgene reactor breaks down, and the phosgene becomes a system. This operation was canceled because it was assumed to leak outside.
自動制御装置を使用しなかったこと以外は、実施例1-1と同様にしてポリカーボネートオリゴマーの製造を行おうとした。
しかし、自動制御しなかった場合、オリゴマー反応器内の圧力が急激に上昇していった。そして、これ以上操作を続けると、オリゴマー反応器内部の反応液がホスゲン反応器に逆流し、塩化メチレンが蒸発してホスゲン反応器内の圧力が上昇してホスゲン反応器が破損してホスゲンが系外に漏洩することが想定されたため、この操作を中止した。 Comparative Example 1-1
A polycarbonate oligomer was produced in the same manner as in Example 1-1 except that the automatic controller was not used.
However, when the automatic control was not performed, the pressure in the oligomer reactor rapidly increased. If the operation is continued further, the reaction liquid inside the oligomer reactor flows backward to the phosgene reactor, the methylene chloride evaporates and the pressure in the phosgene reactor rises, the phosgene reactor breaks down, and the phosgene becomes a system. This operation was canceled because it was assumed to leak outside.
実施例2-1
オリゴマー反応器に供給するBPA水酸化ナトリウム水溶液流量(F3)を低下させて35.5kg/hとし、意図的に(F3×a/100)/F1の値を1.23としたこと以外は、実施例1-1と同様にしてポリカーボネートオリゴマーの製造を行った。
その結果、実施例1-1と同様に、自動制御装置により、ホスゲン反応器への塩素及び一酸化炭素の供給が停止されるとともにオリゴマー反応器へのホスゲンガスの供給が停止され、また、ホスゲン反応器で生成したホスゲンガスは除害装置へ移送された。除害塔の出口から排出されたガスについて成分測定を行ったところ、ホスゲンは検出されず無害化されていた。 Example 2-1
The BPA sodium hydroxide aqueous solution flow rate (F3) supplied to the oligomer reactor was decreased to 35.5 kg / h, and the value of (F3 × a / 100) / F1 was intentionally set to 1.23, A polycarbonate oligomer was produced in the same manner as in Example 1-1.
As a result, as in Example 1-1, the supply of chlorine and carbon monoxide to the phosgene reactor was stopped and the supply of phosgene gas to the oligomer reactor was stopped by the automatic controller, and the phosgene reaction The phosgene gas generated in the vessel was transferred to the abatement device. When components were measured for the gas discharged from the exit of the detoxification tower, phosgene was not detected and was rendered harmless.
オリゴマー反応器に供給するBPA水酸化ナトリウム水溶液流量(F3)を低下させて35.5kg/hとし、意図的に(F3×a/100)/F1の値を1.23としたこと以外は、実施例1-1と同様にしてポリカーボネートオリゴマーの製造を行った。
その結果、実施例1-1と同様に、自動制御装置により、ホスゲン反応器への塩素及び一酸化炭素の供給が停止されるとともにオリゴマー反応器へのホスゲンガスの供給が停止され、また、ホスゲン反応器で生成したホスゲンガスは除害装置へ移送された。除害塔の出口から排出されたガスについて成分測定を行ったところ、ホスゲンは検出されず無害化されていた。 Example 2-1
The BPA sodium hydroxide aqueous solution flow rate (F3) supplied to the oligomer reactor was decreased to 35.5 kg / h, and the value of (F3 × a / 100) / F1 was intentionally set to 1.23, A polycarbonate oligomer was produced in the same manner as in Example 1-1.
As a result, as in Example 1-1, the supply of chlorine and carbon monoxide to the phosgene reactor was stopped and the supply of phosgene gas to the oligomer reactor was stopped by the automatic controller, and the phosgene reaction The phosgene gas generated in the vessel was transferred to the abatement device. When components were measured for the gas discharged from the exit of the detoxification tower, phosgene was not detected and was rendered harmless.
実施例2-2
オリゴマー反応器に供給するBPA水酸化ナトリウム水溶液流量(F3)を低下させて30.1kg/hとし、意図的に(F3×a/100)/F1の値を1.04としたこと以外は、実施例2-1と同様にしてポリカーボネートオリゴマーの製造を行った。
その結果、実施例2-1と同様に、自動制御装置により、ホスゲン反応器への塩素及び一酸化炭素の供給が停止されるとともにオリゴマー反応器へのホスゲンガスの供給が停止され、また、ホスゲン反応器で生成したホスゲンガスは除害装置へ移送された。除害塔の出口から排出されたガスについて成分測定を行ったところ、ホスゲンは検出されず無害化されていた。 Example 2-2
The BPA sodium hydroxide aqueous solution flow rate (F3) supplied to the oligomer reactor is decreased to 30.1 kg / h, and the value of (F3 × a / 100) / F1 is intentionally set to 1.04, A polycarbonate oligomer was produced in the same manner as in Example 2-1.
As a result, as in Example 2-1, the automatic control device stopped the supply of chlorine and carbon monoxide to the phosgene reactor and the supply of phosgene gas to the oligomer reactor, and the phosgene reaction The phosgene gas generated in the vessel was transferred to the abatement device. When components were measured for the gas discharged from the exit of the detoxification tower, phosgene was not detected and was rendered harmless.
オリゴマー反応器に供給するBPA水酸化ナトリウム水溶液流量(F3)を低下させて30.1kg/hとし、意図的に(F3×a/100)/F1の値を1.04としたこと以外は、実施例2-1と同様にしてポリカーボネートオリゴマーの製造を行った。
その結果、実施例2-1と同様に、自動制御装置により、ホスゲン反応器への塩素及び一酸化炭素の供給が停止されるとともにオリゴマー反応器へのホスゲンガスの供給が停止され、また、ホスゲン反応器で生成したホスゲンガスは除害装置へ移送された。除害塔の出口から排出されたガスについて成分測定を行ったところ、ホスゲンは検出されず無害化されていた。 Example 2-2
The BPA sodium hydroxide aqueous solution flow rate (F3) supplied to the oligomer reactor is decreased to 30.1 kg / h, and the value of (F3 × a / 100) / F1 is intentionally set to 1.04, A polycarbonate oligomer was produced in the same manner as in Example 2-1.
As a result, as in Example 2-1, the automatic control device stopped the supply of chlorine and carbon monoxide to the phosgene reactor and the supply of phosgene gas to the oligomer reactor, and the phosgene reaction The phosgene gas generated in the vessel was transferred to the abatement device. When components were measured for the gas discharged from the exit of the detoxification tower, phosgene was not detected and was rendered harmless.
実施例2-3
オリゴマー反応器に供給するBPA水酸化ナトリウム水溶液流量(F3)を低下させて28.7kg/hとし、意図的に(F3×a/100)/F1の値を0.99としたこと以外は、実施例2-1と同様にしてポリカーボネートオリゴマーの製造を行った。
その結果、実施例2-1と同様に、自動制御装置により、ホスゲン反応器への塩素及び一酸化炭素の供給が停止されるとともにオリゴマー反応器へのホスゲンガスの供給が停止され、また、ホスゲン反応器で生成したホスゲンガスは除害装置へ移送された。除害塔の出口から排出されたガスについて成分測定を行ったところ、ホスゲンは検出されず無害化されていた。 Example 2-3
The BPA sodium hydroxide aqueous solution flow rate (F3) supplied to the oligomer reactor was decreased to 28.7 kg / h, and the value of (F3 × a / 100) / F1 was intentionally set to 0.99, A polycarbonate oligomer was produced in the same manner as in Example 2-1.
As a result, as in Example 2-1, the automatic control device stopped the supply of chlorine and carbon monoxide to the phosgene reactor and the supply of phosgene gas to the oligomer reactor, and the phosgene reaction The phosgene gas generated in the vessel was transferred to the abatement device. When components were measured for the gas discharged from the exit of the detoxification tower, phosgene was not detected and was rendered harmless.
オリゴマー反応器に供給するBPA水酸化ナトリウム水溶液流量(F3)を低下させて28.7kg/hとし、意図的に(F3×a/100)/F1の値を0.99としたこと以外は、実施例2-1と同様にしてポリカーボネートオリゴマーの製造を行った。
その結果、実施例2-1と同様に、自動制御装置により、ホスゲン反応器への塩素及び一酸化炭素の供給が停止されるとともにオリゴマー反応器へのホスゲンガスの供給が停止され、また、ホスゲン反応器で生成したホスゲンガスは除害装置へ移送された。除害塔の出口から排出されたガスについて成分測定を行ったところ、ホスゲンは検出されず無害化されていた。 Example 2-3
The BPA sodium hydroxide aqueous solution flow rate (F3) supplied to the oligomer reactor was decreased to 28.7 kg / h, and the value of (F3 × a / 100) / F1 was intentionally set to 0.99, A polycarbonate oligomer was produced in the same manner as in Example 2-1.
As a result, as in Example 2-1, the automatic control device stopped the supply of chlorine and carbon monoxide to the phosgene reactor and the supply of phosgene gas to the oligomer reactor, and the phosgene reaction The phosgene gas generated in the vessel was transferred to the abatement device. When components were measured for the gas discharged from the exit of the detoxification tower, phosgene was not detected and was rendered harmless.
比較例2-1
自動制御装置を使用しなかったこと以外は、実施例2-1と同様にしてポリカーボネートオリゴマーの製造を行おうとした。
しかし、自動制御しなかった場合、オリゴマー反応器に供給するホスゲンガス流量に対してBPA水酸化ナトリウム水溶液流量が少ないために、量論比以上のホスゲンガスがオリゴマー反応器に供給され、オリゴマー反応器内で消費されずに未反応のまま下流の工程に流れて、系外にホスゲンが漏洩することが想定されたため、この操作を中止した。 Comparative Example 2-1
A polycarbonate oligomer was produced in the same manner as in Example 2-1, except that the automatic controller was not used.
However, if automatic control is not performed, since the BPA sodium hydroxide aqueous solution flow rate is smaller than the phosgene gas flow rate supplied to the oligomer reactor, a phosgene gas having a stoichiometric ratio or more is supplied to the oligomer reactor. This operation was stopped because it was assumed that phosgene leaked out of the system by flowing into the downstream process without being consumed without being consumed.
自動制御装置を使用しなかったこと以外は、実施例2-1と同様にしてポリカーボネートオリゴマーの製造を行おうとした。
しかし、自動制御しなかった場合、オリゴマー反応器に供給するホスゲンガス流量に対してBPA水酸化ナトリウム水溶液流量が少ないために、量論比以上のホスゲンガスがオリゴマー反応器に供給され、オリゴマー反応器内で消費されずに未反応のまま下流の工程に流れて、系外にホスゲンが漏洩することが想定されたため、この操作を中止した。 Comparative Example 2-1
A polycarbonate oligomer was produced in the same manner as in Example 2-1, except that the automatic controller was not used.
However, if automatic control is not performed, since the BPA sodium hydroxide aqueous solution flow rate is smaller than the phosgene gas flow rate supplied to the oligomer reactor, a phosgene gas having a stoichiometric ratio or more is supplied to the oligomer reactor. This operation was stopped because it was assumed that phosgene leaked out of the system by flowing into the downstream process without being consumed without being consumed.
本発明の方法によれば、安全にポリカーボネートオリゴマーを連続的に製造することができる。特に、オリゴマー反応器への原料供給トラブルによって、オリゴマーが析出し、反応器内が閉塞する等の事故が起きた場合でも、自動制御により、ホスゲンの製造及び供給を緊急停止すると共に、系内のホスゲンガスを含む有毒ガスを無害化し、有毒ガスが系外に漏洩することがない。
According to the method of the present invention, a polycarbonate oligomer can be continuously produced safely. In particular, even when an accident such as oligomer precipitation due to a raw material supply trouble to the oligomer reactor occurs and the inside of the reactor is blocked, the production and supply of phosgene is stopped urgently by automatic control. Toxic gas containing phosgene gas is made harmless, and toxic gas does not leak out of the system.
Claims (2)
- 塩素及び一酸化炭素をホスゲン反応器に供給し未反応の一酸化炭素を含有するホスゲンガスを連続的に製造する工程(1)、並びに前記工程(1)で連続的に製造されたホスゲンガス、二価フェノールのアルカリ水溶液及び有機溶媒をオリゴマー反応器に連続的に供給して、ポリカーボネートオリゴマーを含有する反応混合物を連続的に製造する工程(2)を含むポリカーボネートオリゴマー連続製造の制御方法であって、
下記の条件(i)及び/又は(ii)を満たす場合に、前記工程(1)における塩素及び一酸化炭素の供給を停止すると共に、オリゴマー反応器へのホスゲンガスの供給を停止させ、かつ、ホスゲンガスを含む有毒ガスを除害手段に移送して無害化する、ポリカーボネートオリゴマー連続製造の制御方法。
条件(i):オリゴマー反応器に供給する溶媒流量(F2[kg/h])、二価フェノール化合物のアルカリ水溶液流量(F3[kg/h])及び二価フェノール化合物濃度(a[質量%])を用いたパラメータ<F2/(F3×a/100)>の値が、3.27以下となった場合。
条件(ii):オリゴマー反応器に供給するホスゲンガス流量(F1[kg/h])、二価フェノール化合物のアルカリ水溶液流量(F3[kg/h])及び二価フェノール化合物濃度(a[質量%])を用いたパラメータ<(F3×a/100)/F1>の値が、1.23以下となった場合。 Step (1) for continuously producing phosgene gas containing unreacted carbon monoxide by supplying chlorine and carbon monoxide to the phosgene reactor, and phosgene gas continuously produced in step (1), divalent A method for controlling polycarbonate oligomer continuous production comprising the step (2) of continuously producing a reaction mixture containing a polycarbonate oligomer by continuously supplying an alkaline aqueous solution of phenol and an organic solvent to an oligomer reactor,
When the following conditions (i) and / or (ii) are satisfied, the supply of chlorine and carbon monoxide in the step (1) is stopped, the supply of phosgene gas to the oligomer reactor is stopped, and the phosgene gas A control method for continuous production of polycarbonate oligomers, wherein a toxic gas containing is transferred to a detoxifying means and rendered harmless.
Condition (i): Flow rate of solvent supplied to the oligomer reactor (F2 [kg / h]), alkaline aqueous solution flow rate of dihydric phenol compound (F3 [kg / h]), and dihydric phenol compound concentration (a [mass%]) When the value of the parameter <F2 / (F3 × a / 100)> using) is 3.27 or less.
Condition (ii): phosgene gas flow rate (F1 [kg / h]) supplied to the oligomer reactor, alkaline aqueous solution flow rate of dihydric phenol compound (F3 [kg / h]) and dihydric phenol compound concentration (a [mass%]) The value of the parameter <(F3 × a / 100) / F1> using) is 1.23 or less. - 前記除害手段が、ホスゲンガスを含む有毒ガスをアルカリ水溶液と接触させて無害化する手段である、請求項1に記載のポリカーボネートオリゴマー連続製造の制御方法。 The method for controlling the continuous production of polycarbonate oligomer according to claim 1, wherein the detoxifying means is a means for detoxifying the toxic gas containing phosgene gas by contacting with an alkaline aqueous solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137025128A KR101823723B1 (en) | 2011-03-31 | 2011-06-28 | Control method for safe continuous manufacturing of polycarbonate oligomer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011080970A JP5775346B2 (en) | 2011-03-31 | 2011-03-31 | Control method for continuous production of polycarbonate oligomer |
JP2011-080970 | 2011-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012132030A1 true WO2012132030A1 (en) | 2012-10-04 |
Family
ID=45512877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/064828 WO2012132030A1 (en) | 2011-03-31 | 2011-06-28 | Control method for safe continuous manufacturing of polycarbonate oligomer |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5775346B2 (en) |
KR (1) | KR101823723B1 (en) |
CN (1) | CN102336899B (en) |
TW (1) | TWI503350B (en) |
WO (1) | WO2012132030A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06319946A (en) * | 1993-05-18 | 1994-11-22 | Mitsui Toatsu Chem Inc | Method for removing toxic gas in toxicity-removing tower |
WO2007083721A1 (en) * | 2006-01-17 | 2007-07-26 | Teijin Chemicals Ltd. | Process for continuous production of polycarbonate oligomer |
JP2009196957A (en) * | 2008-02-25 | 2009-09-03 | Nippon Soda Co Ltd | Chlorination method and method for detecting end point of the reaction |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6340736B1 (en) * | 1999-11-29 | 2002-01-22 | General Electric Company | Method and apparatus for the production of polycarbonates with brine recycling |
JP4271485B2 (en) * | 2003-05-12 | 2009-06-03 | 出光興産株式会社 | Method for producing polycarbonate |
DE102004041777A1 (en) * | 2004-08-28 | 2006-03-02 | Bayer Materialscience Ag | Process and apparatus for the production of phosgene |
JP2006137669A (en) * | 2005-12-05 | 2006-06-01 | Sumitomo Chemical Co Ltd | Method for producing phosgene |
JP5319327B2 (en) * | 2009-02-26 | 2013-10-16 | 帝人株式会社 | Method for producing carbonyl chloride |
-
2011
- 2011-03-31 JP JP2011080970A patent/JP5775346B2/en active Active
- 2011-06-15 CN CN2011101715239A patent/CN102336899B/en active Active
- 2011-06-28 KR KR1020137025128A patent/KR101823723B1/en active IP Right Grant
- 2011-06-28 WO PCT/JP2011/064828 patent/WO2012132030A1/en active Application Filing
- 2011-08-02 TW TW100127459A patent/TWI503350B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06319946A (en) * | 1993-05-18 | 1994-11-22 | Mitsui Toatsu Chem Inc | Method for removing toxic gas in toxicity-removing tower |
WO2007083721A1 (en) * | 2006-01-17 | 2007-07-26 | Teijin Chemicals Ltd. | Process for continuous production of polycarbonate oligomer |
JP2009196957A (en) * | 2008-02-25 | 2009-09-03 | Nippon Soda Co Ltd | Chlorination method and method for detecting end point of the reaction |
Also Published As
Publication number | Publication date |
---|---|
KR20140010091A (en) | 2014-01-23 |
TWI503350B (en) | 2015-10-11 |
JP2012214632A (en) | 2012-11-08 |
CN102336899B (en) | 2013-02-20 |
KR101823723B1 (en) | 2018-01-30 |
TW201239000A (en) | 2012-10-01 |
CN102336899A (en) | 2012-02-01 |
JP5775346B2 (en) | 2015-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007533805A5 (en) | ||
JP5775347B2 (en) | Control method for continuous production of polycarbonate oligomer | |
JP5795975B2 (en) | Continuous production method of polycarbonate | |
JPWO2007083721A1 (en) | Continuous production method of polycarbonate oligomer | |
KR101693909B1 (en) | Device and method for degassing solvent-containing polycarbonate solutions | |
JP5775346B2 (en) | Control method for continuous production of polycarbonate oligomer | |
JP5775345B2 (en) | Control method for continuous production of polycarbonate oligomer | |
JP6646398B2 (en) | Method for producing aromatic polycarbonate | |
JP4624055B2 (en) | Method for producing alkylene carbonate | |
JP4041775B2 (en) | Method for producing polycarbonate | |
JP2009138102A (en) | Method for producing polycarbonate resin | |
JP2002179786A (en) | Method for producing aromatic polycarbonate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11862176 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20137025128 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11862176 Country of ref document: EP Kind code of ref document: A1 |