WO2012131959A1 - Vehicle control system - Google Patents

Vehicle control system Download PDF

Info

Publication number
WO2012131959A1
WO2012131959A1 PCT/JP2011/058136 JP2011058136W WO2012131959A1 WO 2012131959 A1 WO2012131959 A1 WO 2012131959A1 JP 2011058136 W JP2011058136 W JP 2011058136W WO 2012131959 A1 WO2012131959 A1 WO 2012131959A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
engine
clutch
power source
motor
Prior art date
Application number
PCT/JP2011/058136
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 知也
幸男 豊良
香治 村上
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/058136 priority Critical patent/WO2012131959A1/en
Priority to CN201180069369.2A priority patent/CN103442958B/en
Priority to DE112011105107.7T priority patent/DE112011105107B4/en
Priority to JP2013506959A priority patent/JP5648739B2/en
Publication of WO2012131959A1 publication Critical patent/WO2012131959A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/082Selecting or switching between different modes of propelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4808Electric machine connected or connectable to gearbox output shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K26/00Arrangements or mounting of propulsion unit control devices in vehicles
    • B60K26/02Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements
    • B60K2026/025Input devices for controlling electric drive motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/14Clutch pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/16Ratio selector position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/215Selection or confirmation of options
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • B60W2710/023Clutch engagement rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/027Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/70Gearings
    • B60Y2400/71Manual or semi-automatic, e.g. automated manual transmissions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention comprises an engine using a mechanical power source, comprising a mechanical power source powered by mechanical energy, an electric power source powered by mechanical energy converted from electrical energy, and a power connection / disconnection device disposed therebetween.
  • a driving mode, an EV driving mode using an electric power source, and a hybrid driving mode using a mechanical power source and an electric power source are switched manually by a driver's power connection / disconnection device and the driving mode switching device.
  • the present invention relates to a vehicle control system.
  • Patent Document 1 when starting the engine (mechanical power source) while traveling with such a vehicle, the torque capacity at the time of automatic engagement control of the clutch (power connection / disconnection device) is added to the target drive torque, A technique is described that reduces the shock at the time of clutch engagement by performing drive control of the motor (electric power source) with this added value as the target motor torque.
  • assist control is performed by a motor so as to output a target motor torque that is set so that the inertia of the engine is absorbed when switching from the EV traveling mode to the engine traveling mode during traveling in such a vehicle.
  • a technique for starting the engine is described.
  • the clutch is automatically controlled by the electronic control device regardless of whether or not the driver intends to engage the clutch. For this reason, when starting the engine of this vehicle, in order not to give the driver a sense of incongruity, the shock at the time of clutch engagement is reduced by the output of the assist torque of the motor considering the torque capacity of the clutch. It is preferable to make it difficult for the driver to recognize the combined action.
  • the technique of Patent Document 1 when the technique of Patent Document 1 is applied, when the engine is started during traveling, the own clutch engagement is performed. Even though the motor torque is transmitted to the engine by the operation and the engine speed is increased, the driver feels uncomfortable without being able to sense the vehicle's deceleration feeling associated with the clutch engagement. A scene where the engine cannot be started occurs.
  • the present invention improves the disadvantages of the conventional example, eliminates the driver's uncomfortable feeling associated with the operation of the power connection / disconnection device when starting the mechanical power source during traveling, and ensures that the mechanical power source is used. It is an object of the present invention to provide a vehicle control system that can be started.
  • the present invention provides a mechanical power source powered by mechanical energy, an electrical power source powered by mechanical energy converted from electrical energy, the mechanical power source, the electrical power source, and a drive wheel.
  • a torque transmitting device capable of transmitting torque between the first power device, a first operating device for a driver to manually change the torque transmission mode of the torque transmitting device, and the mechanical power source
  • a torque connecting / disconnecting device capable of connecting / disconnecting torque transmission between the mechanical power source and the driving wheel, and a second operating device when the driver manually operates the connecting / disconnecting operation of the torque connecting / disconnecting device, And operating the first operating device and the second operating device during traveling to transmit the torque to the mechanical power source in accordance with the engaging operation of the torque connecting / disconnecting device and to stop the mechanical power Decelerate to driver when starting source
  • an assist torque having a magnitude not to be felt is output to the electric power source and the torque capacity of the torque connecting / disconnecting device increases to the rotation start cranking torque of the mechanical
  • the assist torque when the torque capacity is smaller than the rotation start cranking torque is set to a magnitude corresponding to the torque capacity.
  • the driver feels a sense of deceleration by the assist torque output from the electric power source until the torque capacity of the torque connecting / disconnecting device reaches the rotation start cranking torque of the mechanical power source. Therefore, it is possible to eliminate the driver's uncomfortable feeling associated with the occurrence of deceleration before the rotational speed of the mechanical power source starts to increase.
  • the control system outputs an assist torque smaller than the torque capacity to the electric power source, thereby Since the driver can get a feeling of deceleration as the rotational speed increases, the driver does not feel uncomfortable.
  • the driver is not given a sense of incongruity, so that the engine can be started reliably.
  • FIG. 1 is a diagram illustrating an example of a hybrid vehicle to which a vehicle control system according to the present invention is applied.
  • FIG. 2 is a diagram illustrating an example of the speed change operation device and the EV travel mode switching device when the neutral state is selected.
  • FIG. 3 is a diagram illustrating an example of the shift operation device and the EV travel mode switching device when the EV travel mode is selected.
  • FIG. 4 is a diagram illustrating another example of the speed change operation device.
  • FIG. 5 is a diagram illustrating the relationship between cranking torque and engine speed.
  • FIG. 6 is a diagram for explaining the relationship between the pedal operation amount and the clutch torque capacity.
  • FIG. 7 is a flowchart for explaining the arithmetic processing operation related to the assist torque at the time of engine restart.
  • FIG. 1 is a diagram illustrating an example of a hybrid vehicle to which a vehicle control system according to the present invention is applied.
  • FIG. 2 is a diagram illustrating an example of the speed change operation device and the EV
  • FIG. 8 is a time chart when the engine is restarted.
  • FIG. 9 is a diagram for explaining the relationship between the clutch torque capacity and the assist torque.
  • FIG. 10 is a flowchart illustrating another form of the arithmetic processing operation related to the assist torque at the time of engine restart.
  • the vehicle to which the control system according to the present invention is applied includes a mechanical power source powered by mechanical energy, an electrical power source powered by mechanical energy converted from electrical energy, the mechanical power source, the electrical power source, and a drive wheel. Between the mechanical power source and the electric power source, and between the mechanical power source and the mechanical power source, the first operating device for the driver to change the torque transmission form of the torque transmission device by manual operation, and the mechanical power A hybrid vehicle including a torque connecting / disconnecting device capable of connecting / disconnecting torque transmission between the power source and the drive wheel, and a second operating device when the driver manually operates the connecting / disconnecting operation of the torque connecting / disconnecting device.
  • FIG. 1 indicates a hybrid vehicle of the present embodiment.
  • the hybrid vehicle 1 exemplified here uses an engine travel mode using only the power of the mechanical power source, an EV travel mode using only the power of the electric power source, and powers of both the mechanical power source and the electric power source. It is configured so that the driver can manually switch between the hybrid travel mode.
  • the hybrid vehicle 1 includes an engine 10 that outputs mechanical power (engine torque) from an output shaft (crankshaft) 11 as a mechanical power source.
  • the engine 10 may be an internal combustion engine, an external combustion engine, or the like.
  • the operation of the engine 10 is controlled by an engine electronic control unit (hereinafter referred to as “engine ECU”) 101.
  • the hybrid vehicle 1 includes a motor, a generator capable of powering driving, or a motor / generator capable of driving both powering and regeneration as an electric power source.
  • the motor / generator 20 will be described as an example.
  • the motor / generator 20 is configured, for example, as a permanent magnet AC synchronous motor, and its operation is controlled by a motor / generator electronic control device (hereinafter referred to as “motor / generator ECU”) 102. .
  • motor / generator ECU motor / generator electronic control device
  • it functions as a motor (electric motor), converts electrical energy supplied via the secondary battery 25 and the inverter 26 into mechanical energy, and outputs mechanical power (motor power running torque) from the rotating shaft 21. To do.
  • the hybrid vehicle 1 is provided with a battery monitoring unit 27 that detects a state of charge (SOC) of the secondary battery 25.
  • the battery monitoring unit 27 transmits to the motor / generator ECU 102 a signal related to the detected state of charge of the secondary battery 25 (in other words, a signal related to the remaining capacity amount (SOC amount)).
  • the motor / generator ECU 102 determines the charging state of the secondary battery 25 based on the signal, and determines whether or not the secondary battery 25 needs to be charged.
  • the hybrid vehicle 1 is provided with a torque transmission device including a stepped manual transmission 30 or the like that is speed-changed by a speed change operation device 81 as a first operation device described later.
  • the torque transmission device can transmit torque between the engine 10 and the drive wheels WL and WR and between the motor / generator 20 and the drive wheels WL and WR.
  • the motive power (engine torque and motor power running torque) of the engine 10 and the motor / generator 20 is transmitted to the drive wheels WL and WR as a driving force through this torque transmission device.
  • the manual transmission 30 includes an input shaft 41 to which engine torque is input, an output shaft 42 that is disposed in parallel to the input shaft 41 at an interval and outputs torque to the drive wheels WL and WR, Is provided.
  • the engine torque is input to the input shaft 41 through a clutch 50 as a power connection / disconnection device.
  • the clutch 50 includes an engaged state in which the output shaft 11 and the input shaft 41 of the engine 10 are coupled, and a released state (disconnected state) in which the output shaft 11 and the input shaft 41 are released (disconnected) from the engaged state.
  • a friction clutch device configured to be able to switch between.
  • the engagement state referred to here is a state where torque can be transmitted between the output shaft 11 and the input shaft 41, and is divided into a full engagement state and a semi-engagement state.
  • the completely engaged state is a state where the rotation of the output shaft 11 and the input shaft 41 is synchronized.
  • the half-engaged state is a state from when the output shaft 11 and the input shaft 41 start to be engaged until these rotations are synchronized, that is, a state during the engagement operation of the clutch 50, or synchronization of the rotations. This is a state from the state until the output shaft 11 and the input shaft 41 are completely disconnected, that is, a state during the releasing operation of the clutch 50.
  • the released state is a state in which torque cannot be transmitted between the output shaft 11 and the input shaft 41.
  • the clutch 50 enables torque transmission between the engine 10 and the drive wheels WL and WR via the manual transmission 30 or the like in the engaged state, and disables torque transmission therebetween in the released state.
  • the clutch 50 enables torque transmission between the engine 10 and the motor / generator 20 via the manual transmission 30 in the engaged state, while disabling torque transmission therebetween in the released state.
  • the clutch 50 is mechanically switched via a link mechanism, a wire, or the like in accordance with the operation of the clutch pedal 51 (second operation device) by the driver in the switching operation between the engaged state and the released state (that is, the connecting / disconnecting operation of the clutch 50). To be done.
  • the rotary shaft 21 of the motor / generator 20 is connected to the output shaft 42 via a gear pair 60 as an EV gear.
  • the gear pair 60 includes a first gear 61 and a second gear 62 that are in mesh with each other.
  • the first gear 61 is attached so as to rotate integrally with the rotating shaft 21 of the motor / generator 20.
  • the second gear 62 has a larger diameter than the first gear 61 and is attached to the output shaft 42 of the manual transmission 30 so as to rotate integrally.
  • the gear pair 60 operates as a reduction gear when torque is input from the rotating shaft 21 side of the motor / generator 20, while rotating torque is input from the output shaft 42 side of the manual transmission 30. Operates as a speed increasing device.
  • the gear pair 60 is in any position on the shift gauge 81b, that is, a shift lever 81a, which will be described later, that is, in the shift positions 1 to 5, R, the EV travel mode selection position EV, or the neutral position. Assume that they are engaged.
  • the manual transmission 30 exemplified here has five forward speeds and one reverse speed, and the first speed gear stage 31, the second speed gear stage 32, the second speed stage as the forward speed stages.
  • a third gear stage 33, a fourth gear stage 34, and a fifth gear stage 35 are provided, and a reverse gear stage 39 is provided as a reverse gear stage.
  • the forward shift speed is configured such that the gear ratio decreases in the order of the first speed gear stage 31, the second speed gear stage 32, the third speed gear stage 33, the fourth speed gear stage 34, and the fifth speed gear stage 35. is doing.
  • the manual transmission 30 in FIG. 1 is a simple description of the configuration, and the arrangement of each gear stage is not necessarily in the form of FIG.
  • the engine torque input to the input shaft 41 is set to any one of the gear positions (gear stages 31 to 35, 39) by engaging the clutch 50. And is transmitted to the output shaft 42.
  • the motor power running torque is transmitted to the output shaft 42.
  • the torque output from the output shaft 42 is decelerated by the final reduction mechanism 71 and transmitted to the driving wheels WL and WR as a driving force via the differential mechanism 72.
  • the first speed gear stage 31 is constituted by a gear pair of a first speed drive gear 31a and a first speed driven gear 31b that are in mesh with each other.
  • the first speed drive gear 31 a is disposed on the input shaft 41, while the first speed driven gear 31 b is disposed on the output shaft 42.
  • the second speed gear stage 32 to the fifth speed gear stage 35 the second speed drive gear 32a to fifth speed drive gear 35a and the second speed driven gear 32b to fifth speed driven are the same as the first speed gear stage 31.
  • a gear 35b is provided.
  • the reverse gear stage 39 includes a reverse drive gear 39a, a reverse driven gear 39b, and a reverse intermediate gear 39c.
  • the reverse drive gear 39 a is disposed on the input shaft 41
  • the reverse driven gear 39 b is disposed on the output shaft 42.
  • the reverse intermediate gear 39c is in mesh with the reverse drive gear 39a and the reverse driven gear 39b, and is disposed on the rotation shaft 43.
  • one of the drive gears of each gear stage is disposed so as to rotate integrally with the input shaft 41, while the remaining drive gear is relative to the input shaft 41.
  • the driven gear of each shift stage is arranged so that any one of them is rotated integrally with the output shaft 42, while the rest is arranged so as to rotate relative to the output shaft 42.
  • the input shaft 41 and the output shaft 42 are provided with sleeves (not shown) that move in the axial direction in accordance with the driver's speed change operation.
  • the sleeve on the input shaft 41 is disposed between the drive gears of the two shift stages that can rotate relative to the input shaft 41.
  • the sleeve on the output shaft 42 is disposed between the driven gears of the two gears that can rotate relative to the output shaft 42.
  • the sleeve moves in the axial direction via a link mechanism or a fork (not shown) connected to the speed change operation device 81 when the driver operates the speed change operation device 81.
  • the moved sleeve rotates the drive gear and the driven gear, which can be relatively rotated, located in the moved direction, together with the input shaft 41 and the output shaft 42.
  • the sleeve moves in a direction corresponding to the speed change operation of the driver's speed change operation device 81, thereby switching to a gear position according to the speed change operation or a neutral state (that is, the input shaft 41. And a state in which torque cannot be transmitted between the output shaft 42 and the output shaft 42).
  • an EV travel mode switching device operated by a driver is used for selecting an EV travel mode.
  • the shift operation device 81 is provided with the function as the EV traveling mode switching device.
  • the shift operation device 81 includes a shift lever 81a that is used when a driver performs a shift operation, a so-called shift gauge 81b that guides the shift lever 81a for each shift stage, the link mechanism, a fork, and the like. .
  • the speed change operation device 81 the one shown in FIG. 2, 3 or 4 can be considered.
  • “1 to 5” and “R” on the shift gauge 81b in each figure indicate the shift positions (select positions) of the first gear stage 31 to the fifth gear stage 35 and the reverse gear stage 39, respectively. Yes.
  • the shift operation devices 81A and 81B shown in FIGS. 2, 3 and 4 are operated according to the position of the shift lever 81a by operating the shift lever 81a to the shift positions 1 to 5 and R when the clutch 50 is disengaged.
  • the manual transmission 30 is switched to a different gear position.
  • the shift operation device 81A shown in FIGS. 2 and 3 is not only the shift positions 1 to 5 and R but also the select position of the shift lever 81a similar to this, and the EV travel mode selection for switching to the EV travel mode.
  • a position EV is provided on the shift gauge 81b.
  • the travel mode becomes the EV travel mode.
  • the shift lever 81a when the shift lever 81a is operated to the EV travel mode selection position EV, the manual transmission 30 is in a neutral state by a sleeve or the like. Further, the shift operating device 81A also sets the manual transmission 30 to the neutral state when the shift lever 81a is operated to the neutral position shown in FIG.
  • the speed change operation device 81B shown in FIG. 4 does not include the EV travel mode selection position EV like the speed change operation device 81A.
  • the shift lever 81a is operated to the neutral position shown in FIG. 4, the manual transmission 30 is in the neutral state, and the travel mode is set to the EV travel mode.
  • This shift operation device 81 (81A, 81B) is provided with an EV travel mode selection position detector 82.
  • the EV travel mode selection position detector 82 detects whether or not the EV travel mode is selected based on the position of the shift lever 81a on the shift gauge 81b.
  • a position information detection sensor or the like that can detect that the shift lever 81a is at the EV travel mode selection position EV is used as the EV travel mode selection position detection unit 82.
  • a position information detection sensor or the like that can detect that the shift lever 81a is in the neutral position is used as the EV travel mode selection position detection unit 82.
  • the detection signal of the EV traveling mode selection position detection unit 82 is transmitted to an electronic control unit (hereinafter referred to as “hybrid ECU”) 100 that comprehensively controls the operation of the entire vehicle.
  • the hybrid ECU 100 can exchange information such as detection signals of various sensors and control commands between the engine ECU 101 and the motor / generator ECU 102.
  • the hybrid ECU 100, the engine ECU 101, and the motor / generator ECU 102 are constituent requirements of the vehicle control system.
  • the shift operation device 81 determines which shift position 1 to 5, R of the shift lever 81a is on the shift gauge 81b, that is, which shift stage the driver has selected.
  • a shift position detecting unit 83 for detecting is provided.
  • the shift position detector 83 may use, for example, a position information detection sensor that can detect which shift positions 1 to 5 and R the shift lever 81a is at.
  • the detection signal is sent to the hybrid ECU 100.
  • the hybrid ECU 100 determines the speed selected by the driver and the current speed based on the detection signal.
  • the shift position detection unit 83 is illustrated as being different from the EV travel mode selection position detection unit 82, but these are replaced with a shift lever position detection unit (not shown) integrated into one. May be.
  • the hybrid ECU 100 may estimate the current shift speed from the engine torque, the wheel speed, or the like using a known technique known in this technical field.
  • the hybrid ECU 100 selects either the engine travel mode or the hybrid travel mode.
  • the hybrid ECU 100 includes a set driver's drive request (required driving force), information on the state of charge of the secondary battery 25 (SOC amount) sent from the motor / generator ECU 102, and information on the vehicle running state (illustrated).
  • the engine travel mode and the hybrid travel mode are switched.
  • the hybrid ECU 100 sends a control command corresponding to the travel mode to the engine ECU 101 and the motor / generator ECU 102.
  • the hybrid ECU 100 sends a control command corresponding to the travel mode to the engine ECU 101 and the motor / generator ECU 102.
  • the engine 10 is stopped during traveling in the EV traveling mode to improve fuel efficiency. Therefore, in the hybrid vehicle 1, it is necessary to start the engine 10 when switching from the EV travel mode to the engine travel mode using the engine torque or the hybrid travel mode. In this case, torque is transmitted to the engine 10 from the manual transmission 30 side, and the engine 10 is cranked with the torque to start. At that time, the driver operates the clutch pedal 51 and the shift operation device 81 so that the torque on the manual transmission 30 side is transmitted to the engine 10 via the clutch 50. In other words, at this time, after the clutch 50 is released, the shift lever 81a is operated to any one of the shift positions 1 to 5 and the clutch 50 is engaged, whereby the input of the manual transmission 30 is performed.
  • a part of the torque on the output shaft 42 side is transmitted to the shaft 41, and the torque of the input shaft 41 is transmitted to the output shaft 11 of the engine 10.
  • the torque on the output shaft 42 side is, for example, motor torque for generating driving force in the EV traveling mode.
  • cranking torque for starting the engine 10
  • the accompanying deceleration may occur.
  • the deceleration occurs with the generation of cranking torque (that is, with the start of engagement of the clutch 50).
  • the cranking torque increases as the degree of engagement of the clutch 50 increases (that is, as the clutch 50 approaches the fully engaged state).
  • the engine speed starts to increase with a delay from the generation time of the cranking torque.
  • the engine 10 in the stopped state is equal to or higher than the sum of the torque related to the maximum static friction of the engine 10 and the torque related to the compression pressure determined by the engine stop position or the like (hereinafter referred to as “rotation start cranking torque”). This is because it does not begin to rotate until. For this reason, the driver may feel uncomfortable that the deceleration occurs before the engine speed starts to increase. A driver who has not recognized the movement of the engine speed with a tachometer or the like expects the engine 10 to start as the engine speed increases by feeling the deceleration.
  • clutch engagement degree the engagement degree of the clutch 50 at this time (hereinafter referred to as “clutch engagement degree”) is smaller than the magnitude for generating the rotation start cranking torque, the driver temporarily engages the clutch 50 in this state. If the operation is stopped, the engine 10 cannot be started, and the transition to the engine running mode cannot be performed.
  • a motor for generating a driving force using a motor torque corresponding to the torque capacity of the clutch 50 (hereinafter referred to as “clutch torque capacity”) as an assist torque.
  • the engine speed is increased by the assist torque.
  • the clutch torque capacity Tcl is, for example, as shown in Equation 1 below, the friction coefficient ⁇ of the friction material of each engagement portion 50a, 50b of the clutch 50, the total area A of the portions where the friction materials contact each other, respectively.
  • the surface pressure P between the engaging portions 50a and 50b and the outer diameter d of the portion where the friction materials come into contact with each other can be estimated.
  • the surface pressure P changes according to the amount of movement between the engaging portions 50a and 50b of the clutch 50 and the pedal operation amount of the clutch pedal 51.
  • the values other than the surface pressure P are design values and are invariable values.
  • the clutch torque capacity on the vertical axis can be replaced with the degree of clutch engagement.
  • the degree of clutch engagement is estimated based on the amount of movement between the engaging portions 50 a and 50 b or the pedal operation amount of the clutch pedal 51.
  • the hybrid ECU 100 can estimate the clutch torque capacity Tcl from the amount of movement between the engaging portions 50a and 50b or the pedal operation amount of the clutch pedal 51.
  • the amount of movement between the engaging portions 50 a and 50 b can be obtained from the detection value of the so-called clutch stroke sensor 52.
  • the pedal operation amount of the clutch pedal 51 can be obtained from a detection value of a so-called clutch pedal stroke sensor 53.
  • the clutch torque capacity Tcl is estimated by removing the pedal operation amount for the play (FIG. 6).
  • the driver can start increasing the engine speed by engaging his own clutch without feeling uncomfortable deceleration.
  • the output of the assist torque corresponding to the clutch torque capacity Tcl makes it difficult for the driver to feel the deceleration even after the engine speed starts to increase. This makes the driver feel uncomfortable this time.
  • the motor torque corresponding to the clutch torque capacity Tcl is output as the assist torque Ta, and the clutch torque capacity Tcl is determined as the rotation start cranking torque Tcr.
  • the motor torque is increased to the maximum, the motor torque smaller than the clutch torque capacity Tcl is output as the assist torque Ta. That is, in this embodiment, when starting the engine 10 in a stopped state while traveling, the magnitude of the assist torque is controlled according to the clutch torque capacity Tcl.
  • the hybrid ECU 100 determines whether or not the released clutch 50 has started engagement (step ST1). For example, a map as shown in FIG. 6 is prepared in advance, and this determination may be made based on this map and the pedal operation amount of the clutch pedal 51. Further, this determination may be made based on the detected movement amount between the engaging portions 50a and 50b. Further, immediately after the engagement of the clutch 50 is started, the assist torque has not yet been output, and the deceleration is detected by the longitudinal acceleration sensor 91. Therefore, in step ST1, when the deceleration is detected, it may be determined that the clutch 50 starts to be engaged.
  • the hybrid ECU 100 repeats the determination in step ST1 until it is determined that the clutch 50 is not engaged unless the clutch 50 has started the engagement.
  • the hybrid ECU 100 determines that the clutch 50 has started to be engaged, the hybrid ECU 100 estimates the clutch torque capacity Tcl (step ST2), and the clutch torque capacity Tcl is determined from the rotation start cranking torque Tcr. Is also smaller (step ST3).
  • the rotation start cranking torque Tcr may be set to the sum of the torque related to the maximum static friction of the engine 10 and the maximum value of the torque related to the compression pressure. Further, the rotation start cranking torque Tcr may be set as follows. For example, when the engine 10 is stopped in a state where torque is applied, air in the cylinder disappears and the compression pressure decreases. Therefore, even if torque is applied to the output shaft 11, the output shaft 11 and piston ( (Not shown) does not start moving immediately. However, when the engine 10 continues to be applied while increasing the torque with respect to the output shaft 11, the output shaft 11 or the like starts to move. Therefore, the torque applied to the output shaft 11 when the output shaft 11 or the like starts moving may be set as the rotation start cranking torque Tcr.
  • the clutch torque capacity Tcl increases with the start of engagement of the clutch 50 as shown in FIG. 8 while the half-engaged state continues. Therefore, if the clutch torque capacity Tcl is smaller than the rotation start cranking torque Tcr, the hybrid ECU 100 sets the motor torque corresponding to the clutch torque capacity Tcl as the assist torque Ta (step ST4), and uses the assist torque Ta as the motor. / The output is made to the generator 20 (step ST5).
  • the motor / generator 20 outputs the sum of the motor torque for generating the driving force in the EV traveling mode and the assist torque Ta.
  • the assist torque Ta corresponding to the clutch torque capacity Tcl is updated as the clutch torque capacity Tcl increases, and continues to be output until the clutch torque capacity Tcl reaches the rotation start cranking torque Tcr.
  • the assist torque Ta set in step ST4 does not necessarily need to be completely matched with the motor torque corresponding to the clutch torque capacity Tcl. This is because whether it matches the motor torque depends on the estimation accuracy of the clutch torque capacity Tcl. Therefore, the magnitude of the assist torque Ta may be set within a range in which the driver does not experience deceleration.
  • step ST6 when the hybrid ECU 100 determines in step ST3 that the clutch torque capacity Tcl is equal to or greater than the rotation start cranking torque Tcr, the hybrid ECU 100 sets a motor torque smaller than the clutch torque capacity Tcl as the assist torque Ta (step ST6). In step ST5, the assist torque Ta is output to the motor / generator 20.
  • the assist torque Ta at step ST6 is, for example, as shown by a solid line in FIGS. 8 and 9, regardless of the passage of time, the rotation start cranking torque Tcr, that is, the torque related to the maximum static friction of the engine 10 and the compression pressure. Is set to the sum of torques. In this case, the difference between the clutch torque capacity Tcl and the assist torque Ta increases with the passage of time, and a large deceleration can be generated with the passage of time.
  • the assist torque Ta may be set such that the increase gradient is smaller than the increase gradient of the clutch torque capacity Tcl, as shown by a one-dot chain line in FIG. In this case, even if time elapses, the spread of the difference between the clutch torque capacity Tcl and the assist torque Ta can be suppressed as compared with the above example, so that the change in the deceleration is small and the engine 10 is completely started. Deceleration adjustment is easy.
  • the assist torque Ta may be decreased with the passage of time as shown by a two-dot chain line in FIG. In this case, as compared with the above two examples, a large deceleration can be generated over time, and the power consumption of the secondary battery 25 required for the output of the assist torque Ta can be reduced. .
  • the assist torque Ta set in step ST6 is continuously output until the engine 10 has been started, as shown in FIG. For this reason, in the hybrid vehicle 1, deceleration occurs as the engine speed increases. That is, according to this control system, it is possible to avoid a situation in which deceleration does not occur even though the engine speed increases, as indicated by a two-dot chain line in FIG. Therefore, the driver does not feel uncomfortable until the engine 10 is started after the engine speed starts to increase.
  • control system of the present embodiment does not give the driver the uncomfortable feeling when starting the engine 10 in a stopped state while traveling, and can start the engine reliably.
  • a vehicle capable of coasting with the engine stopped when the shift lever is in the neutral position is known.
  • the forward gear is selected by the driver's clutch operation and gear shift operation
  • the driving wheel side torque is transmitted to the engine side, and the engine is restarted.
  • the deceleration increases as the engine speed starts to increase.
  • Any of the above settings may be applied to the assist torque Ta in step ST6, but it is preferable to set the assist torque Ta according to the degree of increase in deceleration at the time of engine start of the vehicle.
  • the hybrid vehicle 1 can give the driver a feeling of deceleration equivalent to that of the vehicle. Therefore, this control system can further eliminate the driver's uncomfortable feeling.
  • control system may be able to select the assist torque Ta of the above-described plural forms of step ST6 from among these in order to generate a deceleration without a sense of incongruity according to, for example, a road gradient. Further, this control system may be configured such that only one of the plural assist torques Ta in step ST6 is applied so that the same deceleration feeling can be always obtained.
  • this control system uses the clutch torque capacity Tcl for setting the assist torque Ta, but the assist torque Ta may be output without using the clutch torque capacity Tcl.
  • the clutch torque capacity Tcl since it is not necessary to obtain the clutch torque capacity Tcl, information on the amount of movement between the engaging portions 50a and 50b or the pedal operation amount of the clutch pedal 51 becomes unnecessary, and the clutch stroke sensor 52 and the clutch pedal stroke sensor are eliminated. 53 need not be provided. Therefore, this control system can also reduce the cost accompanying the reduction in the number of parts.
  • the hybrid ECU 100 determines that the clutch 50 has started to be engaged, it monitors the vehicle longitudinal acceleration instead of the clutch torque capacity Tcl, and controls the motor while performing feedback control so that the fluctuation can be suppressed.
  • the motor torque is the sum of the motor torque for generating the driving force and the assist torque Ta.
  • the assist torque Ta may be increased with the rotation start cranking torque Tcr as an upper limit value.
  • the assist torque Ta can be suppressed with the rotation start cranking torque Tcr as the upper limit, so that a deceleration can be generated as the engine speed increases, eliminating the driver's uncomfortable feeling. it can.
  • the characteristic of the assist torque Ta to be set is changed based on the comparison result between the clutch torque capacity Tcl and the rotation start cranking torque Tcr.
  • the control system monitors the engine speed Ne based on the detection signal of the crank angle sensor 12, and determines whether the engine 10 is rotating or makes the driver feel a deceleration.
  • the assist torque Ta characteristic may be changed based on whether or not it is.
  • the hybrid ECU 100 determines whether or not the released clutch 50 has started engagement (step ST11), and if the clutch 50 has not started engagement. Until it is determined that the engagement is started, the determination in step ST1 is repeated. If it is determined that the clutch 50 has started engagement, the clutch torque capacity Tcl or the clutch engagement degree is estimated (step ST12). .
  • the hybrid ECU 100 determines whether or not the engine 10 is rotating (Ne> 0?) Or whether the engine speed Ne exceeds a predetermined rotation number ⁇ (Ne> ⁇ ?) ( Step ST13).
  • the predetermined rotational speed ⁇ is set based on whether or not the engine rotational speed Ne is a magnitude that allows the driver to experience deceleration.
  • the upper limit value of the engine speed Ne at which the deceleration is not felt is set to the predetermined speed ⁇ .
  • the hybrid ECU 100 determines that the engine 10 is not rotating or the engine rotational speed Ne does not exceed the predetermined rotational speed ⁇
  • the hybrid ECU 100 sets the assist torque Ta according to the estimated clutch torque capacity Tcl or the clutch engagement degree (In step ST14, the assist torque Ta is output to the motor / generator 20 (step ST15).
  • the setting and output of the assist torque Ta are repeated until the engine 10 starts to rotate or until the engine speed Ne exceeds the predetermined speed ⁇ .
  • the assist torque Ta is a motor torque corresponding to the clutch torque capacity Tcl as in the previous example. Therefore, if what is estimated in step ST12 is the clutch engagement degree, the clutch torque capacity Tcl corresponding to the clutch engagement degree is obtained, and the motor torque corresponding to the clutch torque capacity Tcl is set as the assist torque Ta.
  • the hybrid ECU 100 determines that the engine 10 is rotating or the engine speed Ne exceeds the predetermined speed ⁇
  • the hybrid ECU 100 obtains a motor torque corresponding to the clutch torque capacity Tcl when this determination is first performed.
  • the assist torque Ta is set (step ST16), the process proceeds to step ST15, and the assist torque Ta is output to the motor / generator 20. That is, when it is determined that the engine 10 is rotating, the motor torque corresponding to the clutch torque capacity Tcl when the engine 10 starts rotating is set as the assist torque Ta.
  • the assist torque Ta set in step ST16 is continuously output until the engine 10 has been started. For this reason, in the hybrid vehicle 1, deceleration occurs as the engine speed increases. Therefore, the driver does not feel uncomfortable until the engine 10 is started after the engine speed starts to increase.
  • the motor / generator 20 is connected to the output shaft 42 via the gear pair 60, but the control system of this embodiment directly connects the motor / generator 20 to the output shaft 42.
  • the present invention may be applied to a hybrid vehicle or a hybrid vehicle in which the motor / generator 20 is connected to the input shaft 41, and the same effects as those described above can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A vehicle control system is provided with: an engine (10); a motor/generator (20); a manual transmission (30), or the like, capable of transmitting torque between the drive wheels (WL, WR), and the engine (10) and motor/generator (20); a gearshift device (81) for the manual transmission (30); a clutch (50) capable of enabling/preventing the transmission of torque between the engine (10) and the motor/generator (20), and between the engine (10) and the drive wheels (WL, WR); and a clutch pedal (51). Therein, when starting the stopped engine (10) through engagement of the clutch (50), by operating the gearshift device (81) and the clutch pedal (51) while driving, the motor/generator (20) outputs assist torque in an amount such that a driver does not feel any deceleration, and then when the torque volume of the clutch (50) increases to the level of the crank torque for starting revolutions of the engine (10), assist torque in a smaller volume than the torque volume is outputted to the motor/generator (20).

Description

車両の制御システムVehicle control system
 本発明は、機械エネルギを動力とする機械動力源と電気エネルギを変換した機械エネルギを動力とする電気動力源とこれらの間に配置した動力断接装置とを備え、機械動力源を用いたエンジン走行モードと、電気動力源を用いたEV走行モードと、機械動力源及び電気動力源を用いたハイブリッド走行モードと、を運転者の動力断接装置と走行モード切替装置とに対する手動操作で切り替えさせる車両の制御システムに関する。 The present invention comprises an engine using a mechanical power source, comprising a mechanical power source powered by mechanical energy, an electric power source powered by mechanical energy converted from electrical energy, and a power connection / disconnection device disposed therebetween. A driving mode, an EV driving mode using an electric power source, and a hybrid driving mode using a mechanical power source and an electric power source are switched manually by a driver's power connection / disconnection device and the driving mode switching device. The present invention relates to a vehicle control system.
 従来、駆動輪駆動用の動力源としての機械動力源及び電気動力源、並びにこの機械動力源と電気動力源との間に配置された動力断接装置を備えた車両が知られている。この種の車両については、例えば下記の特許文献1及び2に開示されている。その特許文献1には、かかる車両で走行中にエンジン(機械動力源)を始動させる際に、クラッチ(動力断接装置)の自動係合制御時におけるトルク容量分を目標駆動トルクに加算し、この加算値を目標モータトルクにしてモータ(電気動力源)の駆動制御を行うことで、クラッチ係合時のショックを低減する技術が記載されている。また、特許文献2には、かかる車両において走行中にEV走行モードからエンジン走行モードへと切り替える際に、エンジンのイナーシャ分が吸収されるよう設定した目標モータトルクを出力させるべく、モータでアシスト制御してエンジンを始動させる技術が記載されている。 2. Description of the Related Art Conventionally, a vehicle including a mechanical power source and an electric power source as power sources for driving wheel driving, and a power connection / disconnection device disposed between the mechanical power source and the electric power source is known. This type of vehicle is disclosed in, for example, Patent Documents 1 and 2 below. In Patent Document 1, when starting the engine (mechanical power source) while traveling with such a vehicle, the torque capacity at the time of automatic engagement control of the clutch (power connection / disconnection device) is added to the target drive torque, A technique is described that reduces the shock at the time of clutch engagement by performing drive control of the motor (electric power source) with this added value as the target motor torque. Further, in Patent Document 2, assist control is performed by a motor so as to output a target motor torque that is set so that the inertia of the engine is absorbed when switching from the EV traveling mode to the engine traveling mode during traveling in such a vehicle. A technique for starting the engine is described.
特開2010-202151号公報JP 2010-202151 A 特開2002-349309号公報JP 2002-349309 A
 ところで、上記特許文献1の車両においては、運転者のクラッチ係合意思の有無に拘わらず、電子制御装置によってクラッチが自動制御される。これが為、この車両のエンジン始動の際には、運転者に違和感を与えないように、クラッチのトルク容量分を考慮したモータのアシストトルクの出力によりクラッチ係合時のショックを低減させ、クラッチ係合動作が運転者に認識され難くなるようにすることが好ましい。しかしながら、エンジン走行モードやEV走行モードの切り替えを運転者のクラッチ操作と共に手動で行う車両においては、かかる特許文献1の技術を適用すると、走行中にエンジンを始動させる際に、自らのクラッチ係合操作でモータトルクをエンジンに伝え、エンジン回転数の上昇を図っているにも拘わらず、運転者がクラッチ係合に伴う車両の減速感を感じ取ることができずに違和感を覚えてしまい、それによってエンジン始動ができない場面が発生する。 By the way, in the vehicle disclosed in Patent Document 1, the clutch is automatically controlled by the electronic control device regardless of whether or not the driver intends to engage the clutch. For this reason, when starting the engine of this vehicle, in order not to give the driver a sense of incongruity, the shock at the time of clutch engagement is reduced by the output of the assist torque of the motor considering the torque capacity of the clutch. It is preferable to make it difficult for the driver to recognize the combined action. However, in a vehicle in which switching between the engine travel mode and the EV travel mode is manually performed together with the driver's clutch operation, when the technique of Patent Document 1 is applied, when the engine is started during traveling, the own clutch engagement is performed. Even though the motor torque is transmitted to the engine by the operation and the engine speed is increased, the driver feels uncomfortable without being able to sense the vehicle's deceleration feeling associated with the clutch engagement. A scene where the engine cannot be started occurs.
 そこで、本発明は、かかる従来例の有する不都合を改善し、走行中に機械動力源を始動させる際の動力断接装置の操作に伴う運転者の違和感を解消して、確実に機械動力源を始動させることが可能な車両の制御システムを提供することを、その目的とする。 Therefore, the present invention improves the disadvantages of the conventional example, eliminates the driver's uncomfortable feeling associated with the operation of the power connection / disconnection device when starting the mechanical power source during traveling, and ensures that the mechanical power source is used. It is an object of the present invention to provide a vehicle control system that can be started.
 上記目的を達成する為、本発明は、機械エネルギを動力とする機械動力源と、電気エネルギを変換した機械エネルギを動力とする電気動力源と、前記機械動力源及び前記電気動力源と駆動輪との間のトルク伝達が可能なトルク伝達装置と、前記トルク伝達装置のトルク伝達形態を運転者が手動操作で変える為の第1操作装置と、前記機械動力源と前記電気動力源との間及び当該機械動力源と前記駆動輪との間のトルク伝達を断接可能なトルク断接装置と、前記トルク断接装置の断接動作を運転者が手動操作する際の第2操作装置と、を備え、走行中に前記第1操作装置と前記第2操作装置とを操作することで、前記トルク断接装置の係合動作に伴いトルクを前記機械動力源に伝えて停止中の当該機械動力源を始動させる際、運転者に減速度を体感させない大きさのアシストトルクを前記電気動力源に出力させ、前記トルク断接装置のトルク容量が前記機械動力源の回転開始クランキングトルクまで増加したら、該トルク容量よりも小さいアシストトルクを前記電気動力源に出力させることを特徴としている。 To achieve the above object, the present invention provides a mechanical power source powered by mechanical energy, an electrical power source powered by mechanical energy converted from electrical energy, the mechanical power source, the electrical power source, and a drive wheel. Between the mechanical power source and the electric power source, a torque transmitting device capable of transmitting torque between the first power device, a first operating device for a driver to manually change the torque transmission mode of the torque transmitting device, and the mechanical power source A torque connecting / disconnecting device capable of connecting / disconnecting torque transmission between the mechanical power source and the driving wheel, and a second operating device when the driver manually operates the connecting / disconnecting operation of the torque connecting / disconnecting device, And operating the first operating device and the second operating device during traveling to transmit the torque to the mechanical power source in accordance with the engaging operation of the torque connecting / disconnecting device and to stop the mechanical power Decelerate to driver when starting source When an assist torque having a magnitude not to be felt is output to the electric power source and the torque capacity of the torque connecting / disconnecting device increases to the rotation start cranking torque of the mechanical power source, an assist torque smaller than the torque capacity is applied to the electric power source. It is characterized by being output to a power source.
 ここで、前記トルク容量が前記回転開始クランキングトルクよりも小さいときのアシストトルクは、前記トルク容量に応じた大きさにすることが望ましい。 Here, it is desirable that the assist torque when the torque capacity is smaller than the rotation start cranking torque is set to a magnitude corresponding to the torque capacity.
 本発明に係る車両の制御システムは、トルク断接装置のトルク容量が機械動力源の回転開始クランキングトルクに達するまでの間、電気動力源に出力させるアシストトルクによって、運転者に減速感を感じさせないので、機械動力源の回転数が上昇し始める前の減速度の発生に伴う運転者の違和感を解消することができる。また、この制御システムは、トルク断接装置のトルク容量が機械動力源の回転開始クランキングトルクに達したら、そのトルク容量よりも小さいアシストトルクを電気動力源に出力させることによって、機械動力源の回転数の上昇と共に運転者が減速感を得ることができるので、運転者に違和感を覚えさせない。このように、この制御システムに依れば、運転者に違和感を与えないので、確実にエンジンを始動させることができる。 In the vehicle control system according to the present invention, the driver feels a sense of deceleration by the assist torque output from the electric power source until the torque capacity of the torque connecting / disconnecting device reaches the rotation start cranking torque of the mechanical power source. Therefore, it is possible to eliminate the driver's uncomfortable feeling associated with the occurrence of deceleration before the rotational speed of the mechanical power source starts to increase. In addition, when the torque capacity of the torque connection / disconnection device reaches the rotation start cranking torque of the mechanical power source, the control system outputs an assist torque smaller than the torque capacity to the electric power source, thereby Since the driver can get a feeling of deceleration as the rotational speed increases, the driver does not feel uncomfortable. Thus, according to this control system, the driver is not given a sense of incongruity, so that the engine can be started reliably.
図1は、本発明に係る車両の制御システムが適用されるハイブリッド車両の一例を示す図である。FIG. 1 is a diagram illustrating an example of a hybrid vehicle to which a vehicle control system according to the present invention is applied. 図2は、変速操作装置とEV走行モード切替装置の一例を示すニュートラル状態選択時の図である。FIG. 2 is a diagram illustrating an example of the speed change operation device and the EV travel mode switching device when the neutral state is selected. 図3は、変速操作装置とEV走行モード切替装置の一例を示すEV走行モード選択時の図である。FIG. 3 is a diagram illustrating an example of the shift operation device and the EV travel mode switching device when the EV travel mode is selected. 図4は、変速操作装置の他の例について示す図である。FIG. 4 is a diagram illustrating another example of the speed change operation device. 図5は、クランキングトルクとエンジン回転数との関係について説明する図である。FIG. 5 is a diagram illustrating the relationship between cranking torque and engine speed. 図6は、ペダル操作量とクラッチトルク容量との関係について説明する図である。FIG. 6 is a diagram for explaining the relationship between the pedal operation amount and the clutch torque capacity. 図7は、エンジン再始動時のアシストトルクに係る演算処理動作について説明するフローチャートである。FIG. 7 is a flowchart for explaining the arithmetic processing operation related to the assist torque at the time of engine restart. 図8は、エンジン再始動時のタイムチャートである。FIG. 8 is a time chart when the engine is restarted. 図9は、クラッチトルク容量とアシストトルクとの関係について説明する図である。FIG. 9 is a diagram for explaining the relationship between the clutch torque capacity and the assist torque. 図10は、エンジン再始動時のアシストトルクに係る演算処理動作の他の形態について説明するフローチャートである。FIG. 10 is a flowchart illustrating another form of the arithmetic processing operation related to the assist torque at the time of engine restart.
 以下に、本発明に係る車両の制御システムの実施例を図面に基づいて詳細に説明する。尚、この実施例によりこの発明が限定されるものではない。 Embodiments of a vehicle control system according to the present invention will be described below in detail with reference to the drawings. The present invention is not limited to the embodiments.
[実施例]
 本発明に係る車両の制御システムの実施例を図1から図10に基づいて説明する。
[Example]
An embodiment of a vehicle control system according to the present invention will be described with reference to FIGS.
 本発明に係る制御システムの適用対象たる車両とは、機械エネルギを動力とする機械動力源、電気エネルギを変換した機械エネルギを動力とする電気動力源、その機械動力源及び電気動力源と駆動輪との間のトルク伝達が可能なトルク伝達装置、このトルク伝達装置のトルク伝達形態を運転者が手動操作で変える為の第1操作装置と、機械動力源と電気動力源との間及び機械動力源と駆動輪との間のトルク伝達を断接可能なトルク断接装置、並びにトルク断接装置の断接動作を運転者が手動操作する際の第2操作装置を備えたハイブリッド車両である。 The vehicle to which the control system according to the present invention is applied includes a mechanical power source powered by mechanical energy, an electrical power source powered by mechanical energy converted from electrical energy, the mechanical power source, the electrical power source, and a drive wheel. Between the mechanical power source and the electric power source, and between the mechanical power source and the mechanical power source, the first operating device for the driver to change the torque transmission form of the torque transmission device by manual operation, and the mechanical power A hybrid vehicle including a torque connecting / disconnecting device capable of connecting / disconnecting torque transmission between the power source and the drive wheel, and a second operating device when the driver manually operates the connecting / disconnecting operation of the torque connecting / disconnecting device.
 最初に、このハイブリッド車両の一例について図1を用いて説明する。この図1の符号1は、本実施例のハイブリッド車両を示す。ここで例示するハイブリッド車両1は、機械動力源の動力のみを用いたエンジン走行モードと、電気動力源の動力のみを用いたEV走行モードと、機械動力源及び電気動力源の双方の動力を用いたハイブリッド走行モードと、を運転者が手動で切り替えられるように構成している。 First, an example of this hybrid vehicle will be described with reference to FIG. Reference numeral 1 in FIG. 1 indicates a hybrid vehicle of the present embodiment. The hybrid vehicle 1 exemplified here uses an engine travel mode using only the power of the mechanical power source, an EV travel mode using only the power of the electric power source, and powers of both the mechanical power source and the electric power source. It is configured so that the driver can manually switch between the hybrid travel mode.
 このハイブリッド車両1は、機械動力源として、出力軸(クランクシャフト)11から機械的な動力(エンジントルク)を出力するエンジン10を備える。そのエンジン10としては、内燃機関や外燃機関等が考えられる。このエンジン10は、その動作がエンジン用の電子制御装置(以下、「エンジンECU」という。)101によって制御される。 The hybrid vehicle 1 includes an engine 10 that outputs mechanical power (engine torque) from an output shaft (crankshaft) 11 as a mechanical power source. The engine 10 may be an internal combustion engine, an external combustion engine, or the like. The operation of the engine 10 is controlled by an engine electronic control unit (hereinafter referred to as “engine ECU”) 101.
 また、このハイブリッド車両1は、電気動力源として、モータ、力行駆動可能なジェネレータ又は力行及び回生の双方の駆動が可能なモータ/ジェネレータを備える。ここでは、モータ/ジェネレータ20を例に挙げて説明する。このモータ/ジェネレータ20は、例えば永久磁石型交流同期電動機として構成されたものであり、その動作がモータ/ジェネレータ用の電子制御装置(以下、「モータ/ジェネレータECU」という。)102によって制御される。力行駆動時には、モータ(電動機)として機能して、二次電池25とインバータ26を介して供給された電気エネルギを機械エネルギに変換し、回転軸21から機械的な動力(モータ力行トルク)を出力する。一方、回生駆動時には、ジェネレータ(発電機)として機能して、回転軸21から機械的な動力(モータ回生トルク)が入力された際に機械エネルギを電気エネルギに変換し、インバータ26を介して電力として二次電池25に蓄える。 Further, the hybrid vehicle 1 includes a motor, a generator capable of powering driving, or a motor / generator capable of driving both powering and regeneration as an electric power source. Here, the motor / generator 20 will be described as an example. The motor / generator 20 is configured, for example, as a permanent magnet AC synchronous motor, and its operation is controlled by a motor / generator electronic control device (hereinafter referred to as “motor / generator ECU”) 102. . During power running, it functions as a motor (electric motor), converts electrical energy supplied via the secondary battery 25 and the inverter 26 into mechanical energy, and outputs mechanical power (motor power running torque) from the rotating shaft 21. To do. On the other hand, at the time of regenerative driving, it functions as a generator (generator) and converts mechanical energy into electrical energy when mechanical power (motor regenerative torque) is input from the rotary shaft 21, and power is supplied via the inverter 26. Is stored in the secondary battery 25.
 このハイブリッド車両1には、その二次電池25の充電状態(SOC:state of charge)を検出する電池監視ユニット27が設けられている。その電池監視ユニット27は、検出した二次電池25の充電状態に係る信号(換言するならば、残存容量量(SOC量)に関する信号)をモータ/ジェネレータECU102に送信する。そのモータ/ジェネレータECU102は、その信号に基づいて二次電池25の充電状態の判定を行い、その二次電池25の充電の要否を判定する。 The hybrid vehicle 1 is provided with a battery monitoring unit 27 that detects a state of charge (SOC) of the secondary battery 25. The battery monitoring unit 27 transmits to the motor / generator ECU 102 a signal related to the detected state of charge of the secondary battery 25 (in other words, a signal related to the remaining capacity amount (SOC amount)). The motor / generator ECU 102 determines the charging state of the secondary battery 25 based on the signal, and determines whether or not the secondary battery 25 needs to be charged.
 また、このハイブリッド車両1は、後述する第1操作装置としての変速操作装置81で変速操作される有段の手動変速機30等からなるトルク伝達装置を備えている。そのトルク伝達装置は、前述したように、エンジン10と駆動輪WL,WRとの間やモータ/ジェネレータ20と駆動輪WL,WRとの間でのトルクの伝達を行うことができる。そのエンジン10やモータ/ジェネレータ20の動力(エンジントルクやモータ力行トルク)は、このトルク伝達装置を介し、駆動力として駆動輪WL,WRに伝えられる。 Further, the hybrid vehicle 1 is provided with a torque transmission device including a stepped manual transmission 30 or the like that is speed-changed by a speed change operation device 81 as a first operation device described later. As described above, the torque transmission device can transmit torque between the engine 10 and the drive wheels WL and WR and between the motor / generator 20 and the drive wheels WL and WR. The motive power (engine torque and motor power running torque) of the engine 10 and the motor / generator 20 is transmitted to the drive wheels WL and WR as a driving force through this torque transmission device.
 手動変速機30には、エンジントルクが入力される入力軸41と、この入力軸41に対して間隔を空けて平行に配置され、駆動輪WL,WR側にトルクを出力する出力軸42と、が設けられている。 The manual transmission 30 includes an input shaft 41 to which engine torque is input, an output shaft 42 that is disposed in parallel to the input shaft 41 at an interval and outputs torque to the drive wheels WL and WR, Is provided.
 その入力軸41には、動力断接装置としてのクラッチ50を介してエンジントルクが入力される。そのクラッチ50は、エンジン10の出力軸11と入力軸41とを連結させる係合状態と、その出力軸11と入力軸41とを係合状態から解放(切断)させる解放状態(切断状態)と、の切り替えができるように構成された例えば摩擦クラッチ装置である。 The engine torque is input to the input shaft 41 through a clutch 50 as a power connection / disconnection device. The clutch 50 includes an engaged state in which the output shaft 11 and the input shaft 41 of the engine 10 are coupled, and a released state (disconnected state) in which the output shaft 11 and the input shaft 41 are released (disconnected) from the engaged state. For example, a friction clutch device configured to be able to switch between.
 ここで云う係合状態とは、その出力軸11と入力軸41との間でのトルクの伝達が可能な状態のことであり、完全係合状態と半係合状態とに分けられる。完全係合状態とは、出力軸11と入力軸41の回転が同期している状態のことである。半係合状態とは、出力軸11と入力軸41とが係合し始めてから、これらの回転が同期するまでの状態、つまりクラッチ50の係合動作の間の状態、又は、その回転の同期状態から出力軸11と入力軸41とが切断し終えるまでの状態、つまりクラッチ50の解放動作の間の状態のことである。また、解放状態とは、その出力軸11と入力軸41との間でのトルクの伝達が行えない状態のことである。 The engagement state referred to here is a state where torque can be transmitted between the output shaft 11 and the input shaft 41, and is divided into a full engagement state and a semi-engagement state. The completely engaged state is a state where the rotation of the output shaft 11 and the input shaft 41 is synchronized. The half-engaged state is a state from when the output shaft 11 and the input shaft 41 start to be engaged until these rotations are synchronized, that is, a state during the engagement operation of the clutch 50, or synchronization of the rotations. This is a state from the state until the output shaft 11 and the input shaft 41 are completely disconnected, that is, a state during the releasing operation of the clutch 50. The released state is a state in which torque cannot be transmitted between the output shaft 11 and the input shaft 41.
 このクラッチ50は、係合状態において手動変速機30等を介したエンジン10と駆動輪WL,WRとの間のトルク伝達を可能にする一方、解放状態においてその間のトルク伝達を不能にする。また、このクラッチ50は、係合状態において手動変速機30を介したエンジン10とモータ/ジェネレータ20との間のトルク伝達を可能にする一方、解放状態においてその間のトルク伝達を不能にする。このクラッチ50は、その係合状態と解放状態の切り替え動作(即ちクラッチ50の断接動作)が運転者のクラッチペダル51(第2操作装置)の操作に従いリンク機構やワイヤー等を介して機械的に行われる。 The clutch 50 enables torque transmission between the engine 10 and the drive wheels WL and WR via the manual transmission 30 or the like in the engaged state, and disables torque transmission therebetween in the released state. In addition, the clutch 50 enables torque transmission between the engine 10 and the motor / generator 20 via the manual transmission 30 in the engaged state, while disabling torque transmission therebetween in the released state. The clutch 50 is mechanically switched via a link mechanism, a wire, or the like in accordance with the operation of the clutch pedal 51 (second operation device) by the driver in the switching operation between the engaged state and the released state (that is, the connecting / disconnecting operation of the clutch 50). To be done.
 本実施例においては、その出力軸42にEVギアとしての歯車対60を介してモータ/ジェネレータ20の回転軸21を連結する。その歯車対60は、互いに噛み合い状態にある第1ギア61と第2ギア62とで構成する。その第1ギア61は、モータ/ジェネレータ20の回転軸21に一体となって回転するよう取り付ける。一方、第2ギア62は、その第1ギア61よりも大径に成形し、手動変速機30の出力軸42に一体となって回転するよう取り付ける。これにより、この歯車対60は、モータ/ジェネレータ20の回転軸21側からトルクが入力されることによって減速装置として動作する一方、手動変速機30の出力軸42側から回転トルクが入力されることによって増速装置として動作する。従って、そのモータ/ジェネレータ20を力行駆動させたときには、モータ力行トルクが減速装置として機能する歯車対60を介して手動変速機30に伝わる。これに対して、このモータ/ジェネレータ20を回生駆動させたときには、増速装置として機能する歯車対60を介して手動変速機30の出力軸42からの出力トルクがモータ/ジェネレータ20のロータに伝達される。ここで、その歯車対60は、後述するシフトレバー81aがシフトゲージ81b上のどの位置にあっても、つまり変速位置1~5,R、EV走行モード選択位置EV又はニュートラル位置にあっても、噛み合い状態になっているものとする。 In this embodiment, the rotary shaft 21 of the motor / generator 20 is connected to the output shaft 42 via a gear pair 60 as an EV gear. The gear pair 60 includes a first gear 61 and a second gear 62 that are in mesh with each other. The first gear 61 is attached so as to rotate integrally with the rotating shaft 21 of the motor / generator 20. On the other hand, the second gear 62 has a larger diameter than the first gear 61 and is attached to the output shaft 42 of the manual transmission 30 so as to rotate integrally. As a result, the gear pair 60 operates as a reduction gear when torque is input from the rotating shaft 21 side of the motor / generator 20, while rotating torque is input from the output shaft 42 side of the manual transmission 30. Operates as a speed increasing device. Accordingly, when the motor / generator 20 is driven by power running, the motor power running torque is transmitted to the manual transmission 30 via the gear pair 60 functioning as a reduction gear. In contrast, when the motor / generator 20 is regeneratively driven, the output torque from the output shaft 42 of the manual transmission 30 is transmitted to the rotor of the motor / generator 20 via the gear pair 60 that functions as a speed increasing device. Is done. Here, the gear pair 60 is in any position on the shift gauge 81b, that is, a shift lever 81a, which will be described later, that is, in the shift positions 1 to 5, R, the EV travel mode selection position EV, or the neutral position. Assume that they are engaged.
 更に、ここで例示する手動変速機30は、前進5段、後退1段の変速段を有するものであって、前進用の変速段として第1速ギア段31,第2速ギア段32,第3速ギア段33,第4速ギア段34及び第5速ギア段35を備え、且つ、後退用の変速段として後退ギア段39を備えている。前進用の変速段は、変速比が第1速ギア段31,第2速ギア段32,第3速ギア段33,第4速ギア段34,第5速ギア段35の順に小さくなるよう構成している。尚、図1の手動変速機30はその構成を簡易的に説明したものであり、各変速段の配置については、必ずしも図1の態様になるとは限らない。 Further, the manual transmission 30 exemplified here has five forward speeds and one reverse speed, and the first speed gear stage 31, the second speed gear stage 32, the second speed stage as the forward speed stages. A third gear stage 33, a fourth gear stage 34, and a fifth gear stage 35 are provided, and a reverse gear stage 39 is provided as a reverse gear stage. The forward shift speed is configured such that the gear ratio decreases in the order of the first speed gear stage 31, the second speed gear stage 32, the third speed gear stage 33, the fourth speed gear stage 34, and the fifth speed gear stage 35. is doing. Note that the manual transmission 30 in FIG. 1 is a simple description of the configuration, and the arrangement of each gear stage is not necessarily in the form of FIG.
 本実施例の動力伝達装置においては、クラッチ50を係合状態にすることで、入力軸41に入力されたエンジントルクが各変速段(ギア段31~35,39)の内の何れか1つで変速されて出力軸42に伝わる。また、この動力伝達装置においては、モータ力行トルクが出力軸42に伝わる。この動力伝達装置においては、その出力軸42から出力されたトルクが最終減速機構71で減速され、差動機構72を介して駆動力として駆動輪WL,WRに伝達される。 In the power transmission device of the present embodiment, the engine torque input to the input shaft 41 is set to any one of the gear positions (gear stages 31 to 35, 39) by engaging the clutch 50. And is transmitted to the output shaft 42. In this power transmission device, the motor power running torque is transmitted to the output shaft 42. In this power transmission device, the torque output from the output shaft 42 is decelerated by the final reduction mechanism 71 and transmitted to the driving wheels WL and WR as a driving force via the differential mechanism 72.
 ここで、第1速ギア段31は、互いに噛み合い状態にある第1速ドライブギア31aと第1速ドリブンギア31bの歯車対で構成する。その第1速ドライブギア31aは、入力軸41上に配置される一方、第1速ドリブンギア31bは、出力軸42上に配置される。第2速ギア段32から第5速ギア段35についても、第1速ギア段31と同様の第2速ドライブギア32a~第5速ドライブギア35aと第2速ドリブンギア32b~第5速ドリブンギア35bを有する。 Here, the first speed gear stage 31 is constituted by a gear pair of a first speed drive gear 31a and a first speed driven gear 31b that are in mesh with each other. The first speed drive gear 31 a is disposed on the input shaft 41, while the first speed driven gear 31 b is disposed on the output shaft 42. As for the second speed gear stage 32 to the fifth speed gear stage 35, the second speed drive gear 32a to fifth speed drive gear 35a and the second speed driven gear 32b to fifth speed driven are the same as the first speed gear stage 31. A gear 35b is provided.
 一方、後退ギア段39については、後退ドライブギア39aと後退ドリブンギア39bと後退中間ギア39cとで構成する。その後退ドライブギア39aは、入力軸41上に配置され、後退ドリブンギア39bは、出力軸42上に配置される。また、後退中間ギア39cは、後退ドライブギア39a及び後退ドリブンギア39bと噛み合い状態にあり、回転軸43上に配置される。 On the other hand, the reverse gear stage 39 includes a reverse drive gear 39a, a reverse driven gear 39b, and a reverse intermediate gear 39c. The reverse drive gear 39 a is disposed on the input shaft 41, and the reverse driven gear 39 b is disposed on the output shaft 42. The reverse intermediate gear 39c is in mesh with the reverse drive gear 39a and the reverse driven gear 39b, and is disposed on the rotation shaft 43.
 この手動変速機30の構成においては、各変速段のドライブギアの内の何れかが入力軸41と一体になって回転するように配設される一方、残りのドライブギアが入力軸41に対して相対回転するように配設される。また、各変速段のドリブンギアは、その内の何れかが出力軸42と一体になって回転するように配設される一方、残りが出力軸42に対して相対回転するように配設される。 In the configuration of the manual transmission 30, one of the drive gears of each gear stage is disposed so as to rotate integrally with the input shaft 41, while the remaining drive gear is relative to the input shaft 41. Are arranged to rotate relative to each other. In addition, the driven gear of each shift stage is arranged so that any one of them is rotated integrally with the output shaft 42, while the rest is arranged so as to rotate relative to the output shaft 42. The
 また、入力軸41や出力軸42には、運転者の変速操作に従って軸線方向に移動するスリーブ(図示略)が配設されている。入力軸41上のスリーブは、その入力軸41と相対回転可能な2つの変速段の各ドライブギアの間に配置される。一方、出力軸42上のスリーブは、その出力軸42と相対回転可能な2つの変速段の各ドリブンギアの間に配置される。このスリーブは、変速操作装置81を運転者が操作した際に、その変速操作装置81に連結されている図示しないリンク機構やフォークを介して軸線方向への移動を行う。そして、移動後のスリーブは、移動された方向に位置する相対回転可能なドライブギアやドリブンギアを入力軸41や出力軸42と一体回転させる。この手動変速機30においては、そのスリーブが運転者の変速操作装置81の変速操作に対応した方向に移動し、これによりその変速操作に応じた変速段への切り替え又はニュートラル状態(つまり入力軸41と出力軸42との間でトルクの伝達が行えない状態)への切り替えが実行される。 The input shaft 41 and the output shaft 42 are provided with sleeves (not shown) that move in the axial direction in accordance with the driver's speed change operation. The sleeve on the input shaft 41 is disposed between the drive gears of the two shift stages that can rotate relative to the input shaft 41. On the other hand, the sleeve on the output shaft 42 is disposed between the driven gears of the two gears that can rotate relative to the output shaft 42. The sleeve moves in the axial direction via a link mechanism or a fork (not shown) connected to the speed change operation device 81 when the driver operates the speed change operation device 81. Then, the moved sleeve rotates the drive gear and the driven gear, which can be relatively rotated, located in the moved direction, together with the input shaft 41 and the output shaft 42. In the manual transmission 30, the sleeve moves in a direction corresponding to the speed change operation of the driver's speed change operation device 81, thereby switching to a gear position according to the speed change operation or a neutral state (that is, the input shaft 41. And a state in which torque cannot be transmitted between the output shaft 42 and the output shaft 42).
 このハイブリッド車両1においては、EV走行モードの選択に、運転者によって操作されるEV走行モード切替装置を利用する。ここでは、そのEV走行モード切替装置としての機能を変速操作装置81にもたせることにする。 In this hybrid vehicle 1, an EV travel mode switching device operated by a driver is used for selecting an EV travel mode. Here, the shift operation device 81 is provided with the function as the EV traveling mode switching device.
 その変速操作装置81は、運転者が変速操作する際に使用するシフトレバー81a、このシフトレバー81aを夫々の変速段毎にガイドする所謂シフトゲージ81b、上記のリンク機構やフォーク等を備えている。例えば、この変速操作装置81としては、図2及び図3又は図4に示す形態のものが考えられる。その各図のシフトゲージ81b上の「1~5」と「R」は、夫々に第1速ギア段31~第5速ギア段35と後退ギア段39の変速位置(セレクト位置)を示している。 The shift operation device 81 includes a shift lever 81a that is used when a driver performs a shift operation, a so-called shift gauge 81b that guides the shift lever 81a for each shift stage, the link mechanism, a fork, and the like. . For example, as the speed change operation device 81, the one shown in FIG. 2, 3 or 4 can be considered. “1 to 5” and “R” on the shift gauge 81b in each figure indicate the shift positions (select positions) of the first gear stage 31 to the fifth gear stage 35 and the reverse gear stage 39, respectively. Yes.
 図2及び図3並びに図4に示す変速操作装置81A,81Bは、クラッチ50が解放状態のときに運転者がシフトレバー81aを変速位置1~5,Rに操作することで、その位置に応じた変速段に手動変速機30を切り替えるものである。 The shift operation devices 81A and 81B shown in FIGS. 2, 3 and 4 are operated according to the position of the shift lever 81a by operating the shift lever 81a to the shift positions 1 to 5 and R when the clutch 50 is disengaged. The manual transmission 30 is switched to a different gear position.
 図2及び図3に示す変速操作装置81Aは、その変速位置1~5,Rの他に、これと同様のシフトレバー81aのセレクト位置であって、EV走行モードに切り替える為のEV走行モード選択位置EVをシフトゲージ81b上に備えている。本実施例のハイブリッド車両1においては、シフトレバー81aが図3に示す如くEV走行モード選択位置EVへと操作された際に、走行モードがEV走行モードとなる。このハイブリッド車両1においては、シフトレバー81aがEV走行モード選択位置EVへと操作されたときに、手動変速機30がスリーブ等によってニュートラル状態になる。また、この変速操作装置81Aは、図2に示すニュートラル位置にシフトレバー81aが操作されたときにも、手動変速機30をニュートラル状態にする。 The shift operation device 81A shown in FIGS. 2 and 3 is not only the shift positions 1 to 5 and R but also the select position of the shift lever 81a similar to this, and the EV travel mode selection for switching to the EV travel mode. A position EV is provided on the shift gauge 81b. In the hybrid vehicle 1 of the present embodiment, when the shift lever 81a is operated to the EV travel mode selection position EV as shown in FIG. 3, the travel mode becomes the EV travel mode. In this hybrid vehicle 1, when the shift lever 81a is operated to the EV travel mode selection position EV, the manual transmission 30 is in a neutral state by a sleeve or the like. Further, the shift operating device 81A also sets the manual transmission 30 to the neutral state when the shift lever 81a is operated to the neutral position shown in FIG.
 一方、図4に示す変速操作装置81Bは、変速操作装置81Aの様にEV走行モード選択位置EVを備えていない。この変速操作装置81Bにおいては、図4に示すニュートラル位置にシフトレバー81aが操作されたときに、手動変速機30がニュートラル状態になり、走行モードをEV走行モードにする。 On the other hand, the speed change operation device 81B shown in FIG. 4 does not include the EV travel mode selection position EV like the speed change operation device 81A. In this speed change operation device 81B, when the shift lever 81a is operated to the neutral position shown in FIG. 4, the manual transmission 30 is in the neutral state, and the travel mode is set to the EV travel mode.
 この変速操作装置81(81A,81B)には、EV走行モード選択位置検出部82が設けられている。このEV走行モード選択位置検出部82は、シフトレバー81aのシフトゲージ81b上の位置に基づきEV走行モードが選択されているのか否かを検出するものである。変速操作装置81Aの場合には、例えば、シフトレバー81aがEV走行モード選択位置EVにあることを検出可能な位置情報検出センサ等をEV走行モード選択位置検出部82として利用する。また、変速操作装置81Bの場合には、例えば、シフトレバー81aがニュートラル位置にあることを検出可能な位置情報検出センサ等をEV走行モード選択位置検出部82として利用する。このEV走行モード選択位置検出部82の検出信号は、車両全体の動作を統括的に制御する電子制御装置(以下、「ハイブリッドECU」という。)100に送信される。 This shift operation device 81 (81A, 81B) is provided with an EV travel mode selection position detector 82. The EV travel mode selection position detector 82 detects whether or not the EV travel mode is selected based on the position of the shift lever 81a on the shift gauge 81b. In the case of the speed change operation device 81A, for example, a position information detection sensor or the like that can detect that the shift lever 81a is at the EV travel mode selection position EV is used as the EV travel mode selection position detection unit 82. In the case of the speed change operation device 81B, for example, a position information detection sensor or the like that can detect that the shift lever 81a is in the neutral position is used as the EV travel mode selection position detection unit 82. The detection signal of the EV traveling mode selection position detection unit 82 is transmitted to an electronic control unit (hereinafter referred to as “hybrid ECU”) 100 that comprehensively controls the operation of the entire vehicle.
 そのハイブリッドECU100は、エンジンECU101及びモータ/ジェネレータECU102との間で夫々に各種センサの検出信号や制御指令等の情報の授受ができる。本実施例においては、少なくともそのハイブリッドECU100、エンジンECU101及びモータ/ジェネレータECU102が車両の制御システムの構成要件となっている。 The hybrid ECU 100 can exchange information such as detection signals of various sensors and control commands between the engine ECU 101 and the motor / generator ECU 102. In this embodiment, at least the hybrid ECU 100, the engine ECU 101, and the motor / generator ECU 102 are constituent requirements of the vehicle control system.
 また、この変速操作装置81(81A,81B)は、シフトレバー81aがシフトゲージ81b上のどの変速位置1~5,Rにあるのかについて、つまり運転者がどの変速段を選択したのか否かを検出する変速位置検出部83を備えている。その変速位置検出部83は、例えば、シフトレバー81aがどの変速位置1~5,Rにあるのかを検出可能な位置情報検出センサ等を利用すればよい。その検出信号は、ハイブリッドECU100に送られる。このハイブリッドECU100は、その検出信号に基づいて、運転者の選択した変速段、現状の変速段を判断する。尚、ここでは、便宜上、その変速位置検出部83をEV走行モード選択位置検出部82とは別のものとして例示したが、これらを1つに統合したシフトレバー位置検出部(図示略)に置き換えてもよい。ここで、そのハイブリッドECU100には、この技術分野にて知られている周知の技術を利用して、エンジントルクや車輪速度等から現在の変速段を推定させてもよい。 The shift operation device 81 (81A, 81B) determines which shift position 1 to 5, R of the shift lever 81a is on the shift gauge 81b, that is, which shift stage the driver has selected. A shift position detecting unit 83 for detecting is provided. The shift position detector 83 may use, for example, a position information detection sensor that can detect which shift positions 1 to 5 and R the shift lever 81a is at. The detection signal is sent to the hybrid ECU 100. The hybrid ECU 100 determines the speed selected by the driver and the current speed based on the detection signal. Here, for the sake of convenience, the shift position detection unit 83 is illustrated as being different from the EV travel mode selection position detection unit 82, but these are replaced with a shift lever position detection unit (not shown) integrated into one. May be. Here, the hybrid ECU 100 may estimate the current shift speed from the engine torque, the wheel speed, or the like using a known technique known in this technical field.
 シフトレバー81aが変速位置1~5,Rに操作されている場合、ハイブリッドECU100は、エンジン走行モード又はハイブリッド走行モードの内の何れか一方を選択する。例えば、このハイブリッドECU100は、設定した運転者の駆動要求(要求駆動力)、モータ/ジェネレータECU102から送られてきた二次電池25の充電状態の情報(SOC量)、車両走行状態の情報(図示しない車両横加速度検出装置により検出された車両横加速度、車輪スリップ検出装置により検出された駆動輪WL,WRのスリップ状態等の情報)に基づいて、エンジン走行モードとハイブリッド走行モードの切り替えを行う。このハイブリッドECU100は、その走行モードに応じた制御指令をエンジンECU101及びモータ/ジェネレータECU102に送る。 When the shift lever 81a is operated to the shift positions 1 to 5 and R, the hybrid ECU 100 selects either the engine travel mode or the hybrid travel mode. For example, the hybrid ECU 100 includes a set driver's drive request (required driving force), information on the state of charge of the secondary battery 25 (SOC amount) sent from the motor / generator ECU 102, and information on the vehicle running state (illustrated). On the basis of the vehicle lateral acceleration detected by the vehicle lateral acceleration detection device and information on the slip state of the drive wheels WL and WR detected by the wheel slip detection device), the engine travel mode and the hybrid travel mode are switched. The hybrid ECU 100 sends a control command corresponding to the travel mode to the engine ECU 101 and the motor / generator ECU 102.
 一方、シフトレバー81aのシフトゲージ81b上の位置によりEV走行モードが選択されている場合、ハイブリッドECU100は、その走行モードに応じた制御指令をエンジンECU101及びモータ/ジェネレータECU102に送る。 On the other hand, when the EV travel mode is selected based on the position of the shift lever 81a on the shift gauge 81b, the hybrid ECU 100 sends a control command corresponding to the travel mode to the engine ECU 101 and the motor / generator ECU 102.
 このハイブリッド車両1においては、例えばEV走行モードでの走行中にエンジン10を停止させることで、燃費の向上を図っている。これが為、エンジントルクを用いるエンジン走行モードやハイブリッド走行モードにEV走行モードから切り替える場合、このハイブリッド車両1では、エンジン10を始動させる必要がある。この場合には、トルクを手動変速機30側からエンジン10に伝え、そのトルクでエンジン10をクランキングさせることによって始動させる。その際、運転者は、クラッチペダル51や変速操作装置81を操作し、手動変速機30側のトルクがクラッチ50を介してエンジン10に伝わるようにしている。つまり、このときには、クラッチ50の解放操作の後、シフトレバー81aを変速位置1~5の内の何れか1つに操作し、クラッチ50の係合操作を行うことで、手動変速機30の入力軸41に出力軸42側のトルクの一部を伝達し、この入力軸41のトルクをエンジン10の出力軸11に伝える。その出力軸42側のトルクとは、例えばEV走行モードの駆動力発生用のモータトルクである。 In the hybrid vehicle 1, for example, the engine 10 is stopped during traveling in the EV traveling mode to improve fuel efficiency. Therefore, in the hybrid vehicle 1, it is necessary to start the engine 10 when switching from the EV travel mode to the engine travel mode using the engine torque or the hybrid travel mode. In this case, torque is transmitted to the engine 10 from the manual transmission 30 side, and the engine 10 is cranked with the torque to start. At that time, the driver operates the clutch pedal 51 and the shift operation device 81 so that the torque on the manual transmission 30 side is transmitted to the engine 10 via the clutch 50. In other words, at this time, after the clutch 50 is released, the shift lever 81a is operated to any one of the shift positions 1 to 5 and the clutch 50 is engaged, whereby the input of the manual transmission 30 is performed. A part of the torque on the output shaft 42 side is transmitted to the shaft 41, and the torque of the input shaft 41 is transmitted to the output shaft 11 of the engine 10. The torque on the output shaft 42 side is, for example, motor torque for generating driving force in the EV traveling mode.
 ここで、例えばEV走行モードからエンジン走行モードに切り替えるときには、そのEV走行モードの駆動力発生用のモータトルクの一部をエンジン10の始動の為のクランキングトルクとして伝えることにより、駆動力低下に伴う減速度が発生してしまう可能性がある。その際、その減速度は、クランキングトルクの発生と共に(つまりクラッチ50の係合開始と共に)発生する。そのクランキングトルクは、クラッチ50の係合度が高くなるにつれて(即ち完全係合状態に近づくにつれて)増えていく。一方、エンジン回転数は、図5に示すように、そのクランキングトルクの発生時期から遅れて上昇し始める。停止状態のエンジン10は、そのクランキングトルクがエンジン10の最大静止摩擦に係るトルクとエンジン停止位置等により決まるコンプレッション圧に係るトルクとの和(以下、「回転開始クランキングトルク」という。)以上になるまで回転し始めないからである。これが為、運転者は、その減速度がエンジン回転数の上昇開始前に発生することに違和感を覚える虞がある。尚、エンジン回転数の動きを回転計等で認識していない運転者は、その減速度を感じることで、エンジン回転数の上昇に伴いエンジン10が始動することを期待する。しかしながら、このときのクラッチ50の係合度(以下、「クラッチ係合度」という。)が回転開始クランキングトルクを発生させる大きさよりも小さい場合には、この状態で仮に運転者がクラッチ50の係合操作を止めてしまうと、エンジン10を始動できず、エンジン走行モードへの移行ができなくなる。 Here, for example, when switching from the EV traveling mode to the engine traveling mode, a part of the motor torque for generating the driving force in the EV traveling mode is transmitted as cranking torque for starting the engine 10, thereby reducing the driving force. The accompanying deceleration may occur. At that time, the deceleration occurs with the generation of cranking torque (that is, with the start of engagement of the clutch 50). The cranking torque increases as the degree of engagement of the clutch 50 increases (that is, as the clutch 50 approaches the fully engaged state). On the other hand, as shown in FIG. 5, the engine speed starts to increase with a delay from the generation time of the cranking torque. The engine 10 in the stopped state is equal to or higher than the sum of the torque related to the maximum static friction of the engine 10 and the torque related to the compression pressure determined by the engine stop position or the like (hereinafter referred to as “rotation start cranking torque”). This is because it does not begin to rotate until. For this reason, the driver may feel uncomfortable that the deceleration occurs before the engine speed starts to increase. A driver who has not recognized the movement of the engine speed with a tachometer or the like expects the engine 10 to start as the engine speed increases by feeling the deceleration. However, if the engagement degree of the clutch 50 at this time (hereinafter referred to as “clutch engagement degree”) is smaller than the magnitude for generating the rotation start cranking torque, the driver temporarily engages the clutch 50 in this state. If the operation is stopped, the engine 10 cannot be started, and the transition to the engine running mode cannot be performed.
 本実施例においては、停止状態のエンジン10を走行中に始動させるときに、クラッチ50のトルク容量(以下、「クラッチトルク容量」という。)分のモータトルクをアシストトルクとして駆動力発生用のモータトルクに加え、この加算したモータトルクを出力させることによって、そのアシストトルクでエンジン回転数の上昇を図る。 In this embodiment, when the engine 10 in a stopped state is started during traveling, a motor for generating a driving force using a motor torque corresponding to the torque capacity of the clutch 50 (hereinafter referred to as “clutch torque capacity”) as an assist torque. By outputting this added motor torque in addition to torque, the engine speed is increased by the assist torque.
 そのクラッチトルク容量Tclは、例えば、下記の式1の如く、クラッチ50の夫々の係合部50a,50bの摩擦材の摩擦係数μ、その夫々の摩擦材同士が触れ合う箇所の総面積A、夫々の係合部50a,50b間の面圧P及び摩擦材同士が触れ合う箇所の外径dによって推定することができる。 The clutch torque capacity Tcl is, for example, as shown in Equation 1 below, the friction coefficient μ of the friction material of each engagement portion 50a, 50b of the clutch 50, the total area A of the portions where the friction materials contact each other, respectively. The surface pressure P between the engaging portions 50a and 50b and the outer diameter d of the portion where the friction materials come into contact with each other can be estimated.
  Tcl=μ*A*P*d/2  …  (1) Tcl = μ * A * P * d / 2 (1)
 ここで、面圧Pは、クラッチ50の係合部50a,50b間の移動量やクラッチペダル51のペダル操作量に応じて変化する。一方、面圧P以外は、設計値であって、不変の値である。これが為、クラッチトルク容量Tclは、面圧P、つまり係合部50a,50b間の移動量やクラッチペダル51のペダル操作量に応じて変化することが判る。即ち、このクラッチトルク容量Tclは、図6に示すように、クラッチ50の半係合状態が完全係合状態に近づくにつれて増加していく。 Here, the surface pressure P changes according to the amount of movement between the engaging portions 50a and 50b of the clutch 50 and the pedal operation amount of the clutch pedal 51. On the other hand, the values other than the surface pressure P are design values and are invariable values. For this reason, it can be seen that the clutch torque capacity Tcl changes according to the surface pressure P, that is, the amount of movement between the engaging portions 50a and 50b and the amount of pedal operation of the clutch pedal 51. That is, the clutch torque capacity Tcl increases as the half-engaged state of the clutch 50 approaches the fully engaged state, as shown in FIG.
 尚、その図6においては、縦軸のクラッチトルク容量をクラッチ係合度と置き換えることもできる。クラッチ係合度は、係合部50a,50b間の移動量又はクラッチペダル51のペダル操作量に基づいて推定される。 In FIG. 6, the clutch torque capacity on the vertical axis can be replaced with the degree of clutch engagement. The degree of clutch engagement is estimated based on the amount of movement between the engaging portions 50 a and 50 b or the pedal operation amount of the clutch pedal 51.
 ハイブリッドECU100は、その係合部50a,50b間の移動量又はクラッチペダル51のペダル操作量からクラッチトルク容量Tclを推定することができる。その係合部50a,50b間の移動量は、所謂クラッチストロークセンサ52の検出値から求めることができる。また、クラッチペダル51のペダル操作量は、所謂クラッチペダルストロークセンサ53の検出値から求めることができる。ここで、クラッチペダル51には所謂遊びが設けられているので、その遊び分のペダル操作量を除いてクラッチトルク容量Tclの推定を行う(図6)。 The hybrid ECU 100 can estimate the clutch torque capacity Tcl from the amount of movement between the engaging portions 50a and 50b or the pedal operation amount of the clutch pedal 51. The amount of movement between the engaging portions 50 a and 50 b can be obtained from the detection value of the so-called clutch stroke sensor 52. The pedal operation amount of the clutch pedal 51 can be obtained from a detection value of a so-called clutch pedal stroke sensor 53. Here, since the so-called play is provided in the clutch pedal 51, the clutch torque capacity Tcl is estimated by removing the pedal operation amount for the play (FIG. 6).
 上記のアシストトルクにより駆動力の低下が起こらないので、運転者は、違和感のある減速度を感じずに自らのクラッチ係合操作によってエンジン回転数を上昇させ始めることができる。しかしながら、そのようなクラッチトルク容量Tcl分のアシストトルクの出力によって、運転者は、エンジン回転数の上昇開始後も減速度を感じ難くなる。これが為、運転者は、今度はそのことに違和感を覚えてしまう。 Since the driving force does not decrease due to the assist torque, the driver can start increasing the engine speed by engaging his own clutch without feeling uncomfortable deceleration. However, the output of the assist torque corresponding to the clutch torque capacity Tcl makes it difficult for the driver to feel the deceleration even after the engine speed starts to increase. This makes the driver feel uncomfortable this time.
 そこで、本実施例においては、停止状態のエンジン10を走行中に始動させる際に、クラッチトルク容量Tcl分のモータトルクをアシストトルクTaとして出力し、そのクラッチトルク容量Tclが回転開始クランキングトルクTcrまで増加したら、そのクラッチトルク容量Tclよりも小さいモータトルクをアシストトルクTaとして出力する。つまり、本実施例においては、停止状態のエンジン10を走行中に始動させる際に、クラッチトルク容量Tclに応じてアシストトルクの大きさを制御する。 Therefore, in this embodiment, when the stopped engine 10 is started during running, the motor torque corresponding to the clutch torque capacity Tcl is output as the assist torque Ta, and the clutch torque capacity Tcl is determined as the rotation start cranking torque Tcr. When the motor torque is increased to the maximum, the motor torque smaller than the clutch torque capacity Tcl is output as the assist torque Ta. That is, in this embodiment, when starting the engine 10 in a stopped state while traveling, the magnitude of the assist torque is controlled according to the clutch torque capacity Tcl.
 以下、停止状態のエンジン10を走行中に始動させる際の演算処理動作を図7のフローチャートや図8のタイムチャートに基づいて説明する。ここでは、EV走行モードからエンジン走行モードに切り替えるときのエンジン始動について説明する。 Hereinafter, the calculation processing operation when starting the engine 10 in a stopped state while traveling will be described based on the flowchart of FIG. 7 and the time chart of FIG. Here, engine start when switching from the EV travel mode to the engine travel mode will be described.
 そのエンジン始動の際、ハイブリッドECU100は、解放されたクラッチ50が係合を開始したのか否かを判定する(ステップST1)。この判定は、例えば図6に示すようなマップを予め用意しておき、このマップとクラッチペダル51のペダル操作量とに基づいて行えばよい。また、この判定は、検出された係合部50a,50b間の移動量に基づいて行ってもよい。更に、クラッチ50の係合開始直後は、未だアシストトルクが出力されておらず、前後加速度センサ91によって減速度が検出される。故に、このステップST1においては、減速度が検出されたときをクラッチ50の係合開始時と判定しても良い。 When starting the engine, the hybrid ECU 100 determines whether or not the released clutch 50 has started engagement (step ST1). For example, a map as shown in FIG. 6 is prepared in advance, and this determination may be made based on this map and the pedal operation amount of the clutch pedal 51. Further, this determination may be made based on the detected movement amount between the engaging portions 50a and 50b. Further, immediately after the engagement of the clutch 50 is started, the assist torque has not yet been output, and the deceleration is detected by the longitudinal acceleration sensor 91. Therefore, in step ST1, when the deceleration is detected, it may be determined that the clutch 50 starts to be engaged.
 ハイブリッドECU100は、クラッチ50が係合を開始していなければ、係合開始との判定が為されるまで、ステップST1の判定を繰り返す。 The hybrid ECU 100 repeats the determination in step ST1 until it is determined that the clutch 50 is not engaged unless the clutch 50 has started the engagement.
 これに対して、ハイブリッドECU100は、クラッチ50が係合を開始したとの判定を行った場合、クラッチトルク容量Tclを推定し(ステップST2)、このクラッチトルク容量Tclが回転開始クランキングトルクTcrよりも小さいのか否かを判定する(ステップST3)。 In contrast, when the hybrid ECU 100 determines that the clutch 50 has started to be engaged, the hybrid ECU 100 estimates the clutch torque capacity Tcl (step ST2), and the clutch torque capacity Tcl is determined from the rotation start cranking torque Tcr. Is also smaller (step ST3).
 その回転開始クランキングトルクTcrは、エンジン10の最大静止摩擦に係るトルクとコンプレッション圧に係るトルクの最大値との和に設定しておけばよい。また、この回転開始クランキングトルクTcrは、次のように設定してもよい。例えば、エンジン10は、トルクを掛けた状態で停止した場合、筒内の空気が無くなってコンプレッション圧が減っていくので、出力軸11に対してトルクを加えても、その出力軸11やピストン(図示略)が直ぐには動き始めない。しかし、このエンジン10は、出力軸11に対してトルクを増加させながら掛け続けることで、何れその出力軸11等が動き出す。そこで、その出力軸11等が動き出すときに出力軸11に対して加えているトルクを回転開始クランキングトルクTcrに設定してもよい。 The rotation start cranking torque Tcr may be set to the sum of the torque related to the maximum static friction of the engine 10 and the maximum value of the torque related to the compression pressure. Further, the rotation start cranking torque Tcr may be set as follows. For example, when the engine 10 is stopped in a state where torque is applied, air in the cylinder disappears and the compression pressure decreases. Therefore, even if torque is applied to the output shaft 11, the output shaft 11 and piston ( (Not shown) does not start moving immediately. However, when the engine 10 continues to be applied while increasing the torque with respect to the output shaft 11, the output shaft 11 or the like starts to move. Therefore, the torque applied to the output shaft 11 when the output shaft 11 or the like starts moving may be set as the rotation start cranking torque Tcr.
 ここで、クラッチトルク容量Tclは、半係合状態の続く間、図8に示すように、クラッチ50の係合開始と共に大きくなっていく。これが為、ハイブリッドECU100は、クラッチトルク容量Tclが回転開始クランキングトルクTcrよりも小さければ、そのクラッチトルク容量Tcl分のモータトルクをアシストトルクTaとして設定し(ステップST4)、このアシストトルクTaをモータ/ジェネレータ20に出力させる(ステップST5)。 Here, the clutch torque capacity Tcl increases with the start of engagement of the clutch 50 as shown in FIG. 8 while the half-engaged state continues. Therefore, if the clutch torque capacity Tcl is smaller than the rotation start cranking torque Tcr, the hybrid ECU 100 sets the motor torque corresponding to the clutch torque capacity Tcl as the assist torque Ta (step ST4), and uses the assist torque Ta as the motor. / The output is made to the generator 20 (step ST5).
 その際、モータ/ジェネレータ20には、EV走行モードの駆動力発生用のモータトルクとアシストトルクTaとの和を出力させる。そのクラッチトルク容量Tcl分のアシストトルクTaは、クラッチトルク容量Tclの増加と共に更新されて、クラッチトルク容量Tclが回転開始クランキングトルクTcrに達するまでの間、出力され続ける。これにより、このハイブリッド車両1においては、その間、駆動力発生用のモータトルクが駆動輪WL,WR側に伝達される一方、アシストトルクTaがエンジン10側に伝達される。従って、このハイブリッド車両1においては、図8に示すように、駆動力低下による減速度の発生が抑えられる。つまり、この制御システムに依れば、図8に本制御前1として一点鎖線で示すようなエンジン回転数が上昇し始める前の減速度の発生を抑えることができる。故に、運転者は、クラッチトルク容量Tclが回転開始クランキングトルクTcrに達するまでの間、エンジン回転数が上昇し始めていないにも拘わらず減速度を感じるという違和感を覚えない。 At that time, the motor / generator 20 outputs the sum of the motor torque for generating the driving force in the EV traveling mode and the assist torque Ta. The assist torque Ta corresponding to the clutch torque capacity Tcl is updated as the clutch torque capacity Tcl increases, and continues to be output until the clutch torque capacity Tcl reaches the rotation start cranking torque Tcr. As a result, in the hybrid vehicle 1, during this period, the motor torque for generating the driving force is transmitted to the drive wheels WL and WR, while the assist torque Ta is transmitted to the engine 10 side. Therefore, in this hybrid vehicle 1, as shown in FIG. 8, the occurrence of deceleration due to a decrease in driving force is suppressed. That is, according to this control system, it is possible to suppress the occurrence of deceleration before the engine speed starts to increase as indicated by a one-dot chain line in FIG. Therefore, the driver does not feel a sense of incongruity until the clutch torque capacity Tcl reaches the rotation start cranking torque Tcr, even though the engine speed has not started increasing, but feels deceleration.
 ここで、そのステップST4で設定するアシストトルクTaは、必ずしもクラッチトルク容量Tcl分のモータトルクに完全に一致させなくてもよい。何故ならば、モータトルクに一致するのか否かは、クラッチトルク容量Tclの推定精度にかかっているからである。従って、このアシストトルクTaは、運転者に減速度を体感させない範囲内で、その大きさを設定すればよい。 Here, the assist torque Ta set in step ST4 does not necessarily need to be completely matched with the motor torque corresponding to the clutch torque capacity Tcl. This is because whether it matches the motor torque depends on the estimation accuracy of the clutch torque capacity Tcl. Therefore, the magnitude of the assist torque Ta may be set within a range in which the driver does not experience deceleration.
 一方、ハイブリッドECU100は、ステップST3でクラッチトルク容量Tclが回転開始クランキングトルクTcr以上になったと判定した場合、そのクラッチトルク容量Tclよりも小さいモータトルクをアシストトルクTaとして設定し(ステップST6)、ステップST5に進んで、このアシストトルクTaをモータ/ジェネレータ20に出力させる。 On the other hand, when the hybrid ECU 100 determines in step ST3 that the clutch torque capacity Tcl is equal to or greater than the rotation start cranking torque Tcr, the hybrid ECU 100 sets a motor torque smaller than the clutch torque capacity Tcl as the assist torque Ta (step ST6). In step ST5, the assist torque Ta is output to the motor / generator 20.
 そのステップST6のアシストトルクTaは、例えば、図8及び図9に実線で示すように、時間の経過に拘わらず、回転開始クランキングトルクTcr、つまりエンジン10の最大静止摩擦に係るトルクとコンプレッション圧に係るトルクの和に設定する。この場合には、クラッチトルク容量TclとアシストトルクTaとの差が時間の経過と共に大きくなり、時間が経つにつれて大きな減速度を発生させることができる。 The assist torque Ta at step ST6 is, for example, as shown by a solid line in FIGS. 8 and 9, regardless of the passage of time, the rotation start cranking torque Tcr, that is, the torque related to the maximum static friction of the engine 10 and the compression pressure. Is set to the sum of torques. In this case, the difference between the clutch torque capacity Tcl and the assist torque Ta increases with the passage of time, and a large deceleration can be generated with the passage of time.
 また、このアシストトルクTaは、図9に一点鎖線で示すように、その増加勾配がクラッチトルク容量Tclの増加勾配よりも小さくなるように設定してもよい。この場合には、時間が経過しても、上記の例示よりもクラッチトルク容量TclとアシストトルクTaとの差の拡がりが抑えられるので、減速度の変化が小さく、エンジン10が始動し終えるまでの減速度の調整が容易になる。 Further, the assist torque Ta may be set such that the increase gradient is smaller than the increase gradient of the clutch torque capacity Tcl, as shown by a one-dot chain line in FIG. In this case, even if time elapses, the spread of the difference between the clutch torque capacity Tcl and the assist torque Ta can be suppressed as compared with the above example, so that the change in the deceleration is small and the engine 10 is completely started. Deceleration adjustment is easy.
 また、このアシストトルクTaは、図9に二点鎖線で示すように、時間の経過と共に減少させていってもよい。この場合には、上記の2つの例に対して、時間が経つにつれて大きな減速度を発生させることができ、且つ、アシストトルクTaの出力に要する二次電池25の電力消費量を減らすことができる。 Further, the assist torque Ta may be decreased with the passage of time as shown by a two-dot chain line in FIG. In this case, as compared with the above two examples, a large deceleration can be generated over time, and the power consumption of the secondary battery 25 required for the output of the assist torque Ta can be reduced. .
 このステップST6で設定したアシストトルクTaは、図8に示すように、エンジン10が始動し終えるまで出力させ続ける。これが為、このハイブリッド車両1においては、エンジン回転数の上昇と共に減速度が発生する。つまり、この制御システムに依れば、図8に本制御前2として二点鎖線で示すような、エンジン回転数が上昇しているにも拘わらず減速度が発生しないという事態を回避できる。従って、運転者は、エンジン回転数が上昇し始めてからエンジン10が始動し終えるまでに違和感を覚えない。 The assist torque Ta set in step ST6 is continuously output until the engine 10 has been started, as shown in FIG. For this reason, in the hybrid vehicle 1, deceleration occurs as the engine speed increases. That is, according to this control system, it is possible to avoid a situation in which deceleration does not occur even though the engine speed increases, as indicated by a two-dot chain line in FIG. Therefore, the driver does not feel uncomfortable until the engine 10 is started after the engine speed starts to increase.
 このように、本実施例の制御システムは、停止状態のエンジン10を走行中に始動させる際の違和感を運転者に与えずともすみ、確実にエンジンを始動させることができる。 Thus, the control system of the present embodiment does not give the driver the uncomfortable feeling when starting the engine 10 in a stopped state while traveling, and can start the engine reliably.
 ところで、動力源がエンジンのみで手動変速機が搭載されている一般的な車両において、シフトレバーがニュートラル位置のときにエンジンを停止した状態で惰性走行可能なものが知られている。この車両においては、運転者のクラッチ操作と変速操作によって前進用の変速段が選ばれた場合、駆動輪側のトルクがエンジン側に伝わって、エンジンが再始動する。その際、この車両においては、エンジン回転数の上昇開始と共に減速度が増加する。ステップST6のアシストトルクTaは、上記の何れの設定を適用してもよいが、かかる車両のエンジン始動時の減速度の増加度合いに合わせて設定することが好ましい。これにより、ハイブリッド車両1は、かかる車両と同等の減速感を運転者に与えることができる。従って、この制御システムは、運転者の更なる違和感の解消が可能になる。 By the way, in a general vehicle in which a power source is an engine only and a manual transmission is mounted, a vehicle capable of coasting with the engine stopped when the shift lever is in the neutral position is known. In this vehicle, when the forward gear is selected by the driver's clutch operation and gear shift operation, the driving wheel side torque is transmitted to the engine side, and the engine is restarted. At this time, in this vehicle, the deceleration increases as the engine speed starts to increase. Any of the above settings may be applied to the assist torque Ta in step ST6, but it is preferable to set the assist torque Ta according to the degree of increase in deceleration at the time of engine start of the vehicle. Thereby, the hybrid vehicle 1 can give the driver a feeling of deceleration equivalent to that of the vehicle. Therefore, this control system can further eliminate the driver's uncomfortable feeling.
 また、この制御システムは、上述した複数形態のステップST6のアシストトルクTaについて、例えば道路勾配等に応じた違和感のない減速度を発生させるべく、これらの中から選択できるようにしてもよい。また、この制御システムは、いつも同じ減速感が得られるように、その複数形態のステップST6のアシストトルクTaの中から1つだけが適用されるように構成してもよい。 Further, the control system may be able to select the assist torque Ta of the above-described plural forms of step ST6 from among these in order to generate a deceleration without a sense of incongruity according to, for example, a road gradient. Further, this control system may be configured such that only one of the plural assist torques Ta in step ST6 is applied so that the same deceleration feeling can be always obtained.
 更に、この制御システムは、アシストトルクTaの設定にクラッチトルク容量Tclを利用しているが、そのクラッチトルク容量Tclを用いずにアシストトルクTaが出力されるように構成してもよい。この場合には、クラッチトルク容量Tclを求める必要がなくなるので、係合部50a,50b間の移動量又はクラッチペダル51のペダル操作量の情報も不要になり、クラッチストロークセンサ52やクラッチペダルストロークセンサ53を設けずともすむ。従って、この制御システムは、部品点数の減少に伴う原価低減を図ることもできる。 Furthermore, this control system uses the clutch torque capacity Tcl for setting the assist torque Ta, but the assist torque Ta may be output without using the clutch torque capacity Tcl. In this case, since it is not necessary to obtain the clutch torque capacity Tcl, information on the amount of movement between the engaging portions 50a and 50b or the pedal operation amount of the clutch pedal 51 becomes unnecessary, and the clutch stroke sensor 52 and the clutch pedal stroke sensor are eliminated. 53 need not be provided. Therefore, this control system can also reduce the cost accompanying the reduction in the number of parts.
 例えば、ハイブリッドECU100には、クラッチ50が係合を開始したとの判定を行った場合、クラッチトルク容量Tclの代わりに車両前後加速度を監視し、その変動を抑えることができるようフィードバック制御しながらモータトルクを設定させる。そのモータトルクは、駆動力発生用のモータトルクとアシストトルクTaとの和である。そのアシストトルクTaは、回転開始クランキングトルクTcrを上限値にして増加させていけばよい。これにより、アシストトルクTaが回転開始クランキングトルクTcrに到達するまでの間においては、車両前後加速度の変動抑制により減速度の発生が抑えられるので、エンジン回転数の上昇開始前の減速度の発生という運転者の違和感を解消できる。また、エンジン回転数の上昇開始後には、アシストトルクTaが回転開始クランキングトルクTcrを上限にして抑えられるので、エンジン回転数の上昇と共に減速度を発生させることができ、運転者の違和感を解消できる。 For example, when the hybrid ECU 100 determines that the clutch 50 has started to be engaged, it monitors the vehicle longitudinal acceleration instead of the clutch torque capacity Tcl, and controls the motor while performing feedback control so that the fluctuation can be suppressed. Set the torque. The motor torque is the sum of the motor torque for generating the driving force and the assist torque Ta. The assist torque Ta may be increased with the rotation start cranking torque Tcr as an upper limit value. As a result, during the period until the assist torque Ta reaches the rotation start cranking torque Tcr, the occurrence of deceleration is suppressed by suppressing fluctuations in the longitudinal acceleration of the vehicle. This eliminates the driver's uncomfortable feeling. In addition, after the start of the engine speed increase, the assist torque Ta can be suppressed with the rotation start cranking torque Tcr as the upper limit, so that a deceleration can be generated as the engine speed increases, eliminating the driver's uncomfortable feeling. it can.
 また、上記の例示では、図7に示すように、クラッチトルク容量Tclと回転開始クランキングトルクTcrとの比較結果に基づいて、設定するアシストトルクTaの特性を変えている。制御システムには、その比較の代わりにクランク角センサ12の検出信号に基づきエンジン回転数Neを監視させ、エンジン10が回転しているのか否か又は運転者に減速度を感じさせるエンジン回転数Neなのか否かに基づいてアシストトルクTaの特性を変化させてもよい。 In the above example, as shown in FIG. 7, the characteristic of the assist torque Ta to be set is changed based on the comparison result between the clutch torque capacity Tcl and the rotation start cranking torque Tcr. Instead of the comparison, the control system monitors the engine speed Ne based on the detection signal of the crank angle sensor 12, and determines whether the engine 10 is rotating or makes the driver feel a deceleration. The assist torque Ta characteristic may be changed based on whether or not it is.
 その際、ハイブリッドECU100は、図10のフローチャートに示すように、解放されたクラッチ50が係合を開始したのか否かを判定して(ステップST11)、クラッチ50が係合を開始していなければ、係合開始との判定が為されるまで、ステップST1の判定を繰り返し、クラッチ50が係合を開始したとの判定であれば、クラッチトルク容量Tcl又はクラッチ係合度を推定する(ステップST12)。そして、このハイブリッドECU100は、エンジン10が回転しているのか否か(Ne>0?)又はエンジン回転数Neが所定回転数αを超えているのか否か(Ne>α?)を判定する(ステップST13)。その所定回転数αは、エンジン回転数Neが運転者に減速度を体感させる大きさであるのか否かに基づいて設定される。ここでは、減速度を体感させないエンジン回転数Neの上限値を所定回転数αに設定する。 At that time, as shown in the flowchart of FIG. 10, the hybrid ECU 100 determines whether or not the released clutch 50 has started engagement (step ST11), and if the clutch 50 has not started engagement. Until it is determined that the engagement is started, the determination in step ST1 is repeated. If it is determined that the clutch 50 has started engagement, the clutch torque capacity Tcl or the clutch engagement degree is estimated (step ST12). . The hybrid ECU 100 determines whether or not the engine 10 is rotating (Ne> 0?) Or whether the engine speed Ne exceeds a predetermined rotation number α (Ne> α?) ( Step ST13). The predetermined rotational speed α is set based on whether or not the engine rotational speed Ne is a magnitude that allows the driver to experience deceleration. Here, the upper limit value of the engine speed Ne at which the deceleration is not felt is set to the predetermined speed α.
 ハイブリッドECU100は、エンジン10が回転していない又はエンジン回転数Neが所定回転数αを超えていないと判定した場合、推定したクラッチトルク容量Tcl又はクラッチ係合度に応じてアシストトルクTaを設定し(ステップST14)、このアシストトルクTaをモータ/ジェネレータ20に出力させる(ステップST15)。このアシストトルクTaの設定と出力は、エンジン10が回転し始めるまで又はエンジン回転数Neが所定回転数αを超えるまで繰り返される。 When the hybrid ECU 100 determines that the engine 10 is not rotating or the engine rotational speed Ne does not exceed the predetermined rotational speed α, the hybrid ECU 100 sets the assist torque Ta according to the estimated clutch torque capacity Tcl or the clutch engagement degree ( In step ST14, the assist torque Ta is output to the motor / generator 20 (step ST15). The setting and output of the assist torque Ta are repeated until the engine 10 starts to rotate or until the engine speed Ne exceeds the predetermined speed α.
 そのアシストトルクTaは、先の例示と同様にクラッチトルク容量Tcl分のモータトルクである。これが為、ステップST12で推定されるものがクラッチ係合度の場合には、そのクラッチ係合度に対応するクラッチトルク容量Tclを求め、このクラッチトルク容量Tcl分のモータトルクをアシストトルクTaとして設定する。また、この場合には、そのクラッチ係合度に対応するアシストトルクTa(=Tcl)のマップを予め用意しておき、このクラッチ係合度とマップに基づいてアシストトルクTaを設定してもよい。これにより、運転者は、エンジン10が回転し始めるまで又はエンジン回転数Neが所定回転数αを超えるまでの間、エンジン回転数が上昇し始めていないにも拘わらず減速度を感じるという違和感を覚えない。 The assist torque Ta is a motor torque corresponding to the clutch torque capacity Tcl as in the previous example. Therefore, if what is estimated in step ST12 is the clutch engagement degree, the clutch torque capacity Tcl corresponding to the clutch engagement degree is obtained, and the motor torque corresponding to the clutch torque capacity Tcl is set as the assist torque Ta. In this case, a map of assist torque Ta (= Tcl) corresponding to the degree of clutch engagement may be prepared in advance, and assist torque Ta may be set based on the degree of clutch engagement and the map. As a result, the driver feels uncomfortable that he / she feels deceleration even though the engine speed has not started increasing until the engine 10 starts to rotate or until the engine speed Ne exceeds the predetermined speed α. Absent.
 一方、ハイブリッドECU100は、エンジン10が回転している又はエンジン回転数Neが所定回転数αを超えていると判定した場合、この判定を最初に行ったときのクラッチトルク容量Tcl分のモータトルクをアシストトルクTaとして設定し(ステップST16)、ステップST15に進んで、このアシストトルクTaをモータ/ジェネレータ20に出力させる。つまり、エンジン10が回転しているとの判定の場合には、エンジン10が回転し始めたときのクラッチトルク容量Tcl分のモータトルクをアシストトルクTaとして設定する。また、エンジン回転数Neが所定回転数αを超えているとの判定の場合には、エンジン回転数Neが所定回転数αを超えたときのクラッチトルク容量Tcl分のモータトルクをアシストトルクTaとして設定する。このステップST16で設定したアシストトルクTaは、エンジン10が始動し終えるまで出力させ続ける。これが為、このハイブリッド車両1においては、エンジン回転数の上昇と共に減速度が発生する。従って、運転者は、エンジン回転数が上昇し始めてからエンジン10が始動し終えるまでに違和感を覚えない。 On the other hand, when the hybrid ECU 100 determines that the engine 10 is rotating or the engine speed Ne exceeds the predetermined speed α, the hybrid ECU 100 obtains a motor torque corresponding to the clutch torque capacity Tcl when this determination is first performed. The assist torque Ta is set (step ST16), the process proceeds to step ST15, and the assist torque Ta is output to the motor / generator 20. That is, when it is determined that the engine 10 is rotating, the motor torque corresponding to the clutch torque capacity Tcl when the engine 10 starts rotating is set as the assist torque Ta. When it is determined that the engine speed Ne exceeds the predetermined speed α, the motor torque corresponding to the clutch torque capacity Tcl when the engine speed Ne exceeds the predetermined speed α is set as the assist torque Ta. Set. The assist torque Ta set in step ST16 is continuously output until the engine 10 has been started. For this reason, in the hybrid vehicle 1, deceleration occurs as the engine speed increases. Therefore, the driver does not feel uncomfortable until the engine 10 is started after the engine speed starts to increase.
 ここで、以上示した実施例においては歯車対60を介してモータ/ジェネレータ20を出力軸42に接続しているが、本実施例の制御システムは、モータ/ジェネレータ20を出力軸42に直接接続したハイブリッド車両や、モータ/ジェネレータ20を入力軸41に接続したハイブリッド車両に適用してもよく、上記の例示と同様の効果を得ることができる。 Here, in the embodiment described above, the motor / generator 20 is connected to the output shaft 42 via the gear pair 60, but the control system of this embodiment directly connects the motor / generator 20 to the output shaft 42. The present invention may be applied to a hybrid vehicle or a hybrid vehicle in which the motor / generator 20 is connected to the input shaft 41, and the same effects as those described above can be obtained.
 1 ハイブリッド車両
 10 エンジン
 11 出力軸
 20 モータ/ジェネレータ
 30 手動変速機
 41 入力軸
 42 出力軸
 50 クラッチ
 50a,50b 係合部
 51 クラッチペダル
 52 クラッチストロークセンサ
 53 クラッチペダルストロークセンサ
 81,81A,81B 変速操作装置
 81a シフトレバー
 81b シフトゲージ
 100 ハイブリッドECU
 101 エンジンECU
 102 モータ/ジェネレータECU
 EV 走行モード選択位置
 WL,WR 駆動輪
DESCRIPTION OF SYMBOLS 1 Hybrid vehicle 10 Engine 11 Output shaft 20 Motor / generator 30 Manual transmission 41 Input shaft 42 Output shaft 50 Clutch 50a, 50b Engagement part 51 Clutch pedal 52 Clutch stroke sensor 53 Clutch pedal stroke sensor 81, 81A, 81B 81a Shift lever 81b Shift gauge 100 Hybrid ECU
101 engine ECU
102 Motor / generator ECU
EV travel mode selection position WL, WR Drive wheel

Claims (2)

  1.  機械エネルギを動力とする機械動力源と、
     電気エネルギを変換した機械エネルギを動力とする電気動力源と、
     前記機械動力源及び前記電気動力源と駆動輪との間のトルク伝達が可能なトルク伝達装置と、
     前記トルク伝達装置のトルク伝達形態を運転者が手動操作で変える為の第1操作装置と、
     前記機械動力源と前記電気動力源との間及び当該機械動力源と前記駆動輪との間のトルク伝達を断接可能なトルク断接装置と、
     前記トルク断接装置の断接動作を運転者が手動操作する際の第2操作装置と、
     を備え、
     走行中に前記第1操作装置と前記第2操作装置とを操作することで、前記トルク断接装置の係合動作に伴いトルクを前記機械動力源に伝えて停止中の当該機械動力源を始動させる際、運転者に減速度を体感させない大きさのアシストトルクを前記電気動力源に出力させ、前記トルク断接装置のトルク容量が前記機械動力源の回転開始クランキングトルクまで増加したら、該トルク容量よりも小さいアシストトルクを前記電気動力源に出力させることを特徴とした車両の制御システム。
    A mechanical power source powered by mechanical energy;
    An electrical power source powered by mechanical energy converted from electrical energy;
    A torque transmission device capable of transmitting torque between the mechanical power source and the electric power source and drive wheels;
    A first operating device for the driver to manually change the torque transmission form of the torque transmitting device;
    A torque connecting / disconnecting device capable of connecting / disconnecting torque transmission between the mechanical power source and the electric power source and between the mechanical power source and the drive wheel;
    A second operating device when a driver manually operates the connecting / disconnecting operation of the torque connecting / disconnecting device;
    With
    By operating the first operating device and the second operating device during traveling, torque is transmitted to the mechanical power source in accordance with the engagement operation of the torque connecting / disconnecting device, and the stopped mechanical power source is started. When the torque power of the torque connecting / disconnecting device is increased to the rotation start cranking torque of the mechanical power source, the assist torque having a magnitude that does not cause the driver to experience deceleration is output to the electric power source. A vehicle control system that outputs an assist torque smaller than a capacity to the electric power source.
  2.  前記トルク容量が前記回転開始クランキングトルクよりも小さいときのアシストトルクは、前記トルク容量に応じた大きさにすることを特徴とした請求項1記載の車両の制御システム。 2. The vehicle control system according to claim 1, wherein the assist torque when the torque capacity is smaller than the rotation start cranking torque is set to a magnitude corresponding to the torque capacity.
PCT/JP2011/058136 2011-03-30 2011-03-30 Vehicle control system WO2012131959A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2011/058136 WO2012131959A1 (en) 2011-03-30 2011-03-30 Vehicle control system
CN201180069369.2A CN103442958B (en) 2011-03-30 2011-03-30 The control system of vehicle
DE112011105107.7T DE112011105107B4 (en) 2011-03-30 2011-03-30 Control system of a vehicle
JP2013506959A JP5648739B2 (en) 2011-03-30 2011-03-30 Vehicle control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/058136 WO2012131959A1 (en) 2011-03-30 2011-03-30 Vehicle control system

Publications (1)

Publication Number Publication Date
WO2012131959A1 true WO2012131959A1 (en) 2012-10-04

Family

ID=46929782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058136 WO2012131959A1 (en) 2011-03-30 2011-03-30 Vehicle control system

Country Status (4)

Country Link
JP (1) JP5648739B2 (en)
CN (1) CN103442958B (en)
DE (1) DE112011105107B4 (en)
WO (1) WO2012131959A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115635A1 (en) * 2013-01-22 2014-07-31 トヨタ自動車株式会社 Hybrid vehicle control device
CN104442795A (en) * 2013-09-17 2015-03-25 罗伯特·博世有限公司 Method and device for monitoring a drive of a motor vehicle
US9090256B2 (en) 2011-03-30 2015-07-28 Toyota Jidosha Kabushiki Kaisha Vehicle control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016217575A1 (en) * 2016-09-15 2018-03-15 Volkswagen Aktiengesellschaft Drive arrangement for a vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202054A (en) * 2009-03-04 2010-09-16 Toyota Motor Corp Control apparatus for hybrid vehicle
JP2011005904A (en) * 2009-06-24 2011-01-13 Toyota Motor Corp Controller for hybrid vehicle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3458795B2 (en) * 1999-10-08 2003-10-20 トヨタ自動車株式会社 Hybrid drive
JP3991538B2 (en) * 1999-12-02 2007-10-17 トヨタ自動車株式会社 Vehicle control device
JP4122141B2 (en) 2001-05-18 2008-07-23 本田技研工業株式会社 Hybrid vehicle drive control device
JP4462170B2 (en) * 2005-11-07 2010-05-12 日産自動車株式会社 Engine start control device for hybrid vehicle
DE102008002383A1 (en) 2008-06-12 2009-12-17 Zf Friedrichshafen Ag Method for controlling a hybrid powertrain
DE102008053391B4 (en) 2008-10-27 2021-12-09 Audi Ag Device for operating a motor vehicle with a hybrid drive
JP5359387B2 (en) 2009-03-06 2013-12-04 日産自動車株式会社 Engine start control device for hybrid vehicle
JP2011020542A (en) * 2009-07-15 2011-02-03 Nissan Motor Co Ltd Electric vehicle control device
JP4816778B2 (en) * 2009-08-18 2011-11-16 トヨタ自動車株式会社 Control device for hybrid vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202054A (en) * 2009-03-04 2010-09-16 Toyota Motor Corp Control apparatus for hybrid vehicle
JP2011005904A (en) * 2009-06-24 2011-01-13 Toyota Motor Corp Controller for hybrid vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9090256B2 (en) 2011-03-30 2015-07-28 Toyota Jidosha Kabushiki Kaisha Vehicle control device
WO2014115635A1 (en) * 2013-01-22 2014-07-31 トヨタ自動車株式会社 Hybrid vehicle control device
JP5939317B2 (en) * 2013-01-22 2016-06-22 トヨタ自動車株式会社 Control device for hybrid vehicle
RU2610927C1 (en) * 2013-01-22 2017-02-17 Тойота Дзидося Кабусики Кайся Hybrid vehicle control device
CN104442795A (en) * 2013-09-17 2015-03-25 罗伯特·博世有限公司 Method and device for monitoring a drive of a motor vehicle
CN104442795B (en) * 2013-09-17 2019-06-04 罗伯特·博世有限公司 The method and apparatus being monitored for the driver to motor vehicle

Also Published As

Publication number Publication date
DE112011105107T5 (en) 2014-01-16
DE112011105107B4 (en) 2021-08-19
JP5648739B2 (en) 2015-01-07
CN103442958B (en) 2016-03-23
CN103442958A (en) 2013-12-11
JPWO2012131959A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
JP4348557B2 (en) Control device for hybrid electric vehicle
US8050830B2 (en) Driving apparatus for vehicle
JP5045431B2 (en) Engine start control device for hybrid vehicle
JP4816778B2 (en) Control device for hybrid vehicle
JP5471829B2 (en) Accelerator pedal force control device for hybrid vehicle
JP5367682B2 (en) Vehicle power transmission control device
WO2011135697A1 (en) Gear shift instruction system for vehicles
US9381910B2 (en) Hybrid electric vehicle control device
WO2011048636A1 (en) Controller of vehicle
JP2010149640A (en) Engine start controller and engine start control method
WO2015041044A1 (en) Control device for vehicle
JP2010076625A (en) Hybrid car
WO2013099027A1 (en) Vehicle control system
JP2012061898A (en) Vehicle control system
JP5918464B2 (en) Control device for hybrid vehicle
JP2010184535A (en) Hybrid vehicle
JP2012224132A (en) Shift control system of hybrid vehicle
JP5648739B2 (en) Vehicle control system
WO2020148973A1 (en) Vehicle control device
JP2011183847A (en) Control apparatus for vehicle
JP2011005904A (en) Controller for hybrid vehicle
JP5381120B2 (en) Shift control device and shift control method for hybrid vehicle
JP2012136191A (en) Vehicle control system
JP5018744B2 (en) Hybrid vehicle
JP5327177B2 (en) Vehicle control system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180069369.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862191

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013506959

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112011105107

Country of ref document: DE

Ref document number: 1120111051077

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862191

Country of ref document: EP

Kind code of ref document: A1