WO2012131905A1 - タービン静翼、およびそれを用いた蒸気タービン設備、タービン静翼の設計方法 - Google Patents

タービン静翼、およびそれを用いた蒸気タービン設備、タービン静翼の設計方法 Download PDF

Info

Publication number
WO2012131905A1
WO2012131905A1 PCT/JP2011/057831 JP2011057831W WO2012131905A1 WO 2012131905 A1 WO2012131905 A1 WO 2012131905A1 JP 2011057831 W JP2011057831 W JP 2011057831W WO 2012131905 A1 WO2012131905 A1 WO 2012131905A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
turbine
value
steam
less
Prior art date
Application number
PCT/JP2011/057831
Other languages
English (en)
French (fr)
Inventor
誠一 木村
清 瀬川
忠晴 岸部
芳雄 鹿野
宏元 李
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2011/057831 priority Critical patent/WO2012131905A1/ja
Publication of WO2012131905A1 publication Critical patent/WO2012131905A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor

Definitions

  • the present invention relates to a stationary blade of an axial flow turbine, particularly a stationary blade having a low aspect ratio.
  • the secondary flows developed from the blade tip and blade root interfere with each other, producing a more turbulent flow.
  • the aspect ratio is approximately 1.0 or less
  • the secondary flows at the blade tip and blade root often interfere with each other in the blade height direction.
  • Patent Document 1 does not take into consideration the flow peculiar to a low aspect ratio paragraph composed of low aspect ratio blades.
  • an object of the present invention is to provide a turbine stator blade that is a low aspect ratio turbine stator blade and can improve the paragraph efficiency.
  • the turbine stationary blade of the axial turbine has a blade trailing edge formed linearly in the radial direction of the turbine, and the shape and cross-sectional area of the airfoil at each position in the blade height direction are the same.
  • S / t value s: throat length, t: pitch length
  • the t value distribution has a maximum value between the blade height direction center and the blade tip, and has a minimum value at the blade root.
  • FIG. 1 It is sectional drawing showing the principal part structure of the steam turbine stage part which concerns on one Example of this invention. It is a perspective view of the cascade structure of a general low aspect ratio turbine stationary blade. It is explanatory drawing which represents typically the eddy current which generate
  • FIG. 1 is a cross-sectional view showing the main structure of a steam turbine stage section according to the present embodiment.
  • FIG. 2 is a perspective view showing a cascade structure of a general low aspect ratio turbine stationary blade.
  • FIG. 3 is a diagram schematically showing a vortex generated between the blades of the cascade structure shown in FIG.
  • FIG. 4 is a graph showing the s / t value distribution in the blade height direction of the turbine stationary blade according to the present embodiment.
  • the turbine stage of the steam turbine includes a stationary blade 3 arranged in a circumferential direction between a diaphragm outer ring 1 and a diaphragm inner ring 2, and a steam flow direction of the stationary blade 3.
  • the rotor blades 5 are arranged in the circumferential direction on the turbine rotor 4 so as to face the downstream side (hereinafter simply referred to as the downstream side).
  • a shroud 6 is provided at the tip of the rotor blade 5 in the turbine radial direction outer periphery side (hereinafter simply referred to as the outer periphery side), and a seal structure (not shown) is provided between the stationary blades and the opposed stationary body.
  • the steam main flow 7 which is a working fluid passes between the blades from the front edge 8 of the stationary blade 3 and flows out from the rear edge 9.
  • the steam turbine causes the main steam 7 flowing out from the stationary blade 3 to collide with the moving blade 5 on the downstream side, thereby rotating the turbine rotor 4 and using a generator (not shown) connected to the end of the turbine rotor 4. It generates electricity by converting rotational energy into electrical energy.
  • FIG. 2 shows a general low-aspect-ratio stationary blade cascade structure as a comparative example with the present embodiment.
  • a plurality of stator blades 3 are arranged in the circumferential direction between the diaphragm outer ring 1 and the diaphragm inner ring 2.
  • the stationary blade 3 has a blade root 10 side fixed to the diaphragm inner ring 2 and a blade tip 11 side fixed to the diaphragm outer ring 1.
  • the stationary blades 3 are installed at equal intervals using the interval length t (pitch length) between adjacent blades in the turbine circumferential direction, which is determined from the number of blades installed in the blade row.
  • the shortest length s between the blade trailing edge of the stationary blade 3a and the adjacent stationary blade 3b is referred to as a throat length.
  • FIG. 3 schematically shows the vortex of the vapor flow generated between the blades of the cascade structure shown in FIG.
  • the diaphragm outer ring 1 and inner ring 2 are not shown.
  • the stationary blade 3 has a pressure surface 12 formed on the blade side and a suction surface 13 formed on the blade back side.
  • the main steam flow 7 is supplied from the front edge portion 8 of the stationary blade 3, passes through the inter-blade channel 14 formed between the pressure surface 12 and the negative pressure surface 13, and flows out from the rear edge portion 9.
  • a pressure gradient is generated between the vanes. For this reason, a secondary flow 15 is generated from the pressure surface 12 toward the suction surface 13. Further, the steam main flow 7 flows into the inter-blade channel 14 from the leading edge 8, and vortices are generated on the pressure surface 12 and the negative pressure surface 13.
  • the vortex existing on the pressure surface 12 forms the flow channel vortex 16 while developing in the inter-blade flow channel, and also moves to the negative pressure surface 13 due to the influence of the secondary flow 15.
  • the flow path vortex 16 is generated at the blade root 10 and the blade tip 11, respectively.
  • the flow path vortices 16 generated at the blade root 10 and the blade tip 11 interfere with each other. It forms a turbulent flow.
  • This flow path vortex 16 causes a reduction in work efficiency that the turbine blades should originally perform, and becomes a major factor of side wall loss.
  • the low aspect ratio turbine stationary blade having an aspect ratio of 1.0 or less will be described.
  • the s / t value distribution in the blade height direction of the turbine stationary blade according to the present embodiment is shown by a solid line, and the s / t value distribution by the conventional free vortex design is shown by a dotted line.
  • the horizontal axis represents the s / t value, which is the ratio of the throat length s to the pitch length t.
  • the vertical axis represents the blade height.
  • the s / t value gradually increases from the blade root toward the blade tip at a constant rate and is distributed linearly.
  • the s / t value is distributed in an arc shape from the blade root to the blade tip. More specifically, the s / t value distribution of the present embodiment has a minimum value at the blade root and gradually increases so as to draw an arc toward the blade tip, and the span center (blade center) and the blade tip It has a maximum value in between and gradually decreases to arc again toward the tip of the wing.
  • the s / t value at the blade tip is not less than the intermediate value between the maximum s / t value and the minimum s / t value and less than the maximum s / t value.
  • the minimum s / t value of the blade root is 65% or more of the maximum s / t value and less than the s / t value of the blade root at the time of free vortex design.
  • the blade cross-sectional area composed of the blade tip throat length, the blade root throat length, the suction surface 13 and the blade trailing edge 9 so as to be within this range is the value of this embodiment, and is free.
  • the arc shape, blade tip throat length, and blade root throat length of the distribution curve are determined so as to be equal to the value of the cross-sectional area between the blades at the time of vortex design.
  • the s / t value distribution curve of the turbine stationary blade gradually increases from the minimum s / t value to the maximum s / t value at the blade root, and from the position having the maximum s / t value to the blade tip. It is represented by an upwardly convex arcuate curve that gradually decreases.
  • the s / t distribution is given by changing the stacking of the closed curve (airfoil shape) formed by the pressure surface 12 and the suction surface 13 of the stationary blade 3 (how the airfoil is stacked from the blade root to the blade tip).
  • the shape and cross-sectional area of the airfoil are the same from the blade root toward the blade tip, and the blade trailing edge is stacked in a straight line along the turbine radial direction when viewed from the turbine axial direction. To do. Further, it is preferable to form the s / t value distribution of this embodiment by stacking by rotating the blade cross section at each blade height with the straight blade trailing edge as the central axis.
  • FIG. 5 shows the cascade structure of the turbine vane and the cross section of the flow path between the blades according to the free vortex design.
  • FIG. 6 shows the blade cascade structure of the turbine stationary blade according to the present embodiment and the cross section between the blades.
  • FIG. 7 shows a comparison of the cross-sectional area between the blades of the turbine vane according to one embodiment of the present invention and the cross-sectional area between the blades of the turbine vane according to the free vortex design.
  • the cross-sectional area between the blades in the throat portion of this embodiment is equal to the cross-sectional area between the blades during free vortex design.
  • the cross-sectional shape of the flow path between the blades in the throat section of this example increases the flow path width (throat length) from the blade root toward the center of the span, and flows between the center of the span and the blade tip. The road width is maximized and then narrowed again toward the tip. Therefore, the shape of the cross section between the blades in the throat portion of the present embodiment is straight on one side on the blade trailing edge 9 side, compared with the shape of the cross section between the blades at the time of conventional free vortex design.
  • the shape of the cross-blade channel cross section of the throat portion of this embodiment is closer to the pressure surface 12 side than the shape of the cross-blade flow channel cross section at the time of conventional free vortex design. It becomes a concave shape.
  • FIG. 8 shows the blade height direction distribution of the stationary blade outlet flow rate of the turbine stationary blade according to the present embodiment.
  • the outlet flow distribution of the turbine vane at the time of the free vortex design shown in FIG. 4 is indicated by a dotted line, and the outlet flow distribution of the turbine vane according to the present embodiment is indicated by a solid line.
  • the flow rate of the steam flowing through the vane outlet is distributed substantially uniformly from the blade root toward the blade tip.
  • the turbine stationary blade according to the present embodiment has a distribution in which the s / t value is maximized between the center of the span and the blade tip, the stationary blade outlet flow rate increases between the center of the span and the blade tip. An increase in the flow rate leads to an increase in the axial flow velocity. Therefore, in the turbine stationary blade according to the present embodiment, the axial flow velocity of steam from the center of the span to the blade tip increases.
  • FIG. 9 shows the efficiency distribution of the turbine stationary blade according to the present embodiment.
  • the graph indicated by the solid line is the efficiency distribution of the turbine vane according to the present embodiment
  • the graph indicated by the dotted line is the efficiency distribution of the turbine vane at the time of the free vortex design shown in FIG. According to FIG. 9, it can be seen that the efficiency of the turbine stationary blade according to the present embodiment is improved from the center of the span to the blade tip as compared with the turbine stationary blade of the free vortex design.
  • a large flow rate can be distributed to the leading end side of the stationary blade, so that when flowing into the moving blade, the moving blade span is increased.
  • a large amount of flow can be distributed from the center to the blade tip. Therefore, the efficiency can be improved in the region, and the paragraph efficiency can be improved as a result of the flow rate averaging in the blade height direction.
  • FIG. 10 shows the efficiency improvement amount with respect to the position of the maximum s / t value in the turbine stationary blade according to the present embodiment.
  • the vertical axis shows the amount of improvement in efficiency when the present invention is applied as a relative value from the turbine vane by the free vortex design shown in FIG. 4, and is the maximum value of the amount of improvement in efficiency when the present invention is applied. Indicates the dimensioned value.
  • FIG. 10 it can be seen that the present invention works most effectively when the position of the maximum s / t value is in the range from 75% to 95% of the entire blade height from the blade root. It should be noted that the same effect can be obtained by replacing s / t, which has been used in the description so far, with a blade exit angle sin ⁇ 1 (s / t) representing a geometric angle of the turbine stationary blade.
  • FIG. 11 is a system diagram of a steam turbine to which the turbine blade of the present invention is applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

 本発明は、低アスペクト比のタービン静翼において、側壁損失を低減し、段落効率を向上させることができるタービン静翼を提供することを目的とする。 本発明の軸流タービンの静翼3は、後縁部9がタービン半径方向に直線状に形成され、翼高さ方向各位置における翼型の形状および断面積が同一の低アスペクト比静翼であり、かつ翼高さ方向翼根元10から翼先端11に向けて弧状に形成されたs/t値(s:スロート長 t:ピッチ長)分布を有し、該s/t値分布は、翼高さ方向中央部と翼先端との間に最大値を有し、かつ翼根元に最小値を有することを特徴とする。

Description

タービン静翼、およびそれを用いた蒸気タービン設備、タービン静翼の設計方法
 本発明は、軸流タービンの静翼、特に低アスペクト比の静翼に係る。
 軸流タービンにおいては、性能向上を目的とした種々の技術が採用されており、高い効率を実現している。タービンの性能向上を実現するためには、タービン内部の圧力、段落、排気、機械等の各損失を低減させることが必要不可欠となる。中でも、段落損失のうち、側壁損失はタービンの各段落に共通する損失である。この損失は、二次流れの影響により、翼前縁より発生する渦が翼間にて発達し、流路渦を形成することが主な原因である。
 一般的に、軸流タービンのタービン翼では、翼根元から翼先端に向けて、スロート長sとピッチ長tで構成されるs/tが徐々に大きくなる直線状のs/t分布を用いたフリーボルテックス設計が古くから採用されている。
 しかし、上記フリーボルテックス設計では、翼列内の翼間に生じる二次流れや渦流等により側壁損失が発生しやすく、段落損失が増大しやすい。
 そこで、例えば特許文献1に記載された技術のように、タービン翼のスタッキングを翼高さ方向に変化させ、s/t分布を変化させることで、二次流れや渦流の影響を低減し、側壁損失を低減する技術が提案されている。
特開平6-272504号公報
 ところで、翼高さと翼弦長の比であるアスペクト比が比較的小さい低アスペクト比のタービン静翼では、翼先端および翼根元より発達する二次流れが互いに干渉し、より乱れの大きい流れが発生する場合がある。特に、アスペクト比が概ね1.0以下の場合に、翼先端及び翼根元の二次流れが互いに翼高さ方向で干渉する場合が多い。
 しかしながら、特許文献1に記載された技術は、低アスペクト比翼で構成された低アスペクト比段落特有の流れについて考慮したものではない。
 そこで、本発明は、低アスペクト比のタービン静翼であって、段落効率を向上させることができるタービン静翼を提供することを目的とする。
 上記目的を達成するために、本発明の軸流タービンのタービン静翼は、翼後縁部がタービン半径方向に直線状に形成され、翼高さ方向各位置における翼型の形状および断面積が同一の低アスペクト比静翼であり、かつ翼高さ方向翼根元から翼先端に向けて弧状に形成されたs/t値(s:スロート長 t:ピッチ長)分布を有し、該s/t値分布は、翼高さ方向中央部と翼先端との間に最大値を有し、かつ翼根元に最小値を有することを特徴とする。
 本発明によれば、低アスペクト比のタービン静翼であって、段落効率を向上させることができるタービン静翼を提供することができる。
本発明の一実施例に係る蒸気タービン段落部の要部構造を表す断面図である。 一般的な低アスペクト比タービン静翼の翼列構造の斜視図である。 図2に示した翼列構造の翼間に発生する渦流を模式的に表す説明図である。 本発明の一実施例に係るタービン静翼の翼高さ方向のs/t値分布を表すグラフである。 フリーボルテックス設計によるタービン静翼の翼列構造および翼間流路断面を表す説明図である。 本発明の一実施例に係るタービン静翼の翼列構造および翼間流路断面を表す説明図である。 本発明の一実施例に係るタービン静翼の翼間流路断面積とフリーボルテックス設計によるタービン静翼の翼間流路断面積との比較図である。 本発明の一実施例に係るタービン静翼の翼高さ方向の静翼出口流量分布を表すグラフである。 本発明の一実施例に係るタービン静翼の翼高さ方向の効率分布を表すグラフである。 本発明の一実施例に係るタービン静翼における、最大s/t値の位置に対する効率改善量を示すグラフである。 本発明の一実施例に係るタービン静翼を適用した蒸気タービンのシステム系統図である。
 以下、本発明を実施するための形態について、適宜図を参照して詳細に説明する。なお、各図面を通し、同等の構成要素には同一の符号を付してある。
 以下、本発明の一実施例として、本発明のタービン静翼を蒸気タービンの低アスペクト比静翼に適用した例について説明する。
 図1は、本実施例に係る蒸気タービン段落部の要部構造を示した断面図である。図2は、一般的な低アスペクト比タービン静翼の翼列構造を示した斜視図である。図3は、図2に示した翼列構造の翼間に発生する渦流を模式的に表した図である。図4は、本実施例に係るタービン静翼の翼高さ方向のs/t値分布を示したグラフである。
 図1に示すように、本実施例に係る蒸気タービンのタービン段落は、ダイヤフラム外輪1とダイヤフラム内輪2との間にタービン周方向に列設された静翼3と、静翼3の蒸気流れ方向下流側(以下、単に下流側と記載する)に対向して、タービンロータ4に周方向に列設された動翼5とから構成される。動翼5のタービン半径方向外周側(以下、単に外周側と記載する)の先端にはシュラウド6が設けられ、対向する静止体との間にシール構造(図示せず)が設けられている。
 作動流体である蒸気主流7は、静翼3の前縁部8より翼間を通過し、後縁部9から流出する。蒸気タービンは、静翼3から流出した蒸気主流7を下流側の動翼5に衝突させることで、タービンロータ4を回転させ、タービンロータ4の端部に接続する発電機(図示せず)によって回転エネルギーを電気エネルギーに変換して発電を行う。
 図2に、本実施例との比較例として一般的な低アスペクト比静翼の翼列構造を示す。静翼3は、ダイヤフラム外輪1とダイヤフラム内輪2との間に、周方向に複数枚列設されている。静翼3は、翼根元10側をダイヤフラム内輪2に固定され、翼先端11側をダイヤフラム外輪1に固定される。また、静翼3は、翼列内に設置される翼枚数から決定される、タービン周方向に隣り合う翼の間隔長さt(ピッチ長)を用いて、等間隔に設置される。ここで、静翼3aの翼後縁部と隣り合う静翼3bとの最短長さsをスロート長という。
 図3に、図2に示した翼列構造の翼間に発生する蒸気流の渦を模式的に示す。なお、ダイヤフラム外輪1および内輪2は図示を省略する。
 静翼3は、翼腹側に形成される圧力面12、および翼背側に形成される負圧面13を有する。蒸気主流7は、静翼3の前縁部8より供給され、圧力面12と負圧面13との間に形成される翼間流路14を通過し、後縁部9より流出する。蒸気主流7が翼間流路14を通過する際、翼間に圧力勾配が生じる。このため、圧力面12から負圧面13へ向かう二次流れ15が生じる。また、前縁部8より蒸気主流7が翼間流路14に流入し、圧力面12と負圧面13に渦が発生する。この内、圧力面12に存在する渦は、翼間流路内で発達しながら、流路渦16を形成し、また、二次流れ15の影響を受け、負圧面13へ移動する。流路渦16は、翼根元10および翼先端11でそれぞれ発生する。アスペクト比が小さい静翼、特にアスペクト比が1.0以下の低アスペクト比静翼で構成される翼列構造では、翼根元10および翼先端11でそれぞれ発生した流路渦16が、相互に干渉し合い、乱れの大きい流れを形成している。この流路渦16は、本来タービン翼が行うべき仕事の効率低下を招き、側壁損失の大きな要因となる。
 以上説明した課題を踏まえて、本実施例のアスペクト比1.0以下の低アスペクト比タービン静翼について説明する。図4に、本実施例に係るタービン静翼の翼高さ方向のs/t値分布を実線で、従来のフリーボルテックス設計によるs/t値分布を点線で示す。図4において、横軸はスロート長sとピッチ長tの比であるs/t値を表す。また、縦軸は翼高さを表す。
 従来のフリーボルテックス設計では、s/t値は、翼根元から翼先端に向かって一定の割合で徐々に大きくなり、直線状に分布する。
 一方、本実施例に係るタービン静翼では、s/t値は翼根元から翼先端にむけて弧状に分布する。より詳細には、本実施例のs/t値分布は、翼根元に最小値を有し、翼先端に向けて弧を描くように漸次増大し、スパン中央(翼中央)と翼先端との間に最大値を有し、翼先端に向けて再び弧を描くように漸次減少する。翼先端のs/t値は、最大s/t値と最小s/t値との中間値以上、最大s/t値未満とする。一方、翼根元の最小s/t値は、最大s/t値の65%以上、フリーボルテックス設計時の翼根元のs/t値未満とする。この範囲内に収まるように、かつ、翼先端スロート長、翼根元スロート長、負圧面13、および翼後縁部9で構成される翼間流路断面積が、本実施例の値と、フリーボルテックス設計時の翼間流路断面積の値とで等しくなるように、分布曲線の弧の形状、翼先端スロート長、および翼根元スロート長を決定する。
 よって、本実施例に係るタービン静翼のs/t値分布曲線は、翼根元の最小s/t値から最大s/t値まで漸次大きくなり、最大s/t値を持つ位置から翼先端まで漸次小さくなる、上側に凸する弧状曲線で表される。ここで、s/t値分布の与え方について説明する。s/t分布は静翼3の圧力面12と負圧面13で構成される閉曲線(翼型)のスタッキング(翼型の翼根元から翼先端部への積み上げ方)を変えることで与える。本実施例では、翼根元から翼先端に向かって翼型の形状、断面積を同一とし、翼後縁部の形状をタービン軸方向から見てタービン半径方向に沿った直線状になるようにスタッキングする。さらに、直線状の翼後縁部を中心軸として、各翼高さにおける翼断面を回転させてスタッキングすることにより本実施例のs/t値分布を形成するのが良い。
 図5に、フリーボルテックス設計によるタービン静翼の翼列構造および翼間流路断面を示す。図6に、本実施例に係るタービン静翼の翼列構造および翼間流路断面を示す。図7に、本発明の一実施例に係るタービン静翼の翼間流路断面積とフリーボルテックス設計によるタービン静翼の翼間流路断面積とを比較した図を示す。
 前述したように、本実施例のスロート部の翼間流路断面積は、フリーボルテックス設計時の翼間流路断面積と等しい。一方で、本実施例のスロート部の翼間流路断面の形状は、翼根元からスパン中央部に向かって流路幅(スロート長)が大きくなり、スパン中央部と翼先端との間で流路幅が最大となり、その後、先端に向かって再度狭くなるように形成される。従って、本実施例のスロート部の翼間流路断面の形状は、翼後縁部9側の一辺が直線状であり、従来のフリーボルテックス設計時の翼間流路断面の形状と比較して翼中央部と翼先端部との間で負圧面13に向って凸するように膨らんだ形状になる。一方、翼先端部と翼根元部では、本実施例のスロート部の翼間流路断面の形状は、従来のフリーボルテックス設計時の翼間流路断面の形状と比較して圧力面12側に凹んだ形状となる。
 図8に、本実施例に係るタービン静翼の静翼出口流量の翼高さ方向分布を示す。図4に示したフリーボルテックス設計時のタービン静翼の出口流量分布を点線で示し、本実施例に係るタービン静翼の出口流量分布を実線で示す。図8に示したように、フリーボルテックス設計によるタービン静翼では、静翼出口を流れる蒸気の流量は、翼根元から翼先端に向けて略一定に分布している。一方、本実施例に係るタービン静翼は、s/t値をスパン中央から翼先端の間で最大とする分布としたため、スパン中央から翼先端の間で静翼出口流量が増大する。流量の増大は、軸流速度の増大に繋がる。従って、本実施例に係るタービン静翼では、スパン中央から翼先端までの間の蒸気の軸流速度が増加する。
 図9に、本実施例に係るタービン静翼の効率分布を示す。実線で示されたグラフが、本実施例に係るタービン静翼の効率分布であり、点線で示されたグラフが、図4に示したフリーボルテックス設計時のタービン静翼の効率分布である。図9によれば、フリーボルテックス設計によるタービン静翼と比較して、本実施例に係るタービン静翼ではスパン中央部から翼先端にかけて効率が改善されていることが分かる。
 本発明によれば、低アスペクト比タービン静翼において、特にアスペクト比1.0以下の静翼において、静翼の先端側に流量を多く配分でき、それにより動翼に流入する際、動翼スパン中央部から翼先端にかけて流量を多く配分することができる。よって、当該領域において、効率向上することができ、翼高さ方向に流量平均した結果、段落効率を向上させることができる。
 次に、図10に、本実施例に係るタービン静翼における、最大s/t値の位置に対する効率改善量を示す。縦軸は、本発明を適用した場合の効率改善量を図4に示したフリーボルテックス設計によるタービン静翼からの相対値で示し、本発明を適用した場合の効率改善量の最大値にて無次元化した値を示す。図10によれば、本発明は、最大s/t値の位置が、特に翼根元から翼高さ全体の75%から95%まで範囲にあるとき、最も効果的に作用することが分かる。なお、これまで説明に用いてきたs/tを、タービン静翼の幾何学的な角度を表す翼出口角sin-1(s/t)と置き換えても同様な効果を得ることができる。
 図11は、本発明のタービン翼を適用した蒸気タービンのシステム図である。
 図11に図示するように、蒸気タービンでは、ボイラー等の蒸気発生器(図示せず)で加圧・加熱された蒸気を主蒸気配管17に通して高圧タービン18に送る。高圧タービン18にて仕事をした蒸気は、再熱器19で再び加熱された後、中圧タービン20へと送られ、仕事を行う。中圧タービン20から排出された蒸気は、クロスオーバ管(連絡管)21を通り、低圧タービン22aおよび22bに送られ、仕事を行う。高圧タービン18、中圧タービン20、低圧タービン22は、回転可能なタービンロータ23で機械的に連結されており、タービンロータ23に連結された発電機24によって、回転仕事を電力に変換する。低圧タービン22aおよび22bから排出された蒸気は、さらに下流に設置された復水器(図示せず)に導入され、そこで凝縮されて復水となり、再び蒸気発生器に還流する。
3 静翼
5 動翼
7 蒸気主流
10 翼根元
11 翼先端
12 圧力面
13 負圧面
14 翼間流路
15 二次流れ
16 流路渦
17 主蒸気配管
18 高圧タービン
20 中圧タービン
22 低圧タービン
24 発電機

Claims (12)

  1.  軸流タービンのタービン静翼であって、
     前記タービン静翼は、翼後縁部がタービン半径方向に直線状に形成され、翼高さ方向各位置における翼型の形状および断面積が同一の低アスペクト比静翼であり、かつ翼高さ方向翼根元から翼先端に向けて弧状に形成されたs/t値(s:スロート長 t:ピッチ長)分布を有し、
     該s/t値分布は、翼高さ方向中央部と翼先端との間に最大値を有し、かつ翼根元に最小値を有することを特徴とするタービン静翼。
  2.  請求項1記載のタービン静翼において、
     前記s/t値分布は、翼先端のs/t値が、前記最大値と前記最小値との中間値以上、かつ前記最大値未満であり、翼根元のs/t値が、前記最大値の65%以上、フリーボルテックス設計時の翼根元のs/t値未満であることを特徴とするタービン静翼。
  3.  請求項2記載のタービン静翼において、
     前記s/t値分布は、前記タービン静翼の翼長に対して翼根元より75%以上95%以下の翼高さ位置に前記最大値を有することを特徴とするタービン静翼。
  4.  請求項3記載のタービン静翼において、
     前記タービン静翼のアスペクト比は、1.0以下であることを特徴とするタービン静翼。
  5.  水を加熱して蒸気を生成する蒸気発生器と、該蒸気発生器で生成した前記蒸気で駆動するタービンと、該タービンを駆動した前記蒸気を復水する復水器とを備える蒸気タービン設備であって、
     前記タービンは、翼後縁部がタービン半径方向に直線状に形成され、翼高さ方向各位置における翼型の形状および断面積が同一に形成された、低アスペクト比のタービン静翼を備え、
     該タービン静翼は、翼高さ方向翼根元から翼先端に向けて弧状に形成されたs/t値(s:スロート長 t:ピッチ長)分布を有し、
     該s/t値分布は、翼高さ方向中央部と翼先端との間に最大値を有し、かつ翼根元に最小値を有することを特徴とする蒸気タービン設備。
  6.  請求項5記載の蒸気タービン設備において、
     前記s/t値分布は、翼先端のs/t値が、前記最大値と前記最小値との中間値以上、かつ前記最大値未満であり、翼根元のs/t値が、前記最大値の65%以上、フリーボルテックス設計時の翼根元のs/t値未満であることを特徴とする蒸気タービン設備。
  7.  請求項6記載の蒸気タービン設備において、
     前記s/t値分布は、前記タービン静翼の翼長に対して翼根元より75%以上95%以下の翼高さ位置に前記最大値を有することを特徴とする蒸気タービン設備。
  8.  請求項7記載の蒸気タービン設備において、
     前記タービン静翼のアスペクト比は、1.0以下であることを特徴とする蒸気タービン設備。
  9.  軸流タービンに用いられる低アスペクト比のタービン静翼の設計方法であって、
     タービン軸方向から見た翼後縁部の形状をタービン半径方向に沿った直線状に形成し、かつ翼高さ方向各位置における翼型の形状および断面積を同一に形成し、翼高さ方向翼根元から翼先端に向けて弧状に形成されたs/t値(s:スロート長 t:ピッチ長)分布を有し、該s/t値分布が、翼高さ方向中央部と翼先端との間に最大値を有し、かつ翼根元に最小値を有するように前記タービン静翼を形成することを特徴とするタービン静翼の設計方法。
  10.  請求項9記載のタービン静翼の設計方法において、
     前記s/t値分布は、翼先端のs/t値が、前記最大値と前記最小値との中間値以上、かつ前記最大値未満であり、翼根元のs/t値が、前記最大値の65%以上、フリーボルテックス設計時の翼根元のs/t値未満となることを特徴とするタービン静翼の設計方法。
  11.  請求項10記載のタービン静翼の設計方法において、
     前記s/t値分布は、前記タービン静翼の翼長に対して翼根元より75%以上95%以下の翼高さ位置に前記最大値を有することを特徴とするタービン静翼の設計方法。
  12.  請求項11記載のタービン静翼の設計方法において、
     前記タービン静翼のアスペクト比は、1.0以下であることを特徴とするタービン静翼の設計方法。
PCT/JP2011/057831 2011-03-29 2011-03-29 タービン静翼、およびそれを用いた蒸気タービン設備、タービン静翼の設計方法 WO2012131905A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/057831 WO2012131905A1 (ja) 2011-03-29 2011-03-29 タービン静翼、およびそれを用いた蒸気タービン設備、タービン静翼の設計方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/057831 WO2012131905A1 (ja) 2011-03-29 2011-03-29 タービン静翼、およびそれを用いた蒸気タービン設備、タービン静翼の設計方法

Publications (1)

Publication Number Publication Date
WO2012131905A1 true WO2012131905A1 (ja) 2012-10-04

Family

ID=46929738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057831 WO2012131905A1 (ja) 2011-03-29 2011-03-29 タービン静翼、およびそれを用いた蒸気タービン設備、タービン静翼の設計方法

Country Status (1)

Country Link
WO (1) WO2012131905A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11352908B1 (en) 2019-02-27 2022-06-07 Mitsubishi Heavy Industries, Ltd. Turbine stator blade and steam turbine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0874502A (ja) * 1994-08-30 1996-03-19 Gec Alsthom Ltd タービンブレード
JP2003074306A (ja) * 2001-08-31 2003-03-12 Toshiba Corp 軸流タービン
JP2007127132A (ja) * 2005-03-31 2007-05-24 Hitachi Ltd 軸流タービン

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0874502A (ja) * 1994-08-30 1996-03-19 Gec Alsthom Ltd タービンブレード
JP2003074306A (ja) * 2001-08-31 2003-03-12 Toshiba Corp 軸流タービン
JP2007127132A (ja) * 2005-03-31 2007-05-24 Hitachi Ltd 軸流タービン

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11352908B1 (en) 2019-02-27 2022-06-07 Mitsubishi Heavy Industries, Ltd. Turbine stator blade and steam turbine

Similar Documents

Publication Publication Date Title
JP5603800B2 (ja) タービン静翼、およびそれを用いた蒸気タービン設備
EP2820279B1 (en) Turbomachine blade
JP5946707B2 (ja) 軸流タービン動翼
JP5988994B2 (ja) 積み重ね規則を改善したタービンエンジンブレード
JP5985351B2 (ja) 軸流タービン
CN102587997B (zh) 用于轴流式涡轮机的翼型叶片
US8480372B2 (en) System and method for reducing bucket tip losses
WO2011040241A1 (ja) タービン静翼の設計方法、タービン静翼、およびそれを用いた蒸気タービン装置
US9963973B2 (en) Blading
JP5964263B2 (ja) 軸流タービンの動翼列、および軸流タービン
US20150110617A1 (en) Turbine airfoil including tip fillet
US9347320B2 (en) Turbine bucket profile yielding improved throat
JP2009007981A (ja) 蒸気タービン用長動翼翼列の中間固定支持構造及び蒸気タービン
JP6018368B2 (ja) 先端流路輪郭
JP2000345801A (ja) タービン装置
US20110211952A1 (en) Rotor blade for wind turbine
WO2012131905A1 (ja) タービン静翼、およびそれを用いた蒸気タービン設備、タービン静翼の設計方法
CN108979735B (zh) 用于燃气涡轮机的叶片和包括所述叶片的燃气涡轮机
JP2007056824A (ja) 軸流タービンの静翼、動翼ならびにこれらの静翼および動翼を備えた軸流タービン
WO2018144658A1 (en) Controlled flow runners for turbines
JP2012052491A (ja) タービン段落、およびそれを用いた蒸気タービン
JP2011074804A (ja) 蒸気タービンのノズル
JP2010169047A (ja) 軸流タービン
CN111622812B (zh) 轴流式汽轮机
JP7130575B2 (ja) 軸流タービン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP