WO2012131787A1 - Exhaust gas purification system for internal combustion engine - Google Patents

Exhaust gas purification system for internal combustion engine Download PDF

Info

Publication number
WO2012131787A1
WO2012131787A1 PCT/JP2011/001963 JP2011001963W WO2012131787A1 WO 2012131787 A1 WO2012131787 A1 WO 2012131787A1 JP 2011001963 W JP2011001963 W JP 2011001963W WO 2012131787 A1 WO2012131787 A1 WO 2012131787A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
amount
exhaust
fuel supply
internal combustion
Prior art date
Application number
PCT/JP2011/001963
Other languages
French (fr)
Japanese (ja)
Inventor
彰紀 森島
健一 辻本
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/001963 priority Critical patent/WO2012131787A1/en
Publication of WO2012131787A1 publication Critical patent/WO2012131787A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/38Arrangements for igniting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust purification system having an exhaust temperature raising device that is provided in an exhaust passage of an internal combustion engine and raises the temperature of exhaust gas.
  • the liquid fuel film adhering to the wall surface of the exhaust pipe is exposed to high temperature exhaust gas to form a rich mixture and generate a large amount of smoke.
  • the generation of soot is suppressed by intermittently supplying the fuel, but the upper limit supply amount of the fuel supply amount is determined in advance so that the generation of smoke is within the allowable range. Absent.
  • the device of Patent Document 3 supplies fuel intermittently, but does not consider the problem of smoke generation.
  • An object of the present invention is to effectively suppress the generation of smoke in a system that supplies fuel to an exhaust passage.
  • One aspect of the present invention is: An exhaust purification catalyst provided in the exhaust passage of the internal combustion engine; A fuel supply device that is provided in the exhaust passage upstream of the exhaust purification catalyst and supplies fuel to the exhaust flowing into the exhaust purification catalyst; A heating device for igniting the fuel supplied from the fuel supply device; A controller for controlling the fuel supply device, The controller is configured to supply the fuel intermittently by the fuel supply device and to supply the fuel in one set of one or more shots in order to keep the amount of smoke generated within an allowable range.
  • the exhaust gas purification system for an internal combustion engine is characterized in that the fuel supply device is controlled so that is less than a predetermined upper limit supply amount.
  • the fuel supply amount in one set of supply is less than a predetermined upper limit supply amount. Therefore, the generation of smoke can be effectively suppressed.
  • the system further includes a sensor for detecting or estimating a fuel adhesion amount in the exhaust passage, and the controller controls the fuel supply device based on the detected or estimated fuel adhesion amount.
  • the generation of smoke can be more effectively suppressed.
  • the controller may further stop or reduce the fuel supply by the fuel supply device when the fuel adhesion amount detected or estimated by the sensor exceeds a predetermined upper limit adhesion amount.
  • the controller may stop the fuel supply after the one set of supply and restart the fuel supply after the stop.
  • the means for solving the problems in the present invention can be used in combination as much as possible.
  • FIG. 1 is a conceptual diagram of a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing the fuel supply process to the exhaust passage.
  • FIG. 3 is a timing chart showing the relationship between the fuel supply amount, the adhesion amount, and the smoke amount.
  • FIG. 4 is a graph showing the relationship between the upstream air-fuel ratio and the downstream air-fuel ratio.
  • FIG. 5 is a graph showing an example of setting the upper limit supply amount when the upper limit supply amount is variable.
  • FIG. 6 is a timing chart showing the relationship between the fuel supply amount, the adhesion amount, and the smoke amount before improvement according to the present invention.
  • FIG. 1 shows a first embodiment of the present invention.
  • the engine body 1 is a compression ignition internal combustion engine (diesel engine) using light oil as fuel, but may be another type of internal combustion engine.
  • the engine body 1 has a combustion chamber 2 in each of the four cylinders. Each combustion chamber 2 is provided with an electronically controlled fuel injection valve 3 for injecting fuel.
  • An intake manifold 4 and an exhaust manifold 5 are connected to the combustion chamber 2.
  • the intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 via the intake pipe 6.
  • An inlet of the compressor 7 a is connected to an air cleaner 9 via an air flow meter 8.
  • a throttle valve 10 driven by a step motor (not shown) is disposed in the intake pipe 6.
  • An intercooler 11 for cooling the intake air flowing through the intake pipe 6 is disposed around the intake pipe 6.
  • Engine cooling water is guided into the intercooler 11 and the intake air is cooled by the engine cooling water.
  • Each fuel injection valve 3 is connected to a common rail 42 via a fuel supply pipe 41, and this common rail 42 is connected to a fuel tank 44 via an electronically controlled fuel pump 43 with variable discharge amount.
  • the fuel stored in the fuel tank 44 is supplied into the common rail 42 by the fuel pump 43, and the fuel supplied into the common rail 42 is supplied to the fuel injection valve 3 through each fuel supply pipe 41.
  • the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7.
  • the outlet of the exhaust turbine 7 b is connected to the exhaust purification catalyst 13 via the exhaust pipe 12.
  • a small oxidation catalyst 14 is arranged in the engine exhaust passage upstream of the exhaust purification catalyst 13, that is, in the exhaust pipe 12.
  • the small oxidation catalyst 14 has a smaller volume and front projection area than the exhaust purification catalyst 13.
  • the front surface projected area of the small oxidation catalyst 14 is smaller than the cross-sectional area of the surrounding exhaust pipe 12, and thus a part of the exhaust gas passing through the exhaust pipe 12 flows through the small oxidation catalyst 14.
  • the exhaust purification catalyst 13 is composed of, for example, an oxidation catalyst, a three-way catalyst, or a NOx catalyst.
  • the small oxidation catalyst 14 is composed of an oxidation catalyst, and as the catalyst material, for example, Pt / CeO 2 , Mn / CeO 2 , Fe / CeO 2 , Ni / CeO 2 , Cu / CeO 2 or the like can be used.
  • a honeycomb body formed of cordierite or metal is used as the base material for the catalysts 13 and 14.
  • a fuel injection valve 15 for supplying fuel to the small oxidation catalyst 14 is arranged with its injection port facing the exhaust pipe 12.
  • the fuel in the fuel tank 44 is supplied to the fuel injection valve 15 via the fuel pump 43.
  • a glow plug 16 is provided in the exhaust pipe 12 downstream of the fuel injection valve 15.
  • the glow plug 16 is arranged so that the fuel added from the fuel injection valve 15 contacts the tip of the glow plug 16 and can ignite the fuel.
  • the glow plug 16 is connected to a DC power source and a booster circuit (both not shown) for supplying power to the glow plug 16.
  • a ceramic heater may be used instead of the glow plug.
  • a collision plate for causing the fuel injected from the fuel injection valve 15 to collide may be disposed in the exhaust pipe 12.
  • the small oxidation catalyst 14, the fuel injection valve 15 and the glow plug 16 constitute an exhaust temperature raising device 40, which is controlled by an ECU 50 which will be described later.
  • an exhaust temperature sensor 31 for detecting the exhaust temperature is installed in the exhaust pipe 12 upstream of the small oxidation catalyst 14.
  • An A / F sensor 32 for detecting the air-fuel ratio in the exhaust passage is installed in the exhaust pipe 12 downstream of the small oxidation catalyst 14 and upstream of the exhaust purification catalyst 13.
  • An electronic control unit (ECU) 50 which is a controller, is composed of a well-known digital computer, and is connected to each other by a bidirectional bus, a ROM (read only memory), a RAM (random access memory), a CPU (microprocessor), an input port. And an output port.
  • ECU electronice control unit
  • the exhaust temperature sensor 31 and the A / F sensor 32 are connected to the ECU 50.
  • the accelerator pedal 51 is provided with a load sensor 52 that generates an output voltage proportional to the amount of depression of the accelerator pedal 51, and the load sensor 52 is connected to the ECU 50.
  • the ECU 50 is connected to a crank angle sensor 53 that generates an output pulse every time the crankshaft of the engine body 1 rotates, for example, 15 °.
  • an intake air temperature sensor 54 installed in the vicinity of the throttle valve 10 and a water temperature sensor 55 installed in a cylinder block of the engine body 1 are connected to the ECU 50.
  • the output signal of each sensor is input to the input port of the ECU 50 via the corresponding AD converter.
  • the ECU 50 is connected to the stepping motor for driving the fuel injection valve 3, the fuel pump 43, and the throttle valve 10 via the corresponding DA converter and driving circuit, respectively.
  • the operation of these actuators is controlled by the ECU 50.
  • Various programs and reference values / initial values are stored in the ROM of the ECU 50.
  • the ECU 50 determines the vehicle state including the detection values of the air flow meter 8, the exhaust temperature sensor 31, the A / F sensor 32, the load sensor 52, the crank angle sensor 53, the intake air temperature sensor 54, and the water temperature sensor 55, particularly the engine operating state. Based on the indicated parameter, the fuel supply instruction amount is calculated, and a control signal is output to open the fuel injection valve 3 for a time corresponding to the instruction amount. In accordance with this control signal, an amount of fuel corresponding to the fuel supply instruction amount is supplied from the fuel injection valve 3, and the engine body 1 is operated.
  • a part or all of the fuel supplied from the fuel injection valve 15 is supplied to the small oxidation catalyst 14. If the small oxidation catalyst 14 is activated at this time, the fuel is oxidized in the small oxidation catalyst 14. The small oxidation catalyst 14 is heated by the oxidation reaction heat generated at this time. Further, when the temperature of the small oxidation catalyst 14 is increased, hydrocarbons having a large number of carbon atoms in the fuel are decomposed to generate hydrocarbons having a small number of carbon atoms and high reactivity, thereby making the fuel a highly reactive fuel. Reformed.
  • the small oxidation catalyst 14 constitutes a rapid heat generator that rapidly generates heat on the one hand, and a reformed fuel discharger that discharges the reformed fuel on the other hand. Further, part or all of the fuel supplied from the fuel injection valve 15 is heated or ignited by the glow plug 16, thereby promoting the temperature increase of the exhaust gas.
  • the ECU 50 estimates the amount of fuel adhering to the exhaust passage. This adhesion amount estimation process is repeatedly executed every predetermined time ⁇ t during the operation of the engine body 1. In this process, the ECU 50 reads various parameters indicating the operating state of the engine body 1 and calculates the fuel adhesion amount based on these parameters. Such parameters include engine speed Ne, intake air amount Ga, injection amount from in-cylinder fuel injection valve 3, injection amount from fuel injection valve 15, exhaust temperature, engine water temperature, glow plug temperature, and A / The air-fuel ratio AF2 on the downstream side of the exhaust gas temperature raising device 40 detected by the F sensor 32 is included.
  • the amount of adhesion is estimated by subtracting the downstream air-fuel ratio AF2 from the upstream air-fuel ratio AF1 calculated from the injection amounts from the in-cylinder fuel injection valve 3 and the fuel injection valve 15 and the intake air amount Ga. This is performed by adding up the obtained values while correcting them with the remaining parameters. For example, in FIG. 4, when the downstream air-fuel ratio AF2 is larger than the upstream air-fuel ratio AF1 (ie, lean), the area C of the difference between the two (accumulated value of the difference) is the amount of fuel attached. It can be considered to correlate with the quantity.
  • the estimation can also take into account the tube wall temperature of the exhaust passage 12, and the tube wall temperature can be estimated based on, for example, the exhaust temperature, the intake air amount Ga (that is, the passing gas amount), and the glow plug temperature.
  • the tube wall temperature can be estimated based on a two-dimensional map of the amount of heat taken away determined by the exhaust gas temperature and the passing gas amount and the glow plug temperature.
  • the temperature of the collision plate may be estimated and used for estimation of the adhesion amount.
  • the ECU 50 controls the exhaust temperature raising device 40 to supply fuel to the exhaust passage.
  • the processing routine of FIG. 2 is repeatedly executed every predetermined time ⁇ t when the engine body 1 is in operation and there is a fuel supply request to the fuel injection valve 15.
  • the fuel supply request to the fuel injection valve 15 includes a temperature rise of the exhaust purification catalyst 13 at a low temperature such as during cold start, oxidation and combustion of particulate matter (PM) accumulated in the exhaust purification catalyst 13, and (exhaust purification catalyst).
  • PM particulate matter
  • exhaust purification catalyst exhaust purification catalyst
  • the predetermined conditions for requesting fuel supply are, for example, that the small oxidation catalyst 14 is activated and the temperature detected by the intake air temperature sensor 54 is lower than a predetermined value in the case of temperature rise at low temperatures.
  • the estimated value of the accumulation amount or occlusion amount of each substance exceeds a predetermined reference value
  • the temperature of the exhaust purification catalyst 13 Is an estimated value exceeding a predetermined reference value.
  • the required amount of fuel supply (that is, the fuel supply amount set according to the purpose of the fuel supply request) may be a fixed value or a variable value. In the case of the variable value, the required amount can be determined based on, for example, the estimated temperature of the exhaust purification catalyst 13 and / or the estimated value of the accumulation amount or occlusion amount of each substance.
  • the ECU 50 when there is a fuel supply request to the fuel injection valve 15, the ECU 50 reads the estimated value of the current adhesion amount calculated by the above-described adhesion amount estimation processing (S100). Next, the ECU 50 determines whether or not the estimated value of the adhesion amount is less than a predetermined upper limit adhesion amount a2 (S110). If negative, that is, if it is greater than or equal to the upper limit adhesion amount a2, the process proceeds to step S190 described later. Transition. If the determination is affirmative, the ECU 50 next calculates an upper limit supply amount b1 in the next set of fuel supply based on the estimated value of the current adhesion amount (S120).
  • the upper limit supply amount b1 is set to a value obtained by subtracting a predetermined margin from a value such that the amount of smoke generated exceeds the allowable range when the fuel supply amount in the next set exceeds this.
  • the upper limit supply amount b1 may be a fixed value or a variable value. In the case of a variable value, the upper limit supply amount b1 can be made larger as the engine speed Ne and the intake air amount KL are higher, as shown in FIG. 5, for example.
  • the ECU 50 calculates the number of shots so that the total supply amount of one set is less than the upper limit supply amount b1 (S130).
  • the number of shots may be 1 in addition to the case where the number of shots is 2 or more.
  • the valve opening time t1 per shot (see FIG. 3) may be a fixed value or a variable value. In the case of a variable value, the valve opening time t1 is reflected in the calculation of the number of shots.
  • the valve opening time t1 can be set to a larger value as the exhaust gas temperature is higher, for example. When the required amount of fuel supply is 2000 mm ⁇ 3, for example, if the total supply amount of one set is 1000 mm ⁇ 3, the number of sets is two.
  • the ECU 50 controls the fuel injection valve 15 to execute fuel supply for one shot (S140). After the supply of one shot, the fuel supply is suspended over a predetermined shot interval t2 (S150).
  • the shot interval t2 may be a fixed value or a variable value. For example, the shot interval t2 can be made smaller as the exhaust gas temperature is higher.
  • Shots and pauses are alternately repeated over the supply time t3 as necessary, and when the number of shots calculated in step S130 is completed (S160), a standby time t4 for stopping fuel supply is started (S170). .
  • This standby time t4 is continued until the current adhesion amount (S180) falls below a predetermined supply restart reference value a1 (S190). In a normal case, the waiting time t4 is several seconds.
  • step S110 to S190 is repeatedly executed.
  • the processing of this routine is returned when the required amount of fuel has been supplied.
  • the fuel supply over the supply time t3 and the stop over the standby time t4 are repeatedly executed alternately until the required amount of fuel supply ends (S200). .
  • the fuel injection valve 15 is composed of one or more shots in order to intermittently supply the fuel and make the amount of smoke generated within an allowable range.
  • the fuel injection valve 15 is controlled so that the fuel supply amount in one set of supply falls below a predetermined upper limit supply amount b1 (S130). Therefore, the generation of smoke can be effectively suppressed.
  • the system estimates the current fuel adhesion amount in the exhaust passage by the adhesion amount estimation process, and the ECU 50 controls the fuel injection valve 15 based on the estimated current fuel adhesion amount. Therefore, it is possible to appropriately respond to a delayed change in the air-fuel ratio caused by the fuel adhering to the exhaust passage, and the generation of smoke can be further effectively suppressed.
  • the fuel supply is stopped for the standby time t4 after the supply of one set, and the fuel supply is restarted after the standby time t4. Therefore, the generation of smoke is suppressed by suppressing the amount of adhesion due to the stop of the supply. be able to.
  • the fuel supply by the fuel injection valve 15 is stopped until the fuel adhesion amount falls below a predetermined supply resumption reference value. Since (S110) is performed, it becomes possible to set the stop period to the optimum or shortest according to the current fuel adhesion amount.
  • the system estimates the current fuel adhesion amount in the exhaust passage by the adhesion amount estimation processing, but the adhesion amount may be detected by a sensor.
  • the fuel supply by the fuel injection valve 15 is stopped until the fuel adhesion amount falls below a predetermined supply restart reference value (t4).
  • the fuel supply amount may be reduced and the supply may be continued.
  • the current adhesion amount is monitored for each set of fuel supply, but the adhesion amount may be monitored for each shot.
  • a conduit for supplying secondary air from the outside into the exhaust pipe 12, a control valve, and a compressor may be provided.
  • the supply amount of secondary air can also be considered in the estimation of the adhesion amount.
  • the present invention can also be applied to an engine that does not have a small oxidation catalyst or an engine that does not have a turbocharger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

An exhaust gas purification system for an internal combustion engine, comprising: a fuel supply device (15) for supplying fuel to exhaust gas flowing into an exhaust gas purification catalyst (13); a heating device (16) for igniting the fuel supplied from the fuel supply device (15); and a controller (50) for controlling the fuel supply device (15). The controller (50) controls the fuel supply device (15) so that the fuel supply device (15) intermittently supplies the fuel and so that, in order to bring the amount of smoke generation into an allowable range, the amount of supply of one set of fuel consisting of one or more shots is below a predetermined upper limit supply amount.

Description

内燃機関の排気浄化システムExhaust gas purification system for internal combustion engine
 本発明は、内燃機関の排気通路に設けられて排ガスを昇温する排気昇温装置を有する排気浄化システムに関する。 The present invention relates to an exhaust purification system having an exhaust temperature raising device that is provided in an exhaust passage of an internal combustion engine and raises the temperature of exhaust gas.
 グロープラグなどの着火装置により、燃料を排気管内で燃焼させる機能を有する排気浄化装置が種々提案されている。例えば特許文献1の装置では、着火が可能な運転領域において、グロープラグによる加熱によって燃料を着火させる第1の制御状態、またはグロープラグによる加熱が停止している第3の制御状態を選択的に実現し、着火が不可能な運転領域において、グロープラグによる加熱を行うが燃料は着火させない第2の運転状態、または上記第3の運転状態を選択的に実現する。 Various exhaust purification devices having a function of burning fuel in an exhaust pipe by an ignition device such as a glow plug have been proposed. For example, in the apparatus of Patent Document 1, in an operation region where ignition is possible, a first control state in which fuel is ignited by heating with a glow plug or a third control state in which heating by a glow plug is stopped is selectively performed. In the operation region that is realized and cannot be ignited, the second operation state in which heating by the glow plug is performed but the fuel is not ignited, or the third operation state is selectively realized.
 特許文献2の装置では、排気通路中に配置された小型酸化触媒に、燃料供給弁から燃料を間欠的に供給し、煤を発生することなく間欠的に火炎を発生させる。 In the apparatus of Patent Document 2, fuel is intermittently supplied from a fuel supply valve to a small oxidation catalyst disposed in an exhaust passage, and a flame is generated intermittently without generating soot.
 特許文献3の装置では、排気浄化触媒の熱劣化を防止するのに必要な量の燃料を、排気通路中に間欠的に供給する。 In the apparatus of Patent Document 3, an amount of fuel necessary for preventing thermal deterioration of the exhaust purification catalyst is intermittently supplied into the exhaust passage.
特開2010-59886号公報JP 2010-59886 A 特開2010-48228号公報JP 2010-48228 A 特開2009-156167号公報JP 2009-156167 A
 しかしながら、特許文献1の装置では、排気管の壁面に付着した液相の燃料の膜が、高温の排ガスに曝されてリッチ混合気を形成し、大量のスモークを発生させてしまう。特許文献2の装置では、燃料の供給を間欠的にすることで煤の発生を抑制しているが、スモークの発生が許容範囲内となるように燃料供給量の上限供給量を予め定めるものではない。特許文献3の装置は、燃料を間欠的に供給するが、スモークの発生の問題は考慮されていない。 However, in the apparatus of Patent Document 1, the liquid fuel film adhering to the wall surface of the exhaust pipe is exposed to high temperature exhaust gas to form a rich mixture and generate a large amount of smoke. In the device of Patent Document 2, the generation of soot is suppressed by intermittently supplying the fuel, but the upper limit supply amount of the fuel supply amount is determined in advance so that the generation of smoke is within the allowable range. Absent. The device of Patent Document 3 supplies fuel intermittently, but does not consider the problem of smoke generation.
 本発明の目的は、排気通路に燃料を供給するシステムにおいてスモークの発生を効果的に抑制することにある。 An object of the present invention is to effectively suppress the generation of smoke in a system that supplies fuel to an exhaust passage.
 本発明の1態様は、
 内燃機関の排気通路に設けられた排気浄化触媒と、
 前記排気浄化触媒よりも上流側の前記排気通路に設けられ、前記排気浄化触媒に流入する排気に燃料を供給する燃料供給装置と、
 前記燃料供給装置から供給された燃料に着火させる加熱装置と、
 前記燃料供給装置を制御するコントローラとを備え、
 前記コントローラは、前記燃料供給装置が燃料を間欠的に供給し、かつ、スモークの発生量を許容範囲内にするために1又は2以上のショットから構成される1セットの供給での燃料供給量が予め定められた上限供給量を下回るように、前記燃料供給装置を制御することを特徴とする内燃機関の排気浄化システムである。
One aspect of the present invention is:
An exhaust purification catalyst provided in the exhaust passage of the internal combustion engine;
A fuel supply device that is provided in the exhaust passage upstream of the exhaust purification catalyst and supplies fuel to the exhaust flowing into the exhaust purification catalyst;
A heating device for igniting the fuel supplied from the fuel supply device;
A controller for controlling the fuel supply device,
The controller is configured to supply the fuel intermittently by the fuel supply device and to supply the fuel in one set of one or more shots in order to keep the amount of smoke generated within an allowable range. The exhaust gas purification system for an internal combustion engine is characterized in that the fuel supply device is controlled so that is less than a predetermined upper limit supply amount.
 この態様では、1セットの供給での燃料供給量が予め定められた上限供給量を下回る。したがって、スモークの発生を効果的に抑制することができる。 In this aspect, the fuel supply amount in one set of supply is less than a predetermined upper limit supply amount. Therefore, the generation of smoke can be effectively suppressed.
 好適には、システムは前記排気通路の燃料付着量を検出又は推定するセンサを更に備え、前記コントローラは、検出又は推定した燃料付着量に基づいて前記燃料供給装置を制御する。この態様では、スモークの発生を更に効果的に抑制することができる。コントローラは更に、前記センサによって検出又は推定された燃料付着量が予め定められた上限付着量を上回った場合に、前記燃料供給装置による燃料供給を停止又は減量してもよい。 Preferably, the system further includes a sensor for detecting or estimating a fuel adhesion amount in the exhaust passage, and the controller controls the fuel supply device based on the detected or estimated fuel adhesion amount. In this aspect, the generation of smoke can be more effectively suppressed. The controller may further stop or reduce the fuel supply by the fuel supply device when the fuel adhesion amount detected or estimated by the sensor exceeds a predetermined upper limit adhesion amount.
 前記コントローラは、前記1セットの供給の後に燃料供給を停止させ、当該停止の後に燃料供給を再開させてもよい。 The controller may stop the fuel supply after the one set of supply and restart the fuel supply after the stop.
 なお、本発明における課題を解決するための手段は、可能な限り組み合わせて使用することができる。 In addition, the means for solving the problems in the present invention can be used in combination as much as possible.
図1は本発明の第1実施形態の概念図である。FIG. 1 is a conceptual diagram of a first embodiment of the present invention. 図2は排気通路への燃料供給処理を示すフローチャートである。FIG. 2 is a flowchart showing the fuel supply process to the exhaust passage. 図3は燃料供給量、付着量及びスモーク量の関係を示すタイミング図である。FIG. 3 is a timing chart showing the relationship between the fuel supply amount, the adhesion amount, and the smoke amount. 図4は上流側の空燃比と下流側の空燃比との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the upstream air-fuel ratio and the downstream air-fuel ratio. 図5は上限供給量を可変とした場合の上限供給量の設定例を示すグラフである。FIG. 5 is a graph showing an example of setting the upper limit supply amount when the upper limit supply amount is variable. 図6は本発明による改良前における燃料供給量、付着量及びスモーク量の関係を示すタイミング図である。FIG. 6 is a timing chart showing the relationship between the fuel supply amount, the adhesion amount, and the smoke amount before improvement according to the present invention.
 本発明の好適な実施形態について、以下に詳細に説明する。図1は本発明の第1実施形態を示す。図1において、エンジン本体1は、軽油を燃料とする圧縮点火式内燃機関(ディーゼルエンジン)であるが、他の形式の内燃機関であってもよい。エンジン本体1は、4つの気筒のそれぞれに燃焼室2を有する。各燃焼室2には、燃料を噴射するための電子制御式の燃料噴射弁3が配置されている。燃焼室2には、吸気マニホールド4および排気マニホールド5が接続されている。吸気マニホールド4は、吸気管6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結されている。コンプレッサ7aの入口は、エアフローメータ8を介してエアクリーナ9に連結されている。 Preferred embodiments of the present invention will be described in detail below. FIG. 1 shows a first embodiment of the present invention. In FIG. 1, the engine body 1 is a compression ignition internal combustion engine (diesel engine) using light oil as fuel, but may be another type of internal combustion engine. The engine body 1 has a combustion chamber 2 in each of the four cylinders. Each combustion chamber 2 is provided with an electronically controlled fuel injection valve 3 for injecting fuel. An intake manifold 4 and an exhaust manifold 5 are connected to the combustion chamber 2. The intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 via the intake pipe 6. An inlet of the compressor 7 a is connected to an air cleaner 9 via an air flow meter 8.
 吸気管6内には、ステップモータ(不図示)により駆動されるスロットル弁10が配置されている。吸気管6の周りには、吸気管6内を流れる吸入空気を冷却するためのインタークーラ11が配置されている。インタークーラ11内に機関冷却水が導かれ、機関冷却水によって吸入空気が冷却される。 A throttle valve 10 driven by a step motor (not shown) is disposed in the intake pipe 6. An intercooler 11 for cooling the intake air flowing through the intake pipe 6 is disposed around the intake pipe 6. Engine cooling water is guided into the intercooler 11 and the intake air is cooled by the engine cooling water.
 各燃料噴射弁3は、燃料供給管41を介してコモンレール42に連結され、このコモンレール42は電子制御式の吐出量可変な燃料ポンプ43を介して燃料タンク44に連結される。燃料タンク44内に貯蔵されている燃料は、燃料ポンプ43によってコモンレール42内に供給され、コモンレール42内に供給された燃料は各燃料供給管41を介して燃料噴射弁3に供給される。 Each fuel injection valve 3 is connected to a common rail 42 via a fuel supply pipe 41, and this common rail 42 is connected to a fuel tank 44 via an electronically controlled fuel pump 43 with variable discharge amount. The fuel stored in the fuel tank 44 is supplied into the common rail 42 by the fuel pump 43, and the fuel supplied into the common rail 42 is supplied to the fuel injection valve 3 through each fuel supply pipe 41.
 排気マニホールド5は、排気ターボチャージャ7の排気タービン7bの入口に連結されている。排気タービン7bの出口は、排気管12を介して、排気浄化触媒13に連結されている。この排気浄化触媒13上流の機関排気通路内、即ち排気管12内には、小型酸化触媒14が配置されている。小型酸化触媒14は、排気浄化触媒13よりも体積及び前面投影面積が小さい。小型酸化触媒14の前面投影面積は、その周囲の排気管12の断面積よりも小さく、したがって小型酸化触媒14には、排気管12を通過する排気ガスの一部が流通する。 The exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7. The outlet of the exhaust turbine 7 b is connected to the exhaust purification catalyst 13 via the exhaust pipe 12. A small oxidation catalyst 14 is arranged in the engine exhaust passage upstream of the exhaust purification catalyst 13, that is, in the exhaust pipe 12. The small oxidation catalyst 14 has a smaller volume and front projection area than the exhaust purification catalyst 13. The front surface projected area of the small oxidation catalyst 14 is smaller than the cross-sectional area of the surrounding exhaust pipe 12, and thus a part of the exhaust gas passing through the exhaust pipe 12 flows through the small oxidation catalyst 14.
 排気浄化触媒13は、例えば酸化触媒、三元触媒又はNOx触媒から構成されている。小型酸化触媒14は酸化触媒から構成されており、触媒物質としては例えばPt/CeO、Mn/CeO、Fe/CeO、Ni/CeO、Cu/CeO等を用いることができる。触媒13,14の基材には、コージェライトあるいはメタルから形成されたハニカム体が用いられている。 The exhaust purification catalyst 13 is composed of, for example, an oxidation catalyst, a three-way catalyst, or a NOx catalyst. The small oxidation catalyst 14 is composed of an oxidation catalyst, and as the catalyst material, for example, Pt / CeO 2 , Mn / CeO 2 , Fe / CeO 2 , Ni / CeO 2 , Cu / CeO 2 or the like can be used. A honeycomb body formed of cordierite or metal is used as the base material for the catalysts 13 and 14.
 この小型酸化触媒14上流の排気管12内には、小型酸化触媒14に燃料を供給するための燃料噴射弁15が、その噴射口を排気管12内部に臨ませて配置されている。燃料噴射弁15には、燃料タンク44内の燃料が燃料ポンプ43を介して供給される。 In the exhaust pipe 12 upstream of the small oxidation catalyst 14, a fuel injection valve 15 for supplying fuel to the small oxidation catalyst 14 is arranged with its injection port facing the exhaust pipe 12. The fuel in the fuel tank 44 is supplied to the fuel injection valve 15 via the fuel pump 43.
 燃料噴射弁15よりも下流側の排気管12内には、グロープラグ16が設けられている。グロープラグ16は、その先端部に燃料噴射弁15から添加される燃料が接触するように配置されており、燃料に着火させることが可能である。グロープラグ16には、これに給電するための直流電源及び昇圧回路(いずれも不図示)が接続されている。着火するための手段としては、グロープラグに代えてセラミックヒータを用いてもよい。燃料の微粒化を促進するために、燃料噴射弁15から噴射された燃料を衝突させるための衝突板を、排気管12内に配置してもよい。小型酸化触媒14、燃料噴射弁15およびグロープラグ16は、排気昇温装置40を構成し、この排気昇温装置40は、後述するECU50によって制御される。 A glow plug 16 is provided in the exhaust pipe 12 downstream of the fuel injection valve 15. The glow plug 16 is arranged so that the fuel added from the fuel injection valve 15 contacts the tip of the glow plug 16 and can ignite the fuel. The glow plug 16 is connected to a DC power source and a booster circuit (both not shown) for supplying power to the glow plug 16. As a means for ignition, a ceramic heater may be used instead of the glow plug. In order to promote atomization of the fuel, a collision plate for causing the fuel injected from the fuel injection valve 15 to collide may be disposed in the exhaust pipe 12. The small oxidation catalyst 14, the fuel injection valve 15 and the glow plug 16 constitute an exhaust temperature raising device 40, which is controlled by an ECU 50 which will be described later.
 小型酸化触媒14よりも上流側の排気管12内には、排気温度を検出するための排気温センサ31が設置されている。小型酸化触媒14よりも下流側であって排気浄化触媒13よりも上流側の排気管12内には、排気通路内の空燃比を検出するためのA/Fセンサ32が設置されている。 In the exhaust pipe 12 upstream of the small oxidation catalyst 14, an exhaust temperature sensor 31 for detecting the exhaust temperature is installed. An A / F sensor 32 for detecting the air-fuel ratio in the exhaust passage is installed in the exhaust pipe 12 downstream of the small oxidation catalyst 14 and upstream of the exhaust purification catalyst 13.
 コントローラである電子制御ユニット(ECU)50は、周知のデジタルコンピュータからなり、双方向性バスによって互いに接続されたROM(リードオンリメモリ)、RAM(ランダムアクセスメモリ)、CPU(マイクロプロセッサ)、入力ポートおよび出力ポートを具備する。 An electronic control unit (ECU) 50, which is a controller, is composed of a well-known digital computer, and is connected to each other by a bidirectional bus, a ROM (read only memory), a RAM (random access memory), a CPU (microprocessor), an input port. And an output port.
 排気温センサ31及びA/Fセンサ32は、ECU50に接続される。アクセルペダル51には、アクセルペダル51の踏込み量に比例した出力電圧を発生する負荷センサ52が設置され、負荷センサ52はECU50に接続される。更にECU50には、エンジン本体1のクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ53が接続される。更にECU50には、スロットル弁10の近傍に設置された吸気温度センサ54、及びエンジン本体1のシリンダブロックに設置された水温センサ55が接続される。各センサの出力信号は、それぞれ対応するAD変換器を介してECU50の入力ポートに入力される。 The exhaust temperature sensor 31 and the A / F sensor 32 are connected to the ECU 50. The accelerator pedal 51 is provided with a load sensor 52 that generates an output voltage proportional to the amount of depression of the accelerator pedal 51, and the load sensor 52 is connected to the ECU 50. Further, the ECU 50 is connected to a crank angle sensor 53 that generates an output pulse every time the crankshaft of the engine body 1 rotates, for example, 15 °. Further, an intake air temperature sensor 54 installed in the vicinity of the throttle valve 10 and a water temperature sensor 55 installed in a cylinder block of the engine body 1 are connected to the ECU 50. The output signal of each sensor is input to the input port of the ECU 50 via the corresponding AD converter.
 他方、ECU50は、それぞれ対応するDA変換器及び駆動回路を介して、燃料噴射弁3、燃料ポンプ43、及びスロットル弁10駆動用のステップモータに接続される。これらアクチュエータ類の動作は、ECU50によって制御される。ECU50のROMには、各種プログラム及び基準値・初期値が格納されている。 On the other hand, the ECU 50 is connected to the stepping motor for driving the fuel injection valve 3, the fuel pump 43, and the throttle valve 10 via the corresponding DA converter and driving circuit, respectively. The operation of these actuators is controlled by the ECU 50. Various programs and reference values / initial values are stored in the ROM of the ECU 50.
 ECU50は、エアフローメータ8、排気温センサ31、A/Fセンサ32、負荷センサ52、クランク角センサ53、吸気温度センサ54及び水温センサ55の検出値を含む車両の状態、とくにエンジンの動作状態を示すパラメータに基づいて、燃料供給指示量を算出し、指示量に応じた時間だけ燃料噴射弁3を開くべく制御信号を出力する。この制御信号に従って、燃料供給指示量に応じた量の燃料が燃料噴射弁3から供給され、エンジン本体1が運転される。 The ECU 50 determines the vehicle state including the detection values of the air flow meter 8, the exhaust temperature sensor 31, the A / F sensor 32, the load sensor 52, the crank angle sensor 53, the intake air temperature sensor 54, and the water temperature sensor 55, particularly the engine operating state. Based on the indicated parameter, the fuel supply instruction amount is calculated, and a control signal is output to open the fuel injection valve 3 for a time corresponding to the instruction amount. In accordance with this control signal, an amount of fuel corresponding to the fuel supply instruction amount is supplied from the fuel injection valve 3, and the engine body 1 is operated.
 他方、燃料噴射弁15から供給される燃料の一部又は全部は、小型酸化触媒14に供給され、このとき小型酸化触媒14が活性化していれば、小型酸化触媒14内で燃料が酸化させられ、このとき発生する酸化反応熱によって小型酸化触媒14が昇温させられる。また、小型酸化触媒14の温度が高くなると、燃料中の炭素数の多い炭化水素が分解して、炭素数が少なく反応性の高い炭化水素が生成され、これによって燃料が反応性の高い燃料に改質される。換言すれば、小型酸化触媒14は、一方では急速に発熱する急速発熱器を構成し、他方では、改質された燃料を排出する改質燃料排出器を構成する。また、燃料噴射弁15から供給された燃料の一部又は全部は、グロープラグ16により昇温又は着火され、これによって排ガスの昇温が促進される。 On the other hand, a part or all of the fuel supplied from the fuel injection valve 15 is supplied to the small oxidation catalyst 14. If the small oxidation catalyst 14 is activated at this time, the fuel is oxidized in the small oxidation catalyst 14. The small oxidation catalyst 14 is heated by the oxidation reaction heat generated at this time. Further, when the temperature of the small oxidation catalyst 14 is increased, hydrocarbons having a large number of carbon atoms in the fuel are decomposed to generate hydrocarbons having a small number of carbon atoms and high reactivity, thereby making the fuel a highly reactive fuel. Reformed. In other words, the small oxidation catalyst 14 constitutes a rapid heat generator that rapidly generates heat on the one hand, and a reformed fuel discharger that discharges the reformed fuel on the other hand. Further, part or all of the fuel supplied from the fuel injection valve 15 is heated or ignited by the glow plug 16, thereby promoting the temperature increase of the exhaust gas.
 上記のエンジン本体1の運転制御と並行して、ECU50は、排気通路への燃料の付着量を推定する。この付着量推定処理は、エンジン本体1の動作中にわたって所定時間Δtごとに繰返し実行される。この処理では、ECU50はエンジン本体1の運転状態を示す各種のパラメータを読み込み、これらのパラメータに基づいて燃料の付着量を算出する。このようなパラメータには、エンジン回転数Ne、吸入空気量Ga、筒内燃料噴射弁3からの噴射量、燃料噴射弁15からの噴射量、排気温度、エンジン水温、グロープラグ温度、及びA/Fセンサ32によって検出される排気昇温装置40下流側の空燃比AF2が含まれる。 In parallel with the operation control of the engine body 1 described above, the ECU 50 estimates the amount of fuel adhering to the exhaust passage. This adhesion amount estimation process is repeatedly executed every predetermined time Δt during the operation of the engine body 1. In this process, the ECU 50 reads various parameters indicating the operating state of the engine body 1 and calculates the fuel adhesion amount based on these parameters. Such parameters include engine speed Ne, intake air amount Ga, injection amount from in-cylinder fuel injection valve 3, injection amount from fuel injection valve 15, exhaust temperature, engine water temperature, glow plug temperature, and A / The air-fuel ratio AF2 on the downstream side of the exhaust gas temperature raising device 40 detected by the F sensor 32 is included.
 付着量の推定は、筒内燃料噴射弁3及び燃料噴射弁15からの噴射量と吸入空気量Gaとから算出される上流側の空燃比AF1から、下流側の空燃比AF2を減算し、得られた値に残余のパラメータによる補正を行いながらこれを積算することで実行される。例えば図4において、下流側の空燃比AF2が上流側の空燃比AF1よりも大(すなわちリーン)である場合には、両者の差分の領域Cの面積(差分の累積値)が、燃料の付着量と相関すると考えることができる。推定には排気通路12の管壁温度をも考慮することができ、管壁温度は、例えば排気温度、吸入空気量Ga(すなわち通過ガス量)及びグロープラグ温度に基づいて推定することができ、その場合には、排気温度と通過ガス量とによって求まる持ち去り熱量と、グロープラグ温度と、の二次元マップに基づいて管壁温度を推定することができる。衝突板を用いる場合には、衝突板の温度を推定して付着量の推定に利用してもよい。 The amount of adhesion is estimated by subtracting the downstream air-fuel ratio AF2 from the upstream air-fuel ratio AF1 calculated from the injection amounts from the in-cylinder fuel injection valve 3 and the fuel injection valve 15 and the intake air amount Ga. This is performed by adding up the obtained values while correcting them with the remaining parameters. For example, in FIG. 4, when the downstream air-fuel ratio AF2 is larger than the upstream air-fuel ratio AF1 (ie, lean), the area C of the difference between the two (accumulated value of the difference) is the amount of fuel attached. It can be considered to correlate with the quantity. The estimation can also take into account the tube wall temperature of the exhaust passage 12, and the tube wall temperature can be estimated based on, for example, the exhaust temperature, the intake air amount Ga (that is, the passing gas amount), and the glow plug temperature. In this case, the tube wall temperature can be estimated based on a two-dimensional map of the amount of heat taken away determined by the exhaust gas temperature and the passing gas amount and the glow plug temperature. When a collision plate is used, the temperature of the collision plate may be estimated and used for estimation of the adhesion amount.
 以上の付着量推定処理と並行して、ECU50は、排気昇温装置40を制御して、排気通路への燃料供給を実行する。図2の処理ルーチンは、エンジン本体1の動作中であって、燃料噴射弁15に対する燃料供給要求があった場合に、所定時間Δtごとに繰返し実行される。燃料噴射弁15に対する燃料供給要求は、冷間始動時など低温時の排気浄化触媒13の昇温、排気浄化触媒13における堆積した粒子状物質(PM)の酸化及び燃焼、及び、(排気浄化触媒13がNOx吸蔵還元触媒である場合には)排気浄化触媒13に対するNOx還元並びにSOx被毒回復を目的として、ECU50により出力される。燃料供給要求がされるための所定の条件は、低温時における昇温の場合は、例えば小型酸化触媒14が活性化していること、及び吸気温度センサ54の検出温度が所定値よりも低いことであり、排気浄化触媒13に対するNOx還元並びにSOx被毒回復の場合には、例えば、各物質の堆積量又は吸蔵量の推定値が所定の基準値を上回っていること、及び排気浄化触媒13の温度の推定値が所定の基準値を上回っていることである。燃料供給の必要量(すなわち、燃料供給要求の目的に応じて設定された燃料供給量)は固定値でも可変値でもよい。可変値の場合には、必要量は例えば排気浄化触媒13の推定温度、及び/又は各物質の堆積量又は吸蔵量の推定値に基づいて定めることができる。 In parallel with the above adhesion amount estimation process, the ECU 50 controls the exhaust temperature raising device 40 to supply fuel to the exhaust passage. The processing routine of FIG. 2 is repeatedly executed every predetermined time Δt when the engine body 1 is in operation and there is a fuel supply request to the fuel injection valve 15. The fuel supply request to the fuel injection valve 15 includes a temperature rise of the exhaust purification catalyst 13 at a low temperature such as during cold start, oxidation and combustion of particulate matter (PM) accumulated in the exhaust purification catalyst 13, and (exhaust purification catalyst). When 13 is a NOx occlusion reduction catalyst, it is output by the ECU 50 for the purpose of NOx reduction and SOx poisoning recovery for the exhaust purification catalyst 13. The predetermined conditions for requesting fuel supply are, for example, that the small oxidation catalyst 14 is activated and the temperature detected by the intake air temperature sensor 54 is lower than a predetermined value in the case of temperature rise at low temperatures. In the case of NOx reduction and SOx poisoning recovery for the exhaust purification catalyst 13, for example, the estimated value of the accumulation amount or occlusion amount of each substance exceeds a predetermined reference value, and the temperature of the exhaust purification catalyst 13 Is an estimated value exceeding a predetermined reference value. The required amount of fuel supply (that is, the fuel supply amount set according to the purpose of the fuel supply request) may be a fixed value or a variable value. In the case of the variable value, the required amount can be determined based on, for example, the estimated temperature of the exhaust purification catalyst 13 and / or the estimated value of the accumulation amount or occlusion amount of each substance.
 図2において、燃料噴射弁15に対する燃料供給要求があった場合には、ECU50は、上述した付着量推定処理によって算出されている現在の付着量の推定値を読み込む(S100)。次にECU50は、付着量の推定値が予め定められた上限付着量a2未満であるかを判断し(S110)、否定すなわち上限付着量a2以上である場合には、処理は後述するステップS190に移行する。肯定の場合には、次にECU50は、現在の付着量の推定値に基づき、次回のセットの燃料供給における上限供給量b1を算出する(S120)。この上限供給量b1は、次回のセットでの燃料供給量がこれを超えた場合にスモークの発生量が許容範囲を超えるような値から、所定のマージンを減じた値に設定される。上限供給量b1は固定値でも可変値でもよい。可変値の場合には、上限供給量b1は例えば図5に示されるように、エンジン回転数Neと吸入空気量KLとが高いほど大きな値とすることができる。 In FIG. 2, when there is a fuel supply request to the fuel injection valve 15, the ECU 50 reads the estimated value of the current adhesion amount calculated by the above-described adhesion amount estimation processing (S100). Next, the ECU 50 determines whether or not the estimated value of the adhesion amount is less than a predetermined upper limit adhesion amount a2 (S110). If negative, that is, if it is greater than or equal to the upper limit adhesion amount a2, the process proceeds to step S190 described later. Transition. If the determination is affirmative, the ECU 50 next calculates an upper limit supply amount b1 in the next set of fuel supply based on the estimated value of the current adhesion amount (S120). The upper limit supply amount b1 is set to a value obtained by subtracting a predetermined margin from a value such that the amount of smoke generated exceeds the allowable range when the fuel supply amount in the next set exceeds this. The upper limit supply amount b1 may be a fixed value or a variable value. In the case of a variable value, the upper limit supply amount b1 can be made larger as the engine speed Ne and the intake air amount KL are higher, as shown in FIG. 5, for example.
 次にECU50は、1セットの合計供給量が上限供給量b1を下回るように、ショット数を算出する(S130)。ショット数は2以上の複数となる場合のほか、1となる場合もありうる。なお、1ショットあたりの開弁時間t1(図3参照)は、固定値でも可変値であってもよく、可変値の場合には開弁時間t1がショット数の算出に反映される。開弁時間t1は、例えば排気温度が高いほど大きい値にすることができる。燃料供給の必要量が例えば2000mm^3である場合に、1セットの合計供給量が例えば1000mm^3であれば、セット数は2となる。 Next, the ECU 50 calculates the number of shots so that the total supply amount of one set is less than the upper limit supply amount b1 (S130). The number of shots may be 1 in addition to the case where the number of shots is 2 or more. The valve opening time t1 per shot (see FIG. 3) may be a fixed value or a variable value. In the case of a variable value, the valve opening time t1 is reflected in the calculation of the number of shots. The valve opening time t1 can be set to a larger value as the exhaust gas temperature is higher, for example. When the required amount of fuel supply is 2000 mm ^ 3, for example, if the total supply amount of one set is 1000 mm ^ 3, the number of sets is two.
 次にECU50は燃料噴射弁15を制御して、1ショットの燃料供給を実行させる(S140)。1ショットの供給の実行後には、予め定められたショット間隔t2にわたり燃料供給が休止される(S150)。ショット間隔t2は、固定値でも可変値であってもよく、例えば排気温度が高いほど小さい値にすることができる。 Next, the ECU 50 controls the fuel injection valve 15 to execute fuel supply for one shot (S140). After the supply of one shot, the fuel supply is suspended over a predetermined shot interval t2 (S150). The shot interval t2 may be a fixed value or a variable value. For example, the shot interval t2 can be made smaller as the exhaust gas temperature is higher.
 ショットと休止とが交互に、必要に応じて供給時間t3にわたって繰り返され、ステップS130で算出されたショット数が終了すると(S160)、燃料供給が停止される待機時間t4が開始される(S170)。この待機時間t4は、現在の付着量(S180)が所定の供給再開基準値a1を下回るまで継続される(S190)。通常の場合、待機時間t4は数秒である。 Shots and pauses are alternately repeated over the supply time t3 as necessary, and when the number of shots calculated in step S130 is completed (S160), a standby time t4 for stopping fuel supply is started (S170). . This standby time t4 is continued until the current adhesion amount (S180) falls below a predetermined supply restart reference value a1 (S190). In a normal case, the waiting time t4 is several seconds.
 付着量が供給再開基準値a1を下回ると、必要量の燃料供給が終了したかが判断され、否定の場合には、ステップS110からS190までの処理が繰返し実行される。本ルーチンの処理は、必要量の燃料供給が終了した場合にリターンされる。 When the adhesion amount falls below the supply restart reference value a1, it is determined whether the required amount of fuel supply has been completed, and in the case of negative, the processing from step S110 to S190 is repeatedly executed. The processing of this routine is returned when the required amount of fuel has been supplied.
 以上の処理の結果、本実施形態では、供給時間t3にわたる燃料の供給と、待機時間t4にわたる停止とが、必要量の燃料供給が終了(S200)するまで、交互に繰り返し実行されることになる。 As a result of the above processing, in the present embodiment, the fuel supply over the supply time t3 and the stop over the standby time t4 are repeatedly executed alternately until the required amount of fuel supply ends (S200). .
 例えば図6に示される従来例のように、例えば2000mm^3である必要量の燃料を、一定のショット間隔t2おきに、且つ待機時間を設けることなしに供給した場合には、排気管の壁面に付着した液相の燃料の膜が、高温の排ガスに曝されてリッチ混合気を形成し、許容されるスモーク量S1を超える大量のスモークを発生させてしまう。これとは対照的に、本実施形態では、燃料噴射弁15が燃料を間欠的に供給し、かつ、スモークの発生量を許容範囲内にするために、1又は2以上のショットから構成される1セットの供給での燃料供給量が、予め定められた上限供給量b1(S130)を下回るように、燃料噴射弁15が制御される。したがって、スモークの発生を効果的に抑制することができる。 For example, as in the conventional example shown in FIG. 6, when a required amount of fuel of, for example, 2000 mm ^ 3 is supplied at regular shot intervals t2 and without providing a waiting time, the wall surface of the exhaust pipe The liquid-phase fuel film adhering to the gas is exposed to high-temperature exhaust gas to form a rich air-fuel mixture, and a large amount of smoke exceeding the allowable smoke amount S1 is generated. In contrast, in the present embodiment, the fuel injection valve 15 is composed of one or more shots in order to intermittently supply the fuel and make the amount of smoke generated within an allowable range. The fuel injection valve 15 is controlled so that the fuel supply amount in one set of supply falls below a predetermined upper limit supply amount b1 (S130). Therefore, the generation of smoke can be effectively suppressed.
 また本実施形態では、システムは排気通路の現在の燃料付着量を、付着量推定処理によって推定し、ECU50は、推定した現在の燃料付着量に基づいて燃料噴射弁15を制御する。したがって、排気通路への燃料の付着に起因する空燃比の遅延した変化にも適切に応答でき、スモークの発生を更に効果的に抑制することができる。 Further, in this embodiment, the system estimates the current fuel adhesion amount in the exhaust passage by the adhesion amount estimation process, and the ECU 50 controls the fuel injection valve 15 based on the estimated current fuel adhesion amount. Therefore, it is possible to appropriately respond to a delayed change in the air-fuel ratio caused by the fuel adhering to the exhaust passage, and the generation of smoke can be further effectively suppressed.
 また本実施形態では、1セットの供給の後に待機時間t4にわたり燃料供給を停止させ、当該待機時間t4の後に燃料供給を再開させるので、供給の停止による付着量の抑制によってスモークの発生を抑制することができる。 Further, in the present embodiment, the fuel supply is stopped for the standby time t4 after the supply of one set, and the fuel supply is restarted after the standby time t4. Therefore, the generation of smoke is suppressed by suppressing the amount of adhesion due to the stop of the supply. be able to.
 また本実施形態では、推定された燃料付着量が予め定められた上限付着量a2を上回った場合に、燃料噴射弁15による燃料供給を、燃料付着量が所定の供給再開基準値を下回るまで停止(S110)するので、現在の燃料付着量に応じて停止期間を最適ないし最短に設定することが可能になる。 Further, in this embodiment, when the estimated fuel adhesion amount exceeds a predetermined upper limit adhesion amount a2, the fuel supply by the fuel injection valve 15 is stopped until the fuel adhesion amount falls below a predetermined supply resumption reference value. Since (S110) is performed, it becomes possible to set the stop period to the optimum or shortest according to the current fuel adhesion amount.
 本発明をある程度の具体性をもって説明したが、クレームされた発明の精神や範囲から離れることなしに、さまざまな改変や変更が可能であることは理解されなければならない。上記実施形態及び各変形例に示された種々の技術手段は、可能な限り互いに組み合わせることができる。上記実施形態では、システムは排気通路の現在の燃料付着量を、付着量推定処理によって推定することとしたが、付着量はセンサによって検出しても良い。 Although the present invention has been described with a certain degree of specificity, it should be understood that various modifications and changes can be made without departing from the spirit and scope of the claimed invention. Various technical means shown in the above-described embodiment and each modification can be combined with each other as much as possible. In the above embodiment, the system estimates the current fuel adhesion amount in the exhaust passage by the adhesion amount estimation processing, but the adhesion amount may be detected by a sensor.
 上記実施形態では、推定された燃料付着量が予め定められた上限付着量を上回った場合に、燃料噴射弁15による燃料供給を、燃料付着量が所定の供給再開基準値を下回るまで停止(t4)したが、燃料供給量を減量して供給を継続してもよい。 In the above embodiment, when the estimated fuel adhesion amount exceeds the predetermined upper limit adhesion amount, the fuel supply by the fuel injection valve 15 is stopped until the fuel adhesion amount falls below a predetermined supply restart reference value (t4). However, the fuel supply amount may be reduced and the supply may be continued.
 上記実施形態では、1セットの燃料供給ごとに現在の付着量をモニタしたが、1ショットごとに付着量をモニタしてもよい。 In the above embodiment, the current adhesion amount is monitored for each set of fuel supply, but the adhesion amount may be monitored for each shot.
 燃焼を促進させるために、外部から排気管12の内部に二次空気を供給するための管路、制御弁及びコンプレッサを設けても良い。その場合には、付着量の推定に二次空気の供給量をも考慮することができる。また本発明は、小型酸化触媒を有しないエンジンや、ターボチャージャを有しないエンジンに適用することも可能である。 In order to promote combustion, a conduit for supplying secondary air from the outside into the exhaust pipe 12, a control valve, and a compressor may be provided. In that case, the supply amount of secondary air can also be considered in the estimation of the adhesion amount. The present invention can also be applied to an engine that does not have a small oxidation catalyst or an engine that does not have a turbocharger.
 12 排気管
 13 排気浄化触媒
 14 小型酸化触媒
 15 燃料噴射弁
 16 グロープラグ
 31 排気温センサ
 32 A/Fセンサ
 40 排気昇温装置
 50 ECU
12 Exhaust pipe 13 Exhaust purification catalyst 14 Small oxidation catalyst 15 Fuel injection valve 16 Glow plug 31 Exhaust temperature sensor 32 A / F sensor 40 Exhaust temperature raising device 50 ECU

Claims (4)

  1.  内燃機関の排気通路に設けられた排気浄化触媒と、
     前記排気浄化触媒よりも上流側の前記排気通路に設けられ、前記排気浄化触媒に流入する排気に燃料を供給する燃料供給装置と、
     前記燃料供給装置から供給された燃料に着火させる加熱装置と、
     前記燃料供給装置を制御するコントローラとを備え、
     前記コントローラは、前記燃料供給装置が燃料を間欠的に供給し、かつ、スモークの発生量を許容範囲内にするために1又は2以上のショットから構成される1セットの供給での燃料供給量が予め定められた上限供給量を下回るように、前記燃料供給装置を制御することを特徴とする内燃機関の排気浄化システム。
    An exhaust purification catalyst provided in the exhaust passage of the internal combustion engine;
    A fuel supply device that is provided in the exhaust passage upstream of the exhaust purification catalyst and supplies fuel to the exhaust flowing into the exhaust purification catalyst;
    A heating device for igniting the fuel supplied from the fuel supply device;
    A controller for controlling the fuel supply device,
    The controller is configured to supply the fuel intermittently by the fuel supply device and to supply the fuel in one set of one or more shots in order to keep the amount of smoke generated within an allowable range. The exhaust gas purification system for an internal combustion engine is characterized in that the fuel supply device is controlled so that is less than a predetermined upper limit supply amount.
  2.  請求項1に記載の内燃機関の排気浄化システムであって、
     前記排気通路の燃料付着量を検出又は推定するセンサを更に備え、
     前記コントローラは、検出又は推定した燃料付着量に基づいて前記燃料供給装置を制御することを特徴とする内燃機関の排気浄化システム。
    An exhaust purification system for an internal combustion engine according to claim 1,
    A sensor for detecting or estimating a fuel adhesion amount in the exhaust passage;
    The exhaust gas purification system for an internal combustion engine, wherein the controller controls the fuel supply device based on the detected or estimated fuel adhesion amount.
  3.  請求項1に記載の内燃機関の排気浄化システムであって、
     前記コントローラは、前記1セットの供給の後に燃料供給を停止させ、当該停止の後に燃料供給を再開させることを特徴とする内燃機関の排気浄化システム。
    An exhaust purification system for an internal combustion engine according to claim 1,
    The exhaust gas purification system for an internal combustion engine, wherein the controller stops the fuel supply after the one set of supply, and restarts the fuel supply after the stop.
  4.  請求項2に記載の内燃機関の排気浄化システムであって、
     前記コントローラは、前記センサによって検出又は推定された燃料付着量が予め定められた上限付着量を上回った場合に、前記燃料供給装置による燃料供給を停止又は減量することを特徴とする内燃機関の排気浄化システム。
    An exhaust purification system for an internal combustion engine according to claim 2,
    The controller is configured to stop or reduce the fuel supply by the fuel supply device when the fuel adhesion amount detected or estimated by the sensor exceeds a predetermined upper limit adhesion amount. Purification system.
PCT/JP2011/001963 2011-03-31 2011-03-31 Exhaust gas purification system for internal combustion engine WO2012131787A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/001963 WO2012131787A1 (en) 2011-03-31 2011-03-31 Exhaust gas purification system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/001963 WO2012131787A1 (en) 2011-03-31 2011-03-31 Exhaust gas purification system for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2012131787A1 true WO2012131787A1 (en) 2012-10-04

Family

ID=46929636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001963 WO2012131787A1 (en) 2011-03-31 2011-03-31 Exhaust gas purification system for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2012131787A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209804A (en) * 2008-03-05 2009-09-17 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2010048228A (en) * 2008-08-25 2010-03-04 Toyota Motor Corp Exhaust emission control device for internal combustion engine
WO2010113311A1 (en) * 2009-04-02 2010-10-07 トヨタ自動車株式会社 Exhaust gas purification catalyst heating system
WO2011033681A1 (en) * 2009-09-18 2011-03-24 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209804A (en) * 2008-03-05 2009-09-17 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2010048228A (en) * 2008-08-25 2010-03-04 Toyota Motor Corp Exhaust emission control device for internal combustion engine
WO2010113311A1 (en) * 2009-04-02 2010-10-07 トヨタ自動車株式会社 Exhaust gas purification catalyst heating system
WO2011033681A1 (en) * 2009-09-18 2011-03-24 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine

Similar Documents

Publication Publication Date Title
US10364716B2 (en) Exhaust gas control apparatus for internal combustion engine and exhaust gas control method for internal combustion engine
JP2017120081A (en) Diesel engine exhaust treatment system
JP5737389B2 (en) Exhaust gas purification system for internal combustion engine
JP2009185628A (en) Fuel injection control system for internal combustion engine
JP6885708B2 (en) Exhaust purification device for internal combustion engine
US20130219863A1 (en) Exhaust gas control apparatus and method
JP2008045459A (en) Control device for internal combustion engine
CN102575548B (en) Exhaust purification device of internal combustion engine
JP5299560B2 (en) Exhaust device for internal combustion engine
WO2012131787A1 (en) Exhaust gas purification system for internal combustion engine
JP2017150411A (en) Exhaust purification system for internal combustion engine
JP2008261323A (en) Exhaust particulate measuring device of internal combustion engine
WO2013108286A1 (en) Method of calculating combustion rate in exhaust gas heating device
JP6682972B2 (en) Exhaust gas purification device for internal combustion engine
JP5387984B2 (en) Internal combustion engine
JP3796927B2 (en) Reducing agent supply control device for internal combustion engine
KR102429054B1 (en) Method for controlling catalyst light-off time activity of engine using idle stop and go system
US9562486B2 (en) Control device for internal combustion engine
JP5652255B2 (en) Exhaust gas purification device for internal combustion engine
JP2021085383A (en) Internal combustion engine control device
JP2005264774A (en) Controller of exhaust emission control device
JP2014101777A (en) Control device of internal combustion engine
JP2018193863A (en) Exhaust emission control device for internal combustion engine
JP2018193862A (en) Exhaust emission control device for internal combustion engine
JP2018193861A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP