WO2012129998A1 - 一种基于多个上行定时提前量的随机接入方法和设备 - Google Patents

一种基于多个上行定时提前量的随机接入方法和设备 Download PDF

Info

Publication number
WO2012129998A1
WO2012129998A1 PCT/CN2012/071284 CN2012071284W WO2012129998A1 WO 2012129998 A1 WO2012129998 A1 WO 2012129998A1 CN 2012071284 W CN2012071284 W CN 2012071284W WO 2012129998 A1 WO2012129998 A1 WO 2012129998A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
random access
msg2
scheduling
user equipment
Prior art date
Application number
PCT/CN2012/071284
Other languages
English (en)
French (fr)
Inventor
谌丽
许芳丽
赵亚利
刘佳敏
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to EP12765249.3A priority Critical patent/EP2693826B1/en
Priority to US14/008,482 priority patent/US9883534B2/en
Publication of WO2012129998A1 publication Critical patent/WO2012129998A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0838Random access procedures, e.g. with 4-step access using contention-free random access [CFRA]

Definitions

  • Random access method and device based on multiple uplink timing advances The application is filed on March 31, 2011 and submitted to the Chinese Patent Office, the application number is 201110080297.3, and the invention name is "one based on multiple uplink timing advances.
  • the present invention relates to the field of communications technologies, and in particular, to a random access method and device based on multiple uplink timing advances. Background technique
  • LTE-A Long Term Evolution Advanced
  • LTE-A system requirements LTE-A system requirements and LTE The system has good compatibility.
  • CA Carrier Aggregation
  • the CA technology refers to a mechanism in which a UE (User Equipment) can simultaneously aggregate multiple cells (cells), and multiple cells can simultaneously provide data transmission services for the UE.
  • the carriers corresponding to the respective cells may be continuous or discontinuous in the frequency domain.
  • the maximum bandwidth of each component carrier is 20 MHz, and the bandwidth between the component carriers may be the same or different.
  • the cell working by the UE is divided into a PCell (Primary Cell) and a number of SCells (Secondary Cell).
  • the primary cell undertakes most of the control and signaling operations (such as random access). And sending uplink feedback to the downlink data, CQI (Channel Quality Indicator) reporting, uplink pilot transmission, etc., the secondary cell is mainly used as a resource to bear data transmission.
  • CQI Channel Quality Indicator
  • the random access in the LTE system is divided into two types: non-contention random access and contention random access.
  • the process of non-contention random access is shown in Figure 1, including:
  • the base station (eNB) allocates a dedicated ra-Preamblelndex (random access preamble) for non-contention random access to the UE and a PRACH (Packet Random Access Channel) for random access. Channel) resource ra-PRACH-Masklndex (PRACH Mask Index, PRACH Mask number);
  • the PDCCH Physical Downlink Control Channel
  • the PDCCH Physical Downlink Control Channel
  • the PDCCH Physical Downlink Control Channel
  • the non-contention random access carries this information through RRC (Radio Resource Control) signaling.
  • the UE sends a designated dedicated preamble to the base station according to the ras-preamblelndex and ra-PRACH-Masklndex indicated by the MsgO. After receiving the Msgl, the base station calculates the uplink timing advance TA according to the Msgl.
  • the base station sends a random access response to the UE.
  • the random access response includes the timing advance information and the subsequent uplink transmission resource allocation UL grant (uplink grant), and the timing advance is used for the timing relationship of the UE subsequent uplink transmission.
  • the PDCCH carrying the Msg2 scheduling message is scrambled by the RA-RNTI (Random Radio Network Temporary Identity).
  • the RA-RNTI uniquely corresponds to the time-frequency resource of the Msgl in the 10ms window.
  • Preamble ID the UE determines, by the RA-RNTI and the preamble ID, that the Msg2 corresponds to the Msgl sent by the UE.
  • Msgl The UE selects a random access preamble and PRACH resource, and uses the PRACH resource to send the selected random access preamble to the base station.
  • Msg2 The base station receives the preamble, calculates the timing advance TA, and sends a random access response to the UE, where the random access response includes at least the timing advance information. And UL grant for Msg3.
  • Msg3 The UE sends an uplink transmission on the UL grant specified by Msg2. Different random access causes Msg3 to transmit different contents. For example, for initial access, Msg3 transmits an RRC connection establishment request.
  • Msg4 Competing to resolve the message, the UE can judge whether the random access is successful according to Msg4.
  • the base station can also initiate contention random access by using MsgO.
  • the difference between the base station and the non-contention random access is that the base station instructs the UE to initiate random access but does not indicate a specific random access resource.
  • the UE sends the uplink data transmission and the HARQ (Hybrid Auto Repeat Request) feedback information of the downlink data according to the uplink timing advance requirement, so that the base station can receive the uplink transmission at the expected time.
  • HARQ Hybrid Auto Repeat Request
  • the 3GPP defines two scenarios for supporting multi-TA, as shown in Figure 3, which introduces a scenario of RRU (Radio Remote Unit).
  • F1 provides a wide coverage (large circle)
  • F2 uses RRH (Remote Radio Head) for hotspot coverage (small circle) in Fl cell
  • mobility management is based on F1.
  • the UE is located in the overlapping area between the RRH cell and the F1 cell of F2, the Fl cell and the F2 cell can be aggregated, but the UL TA of the Fl cell and the F2 cell are different.
  • FIG. 1 A schematic diagram of a scene in which a repeater is introduced as shown in FIG.
  • the base station supports F1 and F2, F1 provides large-scale coverage (left oblique line), and F2 covers a small coverage (right oblique line).
  • the frequency selective repeater can extend the coverage of F2.
  • the UE is located in F1. If the cell overlaps with the F2 cell, the F1 cell and the F2 cell can be aggregated, but the UL cells of the F1 cell and the F2 cell are different.
  • the UL CC uplink member carrier
  • the UE only needs to maintain uplink synchronization with one cell to implement uplink synchronization for all cells in the TA group.
  • the current protocol only supports random access on the primary cell, and the random access procedure on the primary cell is the same as the single-cell random access procedure of the earlier version; when there are multiple TAs, the timing advance of the primary cell and other cells The timing advance may be different.
  • the current random access procedure cannot meet the requirements of acquiring and maintaining multiple uplink timing advances. Summary of the invention
  • the embodiment of the invention provides a random access method and device based on multiple uplink timing advances to ensure a random access procedure in a multi-TA scenario.
  • an embodiment of the present invention provides a random access method based on multiple uplink timing advances, including:
  • the initiating user equipment completes the random access procedure of the secondary cell on the designated carrier.
  • the embodiment of the invention provides a random access method based on multiple uplink timing advances, including:
  • the user equipment When the user equipment has multiple uplink timing advances, the user equipment completes the random access procedure of the secondary cell on the designated carrier according to the indication of the network side.
  • the embodiment of the invention provides a network side device, including:
  • the determining module is configured to learn that the user equipment has multiple uplink timing advances, and the processing module is configured to: when the user equipment is configured to have multiple uplink timing advances, initiate the user equipment to complete the random access procedure of the secondary cell on the designated carrier.
  • An embodiment of the present invention provides a user equipment, including: a determining module, configured to determine that the user equipment has multiple uplink timing advances; and a processing module, configured to: when the user equipment has multiple uplink timing advances, complete the random access process of the secondary cell on the designated carrier according to the indication of the network side .
  • the present invention has at least the following advantages: In the scenario of ensuring multi-TA maintenance, a random access procedure on the SCell can be implemented. DRAWINGS
  • FIG. 1 is a schematic diagram of a process of non-contention random access in the prior art
  • FIG. 2 is a schematic diagram of a process of competing for random access in the prior art
  • FIG. 3 is a schematic diagram of a scenario in which an RRU is introduced in the prior art
  • FIG. 4 is a schematic diagram of a scenario in which a repeater is introduced in the prior art
  • FIG. 5 is a schematic flowchart of a random access method based on multiple uplink timing advances according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic structural diagram of a network side device according to Embodiment 6 of the present invention
  • FIG. 7 is a schematic structural diagram of a user equipment according to Embodiment 7 of the present invention. detailed description
  • the first embodiment of the present invention provides a random access method based on multiple uplink timing advances.
  • a multi-carrier aggregation scenario when the UE has multiple uplink timing advances (Multi-TAs), how to complete the secondary cell is solved by the UE.
  • Random access problem The core idea is to specify a carrier for the message of the random access process, and the network side and the user equipment perform a random access procedure according to the specified carrier, thereby implementing a random access procedure on the secondary cell.
  • the message of the random access procedure includes: random access resource allocation elimination The message Msg0, the random access code transmission message Msgl, the random access response message Msg2, the uplink transmission message Msg3 scheduled by the random access, and the contention resolution message Msg4.
  • the initiating user equipment completes the random access procedure of the secondary cell on the designated carrier; the user equipment completes the random connection of the secondary cell on the designated carrier according to the indication of the network side. Into the process.
  • the random access method includes the following steps:
  • Step 501 The network side determines whether to transmit the carrier of the MsgO according to whether cross-carrier scheduling is configured on the carrier that is to be initiating the RACH (Random Access Channel). If the cross-carrier scheduling is configured on the carrier to be initiating the RACH, the MsgO is sent on the configured scheduling carrier; if the cross-carrier scheduling is not configured on the carrier to be initiating the RACH, the downlink carrier of the SCell to be randomly-initiated is sent. The MsgO is sent, and the SCell uplink and downlink carriers are indicated by the SIB2 (System Information Block 2) of the cell.
  • SIB2 System Information Block 2
  • the uplink and downlink carrier correspondence of the SCell is also called SIB2 linkaged (connection), so the downlink carrier is also called UE transmission.
  • SIB2 linkaged (connection) so the downlink carrier is also called UE transmission. Msgl's SIB2 linkage downlink carrier.
  • the network side schedules the UE to initiate random access by using the PDCCH command, and the carrier that initiates the random access is specified by the MsgO.
  • Step 502 The UE sends the Msgl on the corresponding PRACH resource of the corresponding carrier according to the indication of the MsgO, that is, the UE sends the designated preamble code on the corresponding PRACH resource of the corresponding carrier according to the indication of the MsgO. Further, if the MsgO indicates the contention random access procedure, the UE randomly selects the preamble for transmitting the Msgl in the preamble for the contention random access on the PRACH resource of the current cell configuration.
  • Step 503 The network side sends an Msg2 MAC (Media Access Control) PDU (Protocol Data Unit) on the downlink carrier of the SCell that sends the Msgl; or, on the same carrier as the scheduling command of the scheduled Msg2 Send the Msg2 MAC PDU on it.
  • Msg2 MAC Media Access Control
  • PDU Protocol Data Unit
  • the network side sends an Msg2 scheduling command on the PCell; the network side sends the Msg2 MAC on the same carrier as the scheduling command of the scheduled Msg2.
  • the Msg2 MAC PDU is located on the downlink carrier of the PCell; when the network side sends the Msg2 MAC PDU on the downlink carrier of the SCell that sends the Msgl, the Msg2 scheduling command uses the CIF to indicate that the Msg2 MAC PDU is located on the downlink carrier of the SCell performing random access;
  • the Msg2 MAC PDU is by default located on the downlink carrier of the SCell that performs random access.
  • Corresponding UE side processing The UE receives the scheduling of the Msg2 on the carrier that sends the MsgO on the network side.
  • the location of the Msg2 MAC PDU has the following implementation manner: The Msg2 MAC PDU is sent on the downlink carrier of the SCell that sends the Msgl, or, Msg2 ⁇ 1
  • the scheduling command of ?011 and the scheduling ⁇ 2 is transmitted on the same carrier, that is, the cross-carrier scheduling of Msg2 is not supported.
  • the UE when the scheduling command of the Msg2 MAC PDU and the scheduling Msg2 is sent on the same carrier, the UE receives the Msg2 scheduling command on the PCell and receives the Msg2 MAC PDU on the PCell; the Msg2 MAC PDU is in the SCell of the Msgl.
  • the UE When transmitting on the downlink carrier, the UE receives the Msg2 MAC PDU on the downlink carrier of the randomly accessed SCell according to the CIF (carrier number) indication in the Msg2 scheduling command, or receives the Msg2 on the downlink carrier of the SCell that performs random access by default.
  • MAC PDU when transmitting on the downlink carrier, the UE receives the Msg2 MAC PDU on the downlink carrier of the randomly accessed SCell according to the CIF (carrier number) indication in the Msg2 scheduling command, or receives the Msg2 on the downlink carrier of the SCell that performs random access by
  • Step 504 The UE according to the UL grant indication in the Msg2 MAC PDU, if there is uplink resource allocation for the UE, send Msg3 on the SCell uplink carrier that performs random access, and apply the uplink timing advance TA value in the Msg2;
  • the TA value is the reference downlink carrier estimated by the downlink carrier of the PCell as the TA value; or the downlink carrier that is the same SCell as the uplink carrier of the transmitting Msgl is used as the reference downlink carrier.
  • the uplink resource allocation in the Msg2 is allocated by default to the resource on the uplink carrier that sends the Msgl.
  • Step 505 The network side sends an Msg4 scheduling command on the downlink carrier that sends the MsgO. Specifically, if the Msg4 scheduling command schedules the downlink transmission, the Msg4 MAC PDU is in the downlink carrier indicated by the scheduling command (for example, the carrier that sends the scheduling command) Or transmitting on the downlink carrier of the randomly accessed SCell; if the Msg4 scheduling command schedules the uplink transmission, the uplink transmission is sent on the downlink carrier indicated by the scheduling command (for example, the uplink carrier transmitting the Msgl).
  • Corresponding UE side processing The UE receives the Msg4 scheduling command from the network side; wherein, if the Msg4 scheduling command schedules the downlink transmission, the Msg4 MAC PDU is sent on the downlink carrier indicated by the scheduling command; if the Msg4 scheduling command schedules the uplink transmission, The UL grant indicated in the scheduling command is on the SCell that initiated the random access.
  • the random access process on the SCell can be implemented in the scenario of ensuring maintenance of the multi-TA.
  • the scheduling of the SCell sent by the Msgl on the network side is taken as an example of PCell. If SCell 1 is used to schedule random access of SCell 2, the process is similar.
  • the second embodiment of the present invention provides a random access method based on multiple uplink timing advances, where the PCell initiates a non-contention random access procedure on the designated SCell, and the base station side processing process includes:
  • Step 1 The base station sends a PDCCH scheduling command on the PCell, and carries a CIF indication in the DCI (downlink control information) of the PDCCH to specify the SCell to send the Msgl.
  • the PDCCH also specifies the location and the location of the PRACH resource that the UE sends the Msgl. Preamble code.
  • Step 2 The base station receives the specified preamble code at the PRACH location specified on the SCell, and performs TA value estimation.
  • Step 3 The base station sends an Msg2 scheduling command on the PCell, the Msg2 MAC PDU is located on the downlink carrier of the PCell, or the Msg2 scheduling command uses the CIF to indicate that the Msg2 MAC PDU is located on the downlink carrier of the SCell that performs random access, or the Msg2 MAC PDU is located by default.
  • the Msg2 scheduling command does not carry the CIF indication.
  • the Msg2 is used to notify the UE of the uplink timing advance of the SCell, Msg2.
  • the uplink resource allocation for the UE in the MAC PDU does not carry the carrier number CIF, and the uplink resource is located on the carrier transmitting the Msgl by default.
  • the UE side processing process includes:
  • Step A The UE receives the PDCCH scheduling command on the PCell, and parses the carrier number (CIF), PRACH resource, and preamble code of the Msgl.
  • Step B The UE sends the specified preamble code on the designated PRACH of the designated carrier.
  • Step C The UE receives the Msg2 MAC PDU on the PCell by receiving the Msg2 scheduling command on the PCell; or the UE receives the Msg2 MAC PDU on the downlink carrier of the randomly accessed SCell according to the CIF indication in the Msg2 scheduling command; or, the UE By default, the Msg2 MAC PDU is received on the downlink carrier of the SCell that performs random access, and the Msg2 scheduling command does not carry the CIF indication.
  • Step D The UE according to the UL grant indication in the Msg2 MAC PDU, if there is uplink resource allocation for the UE, send Msg3 on the SCell uplink carrier that performs random access, and apply the TA value indicated by Msg2; the TA value is PCell
  • the downlink carrier is used as the reference downlink carrier for the estimation of the TA value; or the downlink carrier to which the uplink carrier of the Msgl is transmitted is the same SCell (the correspondence between the uplink and downlink carriers in the SIB2 of the cell, also referred to as the SIB2 linkage) is used as a reference.
  • Downlink carrier the correspondence between the uplink and downlink carriers in the SIB2 of the cell, also referred to as the SIB2 linkage
  • the third embodiment of the present invention provides a random access method based on multiple uplink timing advances, where the PCell initiates a contention random access procedure on the designated SCell, and the base station side processing process includes:
  • Step 1 The base station sends a PDCCH scheduling command on the PCell, and sends a Msgl to the SCell by carrying a CIF indication in the DCI of the PDCCH.
  • the PDCCH indicates that the UE performs the contention random access, that is, the PRACH resource and the preamble code are not allocated.
  • Step 2 The base station receives the Msgl sent by the UE on the SCell. Wherein, due to the uncertainty of the resource location, the base station needs to continuously monitor the Msgl; and the base station performs the TA value estimation according to the Msgl receiving location.
  • Step 3 The base station sends an Msg2 scheduling command on the PCell, the Msg2 MAC PDU is located on the downlink carrier of the PCell, or the Msg2 scheduling command uses the CIF to indicate that the Msg2 MAC PDU is located on the downlink carrier of the SCell that performs random access, or the Msg2 MAC PDU is located by default. On the downlink carrier of the SCell that performs random access, the Msg2 scheduling command does not carry the CIF indication.
  • the Msg2 is used to notify the UE of the uplink timing advance of the SCell, and the uplink resource allocation for the UE in the Msg2 MAC PDU is not carried with the carrier number CIF, and the uplink resource is located on the carrier that sends the Msgl by default.
  • Step 4 The base station receives the uplink transmission Msg3 on the uplink resource allocated by the Msg2, and performs contention resolution through the uplink transmission content to determine which UE initiates the random access.
  • Step 5 The base station schedules Msg4 on the PCell to complete the contention resolution. If the Msg4 scheduling command schedules downlink transmission, the Msg4 MAC PDU is located on the PCell or on the downlink carrier of the randomly accessed SCell. If the Msg4 scheduling command schedules the uplink transmission, the UL grant in the scheduling command points to the random access. On the uplink carrier of the SCell.
  • the UE side processing process includes:
  • Step A The UE receives the PDCCH scheduling command on the PCell, parses the carrier number of the sending Msgl, and determines that the contention random access is required.
  • Step B The UE selects the PRACH resource and the preamble code to send the Msgl in the PRACH resource and the contention random access preamble set configured by the SCell.
  • Step C The UE receives the Msg2 MAC PDU on the PCell by receiving the Msg2 scheduling command on the PCell; or the UE receives the Msg2 MAC PDU on the downlink carrier of the randomly accessed SCell according to the CIF indication in the Msg2 scheduling command; or, the UE By default, the Msg2 MAC PDU is received on the downlink carrier of the SCell that performs random access, and the Msg2 scheduling command does not carry the CIF indication.
  • Step D The UE applies the TA value in the Msg2 according to the UL grant indication in the Msg2 MAC PDU, and sends the uplink transmission (ie, Msg3) on the SCell uplink carrier that performs random access.
  • Step E The UE receives the Msg4 scheduling command of the base station, and if the Msg4 scheduling command schedules the downlink transmission, the Msg4 MAC PDU is on the downlink carrier corresponding to the scheduling command (the PCell downlink carrier, or the downlink carrier of the randomly accessed SCell); The Msg4 scheduling command schedules the uplink transmission, and the UL grant indicated in the PDCCH scheduling command is on the SCell that initiates the random access, and the UE completes the contention resolution process.
  • the fourth embodiment of the present invention provides a random access method based on multiple uplink timing advances, and initiates a non-contention random access procedure in an SCell.
  • the network side configures the SCell to be scheduled by the local SCell only, and the cross-carrier is not configured.
  • the base station side processing process includes:
  • Step 1 The base station sends a PDCCH command on the downlink carrier of the designated SCell, and allocates a PRACH resource and a preamble code for sending the Msgl. If the SCell is deactivated, the SCell is first activated by the MAC CE.
  • Step 2 The base station receives the allocated preamble code on the allocated PRACH resource of the SCell uplink carrier, and estimates the TA value according to the received Msg 1.
  • Step 3 The base station sends Msg2 on the downlink carrier of the SCell, where the estimated TA value and the uplink resource allocation of the subsequent uplink transmission are included.
  • the UE side processing process includes:
  • Step A The UE receives the PDCCH command on the downlink carrier of the designated SCell, and parses the PRACH resource and the preamble code that send the Msgl.
  • Step B The UE sends the allocated preamble code on the allocated PRACH resource of the SCell uplink carrier.
  • Step C The UE receives Msg2 on the downlink carrier of the SCell.
  • the fifth embodiment of the present invention provides a random access method based on multiple uplink timing advances, and initiates a contention random access procedure in an SCell.
  • the network side configures the SCell to be scheduled only by the SCell, and does not configure cross-carrier scheduling.
  • the processing for Msg0, Msgl, and Msg2 is similar to the processing of the above-described fourth embodiment, and the processing for Msg3 and Msg4 is The processing of the technology is similar, and details are not described in the embodiment of the present invention.
  • the network side device is further provided in the embodiment of the present invention. As shown in FIG. 6, the network side device includes:
  • the determining module 11 is configured to learn that the user equipment has multiple uplink timing advances
  • the processing module 12 is configured to: when the user equipment is configured to have multiple uplink timing advances, initiate the user equipment to complete random access of the secondary cell on the designated carrier. process.
  • the processing module 12 is specifically configured to determine whether to send a random access resource allocation message according to whether cross-carrier scheduling is configured on a carrier to initiate a random access channel RACH.
  • the processing module 12 is further configured to: if the cross-carrier scheduling is configured on the carrier to be initiating the RACH, send the MsgO on the configured scheduling carrier; if the carrier to be initiating the RACH is configured with the cross-carrier scheduling, on the configured scheduling carrier Sending MsgO; If cross-carrier scheduling is not configured on the carrier to be initiating RACH, Msg0 is sent on the downlink carrier of the SCell to be randomly activated.
  • the processing module 12 is specifically configured to send a random access response message Msg2 medium access control MAC protocol data unit PDU on a downlink carrier of the secondary cell SCell that sends the Msgl; or, on the same carrier as the scheduling command for scheduling the Msg2 Send the Msg2 MAC PDU.
  • the Msg2 scheduling command is sent on the primary cell PCell
  • the Msg2 MAC PDU is transmitted on the same carrier as the scheduling command of the scheduled Msg2
  • the Msg2 MAC PDU is located on the downlink carrier of the PCell; and is sent on the downlink carrier of the secondary cell SCell transmitting the Msgl.
  • the Msg2 scheduling command uses the carrier number CIF to indicate that the Msg2 MAC PDU is located on the downlink carrier of the SCell that performs random access; or the Msg2 MAC PDU is located on the downlink carrier of the SCell that performs random access by default.
  • the processing module 12 is specifically configured to send a contention resolution message Msg4 scheduling command on a downlink carrier that sends the MsgO.
  • the Msg4 scheduling command schedules downlink transmission, it is indicated by the scheduling command.
  • the uplink transmission is sent on the downlink carrier indicated by the scheduling command.
  • modules of the device of the present invention may be integrated or may be deployed separately.
  • the above modules can be combined into one module, or they can be further split into multiple sub-modules.
  • the user equipment includes:
  • the determining module 21 is configured to determine that the user equipment has multiple uplink timing advances
  • the processing module 22 is configured to: when the user equipment has multiple uplink timing advances, perform random connection of the secondary cells on the designated carrier according to the indication of the network side. Into the process.
  • the processing module 22 is specifically configured to send a random access code sending message Msgl on the corresponding packet random access channel PRACH resource of the corresponding carrier according to the indication of the MsgO.
  • the processing module 22 is further configured to: if the MsgO indicates a contention random access procedure, randomly select a preamble for transmitting the Msgl in the preamble for the contention random access on the PRACH resource configured by the current cell.
  • the Msg2 MAC PDU is sent on the downlink carrier of the SCell that sends the Msgl, or the Msg2 MAC PDU is sent on the same carrier as the scheduling command of the scheduled Msg2.
  • the user equipment further includes: a receiving module 23, when the scheduling command for the Msg2 MAC PDU and the scheduling Msg2 is sent on the same carrier, receiving the Msg2 scheduling command on the PCell, and receiving the Msg2 MAC PDU on the PCell; or, the Msg2 MAC
  • the PDU When transmitting the PDU on the downlink carrier of the SCell that sends the Msgl, the PDU receives the Msg2 MAC PDU on the downlink carrier of the randomly accessed SCell according to the CIF indication in the Msg2 scheduling command, or defaults on the downlink carrier of the SCell that performs random access. Receive the Msg2 MAC PDU.
  • the processing module 22 is specifically configured to perform uplink management according to the Msg2 MAC PDU.
  • the UL grant indicates that if there is an uplink resource allocation for the user equipment, the uplink transmission message Msg3 scheduled by the random access is sent on the SCell uplink carrier that performs random access, and the uplink timing advance TA value in the Msg2 is applied. .
  • the TA value is the reference downlink carrier estimated by the downlink carrier of the PCell as the TA value; or the downlink carrier that belongs to the same SCell as the uplink carrier that transmits the Msgl as the reference downlink carrier.
  • the receiving module 23 is configured to receive the Msg4 scheduling command from the network side. If the Msg4 scheduling command schedules the downlink transmission, the Msg4 MAC PDU is sent on the downlink carrier indicated by the scheduling command. If the Msg4 scheduling command schedules the uplink transmission, the scheduling is performed. The UL grant indicated in the command is on the SCell that initiated the random access.
  • modules of the device of the present invention may be integrated or may be deployed separately.
  • the above modules can be combined into one module, or they can be further split into multiple sub-modules.
  • the present invention can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is a better implementation. the way.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for making a A computer device (which may be a personal computer, server, or network device, etc.) performs the methods described in various embodiments of the present invention.
  • modules in the apparatus in the embodiment may be distributed in the apparatus of the embodiment according to the description of the embodiment, or may be correspondingly changed in one or more apparatuses different from the embodiment.
  • the modules of the above embodiments may be combined into one module, or may be further split into multiple sub-modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种基于多个上行定时提前量的随机接入方法和设备,该方法包括:网络侧获知用户设备具有多个上行定时提前量时,发起用户设备在指定载波上完成辅小区的随机接入过程。本发明实施例中,在保证multi-TA的维护的场景下,可以实现SCell上的随机接入过程。

Description

一种基于多个上行定时提前量的随机接入方法和设备 本申请要求于 2011 年 3 月 31 日提交中国专利局, 申请号为 201110080297.3 , 发明名称为 "一种基于多个上行定时提前量的随 机接入方法和设备" 的中国专利申请的优先权, 其全部内容通过引 用结合在本申请中。 技术领域
本发明涉及通信技术领域, 尤其涉及一种基于多个上行定时 提前量的随机接入方法和设备。 背景技术
1、 载波聚合技术
LTE-A ( Long Term Evolution Advanced, 高级长期演进 )的峰 值速率比 LTE ( Long Term Evolution, 长期演进 )有 4艮大的提高, 要求达到下行 lGbps , 上行 500Mbps; 同时, LTE-A 系统要求和 LTE系统有很好的兼容性。 基于提高峰值速率、 与 LTE系统兼容 以及充分利用频谱资源的需要, LTE-A系统中引入了 CA ( Carrier Aggregation, 载波聚合)技术。
CA技术是指 UE ( User Equipment, 用户设备)可以同时聚合 多个 cell (小区), 多个 cell可以同时为 UE提供数据传输服务的 机制。在载波聚合的系统中,各个 cell对应的载波在频域可以是连 续或非连续的, 为了和 LTE系统兼容, 每个成员载波的最大带宽 为 20MHz, 各成员载波间的带宽可以相同或不同。
在载波聚合下, UE工作的小区分为一个 PCell ( Primary Cell, 主小区 ) 和若干个 SCell ( Secondary Cell, 辅小区 ), 主小区承担 了大部分控制和信令的工作 (如进行随机接入、 发送对下行数据 的上行反馈、 CQI ( Channel Quality Indicator, 信道质量指示) 上 报、 上行导频传输等), 辅小区主要是作为资源, 承担数据传输的 功能。
2、 LTE系统中的随机接入机制
LTE 系统中的随机接入分为非竟争随机接入和竟争随机接入 两种, 非竟争随机接入的过程如图 1所示, 包括:
MsgO: 基站 (eNB ) 向 UE 分配用于非竟争随机接入的专用 ra-Preamblelndex ( Random Access Preamble, 随机接入前导码) 以 及随机接入使用的 PRACH ( Packet Random Access Channel , 分组 随机接入信道) 资源 ra-PRACH-Masklndex ( PRACH Mask Index, PRACH Mask编号); 对于下行数据到达引起的非竟争随机接入使 用 PDCCH ( Physical Downlink Control Channel, 物理下行控制信 道) 携带这些信息, 对于切换引起的非竟争随机接入通过 RRC ( Radio Resource Control , 无线资源控制 )信令携带这些信息。
Msgl : UE 根据 MsgO 指 示 的 ra-Preamblelndex 和 ra-PRACH-Masklndex, 在指定的 PRACH 资源上向基站发送指定 的专用 preamble; 基站接收到 Msgl后根据 Msgl计算上行定时提 前量 TA。
Msg2: 基站向 UE发送随机接入响应, 随机接入响应中包含 定时提前量信息和后续上行传输资源分配 UL grant (上行授权 ), 定时提前量用于 UE后续上行传输的定时关系。 承载 Msg2调度消 息的 PDCCH 用 RA-RNTI ( Random Radio Network Temporary Identity, 随机接入无线网络临时标识)加扰, RA-RNTI 在 10ms 窗内与发送 Msgl 的时频资源唯一对应; 另外 Msg2 中还携带 preamble ID , UE通过 RA-RNTI和 preamble ID确定该 Msg2是与 其发送的 Msgl对应的。
竟争随机接入的过程如图 2所示, 包括:
Msgl : UE选择随机接入 preamble和 PRACH资源, 并利用该 PRACH资源向基站发送所选的随机接入 preamble。
Msg2: 基站接收到 preamble, 计算定时提前量 TA, 并向 UE 发送随机接入响应, 随机接入响应中至少包含该定时提前量信息 和针对 Msg3的 UL grant。
Msg3: UE在 Msg2指定的 UL grant上发送上行传输, 不同随 机接入原因 Msg3 上行传输的内容不同, 如对于初始接入, Msg3 传输 RRC连接建立请求。
Msg4: 竟争解决消息, UE根据 Msg4可以判断随机接入是否 成功。
基站也能用 MsgO发起竟争随机接入,与非竟争随机接入的区 别是基站指示 UE发起随机接入但不指示具体的随机接入资源。
基于上述过程, UE按照上行定时提前量要求发送上行数据传 输和对下行数据的 HARQ ( Hybrid Auto Repeat request, 混合自动 重传请求)反馈信息, 基站才能在预期的时间点进行上行传输的 接收, 这称为上行同步。
3、 CA定义的 Multi-TA ( Multiple Timing Advance, 多个上行 定时提前量) 的场景
由于多载波聚合的引入, 如果工作在不同载波上的小区频率 特性和收发机距离相差较大, 对于不同的载波可能出现不同的上 行定时提前量。 目前 3GPP定义两种支持 multi-TA的场景, 如图 3 所示的引入了 RRU ( Radio Remote Unit, 射频拉远单元) 的场景 示意图。 例如, F1提供大范围覆盖(大圆), F2使用 RRH ( Remote Radio Head, 拉远天线) 用于 Fl cell内的热点覆盖 (小圆 ), 移动 性管理基于 F1进行。 该场景下如果 UE位于 F2的 RRH cell和 F1 cell相重叠的区域, 则 Fl cell和 F2 cell可以聚合, 但是 Fl cell和 F2 cell的 UL TA不同。
如图 4所示的引入直放站 ( repeater ) 的场景示意图。 例如, 基站支持 F1和 F2, F1提供大范围覆盖(左斜线), F2覆盖范围较 小 (右斜线), 通过频率选择性 repeater, 可以扩展 F2的覆盖范围, 该场景下如果 UE位于 Fl cell和 F2 cell相重叠的区域, 则 Fl cell 和 F2 cell可以聚合, 但是 Fl cell和 F2 cell的 UL TA不同。
现有技术中, 为了便于对 Multi-TA系统的 TA进行维护, 引 入了 TA group (组) 的相无念, 归属于同一个 TA group的 cell, 其 UL CC (上行成员载波) 可以使用相同的 TA值, 归属于不同 TA group的 cell, 其 UL CC的 TA不相同。 在一个 TA group内 UE只 需要和一个小区保持上行同步就实现了对 TA group内所有小区的 上行同步。
在实现本发明的过程中, 发明人发现现有技术中至少存在以 下问题:
当前协议只支持在主小区上进行随机接入, 主小区上的随机 接入过程和早期版本的单小区随机接入过程一样; 当有多个 TA 时, 主小区的定时提前量和其他小区的定时提前量可能不一样, 当前的随机接入过程已不能满足多个上行定时提前量的获取和维 护的需要。 发明内容
本发明实施例提供一种基于多个上行定时提前量的随机接入 方法和设备, 以保证 multi-TA场景下的随机接入过程。
为了达到上述目的, 本发明实施例提供一种基于多个上行定 时提前量的随机接入方法, 包括:
网络侧获知用户设备具有多个上行定时提前量时, 发起用户 设备在指定载波上完成辅小区的随机接入过程。
本发明实施例提供一种基于多个上行定时提前量的随机接入 方法, 包括:
当用户设备具有多个上行定时提前量时, 所述用户设备按照 网络侧的指示在指定载波上完成辅小区的随机接入过程。
本发明实施例提供一种网络侧设备, 包括:
确定模块, 用于获知用户设备具有多个上行定时提前量; 处理模块, 用于当获知用户设备具有多个上行定时提前量时, 发起用户设备在指定载波上完成辅小区的随机接入过程。
本发明实施例提供一种用户设备, 包括: 确定模块, 用于确定用户设备具有多个上行定时提前量; 处理模块, 用于当用户设备具有多个上行定时提前量时, 按 照网络侧的指示在指定载波上完成辅小区的随机接入过程。
与现有技术相比,本发明至少具有以下优点: 在保证 multi-TA 的维护的场景下, 可以实现 SCell上的随机接入过程。 附图说明
图 1是现有技术中非竟争随机接入的过程示意图;
图 2是现有技术中竟争随机接入的过程示意图;
图 3是现有技术中引入了 RRU的场景示意图;
图 4是现有技术中引入了直放站的场景示意图;
图 5 是本发明实施例一提供的一种基于多个上行定时提前量 的随机接入方法流程示意图;
图 6是本发明实施例六提供的一种网络侧设备结构示意图; 图 7是本发明实施例七提供的一种用户设备结构示意图。 具体实施方式
下面将结合本发明中的附图, 对本发明中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明的一部分 实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域 普通技术人员在没有做出创造性劳动前提下所获得的所有其他实 施例, 都属于本发明保护的范围。
实施例一
本发明实施例一提供一种基于多个上行定时提前量的随机接 入方法, 针对多载波聚合场景, 当 UE 具有多个上行定时提前量 ( Multi-TA ) 时, 解决 UE如何完成辅小区的随机接入的问题。 其 核心思路是为随机接入过程的消息指定载波, 网络侧和用户设备 根据该指定载波进行随机接入过程, 从而实现辅小区上的随机接 入过程。 其中, 随机接入过程的消息包括: 随机接入资源分配消 息 Msg0、 随机接入码发送消息 Msgl、 随机接入响应消息 Msg2、 由随机接入调度的上行传输消息 Msg3、 竟争解决消息 Msg4。
具体的, 网络侧获知用户设备具有多个上行定时提前量时, 发起用户设备在指定载波上完成辅小区的随机接入过程; 用户设 备按照网络侧的指示在指定载波上完成辅小区的随机接入过程。
针对 Msg0- Msg4, 如图 5所示, 该随机接入方法包括以下步 骤:
步骤 501 ,网络侧根据待发起 RACH( Random Access Channel, 随机接入信道 )的载波上是否配置了跨载波调度确定发送 MsgO的 载波。 其中, 如果待发起 RACH的载波上配置了跨载波调度, 则 在配置的调度载波上发送 MsgO;如果待发起 RACH的载波上没有 配置跨载波调度,则在待发起随机接入的 SCell的下行载波上发送 MsgO , SCell 上下行载波由该小区的 SIB2 ( System Information Block, 系统信息块 2 )指示, SCell的上下行载波对应关系又称为 SIB2 linkaged (连接), 因此该下行载波又称为 UE发送 Msgl 的 SIB2 linkage下行载波。
本发明实施例中, 网络侧通过 PDCCH命令调度 UE发起随机 接入, 发起随机接入的载波由 MsgO指定。
步骤 502, UE按照 MsgO的指示在对应载波的对应 PRACH资 源上发送 Msgl ,即 UE按照 MsgO的指示在对应载波的对应 PRACH 资源上发送指定 preamble码。 进一步的, 如果 MsgO指示的是竟 争随机接入过程, 则 UE在当前小区配置的 PRACH资源上, 在用 于竟争随机接入的 preamble中随机选择 preamble用于发送 Msgl。
步骤 503 , 网络侧在发送 Msgl 的 SCell 的下行载波上发送 Msg2 MAC ( Media Access Control,介质访问控制) PDU ( Protocol Data Unit, 协议数据单元); 或者, 在与调度 Msg2的调度命令的 同一个载波上发送 Msg2 MAC PDU。
本发明实施例中, 网络侧在 PCell上发送 Msg2调度命令; 网 络侧在与调度 Msg2的调度命令的同一个载波上发送 Msg2 MAC PDU时, Msg2 MAC PDU位于 PCell的下行载波; 网络侧在发送 Msgl的 SCell的下行载波上发送 Msg2 MAC PDU时, Msg2调度 命令使用 CIF指示 Msg2 MAC PDU位于进行随机接入的 SCell的 下行载波上; 或者, Msg2 MAC PDU 默认位于进行随机接入的 SCell的下行载波上。
对应的 UE侧处理过程: UE在网络侧发送 MsgO的载波上接 收 Msg2的调度, Msg2 MAC PDU的位置有以下实现方式: Msg2 MAC PDU在发送 Msgl的 SCell的下行载波上发送, 或者, Msg2 ^1 ?011与调度^^ 2的调度命令在同一个载波上发送, 即不支 持 Msg2的跨载波调度。
本发明实施例中, Msg2 MAC PDU与调度 Msg2的调度命令 在同一个载波上发送时, UE在 PCell上接收 Msg2调度命令, 并 在 PCell上接收 Msg2 MAC PDU; Msg2 MAC PDU在发送 Msgl 的 SCell的下行载波上发送时, UE根据 Msg2调度命令中 CIF (载 波编号 ) 指示, 在进行随机接入的 SCell的下行载波上接收 Msg2 MAC PDU, 或默认在进行随机接入的 SCell 的下行载波上接收 Msg2 MAC PDU。
步骤 504, UE按照 Msg2 MAC PDU中的 UL grant指示,如果 有针对 UE的上行资源分配, 则在进行随机接入的 SCell上行载波 上发送 Msg3 , 并应用 Msg2中的上行定时提前量 TA值; 该 TA值 以 PCell 的下行载波作为 TA值估计的参考下行载波; 或与发送 Msgl的上行载波归属为同一个 SCell的下行载波作为参考下行载 波。
本发明实施例中, 为了不改变现有的 Msg2 MAC PDU格式, Msg2中的上行资源分配, 默认分配的是发送 Msgl的上行载波上 的资源。
步骤 505 , 网络侧在发送 MsgO的下行载波上发送 Msg4调度 命令。 具体的, 如果 Msg4调度命令调度下行传输, 则 Msg4 MAC PDU 在该调度命令指示的下行载波(例如, 发送调度命令的载波 或进行随机接入的 SCell的下行载波) 上发送; 如果 Msg4调度命 令调度上行传输,则该上行传输在该调度命令指示的下行载波(例 如发送 Msgl的上行载波) 上发送。
对应的 UE侧处理过程: UE接收来自网络侧的 Msg4调度命 令; 其中, 如果 Msg4调度命令调度下行传输, 则 Msg4 MAC PDU 在该调度命令指示的下行载波上发送;如果 Msg4调度命令调度上 行传输, 该调度命令中指示的 UL grant在发起随机接入的 SCell 上。
本发明实施例中, 在保证 multi-TA的维护的场景下, 可以实 现 SCell上的随机接入过程。
以下实施例中, 当 MsgO跨载波调度 Msgl时, 以网络侧配置 Msgl发送的 SCell的调度载波为 PCell为例说明, 如果用 SCell 1 调度 SCell 2的随机接入, 其过程类似。
实施例二
本发明实施例二提供一种基于多个上行定时提前量的随机接 入方法, 由 PCell发起指定 SCell上的非竟争随机接入过程, 基站 侧处理过程包括:
步骤 1 , 基站在 PCell 上发送 PDCCH调度命令, 并通过在 PDCCH的 DCI ( Downlink Control Information, 下行控制信息)中 携带 CIF指示指定 SCell发送 Msgl ; 该 PDCCH中同时指定 UE 发送 Msgl的 PRACH资源位置和采用的 preamble码。
步骤 2 , 基站在 SCell 上指定的 PRACH 位置接收指定的 preamble码, 进行 TA值估计。
步骤 3 ,基站在 PCell上发送 Msg2调度命令, Msg2 MAC PDU 位于 PCell的下行载波上,或 Msg2调度命令用 CIF指示 Msg2 MAC PDU位于进行随机接入的 SCell的下行载波上,或 Msg2 MAC PDU 默认位于进行随机接入的 SCell的下行载波上, Msg2调度命令中 不带 CIF指示。
具体的, Msg2用于通知 UE该 SCell的上行定时提前量, Msg2 MAC PDU中针对该 UE的上行资源分配不带载波编号 CIF , 该上 行资源默认位于发送 Msgl的载波上。
UE侧处理过程包括:
步骤 A、 UE在 PCell上接收 PDCCH调度命令, 解析出发送 Msgl的载波编号 (CIF )、 PRACH资源、 preamble码。
步骤 B、 UE在指定载波的指定 PRACH上发送指定的 preamble 码。
步骤 C、 UE在 PCell上接收 Msg2调度命令, 在 PCell上接收 Msg2 MAC PDU; 或, UE根据 Msg2调度命令中 CIF指示, 在进 行随机接入的 SCell的下行载波上接收 Msg2 MAC PDU; 或, UE 默认在进行随机接入的 SCell的下行载波上接收 Msg2 MAC PDU, Msg2调度命令中不带 CIF指示。
步骤 D、 UE按照 Msg2 MAC PDU中的 UL grant指示, 如果 有针对该 UE的上行资源分配, 在进行随机接入的 SCell上行载波 上发送 Msg3 , 并应用 Msg2指示的 TA值; 该 TA值以 PCell的下 行载波作为 TA值估计的参考下行载波; 或与发送 Msgl的上行载 波归属为同一个 SCell (该小区的 SIB2 中会指定上下行载波的对 应关系, 又称为 SIB2 linkage ) 的下行载波作为参考下行载波。
实施例三
本发明实施例三提供一种基于多个上行定时提前量的随机接 入方法, 由 PCell发起指定 SCell上的竟争随机接入过程, 基站侧 处理过程包括:
步骤 1 , 基站在 PCell 上发送 PDCCH调度命令, 并通过在 PDCCH的 DCI中携带 CIF指示指定 SCell发送 Msgl ; 该 PDCCH 中指示 UE进行竟争随机接入, 即不分配 PRACH资源和 preamble 码。
步骤 2, 基站在 SCell上接收 UE发送的 Msgl。 其中, 由于不 确定资源位置, 则基站需要连续监听 Msgl ; 且基站根据 Msgl接 收位置进行 TA值估计。 步骤 3 ,基站在 PCell上发送 Msg2调度命令, Msg2 MAC PDU 位于 PCell的下行载波上,或 Msg2调度命令用 CIF指示 Msg2 MAC PDU位于进行随机接入的 SCell的下行载波上,或 Msg2 MAC PDU 默认位于进行随机接入的 SCell的下行载波上, Msg2调度命令中 不带 CIF指示。
具体的, Msg2用于通知 UE该 SCell的上行定时提前量, Msg2 MAC PDU中针对该 UE的上行资源分配不带载波编号 CIF , 该上 行资源默认位于发送 Msgl的载波上。
步骤 4, 基站在 Msg2分配的上行资源上接收上行传输 Msg3 , 并通过上行传输内容进行竟争解决,判断是哪个 UE发起的随机接 入。
步骤 5 , 基站在 PCell上调度 Msg4, 完成竟争解决。 其中, 如果 Msg4调度命令调度的是下行传输, 则 Msg4 MAC PDU位于 PCell上或进行随机接入的 SCell的下行载波上; 如果 Msg4调度 命令调度上行传输, 则调度命令中的 UL grant 指向随机接入的 SCell的上行载波上。
UE侧处理过程包括:
步骤 A、 UE在 PCell上接收 PDCCH调度命令, 解析出发送 Msgl的载波编号, 确定需要进行竟争随机接入。
步骤 B、 UE在该 SCell配置的 PRACH资源和竟争随机接入 preamble集合内选择 PRACH资源和 preamble码发送 Msgl。
步骤 C、 UE在 PCell上接收 Msg2调度命令, 在 PCell上接收 Msg2 MAC PDU; 或, UE根据 Msg2调度命令中 CIF指示, 在进 行随机接入的 SCell的下行载波上接收 Msg2 MAC PDU; 或, UE 默认在进行随机接入的 SCell的下行载波上接收 Msg2 MAC PDU, Msg2调度命令中不带 CIF指示。
步骤 D、 UE按照 Msg2 MAC PDU中的 UL grant指示, 应用 Msg2中的 TA值, 并在进行随机接入的 SCell上行载波上发送上 行传输(即 Msg3 )。 步骤 E、 UE接收基站的 Msg4调度命令,如果 Msg4调度命令 调度下行传输, 则 Msg4 MAC PDU在该调度命令对应的下行载波 上(PCell下行载波, 或进行随机接入的 SCell的下行载波); 如果 Msg4调度命令调度上行传输,则该 PDCCH调度命令中指示的 UL grant在发起随机接入的 SCell上, 则 UE完成竟争解决过程。
实施例四
本发明实施例四提供一种基于多个上行定时提前量的随机接 入方法, 在一个 SCell内部发起非竟争随机接入过程(网络侧配置 该 SCell只能被本 SCell调度, 没有配置跨载波调度) 时, 基站侧 处理过程包括:
步骤 1 , 基站在指定 SCell的下行载波上发送 PDCCH命令, 分配发送 Msgl的 PRACH资源和 preamble码。其中,如果该 SCell 去激活, 则首先通过 MAC CE激活该 SCell。
步骤 2, 基站在该 SCell上行载波的分配 PRACH资源上接收 分配的 preamble码, 并按照接收的 Msg 1估计 TA值。
步骤 3 , 基站在该 SCell的下行载波上发送 Msg2, 其中包括 估计出的 TA值和后续上行传输的上行资源分配。
UE侧处理过程包括:
步骤 A、 UE在指定 SCell的下行载波上接收 PDCCH命令, 解析出发送 Msgl的 PRACH资源和 preamble码。
步骤 B、 UE在该 SCell上行载波的分配 PRACH资源上发送 分配的 preamble码。
步骤 C、 UE在该 SCell的下行载波上接收 Msg2。
实施例五
本发明实施例五提供一种基于多个上行定时提前量的随机接 入方法, 在一个 SCell内部发起竟争随机接入过程(网络侧配置该 SCell只能被本 SCell调度, 没有配置跨载波调度) 时, 针对基站 侧和 UE侧的处理过程, 对于 Msg0、 Msgl , Msg2的处理, 与上 述实施例四的处理过程类似, 对于 Msg3和 Msg4的处理, 与现有 技术的处理过程类似, 本发明实施例中不再赘述。
实施例六
基于与上述方法同样的发明构思, 本发明实施例中还提供了 一种网络侧设备, 如图 6所示, 该网络侧设备包括:
确定模块 11 , 用于获知用户设备具有多个上行定时提前量; 处理模块 12, 用于当获知用户设备具有多个上行定时提前量 时, 发起用户设备在指定载波上完成辅小区的随机接入过程。
所述处理模块 12, 具体用于根据待发起随机接入信道 RACH 的载波上是否配置了跨载波调度确定发送随机接入资源分配消息
MsgO的载波。
所述处理模块 12, 进一步用于如果待发起 RACH的载波上配 置了跨载波调度, 在配置的调度载波上发送 MsgO; 如果待发起 RACH 的载波上配置了跨载波调度, 在配置的调度载波上发送 MsgO; 如果待发起 RACH的载波上没有配置跨载波调度, 在待发 起随机接入的 SCell的下行载波上发送 Msg0。
所述处理模块 12,具体用于在发送 Msgl的辅小区 SCell的下 行载波上发送随机接入响应消息 Msg2介质访问控制 MAC协议数 据单元 PDU; 或者, 在与调度 Msg2的调度命令的同一个载波上 发送 Msg2 MAC PDU。
在主小区 PCell上发送 Msg2调度命令时, 在与调度 Msg2的 调度命令的同一个载波上发送 Msg2 MAC PDU 时, Msg2 MAC PDU位于 PCell的下行载波; 在发送 Msgl的辅小区 SCell的下行 载波上发送 Msg2 MAC PDU时, Msg2调度命令使用载波编号 CIF 指示 Msg2 MAC PDU位于进行随机接入的 SCell的下行载波上; 或者, Msg2 MAC PDU默认位于进行随机接入的 SCell的下行载 波上。
所述处理模块 12, 具体用于在发送 MsgO的下行载波上发送 竟争解决消息 Msg4调度命令。
如果 Msg4调度命令调度下行传输,则在该调度命令指示的下 行载波上发送 Msg4 MAC PDU;
如果 Msg4调度命令调度上行传输,则在该调度命令指示的下 行载波上发送该上行传输。
其中, 本发明装置的各个模块可以集成于一体, 也可以分离 部署。 上述模块可以合并为一个模块, 也可以进一步拆分成多个 子模块。
实施例七
基于与上述方法同样的发明构思, 本发明实施例中还提供了 一种用户设备, 如图 7所示, 该用户设备包括:
确定模块 21 , 用于确定用户设备具有多个上行定时提前量; 处理模块 22, 用于当用户设备具有多个上行定时提前量时, 按照网络侧的指示在指定载波上完成辅小区的随机接入过程。
所述处理模块 22, 具体用于按照 MsgO的指示在对应载波的 对应分组随机接入信道 PRACH 资源上发送随机接入码发送消息 Msgl。
所述处理模块 22, 进一步用于如果 MsgO指示的是竟争随机 接入过程, 则在当前小区配置的 PRACH资源上, 在用于竟争随机 接入的 preamble中随机选择 preamble用于发送 Msgl。
在网络侧发送 MsgO的载波上接收 Msg2的调度时, Msg2 MAC PDU在发送 Msgl的 SCell的下行载波上发送, 或者, Msg2 MAC PDU与调度 Msg2的调度命令在同一个载波上发送。
该用户设备还包括: 接收模块 23 , 用于 Msg2 MAC PDU与调 度 Msg2的调度命令在同一个载波上发送时,在 PCell上接收 Msg2 调度命令, 并在 PCell上接收 Msg2 MAC PDU; 或者, Msg2 MAC PDU在发送 Msgl的 SCell的下行载波上发送时, 根据 Msg2调度 命令中 CIF指示,在进行随机接入的 SCell的下行载波上接收 Msg2 MAC PDU, 或默认在进行随机接入的 SCell 的下行载波上接收 Msg2 MAC PDU。
所述处理模块 22,具体用于按照 Msg2 MAC PDU中的上行授 权 UL grant指示, 如果有针对所述用户设备的上行资源分配, 在 进行随机接入的 SCell 上行载波上发送由随机接入调度的上行传 输消息 Msg3 , 并应用 Msg2中的上行定时提前量 TA值。
所述 TA值以 PCell的下行载波作为 TA值估计的参考下行载 波; 或与发送 Msgl的上行载波归属为同一个 SCell的下行载波作 为参考下行载波。
接收模块 23 , 用于接收来自网络侧的 Msg4调度命令; 其中, 如果 Msg4调度命令调度下行传输, 则 Msg4 MAC PDU在该调度 命令指示的下行载波上发送; 如果 Msg4调度命令调度上行传输, 该调度命令中指示的 UL grant在发起随机接入的 SCell上。
其中, 本发明装置的各个模块可以集成于一体, 也可以分离 部署。 上述模块可以合并为一个模块, 也可以进一步拆分成多个 子模块。
通过以上的实施方式的描述, 本领域的技术人员可以清楚地 了解到本发明可借助软件加必需的通用硬件平台的方式来实现, 当然也可以通过硬件, 但很多情况下前者是更佳的实施方式。 基 于这样的理解, 本发明的技术方案本质上或者说对现有技术做出 贡献的部分可以以软件产品的形式体现出来, 该计算机软件产品 存储在一个存储介质中, 包括若干指令用以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络设备等) 执行本发明各 个实施例所述的方法。
本领域技术人员可以理解附图只是一个优选实施例的示意 图, 附图中的模块或流程并不一定是实施本发明所必须的。
本领域技术人员可以理解实施例中的装置中的模块可以按照 实施例描述进行分布于实施例的装置中, 也可以进行相应变化位 于不同于本实施例的一个或多个装置中。 上述实施例的模块可以 合并为一个模块, 也可以进一步拆分成多个子模块。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。 非局限于此, 任何本领域的技术人员能思之的变化都应落入本发 明的保护范围。

Claims

权利要求
1、 一种基于多个上行定时提前量的随机接入方法, 其特征在于, 包括:
网络侧获知用户设备具有多个上行定时提前量时,发起用户设备 在指定载波上完成辅小区的随机接入过程。
2、 如权利要求 1所述的方法, 其特征在于, 网络侧发起用户设 备在指定载波上完成辅小区的随机接入过程, 包括:
所述网络侧根据待发起随机接入信道 RACH的载波上是否配置 了跨载波调度确定发送随机接入资源分配消息 MsgO的载波。
3、 如权利要求 2所述的方法, 其特征在于, 所述网络侧根据待 发起随机接入信道 RACH的载波上是否配置了跨载波调度确定发送 随机接入资源分配消息 MsgO的载波, 包括:
如果待发起 RACH的载波上配置了跨载波调度, 所述网络侧在 配置的调度载波上发送 MsgO;
如果待发起 RACH的载波上没有配置跨载波调度, 所述网络侧 在待发起随机接入的 SCdl的下行载波上发送 Msg0。
4、 如权利要求 1所述的方法, 其特征在于, 网络侧发起用户设 备在指定载波上完成辅小区的随机接入过程, 包括:
所述网络侧在发送 Msgl的辅小区 SCell的下行载波上发送随机 接入响应消息 Msg2介质访问控制 MAC协议数据单元 PDU; 或者, 所述网络侧在与调度 Msg2 的调度命令的同一个载波上发送 Msg2 MAC PDU。
5、 如权利要求 4所述的方法, 其特征在于, 所述方法进一步包 括: 网络侧在主小区 PCdl上发送 Msg2调度命令;
所述网络侧在与调度 Msg2 的调度命令的同一个载波上发送 Msg2 MAC PDU时, Msg2 MAC PDU位于 PCell的下行载波;
所述网络侧在发送 Msgl的辅小区 SCdl的下行载波上发送 Msg2 MAC PDU时, Msg2调度命令使用载波编号 CIF指示 Msg2 MAC PDU 位于进行随机接入的 SCdl的下行载波上; 或者, Msg2 MAC PDU默 认位于进行随机接入的 SCdl的下行载波上。
6、 如权利要求 1所述的方法, 其特征在于, 网络侧发起用户设 备在指定载波上完成辅小区的随机接入过程, 包括:
所述网络侧在发送 MsgO的下行载波上发送竟争解决消息 Msg4 调度命令。
7、 如权利要求 6所述的方法, 其特征在于, 所述方法进一步包 括:
如果 Msg4调度命令调度下行传输, 则所述网络侧在该调度命令 指示的下行载波上发送 Msg4 MAC PDU;
如果 Msg4调度命令调度上行传输, 则所述网络侧在该调度命令 指示的下行载波上发送该上行传输。
8、 一种基于多个上行定时提前量的随机接入方法, 其特征在于, 包括:
当用户设备具有多个上行定时提前量时,所述用户设备按照网络 侧的指示在指定载波上完成辅小区的随机接入过程。
9、 如权利要求 8所述的方法, 其特征在于, 所述用户设备按照 网络侧的指示在指定载波上完成辅小区的随机接入过程, 包括:
所述用户设备按照 MsgO的指示在对应载波的对应分组随机接入 信道 PRACH资源上发送随机接入码发送消息 Msgl。
10、 如权利要求 9所述的方法, 其特征在于, 所述方法进一步包 括:
如果 MsgO指示的是竟争随机接入过程, 所述用户设备在当前小 区配置的 PRACH资源上,在用于竟争随机接入的 preamble中随机选 择 preamble用于发送 Msgl。
11、 如权利要求 8所述的方法, 其特征在于, 所述用户设备按照 网络侧的指示在指定载波上完成辅小区的随机接入过程, 包括:
所述用户设备在网络侧发送 MsgO的载波上接收 Msg2的调度, Msg2 MAC PDU在发送 Msgl的 SCdl的下行载波上发送, 或者, Msg2 MAC PDU与调度 Msg2的调度命令在同一个载波上发送。
12、 如权利要求 11所述的方法, 其特征在于, Msg2 MAC PDU 与调度 Msg2 的调度命令在同一个载波上发送时, 所述用户设备在 PCell上接收 Msg2调度命令, 并在 PCell上接收 Msg2 MAC PDU;
Msg2 MAC PDU在发送 Msgl的 SCdl的下行载波上发送时, 所 述用户设备根据 Msg2调度命令中 CIF指示,在进行随机接入的 SCdl 的下行载波上接收 Msg2 MAC PDU, 或默认在进行随机接入的 SCell 的下行载波上接收 Msg2 MAC PDU。
13、 如权利要求 8所述的方法, 其特征在于, 所述用户设备按照 网络侧的指示在指定载波上完成辅小区的随机接入过程, 包括:
所述用户设备按照 Msg2 MAC PDU中的上行授权 UL grant指示, 如果有针对所述用户设备的上行资源分配, 在进行随机接入的 SCdl 上行载波上发送由随机接入调度的上行传输消息 Msg3,并应用 Msg2 中的上行定时提前量 TA值。
14、如权利要求 13所述的方法,其特征在于,所述 TA值以 PCell 的下行载波作为 TA值估计的参考下行载波; 或与发送 Msgl的上行 载波归属为同一个 SCdl的下行载波作为参考下行载波。
15、 如权利要求 8所述的方法, 其特征在于, 所述用户设备按照 网络侧的指示在指定载波上完成辅小区的随机接入过程, 包括: 所述 用户设备接收来自网络侧的 Msg4调度命令; 其中,
如果 Msg4调度命令调度下行传输, 则 Msg4 MAC PDU在该调 度命令指示的下行载波上发送;
如果 Msg4调度命令调度上行传输, 该调度命令中指示的 UL grant在发起随机接入的 SCdl上。
16、 一种网络侧设备, 其特征在于, 包括:
确定模块, 用于获知用户设备具有多个上行定时提前量; 处理模块, 用于当获知用户设备具有多个上行定时提前量时, 发 起用户设备在指定载波上完成辅小区的随机接入过程。
17、 如权利要求 16所述的网络侧设备, 其特征在于, 所述处理模块, 具体用于根据待发起随机接入信道 RACH的载 波上是否配置了跨载波调度确定发送随机接入资源分配消息 MsgO的 载波。
18、 如权利要求 17所述的网络侧设备, 其特征在于,
所述处理模块, 进一步用于如果待发起 RACH的载波上配置了 跨载波调度, 在配置的调度载波上发送 MsgO; 如果待发起 RACH的 载波上没有配置跨载波调度, 在待发起随机接入的 SCell的下行载波 上发送 Msg0。
19、 如权利要求 16所述的网络侧设备, 其特征在于,
所述处理模块, 具体用于在发送 Msgl的辅小区 SCell的下行载 波上发送随机接入响应消息 Msg2介质访问控制 MAC协议数据单元 PDU; 或者, 在与调度 Msg2的调度命令的同一个载波上发送 Msg2 MAC PDU。
20、 如权利要求 19所述的网络侧设备, 其特征在于, 在主小区 PCell上发送 Msg2调度命令时,
在与调度 Msg2 的调度命令的同一个载波上发送 Msg2 MAC PDU时, Msg2 MAC PDU位于 PCell的下行载波;
在发送 Msgl的辅小区 SCell的下行载波上发送 Msg2 MAC PDU 时, Msg2调度命令使用载波编号 CIF指示 Msg2 MAC PDU位于进行 随机接入的 SCell的下行载波上; 或者, Msg2 MAC PDU默认位于进 行随机接入的 SCell的下行载波上。
21、 如权利要求 16所述的网络侧设备, 其特征在于,
所述处理模块, 具体用于在发送 MsgO的下行载波上发送竟争解 决消息 Msg4调度命令。
22、 如权利要求 21所述的网络侧设备, 其特征在于,
如果 Msg4调度命令调度下行传输, 则在该调度命令指示的下行 载波上发送 Msg4 MAC PDU;
如果 Msg4调度命令调度上行传输, 则在该调度命令指示的下行 载波上发送该上行传输。
23、 一种用户设备, 其特征在于, 包括:
确定模块, 用于确定用户设备具有多个上行定时提前量; 处理模块, 用于当用户设备具有多个上行定时提前量时, 按照网 络侧的指示在指定载波上完成辅小区的随机接入过程。
24、 如权利要求 23所述的用户设备, 其特征在于,
所述处理模块, 具体用于按照 MsgO的指示在对应载波的对应分 组随机接入信道 PRACH资源上发送随机接入码发送消息 Msgl。
25、 如权利要求 24所述的用户设备, 其特征在于,
所述处理模块, 进一步用于如果 MsgO指示的是竟争随机接入过 程, 则在当前小区配置的 PRACH 资源上, 在用于竟争随机接入的 preamble中随机选择 preamble用于发送 Msgl。
26、 如权利要求 23所述的用户设备, 其特征在于, 在网络侧发 送 MsgO的载波上接收 Msg2的调度时,
Msg2 MAC PDU在发送 Msgl的 SCdl的下行载波上发送,或者, Msg2 MAC PDU与调度 Msg2的调度命令在同一个载波上发送。
27、 如权利要求 26所述的用户设备, 其特征在于, 还包括: 接收模块, 用于 Msg2 MAC PDU与调度 Msg2的调度命令在同 一个载波上发送时, 在 PCell上接收 Msg2调度命令, 并在 PCdl上 接收 Msg2 MAC PDU; 或者,
Msg2 MAC PDU在发送 Msgl的 SCdl的下行载波上发送时, 根 据 Msg2调度命令中 CIF指示, 在进行随机接入的 SCdl的下行载波 上接收 Msg2 MAC PDU,或默认在进行随机接入的 SCdl的下行载波 上接收 Msg2 MAC PDU。
28、 如权利要求 23所述的用户设备, 其特征在于,
所述处理模块,具体用于按照 Msg2 MAC PDU中的上行授权 UL grant指示, 如果有针对所述用户设备的上行资源分配, 在进行随机 接入的 SCdl上行载波上发送由随机接入调度的上行传输消息 Msg3, 并应用 Msg2中的上行定时提前量 TA值。
29、 如权利要求 28所述的用户设备, 其特征在于, 所述 TA值 以 PCell的下行载波作为 TA值估计的参考下行载波;或与发送 Msgl 的上行载波归属为同一个 SCell的下行载波作为参考下行载波。
30、 如权利要求 23所述的用户设备, 其特征在于, 还包括: 接收模块, 用于接收来自网络侧的 Msg4调度命令; 其中, 如果 Msg4调度命令调度下行传输,则 Msg4 MAC PDU在该调度命令指示 的下行载波上发送; 如果 Msg4调度命令调度上行传输, 该调度命令 中指示的 UL grant在发起随机接入的 SCell上。
PCT/CN2012/071284 2011-03-31 2012-02-17 一种基于多个上行定时提前量的随机接入方法和设备 WO2012129998A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12765249.3A EP2693826B1 (en) 2011-03-31 2012-02-17 Method and device for random access based on multiple uplink timing advances
US14/008,482 US9883534B2 (en) 2011-03-31 2012-02-17 Random access method and apparatus based on multiple uplink timing advances

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011100802973A CN102123516B (zh) 2011-03-31 2011-03-31 一种基于多个上行定时提前量的随机接入方法和设备
CN201110080297.3 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012129998A1 true WO2012129998A1 (zh) 2012-10-04

Family

ID=44251920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071284 WO2012129998A1 (zh) 2011-03-31 2012-02-17 一种基于多个上行定时提前量的随机接入方法和设备

Country Status (4)

Country Link
US (1) US9883534B2 (zh)
EP (1) EP2693826B1 (zh)
CN (1) CN102123516B (zh)
WO (1) WO2012129998A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140098660A1 (en) * 2012-10-08 2014-04-10 Fujitsu Limited Method and system for optimized access of a physical random access channel
EP3051914A4 (en) * 2013-09-27 2016-12-21 Zte Corp METHOD AND SYSTEM FOR DIRECT ACCESS TO A SMALL CELL UNDER DUAL CONNECTIONS
EP3101986A4 (en) * 2014-01-30 2017-01-25 NTT DoCoMo, Inc. Mobile communication system and user equipment device

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102123516B (zh) * 2011-03-31 2013-11-06 电信科学技术研究院 一种基于多个上行定时提前量的随机接入方法和设备
CN102740445B (zh) * 2011-04-02 2015-04-08 上海贝尔股份有限公司 用于载波聚合场景下的切换方法
CN102202415B (zh) * 2011-05-18 2019-01-22 中兴通讯股份有限公司 一种物理随机接入信道的传输方法和系统
CN102892192B (zh) * 2011-07-20 2017-08-01 中兴通讯股份有限公司 一种多定时组下的初始接入方法、装置及系统
CN102244927B (zh) * 2011-07-22 2015-01-28 新邮通信设备有限公司 多小区长期演进系统中建立上行同步的方法、设备和终端
CN102905387B (zh) * 2011-07-25 2019-01-25 中兴通讯股份有限公司 随机接入方法及用户设备
CN102271418B (zh) * 2011-07-28 2016-04-20 电信科学技术研究院 一种随机接入的方法及装置
CN102917469B (zh) * 2011-08-01 2018-08-28 中兴通讯股份有限公司 辅服务小区接入的方法及系统、网络侧网元、用户设备
CN102264150B (zh) * 2011-08-01 2018-01-02 中兴通讯股份有限公司 载波聚合中的prach传输方法及装置
CN102932902B (zh) * 2011-08-08 2018-05-22 中兴通讯股份有限公司 一种多定时组下的定时提前命令传输方法和系统
CN102932880B (zh) * 2011-08-08 2018-03-27 中兴通讯股份有限公司 多载波通信系统中的小区选择方法及装置
CN102932302B (zh) * 2011-08-09 2017-04-12 中兴通讯股份有限公司 多载波系统中的小区分组调整方法和系统
KR102247818B1 (ko) 2011-08-10 2021-05-04 삼성전자 주식회사 이동통신 시스템에서 복수의 캐리어를 이용해서 데이터를 전송하는 방법 및 장치
EP3429307B1 (en) 2011-08-10 2022-06-15 Samsung Electronics Co., Ltd. Method and apparatus for transmitting data using a multi-carrier in a mobile communication system
CN102932907B (zh) 2011-08-11 2016-03-09 华为技术有限公司 一种获取同步的处理方法以及设备
CN102932951B (zh) * 2011-08-12 2016-06-08 上海贝尔股份有限公司 用于载波聚合场景下的Scell随机接入方法
CN102932952B (zh) * 2011-08-12 2016-06-08 上海贝尔股份有限公司 一种进行随机接入的方法和装置
CN102958073B (zh) * 2011-08-19 2016-03-16 普天信息技术研究院有限公司 支持并行prach传输的ue获取定时提前量的方法
KR102092579B1 (ko) 2011-08-22 2020-03-24 삼성전자 주식회사 이동통신 시스템에서 복수 개의 주파수 밴드 지원 방법 및 장치
CN103024890B (zh) * 2011-09-20 2017-02-08 中兴通讯股份有限公司 辅小区的上行同步方法、基站和终端
CN102340797B (zh) * 2011-09-30 2014-07-09 电信科学技术研究院 一种辅小区上定时时间差的测量方法和设备
US9198200B2 (en) * 2011-10-04 2015-11-24 Google Technology Holdings LLC Method for contention based random access on a secondary carrier
CN102340885A (zh) * 2011-11-07 2012-02-01 电信科学技术研究院 随机接入响应消息的传输载波指示、确定方法及设备
CN103167598B (zh) * 2011-12-16 2016-08-10 重庆航讯时代科技有限责任公司 一种远距离通信方法及装置
AU2012354454B2 (en) * 2011-12-20 2015-07-02 Lg Electronics Inc. Method and apparatus for performing random access process in wireless communication system
CN104137600B (zh) 2012-01-09 2018-10-12 三星电子株式会社 用于记录的方法和装置
CN102548015A (zh) * 2012-01-13 2012-07-04 电信科学技术研究院 一种随机接入及其控制方法、装置和系统
KR102048742B1 (ko) 2012-01-27 2019-11-26 삼성전자 주식회사 이동 통신 시스템에서 시스템 부하를 조절하기 위해, 엑세스를 효율적으로 제어하는 방법 및 장치
WO2013112021A1 (ko) 2012-01-27 2013-08-01 삼성전자 주식회사 이동통신 시스템에서 복수의 캐리어를 이용해서 데이터를 송수신하는 방법 및 장치
CN103228053A (zh) * 2012-01-29 2013-07-31 中兴通讯股份有限公司 一种多载波系统随机接入方法及基站及移动终端及系统
KR102148335B1 (ko) * 2012-02-06 2020-08-26 삼성전자 주식회사 이동통신 시스템에서 복수의 캐리어를 이용해서 데이터를 송수신하는 방법 및 장치
KR102058954B1 (ko) 2012-02-06 2019-12-26 삼성전자 주식회사 무선 통신 시스템에서 small data를 효율적으로 전송하는 방법 및 장치
US9414409B2 (en) 2012-02-06 2016-08-09 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving data on multiple carriers in mobile communication system
CN104272616B (zh) 2012-03-19 2018-02-16 三星电子株式会社 用于在支持载波聚合的移动通信系统中报告功率余量的方法和装置
CN109560912A (zh) * 2012-03-19 2019-04-02 上海诺基亚贝尔股份有限公司 随机接入从小区的方法和接收数据的方法
EP2882238B1 (en) * 2012-07-31 2017-12-27 Huawei Technologies Co., Ltd. Method, apparatus, device, and network system for adding secondary cell
WO2014029092A1 (zh) * 2012-08-22 2014-02-27 华为技术有限公司 接入的方法、设备和基站
CN103685119A (zh) * 2012-09-12 2014-03-26 中国移动通信集团公司 上行数据传输方法及演进基站和用户设备
JP5950785B2 (ja) * 2012-10-05 2016-07-13 株式会社Nttドコモ 無線基地局及び移動局
US20160295597A1 (en) * 2013-07-26 2016-10-06 Intel IP Corporation Signaling interference information for user equipment assistance
JP2015088997A (ja) * 2013-10-31 2015-05-07 株式会社Nttドコモ 移動局
EP3113569B1 (en) * 2014-03-21 2019-05-08 Huawei Technologies Co., Ltd. Random access response methods and terminal
CN105264968B (zh) * 2014-04-29 2019-10-01 华为技术有限公司 一种随机接入的装置及方法
CN105491675B (zh) * 2014-10-13 2019-03-26 成都鼎桥通信技术有限公司 非对称上行载波聚合下的随机接入方法及装置
CN105766013B (zh) 2014-11-07 2019-12-24 华为技术有限公司 信息传输方法和装置
WO2016085287A1 (ko) * 2014-11-27 2016-06-02 엘지전자 주식회사 랜덤 액세스 방법 및 그 장치
EP3251448A4 (en) 2015-01-29 2018-04-25 Samsung Electronics Co., Ltd. Method and apparatus for transmitting downlink control channel information in carrier aggregation system
CN106817776B (zh) * 2015-12-02 2020-04-07 展讯通信(上海)有限公司 基站及用户设备的随机接入方法
US10897780B2 (en) * 2016-12-19 2021-01-19 Qualcomm Incorporated Random access channel (RACH) timing adjustment
CN108633086B (zh) * 2017-03-21 2020-11-03 华为技术有限公司 一种上行传输方法及装置
US10257835B2 (en) 2017-03-24 2019-04-09 At&T Intellectual Property I, L.P. Facilitating enhanced beam management in a wireless communication system
WO2018195823A1 (zh) * 2017-04-26 2018-11-01 华为技术有限公司 数据传输方法、设备及系统
US9949298B1 (en) 2017-05-04 2018-04-17 At&T Intellectual Property I, L.P. Facilitating signaling and transmission protocols for enhanced beam management for initial access
CN109392017B (zh) * 2017-08-11 2021-07-09 大唐移动通信设备有限公司 一种随机接入响应的方法、装置、基站及终端
CN109788546B (zh) * 2017-11-15 2021-07-06 维沃移动通信有限公司 一种定时提前信息的传输方法、网络设备及终端
CN110662285B (zh) * 2018-06-29 2022-11-08 中兴通讯股份有限公司 定时调整信息的配置方法及装置
CN110958708B (zh) * 2018-09-26 2022-02-08 维沃移动通信有限公司 一种信号传输方法、用户设备及网络设备
CN111867063B (zh) * 2019-04-29 2023-01-13 华为技术有限公司 上行传输方法和通信装置
CN111865529B (zh) 2019-04-30 2021-12-03 华为技术有限公司 获取时间提前量的方法与装置
CN111601379B (zh) * 2019-06-27 2022-02-01 维沃移动通信有限公司 用于获取定时提前量的方法和设备
WO2021197605A1 (en) * 2020-04-02 2021-10-07 Nokia Technologies Oy Timing advance signalling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646234A (zh) * 2009-09-01 2010-02-10 中兴通讯股份有限公司 一种定时提前量的获取方法
CN101841907A (zh) * 2009-03-17 2010-09-22 宏达国际电子股份有限公司 管理多分量载波时序校准功能的方法及相关通讯装置
CN102123516A (zh) * 2011-03-31 2011-07-13 电信科学技术研究院 一种基于多个上行定时提前量的随机接入方法和设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064858A2 (en) * 2008-12-04 2010-06-10 Lg Electronics Inc. Method and apparatus for performing random access in a multi-carrier system
CN102349349B (zh) * 2009-03-13 2015-08-05 夏普株式会社 移动站装置、基站装置、集成电路和随机接入问题的检测方法
CN101841922B (zh) * 2009-03-16 2015-01-28 中兴通讯股份有限公司 选择随机接入资源的方法及终端
CN101873707B (zh) * 2009-04-24 2013-11-20 电信科学技术研究院 下行数据调度方法及系统
CN101883398A (zh) * 2009-05-07 2010-11-10 大唐移动通信设备有限公司 一种确定上行载波资源的方法、装置和系统
CN101938841B (zh) * 2009-06-30 2016-03-09 华为技术有限公司 一种上行资源获取方法、调度方法、装置及系统
CN101998577B (zh) 2009-08-14 2013-06-05 电信科学技术研究院 随机接入前导码的发送方法、系统及设备
WO2011032308A1 (zh) * 2009-09-15 2011-03-24 华为技术有限公司 上行同步处理方法、用户设备和基站
CN105846981B (zh) * 2010-01-08 2019-03-26 交互数字专利控股公司 一种wtru及用于建立时间提前量的方法
CN105228256B (zh) * 2010-02-12 2018-11-02 富士通株式会社 无线通信装置、无线通信系统以及无线通信方法
EP2537379A1 (en) * 2010-02-15 2012-12-26 Telefonaktiebolaget LM Ericsson (publ) Methods and arrangements in radio communication systems
US20110243111A1 (en) * 2010-03-31 2011-10-06 Niklas Andgart Timing of Uplink Transmissions in a Multi-Carrier Communication System
WO2012027887A1 (en) * 2010-08-31 2012-03-08 Nokia Corporation Performing random accesses on uplink component carriers
JP5565475B2 (ja) * 2011-02-10 2014-08-06 富士通株式会社 無線通信システム、受信装置、送信装置および無線通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841907A (zh) * 2009-03-17 2010-09-22 宏达国际电子股份有限公司 管理多分量载波时序校准功能的方法及相关通讯装置
CN101646234A (zh) * 2009-09-01 2010-02-10 中兴通讯股份有限公司 一种定时提前量的获取方法
CN102123516A (zh) * 2011-03-31 2011-07-13 电信科学技术研究院 一种基于多个上行定时提前量的随机接入方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "CIF inclusion in PDCCH order", 3GPP TSG-RAN WG2 MEETING #70BIS, R2-103849, 2 July 2010 (2010-07-02), pages 1 - 2, XP008156206, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_70bis/Docs/> *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140098660A1 (en) * 2012-10-08 2014-04-10 Fujitsu Limited Method and system for optimized access of a physical random access channel
US8902742B2 (en) * 2012-10-08 2014-12-02 Fujitsu Limited Method and system for optimized access of a physical random access channel
EP3051914A4 (en) * 2013-09-27 2016-12-21 Zte Corp METHOD AND SYSTEM FOR DIRECT ACCESS TO A SMALL CELL UNDER DUAL CONNECTIONS
US10085286B2 (en) 2013-09-27 2018-09-25 Zte Corporation Method and system for conducting random access on small cell under dual connectivity
EP3101986A4 (en) * 2014-01-30 2017-01-25 NTT DoCoMo, Inc. Mobile communication system and user equipment device

Also Published As

Publication number Publication date
US9883534B2 (en) 2018-01-30
CN102123516B (zh) 2013-11-06
EP2693826A1 (en) 2014-02-05
EP2693826B1 (en) 2018-05-30
EP2693826A4 (en) 2015-04-15
US20140044074A1 (en) 2014-02-13
CN102123516A (zh) 2011-07-13

Similar Documents

Publication Publication Date Title
WO2012129998A1 (zh) 一种基于多个上行定时提前量的随机接入方法和设备
JP7299377B2 (ja) 無線ネットワークにおけるサウンディング参照信号伝送
US20230413206A1 (en) Carrier Grouping in Multicarrier Communications
JP6661135B2 (ja) 無線デバイスおよび無線ネットワークにおけるトーク前リッスンプロシージャ
JP6977066B2 (ja) 無線通信システムにおけるアップリンクタイミングを調整する方法、及びこのための装置
EP2693801B1 (en) Uplink transmission method and device for multi-carrier aggregation system
EP2695470B1 (en) Method and apparatus for controlling random access in wireless communication system supporting carrier aggregation
EP2487970B1 (en) Method, system and device for uplink synchronization
EP2709292B1 (en) Method and apparatus for applying a time alignment timer in a wireless communication system using a carrier aggregation technique
CN102244927B (zh) 多小区长期演进系统中建立上行同步的方法、设备和终端
KR101818689B1 (ko) 캐리어 집적을 이용하는 불연속 수신 모드에서의 동작
WO2011050743A1 (zh) 一种上行同步的方法、装置和系统
WO2012094963A1 (zh) 一种配置小区信息的方法和装置
WO2013023554A1 (zh) 一种周期性srs的处理方法和设备
WO2013013539A1 (zh) 随机接入方法及用户设备
WO2012146154A1 (zh) 多载波通信系统中上行同步方法及系统
WO2013016988A1 (zh) 非冲突随机接入的方法及系统、网络侧网元、用户设备
WO2014048398A1 (zh) 基于载波聚合的信息传输方法及装置
WO2013016985A1 (zh) 辅服务小区接入的方法及系统、网络侧网元、用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14008482

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012765249

Country of ref document: EP