WO2012129982A1 - 离线式ac-dc控制电路和包含该控制电路的转换电路 - Google Patents

离线式ac-dc控制电路和包含该控制电路的转换电路 Download PDF

Info

Publication number
WO2012129982A1
WO2012129982A1 PCT/CN2012/070752 CN2012070752W WO2012129982A1 WO 2012129982 A1 WO2012129982 A1 WO 2012129982A1 CN 2012070752 W CN2012070752 W CN 2012070752W WO 2012129982 A1 WO2012129982 A1 WO 2012129982A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
signal
switch control
voltage
sampling signal
Prior art date
Application number
PCT/CN2012/070752
Other languages
English (en)
French (fr)
Inventor
詹桦
Original Assignee
杭州士兰微电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州士兰微电子股份有限公司 filed Critical 杭州士兰微电子股份有限公司
Publication of WO2012129982A1 publication Critical patent/WO2012129982A1/zh
Priority to US13/651,010 priority Critical patent/US8488337B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2176Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only comprising a passive stage to generate a rectified sinusoidal voltage and a controlled switching element in series between such stage and the output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters

Definitions

  • the present invention relates to the field of off-line AC-DC (AC-DC) conversion circuits, and more particularly to an output overvoltage detection technique in a secondary side regulation (SSR) flyback conversion circuit.
  • AC-DC off-line AC-DC
  • SSR secondary side regulation
  • SSR secondary side control
  • Fig. 1 is a structural diagram of a typical secondary side-controlled flyback off-line AC-DC conversion circuit system.
  • the conversion circuit includes an offline AC-DC control circuit 1 and a peripheral circuit, wherein the offline AC-DC control circuit 1 includes an overvoltage detection module 10, a current limiting module 11, a PWM comparator 12, and a switch. Control module 13.
  • the overvoltage detection module 10 includes a comparator Al.
  • the positive input terminal of the comparator A1 is connected to the power port VDD port, and the negative input terminal of the comparator A1 is connected to the internal reference voltage VREF1.
  • the current limiting module 1 1 includes a comparator A2, the positive input terminal of the comparator A2 is connected to the current sampling port CS port, and the negative input terminal of the comparator A1 is connected to the internal reference voltage VREF2.
  • the pulse width modulation (PWM) comparator or pulse width modulation module 12 includes comparator A3, the positive input of comparator A3 is connected to the current sampling port CS port, and the negative input of comparator A1 is connected to the feedback port FB port.
  • PWM pulse width modulation
  • the input of the switch control module 13 is connected to the output of the comparators A1-A3, and its output is connected to the gate drive port GATE.
  • the gate drive port VDD of the control circuit 1 is connected to the negative terminal of the external freewheeling diode D6 and the positive electrode of the capacitor C3.
  • the current sampling port of the control circuit 1 is connected to the source of the external power tube M1 and one end of the sampling resistor R1.
  • the gate drive port GATE of the control circuit 1 is connected to the gate of the external power transistor M1.
  • the overvoltage detection of the output voltage Vo is indirectly realized by detecting whether the VDD voltage is overvoltage, but for the same output voltage, when the load is different, the VDD voltage There is a big change, so the overvoltage detection of the output voltage Vo is realized by detecting the VDD voltage, and the overvoltage detection threshold varies greatly with the load.
  • the secondary side controlled flyback off-line AC-DC conversion circuit shown in FIG. 2 can be used.
  • the different-name terminal of the auxiliary winding N3 is connected to the overvoltage detection port OVP terminal of the control circuit 1 through the voltage division of the resistor R2/R3 as an overvoltage detection sampling point.
  • the opposite end voltage V3 of the auxiliary winding N3 The relationship with the different-name terminal voltage V2 of the secondary winding N2 is as follows:
  • ⁇ 3 is the number of turns of the auxiliary winding ⁇ 3
  • ⁇ 2 is the number of turns of the secondary winding ⁇ 2.
  • the 0VP port voltage is:
  • R2 + R3 n2 where R2 and R3 are the resistances of resistors R2 and R3, respectively.
  • the present invention is directed to solving the above disadvantages, and provides an off-line AC-DC control circuit for accurately detecting an output voltage overvoltage without adding a control circuit port by time-multiplexing a common port.
  • An off-line AC-DC control circuit for generating a corresponding control signal according to an input current sampling signal and a voltage sampling signal, wherein the current sampling signal and the voltage sampling signal are individually separated in a time division manner Available on the input port.
  • the offline AC-DC control circuit includes an overvoltage detection module, a current limiting module, a pulse width modulation module, and a switch control module coupled to the module,
  • the voltage detection module receives the voltage sampling signal via the single input port, the current limiting module and pulse
  • the wide modulation module receives the current sampling signal via the single input port, further comprising a timing selection module including an input coupled to the single input port and at least two outputs, the timing selection module alternately One of the outputs is coupled to the current limiting module and the pulse width modulation module and the other of the outputs is coupled to the overvoltage detection module to provide the current sampling signal and the voltage sampling signal.
  • the overvoltage detection module compares the voltage sampling signal with a set first reference voltage and outputs a comparison result to the switch control module, if When the voltage sampling signal is greater than the first reference voltage, the switch control module outputs an off signal that causes the power tube to be in an off state, and the current limiting module performs the current sampling signal and the set second reference voltage.
  • the switch control module Comparing and outputting the comparison result to the switch control module, if the current sampling signal is greater than the second reference voltage, the switch control module outputs a turn-off signal that causes the power transistor to be in an off state, and the pulse width modulation module
  • the current sampling signal is compared with a signal input from outside the offline AC-DC control circuit and the comparison result is output to the switch control module, and if the current sampling signal is greater than the externally input signal, the switch The control module outputs a shutdown signal that causes the power tube to be in an off state.
  • the offline AC-DC control circuit includes an overvoltage detection module, a current limiting module, a pulse width modulation module, and a switch control module coupled to the module,
  • the voltage detection module receives the voltage sampling signal via the single input port
  • the current limiting module and the pulse width modulation module receive the current sampling signal via the single input port
  • the overvoltage detection module, the The current limiting module and the pulse width modulation module include a gating circuit coupled to the switch control module, the gating circuit alternately causing an output signal of the overvoltage detection module to be coupled to the current limiting module and the pulse An output signal of the wide modulation module is provided to the switch control module.
  • the output signal of the overvoltage detection module is provided to the first enable signal by applying an enable signal to the enable input terminal of the gating circuit of the overvoltage detection module.
  • the switch control module, and the current limiting module and the pulse width modulation module are applied by applying a second enable signal to an enable input of the current limiting module and the gating circuit of the pulse width modulation module
  • An output signal is provided to the switch control module, the first and second enable signals being mutually exclusive.
  • the overvoltage detection module compares the voltage sampling signal with a set first reference voltage and applies a first phase to an enable input of the gating circuit. Outputting a comparison result to the switch control module when an enable signal, if the voltage sampling signal is greater than the a first reference voltage, the switch control module outputs an off signal that causes the power tube to be in an off state, the current limiting module comparing the current sampling signal with a set second reference voltage and in the gating Outputting a comparison result to the switch control module when the enable input of the circuit applies the second enable signal, and if the current sample signal is greater than the second reference voltage, the switch control module outputs the power tube to be in an off state Turning off the signal, the pulse width modulation module comparing the current sampling signal with a signal input from outside the offline AC-DC control circuit and applying a second enable at an enable input of the gating circuit When the signal is capable of outputting the comparison result to the switch control module, if the current sampling signal is greater than the
  • the present invention is also directed to solving the above disadvantages, and provides an off-line AC-DC conversion circuit that realizes accurate detection of an output voltage overvoltage without adding a control circuit port by time-multiplexing a common port.
  • An off-line AC-DC conversion circuit comprising:
  • An external sampling module comprising two inputs coupled to the primary winding and the auxiliary winding, respectively;
  • An off-line AC-DC control circuit that generates a corresponding control signal according to the input current sampling signal and the voltage sampling signal, wherein the current sampling signal and the voltage sampling signal are time division multiplexed by the external sampling module Available on a single input port.
  • the current sampling signal is provided on the single input port during the power tube conduction period, and during the power tube off period and the secondary winding and A voltage sampling signal is provided on the single input port when the auxiliary winding is freewheeling.
  • the external sampling module detects that a current of the primary winding flows through a sampling resistor connected in series with the primary winding when the power tube is turned on. The voltage drop results in the current sampling signal, and the external sampling module passes through when the power tube is turned off Detecting a voltage at a different end of the auxiliary winding results in the voltage sampling signal.
  • the offline AC-DC control circuit includes an overvoltage detection module, a current limiting module, a pulse width modulation module, and a switch control module coupled to the module,
  • the voltage detection module receives the voltage sampling signal via the single input port
  • the current limiting module and the pulse width modulation module receive the current sampling signal via the single input port
  • the gate voltage of the power tube is
  • the switch control module control further includes a timing selection module including an input coupled to the single input port and at least two outputs, the timing selection module alternately causing one of the outputs and the current limiting module
  • the pulse width modulation module is turned on and the other of the outputs is connected to the overvoltage detection module to provide the current sampling signal and the voltage sampling signal.
  • the timing selection module further includes a control signal input end, and the voltage sampling signal and the current sampling are implemented by providing a first control signal at the control signal input end. An alternate output of the signal, the frequency of the first control signal being synchronized with the gate signal of the power tube.
  • the overvoltage detection module compares the voltage sampling signal with a set first reference voltage and outputs a comparison result to the switch control module, if When the voltage sampling signal is greater than the first reference voltage, the switch control module outputs an off signal that causes the power tube to be in an off state, and the current limiting module performs the current sampling signal and the set second reference voltage.
  • the switch control module Comparing and outputting the comparison result to the switch control module, if the current sampling signal is greater than the second reference voltage, the switch control module outputs a turn-off signal that causes the power transistor to be in an off state, and the pulse width modulation module Comparing the current sampling signal with a signal input from outside the offline AC-DC control circuit and outputting the comparison result to the switch control module, if the current sampling signal is greater than the externally input signal, The switch control module outputs a turn-off signal that causes the power transistor to be in an off state.
  • the offline AC-DC control circuit includes an overvoltage detection module, a current limiting module, a pulse width modulation module, and a switch control module coupled to the module,
  • the voltage detection module receives the voltage sampling signal via the single input port
  • the current limiting module and the pulse width modulation module receive the current sampling signal via the single input port
  • the gate voltage of the power tube is Controlled by a switch control module
  • the overvoltage detection module, the current limiting module, and the pulse width modulation module including a gating circuit coupled to the switch control module, the gating circuit alternately causing the overvoltage detection
  • An output signal of the module and an output signal of the current limiting module and the pulse width modulation module are provided to the switch control Module.
  • the output signal of the overvoltage detection module is provided to the first enable signal by applying an enable signal to the enable input terminal of the gating circuit of the overvoltage detection module.
  • the switch control module, and the current limiting module and the pulse width modulation module are applied by applying a second enable signal to an enable input of the current limiting module and the gating circuit of the pulse width modulation module
  • An output signal is provided to the switch control module, the first and second enable signals being mutually exclusive.
  • the overvoltage detection module compares the voltage sampling signal with a set first reference voltage and applies a first phase to an enable input of the gating circuit. Outputting a comparison result to the switch control module when the signal is enabled, and if the voltage sampling signal is greater than the first reference voltage, the switch control module outputs a turn-off signal that causes the power transistor to be in an off state,
  • the current limiting module compares the current sampling signal with the set second reference voltage and outputs a comparison result to the switch control module when the second enable signal is applied to the enable input of the gating circuit, if The current sampling signal is greater than the second reference voltage, and the switch control module outputs a turn-off signal that causes the power transistor to be in an off state, the pulse width modulation module to the current sampling signal from the offline AC-
  • the signals input from the outside of the DC control circuit are compared and the comparison result is output to the switch control when the second enable signal is applied to the enable input of the gate circuit Block, if the current sense
  • the output voltage overvoltage detection is performed during the power tube off period, and the power tube current is detected during the power tube conduction period, and the two signals are input in a time division manner without affecting each other, so without increasing the port It can accurately detect whether the output voltage is overvoltage and control the overvoltage condition.
  • Figure 1 is a schematic diagram of a typical off-line AC-DC conversion circuit.
  • FIG. 2 is a schematic diagram of another typical off-line AC-DC conversion circuit.
  • 3 is a schematic diagram of an off-line AC-DC conversion circuit in accordance with one embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an off-line AC-DC conversion circuit in accordance with another embodiment of the present invention.
  • Figure 5 is a schematic illustration of an off-line AC-DC conversion circuit in accordance with yet another embodiment of the present invention.
  • Figure 6 is a schematic illustration of an off-line AC-DC conversion circuit in accordance with yet another embodiment of the present invention.
  • Figure 7 is a circuit diagram showing an example of the timing selection circuit shown in Figures 3 and 4.
  • Fig. 8 is a view showing waveforms of respective correlation signals in the continuous conduction mode of the off-line AC-DC conversion circuit shown in Figs.
  • Fig. 9 is a view showing waveforms of respective correlation signals of the off-line AC-DC conversion circuit shown in Figs. 3 and 4 in the discontinuous conduction mode.
  • Fig. 10 is a view showing waveforms of respective correlation signals of the off-line AC-DC conversion circuit shown in Figs. 5 and 6 in the continuous conduction mode.
  • Fig. 1 1 is a waveform diagram showing respective correlation signals of the off-line AC-DC conversion circuit shown in Figs. 5 and 6 in the discontinuous conduction mode.
  • Figure 12 is a schematic illustration of an off-line AC-DC conversion circuit in accordance with yet another embodiment of the present invention.
  • Figure 13 is a schematic illustration of an off-line AC-DC conversion circuit in accordance with yet another embodiment of the present invention.
  • the term “coupled” shall be taken to include the case where energy or signals are transmitted directly between two units, or where energy or signals are transmitted indirectly via one or more third units, and is referred to herein.
  • Signals include, but are not limited to, signals that exist in the form of electricity, light, and magnetism.
  • the terms “comprising” and “including” are intended to mean that the invention is not intended to be The situation of other units and steps. Further, terms such as “first” and “second” do not denote the order of the elements or values in terms of time, space, size, etc., but merely for the purpose of distinguishing the various elements or values. The content of the present invention will be further described below with reference to the accompanying drawings.
  • FIG. 3 is a schematic diagram of an off-line AC-DC conversion circuit in accordance with one embodiment of the present invention.
  • the offline AC-DC conversion circuit includes: a rectifier bridge stack (composed of a diode D l , a diode D2, a diode D3, and a diode D4) and a filter capacitor C l , a primary winding N1 , a power tube M1 , and Sampling resistor Rl, secondary winding N2 and filter circuit (composed of freewheeling diode D5 and filter capacitor C2), auxiliary winding N3 and filter circuit (composed of freewheeling diode D6 and filter capacitor C3), output voltage feedback circuit and Offline AC-DC control circuit 1.
  • the offline AC-DC control circuit 1 includes a time division multiplexing port CS, and the time division multiplexing port inputs a primary side winding current sampling signal during the power line M1 of the offline AC-DC conversion circuit, in the power tube.
  • the output voltage sampling signal of the AC-DC conversion circuit is input during the M l off period, thereby realizing time division sampling of the primary winding current and the output voltage of the AC-DC conversion circuit by the time division multiplexing port.
  • the time division multiplexing port CS is coupled to the output of the external sampling module 14 of the offline AC-DC conversion circuit, and the first input terminal of the external sampling module 14 is input to the primary side of the offline AC-DC conversion circuit.
  • the current sampling signal of the winding N1, the second input of the external sampling module 14 is input to the output voltage sampling signal of the offline AC-DC conversion circuit.
  • the output voltage sampling signal can be obtained by measuring the different-name terminal voltage V3 of the auxiliary winding N3 of the offline AC-DC conversion circuit.
  • the offline AC-DC control circuit 1 of the present embodiment also includes an overvoltage detecting module 10, a current limiting module 1, a PWM comparator 12, and a switch control module 13.
  • the difference is that it also includes a timing selection module 15, which includes an input coupled to the time division multiplexed port CS and at least two outputs.
  • the timing selection module 15 restores the signal input to the time division multiplexed port CS to a first signal and a second signal, wherein the first signal is an output voltage sampling signal, which is supplied to the overvoltage detection Module 10, and a second signal primary winding current sampling signal, is provided to current limiting module 1 1 and PWM comparator 12, where the frequency of the first control signal is synchronized with the gate signal of power transistor M1.
  • the external sampling selection module 14 includes: a first input terminal connected to the source of the external power tube M1 and one end of the resistor R1; a second input terminal connected to the different name end of the auxiliary winding N3; and an output terminal connected to the offline AC-DC control circuit 1 Multiplexed port CS; Diode D7 and several resistors, wherein the anode of the diode D7 is connected to the opposite end of the auxiliary winding N3, the anode of the diode D7 is connected to one end of the resistor R5, and some resistors include resistors R5 and R4, and one end of the resistor R5 is connected to the cathode of the diode D7.
  • the other end of the resistor R5 is connected to the time division multiplexing port CS and one end of the resistor R4, and the other end of the resistor
  • FIG 7 is a circuit diagram showing an example of the timing selection circuit shown in Figures 3 and 4.
  • the control transmission gate 153 when the first control signal is at a high level, the control transmission gate 153 is turned on, and the signal output by the time division multiplexing port CS is output as the first signal; when the first control signal is When low, the control transfer gate 154 is turned on, and the first signal is at a zero level.
  • the falling edge detection module 151 when the first control signal is input to the falling edge detection module 151, at the falling edge of the first control signal, the falling edge detection module 151 outputs a high-level narrow pulse signal; when the high-level narrow pulse signal When the level is high, the control transmission gate 156 is turned on, and the signal output of the multiplexing port CS is the second signal; when the high level narrow pulse signal is low level, the control transmission gate 157 is turned on, and the second signal is zero. level.
  • Fig. 8 is a view showing waveforms of respective correlation signals of the off-line AC-DC conversion circuit shown in Figs. 3 and 4 in the continuous conduction mode.
  • Fig. 9 is a view showing waveforms of respective correlation signals of the off-line AC-DC conversion circuit shown in Figs. 3 and 4 in the non-continuous conduction mode.
  • the first signal is the same as the waveform of the voltage VR1 on the sampling resistor R1, and is within a period of time from the falling edge of the gate signal of the power transistor M1.
  • the second signal is the same as the positive voltage portion of the V3 waveform of the auxiliary winding.
  • the overvoltage detection module 10 compares the first signal output by the timing selection module 15 with the set first reference voltage VREF1 and outputs the comparison result to the switch control module 13, when When the first signal is greater than the set first reference voltage VREF1, it indicates that the output voltage is overvoltage, and the switch control module 13 outputs the turn-off signal of the power tube M1 on the port GATE according to the comparison result, so that the power tube M1 is in an off state.
  • the current limiting module 11 compares the second signal output by the timing selection module with the set second reference voltage VREF2 and outputs the comparison result to the switch control module 13, when the second signal is greater than the set second reference.
  • the switch control module 13 When the voltage VREF2 is, it indicates that the primary winding current is overcurrent, and the switch control module 13 outputs the power-off signal of the power tube on the port GATE according to the comparison result, so that the power tube M1 is in the off state.
  • the PWM comparator 12 compares the second signal outputted by the timing selection module 15 with the output voltage error signal of the AC-DC conversion circuit received from the port FB and outputs the comparison result to the switch control module 13, when the second signal is higher than the output In the case of the voltage error signal, the switch control module 13 outputs the turn-off signal of the power transistor M1 according to the comparison result, so that the power M1 tube is in the off state.
  • a rectifying filter circuit composed of an auxiliary winding N3 and a diode D5 connected to the different end of the N3, and a capacitor C2, provides a VDD voltage of the off-line AC-DC control circuit.
  • the relationship between the V3 voltage of the auxiliary group winding N3 and the different name terminal voltage V 2 of the secondary winding N 2 is:
  • ⁇ 3 is the number of turns of the auxiliary winding ⁇ 3
  • ⁇ 2 is the number of turns of the secondary winding ⁇ 2.
  • V3 ⁇ -(Vo + V FD5 ) (2) where 1 ⁇ 5 is the forward voltage drop of diode D5;
  • Vcs (V3-V FD7 )- (4)
  • 1 ⁇ 7 is the forward voltage drop of diode D7.
  • the resistor R1 is the primary winding current sampling resistor and has a small resistance compared with the resistor R4 and the resistor R5, the above equation is simplified as: n3 T , V F R4
  • Vcs is linear with the output voltage Vo.
  • the timing control module 15 restores the signal of the multiplexing port CS to an output voltage sampling signal and outputs it to the overvoltage detecting module 10, by comparing the Vcs.
  • the voltage and the internal reference voltage VREFl realize the output voltage overvoltage detection function.
  • FIG. 5 is a schematic illustration of an off-line AC-DC conversion circuit in accordance with yet another embodiment of the present invention.
  • Figure 6 is a schematic illustration of an off-line AC-DC conversion circuit in accordance with yet another embodiment of the present invention.
  • the overvoltage detection module 16, the current limiting module 17 and the pulse width modulation module 18 respectively include the gating circuits NA1, NA2, NA3,
  • the gate circuit N1 is coupled between the comparator A1 and the switch control module 13
  • the gate circuit N2 is coupled between the comparator A2 and the switch control module 13
  • the gate circuit N3 is coupled to the comparator A3 and the switch control module 13. between.
  • the gate circuits NA2, NA3 When the power tube M1 is turned on, the gate circuits NA2, NA3 output the output signals of the current limiting module 17 and the pulse width modulation module 18 to the switch control module 13, and when the power tube M1 is turned off, the gate circuit NA1 makes the overvoltage The output signal of the detection module 16 is provided to the switch control module 13.
  • the overvoltage detection module 16 compares the voltage of the time division multiplexed port CS with the set first reference voltage VREF1, when the voltage of the divided multiplexed port CS is greater than the set first reference voltage VREF1 and at the first enable signal When valid, the comparison result indicating the output voltage overvoltage of the offline AC-DC conversion circuit is sent to the switch control module 13, and the switch control module 13 thereby outputs the turn-off signal of the power tube M1 on the port GATE, so that the power tube Ml is in an off state.
  • the current limiting module 17 compares the voltage of the time division multiplexing port CS with the set second reference voltage VREF2, when the voltage of the divided multiplexing port CS is greater than the set second reference voltage VREF2 and the second enabling signal is valid. At the same time, the comparison result indicating the primary winding current overcurrent of the offline AC-DC conversion circuit is sent to the switch control module 13, and the switch control module 13 thereby outputs the turn-off signal of the power transistor M1 on the port GATE to make the power The tube M1 is in an off state.
  • the PWM comparator A3 compares the voltage of the time division multiplexed port CS with the output voltage error signal of the offline AC-DC conversion circuit, and the voltage of the sub-multiplexed port CS is higher than the offline AC-DC conversion.
  • the pulse width modulation module 18 outputs an excitation signal to the switch control module 13, and the switch control module 13 thereby outputs the turn-off signal of the power tube M1 on the port GATE. , the power tube M1 is in an off state.
  • the waveform of the first enable signal is the same as the waveform of the gate control signal of the power tube M1, and the second enable signal is a high-level narrow pulse at the power tube M1. A falling edge of the gate control signal is generated.
  • Vcs is linear with the output voltage Vo as previously described.
  • the first signal is greater than the set first reference voltage, it indicates that the output voltage is overvoltage, and the output voltage overvoltage detection function is realized.
  • the Vcs voltage is equal to VR1.
  • Fig. 10 is a waveform diagram of each correlation signal in the continuous conduction mode
  • Fig. 11 is a waveform diagram of each correlation signal in the discontinuous conduction mode.
  • Figure 12 is a schematic illustration of an off-line AC-DC conversion circuit in accordance with yet another embodiment of the present invention.
  • Figure 13 is a schematic illustration of an off-line AC-DC conversion circuit in accordance with yet another embodiment of the present invention.
  • the difference is that the current limiting module 17 and the pulse width modulation module 18 are integrated to form the current limiting and pulse width modulation module 19 or 20, i.e., with three inputs.
  • the comparator A7 or A8 of the terminal is substituted for the comparators A2 and A3 of the foregoing embodiment.
  • the output signal of the timing selection module 15 is selectively output to the comparator A1 of the overvoltage detection module 10 and the comparator A7 of the current limiting and pulse width modulation module 19, the second reference voltage.
  • the output voltage error signal of VREF2 and the off-line AC-DC conversion circuit is also input to the comparator A7.
  • the overvoltage detection module 10 compares the first signal output by the timing selection module 15 with the set first reference voltage VREF1 and outputs the comparison result to the switch control module 13, when the first signal is greater than the set first reference voltage VREF At 1 o'clock, the output voltage is overvoltage, and the switch control module 13 outputs a turn-off signal of the power transistor M1 on the port GATE according to the comparison result, so that the power transistor M1 is in an off state.
  • the current limiting and pulse width modulation module 19 compares the second signal output by the timing selection module with the set second reference voltage VREF2 and the output voltage error signal of the AC-DC conversion circuit and outputs the comparison result to the switch.
  • the control module 13 controls the switch control module 13 according to the comparison result when the second signal is greater than the set second reference voltage VREF2 or when the second signal is greater than the output voltage error signal
  • the power-off signal of the power tube is output on the port GATE, so that the power tube M1 is in an off state.
  • the overvoltage detection module 16 and the current limiting and pulse width modulation module 20 respectively include gate circuits NA1 and NA2, wherein the gate circuit N1 is coupled to the comparator A1 and the switch control module 13.
  • the gate circuit N2 is coupled between the comparator A8 and the switch control module 13.
  • the gate circuit NA2 When the power tube M1 is turned on, the gate circuit NA2 outputs the output signal of the current limiting and pulse width modulation module 20 to the switch control module 13, and when the power tube M1 is turned off, the gate circuit NA1 causes the overvoltage detection module 16 to The output signal is supplied to the switch control module 13.
  • the overvoltage detection module 16 compares the voltage of the time division multiplexed port CS with the set first reference voltage VREF1, when the voltage of the divided multiplexed port CS is greater than the set first reference voltage VREF1 and at the first enable signal When valid, the comparison result indicating the output voltage overvoltage of the offline AC-DC conversion circuit is sent to the switch control module 13, and the switch control module 13 thereby outputs the turn-off signal of the power tube M1 on the port GATE, so that the power tube Ml is in an off state.
  • the current limiting and pulse width modulation module 20 sets the voltage of the time division multiplexed port CS to the set second reference voltage.
  • VREF2 is compared with an output voltage error signal of the AC-DC conversion circuit, when the voltage of the sub-multiplexed port CS is greater than the set second reference voltage VREF2 or when the voltage of the sub-multiplexed port CS is greater than the output voltage error signal, and When the second enable signal is valid, the comparison result is sent to the switch control module 13, and the switch control module 13 thereby outputs the turn-off signal of the power transistor M1 on the port GATE, so that the power transistor M1 is in the off state.
  • control principle of pressure detection is applied to other switching power supplies and other fields, modification of the implementation of the timing selection module, modification of the implementation of the external sampling module, modification of the local configuration of the circuit, replacement of the type or model of the component. And other non-substantial alternatives or modifications are within the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Description

离线式 AC-DC控制电路和包含该控制电路的转换电路 技术领域
本发明涉及离线式交流 -直流 (AC-DC ) 变换电路领域, 尤其涉及副边控制 ( Secondary Side Regulation, SSR) 反激变换电路中输出过压检测技术。 背景技术
目前, 在中等输出功率离线式 AC-DC变换电路中, 副边控制 (SSR) 反激变 换电路最常见。
图 1为典型的副边控制反激离线式 AC-DC变换电路系统结构图。如图 1所示, 该变换电路包括离线式 AC-DC控制电路 1 以及外围电路, 其中离线式 AC-DC控 制电路 1包括过压检测模块 10、限流模块 1 1、PWM比较器 12和开关控制模块 13。
参见图 1, 过压检测模块 10包括比较器 Al, 比较器 A1的正输入端接电源端 口 VDD端口, 比较器 A1的负输入端接内部基准电压 VREF1。 限流模块 1 1包括 比较器 A2, 比较器 A2的正输入端接电流采样端口 CS端口, 比较器 A1的负输入 端接内部基准电压 VREF2。 脉宽调制 (PWM) 比较器或脉宽调制模块 12包括比 较器 A3, 比较器 A3的正输入端接电流采样端口 CS端口, 比较器 A1的负输入端 接反馈端口 FB端口。 开关控制模块 13的输入连接至比较器 A1-A3的输出端, 其 输出连接至栅驱动端口 GATE。 控制电路 1的栅驱动端口 VDD连接外部续流二极 管 D6的负极以及电容 C3的正极板。控制电路 1的电流采样端口 CS端口连接外部 功率管 Ml的源极以及采样电阻 R1的一端。控制电路 1的栅驱动端口 GATE连接 外部功率管 Ml的栅极。
在上述副边控制反激离线式 AC-DC变换电路系统中, 输出电压 Vo的过压检 测通过检测 VDD电压是否过压来间接实现的, 然而对于相同的输出电压, 当负载 不同时, VDD电压有较大的变化, 所以通过检测 VDD电压来实现输出电压 Vo的 过压检测, 过压检测阈值会随负载变化很大。
为此可以采用图 2所示的副边控制反激离线式 AC-DC变换电路。在图 2所示 的变换电路中, 将辅助绕组 N3的异名端通过电阻 R2/R3的分压后连到控制电路 1 的过压检测端口 OVP端, 作为过压检测采样点。 辅助绕组 N3 的异名端电压 V3 与副边绕组 N2的异名端电压 V2的关系如下:
V3 _ η3 ( 1 )
V2 ~ η2
其中 η3为辅助绕组 Ν3 的匝数, η2为副边绕组 Ν2的匝数。
另外, 在功率管 Ml处于截止状态而副边绕组和辅助绕组续流时, 电压 V3与 输出电压 Vo的关系如下:
V3 ^ ^-(Vo + VFD5) ( 2 )
n2 其中 1^5为二极管 D5的正向导通压降
由此, 0VP端口电压为:
R3 n3
(Vo + VFD5 ) ( 3 )
R2 + R3 n2 其中 R2和 R3分别为电阻 R2和 R3的阻值。
由式 (3 ) 可见, OVP端口电压与 Vo成线性关系, 可以精确反映 Vo电压是 否过压,因此通过测量该电压可以解决图 1所示系统中过压检测阈值随负载变化的 缺点。 但是图 2所示的变换电路的缺点是控制电路 1需要增加额外的 OVP端口用 于输入电压信号。 发明内容
本发明旨在解决上述缺点, 提供一种离线式 AC-DC控制电路, 其通过以时分 复用公共端口的方式,在不增加控制电路端口的前提下, 实现输出电压过压的准确 检测。
本发明的上述目的通过下列技术方案实现:
一种离线式 AC-DC控制电路,其根据输入的电流采样信号和电压采样信号生 成相应的控制信号,其特征在于,所述电流采样信号和所述电压采样信号以时分复 用的方式在单个输入端口上提供。
优选地, 在上述离线式 AC-DC控制电路中, 所述离线式 AC-DC控制电路包 括过压检测模块、 限流模块、 脉宽调制模块以及与上述模块耦合的开关控制模块, 所述过压检测模块经所述单个输入端口接收所述电压采样信号,所述限流模块和脉 宽调制模块经所述单个输入端口接收所述电流采样信号, 进一步包括时序选择模 块,其包含与所述单个输入端口耦合的输入端和至少两个输出端,所述时序选择模 块交替地使其中一个所述输出端与所述限流模块和所述脉宽调制模块接通和使另 一个所述输出端与所述过压检测模块接通,从而提供所述电流采样信号和所述电压 采样信号。
优选地, 在上述离线式 AC-DC控制电路中, 所述过压检测模块将所述电压采 样信号与设定的第一基准电压进行比较并将比较结果输出至所述开关控制模块,如 果所述电压采样信号大于所述第一基准电压,则所述开关控制模块输出使功率管处 于截止状态的关断信号,所述限流模块将所述电流采样信号与设定的第二基准电压 进行比较并将比较结果输出至开关控制模块,如果所述电流采样信号大于所述第二 基准电压,则所述开关控制模块输出使功率管处于截止状态的关断信号,所述脉宽 调制模块将所述电流采样信号与从所述离线式 AC-DC控制电路外部输入的信号进 行比较并将比较结果输出至开关控制模块,如果所述电流采样信号大于所述外部输 入的信号, 则所述开关控制模块输出使功率管处于截止状态的关断信号。
优选地, 在上述离线式 AC-DC控制电路中, 所述离线式 AC-DC控制电路包 括过压检测模块、 限流模块、 脉宽调制模块以及与上述模块耦合的开关控制模块, 所述过压检测模块经所述单个输入端口接收所述电压采样信号,所述限流模块和脉 宽调制模块经所述单个输入端口接收所述电流采样信号,其中,所述过压检测模块、 所述限流模块和所述脉宽调制模块包含耦合至所述开关控制模块的选通电路,所述 选通电路交替地使所述过压检测模块的输出信号与所述限流模块和所述脉宽调制 模块的输出信号提供给所述开关控制模块。
优选地, 在上述离线式 AC-DC控制电路中, 通过在所述过压检测模块的选通 电路的使能输入端施加第一使能信号,使所述过压检测模块的输出信号提供至所述 开关控制模块,并且通过在所述限流模块和所述脉宽调制模块的选通电路的使能输 入端施加第二使能信号,使所述限流模块和所述脉宽调制模块的输出信号提供至所 述开关控制模块, 所述第一和第二使能信号是互斥的。
优选地, 在上述离线式 AC-DC控制电路中, 所述过压检测模块将所述电压采 样信号与设定的第一基准电压进行比较并在所述选通电路的使能输入端施加第一 使能信号时将比较结果输出至所述开关控制模块,如果所述电压采样信号大于所述 第一基准电压,则所述开关控制模块输出使功率管处于截止状态的关断信号,所述 限流模块将所述电流采样信号与设定的第二基准电压进行比较并在所述选通电路 的使能输入端施加第二使能信号时将比较结果输出至开关控制模块,如果所述电流 采样信号大于所述第二基准电压,则所述开关控制模块输出使功率管处于截止状态 的关断信号,所述脉宽调制模块将将所述电流采样信号与从所述离线式 AC-DC控制 电路外部输入的信号进行比较并在所述选通电路的使能输入端施加第二使能信号 时将比较结果输出至开关控制模块,如果所述电流采样信号大于所述外部输入的信 号, 则所述开关控制模块输出使功率管处于截止状态的关断信号。
本发明还旨在解决上述缺点, 提供一种离线式 AC-DC转换电路, 其通过以时 分复用公共端口的方式,在不增加控制电路端口的前提下, 实现输出电压过压的准 确检测。
本发明的上述目的通过下列技术方案实现:
一种离线式 AC-DC转换电路, 包括:
整流桥堆;
与所述整流桥堆耦合的原边绕组;
与所述原边绕组耦合的功率管;
副边绕组;
辅助绕组;
外部采样模块, 包含分别与所述原边绕组和所述辅助绕组耦合的两个输入端; 以及
离线式 AC-DC控制电路,其根据输入的电流采样信号和电压采样信号生成相 应的控制信号,所述电流采样信号和所述电压采样信号以时分复用的方式, 由所述 外部采样模块在单个输入端口上提供。
优选地, 在上述离线式 AC-DC转换电路中, 在所述功率管导通期间, 在所述 单个输入端口上提供所述电流采样信号,而在所述功率管截止期间且副边绕组和辅 助绕组续流时, 在所述单个输入端口上提供电压采样信号。
优选地, 在上述离线式 AC-DC转换电路中, 所述外部采样模块通过在所述功 率管导通时,检测所述原边绕组的电流流经与所述原边绕组串联的采样电阻上的压 降得到所述电流采样信号, 并且所述外部采样模块通过在所述功率管截止时,通过 检测所述辅助绕组的异名端的电压得到所述电压采样信号。
优选地, 在上述离线式 AC-DC转换电路中, 所述离线式 AC-DC控制电路包 括过压检测模块、 限流模块、 脉宽调制模块以及与上述模块耦合的开关控制模块, 所述过压检测模块经所述单个输入端口接收所述电压采样信号,所述限流模块和脉 宽调制模块经所述单个输入端口接收所述电流采样信号,所述功率管的栅极电压由 所述开关控制模块控制,进一步包括时序选择模块,其包含与所述单个输入端口耦 合的输入端和至少两个输出端,所述时序选择模块交替地使其中一个所述输出端与 所述限流模块和所述脉宽调制模块接通和使另一个所述输出端与所述过压检测模 块接通, 从而提供所述电流采样信号和所述电压采样信号。
优选地, 在上述离线式 AC-DC转换电路中, 所述时序选择模块还包含控制信 号输入端,通过在该控制信号输入端提供第一控制信号来实现所述电压采样信号和 所述电流采样信号的交替输出,所述第一控制信号的频率与所述功率管的栅极信号 同步。
优选地, 在上述离线式 AC-DC转换电路中, 所述过压检测模块将所述电压采 样信号与设定的第一基准电压进行比较并将比较结果输出至所述开关控制模块,如 果所述电压采样信号大于所述第一基准电压,则所述开关控制模块输出使功率管处 于截止状态的关断信号,所述限流模块将所述电流采样信号与设定的第二基准电压 进行比较并将比较结果输出至开关控制模块,如果所述电流采样信号大于所述第二 基准电压,则所述开关控制模块输出使功率管处于截止状态的关断信号,所述脉宽 调制模块将将所述电流采样信号与从所述离线式 AC-DC控制电路外部输入的信号 进行比较并将比较结果输出至开关控制模块,如果所述电流采样信号大于所述外部 输入的信号, 则所述开关控制模块输出使功率管处于截止状态的关断信号。
优选地, 在上述离线式 AC-DC转换电路中, 所述离线式 AC-DC控制电路包 括过压检测模块、 限流模块、 脉宽调制模块以及与上述模块耦合的开关控制模块, 所述过压检测模块经所述单个输入端口接收所述电压采样信号,所述限流模块和脉 宽调制模块经所述单个输入端口接收所述电流采样信号,所述功率管的栅极电压由 所述开关控制模块控制,所述过压检测模块、所述限流模块和所述脉宽调制模块包 含耦合至所述开关控制模块的选通电路,所述选通电路交替地使所述过压检测模块 的输出信号与所述限流模块和所述脉宽调制模块的输出信号提供给所述开关控制 模块。
优选地, 在上述离线式 AC-DC转换电路中, 通过在所述过压检测模块的选通 电路的使能输入端施加第一使能信号,使所述过压检测模块的输出信号提供至所述 开关控制模块,并且通过在所述限流模块和所述脉宽调制模块的选通电路的使能输 入端施加第二使能信号,使所述限流模块和所述脉宽调制模块的输出信号提供至所 述开关控制模块, 所述第一和第二使能信号是互斥的。
优选地, 在上述离线式 AC-DC转换电路中, 所述过压检测模块将所述电压采 样信号与设定的第一基准电压进行比较并在所述选通电路的使能输入端施加第一 使能信号时将比较结果输出至所述开关控制模块,如果所述电压采样信号大于所述 第一基准电压,则所述开关控制模块输出使功率管处于截止状态的关断信号,所述 限流模块将所述电流采样信号与设定的第二基准电压进行比较并在所述选通电路 的使能输入端施加第二使能信号时将比较结果输出至开关控制模块,如果所述电流 采样信号大于所述第二基准电压,则所述开关控制模块输出使功率管处于截止状态 的关断信号,所述脉宽调制模块将将所述电流采样信号与从所述离线式 AC-DC控制 电路外部输入的信号进行比较并在所述选通电路的使能输入端施加第二使能信号 时将比较结果输出至开关控制模块,如果所述电流采样信号大于所述外部输入的信 号, 则所述开关控制模块输出使功率管处于截止状态的关断信号。 本发明与现有技术相比, 具有如下优点:
通过时分复用端口, 在功率管截止期间进行输出电压过压检测, 并且在功率 管导通期间检测功率管电流, 两种信号以时分方式输入, 互不影响, 因此在不增加 端口的前提下能够准确地检测输出电压是否过压, 并对过压情况进行控制。 从结合附图的以下详细说明中, 将会使本发明的上述和其它目的及优点更加 完全清楚。 附图概述
图 1为一种典型的离线式 AC-DC转换电路的示意图。
图 2为另一种典型的离线式 AC-DC转换电路的示意图。 图 3为按照本发明一个实施例的离线式 AC-DC转换电路的示意图。
图 4为按照本发明另一个实施例的离线式 AC-DC转换电路的示意图。
图 5为按照本发明还有一个实施例的离线式 AC-DC转换电路的示意图。 图 6为按照本发明还有一个实施例的离线式 AC-DC转换电路的示意图。 图 7为图 3和 4中所示时序选择电路的一种实例电路图。
图 8示出了图 3和 4所示离线式 AC-DC转换电路在连续导通模式下的各相关 信号的波形图。
图 9示出了图 3和 4所示离线式 AC-DC转换电路在非连续导通模式下的各相 关信号的波形图。
图 10示出了图 5和 6所示离线式 AC-DC转换电路在连续导通模式下的各相 关信号的波形图。
图 1 1示出了图 5和 6所示离线式 AC-DC转换电路在非连续导通模式下各相 关信号的波形图。
图 12为按照本发明还有一个实施例的离线式 AC-DC转换电路的示意图。 图 13为按照本发明还有一个实施例的离线式 AC-DC转换电路的示意图。 具体实施方式
下面通过参考附图描述本发明的具体实施方式来阐述本发明。 但是需要理 解的是, 这些具体实施方式仅仅是示例性的, 对于本发明的精神和保护范围并 无限制作用。
在本说明书中, "耦合"一词应当理解为包括在两个单元之间直接传送能 量或信号的情形, 或者经一个或多个第三单元间接传送能量或信号的情形, 而 且这里所称的信号包括但不限于以电、 光和磁的形式存在的信号。 另外, "包 含"和 "包括" 之类的用语表示除了具有在说明书和权利要求书中有直接和明 确表述的单元和步骤以外, 本发明的技术方案也不排除具有未被直接或明确表 述的其它单元和步骤的情形。 再者, 诸如 "第一" 和 "第二" 之类的用语并不 表示单元或数值在时间、 空间、 大小等方面的顺序而仅仅是作区分各单元或数 值之用。 以下结合附图对本发明内容进一步说明。
图 3为按照本发明一个实施例的离线式 AC-DC转换电路的示意图。
如图 3所示, 该离线式 AC-DC转换电路包括: 整流桥堆 (由二极管 D l、 二极管 D2、 二极管 D3、 二极管 D4组成) 及滤波电容 C l、 原边绕组 Nl、 功 率管 Ml及采样电阻 Rl、 副边绕组 N2及滤波电路 (由续流二级管 D5和滤波 电容 C2组成) 、 辅助绕组 N3及滤波电路 (由续流二极管 D6和滤波电容 C3 组成) 、 输出电压反馈电路和离线式 AC-DC控制电路 1。
参见图 3, 离线式 AC-DC控制电路 1包括时分复用端口 CS, 该时分复用 端口在离线式 AC-DC转换电路的功率管 Ml导通期间输入原边绕组电流采样信 号,在功率管 M l截止期间输入 AC-DC变换电路的输出电压采样信号, 由此实 现时分复用端口对 AC-DC变换电路的原边绕组电流和输出电压进行时分采样。
在本实施例中,时分复用端口 CS与离线式 AC-DC转换电路的外部采样模 块 14的输出端的耦合, 该外部采样模块 14 的第一输入端输入离线式 AC-DC 转换电路的原边绕组 N1的电流采样信号, 外部采样模块 14的第二输入端输入 离线式 AC-DC 转换电路的输出电压采样信号。 具体而言, 当外部功率管 M l 导通时, 原边绕组 N1的电流流经与原边绕组串联的采样电阻 Rl, 通过测量电 阻 R1上的压降可得到原边绕组 N1的电流采样信号,当外部功率管 M l截止时, 通过测量离线式 AC-DC转换电路的辅助绕组 N3的异名端电压 V3可以得到输 出电压采样信号。
与图 1和 2相比, 本实施例的离线式 AC-DC控制电路 1也包括过压检测 模块 10、 限流模块 1 1、 PWM比较器 12和开关控制模块 13。 但是不同之处在 于还包括时序选择模块 15, 其包含与时分复用端口 CS耦合的输入端和至少两 个输出端。 在第一控制信号的控制下, 时序选择模块 15 将输入到时分复用端 口 CS的信号还原成第一信号和第二信号,其中第一信号为输出电压采样信号, 其被提供给过压检测模块 10, 而第二信号原边绕组电流采样信号, 其被提供给 限流模块 1 1 和 PWM 比较器 12, 在这里, 第一控制信号的频率同功率管 M l 的栅极信号同步。
图 4为按照本发明另一个实施例的离线式 AC-DC转换电路的示意图。 与图 3所示的离线式 AC-DC转换电路相比, 外部采样选择模块 14包括: 第一输入端, 其连接外部功率管 Ml 的源极和电阻 R1 的一端; 第二输入端, 其连接辅助绕组 N3的异名端; 输出端, 其连接离线式 AC-DC控制电路 1的时 分复用端口 CS; 二极管 D7以及若干电阻, 其中二极管 D7正极接辅助绕组 N3 的异名端, 二极管 D7负极接电阻 R5的一端, 若干电阻包括电阻 R5和 R4, 电 阻 R5的一端接二极管 D7的负极, 电阻 R5的另一端接时分复用端口 CS以及 电阻 R4的一端, 电阻 R4的另一端接电阻 R1的一端以及功率管 Ml的源极。
图 7为图 3和 4中所示时序选择电路的一种实例电路图。
在图 7所示的时序选择模块 15 中, 当第一控制信号为高电平时, 控制传 输门 153导通, 将时分复用端口 CS输出的信号输出为第一信号; 当第一控制 信号为低电平时, 控制传输门 154导通, 第一信号为零电平。 另一方面, 当第 一控制信号被输入至下降沿检测模块 151时, 在第一控制信号的下降沿, 下降 沿检测模块 151输出一高电平窄脉冲信号;当该高电平窄脉冲信号为高电平时, 控制传输门 156导通, 复用端口 CS的信号输出为第二信号; 当该高电平窄脉 冲信号为低电平时, 控制传输门 157导通, 第二信号为零电平。
图 8示出了图 3和 4所示离线式 AC-DC转换电路在连续导通模式下的各 相关信号的波形图。 图 9示出了图 3和 4所示离线式 AC-DC转换电路在非连 续导通模式下的各相关信号的波形图。
如图 8、 图 9所示, 在功率管 Ml栅极信号为高电平期间, 第一信号与采 样电阻 R1上的电压 VR1波形相同, 在功率管 Ml栅极信号下降沿开始的一段 时间内, 第二信号与辅助绕组异名端 V3波形的正电压部分相同。
在图 3和 4所示的实施例中, 过压检测模块 10将时序选择模块 15输出的 第一信号与设定的第一基准电压 VREF1 进行比较并将比较结果输出至开关控 制模块 13, 当第一信号大于设定的第一基准电压 VREF1 时, 表示输出电压过 压, 开关控制模块 13根据比较结果在端口 GATE上输出功率管 Ml 的关断信 号, 使功率管 Ml处于截止状态。 另一方面, 限流模块 11将时序选择模块输出 的第二信号同设定的第二基准电压 VREF2 进行比较并将比较结果输出至开关 控制模块 13, 当第二信号大于设定的第二基准电压 VREF2时, 表示原边绕组 电流过流, 开关控制模块 13根据比较结果在端口 GATE上输出功率管的关断 信号, 使功率管 Ml处于截止状态。 PWM比较器 12将时序选择模块 15输出的第二信号同接收自端口 FB的 AC-DC 变换电路的输出电压误差信号进行比较并将比较结果输出至开关控制 模块 13, 当第二信号高于输出电压误差信号时, 开关控制模块 13根据比较结 果输出功率管 Ml的关断信号, 使功率 Ml管处于截止状态。
图 3和 4所示变换电路的具体的工作原理如下:
由辅助绕组 N3及与 N3异名端相连的二极管 D5、 电容 C2组成的整流滤 波电路提供离线式 AC-DC控制电路的 VDD电压。 辅组绕组 N3的异名端 V3 电压与副边绕组 N 2的异名端电压 V 2之间的关系为:
V^_ n3_
(1)
V2 ~ n2
其中, η3为辅助绕组 Ν3的匝数, η2为副边绕组 Ν2的匝数。
在功率管 Ml截止期间, 副边绕组和辅助绕组续流, V3与输出电压 Vo的 关系为:
V3=^-(Vo + VFD5) (2) 其中, 1^5为二极管 D5的正向导通压降;
时分复用端口 CS端的电压 Vcs与输出电压 Vo的关系如下:
Vcs = (V3-VFD7)- (4)
Figure imgf000012_0001
其中, 1^7为二极管 D7的正向导通压降。
由于电阻 R1为原边绕组电流采样电阻, 与电阻 R4、 电阻 R5相比阻值很 小, 所以上式简化为: n3 T, VF R4
Vcs (5)
n2 n2 R5 + R4 可见, Vcs与输出电压 Vo成线性关系。 此时, 时序控制模块 15将复用端 口 CS的信号还原成输出电压采样信号并输出到过压检测模块 10,通过比较 Vcs 电压与内部基准电压 VREFl , 实现输出电压过压检测功能。
在功率管 Ml 导通时, 原边绕组流过电流, 原边绕组电流流过电阻 R1产 生的电压为 VR1, 副边绕组异名端为负电压, 二极管 D7反向截止, 时分复用 端口 CS无电流流入, 因此 Vcs电压等于 VR1。 此时, 时序控制模块 15将复用 端口 CS的信号还原成原边绕组的采样信号并输出到限流模块 11和 PWM比较 器 12, 实现原边绕组电流采样功能。 图 5为按照本发明还有一个实施例的离线式 AC-DC转换电路的示意图。 图 6为按照本发明还有一个实施例的离线式 AC-DC转换电路的示意图。
与图 3和 4所示的离线式 AC-DC转换电路相比, 不同之处在于, 过压检 测模块 16、 限流模块 17和脉宽调制模块 18分别包含选通电路 NA1、 NA2、 NA3, 其中, 选通电路 N1耦合在比较器 A1与开关控制模块 13之间, 选通电 路 N2耦合在比较器 A2与开关控制模块 13之间, 选通电路 N3耦合在比较器 A3与开关控制模块 13之间。 在功率管 Ml导通时, 选通电路 NA2、 NA3使限 流模块 17和脉宽调制模块 18的输出信号输出至开关控制模块 13,而在功率管 Ml截止时, 选通电路 NA1使过压检测模块 16的输出信号提供给开关控制模 块 13。
过压检测模块 16将时分复用端口 CS的电压同设定的第一基准电压 VREF1 进行比较, 当时分复用端口 CS的电压大于设定的第一基准电压 VREF1时且在 第一使能信号有效时, 表示离线式 AC-DC 转换电路的输出电压过压的比较结 果被送至开关控制模块 13, 而开关控制模块 13由此在端口 GATE上输出功率 管 Ml的关断信号, 使功率管 Ml处于截止状态。
限流模块 17将时分复用端口 CS的电压同设定的第二基准电压 VREF2进 行比较, 当时分复用端口 CS的电压大于设定的第二基准电压 VREF2时且在第 二使能信号有效时, 表示离线式 AC-DC 转换电路的原边绕组电流过流的比较 结果被送至开关控制模块 13, 而开关控制模块 13由此在端口 GATE上输出功 率管 Ml的关断信号, 使功率管 Ml处于截止状态。
PWM比较器 A3将时分复用端口 CS的电压同离线式 AC-DC转换电路的 输出电压误差信号进行比较,当时分复用端口 CS的电压高于离线式 AC-DC转 换电路的输出电压误差信号且在第二使能信号有效时, 脉宽调制模块 18 输出 激发信号至开关控制模块 13, 而开关控制模块 13由此在端口 GATE上输出功 率管 Ml的关断信号, 使功率管 Ml处于截止状态。
在图 5和 6所示的实施例中, 第一使能信号的波形同功率管 Ml的栅极控 制信号的波形相同, 第二使能信号是一高电平窄脉冲, 在功率管 Ml 的栅极控 制信号的下降沿产生。
在功率开关 M l截止期间, 如前所述, Vcs与输出电压 Vo成线性关系。 此 时, 当第一信号大于设定的第一基准电压时, 表示输出电压过压, 实现输出电 压过压检测功能。 在功率开关 Ml导通时期, 如前所述, Vcs电压等于 VR1。
图 5、 6所示的离线式 AC-DC转换电路的各相关信号的波形如图 10和图
1 1所示, 其中图 10为连续导通模式下的各相关信号的波形图, 图 1 1为非连续 导通模式下各相关信号的波形图。 图 12为按照本发明还有一个实施例的离线式 AC-DC转换电路的示意图。 图 13为按照本发明还有一个实施例的离线式 AC-DC转换电路的示意图。
与图 3和 5所示的实施例相比, 不同之处在于, 限流模块 17和脉宽调制 模块 18被集成在一起而构成限流和脉宽调制模块 19或 20, 即采用具有三输入 端的比较器 A7或 A8来代替前述实施例的比较器 A2和 A3。
在图 12所示的实施例中, 时序选择模块 15的输出信号被选择性地输出至 过压检测模块 10的比较器 A1和限流和脉宽调制模块 19的比较器 A7, 第二基 准电压 VREF2和离线式 AC-DC转换电路的输出电压误差信号也被输入比较器 A7。过压检测模块 10将时序选择模块 15输出的第一信号与设定的第一基准电 压 VREF1进行比较并将比较结果输出至开关控制模块 13, 当第一信号大于设定 的第一基准电压 VREF 1时, 表示输出电压过压, 开关控制模块 13根据比较结 果在端口 GATE上输出功率管 M l的关断信号, 使功率管 Ml处于截止状态。 另一方面, 限流和脉宽调制模块 19 将时序选择模块输出的第二信号与设定的 第二基准电压 VREF2以及 AC-DC变换电路的输出电压误差信号进行比较并将 比较结果输出至开关控制模块 13,当第二信号大于设定的第二基准电压 VREF2 时或者当第二信号大于输出电压误差信号时, 开关控制模块 13 根据比较结果 在端口 GATE上输出功率管的关断信号, 使功率管 Ml处于截止状态。
在图 13所示的实施例中, 过压检测模块 16和限流和脉宽调制模块 20分 别包含选通电路 NA1和 NA2, 其中, 选通电路 N1耦合在比较器 A1与开关控 制模块 13之间, 选通电路 N2耦合在比较器 A8与开关控制模块 13之间。在功 率管 Ml导通时, 选通电路 NA2使限流和脉宽调制模块 20的输出信号输出至 开关控制模块 13, 而在功率管 Ml截止时, 选通电路 NA1使过压检测模块 16 的输出信号提供给开关控制模块 13。
过压检测模块 16将时分复用端口 CS的电压同设定的第一基准电压 VREF1 进行比较, 当时分复用端口 CS的电压大于设定的第一基准电压 VREF1时且在 第一使能信号有效时, 表示离线式 AC-DC 转换电路的输出电压过压的比较结 果被送至开关控制模块 13, 而开关控制模块 13由此在端口 GATE上输出功率 管 Ml的关断信号, 使功率管 Ml处于截止状态。
限流和脉宽调制模块 20将时分复用端口 CS的电压同设定的第二基准电压
VREF2和 AC-DC变换电路的输出电压误差信号进行比较,当时分复用端口 CS 的电压大于设定的第二基准电压 VREF2时或者当时分复用端口 CS的电压大于 输出电压误差信号时, 且在第二使能信号有效时, 比较结果被送至开关控制模 块 13, 而开关控制模块 13由此在端口 GATE上输出功率管 Ml的关断信号, 使功率管 Ml处于截止状态。 应该理解到的是: 上述实施例只是对本发明的说明, 而不是对本发明的限 制, 任何不超出本发明实质精神范围内的发明创造, 包括但不限于将本发明的 时分复用 CS端口实现过压检测的控制原理应用于其它开关电源等领域、 对时 序选择模块的实现方式的修改、 对外部采样模块的实现方式的修改、 对电路的 局部构造的变更、 对元器件的类型或型号的替换, 以及其他非实质性的替换或 修改, 均落入本发明保护范围之内。

Claims

权 利 要 求
1、 一种离线式 AC-DC控制电路, 其根据输入的电流采样信号和电压采样 信号生成相应的控制信号, 其特征在于, 所述电流采样信号和所述电压采样信 号以时分复用的方式在单个输入端口 (CS) 上提供。
2、如权利要求 1所述的离线式 AC-DC控制电路,其中,所述离线式 AC-DC 控制电路包括过压检测模块 (10) 、 限流模块 (11) 、 脉宽调制模块 (12) 与 所述压检测模块 (10) 、 所述限流模块 (11) 、 所述脉宽调制模块 (12) 耦合 的开关控制模块 (13) 和时序选择模块 (15) , 所述时序选择模块包含与所述 单个输入端口 (CS)耦合的输入端和至少两个输出端, 所述时序选择模块(15) 交替地使其中一个所述输出端与所述限流模块(11)和所述脉宽调制模块(12) 接通和使另一个所述输出端与所述过压检测模块 (10) 接通, 从而经所述单个 输入端口 (CS) 交替地向所述限流模块 (11) 和脉宽调制模块 (12) 提供所述 电流采样信号, 并经所述单个输入端口 (CS) 向所述过压检测模块 (10) 提供 所述电压采样信号。
3、 如权利要求 2所述的离线式 AC-DC控制电路, 其中, 所述过压检测模 块 (10) 将所述电压采样信号与设定的第一基准电压 (VREF1) 进行比较并将 比较结果输出至所述开关控制模块 (13) , 如果所述电压采样信号大于所述第 一基准电压 (VREF1) , 则所述开关控制模块 (13) 输出使功率管 (Ml) 处于 截止状态的关断信号, 所述限流模块 (11) 将所述电流采样信号与设定的第二 基准电压 (VREF2) 进行比较并将比较结果输出至开关控制模块 (13) , 如果 所述电流采样信号大于所述第二基准电压(VREF2),则所述开关控制模块( 13) 输出使功率管 (Ml) 处于截止状态的关断信号, 所述脉宽调制模块 (12) 将所 述电流采样信号与从所述离线式 AC-DC 控制电路外部输入的信号进行比较并 将比较结果输出至开关控制模块 (13) , 如果所述电流采样信号大于所述外部 输入的信号, 则所述开关控制模块 (13) 输出使功率管 (Ml) 处于截止状态的 关断信号。
4、如权利要求 1所述的离线式 AC-DC控制电路,其中,所述离线式 AC-DC 控制电路包括过压检测模块 (16) 、 限流模块 (17) 、 脉宽调制模块 (18) 以 及与上述模块耦合的开关控制模块 (13) , 所述过压检测模块 (16) 经所述单 个输入端口 (CS) 接收所述电压采样信号, 所述限流模块 (17) 和脉宽调制模 块 (18) 经所述单个输入端口 (CS) 接收所述电流采样信号, 其中, 所述过压 检测模块 (16) 、 所述限流模块 (17) 和所述脉宽调制模块 (18) 包含耦合至 所述开关控制模块 ( 13) 的选通电路 (NA1,NA2,NA3) , 所述选通电路 (NA1,NA2,NA3)交替地使所述过压检测模块(18) 的输出信号与所述限流模 块( 16)和所述脉宽调制模块( 17)的输出信号提供给所述开关控制模块( 13)。
5、 如权利要求 4所述的离线式 AC-DC控制电路, 其中, 通过在所述过压 检测模块 (16) 的选通电路 (NA1) 的使能输入端施加第一使能信号, 使所述 过压检测模块 (18) 的输出信号提供至所述开关控制模块 (13) , 并且通过在 所述限流模块 (17) 和所述脉宽调制模块 (18) 的选通电路 (NA2,NA3) 的使 能输入端施加第二使能信号, 使所述限流模块(17)和所述脉宽调制模块(18) 的输出信号提供至所述开关控制模块 (13) , 所述第一和第二使能信号是互斥 的。
6、 如权利要求 4所述的离线式 AC-DC控制电路, 其中, 所述过压检测模 块 (16) 将所述电压采样信号与设定的第一基准电压 (VREF1) 进行比较并在 所述选通电路 (NA1) 的使能输入端施加第一使能信号时将比较结果输出至所 述开关控制模块 ( 13) , 如果所述电压采样信号大于所述第一基准电压 (VREF1) , 则所述开关控制模块 (13) 输出使功率管 (Ml) 处于截止状态的 关断信号, 所述限流模块 (17) 将所述电流采样信号与设定的第二基准电压 (VREF2) 进行比较并在所述选通电路 (NA2) 的使能输入端施加第二使能信 号时将比较结果输出至开关控制模块 (13) , 如果所述电流采样信号大于所述 第二基准电压 (VREF2) , 则所述开关控制模块 (13) 输出使功率管 (Ml) 处 于截止状态的关断信号, 所述脉宽调制模块 (18) 将将所述电流采样信号与从 所述离线式 AC-DC 控制电路外部输入的信号进行比较并在所述选通电路
(NA3) 的使能输入端施加第二使能信号时将比较结果输出至开关控制模块 (13) , 如果所述电流采样信号大于所述外部输入的信号, 则所述开关控制模 块 (13) 输出使功率管 (Ml) 处于截止状态的关断信号。
7、 一种离线式 AC-DC转换电路, 包括:
整流桥堆 (Dl、 D2、 D3、 D4) ;
与所述整流桥堆 (Dl、 D2、 D3、 D4) 耦合的原边绕组 (N1) ;
与所述原边绕组 (N1) 耦合的功率管 (Ml) ;
副边绕组 (N2) ;
辅助绕组 (N3) ;
外部采样模块 (14) ; 以及
离线式 AC-DC控制电路 (1) , 其特征在于根据输入的电流采样信号和电 压采样信号生成相应的控制信号, 所述电流采样信号和所述电压采样信号以时 分复用的方式, 由所述外部采样模块 (14) 在单个输入端口 (CS) 上提供。
8、如权利要求 7所述的离线式 AC-DC转换电路,其中,在所述功率管(Ml) 导通期间, 在所述单个输入端口 (CS) 上提供所述电流采样信号, 而在所述功 率管(Ml)截止期间且副边绕组和辅助绕组续流时,在所述单个输入端口(CS) 上提供电压采样信号。
9、 如权利要求 8所述的离线式 AC-DC转换电路, 其中, 所述外部采样模 块 (14) 通过在所述功率管 (Ml) 导通时, 检测所述原边绕组 (N1) 的电流 流经与所述原边绕组(N1) 串联的采样电阻(R1) 上的压降得到所述电流采样 信号, 并且所述外部采样模块 (14) 通过在所述功率管 (Ml) 截止时, 通过检 测所述辅助绕组 (N3) 的异名端的电压得到所述电压采样信号。
10、如权利要求 7所述的离线式 AC-DC转换电路,其中,所述离线式 AC-DC 控制电路包括过压检测模块 (10) 、 限流模块 (11) 、 脉宽调制模块 (12) 与 所述压检测模块 (10) 、 所述限流模块 (11) 、 所述脉宽调制模块 (12) 耦合 的开关控制模块 (13) 和时序选择模块 (15) , 所述时序选择模块包含与所述 单个输入端口 (CS)耦合的输入端和至少两个输出端, 所述时序选择模块(15) 交替地使其中一个所述输出端与所述限流模块(11)和所述脉宽调制模块(12) 接通和使另一个所述输出端与所述过压检测模块 (10) 接通, 从而经所述单个 输入端口 (CS) 向所述限流模块 (11) 和脉宽调制模块 (12) 提供所述电流采 样信号, 并经所述单个输入端口 (CS) 向所述过压检测模块 (10) 提供所述电 压采样信号所述功率管 (Ml) 的栅极电压由所述开关控制模块 (13) 控制。
11、 如权利要求 10所述的离线式 AC-DC转换电路, 其中, 所述时序选择 模块 (15) 还包含控制信号输入端, 通过在该控制信号输入端提供第一控制信 号来实现所述电压采样信号和所述电流采样信号的交替输出, 所述第一控制信 号的频率与所述功率管 (Ml) 的栅极信号同步。
12、 如权利要求 10所述的离线式 AC-DC转换电路, 其中, 所述过压检测 模块 (10) 将所述电压采样信号与设定的第一基准电压 (VREF1) 进行比较并 将比较结果输出至所述开关控制模块 (13) , 如果所述电压采样信号大于所述 第一基准电压 (VREF1) , 则所述开关控制模块 (13) 输出使功率管 (Ml) 处 于截止状态的关断信号, 所述限流模块 (11) 将所述电流采样信号与设定的第 二基准电压 (VREF2) 进行比较并将比较结果输出至开关控制模块 (13) , 如 果所述电流采样信号大于所述第二基准电压 (VREF2) , 则所述开关控制模块 (13)输出使功率管(Ml)处于截止状态的关断信号, 所述脉宽调制模块(12) 将将所述电流采样信号与从所述离线式 AC-DC 控制电路外部输入的信号进行 比较并将比较结果输出至开关控制模块 (13) , 如果所述电流采样信号大于所 述外部输入的信号, 则所述开关控制模块 (13) 输出使功率管 (Ml) 处于截止 状态的关断信号。
13、如权利要求 7所述的离线式 AC-DC转换电路,其中,所述离线式 AC-DC 控制电路包括过压检测模块 (10) 、 限流模块 (11) 、 脉宽调制模块 (12) 以 及与上述模块耦合的开关控制模块 (13) , 所述过压检测模块 (10) 经所述单 个输入端口 (CS) 接收所述电压采样信号, 所述限流模块 (11) 和脉宽调制模 块(12)经所述单个输入端口 (CS)接收所述电流采样信号, 所述功率管(Ml) 的栅极电压由所述开关控制模块 (13) 控制, 所述过压检测模块 (16) 、 所述 限流模块(17)和所述脉宽调制模块(18)包含耦合至所述开关控制模块(13) 的选通电路 (NA1,NA2,NA3) , 所述选通电路 (NA1,NA2,NA3 ) 交替地使所 述过压检测模块 (18) 的输出信号与所述限流模块 (16) 和所述脉宽调制模块 (17) 的输出信号提供给所述开关控制模块 (13) 。
14、 如权利要求 13所述的离线式 AC-DC转换电路, 其中, 通过在所述过 压检测模块 (16) 的选通电路 (NA1) 的使能输入端施加第一使能信号, 使所 述过压检测模块 (18) 的输出信号提供至所述开关控制模块 (13) , 并且通过 在所述限流模块 (17) 和所述脉宽调制模块 (18) 的选通电路 (NA2,NA3) 的 使能输入端施加第二使能信号,使所述限流模块(17)和所述脉宽调制模块(18) 的输出信号提供至所述开关控制模块 (13) , 所述第一和第二使能信号是互斥 的。
15、 如权利要求 13所述的离线式 AC-DC转换电路, 其中, 所述过压检测 模块 (16) 将所述电压采样信号与设定的第一基准电压 (VREF1) 进行比较并 在所述选通电路 (NA1) 的使能输入端施加第一使能信号时将比较结果输出至 所述开关控制模块 ( 13) , 如果所述电压采样信号大于所述第一基准电压 (VREF1) , 则所述开关控制模块 (13) 输出使功率管 (Ml) 处于截止状态的 关断信号, 所述限流模块 (17) 将所述电流采样信号与设定的第二基准电压 (VREF2) 进行比较并在所述选通电路 (NA2) 的使能输入端施加第二使能信 号时将比较结果输出至开关控制模块 (13) , 如果所述电流采样信号大于所述 第二基准电压 (VREF2) , 则所述开关控制模块 (13) 输出使功率管 (Ml) 处 于截止状态的关断信号, 所述脉宽调制模块 (18) 将将所述电流采样信号与从 所述离线式 AC-DC 控制电路外部输入的信号进行比较并在所述选通电路 (NA3) 的使能输入端施加第二使能信号时将比较结果输出至开关控制模块 (13) , 如果所述电流采样信号大于所述外部输入的信号, 则所述开关控制模 块 (13) 输出使功率管 (Ml) 处于截止状态的关断信号。
PCT/CN2012/070752 2011-03-25 2012-01-30 离线式ac-dc控制电路和包含该控制电路的转换电路 WO2012129982A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/651,010 US8488337B2 (en) 2011-03-25 2012-10-12 Offline AC-DC controller circuit and a converter comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110084811.0 2011-03-25
CN2011100848110A CN102368667B (zh) 2011-03-25 2011-03-25 离线式ac-dc控制电路和包含该控制电路的转换电路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/651,010 Continuation US8488337B2 (en) 2011-03-25 2012-10-12 Offline AC-DC controller circuit and a converter comprising the same

Publications (1)

Publication Number Publication Date
WO2012129982A1 true WO2012129982A1 (zh) 2012-10-04

Family

ID=45761220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070752 WO2012129982A1 (zh) 2011-03-25 2012-01-30 离线式ac-dc控制电路和包含该控制电路的转换电路

Country Status (3)

Country Link
US (1) US8488337B2 (zh)
CN (1) CN102368667B (zh)
WO (1) WO2012129982A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9048752B2 (en) * 2012-09-27 2015-06-02 Semiconductor Components Industries, Llc Off-line power converter and integrated circuit suitable for use in same
US9124189B2 (en) * 2013-02-01 2015-09-01 Infineon Technologies Austria Ag Converter with galvanic isolation
JP5890814B2 (ja) * 2013-09-12 2016-03-22 株式会社東芝 Dc−dcコンバータ、および、半導体集積回路
US10541617B2 (en) * 2016-06-02 2020-01-21 Semiconductor Components Industries, Llc Overload protection for power converter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1457135A (zh) * 2002-05-06 2003-11-19 O2米克罗公司 换流器控制器
CN201414244Y (zh) * 2009-06-10 2010-02-24 福建蓝蓝高科技发展有限公司 一种大功率led路灯的驱动电路
CN101662218A (zh) * 2009-09-04 2010-03-03 福建星网锐捷网络有限公司 一种开关电源、系统及保护方法
US20100270942A1 (en) * 2009-04-24 2010-10-28 City University Of Hong Kong Apparatus and methods of operation of passive led lighting equipment

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191957B1 (en) * 2000-01-31 2001-02-20 Bae Systems Controls, Inc. Extended range boost converter circuit
CN1452308A (zh) * 2002-04-18 2003-10-29 姜涛 绿色开关电源
US6850426B2 (en) * 2002-04-30 2005-02-01 Honeywell International Inc. Synchronous and bi-directional variable frequency power conversion systems
US7054170B2 (en) * 2004-01-05 2006-05-30 System General Corp. Power-mode controlled power converter
US8054656B2 (en) * 2008-04-11 2011-11-08 System General Corp. Switching control circuit for a switching power converter
US8553431B2 (en) * 2009-02-03 2013-10-08 Iwatt Inc. Switching power converter with load impedance detection
US8305004B2 (en) * 2009-06-09 2012-11-06 Stmicroelectronics, Inc. Apparatus and method for constant power offline LED driver
CN101726658A (zh) * 2010-01-12 2010-06-09 河源市雅达电子有限公司 一种单通道分时复用采样方法及其采样电路
CN101944856B (zh) * 2010-07-13 2013-01-23 上海新进半导体制造有限公司 一种原边控制的开关电源的控制电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1457135A (zh) * 2002-05-06 2003-11-19 O2米克罗公司 换流器控制器
US20100270942A1 (en) * 2009-04-24 2010-10-28 City University Of Hong Kong Apparatus and methods of operation of passive led lighting equipment
CN201414244Y (zh) * 2009-06-10 2010-02-24 福建蓝蓝高科技发展有限公司 一种大功率led路灯的驱动电路
CN101662218A (zh) * 2009-09-04 2010-03-03 福建星网锐捷网络有限公司 一种开关电源、系统及保护方法

Also Published As

Publication number Publication date
CN102368667A (zh) 2012-03-07
CN102368667B (zh) 2013-10-16
US20130039098A1 (en) 2013-02-14
US8488337B2 (en) 2013-07-16

Similar Documents

Publication Publication Date Title
US10630168B1 (en) Bridgeless power factor correction converter with zero current detection circuit
US9860947B2 (en) Driver circuit for illuminants, particularly LEDs
TWI513163B (zh) 以反馳式架構爲基礎的電源轉換裝置
CN110212771B (zh) 用于控制开关转换器的控制模块以及方法
US8963515B2 (en) Current sensing circuit and control circuit thereof and power converter circuit
US9997994B1 (en) Totem-pole power factor corrector and current-sampling unit thereof
US9819271B2 (en) Power converters
TWI653810B (zh) 控制裝置及控制方法
US10720829B1 (en) Totem-pole bridgeless PFC conversion device and method of operating the same
CN209748411U (zh) 电子系统和用于操作转换器的控制器
TWI664801B (zh) 開關電源、控制裝置及控制方法
TW201120606A (en) Voltage-regulating circuit with input voltage detecting circuit and parallel voltage-regulating circuit system using the same
TW201304381A (zh) 電源電路及電源電路的控制方法
JP2012152101A (ja) 電源装置
US11664735B2 (en) Isolated power supply and control circuit thereof
CN103795256A (zh) 开关电源装置
EP1531541A2 (en) Power supply having reduced-power mode
JP2009284667A (ja) 電源装置、および、その制御方法ならびに半導体装置
US20220038008A1 (en) Control module and multi-phase power converter
WO2012129982A1 (zh) 离线式ac-dc控制电路和包含该控制电路的转换电路
CN104734540A (zh) 同步整流器和控制其的方法
CN102163922A (zh) 包含电压和电流信号的开关电源磁隔离反馈电路
JP2012125084A (ja) 絶縁型直流電源装置
CN103248246B (zh) 离线式ac-dc控制电路和包含该控制电路的转换电路
US9564819B2 (en) Switching power supply circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764909

Country of ref document: EP

Kind code of ref document: A1