WO2012129970A1 - 下行数据的传输方法和设备 - Google Patents

下行数据的传输方法和设备 Download PDF

Info

Publication number
WO2012129970A1
WO2012129970A1 PCT/CN2012/070075 CN2012070075W WO2012129970A1 WO 2012129970 A1 WO2012129970 A1 WO 2012129970A1 CN 2012070075 W CN2012070075 W CN 2012070075W WO 2012129970 A1 WO2012129970 A1 WO 2012129970A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
base station
mbsfn subframe
transmission
transmission mode
Prior art date
Application number
PCT/CN2012/070075
Other languages
English (en)
French (fr)
Inventor
谌丽
许芳丽
丁昱
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to EP20120764706 priority Critical patent/EP2693824A4/en
Priority to KR1020137028845A priority patent/KR101501968B1/ko
Priority to US14/008,993 priority patent/US20140022975A1/en
Publication of WO2012129970A1 publication Critical patent/WO2012129970A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15542Selecting at relay station its transmit and receive resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and device for transmitting downlink data. Background technique
  • MBMS Multimedia Broadcast Multicast Service
  • LTE Long Term Evolved
  • MBMSo can be provided on the frequency layer dedicated to MBMS and on the frequency layer shared by non-MBMS services.
  • the LTE cell supporting MBMS can be an MBMS dedicated cell or an MBMS/unicast hybrid. Community.
  • the MBMS service can perform single cell transmission or multi-cell transmission. MBMS multi-cell transmission needs to support MBSFN transmission.
  • the MBSFN Multimedia Broadcast Multicast Service Single Frequency Network
  • the MBSFN Multimedia Broadcast Multicast Service Single Frequency Network
  • Using this transmission method can save frequency resources and improve spectrum utilization. It requires multiple cells to send identical content simultaneously.
  • the UE User Equipment, User Equipment
  • Both the MBMS dedicated cell and the MBMS/unicast hybrid cell can adopt the MBSFN transmission mode.
  • the time difference of multipath propagation can also be solved, thereby eliminating intra-cell interference.
  • the diversity effect brought by the multi-cell co-frequency transmission can also solve problems such as blind zone coverage, enhance the reliability of reception, and improve coverage.
  • the technical features of MBMS multi-cell transmission are as follows:
  • the logical channel MTCH (Multicast Traffic Channel) and the MCCH (Multicast Control Channel) are mapped to the transmission channel MCH (Multicast for PTM (Point to Multipoint) transmission).
  • MCH Multicast for PTM (Point to Multipoint) transmission
  • PMCH Physical Multicast Channel
  • the MBSFN synchronization area can be semi-statically configured, for example, by 0&M (operation and maintenance, operation and maintenance system);
  • the first 1 ⁇ 2 symbols in the MBSFN subframe are control symbols, and carry the PDCCH (Physical Downlink Control Channel) for unicast transmission scheduling, and the latter part is the data field, which is carried when there is MBMS service transmission.
  • PDCCH Physical Downlink Control Channel
  • BCCH Broadcast Control Channel
  • MCCH MBMS Control Channel
  • Broadcast control channel used by the network to broadcast system information to the UE.
  • MBMS two-part broadcast message transmission is included: all MBSFN subframes are indicated in SIB2; SIB13 tone
  • the scheduling command includes MBSFN subframe indications of transmission notification and MCCH.
  • the multicast control channel is a point-to-multipoint downlink channel, and is used by the network to transmit MBMS-related control information in the MBSFN area to the UE.
  • One MCCH may correspond to one or more MTCHs (ie, may carry multiple MTCHs). Control information).
  • the information that the MCCH can include is: subframe allocation of the MBSFN area, configuration information of the PMCH (or MCH) (eg, MBMS session information, data MCS format configuration, PMCH subframe position, scheduling period, etc.).
  • the multicast traffic channel is a point-to-multipoint downlink channel used by the network to send specific MBMS service data to the UE.
  • the network uses the BCCH (SIB2, SIB 13) to indicate the MCCH configuration information to the UE, and then uses the MCCH to provide (P) MCH information to the UE, and the UE reads the MTCH scheduling information MSI (MCH Scheduling Information) of the specific service on the (P) MCH. So that MBMS services can be received on the MTCH.
  • the MSI MAC CE MSI MAC Control Element
  • FIG. 1 is a schematic diagram of the relationship between the MBMS service area and the MBSFN synchronization area in the prior art.
  • the physical layer protocol has been stipulated that the terminal device of the LTE R10 can receive the DL-SCH carried on the PDSCH (Physical Downlink Shared Channel) on the MBSFN subframe (which is also an unused MBSFN subframe) that is not used for the MBMS transmission.
  • PDSCH Physical Downlink Shared Channel
  • MBSFN subframe which is also an unused MBSFN subframe
  • TM9 Transmission Mode 9
  • the physical layer configures the antenna port and MIMO transmission mode applied by the terminal device according to user requirements.
  • TM8 and TM9 are the two transmission modes proposed in R10.
  • the relevant content in this article will not be described in detail here.
  • the current high-level protocol stipulates that the terminal device cannot receive the DL-SCH transmission carried on the PDSCH in the MBSFN subframe indicated by the SIB2, that is, cannot receive the unicast downlink transmission in the MBSFN subframe, and correspondingly, the terminal device is not in the control symbol of the MBSFN subframe. Partially receives a PDCCH that schedules PDSCH transmission.
  • the current higher layer protocol cannot meet the requirement that the terminal device proposed by the physical layer receives the DL-SCH carried on the PDSCH in the remaining MBSFN subframes.
  • the terminal device needs to receive all the MBSFN subframes, parse the PDCCH, and determine whether there is downlink scheduling. Under normal circumstances, only the terminal device that receives the MBMS service needs to receive the corresponding MBSFN subframe, and other terminal devices do not receive the MBSFN subframe to achieve the power saving effect. In general, the number of remaining MBSFN subframes is small. If all the terminal devices are used to receive all MBSFN subframes in order to utilize the subframe, the terminal device consumes too much power, which is not worth the loss of resources. Summary of the invention
  • the embodiment of the invention provides a method and a device for transmitting downlink data, which solves the problem of how to implement PDSCH scheduling and transmission on an MBSFN subframe.
  • an embodiment of the present invention provides a method for transmitting downlink data, including:
  • the base station configures a terminal device that adopts a specified transmission mode
  • the base station determines a remaining MBSFN subframe
  • an embodiment of the present invention further provides a base station, including:
  • a configuration module configured to configure a terminal device that adopts a specified transmission mode
  • a determining module configured to determine a remaining MBSFN subframe
  • an embodiment of the present invention further provides a method for transmitting downlink data, including:
  • the terminal device receives the PDCCH sent by the base station in a corresponding MBSFN subframe, and detects whether there is a downlink transmission scheduling for itself;
  • the terminal device receives the DL-SCH carried on the PDSCH in the data portion of the MBSFN subframe.
  • the embodiment of the present invention further provides a terminal device, including: a receiving module, configured to receive an indication message that is sent by a base station to configure a transmission mode of the terminal device;
  • a detecting module configured to: when the terminal device adopts the specified transmission mode, the receiving, by the receiving module, the PDCCH sent by the base station in the corresponding MBSFN subframe, and detecting whether there is a downlink transmission to the terminal Scheduling
  • a processing module configured to: when the detection result of the detection module is, receive the DL-SCH carried on the PDSCH in the data part of the MBSFN subframe.
  • the embodiment of the invention has the following advantages:
  • the remaining MBSFN subframes are used to implement scheduling and transmission of downlink unicast data transmission of a specific terminal device in a fixed transmission mode, so that PDSCH transmission can be implemented on the MBSFN, Additional layering and modification of the higher layer signaling is required to enable the corresponding terminal device to achieve the same power saving effect as the earlier version.
  • FIG. 1 is a schematic diagram showing a relationship between an MBMS service area and an MBSFN synchronization area in the prior art
  • FIG. 2 is a schematic flowchart of a method for transmitting downlink data on a base station side according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a downlink data transmission method on a terminal device side according to an embodiment of the present invention
  • 4a and FIG. 4b are schematic flowcharts of a method for transmitting downlink data in a specific application scenario according to an embodiment of the present invention
  • 5a and 5b are schematic flowcharts of a method for transmitting downlink data in a specific application scenario according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a terminal device according to an embodiment of the present invention. detailed description
  • the current higher layer protocol cannot meet the requirement that the terminal device proposed by the physical layer receives the DL-SCH carried on the PDSCH on the remaining MBSFN subframes.
  • the terminal device can receive the DL-SCH carried on the PDSCH on the MBSFN subframe indicated by the SIB2, all the terminal devices must receive the MBSFN subframe, so that the generated power consumption is large, and the actual used energy is not used. The number of MBSFN subframes transmitted by MBMS is reduced.
  • the embodiment of the present invention proposes a technical solution for scheduling and transmitting downlink MBSN subframes for implementing downlink unicast data transmission of a specific terminal device in a fixed transmission mode.
  • the core idea of the invention is: The remaining MBSFN subframes are used for PDSCH transmission of a particular terminal device in a fixed transmission mode.
  • the remaining MBSFN subframes refer to MBSFN subframes that are not used for MBMS transmission. Further, other MBSFN subframes that cannot be used for unicast transmission, such as backhaul subframes for DeNB and relay, and PRS (Positioning Reference Signal) are excluded. , positioning reference signal) Subframe for positioning purposes.
  • FIG. 2 is a schematic flowchart of a method for transmitting downlink data according to an embodiment of the present invention, where the method specifically includes the following steps:
  • Step S201 The base station configures a terminal device that adopts a specified transmission mode.
  • Step S202 The determining, by the base station, the remaining MBSFN subframes, specifically: the base station determining, in the MBSFN subframe set indicated by the SIB2, the MBMS transmission
  • the subframes other than the input subframe are the remaining MBSFN subframes; or,
  • the base station determines, in the MBSFN subframe set indicated by the SIB2, a subframe that is used by the MBMS to be used for other purposes, and specifically includes:
  • a subframe that carries the PRS for positioning purposes is a subframe that carries the PRS for positioning purposes.
  • Step S203 The base station schedules and transmits downlink unicast data transmission of the corresponding terminal device in the terminal device that uses the specified transmission mode on the remaining MBSFN subframe.
  • the technical solutions proposed by the embodiments of the present invention may be specifically classified into the following two methods: based on the difference between the specific terminal equipments for performing the scheduling and the transmission of the downlink unicast data transmission in this step:
  • Method 1 Perform scheduling and transmission of downlink unicast data transmission for all terminal devices configured to use the specified transmission mode.
  • the base station directly performs the corresponding operation according to the information of the specified transmission mode configured in step S201.
  • Method 2 Perform further screening on the terminal equipment adopting the specified transmission mode, and perform scheduling and transmission of downlink unicast data transmission only for the terminal equipment in which the uplink data needs to be scheduled.
  • the terminal device that needs to be scheduled for uplink data needs to be determined in advance, and the corresponding determining method includes the following:
  • the base station When the base station receives the uplink scheduling request sent by the terminal device in the specified transmission mode, the base station determines that the terminal device has uplink data to be scheduled.
  • the base station determines that the terminal device has uplink data to be scheduled.
  • the base station determines the terminal device. There is uplink data that needs to be scheduled.
  • method 2 introduces a judgment on whether the terminal device needs to transmit uplink data, and the remaining MBSFN subframe can only be used to schedule downlink of the terminal device that needs to transmit uplink data. transmission.
  • the second method has the following advantages: when the terminal device does not need uplink data to be transmitted, it is not required to receive the MBSFN subframe and the PDCCH is parsed; when the terminal device needs to perform uplink transmission, the MBSFN subframe and the PDCCH are originally received, and the uplink transmission is scheduled.
  • the DCI (Downlink Control Information) length is the same as the DCI length of the downlink transmission in the specified transmission mode by using the remaining MBSFN subframes, and does not increase any detection overhead of the terminal device.
  • the power saving performance of the terminal device of the second mode is exactly the same as the existing protocol.
  • the terminal device configured in the first mode to specify the transmission mode needs to receive all MBSFN subframes and parse the PDCCH therein, which is obviously more power-consuming.
  • the base station schedules and transmits downlink unicast data transmission of the terminal device that needs to be scheduled to be uplink data included in the terminal device that uses the specified transmission mode on the remaining MBSFN subframe.
  • the foregoing specified transmission mode may specifically be the transmission mode 9.
  • the embodiment of the present invention also proposes a processing flow on the terminal device side.
  • the specific flow diagram is shown in FIG. 3, and includes the following steps:
  • Step S301 The terminal device receives an indication message that is sent by the base station and configures a transmission mode of the terminal device.
  • Step S302 If the indication message is configured to use the specified transmission mode, the terminal device receives the PDCCH sent by the base station in the corresponding MBSFN subframe, and detects whether there is a downlink transmission scheduling for itself.
  • step S103 when the terminal device side determines to continue to perform step S302, it can also be divided into two cases: Corresponding to the first method in step S103, as long as the indication message configures the terminal device to adopt the specified transmission mode, the corresponding PDCCH reception and downlink transmission scheduling detection are performed.
  • the terminal device when the indication message is configured to configure the terminal device to use the specified transmission mode, the terminal device is required to determine that the current uplink data needs to be transmitted, and then the corresponding PDCCH reception and downlink transmission scheduling detection are performed. .
  • step S303 is performed; if the detection result is not, no specific data transmission processing is performed.
  • Step S303 The terminal device receives the DL-SCH carried on the PDSCH in the data part of the MBSFN subframe.
  • the subsequent PDCCH reception and the corresponding detection process may be implemented by the following scheme:
  • the terminal device receives the PDCCH sent by the base station on the MBSFN subframe of the MBSFN subframe set configured by the SIB2, and detects whether there is a downlink transmission schedule for itself.
  • Solution 2 Perform according to the remaining MBSFN subframes.
  • the terminal device When the terminal device receives MBMS configuration information, and/or configuration information of an MBSFN subframe for other purposes, the terminal device confirms an MBMS transmission subframe and/or an MBSFN subframe for other purposes;
  • the terminal device detects, in the MBSFN subframe set configured by the SIB2, the PDCCH transmitted by the base station, and detects whether there is a downlink transmission schedule for itself.
  • the MBSFN subframe used for other purposes specifically includes:
  • a subframe that carries a PRS for positioning purposes may select any one of them according to actual needs to perform specific processing, and the change of the selected scheme does not affect the protection scope of the present invention.
  • the foregoing specified transmission mode may specifically be the transmission mode 9.
  • the embodiment of the invention has the following advantages:
  • the remaining MBSFN subframes are used to implement scheduling and transmission of downlink unicast data transmission of a specific terminal device in a fixed transmission mode, so that PDSCH transmission can be implemented on the MBSFN, Additional layering and modification of the higher layer signaling is required to enable the corresponding terminal device to achieve the same power saving effect as the earlier version.
  • the technical solutions proposed in the embodiments of the present invention are described below in conjunction with specific application scenarios.
  • the restriction rules for the terminal device that can transmit the PDSCH by using the remaining MBSFN subframe set in the technical solution of the embodiment of the present invention are:
  • the base station is configured as a terminal device of transmission mode 9 (tm9), and / or,
  • the criteria for determining the uplink data transmission are:
  • the upstream data cache is not empty; or
  • the uplink data buffer is not empty and the base station has started scheduling uplink transmission of the terminal device;
  • the uplink data buffer is not empty, and the base station has not started scheduling the uplink transmission of the terminal device, but the terminal device has sent a scheduling uplink request.
  • the embodiment of the present invention illustrates the corresponding processing process by the following scenarios:
  • Embodiment 1 The base station schedules downlink transmissions of all terminal devices configured as tm9 on the remaining MBSFN subframes, and the corresponding processing process is as shown in FIG. 4a and FIG. 4b.
  • Step S402 The terminal device receives the base station configuration command, and confirms the transmission mode.
  • Step S403 The base station determines a remaining MBSFN subframe.
  • step S403 can be started after the step S401 is performed, and has no necessary relationship with the step S402.
  • the embodiment of the present invention is only a number added for convenience of description, and such a change does not affect the present invention. protected range.
  • Step S404 The base station schedules and transmits downlink unicast data transmission of the terminal device in the terminal set 1 on the remaining MBSFN subframe.
  • Step S405 If configured to transmit mode 9, the terminal device receives the PDCCH on the MBSFN subframe configured by the SIB2, and detects whether there is a downlink transmission scheduling (DL assignment) for the local terminal device, and if yes, receives the data portion of the MBSFN subframe.
  • DL-SCH carried on the PDSCH.
  • Step S405 if configured as the transmission mode 9, and the terminal device can perform basic judgment of the remaining MBSFN subframes, receive the PDCCH on the remaining MBSFN subframes, and check whether there is a downlink transmission scheduling (DL assignment) to the local terminal device, if The DL-SCH carried on the PDSCH is received in the data portion of the MBSFN subframe.
  • DL assignment downlink transmission scheduling
  • Embodiment 2 The base station schedules downlink transmission of the terminal device configured as tm9 for uplink transmission on the remaining MBSFN subframe, and the corresponding processing procedure is as shown in FIG. 5a and FIG. 5b.
  • Step S501 The base station configures a transmission mode of the terminal device to be the transmission mode 9.
  • a set composed of such terminal devices is set as the terminal set 1.
  • Step S502 The terminal device receives the base station configuration command, and confirms the transmission mode.
  • Step S503 The base station determines a remaining MBSFN subframe, and determines a terminal device in the terminal set 1 that has uplink data to be scheduled.
  • a set composed of such terminal devices is set as the terminal set 2.
  • step S503 can be started after the execution of step S501 is completed. In the beginning, there is no necessary sequence relationship with the step S502.
  • the embodiment of the present invention is only a number added for convenience of description, and such a change does not affect the protection scope of the present invention.
  • Step S504 Schedule and transmit downlink unicast data transmission of the terminal device in the terminal set 2 on the remaining MBSFN subframe.
  • Step S505 If the configuration is the transmission mode 9 (tm9), and the uplink data needs to be transmitted, the terminal device receives the PDCCH on the MBSFN subframe configured by the SIB2, and analyzes whether there is a downlink resource allocation (DL assignment), if there is a downlink resource. Allocation, receiving the DL-SCH carried on the PDSCH in the data domain of the MBSFN subframe.
  • DL assignment downlink resource allocation
  • Step S505 if the transmission mode 9 (tm9) is configured, and the uplink data needs to be transmitted, the terminal device may perform basic judgment of the remaining MBSFN subframe, and receive the PDCCH in the determined remaining MBSFN subframe set, and analyze whether there is any
  • the downlink resource allocation (DL assignment), if there is downlink resource allocation, receives the DL-SCH carried on the PDSCH in the data domain of the MBSFN subframe.
  • the embodiment of the invention has the following advantages:
  • the remaining MBSFN subframes are used to implement scheduling and transmission of downlink unicast data transmission of a specific terminal device in a fixed transmission mode, so that PDSCH transmission can be implemented on the MBSFN, Additional layering and modification of the higher layer signaling is required to enable the corresponding terminal device to achieve the same power saving effect as the earlier version.
  • the embodiment of the present invention further provides a base station, and a schematic structural diagram thereof is shown in FIG.
  • a configuration module 61 configured to configure a terminal device that adopts a specified transmission mode, and a determining module 62, configured to determine a remaining MBSFN subframe;
  • the processing module 63 is configured to schedule downlink unicast data transmission of the corresponding terminal device in the terminal device configured by the configuration module 61 configured by the configuration module 61, in the remaining MBSFN subframe determined by the determining module 62, and transmission.
  • the determining module 62 is specifically configured to:
  • the MBMS transmission subframe is the remaining MBSFN subframe; or,
  • the processing module 63 is specifically configured to:
  • All downlink unicast data transmissions of the terminal devices configured by the configuration module 61 configured by the configuration module 61 are scheduled and transmitted on the remaining MBSFN subframes.
  • the determining module 62 is further configured to determine, by the terminal device that uses the specified transmission mode, that the terminal device that has uplink data needs to be scheduled.
  • processing module 63 is specifically configured to:
  • the downlink unicast data transmission of the terminal device with the uplink data that needs to be scheduled included in the terminal device that uses the specified transmission mode determined by the determining module 62 is scheduled and transmitted on the remaining MBSFN subframe.
  • an embodiment of the present invention further provides a terminal device, and a schematic structural diagram thereof is shown in FIG.
  • the receiving module 71 is configured to receive, by the base station, an indication message that is configured to configure a transmission mode of the terminal device;
  • the detecting module 72 is configured to: when the terminal device is configured to receive the specified transmission mode by using the indication message received by the receiving module 71, receive the PDCCH sent by the base station in the corresponding MBSFN subframe, and check whether there is a PDCCH for itself. Downlink transmission scheduling;
  • the processing module 73 is configured to: when the detection result of the detection module 72 is that, the DL-SCH carried on the PDSCH is received in the data part of the MBSFN subframe.
  • the detecting module 72 is further configured to:
  • the detecting module 72 is specifically configured to: The PDCCH sent by the base station is received on the MBSFN subframe of the MBSFN subframe set configured by the SIB2, and it is detected whether there is a downlink transmission schedule for itself.
  • the detecting module 72 is specifically configured to:
  • the receiving module 71 When the receiving module 71 receives the MBMS configuration information, and/or configuration information of the MBSFN subframe for other purposes, it confirms the MBMS transmission subframe and/or the MBSFN subframe for other purposes;
  • the embodiment of the invention has the following advantages:
  • the remaining MBSFN subframes are used to implement scheduling and transmission of downlink unicast data transmission of a specific terminal device in a fixed transmission mode, so that PDSCH transmission can be implemented on the MBSFN, Additional layering and modification of the higher layer signaling is required to enable the corresponding terminal device to achieve the same power saving effect as the earlier version.
  • the technical solution of the embodiment of the present invention may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.).
  • a non-volatile storage medium which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various implementations of the embodiments of the present invention.
  • modules in the apparatus in the implementation scenario may be distributed in the apparatus for implementing the scenario according to the implementation scenario description, or may be correspondingly changed in one or more devices different from the implementation scenario.
  • the modules of the above implementation scenarios may be combined into one module, or may be further split into multiple sub-modules.
  • serial numbers of the foregoing embodiments of the present invention are merely for description, and do not represent the advantages and disadvantages of the implementation scenarios.
  • the embodiment is not limited thereto, and any changes that can be made by those skilled in the art should fall within the scope of business restrictions of the embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种下行数据的传输方法和设备,通过应用本发明实施例的技术方案,将剩余MBSFN子帧用于实现对固定传输模式的特定终端设备的下行单播数据传输进行调度和传输,从而,可以在MBSFN上实现PDSCH传输的同时,不需额外添加、修改高层信令,便可使相应的终端设备仍能达到与早期版本同样的省电效果。

Description

下行数据的传输方法和设备 本申请要求于 2011 年 3 月 31 日提交中国专利局, 申请号为 201110080296.9, 发明名称为 "下行数据的传输方法和设备" 的中国 专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信技术领域,特别涉及一种下行数据的传输方法和 设备。 背景技术
MBMS ( Multimedia Broadcast Multicast Service, 多媒体广播组 播业务) 用于为无线小区中用户提供多媒体广播和多播服务。 LTE ( Long Term Evolved, 长期演进) 系统中, 在 MBMS专用的频率层 和与非 MBMS业务共享的频率层上都能够提供 MBMSo支持 MBMS 的 LTE小区可以是 MBMS专用小区也可以是 MBMS/单播混合小区。 MBMS 业务可以进行单小区传输, 也可以进行多小区传输。 MBMS 的多小区传输需要支持 MBSFN传输方式。
所谓 MBSFN ( Multimedia Broadcast multicast service Single Frequency Network, 多媒体广播多播服务单频网络 )是指在同一时间 以相同频率在多个小区进行同步传输。使用这种传输方式可以节约频 率资源, 提高频谱利用率。 它要求多个小区将完全相同的内容同时发 送。 这样一来, UE ( User Equipment, 用户设备)接收机就能将多个 MBSFN 小区视为一个大的小区。 因此, UE 不仅不会受到相邻小区 传输的小区间干扰, 而且将受益于来自多个 MBSFN小区的信号的叠 加。 MBMS专用小区和 MBMS/单播混合小区都可以采用 MBSFN传 输方式。 另外, 如果利用先进的 UE接收机技术还能解决多径传播的 时间差问题, 从而消除小区内干扰。 这种多小区同频传输所带来的分 集效果还可以解决盲区覆盖等问题,增强接收的可靠性,提高覆盖率。 MBMS多小区传输的技术特点如下:
( 1 ) MBSFN域内 MBMS的同步传输;
( 2 ) 支持多小区 MBMS传输的合并;
( 3 )逻辑信道 MTCH ( Multicast Traffic Channel,多播业务信道) 和 MCCH( Multicast Control Channel,多播控制信道)映射在用于 PTM ( Point to Multipoint, 一点对多点)传输的传输信道 MCH ( Multicast Channel, 多播信道),进而映射到物理信道 PMCH ( Physical Multicast Channel, 物理多播信道)上;
( 4 )MBSFN同步区域可以半静态配置,如:通过 0&M( operation and maintenance , 运行与维护系统 );
( 5 ) MBSFN子帧前 1~2个符号是控制符号,承载用于单播传输 调度的 PDCCH ( Physical Downlink Control Channel,物理下行控制信 道), 后面部分是数据域, 在有 MBMS业务发送时承载 PMCH。
与 MBMS传输相关的逻辑信道主要有: BCCH( Broadcast Control Channel, 广播控制信道), MCCH和 MTCH
各信道的主要作用如下:
( 1 ) BCCH:
广播控制信道, 用于网络向 UE广播系统信息。 对于 MBMS, 包 括两部分广播消息传输: SIB2中指示所有的 MBSFN子帧; SIB13调 该调度命令中包含传输 notification和 MCCH的 MBSFN子帧指示。
( 2 ) MCCH:
多播控制信道, 是一个点到多点的下行信道, 用于网络向 UE传 输该 MBSFN区域中 MBMS相关的控制信息, 一个 MCCH可以对应 于一个或多个 MTCH(即:可以携带多个 MTCH的控制信息)。 MCCH 可包括的信息有: 该 MBSFN区域的子帧分配、 PMCH (或 MCH ) 的配置信息(如: MBMS session信息、 数据 MCS格式配置、 PMCH 子帧位置和调度周期等)等。
( 3 ) MTCH: 多播业务信道, 是一个点到多点的下行信道, 用于网络向 UE发 送具体的 MBMS业务数据。
网络利用 BCCH ( SIB2、 SIB 13 )向 UE指示 MCCH的配置信息, 再利用 MCCH向 UE提供 ( P ) MCH信息, UE在( P ) MCH上读取 具体业务的 MTCH调度信息 MSI ( MCH Scheduling Information ), 从 而能够在 MTCH上接收 MBMS业务。 最终指示用于 MBMS业务传 输的 MBSFN子帧的是 MSI MAC CE ( MSI MAC Control Element )„ 如图 1所示, 为现有技术中 MBMS业务区与 MBSFN同步区等 的关系的示意图。
物理层协议已经规定 LTE R10的终端设备可以在未用于 MBMS 传输的 MBSFN子帧 (又成为 unused MBSFN子帧 )上接收 PDSCH ( Physical Downlink Shared Channel, 物理下行共享信道)上承载的 DL-SCH ( Downlink Shared Channel, 下行共享信道)。 具体来说, 只 有基站配置为传输模式 8 ( Transmission Mode 8, TM8 )或传输模式 9 ( Transmission Mode 9, TM9 ) 的终端设备可以在 MBSFN子帧上接 收 PDSCH上承载的 DL-SCH。
在 R10协议中,物理层根据用户需求, 配置了终端设备所应用的 天线端口和 MIMO传输模式, 上述的 TM8和 TM9就是 R10中提出 的两种传输模式, 其具体内容可以参见 3GPP 36.213.8.1协议中相关 的内容, 在此不再详细说明。
在实现本发明实施例的过程中, 申请人发现现有技术至少存在以 下问题:
当前高层协议规定终端设备不能在 SIB2指示的 MBSFN子帧内 接收 PDSCH上承载的 DL-SCH传输, 即不能在 MBSFN子帧接收单 播下行传输, 相应的, 终端设备也不在 MBSFN子帧的控制符号部分 接收调度 PDSCH传输的 PDCCH。
也就是说, 当前高层协议不能满足物理层提出的终端设备在剩余 的 MBSFN子帧上接收 PDSCH上承载的 DL-SCH的需求。
如果筒单规定终端设备能够在 SIB2指示的 MBSFN子帧上接收 PDSCH上承载的 DL-SCH, 则终端设备需要接收所有的 MBSFN子 帧上, 解析 PDCCH, 判断是否有下行调度。 而正常情况下, 只有接 收 MBMS业务的终端设备才需要接收对应的 MBSFN子帧, 其他终 端设备不接收 MBSFN子帧可以达到省电的效果。 一般说来, 剩余 MBSFN子帧数量很少, 如果为了利用该子帧让所有终端设备接收所 有 MBSFN子帧的话, 终端设备耗电过大, 相对于资源的利用来说得 不偿失。 发明内容
本发明实施例提供一种下行数据的传输方法和设备,解决现有的 在 MBSFN子帧上如何实现 PDSCH调度和传输的问题。
为达到上述目的,本发明实施例一方面提供了一种下行数据的传 输方法, 包括:
基站配置采用指定传输模式的终端设备;
所述基站确定剩余 MBSFN子帧;
所述基站在所述剩余 MBSFN子帧上对所述采用指定传输模式的 终端设备中相应的终端设备的下行单播数据传输进行调度和传输。 另一方面, 本发明实施例还提供了一种基站, 包括:
配置模块, 用于配置采用指定传输模式的终端设备;
确定模块, 用于确定剩余 MBSFN子帧;
处理模块, 用于在所述确定模块所确定的剩余 MBSFN子帧上对 所述配置模块所配置的采用指定传输模式的终端设备中相应的终端 设备的下行单播数据传输进行调度和传输。 另一方面, 本发明实施例还提供了一种下行数据的传输方法, 包 括:
终端设备接收基站发送的配置所述终端设备的传输模式的指示 消息;
如果所述指示消息配置所述终端设备采用指定传输模式,所述终 端设备在相应的 MBSFN子帧上接收所述基站发送的 PDCCH, 检测 是否有对自身的下行传输调度;
如果有, 所述终端设备在所述 MBSFN 子帧的数据部分接收 PDSCH上承载的 DL-SCH。 另一方面, 本发明实施例还提供了一种终端设备, 包括: 接收模块,用于接收基站发送的配置所述终端设备的传输模式的 指示消息;
检测模块,用于在所述接收模块所接收到的指示消息配置所述终 端设备采用指定传输模式时,在相应的 MBSFN子帧上接收所述基站 发送的 PDCCH, 检测是否有对自身的下行传输调度;
处理模块, 用于在所述检测模块的检测结果为有时, 在所述 MBSFN子帧的数据部分接收 PDSCH上承载的 DL-SCH。
与现有技术相比, 本发明实施例具有以下优点:
通过应用本发明实施例的技术方案,将剩余 MBSFN子帧用于实 现对固定传输模式的特定终端设备的下行单播数据传输进行调度和 传输, 从而, 可以在 MBSFN上实现 PDSCH传输的同时, 不需额外 添加、修改高层信令, 便可使相应的终端设备仍能达到与早期版本同 样的省电效果。 附图说明
图 1为现有技术中 MBMS业务区与 MBSFN同步区等的关系的 示意图;
图 2 为本发明实施例提出的一种下行数据的传输方法在基站侧 的流程示意图;
图 3 为本发明实施例提出的一种下行数据的传输方法在终端设 备侧的流程示意图; 图 4a和图 4b为本发明实施例提出的一种具体应用场景下的下行 数据的传输方法的流程示意图;
图 5a和图 5b为本发明实施例提出的一种具体应用场景下的下行 数据的传输方法的流程示意图;
图 6为本发明实施例提出的一种基站的结构示意图;
图 7为本发明实施例提出的一种终端设备的结构示意图。 具体实施方式
如背景技术所述, 当前高层协议不能满足物理层提出的终端设备 在剩余的 MBSFN子帧上接收 PDSCH上承载的 DL-SCH的需求。
如果规定终端设备能够在 SIB2 指示的 MBSFN 子帧上接收 PDSCH上承载的 DL-SCH, 所有终端设备都要接收 MBSFN子帧, 这样所产生耗电量很大, 而实际能用到的未用于 MBMS 传输的 MBSFN子帧数量又艮少。
为了解决上述的问题, 本发明实施例提出了将剩余 MBSFN子帧 用于实现对固定传输模式的特定终端设备的下行单播数据传输进行 调度和传输的技术方案。
本发明的核心思想是: 将剩余 MBSFN子帧用于固定传输模式的 特定终端设备的 PDSCH传输。
其中, 剩余 MBSFN子帧指不用于 MBMS传输的 MBSFN子帧, 进一步,可排除其他不能用于单播传输的 MBSFN子帧,如用于 DeNB 和 relay的 backhaul子†贞 , 承载 PRS ( Positioning Reference Signal , 定位参考信号) 的用于定位用途的子帧。
如图 2所示,为本发明实施例提出的一种下行数据的传输方法的 流程示意图, 该方法具体包括以下步骤:
步骤 S201、 基站配置采用指定传输模式的终端设备。
步骤 S202、 所述基站确定剩余 MBSFN子帧, 具体包括: 所述基站在 SIB2指示的 MBSFN子帧集合中,确定除 MBMS传 输子帧以外的子帧为剩余 MBSFN子帧; 或,
所述基站在 SIB2指示的 MBSFN子帧集合中,确定除 MBMS传 其中, 用于其他用途的子帧, 具体包括:
应用在 DeNB和中继节点之间的传输过程中的 backhaul子帧;和
/或,
承载 PRS的用于定位用途的子帧。
步骤 S203、 所述基站在所述剩余 MBSFN子帧上对所述采用指 定传输模式的终端设备中相应的终端设备的下行单播数据传输进行 调度和传输。
基于本步骤中进行下行单播数据传输的调度和传输的具体终端 设备的差异,本发明实施例所提出的技术方案具体可以分为以下两种 方法:
方法一、对所有的配置为采用指定传输模式的终端设备进行下行 单播数据传输的调度和传输。
在此种方法中, 基站直接根据步骤 S201 中所配置的指定传输模 式的信息进行相应的操作。
方法二、对采用指定传输模式的终端设备进行进一步筛选, 只对 其中有上行数据需要调度的终端设备进行下行单播数据传输的调度 和传输。
为了实现本方法, 需要预先确定有上行数据需要调度的终端设 备, 相应的确定方法, 具体包括以下几种:
1、 当所述基站接收到采用指定传输模式的终端设备发送的上行 调度请求时, 所述基站确定所述终端设备有上行数据需要调度。
2、 当所述基站接收到采用指定传输模式的终端设备发送的緩存 状态报告, 且当前緩存上报的数据量还没有调度完毕时, 所述基站确 定所述终端设备有上行数据需要调度。
3、 当所述基站确定在当前时间点上有周期性数据到达, 且没有 其他预定资源可承载所述周期性数据时,所述基站确定所述终端设备 有上行数据需要调度。
需要说明的是, 上述的确定方式可以单独应用, 可以采用组合的 方式,作为具体的确定依据,这样的变化并不影响本发明的保护范围。
需要说明的是,上述的方法一和方法二的区别是方法二引入了对 终端设备是否有上行数据需要传输的判断,剩余 MBSFN子帧只能用 于调度有上行数据需要传输的终端设备的下行传输。
方法二的优点在于: 当终端设备没有上行数据需要传输的时候不 需要接收 MBSFN子帧和解析 PDCCH; 当终端设备需要进行上行传 输的时候本来就要接收 MBSFN子帧和解析 PDCCH, 而调度上行传 输的 DCI ( Downlink Control Information, 下行控制信息) 长度和指 定传输模式中利用剩余 MBSFN子帧调度下行传输的 DCI长度是一样 的, 不增加终端设备任何检测开销。 这样, 方式二的终端设备省电性 能和现有协议是完全相同的。而方式一中配置为指定传输模式的终端 设备要接收所有 MBSFN子帧和解析其中的 PDCCH,显然更加耗电。
在完成了上述的确定处理后,基站在所述剩余 MBSFN子帧上对 所述采用指定传输模式的终端设备中所包含的有上行数据需要调度 的终端设备的下行单播数据传输进行调度和传输。
在具体的应用场景中, 上述的指定传输模式, 具体可以为传输模 式 9。 与上述的处理方案相对应,本发明实施例同样提出了在终端设备 侧的处理流程, 具体的流程示意图如图 3所示, 包括以下步骤:
步骤 S301、 终端设备接收基站发送的配置所述终端设备的传输 模式的指示消息。
步骤 S302、 如果所述指示消息配置所述终端设备采用指定传输 模式, 所述终端设备在相应的 MBSFN 子帧上接收所述基站发送的 PDCCH, 检测是否有对自身的下行传输调度。
需要进一步指出的是, 对应前述步骤 S103中的两种方法, 在终 端设备侧判断继续执行步骤 S302的时候, 也可以分为两种情况: 对应步骤 S103中的方法一, 只要指示消息配置该终端设备采用 指定传输模式, 那么就会进行相应的 PDCCH的接收和下行传输调度 的检测。
对应步骤 S103中的方法二, 在指示消息配置该终端设备采用指 定传输模式的同时,还需要该终端设备确定自身当前有上行数据需要 传输, 才会进行相应的 PDCCH的接收和下行传输调度的检测。
具体应用哪种技术方案根据实际需要,以及基站侧的配置进行调 整, 这样的变化同样属于本发明的保护范围。
在完成相应的检测后, 如果检测结果为有, 则执行步骤 S303; 如果检测结果为没有, 则不进行具体的数据传输处理。
步骤 S303、 所述终端设备在所述 MBSFN子帧的数据部分接收 PDSCH上承载的 DL-SCH。
需要进一步指出的是, 无论上述的步骤 S302中采用了哪种方案 进行是否进行检测的判断依据, 后续的 PDCCH的接收以及相应的检 测过程都可以采用以下方案来实现:
方案一、 根据 SIB2配置进行。
所述终端设备在 SIB2配置的 MBSFN子帧集合的 MBSFN子帧 上接收所述基站发送的 PDCCH,检测是否有对自身的下行传输调度。
方案二、 根据剩余 MBSFN子帧进行。
当所述终端设备接收到 MBMS配置信息, 和 /或, 用于其他用途 的 MBSFN子帧的配置信息时, 所述终端设备确认 MBMS传输子帧 和 /或用于其他用途的 MBSFN子帧;
所述终端设备在 SIB2配置的 MBSFN子帧集合中除 MBMS传输 所述基站发送的 PDCCH, 检测是否有对自身的下行传输调度。
其中, 所述用于其他用途的 MBSFN子帧, 具体包括:
应用在 DeNB和中继节点之间的传输过程中的 backhaul子帧;和
/或,
承载 PRS的用于定位用途的子帧。 需要指出的是,上述的两种进行接收处理的方案可以根据实际需 要选择其中的任意一种进行具体的处理,选用方案的变化并不影响本 发明的保护范围。
在具体的应用场景中, 上述的指定传输模式, 具体可以为传输模 式 9。
与现有技术相比, 本发明实施例具有以下优点:
通过应用本发明实施例的技术方案,将剩余 MBSFN子帧用于实 现对固定传输模式的特定终端设备的下行单播数据传输进行调度和 传输, 从而, 可以在 MBSFN上实现 PDSCH传输的同时, 不需额外 添加、修改高层信令, 便可使相应的终端设备仍能达到与早期版本同 样的省电效果。 下面, 结合具体的应用场景, 对本发明实施例所提出的技术方案 进行说明。
为了方便说明, 在具体的实施场景中, 本发明实施例的技术方案 中设定的对可利用剩余 MBSFN子帧传输 PDSCH的终端设备的限制 规则为:
( 1 )基站配置为传输模式 9 ( tm9 ) 的终端设备, 和 /或,
( 2 )有上行数据传输的终端设备.
具体的, 有上行数据传输的判断标准为:
上行数据緩存不为空; 或
上行数据緩存不为空且基站已经开始调度该终端设备的上行传 输; 或
上行数据緩存不为空,基站还未开始调度该终端设备的上行传输 但该终端设备已发送调度上行请求。
基于上述规则, 本发明实施例通过以下场景说明相应的处理过 程:
实施例一、基站在剩余 MBSFN子帧上调度所有配置为 tm9的终 端设备的下行传输, 相应的处理过程如图 4a和图 4b所示。 步骤 S401、 基站配置部分终端设备的传输模式为传输模式 9。 设定这样的终端设备所组成的集合为终端集合 1。
步骤 S402、 终端设备接收基站配置命令, 确认传输模式。
步骤 S403、 基站确定剩余 MBSFN子帧。
需要指出的是,上述的步骤 S403在步骤 S401执行完毕后即可开 始, 与步骤 S402没有必然的先后关系, 本发明实施例只是为了方便 说明而添加的编号, 这样的变化并不影响本发明的保护范围。
步骤 S404、 基站在剩余 MBSFN子帧上调度和传输终端集合 1 中的终端设备的下行单播数据传输。
步骤 S405、 如果配置为传输模式 9, 终端设备在 SIB2 配置的 MBSFN子帧上接收 PDCCH, 检测是否有对本终端设备的下行传输 调度(DL assignment ), 如果有则在该 MBSFN子帧的数据部分接收 PDSCH上承载的 DL-SCH。
步骤 S405,、 如果配置为传输模式 9, 且该终端设备可以进行剩 余 MBSFN子帧的基本判断, 在剩余 MBSFN子帧上接收 PDCCH, 检测是否有对本终端设备的下行传输调度( DL assignment ), 如果有 则在该 MBSFN子帧的数据部分接收 PDSCH上承载的 DL-SCH。
其中, 剩余 MBSFN子帧的判断过程参见步骤 S302中的说明, 在此不再重复。 实施例二、基站在剩余 MBSFN子帧上调度有上行传输的配置为 tm9的终端设备的下行传输, 相应的处理过程如图 5a和图 5b所示。
步骤 S501、 基站配置部分终端设备的传输模式为传输模式 9。 设定这样的终端设备所组成的集合为终端集合 1。
步骤 S502、 终端设备接收基站配置命令, 确认传输模式。
步骤 S503、 基站确定剩余 MBSFN子帧, 并确定终端集合 1 中 有上行数据需要调度的终端设备。
设定这样的终端设备所组成的集合为终端集合 2。
需要指出的是,上述的步骤 S503在步骤 S501执行完毕后即可开 始, 与步骤 S502没有必然的先后关系, 本发明实施例只是为了方便 说明而添加的编号, 这样的变化并不影响本发明的保护范围。
步骤 S504、 在剩余 MBSFN子帧上调度和传输终端集合 2中终 端设备的下行单播数据传输。
步骤 S505、 如果配置为传输模式 9 ( tm9 ) , 且有上行数据需要传 输, 则该终端设备在 SIB2配置的 MBSFN子帧上接收 PDCCH, 解析 是否有下行资源分配(DL assignment ), 如果有下行资源分配, 在该 MBSFN子帧的数据域接收 PDSCH上承载的 DL-SCH。
步骤 S505,、 如果配置为传输模式 9 ( tm9 ), 且有上行数据需要 传输, 则该终端设备可以进行剩余 MBSFN子帧的基本判断, 在判断 的剩余 MBSFN子帧集合内接收 PDCCH, 解析是否有下行资源分配 ( DL assignment ), 如果有下行资源分配, 在该 MBSFN子帧的数据 域接收 PDSCH上承载的 DL-SCH。
与现有技术相比, 本发明实施例具有以下优点:
通过应用本发明实施例的技术方案,将剩余 MBSFN子帧用于实 现对固定传输模式的特定终端设备的下行单播数据传输进行调度和 传输, 从而, 可以在 MBSFN上实现 PDSCH传输的同时, 不需额外 添加、修改高层信令, 便可使相应的终端设备仍能达到与早期版本同 样的省电效果。 为了实现本发明实施例的技术方案,本发明实施例还提供了一种 基站, 其结构示意图如图 6所示, 具体包括:
配置模块 61 , 用于配置采用指定传输模式的终端设备; 确定模块 62, 用于确定剩余 MBSFN子帧;
处理模块 63, 用于在所述确定模块 62所确定的剩余 MBSFN子 帧上对所述配置模块 61所配置的采用指定传输模式的终端设备中相 应的终端设备的下行单播数据传输进行调度和传输。
其中, 所述确定模块 62, 具体用于:
在 SIB2指示的 MBSFN子帧集合中,确定除 MBMS传输子帧以 外的子帧为剩余 MBSFN子帧; 或,
在 SIB2指示的 MBSFN子帧集合中, 确定除 MBMS传输子帧 , 在具体的实施场景中, 所述处理模块 63 , 具体用于:
在所述剩余 MBSFN子帧上对所述配置模块 61所配置的所有采 用指定传输模式的终端设备的下行单播数据传输进行调度和传输。
在另一种具体的应用场景中, 所述确定模块 62, 还用于确定所 述采用指定传输模式的终端设备中所包含的有上行数据需要调度的 终端设备。
相应的, 所述处理模块 63 , 具体用于:
在所述剩余 MBSFN子帧上对所述确定模块 62所确定的采用指 定传输模式的终端设备中所包含的有上行数据需要调度的终端设备 的下行单播数据传输进行调度和传输。 另一方面, 本发明实施例还提供了一种终端设备, 其结构示意图 如图 7所示, 包括:
接收模块 71 , 用于接收基站发送的配置所述终端设备的传输模 式的指示消息;
检测模块 72, 用于在所述接收模块 71所接收到的指示消息配置 所述终端设备采用指定传输模式时,在相应的 MBSFN子帧上接收所 述基站发送的 PDCCH, 检测是否有对自身的下行传输调度;
处理模块 73 , 用于在所述检测模块 72的检测结果为有时, 在所 述 MBSFN子帧的数据部分接收 PDSCH上承载的 DL-SCH。
其中, 所述检测模块 72, 还用于:
在所述接收模块 71所接收到的指示消息配置所述终端设备采用 指定传输模式, 且所述终端设备当前有上行数据需要传输时, 在相应 的 MBSFN子帧上接收所述基站发送的 PDCCH, 检测是否有对自身 的下行传输调度。
相应的, 所述检测模块 72, 具体用于: 在 SIB2配置的 MBSFN子帧集合的 MBSFN子帧上接收所述基 站发送的 PDCCH, 检测是否有对自身的下行传输调度。
另一种情况下, 所述检测模块 72, 具体用于:
当所述接收模块 71接收到 MBMS配置信息, 和 /或, 用于其他 用途的 MBSFN子帧的配置信息时, 确认 MBMS传输子帧和 /或用于 其他用途的 MBSFN子帧;
并在 SIB2配置的 MBSFN子帧集合中除 MBMS传输子帧和 /或 发送的 PDCCH, 检测是否有对自身的下行传输调度。
与现有技术相比, 本发明实施例具有以下优点:
通过应用本发明实施例的技术方案,将剩余 MBSFN子帧用于实 现对固定传输模式的特定终端设备的下行单播数据传输进行调度和 传输, 从而, 可以在 MBSFN上实现 PDSCH传输的同时, 不需额外 添加、修改高层信令, 便可使相应的终端设备仍能达到与早期版本同 样的省电效果。 通过以上的实施方式的描述,本领域的技术人员可以清楚地了解 到本发明实施例可以通过硬件实现,也可以借助软件加必要的通用硬 件平台的方式来实现。基于这样的理解, 本发明实施例的技术方案可 以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性 存储介质 (可以是 CD-ROM, U盘, 移动硬盘等) 中, 包括若干指 令用以使得一台计算机设备(可以是个人计算机, 服务器, 或网络设 备等)执行本发明实施例各个实施场景所述的方法。
本领域技术人员可以理解附图只是一个优选实施场景的示意图, 附图中的模块或流程并不一定是实施本发明实施例所必须的。
本领域技术人员可以理解实施场景中的装置中的模块可以按照 实施场景描述进行分布于实施场景的装置中,也可以进行相应变化位 于不同于本实施场景的一个或多个装置中。上述实施场景的模块可以 合并为一个模块, 也可以进一步拆分成多个子模块。 上述本发明实施例序号仅仅为了描述, 不代表实施场景的优劣。 明实施例并非局限于此,任何本领域的技术人员能思之的变化都应落 入本发明实施例的业务限制范围。

Claims

权利要求
1、 一种下行数据的传输方法, 其特征在于, 包括:
基站配置采用指定传输模式的终端设备;
所述基站确定剩余 MBSFN子帧;
所述基站在所述剩余 MBSFN子帧上对所述采用指定传输模式的 终端设备中相应的终端设备的下行单播数据传输进行调度和传输。
2、 如权利要求 1所述的方法, 其特征在于, 所述基站确定剩余 MBSFN子帧, 具体包括:
所述基站在 SIB2指示的 MBSFN子帧集合中,确定除 MBMS传 输子帧以外的子帧为剩余 MBSFN子帧; 或,
所述基站在 SIB2指示的 MBSFN子帧集合中,确定除 MBMS传 其中, 所述用于其他用途的子帧, 具体包括:
应用在 DeNB和中继节点之间的传输过程中的 backhaul子帧;和
/或,
承载 PRS的用于定位用途的子帧。
3、 如权利要求 1所述的方法, 其特征在于, 所述基站在所述剩 余 MBSFN子帧上对所述采用指定传输模式的终端设备中相应的终端 设备的下行单播数据传输进行调度和传输, 具体为:
所述基站在所述剩余 MBSFN子帧上对所有采用指定传输模式的 终端设备的下行单播数据传输进行调度和传输。
4、 如权利要求 1所述的方法, 其特征在于, 所述基站在所述剩 余 MBSFN子帧上对所述采用指定传输模式的终端设备中相应的终端 设备的下行单播数据传输进行调度和传输之前, 还包括:
所述基站确定所述采用指定传输模式的终端设备中所包含的有 上行数据需要调度的终端设备。
5、 如权利要求 4所述的方法, 其特征在于, 所述基站确定所述 采用指定传输模式的终端设备中所包含的有上行数据需要调度的终 端设备的方法, 具体包括:
当所述基站接收到采用指定传输模式的终端设备发送的上行调 度请求时, 所述基站确定所述终端设备有上行数据需要调度; 和 /或, 当所述基站接收到采用指定传输模式的终端设备发送的緩存状 态报告, 且当前緩存上报的数据量还没有调度完毕时, 所述基站确定 所述终端设备有上行数据需要调度; 和 /或,
当所述基站确定在当前时间点上有周期性数据到达,且没有其他 预定资源可承载所述周期性数据时,所述基站确定所述终端设备有上 行数据需要调度。
6、 如权利要求 4所述的方法, 其特征在于, 所述基站在所述剩 余 MBSFN子帧上对所述采用指定传输模式的终端设备中相应的终端 设备的下行单播数据传输进行调度和传输, 具体为:
所述基站在所述剩余 MBSFN子帧上对所述采用指定传输模式的 终端设备中所包含的有上行数据需要调度的终端设备的下行单播数 据传输进行调度和传输。
7、 如权利要求 1至 6任意一项所述的方法, 其特征在于, 所述 指定传输模式, 具体为传输模式 9。
8、 一种基站, 其特征在于, 包括:
配置模块, 用于配置采用指定传输模式的终端设备;
确定模块, 用于确定剩余 MBSFN子帧;
处理模块, 用于在所述确定模块所确定的剩余 MBSFN子帧上对 所述配置模块所配置的采用指定传输模式的终端设备中相应的终端 设备的下行单播数据传输进行调度和传输。
9、 如权利要求 8所述的基站, 其特征在于, 所述确定模块, 具 体用于:
在 SIB2指示的 MBSFN子帧集合中,确定除 MBMS传输子帧以 外的子帧为剩余 MBSFN子帧; 或,
在 SIB2指示的 MBSFN子帧集合中, 确定除 MBMS传输子帧, TO ν ? 曰 "T TO刀 Μΰ51^1 T ΨΛ ,
10、 如权利要求 8所述的基站, 其特征在于, 所述处理模块, 具 体用于:
在所述剩余 MBSFN子帧上对所述配置模块所配置的所有采用指 定传输模式的终端设备的下行单播数据传输进行调度和传输。
11、 如权利要求 8所述的基站, 其特征在于, 所述确定模块, 还 用于:
确定所述采用指定传输模式的终端设备中所包含的有上行数据 需要调度的终端设备。
12、 如权利要求 11所述的基站, 其特征在于, 所述处理模块, 具体用于:
在所述剩余 MBSFN子帧上对所述确定模块所确定的采用指定传 输模式的终端设备中所包含的有上行数据需要调度的终端设备的下 行单播数据传输进行调度和传输。
13、 一种下行数据的传输方法, 其特征在于, 包括:
终端设备接收基站发送的配置所述终端设备的传输模式的指示 消息;
如果所述指示消息配置所述终端设备采用指定传输模式,所述终 端设备在相应的 MBSFN子帧上接收所述基站发送的 PDCCH, 检测 是否有对自身的下行传输调度;
如果有, 所述终端设备在所述 MBSFN 子帧的数据部分接收 PDSCH上承载的 DL-SCH。
14、 如权利要求 13所述的方法, 其特征在于, 如果所述指示消 息配置所述终端设备采用指定传输模式, 所述终端设备在相应的 MBSFN子帧上接收所述基站发送的 PDCCH, 检测是否有对自身的 下行传输调度, 还包括:
如果所述指示消息配置所述终端设备采用指定传输模式,且所述 终端设备确定自身当前有上行数据需要传输,所述终端设备在相应的 MBSFN子帧上接收所述基站发送的 PDCCH, 检测是否有对自身的 下行传输调度。
15、 如权利要求 13或 14所述的方法, 其特征在于, 所述终端设 备在相应的 MBSFN子帧上接收所述基站发送的 PDCCH, 检测是否 有对自身的下行传输调度, 具体包括:
所述终端设备在 SIB2配置的 MBSFN子帧集合的 MBSFN子帧 上接收所述基站发送的 PDCCH,检测是否有对自身的下行传输调度。
16、 如权利要求 13或 14所述的方法, 其特征在于, 所述终端设 备在相应的 MBSFN子帧上接收所述基站发送的 PDCCH, 检测是否 有对自身的下行传输调度, 具体包括:
当所述终端设备接收到 MBMS配置信息, 和 /或, 用于其他用途 的 MBSFN子帧的配置信息时, 所述终端设备确认 MBMS传输子帧 和 /或用于其他用途的 MBSFN子帧;
所述终端设备在 SIB2配置的 MBSFN子帧集合中除 MBMS传输 所述基站发送的 PDCCH, 检测是否有对自身的下行传输调度;
其中, 所述用于其他用途的 MBSFN子帧, 具体包括:
应用在 DeNB和中继节点之间的传输过程中的 backhaul子帧;和
/或,
承载 PRS的用于定位用途的子帧。
17、 如权利要求 13所述的方法, 其特征在于, 所述指定传输模 式, 具体为传输模式 9。
18、 一种终端设备, 其特征在于, 包括:
接收模块,用于接收基站发送的配置所述终端设备的传输模式的 指示消息;
检测模块,用于在所述接收模块所接收到的指示消息配置所述终 端设备采用指定传输模式时,在相应的 MBSFN子帧上接收所述基站 发送的 PDCCH, 检测是否有对自身的下行传输调度; 处理模块, 用于在所述检测模块的检测结果为有时, 在所述
MBSFN子帧的数据部分接收 PDSCH上承载的 DL-SCH。
19、 如权利要求 18所述的终端设备, 其特征在于, 所述检测模 块, 还用于:
在所述接收模块所接收到的指示消息配置所述终端设备采用指 定传输模式, 且所述终端设备当前有上行数据需要传输时, 在相应的 MBSFN子帧上接收所述基站发送的 PDCCH, 检测是否有对自身的 下行传输调度。
20、 如权利要求 18或 19所述的终端设备, 其特征在于, 所述检 测模块, 具体用于:
在 SIB2配置的 MBSFN子帧集合的 MBSFN子帧上接收所述基 站发送的 PDCCH, 检测是否有对自身的下行传输调度。
21、 如权利要求 18或 19所述的终端设备, 其特征在于, 所述检 测模块, 具体用于:
当所述接收模块接收到 MBMS配置信息, 和 /或, 用于其他用途 的 MBSFN子帧的配置信息时, 确认 MBMS传输子帧和 /或用于其他 用途的 MBSFN子帧;
并在 SIB2配置的 MBSFN子帧集合中除 MBMS传输子帧和 /或 发送的 PDCCH, 检测是否有对自身的下行传输调度。
PCT/CN2012/070075 2011-03-31 2012-01-05 下行数据的传输方法和设备 WO2012129970A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20120764706 EP2693824A4 (en) 2011-03-31 2012-01-05 METHOD AND DEVICE FOR TRANSMITTING DOWNLINK DATA
KR1020137028845A KR101501968B1 (ko) 2011-03-31 2012-01-05 다운링크 데이터를 전송하는 방법 및 장치
US14/008,993 US20140022975A1 (en) 2011-03-31 2012-01-05 Method and apparatus for transmitting downlink data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110080296.9 2011-03-31
CN201110080296.9A CN102143597B (zh) 2011-03-31 2011-03-31 下行数据的传输方法和设备

Publications (1)

Publication Number Publication Date
WO2012129970A1 true WO2012129970A1 (zh) 2012-10-04

Family

ID=44410743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070075 WO2012129970A1 (zh) 2011-03-31 2012-01-05 下行数据的传输方法和设备

Country Status (5)

Country Link
US (1) US20140022975A1 (zh)
EP (1) EP2693824A4 (zh)
KR (1) KR101501968B1 (zh)
CN (1) CN102143597B (zh)
WO (1) WO2012129970A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2932778A4 (en) * 2012-12-17 2015-12-23 Ericsson Telefon Ab L M METHOD AND RADIO NETWORK NODES FOR MANAGING AN INQUIRY OF A RADIO ACCESSORY CARRIER
CN113692035A (zh) * 2021-08-16 2021-11-23 紫光展锐(重庆)科技有限公司 一种mbsfn子帧接收方法及通信装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102143597B (zh) * 2011-03-31 2014-02-05 电信科学技术研究院 下行数据的传输方法和设备
EP3079273B1 (en) 2011-05-03 2019-01-09 Samsung Electronics Co., Ltd. Method and apparatus for user equipment receiving mbms service processing semi-permanent scheduling from mbsfn subframe in wireless communication system
US9769628B2 (en) * 2013-02-01 2017-09-19 Lg Electronics Inc. Method and apparatus for transmitting and receiving MBSFN subframe
US10972878B2 (en) 2015-10-13 2021-04-06 Samsung Electronics Co., Ltd. Method and apparatus for providing unicast based multimedia service
CN105392123B (zh) * 2015-11-16 2019-01-22 北京博信视通科技有限公司 一种多媒体广播/多播数据的传输方法和装置
CN107295640B (zh) * 2016-04-01 2023-05-05 中兴通讯股份有限公司 一种发送下行信号和/或下行信道的方法和装置
WO2017201705A1 (zh) * 2016-05-26 2017-11-30 华为技术有限公司 一种单播数据的传输方法及设备
US10273795B1 (en) * 2018-02-22 2019-04-30 Jianying Chu Intelligent tool bus network for a bottom hole assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101521850A (zh) * 2008-02-29 2009-09-02 中兴通讯股份有限公司 Mbms业务资源使用信息的传递方法、业务切换方法
CN101800936A (zh) * 2009-02-11 2010-08-11 中兴通讯股份有限公司 一种广播组播业务控制信令的发送方法及基站
WO2010098581A2 (en) * 2009-02-26 2010-09-02 Lg Electronics Inc. Method and apparatus of transmitting data in mbsfn subframe in wireless communication system
CN101998281A (zh) * 2009-08-11 2011-03-30 大唐移动通信设备有限公司 一种传输数据的方法、系统和装置
CN102143597A (zh) * 2011-03-31 2011-08-03 电信科学技术研究院 下行数据的传输方法和设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050107145A (ko) * 2004-05-07 2005-11-11 삼성전자주식회사 멀티캐스트 멀티미디어 방송 서비스를 지원하는이동통신시스템에서 전송 모드를 고려하여 효율적으로서비스를 통지하는 방법
CN102057698A (zh) * 2008-04-28 2011-05-11 诺基亚公司 用于针对其他下行链路业务支持有效的mbms下行链路无线电资源重用的系统和方法
KR101527978B1 (ko) * 2008-08-06 2015-06-18 엘지전자 주식회사 기지국과 중계기 사이의 서브프레임을 사용하여 통신하는 방법 및 장치
US8467720B2 (en) * 2009-06-15 2013-06-18 Htc Corporation Method for managing multimedia broadcast multicast service transmission and related communication device
KR101632739B1 (ko) * 2009-06-18 2016-06-22 한국전자통신연구원 통신 시스템의 데이터 전송 방법 및 이를 수행하는 릴레이 장치
US20100329211A1 (en) * 2009-06-29 2010-12-30 Ou Meng-Hui Method and Apparatus for Handling Inter-RAT Handover
US20110013574A1 (en) * 2009-07-16 2011-01-20 Chia-Chun Hsu Method of Handling Unicast Transmission on Multimedia Broadcast Multicast Service Subframe and Related Communication Device
CN105187113B (zh) * 2009-08-14 2018-06-29 交互数字技术公司 中继节点以及在中继节点中实施的用于接收r-pdcch的方法
US8989174B2 (en) * 2009-10-06 2015-03-24 Qualcomm Incorporated MBSFN subframe generation and processing for Unicast
US8804586B2 (en) * 2010-01-11 2014-08-12 Blackberry Limited Control channel interference management and extended PDCCH for heterogeneous network
KR101757299B1 (ko) * 2010-03-26 2017-07-26 엘지전자 주식회사 무선통신시스템에서 신호를 송수신하는 방법
CN104469889B (zh) * 2010-06-13 2018-06-26 Lg电子株式会社 在无线通信系统中对终端发送指示服务区域的计数响应消息的方法及其设备
CN102083003A (zh) * 2010-09-30 2011-06-01 大唐移动通信设备有限公司 一种mbms状态请求、反馈的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101521850A (zh) * 2008-02-29 2009-09-02 中兴通讯股份有限公司 Mbms业务资源使用信息的传递方法、业务切换方法
CN101800936A (zh) * 2009-02-11 2010-08-11 中兴通讯股份有限公司 一种广播组播业务控制信令的发送方法及基站
WO2010098581A2 (en) * 2009-02-26 2010-09-02 Lg Electronics Inc. Method and apparatus of transmitting data in mbsfn subframe in wireless communication system
CN101998281A (zh) * 2009-08-11 2011-03-30 大唐移动通信设备有限公司 一种传输数据的方法、系统和装置
CN102143597A (zh) * 2011-03-31 2011-08-03 电信科学技术研究院 下行数据的传输方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2693824A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2932778A4 (en) * 2012-12-17 2015-12-23 Ericsson Telefon Ab L M METHOD AND RADIO NETWORK NODES FOR MANAGING AN INQUIRY OF A RADIO ACCESSORY CARRIER
US10136361B2 (en) 2012-12-17 2018-11-20 Telefonaktiebolaget Lm Ericsson (Publ) Method and radio network node for managing a request for a radio access bearer
CN113692035A (zh) * 2021-08-16 2021-11-23 紫光展锐(重庆)科技有限公司 一种mbsfn子帧接收方法及通信装置

Also Published As

Publication number Publication date
EP2693824A4 (en) 2015-04-29
KR101501968B1 (ko) 2015-03-12
EP2693824A1 (en) 2014-02-05
CN102143597B (zh) 2014-02-05
KR20130143126A (ko) 2013-12-30
US20140022975A1 (en) 2014-01-23
CN102143597A (zh) 2011-08-03

Similar Documents

Publication Publication Date Title
WO2012129970A1 (zh) 下行数据的传输方法和设备
US10397937B2 (en) Method and device for scheduling single-cell multimedia broadcast and multicast service
CN107196748B (zh) 支持多媒体广播多播服务的用户设备及其接收数据的方法
CN102264039B (zh) 一种实现半持续调度传输的方法及装置
US9451588B2 (en) Scheduling method and scheduling device for MBMS, and base station including this scheduling device
EP3337199A1 (en) Resource configuration method, system, and device for single-cell multicast control channel (sc-mcch)
US20110274025A1 (en) Method of avoiding monitoring useless dynamic scheduling information of multimedia broadcast multicast service in a wireless communication system and related communication device
WO2011147237A1 (zh) 多媒体广播组播业务控制信息的发送方法及装置
WO2011082699A1 (zh) 确定组播单频网区域与业务区域映射关系的方法和系统
WO2013135094A1 (zh) 一种集群业务传输方法及装置
US10313185B2 (en) Method and device for updating multimedia broadcast multicast control channel information
CN102625256B (zh) 一种集群传输通知、处理方法及装置
WO2009092305A1 (zh) 区分小区内子帧状态的方法、装置以及系统
WO2012092819A1 (zh) Mbms业务的同步计数方法和设备
WO2010091608A1 (zh) Mbms控制信令调度信息的传输方法、系统及设备
WO2014109857A1 (en) Systems and methods to optimize power consumption for lte embms
WO2014153705A1 (zh) 新载波类型小区的业务处理方法、装置及通信系统
WO2012019542A1 (zh) Mbms业务接收状态的上报方法和设备
WO2011020358A1 (zh) 多播控制信道占用资源的配置方法、装置和系统
CN102164347B (zh) Mcch修改通知及修改通知发送配置信息的发送方法及设备
EP2869607B1 (en) Wireless communication system, method, user equipment, node and computer program product
US9692610B2 (en) Method and related device for indicating and identifying physical resource block PRB
WO2014012233A1 (zh) 控制信令的传输方法、接收方法、网络设备及ue

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14008993

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012764706

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137028845

Country of ref document: KR

Kind code of ref document: A