WO2012128208A1 - Refrigeration storage unit - Google Patents

Refrigeration storage unit Download PDF

Info

Publication number
WO2012128208A1
WO2012128208A1 PCT/JP2012/056863 JP2012056863W WO2012128208A1 WO 2012128208 A1 WO2012128208 A1 WO 2012128208A1 JP 2012056863 W JP2012056863 W JP 2012056863W WO 2012128208 A1 WO2012128208 A1 WO 2012128208A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner casing
flow path
casing
liquid
cold air
Prior art date
Application number
PCT/JP2012/056863
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 元彦
Original Assignee
株式会社MARS Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社MARS Company filed Critical 株式会社MARS Company
Priority to KR1020137020793A priority Critical patent/KR101489489B1/en
Priority to CN201280009639.5A priority patent/CN103403479B/en
Publication of WO2012128208A1 publication Critical patent/WO2012128208A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/065Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return
    • F25D2317/0655Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return through the top
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/066Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply
    • F25D2317/0661Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply from the bottom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/803Bottles

Definitions

  • the present invention relates to a refrigerator for supercooling liquid beverages such as beverages containing alcohol, teas, and coffees.
  • a cooling device described in Patent Document 1 As a refrigerator that can store a container in which a liquid beverage is placed at a temperature below the freezing point of the liquid and in a supercooled state in which the liquid beverage is kept unfrozen, for example, a cooling device described in Patent Document 1 is provided. Are known.
  • the cooling device of Patent Document 1 has a cooler for storing a container and a control means for controlling the temperature in the cooler. And such a cooling device cools a container with the cold air in a refrigerator by controlling the temperature in a refrigerator with a control means in the state where the container was stored in a refrigerator, and the liquid drink in a container is made. Make it supercooled.
  • Patent Document 1 does not disclose the configuration of the refrigerator that houses the container.
  • temperature control temperature management of the liquid beverage (container) is very important. Specifically, it is necessary to cool the liquid beverage (container) at a substantially uniform temperature from the entire circumference so that a large temperature difference does not occur in the liquid.
  • the flow of cold air may be uneven, or a relatively large temperature may occur near the inner wall of the refrigerator and near the center. Therefore, the temperature in the refrigerator becomes non-uniform. Therefore, depending on the installation position of the container and the shape of the container, it becomes difficult to cool the container uniformly throughout, and the liquid beverage in the container cannot be brought into a supercooled state.
  • An object of the present invention is to provide a refrigerator capable of bringing a liquid contained in a container into a supercooled state with a simple configuration.
  • the present invention comprises an outer casing, An inner casing that is provided inside the outer casing and houses a container containing a liquid; A flow path formed between the outer casing and the inner casing; Cooling means for cooling the cool air in the flow path; A first through hole formed at the bottom of the inner casing and communicating the flow path and the inside of the inner casing; A second through-hole formed in a portion facing the bottom of the upper part of the inner casing and communicating the flow path and the inner side of the inner casing; The cold air in the flow path cooled by the cooling means is blown into the inner casing from one of the first through hole and the second through hole, and from the other, the cold air in the inner casing is blown into the flow path.
  • Circulation means for circulating the cold air in the flow path and the inner casing so as to be sucked in,
  • the cold air cooled by the cooling means is circulated by the circulation means in a state where the container is accommodated in the inner casing, so that the container is at a temperature below the freezing point of the liquid and the liquid is not frozen. It is the refrigerator characterized by storing in the supercooled state which maintains.
  • the first through hole is a blow-out port from which the cold air blows into the inner casing
  • the second through hole is preferably a suction port for sucking the cold air in the inner casing into the flow path.
  • the area of the suction port is larger than the area of the outlet.
  • the air outlet is formed over the entire bottom portion,
  • the suction port is preferably formed over the entire upper portion.
  • the cooling means has a refrigerant pipe embedded in the outer casing.
  • the refrigerant pipe is in contact with the inner wall of the outer casing.
  • the inner wall of the outer casing is made of a metal material.
  • the cooler includes a support member that is provided between the outer casing and the inner casing and supports the inner casing with respect to the outer casing, and the support member is generated in the outer casing. It is preferably made of a vibration isolating material that absorbs vibration.
  • the circulating means has a fan provided in the flow path.
  • the liquid when the temperature of the highest temperature part of the liquid is Tmax and the temperature of the lowest temperature part is Tmin, the liquid is below the freezing point of the liquid,
  • the liquid is preferably cooled so that Tmax ⁇ Tmin satisfies 0.1 ° C. or less.
  • FIG. 1 is a schematic overall view showing a preferred embodiment of the refrigerator of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the refrigerator shown in FIG.
  • FIG. 3 is a front view of the refrigerator shown in FIG.
  • FIG. 1 is a schematic overall view showing a preferred embodiment of the refrigerator of the present invention
  • FIG. 2 is a schematic sectional view of the refrigerator shown in FIG. 1
  • FIG. 3 is a front view of the refrigerator shown in FIG. It is.
  • the upper side in FIGS. 1 to 3 is referred to as “upper” and the lower side is referred to as “lower”.
  • the refrigerator 1 includes an outer casing 2, an inner casing 3 that is provided inside the outer casing 2, and stores a container B containing a liquid beverage (liquid) L;
  • the flow path 4 formed between the inner casing 3, the cooling means 5 for cooling the gas in the flow path 4, and the gas in the flow path 4 formed in the inner casing 3 and cooled by the cooling means 5 ( Cold air) is blown out into the inner casing 3, formed in the inner casing 3, and the suction port 7 for sucking the gas in the inner casing 3 into the flow path 4 and the cold air are circulated in the flow path 4 and the inner casing 3.
  • Circulating means 8 for supporting the inner casing 3 with respect to the outer casing 2 is provided.
  • Such a refrigerator 1 circulates the gas cooled by the cooling means 5 with the circulation means 8 in a state where the container B is accommodated in the inner casing 3, so that the temperature of the container B is not higher than the freezing point of the liquid beverage L. And it is a refrigerator which can be preserve
  • the supercooled liquid beverage L that remains unfrozen below the freezing point is instantly frozen into a sherbet when taken out of the refrigerator 1 and subjected to vibrations or poured into a cup or the like.
  • the liquid beverage L is not particularly limited.
  • soft drinks such as teas (oolong tea, green tea, barley tea, etc.), coffees, mineral water, sports drinks, lactic acid beverages (milk, etc.), sparkling wine, beer
  • alcoholic beverages such as wine, sake and shochu.
  • the freezing point of the soft drink as described above is about ⁇ 9 to ⁇ 4 ° C.
  • the freezing point of the alcoholic beverage is about ⁇ 15 to ⁇ 12 ° C.
  • the capacity of the container B is not particularly limited, but is preferably 80 to 1000 ml, and more preferably 100 to 600 ml. By setting it as such a capacity
  • Tmax ⁇ Tmin satisfies 0 to 0.1 ° C. or less, where Tmax is the temperature of the highest temperature portion of the liquid beverage L in the container B and Tmin is the temperature of the lowest temperature portion.
  • Tmax is the temperature of the highest temperature portion of the liquid beverage L in the container B
  • Tmin is the temperature of the lowest temperature portion.
  • the container B may be cooled so that the temperature difference in the liquid beverage L hardly occurs.
  • a relatively large temperature difference for example, about 1 to 2 ° C.
  • the outer casing 2 is open at the front.
  • the outer casing 2 includes a main body 21 having an opening on the front surface, and a door 22 that is provided so as to be rotatable with respect to the main body 21 and that can open and close the opening.
  • the main body 21 has an outer wall 211 and an inner wall 212, and has a structure in which a heat insulating material 213 is filled therebetween.
  • a refrigerant pipe 51 included in the cooling means 5 is embedded in the main body 21.
  • the main body 21 is provided with a machine room 214, and various machines necessary for driving the refrigerator 1 are accommodated in the machine room 214. Examples of such machinery include a power source, an evaporator 53, a compressor 54, and a condenser 55 included in the cooling unit 5.
  • the outer wall 211 can be made of various plastics, for example.
  • the plastic include polyolefin such as polyethylene, polypropylene, and ethylene-propylene copolymer, polyvinyl chloride, polystyrene, polyamide, polyimide, polycarbonate, poly- (4-methylpentene-1), ionomer, acrylic resin, Polyesters such as polymethyl methacrylate, acrylonitrile-butadiene-styrene copolymer (ABS resin), acrylonitrile-styrene copolymer (AS resin), butadiene-styrene copolymer, polyethylene terephthalate (PET), polybutylene terephthalate (PBT) , Polyether, polyetherketone (PEK), polyetheretherketone (PEEK), polyetherimide, polyacetal (POM), polyphenylene oxide, policer Phon, polyethersulfone, polyphenylene sulfide, polyarylate, aromatic
  • the inner wall 212 is preferably made of a material having high thermal conductivity. Thereby, as will be described later, the cool air (air) in the flow path 4 can be efficiently and uniformly cooled.
  • materials include nickel, cobalt, gold, platinum, silver, copper, manganese, aluminum, magnesium, zinc, lead, tin, titanium, tungsten, and other metals, stainless steel (for example, SUS303, SUS304, SUS316, SUS316L, SUS316J1, SUS316J1L, SUS318, SUS405, SUS430, SUS434, SUS444, SUS429, SUS430F, SUS302, etc.).
  • the heat insulating material 213 is not particularly limited, and examples thereof include porous materials such as foams and various ceramics.
  • the inner casing 3 is installed in the outer casing 2 having such a configuration, and the container B is stored in the inner casing 3.
  • the front side of the inner casing 3 is open, and the container B can be easily stored in the inner casing 3 when the door 22 of the outer casing 2 is opened.
  • the size of the internal space of the inner casing 3 is not particularly limited, but for example, the length ⁇ width ⁇ depth may be about 30 to 50 cm ⁇ 30 to 50 cm ⁇ 30 to 50 cm.
  • the inner space of the inner casing 3 can be made an appropriate size, the temperature variation in each part in the inner casing 3 is reduced, and the liquid beverage L is cooled in a more stable state. can do. Thereby, the liquid drink L can be made into a supercooled state more reliably.
  • the container B in order to bring the liquid beverage L into a supercooled state, the container B is cooled at a substantially uniform temperature from the entire circumference so that a large temperature difference does not occur in the liquid beverage L. Is important. Therefore, the liquid beverage L can be more reliably brought into a supercooled state by reducing the temperature variation at each part in the inner casing 3.
  • the temperature difference between the highest temperature part and the lowest temperature part in the inner casing 3 is preferably about 1 ° C. or less. If it falls within such a temperature difference, the liquid beverage L can be more reliably brought into a supercooled state.
  • the inner casing 3 is provided in a non-contact manner with respect to the outer casing 2.
  • the inner casing 3 is fixed to the outer casing 2 via a plurality of support members 9.
  • the number and installation positions of the support members 9 are not particularly limited as long as the inner casing 3 can be supported with respect to the outer casing 2.
  • Each support member 9 is made of a vibration isolating material that absorbs vibration.
  • vibrations generated in the outer casing 2 for example, vibrations generated by opening and closing the door 22 and vibrations generated by driving various machines housed in the machine room 214) are generated. It becomes difficult to be transmitted to.
  • the supercooled state of the liquid beverage L is easily broken by vibration or the like, and the liquid beverage L is thereby frozen. Therefore, the supercooled state of the liquid beverage L can be more reliably maintained by adopting a structure in which vibration is not easily transmitted to the inner casing 3 as in the present embodiment.
  • the structure of the support member 9 is not particularly limited as long as the function can be exhibited.
  • a metal plate 93 is interposed between a pair of rubber members 91 and 92. be able to. With this configuration, the support member 9 can more effectively absorb the vibration generated in the outer casing 2. Further, as the support member 9, a known vibration absorbing gel or the like may be used.
  • the inner casing 3 is preferably made of a material having a high thermal conductivity (for example, a material having a thermal conductivity of 50 W / (m ⁇ k) or more). Thereby, the variation of the temperature in each site
  • the material having high thermal conductivity described above is not particularly limited, and examples thereof include the same material as the constituent material of the inner wall 212 described above.
  • a blower outlet 6 is formed on the bottom surface (bottom) of the inner casing 3, and cold air is blown out from the blower outlet 6 into the inner casing 3.
  • a suction port 7 is formed on the upper surface (upper part) of the inner casing 3, and cool air in the inner casing 3 is sucked from the suction port 7.
  • the air outlet 6 and the air inlet 7 are formed so as to face each other up and down via the internal space of the inner casing 3, whereby cold air can flow from the lower side to the upper side in the inner casing 3. Therefore, for example, it is prevented that cold air flows and stays downward due to natural convection, and variations in temperature at each part in the inner casing 3 can be further reduced.
  • the air outlet 6 includes a plurality of through holes (first through holes) 61 that communicate the inside of the inner casing 3 and the flow path 4. Further, the plurality of through holes 61 are uniformly formed over almost the entire bottom surface of the inner casing 3. The plurality of through holes 61 have a relatively small opening area and are formed at a narrow pitch. Thereby, cold air can be uniformly fed into the whole area in the inner casing 3 through the air outlet 6. Therefore, the temperature variation in each part in the inner casing 3 can be further reduced.
  • first through holes first through holes
  • the opening area (cross-sectional area) of the through hole 61 is not particularly limited, but is preferably about 1 to 10 mm 2 . Further, the pitch of the through holes 61 (the distance between adjacent through holes 61) is preferably about 1 to 5 mm. Thereby, the above effect becomes more remarkable.
  • the suction port 7 is composed of a plurality of through holes (second through holes) 71 that communicate the inside of the inner casing 3 and the flow path 4.
  • the plurality of through holes 71 are formed uniformly over substantially the entire upper surface of the inner casing 3.
  • the plurality of through holes 71 have a relatively small opening area and are formed at a narrow pitch.
  • the opening area and pitch of the through holes 71 are the same as those of the through holes 61 described above.
  • the area where the suction port 7 is formed is wider than the area where the air outlet 6 is formed.
  • a placement shelf 31 on which the container B is placed is provided in the inner casing 3.
  • the mounting shelf 31 is designed so as not to obstruct the flow of cool air in the inner casing 3 as much as possible.
  • a plurality of mounting shelves 31 are provided in which a plurality of (two) members 311 having a substantially “Y” shape when viewed from the front surface of the inner casing 3 are arranged in the depth direction of the inner casing 3. Yes.
  • the container B can be stably stored in the inner casing 3 by placing the container B on the top thereof.
  • the container B since the container B is laid and stored, the cold air positively contacts the side surface of the container B, so that the contact area of the container B with the cold air can be further increased. Therefore, the container B can be cooled uniformly from the surroundings, and the liquid beverage L can be more easily brought into a supercooled state.
  • the mounting shelf 31 of this embodiment since the fixed number of containers B are accommodated in the fixed place in the inner casing 3, for example, setting of cooling conditions (cold air temperature, flow velocity, etc.) Can be done easily. Therefore, the liquid beverage L can be brought into a supercooled state more reliably.
  • the mounting shelf 31 is designed such that the container B is separated from the air outlet 6 to some extent. In the immediate vicinity of the air outlet 6, there are a portion where the cool air is blown and a portion where the cold air is not directly blown, and a portion where the cold air is not blown directly. Since such a region is a region in which temperature unevenness is relatively likely to occur, the liquid beverage L can be more reliably brought into a supercooled state by storing the container B while avoiding such a region.
  • the separation distance between the air outlet 6 and the container B is about 5 to 10 cm, although it varies depending on the configuration of the air outlet 6 and the amount and speed of the cool air to be blown out. Is preferred. If the numerical values are separated from each other, the plurality of cold air flows blown out from the respective through holes 61 are merged into one large cold air flow, so that the liquid beverage L can be uniformly cooled, and more A supercooled state can be ensured.
  • a cold air flow path 4 is formed between the inner casing 3 and the outer casing 2 (main body 21) having the above-described configuration.
  • the flow path 4 guides the cold air sucked from the suction port 7 to the blowout port 6.
  • the thickness of the flow path (the separation distance between the inner casing 3 and the outer casing 2) T is not particularly limited, but is preferably 10 cm or less, and more preferably 5 cm or less. Thereby, the cool air can be cooled by the cooling means 5 without unevenness.
  • the circulation means 8 for circulating cold air in the flow path 4 and the inner casing 3.
  • the circulation means 8 has fans 81 and 82 provided in the flow path 4, and these fans 81 and 82 cause the air outlet 6 -inside the casing 3 -the suction port 7 -the flow path 4 -the air outlet 6. Cool air is circulated in the order. As a result, a flow of cold air is generated in which cold air is blown out from the outlet 6 and the blown out cold air is sucked in from the suction port 7.
  • the speed (flow velocity) of the flow of cool air generated by the fans 81 and 82 is not particularly limited, but is preferably about 0.01 to 2.0 m / second in the vicinity of the air outlet 6, It is more preferably about 0.5 m / sec.
  • the cool air sucked into the flow path 4 from the suction port 7 by the fans 81 and 82 is cooled by the cooling means 5 and then blown out into the inner casing 3 from the blowout port 6.
  • the cooling means 5 includes a refrigerant pipe 51 embedded in the main body 21 of the outer casing 2, an evaporator 53, a compressor 54, and a condenser 55 housed in the machine room 214. .
  • the evaporator 53 and the compressor 54, and the compressor 54 and the condenser 55 are respectively connected by a refrigerant pipe 51, and the refrigerant pipe 51 is filled with a refrigerant.
  • Such a cooling means 5 is configured to cool the cold air in the flow path 4 by exchanging heat between the inside and the outside of the flow path 4. That is, the cooling means 5 is configured such that the refrigerant filled in the refrigerant pipe 51 takes heat in the flow path 4 in the evaporator 53, is compressed in the compressor 54, and is discharged to the outside air in the condenser 55.
  • the cool air in the flow path 4 is configured to be cooled.
  • each part in the inner casing 3 is cooled uniformly. It is possible to reduce the variation in temperature at each part in the inner casing 3.
  • the refrigerant pipe 51 is preferably in contact with the inner wall 212 of the outer casing 2.
  • heat exchange can be efficiently performed between the refrigerant flowing in the refrigerant pipe 51 via the inner wall 212 and the cold air flowing in the flow path 4.
  • the inner wall 212 is made of a material having high thermal conductivity (for example, aluminum), the heat exchange as described above can be performed efficiently.
  • the whole area of the inner wall 212 is cooled evenly by the refrigerant, heat exchange can be performed evenly for the cold air flowing through the flow path 4. That is, it is possible to generate cool air with no unevenness in temperature and to blow the generated cool air into the inner casing 3 from the outlet 6. Therefore, the temperature variation in each part of the inner casing 3 is reduced, and the liquid beverage L can be cooled in a more stable state. Thereby, the liquid drink L can be made into a supercooled state more reliably.
  • the refrigerant pipe 51 is disposed on the upper surface portion 21a, the back surface portion 21b, and the bottom surface portion 21c of the main body 21, the cold air can be cooled in almost the entire area of the flow path 4. Therefore, it is possible to generate cool air with no temperature unevenness.
  • coolant piping 51 if the cool air in the flow path 4 can be cooled, it will not specifically limit, For example, you may arrange
  • the cooling means 5 cools the cold air so that the temperature in the inner casing 3 is about ⁇ 15 to ⁇ 12 ° C.
  • the cool air is cooled so that the temperature in the inner casing 3 is about ⁇ 9 to ⁇ 4 ° C.
  • the cooling unit 5 includes, for example, a temperature detection unit that detects the temperature in the inner casing 3, and is configured to adjust the cooling degree of the cool air based on the detection result of the temperature detection unit. Good.
  • the refrigerator of this invention was demonstrated based on embodiment of illustration, this invention is not limited to this.
  • the configuration of each part can be replaced with any configuration that exhibits the same function, and any configuration can be added.
  • the present invention is not limited thereto, and the suction port is formed on the bottom surface of the inner casing.
  • An air outlet may be formed.
  • cooling means is not limited to the above-described embodiment, and for example, an air blast method may be adopted.
  • liquid contained in the container is not limited to soft drinks and alcoholic drinks, and may be liquids other than beverages such as soapy water, disinfecting liquid, liquid detergent, preservative liquid, and chemical liquid.
  • the present invention it is possible to provide a refrigerator capable of bringing a liquid contained in a container into a supercooled state with a simple configuration. Specifically, since the flow of cold air can be generated from the air outlet located below to the air inlet located above, it is possible to prevent the precipitation of cold air due to natural convection, etc. Variations in temperature at each part can be reduced. In addition, instead of directly cooling the inside of the inner casing, by cooling the inside of the inner casing by blowing out the cool air cooled in the flow path from the outlet, the temperature of each part in the inner casing can be reduced. Variations can be reduced. Thereby, since a container can be cooled uniformly over the whole, the liquid put into the container can be reliably made into a supercooled state. Therefore, it has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A refrigeration storage unit (1) has: an outer casing (2); an inner casing (3) that is provided on the inside of the outer casing (2), and houses containers (B) filled with a liquid beverage (L); a flow path (4) formed between the outer casing (2) and the inner casing (3); a refrigeration means (5) that refrigerates the chilled air in the flow path (4); an outlet (6) that is formed at the bottom of the inner casing (3), and through which the chilled air in the flow path (4) that has been refrigerated by the refrigeration means (5) is blown into the inner casing (3); a suction port (7) that is formed at the top of the inner casing (3), and through which the chilled air in the inner casing (3) is drawn toward the interior of the flow path (4); and a circulation means (8) that circulates the chilled air in the flow path (4) and the inner casing (3).

Description

冷却庫Refrigerator
 本発明は、例えば、アルコールを含む飲料、お茶類、コーヒー類などの液体飲料を過冷却するための冷却庫に関する。 The present invention relates to a refrigerator for supercooling liquid beverages such as beverages containing alcohol, teas, and coffees.
 液体飲料が入れられた容器を、液体の凝固点以下の温度で、かつ液体飲料が未凍結を維持する過冷却状態で保存することのできる冷却庫として、例えば、特許文献1に記載の冷却装置が知られている。 As a refrigerator that can store a container in which a liquid beverage is placed at a temperature below the freezing point of the liquid and in a supercooled state in which the liquid beverage is kept unfrozen, for example, a cooling device described in Patent Document 1 is provided. Are known.
 特許文献1の冷却装置は、容器を収納する冷却庫と、冷却庫内の温度を制御する制御手段とを有している。そして、このような冷却装置は、容器を冷却庫に収納した状態で、制御手段によって冷却庫内の温度を制御することにより、冷却庫内の冷気によって容器を冷却し、容器内の液体飲料を過冷却状態とする。 The cooling device of Patent Document 1 has a cooler for storing a container and a control means for controlling the temperature in the cooler. And such a cooling device cools a container with the cold air in a refrigerator by controlling the temperature in a refrigerator with a control means in the state where the container was stored in a refrigerator, and the liquid drink in a container is made. Make it supercooled.
 しかしながら、特許文献1には、容器を収納する冷却庫の構成が不明である。液体飲料を過冷却状態とするには、液体飲料(容器)の温度制御(温度管理)が非常に重要である。具体的には、液体飲料(容器)をその全周からほぼ均一な温度で、かつ液体内に大きな温度差が生じないように冷却することが必要である。 However, Patent Document 1 does not disclose the configuration of the refrigerator that houses the container. In order to bring a liquid beverage into a supercooled state, temperature control (temperature management) of the liquid beverage (container) is very important. Specifically, it is necessary to cool the liquid beverage (container) at a substantially uniform temperature from the entire circumference so that a large temperature difference does not occur in the liquid.
 そのため、冷却庫の構成が不明な特許文献1の冷却装置では、液体飲料を過冷却状態とするのが困難である。 Therefore, in the cooling device of Patent Document 1 in which the configuration of the refrigerator is unknown, it is difficult to make the liquid beverage in a supercooled state.
 なお、仮に、一般的に知られる冷蔵庫や冷凍庫のような冷却庫を用いたとすると、冷気の流れにムラが生じたり、冷却庫内の内壁付近と、中央付近とで比較的大きな温度が生じたりするため、冷却庫内の温度が不均一となる。そのため、容器の設置位置や、容器の形状によっては、容器を全体にわたって均一に冷却することが困難となり、容器内の液体飲料を過冷却状態とすることができない。 If a commonly known refrigerator such as a refrigerator or freezer is used, the flow of cold air may be uneven, or a relatively large temperature may occur near the inner wall of the refrigerator and near the center. Therefore, the temperature in the refrigerator becomes non-uniform. Therefore, depending on the installation position of the container and the shape of the container, it becomes difficult to cool the container uniformly throughout, and the liquid beverage in the container cannot be brought into a supercooled state.
特開平10-9739号公報JP-A-10-9739
 本発明の目的は、簡単な構成で、容器に入れられた液体を過冷却状態とすることのできる冷却庫を提供することにある。 An object of the present invention is to provide a refrigerator capable of bringing a liquid contained in a container into a supercooled state with a simple configuration.
 上記目的を達成するために、本発明は、外側ケーシングと、
 前記外側ケーシングの内側に設けられ、液体が入れられた容器を収納する内側ケーシングと、
 前記外側ケーシングと前記内側ケーシングとの間に形成された流路と、
 前記流路内の冷気を冷却する冷却手段と、
 前記内側ケージングの底部に形成され、前記流路と前記内側ケーシングの内側とを連通する第1貫通孔と、
 前記内側ケーシングの上部であって前記底部に対向する部位に形成され、前記流路と前記内側ケーシングの内側とを連通する第2貫通孔と、
 前記第1貫通孔および前記第2貫通孔の一方から前記冷却手段によって冷却された前記流路内の前記冷気を前記内側ケーシング内に吹き出し、他方から、前記内側ケーシング内の前記冷気を前記流路内へ吸い込むように、前記冷気を前記流路および前記内側ケーシング内で循環させる循環手段とを有し、
 前記内側ケーシングに前記容器を収納した状態で、前記冷却手段によって冷却された前記冷気を前記循環手段によって循環させることにより、前記容器を、前記液体の凝固点以下の温度で、かつ前記液体が未凍結を維持する過冷却状態で保存することを特徴とする冷却庫である。
To achieve the above object, the present invention comprises an outer casing,
An inner casing that is provided inside the outer casing and houses a container containing a liquid;
A flow path formed between the outer casing and the inner casing;
Cooling means for cooling the cool air in the flow path;
A first through hole formed at the bottom of the inner casing and communicating the flow path and the inside of the inner casing;
A second through-hole formed in a portion facing the bottom of the upper part of the inner casing and communicating the flow path and the inner side of the inner casing;
The cold air in the flow path cooled by the cooling means is blown into the inner casing from one of the first through hole and the second through hole, and from the other, the cold air in the inner casing is blown into the flow path. Circulation means for circulating the cold air in the flow path and the inner casing so as to be sucked in,
The cold air cooled by the cooling means is circulated by the circulation means in a state where the container is accommodated in the inner casing, so that the container is at a temperature below the freezing point of the liquid and the liquid is not frozen. It is the refrigerator characterized by storing in the supercooled state which maintains.
 本発明の冷却庫では、前記第1貫通孔は、前記冷気が前記内側ケーシング内に吹き出す吹出口であり、
 前記第2貫通孔は、前記内側ケーシング内の前記冷気を前記流路内へ吸い込む吸込口であるのが好ましい。
In the refrigerator of the present invention, the first through hole is a blow-out port from which the cold air blows into the inner casing,
The second through hole is preferably a suction port for sucking the cold air in the inner casing into the flow path.
 本発明の冷却庫では、前記吸込口の面積は、前記吹出口の面積よりも大きいのが好ましい。 In the refrigerator of the present invention, it is preferable that the area of the suction port is larger than the area of the outlet.
 本発明の冷却庫では、前記吹出口は、前記底部の全域にわたって形成され、
 前記吸込口は、前記上部の全域にわたって形成されているのが好ましい。
In the refrigerator of the present invention, the air outlet is formed over the entire bottom portion,
The suction port is preferably formed over the entire upper portion.
 本発明の冷却庫では、前記冷却手段は、前記外側ケーシングに埋設された冷媒配管を有しているのが好ましい。 In the refrigerator of the present invention, it is preferable that the cooling means has a refrigerant pipe embedded in the outer casing.
 本発明の冷却庫では、前記冷媒配管は、前記外側ケーシングの内壁と接触しているのが好ましい。 In the refrigerator of the present invention, it is preferable that the refrigerant pipe is in contact with the inner wall of the outer casing.
 本発明の冷却庫では、前記外側ケーシングの前記内壁は、金属材料で構成されているのが好ましい。 In the refrigerator of the present invention, it is preferable that the inner wall of the outer casing is made of a metal material.
 本発明の冷却庫では、前記外側ケーシングと前記内側ケーシングとの間に設けられ、前記外側ケーシングに対して前記内側ケーシングを支持する支持部材を有し、前記支持部材は、前記外側ケーシングに発生した振動を吸収する防振材で構成されているのが好ましい。 In the refrigerator according to the present invention, the cooler includes a support member that is provided between the outer casing and the inner casing and supports the inner casing with respect to the outer casing, and the support member is generated in the outer casing. It is preferably made of a vibration isolating material that absorbs vibration.
 本発明の冷却庫では、前記循環手段は、前記流路内に設けられたファンを有しているのが好ましい。 In the refrigerator of the present invention, it is preferable that the circulating means has a fan provided in the flow path.
 本発明の冷却庫では、前記液体の最も温度の高い部位の温度をTmaxとし、最も温度の低い部位の温度をTminとしたとき、前記液体が該液体の凝固点以下となっている場合には、Tmax-Tminが0.1℃以下を満足するように前記液体を冷却するのが好ましい。 In the refrigerator of the present invention, when the temperature of the highest temperature part of the liquid is Tmax and the temperature of the lowest temperature part is Tmin, the liquid is below the freezing point of the liquid, The liquid is preferably cooled so that Tmax−Tmin satisfies 0.1 ° C. or less.
図1は、本発明の冷却庫の好適な実施形態を示す模式的全体図である。FIG. 1 is a schematic overall view showing a preferred embodiment of the refrigerator of the present invention. 図2は、図1に示す冷却庫の模式的断面図である。FIG. 2 is a schematic cross-sectional view of the refrigerator shown in FIG. 図3は、図1に示す冷却庫の正面図である。FIG. 3 is a front view of the refrigerator shown in FIG.
 以下、本発明の冷却庫の好適な実施形態について、添付図面を参照しつつ詳細に説明する。 Hereinafter, preferred embodiments of the refrigerator of the present invention will be described in detail with reference to the accompanying drawings.
 図1は、本発明の冷却庫の好適な実施形態を示す模式的全体図、図2は、図1に示す冷却庫の模式的断面図、図3は、図1に示す冷却庫の正面図である。なお、以下の説明では、図1~図3中の上側を「上」、下側を「下」と言いう。 1 is a schematic overall view showing a preferred embodiment of the refrigerator of the present invention, FIG. 2 is a schematic sectional view of the refrigerator shown in FIG. 1, and FIG. 3 is a front view of the refrigerator shown in FIG. It is. In the following description, the upper side in FIGS. 1 to 3 is referred to as “upper” and the lower side is referred to as “lower”.
 各図に示すように、冷却庫1は、外側ケーシング2と、外側ケーシング2の内側に設けられ、液体飲料(液体)Lが入れられた容器Bを収納する内側ケーシング3と、外側ケーシング2と内側ケーシング3との間に形成された流路4と、流路4内の気体を冷却する冷却手段5と、内側ケーシング3に形成され、冷却手段5によって冷却された流路4内の気体(冷気)が内側ケーシング3内に吹き出す吹出口6と、内側ケーシング3に形成され、内側ケーシング3内の気体を流路4内へ吸い込む吸込口7と冷気を流路4および内側ケーシング3内で循環させる循環手段8と、外側ケーシング2に対して内側ケーシング3を支持する支持部材9とを有している。 As shown in each figure, the refrigerator 1 includes an outer casing 2, an inner casing 3 that is provided inside the outer casing 2, and stores a container B containing a liquid beverage (liquid) L; The flow path 4 formed between the inner casing 3, the cooling means 5 for cooling the gas in the flow path 4, and the gas in the flow path 4 formed in the inner casing 3 and cooled by the cooling means 5 ( Cold air) is blown out into the inner casing 3, formed in the inner casing 3, and the suction port 7 for sucking the gas in the inner casing 3 into the flow path 4 and the cold air are circulated in the flow path 4 and the inner casing 3. Circulating means 8 for supporting the inner casing 3 with respect to the outer casing 2 is provided.
 このような冷却庫1は、内側ケーシング3内に容器Bを収納した状態で、冷却手段5によって冷却された気体を循環手段8によって循環させることにより、容器Bを液体飲料Lの凝固点以下の温度で、かつ液体飲料Lが未凍結を維持する過冷却状態で保存することができる冷却庫である。 Such a refrigerator 1 circulates the gas cooled by the cooling means 5 with the circulation means 8 in a state where the container B is accommodated in the inner casing 3, so that the temperature of the container B is not higher than the freezing point of the liquid beverage L. And it is a refrigerator which can be preserve | saved in the supercooled state in which the liquid drink L maintains unfrozen.
 凝固点以下で未凍結を維持する過冷却状態の液体飲料Lは、例えば、冷却庫1から取り出して、振動を与えるか、またはコップなどに注ぐと、瞬時にシャーベット状に凍結する。 The supercooled liquid beverage L that remains unfrozen below the freezing point is instantly frozen into a sherbet when taken out of the refrigerator 1 and subjected to vibrations or poured into a cup or the like.
 液体飲料Lとしては、特に限定されず、例えば、お茶類(ウーロン茶、緑茶、麦茶など)、コーヒー類、ミネラルウォーター、スポーツドリンク、乳酸飲料(牛乳など)等の清涼飲料や、発泡酒、ビール、ワイン、日本酒、焼酎等のアルコール飲料などが挙げられる。前述したような清涼飲料の凝固点は、約-9~-4℃であり、アルコール飲料の凝固点は、約-15~-12℃である。 The liquid beverage L is not particularly limited. For example, soft drinks such as teas (oolong tea, green tea, barley tea, etc.), coffees, mineral water, sports drinks, lactic acid beverages (milk, etc.), sparkling wine, beer, Examples include alcoholic beverages such as wine, sake and shochu. The freezing point of the soft drink as described above is about −9 to −4 ° C., and the freezing point of the alcoholic beverage is about −15 to −12 ° C.
 また、容器Bの容量としては、特に限定されないが、80~1000mlであるのが好ましく、100~600mlであるのがより好ましい。このような容量とすることにより、冷却時に発生する液体飲料L内の温度差を小さくすることができるため、液体飲料Lをより確実に過冷却状態とすることができる。 The capacity of the container B is not particularly limited, but is preferably 80 to 1000 ml, and more preferably 100 to 600 ml. By setting it as such a capacity | capacitance, since the temperature difference in the liquid beverage L which generate | occur | produces at the time of cooling can be made small, the liquid beverage L can be made into a supercooled state more reliably.
 冷却庫1では、容器B内の液体飲料Lの最も温度の高い部位の温度をTmaxとし、最も温度の低い部位の温度をTminとしたとき、Tmax-Tminが0~0.1℃以下を満足するように容器Bを冷却することが好ましく、Tmax-Tminが0~0.05℃以下を満足するように容器Pを冷却することがより好ましい。これにより、より確実に、液体飲料Lを過冷却状態とすることができる。 In the refrigerator 1, Tmax−Tmin satisfies 0 to 0.1 ° C. or less, where Tmax is the temperature of the highest temperature portion of the liquid beverage L in the container B and Tmin is the temperature of the lowest temperature portion. Thus, it is preferable to cool the container B, and it is more preferable to cool the container P so that Tmax−Tmin satisfies 0 to 0.05 ° C. or less. Thereby, the liquid drink L can be made into a supercooled state more reliably.
 なお、液体飲料Lの温度が当該液体飲料Lの凝固点以下のときに、液体飲料L内の温度差がほとんど生じないように容器Bを冷却すればよく、液体飲料Lの温度が当該液体飲料Lの凝固点より高いときには、液体飲料L内に比較的大きい温度差(例えば、1~2℃程度)が生じていてもよい。 Note that when the temperature of the liquid beverage L is equal to or lower than the freezing point of the liquid beverage L, the container B may be cooled so that the temperature difference in the liquid beverage L hardly occurs. When the freezing point is higher, a relatively large temperature difference (for example, about 1 to 2 ° C.) may occur in the liquid beverage L.
 図1に示すように、外側ケーシング2は、前面が開口するようになっている。具体的には、外側ケーシング2は、前面に開口を有する本体21と、本体21に対して回動可能に設けられ、前記開口を開閉することのできる扉22とを有している。 As shown in FIG. 1, the outer casing 2 is open at the front. Specifically, the outer casing 2 includes a main body 21 having an opening on the front surface, and a door 22 that is provided so as to be rotatable with respect to the main body 21 and that can open and close the opening.
 図2に示すように、本体21は、外壁211と内壁212とを有し、これらの間に断熱材213を充填した構造となっている。また、本体21には、冷却手段5が有する冷媒配管51が埋設されている。また、本体21には、機械室214が設けられており、この機械室214には、冷却庫1を駆動するために必要な各種機械類が収容されている。このような機械類としては、例えば、電源や、冷却手段5が有する蒸発器53、圧縮器54、凝縮器55などが挙げられる。 As shown in FIG. 2, the main body 21 has an outer wall 211 and an inner wall 212, and has a structure in which a heat insulating material 213 is filled therebetween. In addition, a refrigerant pipe 51 included in the cooling means 5 is embedded in the main body 21. Further, the main body 21 is provided with a machine room 214, and various machines necessary for driving the refrigerator 1 are accommodated in the machine room 214. Examples of such machinery include a power source, an evaporator 53, a compressor 54, and a condenser 55 included in the cooling unit 5.
 外壁211は、例えば、各種プラスチックで構成することができる。前記プラスチックとしては、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等のポリオレフィン、ポリ塩化ビニル、ポリスチレン、ポリアミド、ポリイミド、ポリカーボネート、ポリ-(4-メチルペンテン-1)、アイオノマー、アクリル系樹脂、ポリメチルメタクリレート、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、アクリロニトリル-スチレン共重合体(AS樹脂)、ブタジエン-スチレン共重合体、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等のポリエステル、ポリエーテル、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド、ポリアセタール(POM)、ポリフェニレンオキシド、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリアリレート、芳香族ポリエステル(液晶ポリマー)、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、その他フッ素系樹脂、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、シリコーン樹脂、ポリウレタン等、またはこれらを主とする共重合体、ブレンド体、ポリマーアロイ等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。 The outer wall 211 can be made of various plastics, for example. Examples of the plastic include polyolefin such as polyethylene, polypropylene, and ethylene-propylene copolymer, polyvinyl chloride, polystyrene, polyamide, polyimide, polycarbonate, poly- (4-methylpentene-1), ionomer, acrylic resin, Polyesters such as polymethyl methacrylate, acrylonitrile-butadiene-styrene copolymer (ABS resin), acrylonitrile-styrene copolymer (AS resin), butadiene-styrene copolymer, polyethylene terephthalate (PET), polybutylene terephthalate (PBT) , Polyether, polyetherketone (PEK), polyetheretherketone (PEEK), polyetherimide, polyacetal (POM), polyphenylene oxide, policer Phon, polyethersulfone, polyphenylene sulfide, polyarylate, aromatic polyester (liquid crystal polymer), polytetrafluoroethylene, polyvinylidene fluoride, other fluororesins, epoxy resins, phenol resins, urea resins, melamine resins, silicone resins, Examples thereof include polyurethane and the like, and copolymers, blends, polymer alloys and the like mainly containing these, and one or more of them can be used in combination.
 内壁212は、熱伝導率の高い材料で構成されているのが好ましい。これにより、後述するように、流路4内の冷気(空気)を、効率的かつムラなく冷却することができる。このような材料としては、例えば、ニッケル、コバルト、金、白金、銀、銅、マンガン、アルミニウム、マグネシウム、亜鉛、鉛、錫、チタン、タングステン等の各種金属、ステンレス鋼(例えば、SUS303、SUS304、SUS316、SUS316L、SUS316J1、SUS316J1L、SUS318、SUS405、SUS430、SUS434、SUS444、SUS429、SUS430F、SUS302等)等の合金が挙げられる。 The inner wall 212 is preferably made of a material having high thermal conductivity. Thereby, as will be described later, the cool air (air) in the flow path 4 can be efficiently and uniformly cooled. Examples of such materials include nickel, cobalt, gold, platinum, silver, copper, manganese, aluminum, magnesium, zinc, lead, tin, titanium, tungsten, and other metals, stainless steel (for example, SUS303, SUS304, SUS316, SUS316L, SUS316J1, SUS316J1L, SUS318, SUS405, SUS430, SUS434, SUS444, SUS429, SUS430F, SUS302, etc.).
 断熱材213としては、特に限定されず、例えば、発泡体等の多孔質材や、各種セラミックス等が挙げられる。 The heat insulating material 213 is not particularly limited, and examples thereof include porous materials such as foams and various ceramics.
 このような構成の外側ケーシング2内には、内側ケーシング3が設置されており、この内側ケーシング3内に容器Bを収納する。内側ケーシング3は、前方が開口しており、外側ケーシング2の扉22を開けると、内側ケーシング3内に容器Bを簡単に収納できるようになっている。 The inner casing 3 is installed in the outer casing 2 having such a configuration, and the container B is stored in the inner casing 3. The front side of the inner casing 3 is open, and the container B can be easily stored in the inner casing 3 when the door 22 of the outer casing 2 is opened.
 このような内側ケーシング3の内部空間のサイズは、特に限定されないが、例えば、縦×横×奥行きを30~50cm×30~50cm×30~50cm程度とすることができる。このようなサイズとすることにより、内側ケーシング3の内部空間を適度な広さとすることができ、内側ケーシング3内の各部位における温度のバラツキが小さくなり、より安定した状態で液体飲料Lを冷却することができる。これにより、より確実に、液体飲料Lを過冷却状態とすることができる。 The size of the internal space of the inner casing 3 is not particularly limited, but for example, the length × width × depth may be about 30 to 50 cm × 30 to 50 cm × 30 to 50 cm. By setting it as such a size, the inner space of the inner casing 3 can be made an appropriate size, the temperature variation in each part in the inner casing 3 is reduced, and the liquid beverage L is cooled in a more stable state. can do. Thereby, the liquid drink L can be made into a supercooled state more reliably.
 ここで、前述したように、液体飲料Lを過冷却状態とするには、容器Bをその全周からほぼ均一な温度で、かつ液体飲料L内に大きな温度差が生じないように冷却することが重要となる。そのため、内側ケーシング3内の各部位における温度のバラツキを小さくすることにより、液体飲料Lをより確実に過冷却状態とすることができる。なお、内側ケーシング3内の最も温度の高い部分と、最も温度の低い部分との温度差は、1℃以下程度であることが好ましい。このような温度差に収まっていれば、液体飲料Lをより確実に過冷却状態とすることができる。 Here, as described above, in order to bring the liquid beverage L into a supercooled state, the container B is cooled at a substantially uniform temperature from the entire circumference so that a large temperature difference does not occur in the liquid beverage L. Is important. Therefore, the liquid beverage L can be more reliably brought into a supercooled state by reducing the temperature variation at each part in the inner casing 3. The temperature difference between the highest temperature part and the lowest temperature part in the inner casing 3 is preferably about 1 ° C. or less. If it falls within such a temperature difference, the liquid beverage L can be more reliably brought into a supercooled state.
 また、内側ケーシング3は、外側ケーシング2に対して非接触で設けられている。また、本実施形態では、内側ケーシング3は、複数の支持部材9を介して外側ケーシング2に固定されている。なお、支持部材9の数や設置位置は、外側ケーシング2に対して内側ケーシング3を支持することができれば、特に限定されない。 The inner casing 3 is provided in a non-contact manner with respect to the outer casing 2. In the present embodiment, the inner casing 3 is fixed to the outer casing 2 via a plurality of support members 9. The number and installation positions of the support members 9 are not particularly limited as long as the inner casing 3 can be supported with respect to the outer casing 2.
 各支持部材9は、振動を吸収する防振材で構成されている。このような構成とすることにより、外側ケーシング2に生じた振動(例えば、扉22の開閉により生じる振動や、機械室214に収容されている各種機械類の駆動により発生する振動)が内側ケーシング3に伝わり難くなる。液体飲料Lの過冷却状態は、振動等によって容易に崩れ、それにより液体飲料Lが凍結してしまう。そのため、本実施形態のように、内側ケーシング3に振動が伝わり難い構造とすることにより、液体飲料Lの過冷却状態をより確実に維持することができる。 Each support member 9 is made of a vibration isolating material that absorbs vibration. By adopting such a configuration, vibrations generated in the outer casing 2 (for example, vibrations generated by opening and closing the door 22 and vibrations generated by driving various machines housed in the machine room 214) are generated. It becomes difficult to be transmitted to. The supercooled state of the liquid beverage L is easily broken by vibration or the like, and the liquid beverage L is thereby frozen. Therefore, the supercooled state of the liquid beverage L can be more reliably maintained by adopting a structure in which vibration is not easily transmitted to the inner casing 3 as in the present embodiment.
 支持部材9の構成は、その機能を発揮することができれば、特に限定されないが、例えば、図3に示すように、一対のゴム部材91、92の間に金属板93を介在させた構成とすることができる。このような構成とすることにより、支持部材9によって、より効果的に外側ケーシング2で発生した振動を吸収することができる。また、支持部材9としては、公知の振動吸収ゲル等を用いてもよい。 The structure of the support member 9 is not particularly limited as long as the function can be exhibited. For example, as shown in FIG. 3, a metal plate 93 is interposed between a pair of rubber members 91 and 92. be able to. With this configuration, the support member 9 can more effectively absorb the vibration generated in the outer casing 2. Further, as the support member 9, a known vibration absorbing gel or the like may be used.
 内側ケーシング3は、熱伝導率の高い材料(例えば、熱伝導率が50W/(m・k)以上の材料)で構成されているのが好ましい。これにより、内側ケーシング3内の各部位における温度のバラツキをより小さくすることができる。前述した熱伝導率の高い材料としては、特に限定されず、例えば、前述した内壁212の構成材料と同様の材料が挙げられる。 The inner casing 3 is preferably made of a material having a high thermal conductivity (for example, a material having a thermal conductivity of 50 W / (m · k) or more). Thereby, the variation of the temperature in each site | part in the inner side casing 3 can be made smaller. The material having high thermal conductivity described above is not particularly limited, and examples thereof include the same material as the constituent material of the inner wall 212 described above.
 また、内側ケーシング3の底面(底部)には、吹出口6が形成されており、この吹出口6から内側ケーシング3内に冷気が吹き出すようになっている。また、内側ケーシング3の上面(上部)には、吸込口7が形成されており、この吸込口7から内側ケーシング3内の冷気を吸い込むようになっている。 Further, a blower outlet 6 is formed on the bottom surface (bottom) of the inner casing 3, and cold air is blown out from the blower outlet 6 into the inner casing 3. A suction port 7 is formed on the upper surface (upper part) of the inner casing 3, and cool air in the inner casing 3 is sucked from the suction port 7.
 吹出口6および吸込口7は、内側ケーシング3の内部空間を介して上下に対向するように形成されており、これにより、内側ケーシング3内にて冷気を下側から上側へ流すことができる。そのため、例えば、自然対流によって冷気が下方へ流れて留まってしまうのが防止され、内側ケーシング3内の各部位における温度のバラツキをより小さくすることができる。 The air outlet 6 and the air inlet 7 are formed so as to face each other up and down via the internal space of the inner casing 3, whereby cold air can flow from the lower side to the upper side in the inner casing 3. Therefore, for example, it is prevented that cold air flows and stays downward due to natural convection, and variations in temperature at each part in the inner casing 3 can be further reduced.
 本実施形態では、吹出口6は、内側ケーシング3の内側と流路4とを連通する複数の貫通孔(第1貫通孔)61で構成されている。また、複数の貫通孔61は、内側ケーシング3の底面のほぼ全域にわたって均一に形成されている。複数の貫通孔61は、比較的小さい開口面積を有し、かつ、狭ピッチで形成されている。これにより、吹出口6を介して内側ケーシング3内の全域へ冷気をムラなく均一に送り込むことができる。そのため、内側ケーシング3内の各部位における温度のバラツキをより小さくすることができる。 In the present embodiment, the air outlet 6 includes a plurality of through holes (first through holes) 61 that communicate the inside of the inner casing 3 and the flow path 4. Further, the plurality of through holes 61 are uniformly formed over almost the entire bottom surface of the inner casing 3. The plurality of through holes 61 have a relatively small opening area and are formed at a narrow pitch. Thereby, cold air can be uniformly fed into the whole area in the inner casing 3 through the air outlet 6. Therefore, the temperature variation in each part in the inner casing 3 can be further reduced.
 貫通孔61の開口面積(横断面積)としては、特に限定されないが、1~10mm程度であるの好ましい。また、貫通孔61のピッチ(隣り合う貫通孔61の離間距離)としては、1~5mm程度であるのが好ましい。これにより、上記効果がより顕著なものとなる。 The opening area (cross-sectional area) of the through hole 61 is not particularly limited, but is preferably about 1 to 10 mm 2 . Further, the pitch of the through holes 61 (the distance between adjacent through holes 61) is preferably about 1 to 5 mm. Thereby, the above effect becomes more remarkable.
 また、吸込口7は、内側ケーシング3の内側と流路4とを連通する複数の貫通孔(第2貫通孔)71で構成されている。複数の貫通孔71は、内側ケーシング3の上面のほぼ全域にわたって均一に形成されている。複数の貫通孔71は、比較的小さい開口面積を有し、かつ、狭ピッチで形成されている。貫通孔71の開口面積やピッチは、前述した貫通孔61と同様である。このような構成とすることにより、吸込口7を介して内側ケーシング3内の冷気をムラなく均一に吸い込むことができる。そのため、例えば、内側ケーシング3内に長時間留まる冷気がなくなり、内側ケーシング3内の各部位における温度のバラツキをより小さくすることができる。 Further, the suction port 7 is composed of a plurality of through holes (second through holes) 71 that communicate the inside of the inner casing 3 and the flow path 4. The plurality of through holes 71 are formed uniformly over substantially the entire upper surface of the inner casing 3. The plurality of through holes 71 have a relatively small opening area and are formed at a narrow pitch. The opening area and pitch of the through holes 71 are the same as those of the through holes 61 described above. By setting it as such a structure, the cold air in the inner side casing 3 can be uniformly sucked in via the inlet port 7. Therefore, for example, there is no cool air remaining in the inner casing 3 for a long time, and the temperature variation at each part in the inner casing 3 can be further reduced.
 また、吸込口7が形成される領域は、吹出口6が形成される領域よりも広いことが好ましい。これにより、内側ケーシング3内にて、下側から上側への冷気の流れをよりスムーズに発生させることができる。そのため、例えば、内側ケーシング3内に長時間留まる冷気がなくなり、内側ケーシング3内の各部位における温度のバラツキをより小さくすることができる。 Moreover, it is preferable that the area where the suction port 7 is formed is wider than the area where the air outlet 6 is formed. Thereby, in the inner casing 3, the flow of cold air from the lower side to the upper side can be generated more smoothly. Therefore, for example, there is no cool air remaining in the inner casing 3 for a long time, and the temperature variation at each part in the inner casing 3 can be further reduced.
 図2に示すように、内側ケーシング3内には、容器Bを載置する載置棚31が設けられている。載置棚31は、内側ケーシング3内の冷気の流れをなるべく阻害しないように設計される。 As shown in FIG. 2, a placement shelf 31 on which the container B is placed is provided in the inner casing 3. The mounting shelf 31 is designed so as not to obstruct the flow of cool air in the inner casing 3 as much as possible.
 本実施形態では、内側ケーシング3の前面から見たときに略「Y」字状をなす部材311が内側ケーシング3の奥行き方向に複数(2つ)並んでなる載置棚31が複数設けられている。このような載置棚31では、その上部に容器Bを寝かせて載置することで、容器Bを内側ケーシング3内に安定的に収納することができる。 In the present embodiment, a plurality of mounting shelves 31 are provided in which a plurality of (two) members 311 having a substantially “Y” shape when viewed from the front surface of the inner casing 3 are arranged in the depth direction of the inner casing 3. Yes. In such a mounting shelf 31, the container B can be stably stored in the inner casing 3 by placing the container B on the top thereof.
 このように、容器Bを寝かせて収納することにより、容器Bの側面に冷気が積極的に接触するため、容器Bの冷気との接触面積をより大きくすることができる。そのため、容器Bをその周囲から均一に冷却することができ、より簡単に、液体飲料Lを過冷却状態とすることができる。 As described above, since the container B is laid and stored, the cold air positively contacts the side surface of the container B, so that the contact area of the container B with the cold air can be further increased. Therefore, the container B can be cooled uniformly from the surroundings, and the liquid beverage L can be more easily brought into a supercooled state.
 また、本実施形態の載置棚31によれば、内側ケーシング3内の決まった場所に、決まった数の容器Bが収納されるため、例えば、冷却条件(冷気の温度、流速等)の設定を簡単に行うことができる。そのため、より確実に、液体飲料Lを過冷却状態とすることができる。 Moreover, according to the mounting shelf 31 of this embodiment, since the fixed number of containers B are accommodated in the fixed place in the inner casing 3, for example, setting of cooling conditions (cold air temperature, flow velocity, etc.) Can be done easily. Therefore, the liquid beverage L can be brought into a supercooled state more reliably.
 また、載置棚31は、吹出口6に対して、容器Bがある程度離間するように設計されている。吹出口6の直近は、冷気が吹き出している部分と、冷気が吹き出していない部分との存在により、冷気が直接当たる部分と当たらない部分とが存在する。このような領域は、温度ムラが比較的生じ易い領域であるため、このような領域を避けて容器Bを収納することにより、より確実に、液体飲料Lを過冷却状態とすることができる。 Further, the mounting shelf 31 is designed such that the container B is separated from the air outlet 6 to some extent. In the immediate vicinity of the air outlet 6, there are a portion where the cool air is blown and a portion where the cold air is not directly blown, and a portion where the cold air is not blown directly. Since such a region is a region in which temperature unevenness is relatively likely to occur, the liquid beverage L can be more reliably brought into a supercooled state by storing the container B while avoiding such a region.
 吹出口6と容器B(最も吹出口6側に位置する容器B)との離間距離としては、吹出口6の構成や、吹き出す冷気の量および速度等によっても異なるが、5~10cm程度であるのが好ましい。前記数値程度離間していれば、各貫通孔61か吹き出した複数の冷気の流れが合流し、1つの大きな冷気の流れとなっているため、液体飲料Lをムラなく冷却することができ、より確実に、過冷却状態とすることができる。 The separation distance between the air outlet 6 and the container B (the container B closest to the air outlet 6) is about 5 to 10 cm, although it varies depending on the configuration of the air outlet 6 and the amount and speed of the cool air to be blown out. Is preferred. If the numerical values are separated from each other, the plurality of cold air flows blown out from the respective through holes 61 are merged into one large cold air flow, so that the liquid beverage L can be uniformly cooled, and more A supercooled state can be ensured.
 図2に示すように、以上のような構成の内側ケーシング3と外側ケーシング2(本体21)との間には、冷気の流路4が形成されている。流路4は、吸込口7から吸い込んだ冷気を吹出口6へ案内する。流路の厚さ(内側ケーシング3と外側ケーシング2との離間距離)Tとしては、特に限定されないが、10cm以下であるのが好ましく、5cm以下であるのがより好ましい。これにより、冷却手段5によって冷気をムラなく冷却することができる。 As shown in FIG. 2, a cold air flow path 4 is formed between the inner casing 3 and the outer casing 2 (main body 21) having the above-described configuration. The flow path 4 guides the cold air sucked from the suction port 7 to the blowout port 6. The thickness of the flow path (the separation distance between the inner casing 3 and the outer casing 2) T is not particularly limited, but is preferably 10 cm or less, and more preferably 5 cm or less. Thereby, the cool air can be cooled by the cooling means 5 without unevenness.
 また、流路4の途中には、冷気を流路4および内側ケーシング3内で循環させる循環手段8を有している。循環手段8は、流路4内に設けられたファン81、82を有しており、これらファン81、82により、吹出口6-内側ケーシング3内-吸込口7-流路4-吹出口6の順に冷気を循環させる。これにより、冷気が吹出口6から吹き出し、吹き出した冷気が吸込口7から吸い込まれると言った冷気の流れが発生する。 Further, in the middle of the flow path 4, there is a circulation means 8 for circulating cold air in the flow path 4 and the inner casing 3. The circulation means 8 has fans 81 and 82 provided in the flow path 4, and these fans 81 and 82 cause the air outlet 6 -inside the casing 3 -the suction port 7 -the flow path 4 -the air outlet 6. Cool air is circulated in the order. As a result, a flow of cold air is generated in which cold air is blown out from the outlet 6 and the blown out cold air is sucked in from the suction port 7.
 ファン81、82によって発生する冷気の流れの速さ(流速)としては、特に限定されないが、吹出口6近傍にて、0.01~2.0m/秒程度であるのが好ましく、0.05~0.5m/秒程度であるのがより好ましい。冷気の流速をこのような範囲とすることにより、吹出口6から吹き出す冷気が内側ケーシング3内に位置する時間を充分に短くすることができるとともに、冷気の流れを穏やかなものとすることができる。その結果、より確実に、内側ケーシング3内の各部位における温度のバラツキをより小さくすることができる。 The speed (flow velocity) of the flow of cool air generated by the fans 81 and 82 is not particularly limited, but is preferably about 0.01 to 2.0 m / second in the vicinity of the air outlet 6, It is more preferably about 0.5 m / sec. By setting the flow rate of the cold air in such a range, it is possible to sufficiently shorten the time during which the cold air blown from the outlet 6 is located in the inner casing 3 and to make the flow of the cold air gentle. . As a result, the temperature variation in each part in the inner casing 3 can be more reliably reduced.
 ファン81、82によって吸込口7から流路4内に吸い込まれた冷気は、冷却手段5によって冷却された後、吹出口6から内側ケーシング3内に吹き出すように構成されている。 The cool air sucked into the flow path 4 from the suction port 7 by the fans 81 and 82 is cooled by the cooling means 5 and then blown out into the inner casing 3 from the blowout port 6.
 図2に示すように、冷却手段5は、外側ケーシング2の本体21に埋設された冷媒配管51と、機械室214に収納された蒸発器53、圧縮器54および凝縮器55を有している。蒸発器53と圧縮器54、圧縮器54と凝縮器55は、それぞれ冷媒配管51で接続されており、冷媒配管51には冷媒が充填されている。 As shown in FIG. 2, the cooling means 5 includes a refrigerant pipe 51 embedded in the main body 21 of the outer casing 2, an evaporator 53, a compressor 54, and a condenser 55 housed in the machine room 214. . The evaporator 53 and the compressor 54, and the compressor 54 and the condenser 55 are respectively connected by a refrigerant pipe 51, and the refrigerant pipe 51 is filled with a refrigerant.
 このような冷却手段5は、流路4の内部と外部との間で熱交換を行うことにより、流路4内の冷気を冷却するように構成されている。すなわち、冷却手段5は、冷媒配管51内に充填された冷媒が蒸発器53において流路4内の熱を奪い、圧縮器54において圧縮され、凝縮器55において外気に熱を排出することにより、流路4内の冷気を冷却するように構成されている。 Such a cooling means 5 is configured to cool the cold air in the flow path 4 by exchanging heat between the inside and the outside of the flow path 4. That is, the cooling means 5 is configured such that the refrigerant filled in the refrigerant pipe 51 takes heat in the flow path 4 in the evaporator 53, is compressed in the compressor 54, and is discharged to the outside air in the condenser 55. The cool air in the flow path 4 is configured to be cooled.
 このように、冷却手段5によって流路4内の冷気を冷却し、冷却した冷気を用いて内側ケーシング3内を冷却するように構成することにより、内側ケーシング3内の各部位を均等に冷却することができ、内側ケーシング3内の各部位における温度のバラツキを小さくすることができる。 Thus, by cooling the cool air in the flow path 4 by the cooling means 5 and cooling the inside casing 3 using the cooled cool air, each part in the inner casing 3 is cooled uniformly. It is possible to reduce the variation in temperature at each part in the inner casing 3.
 ここで、冷媒配管51は、外側ケーシング2の内壁212に接触しているのが好ましい。これにより、効率的に、内壁212を介して冷媒配管51内を流れる冷媒と、流路4内を流れる冷気との間で熱交換を行うことができる。前述したように、内壁212は、熱伝導率の高い材料(例えば、アルミニウム)で構成されているため、上述のような熱交換を効率的に行うことができる。また、冷媒によって、内壁212の全域がムラなく冷却されるため、流路4を流れる冷気に対してムラなく熱交換を行うことができる。すなわち、温度にムラのない冷気を生成し、生成した冷気を吹出口6から内側ケーシング3内に吹き出すことができる。そのため、内側ケーシング3の各部位における温度のバラツキが小さくなり、より安定した状態で液体飲料Lを冷却することができる。これにより、より確実に、液体飲料Lを過冷却状態とすることができる。 Here, the refrigerant pipe 51 is preferably in contact with the inner wall 212 of the outer casing 2. Thereby, heat exchange can be efficiently performed between the refrigerant flowing in the refrigerant pipe 51 via the inner wall 212 and the cold air flowing in the flow path 4. As described above, since the inner wall 212 is made of a material having high thermal conductivity (for example, aluminum), the heat exchange as described above can be performed efficiently. Moreover, since the whole area of the inner wall 212 is cooled evenly by the refrigerant, heat exchange can be performed evenly for the cold air flowing through the flow path 4. That is, it is possible to generate cool air with no unevenness in temperature and to blow the generated cool air into the inner casing 3 from the outlet 6. Therefore, the temperature variation in each part of the inner casing 3 is reduced, and the liquid beverage L can be cooled in a more stable state. Thereby, the liquid drink L can be made into a supercooled state more reliably.
 特に本実施形態では、冷媒配管51が、本体21の上面部21a、背面部21b、底面部21cにそれぞれ配置されているため、流路4のほぼ全域にて冷気を冷却することができる。そのため、より温度ムラのない冷気を生成することができる。なお、冷媒配管51の配置としては、流路4内の冷気を冷却することができれば、特に限定されず、例えば背面部21bのみに配置されていてもよい。また、本体21に埋設する必要もなく、流路4内に露出して配置されていてもよい。 Particularly in this embodiment, since the refrigerant pipe 51 is disposed on the upper surface portion 21a, the back surface portion 21b, and the bottom surface portion 21c of the main body 21, the cold air can be cooled in almost the entire area of the flow path 4. Therefore, it is possible to generate cool air with no temperature unevenness. In addition, as arrangement | positioning of the refrigerant | coolant piping 51, if the cool air in the flow path 4 can be cooled, it will not specifically limit, For example, you may arrange | position only to the back part 21b. Moreover, it is not necessary to embed in the main body 21, and it may be exposed in the flow path 4.
 冷却手段5は、液体飲料Lの種類によっても異なるが、例えば、液体飲料Lがアルコール飲料の場合には、内側ケーシング3内の温度が-15~-12℃程度となるように冷気を冷却し、液体飲料Lが清涼飲料の場合には内側ケーシング3内の温度が-9~-4℃程度となるように冷気を冷却する。なお、冷却手段5は、例えば、内側ケーシング3内の温度検知する温度検知手段を有しており、温度検知手段の検知結果に基づいて、冷気の冷却度合いを調整するように構成されていてもよい。 For example, when the liquid beverage L is an alcoholic beverage, the cooling means 5 cools the cold air so that the temperature in the inner casing 3 is about −15 to −12 ° C. When the liquid beverage L is a soft drink, the cool air is cooled so that the temperature in the inner casing 3 is about −9 to −4 ° C. Note that the cooling unit 5 includes, for example, a temperature detection unit that detects the temperature in the inner casing 3, and is configured to adjust the cooling degree of the cool air based on the detection result of the temperature detection unit. Good.
 以上、本発明の冷却庫について、図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではない。例えば、本発明の冷却庫では、各部の構成は、同様の機能を発揮する任意の構成のものに置換することができ、また、任意の構成を付加することもできる。 As mentioned above, although the refrigerator of this invention was demonstrated based on embodiment of illustration, this invention is not limited to this. For example, in the refrigerator of the present invention, the configuration of each part can be replaced with any configuration that exhibits the same function, and any configuration can be added.
 また、前述した実施形態では、内側ケーシングの底面に吹出口を形成し、上面に吸込口を形成した構成について説明したが、これに限定されず、内側ケーシングの底面に吸込口を形成し、上面に吹出口を形成してもよい。 In the above-described embodiment, the structure in which the air outlet is formed on the bottom surface of the inner casing and the suction port is formed on the upper surface has been described. However, the present invention is not limited thereto, and the suction port is formed on the bottom surface of the inner casing. An air outlet may be formed.
 また、冷却手段の構成は、前述した実施形態に限定されず、例えば、エアブラスト方式を採用するものであってもよい。 Further, the configuration of the cooling means is not limited to the above-described embodiment, and for example, an air blast method may be adopted.
 また、容器に入れられた液体としては、清涼飲料やアルコール飲料に限定されず、例えば、石鹸水、消毒液、液体洗剤、保存液、薬液のような飲料用以外の液体であってもよい。 Further, the liquid contained in the container is not limited to soft drinks and alcoholic drinks, and may be liquids other than beverages such as soapy water, disinfecting liquid, liquid detergent, preservative liquid, and chemical liquid.
 本発明によれば、簡単な構成で、容器に入れられた液体を過冷却状態とすることのできる冷却庫を提供することができる。具体的には、下方に位置する吹出口から上方に位置する吸込口へ向けて冷気の流れを発生させることができるため、自然対流等による冷気の沈降を防止することができ、内側ケーシング内の各部位における温度のバラツキを小さくすることができる。また、内側ケーシング内を直接冷却するのではなく、流路内で冷却された冷気を吹出口から吹き出す構成とすることにより、内側ケーシング内を冷却することにより、内側ケーシング内の各部位における温度のバラツキを小さくすることができる。これにより、容器を全体にわたって均一に冷却することができるため、確実に容器に入れられた液体を過冷却状態とすることができる。したがって、産業上の利用可能性を有する。 According to the present invention, it is possible to provide a refrigerator capable of bringing a liquid contained in a container into a supercooled state with a simple configuration. Specifically, since the flow of cold air can be generated from the air outlet located below to the air inlet located above, it is possible to prevent the precipitation of cold air due to natural convection, etc. Variations in temperature at each part can be reduced. In addition, instead of directly cooling the inside of the inner casing, by cooling the inside of the inner casing by blowing out the cool air cooled in the flow path from the outlet, the temperature of each part in the inner casing can be reduced. Variations can be reduced. Thereby, since a container can be cooled uniformly over the whole, the liquid put into the container can be reliably made into a supercooled state. Therefore, it has industrial applicability.

Claims (10)

  1.  外側ケーシングと、
     前記外側ケーシングの内側に設けられ、液体が入れられた容器を収納する内側ケーシングと、
     前記外側ケーシングと前記内側ケーシングとの間に形成された流路と、
     前記流路内の冷気を冷却する冷却手段と、
     前記内側ケージングの底部に形成され、前記流路と前記内側ケーシングの内側とを連通する第1貫通孔と、
     前記内側ケーシングの上部であって前記底部に対向する部位に形成され、前記流路と前記内側ケーシングの内側とを連通する第2貫通孔と、
     前記第1貫通孔および前記第2貫通孔の一方から前記冷却手段によって冷却された前記流路内の前記冷気を前記内側ケーシング内に吹き出し、他方から、前記内側ケーシング内の前記冷気を前記流路内へ吸い込むように、前記冷気を前記流路および前記内側ケーシング内で循環させる循環手段とを有し、
     前記内側ケーシングに前記容器を収納した状態で、前記冷却手段によって冷却された前記冷気を前記循環手段によって循環させることにより、前記容器を、前記液体の凝固点以下の温度で、かつ前記液体が未凍結を維持する過冷却状態で保存することを特徴とする冷却庫。
    An outer casing;
    An inner casing that is provided inside the outer casing and houses a container containing a liquid;
    A flow path formed between the outer casing and the inner casing;
    Cooling means for cooling the cool air in the flow path;
    A first through hole formed at the bottom of the inner casing and communicating the flow path and the inside of the inner casing;
    A second through-hole formed in a portion facing the bottom of the upper part of the inner casing and communicating the flow path and the inner side of the inner casing;
    The cold air in the flow path cooled by the cooling means is blown into the inner casing from one of the first through hole and the second through hole, and from the other, the cold air in the inner casing is blown into the flow path. Circulation means for circulating the cold air in the flow path and the inner casing so as to be sucked in,
    The cold air cooled by the cooling means is circulated by the circulation means in a state where the container is accommodated in the inner casing, so that the container is at a temperature below the freezing point of the liquid and the liquid is not frozen. The refrigerator is characterized by being stored in a supercooled state for maintaining the temperature.
  2.  前記第1貫通孔は、前記冷気が前記内側ケーシング内に吹き出す吹出口であり、
     前記第2貫通孔は、前記内側ケーシング内の前記冷気を前記流路内へ吸い込む吸込口である請求項1に記載の冷却庫。
    The first through hole is a blowout port from which the cold air blows into the inner casing,
    2. The refrigerator according to claim 1, wherein the second through hole is a suction port that sucks the cold air in the inner casing into the flow path.
  3.  前記吸込口の面積は、前記吹出口の面積よりも大きい請求項2に記載の冷却庫。 3. The refrigerator according to claim 2, wherein an area of the suction port is larger than an area of the air outlet.
  4.  前記吹出口は、前記底部の全域にわたって形成され、
     前記吸込口は、前記上部の全域にわたって形成されている請求項2に記載の冷却庫。
    The outlet is formed over the entire bottom,
    The refrigerator according to claim 2, wherein the suction port is formed over the entire upper portion.
  5.  前記冷却手段は、前記外側ケーシングに埋設された冷媒配管を有している請求項1に記載の冷却庫。 The cooling device according to claim 1, wherein the cooling means has a refrigerant pipe embedded in the outer casing.
  6.  前記冷媒配管は、前記外側ケーシングの内壁と接触している請求項5に記載の冷却庫。 The refrigerator according to claim 5, wherein the refrigerant pipe is in contact with an inner wall of the outer casing.
  7.  前記外側ケーシングの前記内壁は、金属材料で構成されている請求項5に記載の冷却庫。 The refrigerator according to claim 5, wherein the inner wall of the outer casing is made of a metal material.
  8.  前記外側ケーシングと前記内側ケーシングとの間に設けられ、前記外側ケーシングに対して前記内側ケーシングを支持する支持部材を有し、前記支持部材は、前記外側ケーシングに発生した振動を吸収する防振材で構成されている請求項1に記載の冷却庫。 A vibration isolating material provided between the outer casing and the inner casing and having a support member that supports the inner casing with respect to the outer casing, and the support member absorbs vibration generated in the outer casing. The refrigerator of Claim 1 comprised by these.
  9.  前記循環手段は、前記流路内に設けられたファンを有している請求項1に記載の冷却庫。 2. The refrigerator according to claim 1, wherein the circulating means has a fan provided in the flow path.
  10.  前記液体の最も温度の高い部位の温度をTmaxとし、最も温度の低い部位の温度をTminとしたとき、前記液体が該液体の凝固点以下となっている場合には、Tmax-Tminが0.1℃以下を満足するように前記液体を冷却する請求項1に記載の冷却庫。 When the temperature of the highest temperature part of the liquid is Tmax and the temperature of the lowest temperature part is Tmin, Tmax−Tmin is 0.1 when the liquid is below the freezing point of the liquid. The refrigerator according to claim 1, wherein the liquid is cooled so as to satisfy a temperature equal to or lower than ° C.
PCT/JP2012/056863 2011-03-18 2012-03-16 Refrigeration storage unit WO2012128208A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137020793A KR101489489B1 (en) 2011-03-18 2012-03-16 Refrigeration storage unit
CN201280009639.5A CN103403479B (en) 2011-03-18 2012-03-16 Refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011061509A JP5716211B2 (en) 2011-03-18 2011-03-18 Refrigerator
JP2011-061509 2011-03-18

Publications (1)

Publication Number Publication Date
WO2012128208A1 true WO2012128208A1 (en) 2012-09-27

Family

ID=46879355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056863 WO2012128208A1 (en) 2011-03-18 2012-03-16 Refrigeration storage unit

Country Status (4)

Country Link
JP (1) JP5716211B2 (en)
KR (1) KR101489489B1 (en)
CN (1) CN103403479B (en)
WO (1) WO2012128208A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3286507B1 (en) * 2015-04-21 2020-08-19 BSH Hausgeräte GmbH A domestic cooling device with shock freezing

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6101172B2 (en) * 2013-08-07 2017-03-22 福島工業株式会社 High humidity refrigerator
CN106839575B (en) * 2017-02-03 2019-09-27 海信容声(广东)冷柜有限公司 The air-cooled frostless horizontal refrigerator of one kind and its manufacturing method
MX2021011586A (en) 2019-03-25 2021-10-13 Pepsico Inc Beverage container dispenser and method for dispensing beverage containers.
US11910815B2 (en) 2019-12-02 2024-02-27 Pepsico, Inc. Device and method for nucleation of a supercooled beverage

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893769U (en) * 1981-12-20 1983-06-25 株式会社東洋製作所 cold storage warehouse
JPS607582U (en) * 1983-06-27 1985-01-19 漆原 義高 Refrigerator cold temperature averaging device
JPS60138184U (en) * 1984-02-24 1985-09-12 東芝機械株式会社 refrigerator
JP2003214753A (en) * 2002-01-21 2003-07-30 Hoshizaki Electric Co Ltd Cooling device for supercooling drinking water
WO2006118217A1 (en) * 2005-04-27 2006-11-09 Fukushima Kogyo Co., Ltd. Refrigerator
JP2007093153A (en) * 2005-09-30 2007-04-12 Hitachi Appliances Inc Refrigerator
US20070163290A1 (en) * 2006-01-14 2007-07-19 Samsung Electronics Co., Ltd. Supercooling apparatus, refrigerator, and control method thereof
US20070163289A1 (en) * 2006-01-14 2007-07-19 Samsung Electronics Co., Ltd. Refrigerator and method for producing supercooled liquid
WO2010079945A2 (en) * 2009-01-08 2010-07-15 엘지전자 주식회사 Supercooling system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638017B2 (en) * 1987-04-20 1994-05-18 三洋電機株式会社 Insulation box
JP3165567B2 (en) * 1993-08-27 2001-05-14 三菱電機ビルテクノサービス株式会社 High humidity ice temperature cold storage
GB2282875A (en) * 1993-10-18 1995-04-19 Mars G B Ltd A controlled environment container
JPH0972649A (en) * 1995-08-31 1997-03-18 Sanyo Electric Co Ltd Low temperature showcase
JP3305582B2 (en) * 1996-06-25 2002-07-22 玉乃光酒造株式会社 Subcooling cooling device
JPH11304315A (en) * 1998-04-23 1999-11-05 Tamanohikari Shuzo Kk Cooler for supercooling of liquid

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893769U (en) * 1981-12-20 1983-06-25 株式会社東洋製作所 cold storage warehouse
JPS607582U (en) * 1983-06-27 1985-01-19 漆原 義高 Refrigerator cold temperature averaging device
JPS60138184U (en) * 1984-02-24 1985-09-12 東芝機械株式会社 refrigerator
JP2003214753A (en) * 2002-01-21 2003-07-30 Hoshizaki Electric Co Ltd Cooling device for supercooling drinking water
WO2006118217A1 (en) * 2005-04-27 2006-11-09 Fukushima Kogyo Co., Ltd. Refrigerator
JP2007093153A (en) * 2005-09-30 2007-04-12 Hitachi Appliances Inc Refrigerator
US20070163290A1 (en) * 2006-01-14 2007-07-19 Samsung Electronics Co., Ltd. Supercooling apparatus, refrigerator, and control method thereof
US20070163289A1 (en) * 2006-01-14 2007-07-19 Samsung Electronics Co., Ltd. Refrigerator and method for producing supercooled liquid
WO2010079945A2 (en) * 2009-01-08 2010-07-15 엘지전자 주식회사 Supercooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3286507B1 (en) * 2015-04-21 2020-08-19 BSH Hausgeräte GmbH A domestic cooling device with shock freezing

Also Published As

Publication number Publication date
KR101489489B1 (en) 2015-02-03
KR20130120510A (en) 2013-11-04
JP5716211B2 (en) 2015-05-13
JP2012197965A (en) 2012-10-18
CN103403479A (en) 2013-11-20
CN103403479B (en) 2015-11-25

Similar Documents

Publication Publication Date Title
JP4535466B2 (en) Refrigerator
WO2012128208A1 (en) Refrigeration storage unit
US7343748B2 (en) Device for rapidly chilling articles in a refrigerator
US20150128619A1 (en) Cooling Device for Beverages
JP5656733B2 (en) Refrigerator
KR20150043103A (en) Supercooling refrigerator
JP6735436B2 (en) refrigerator
US10729258B2 (en) Beverage dispenser having at least one tilted and gravity assisted rotating tray
JP2007163008A (en) Electronic refrigerator
US11994334B2 (en) Supercooling freezer box
US20100139499A1 (en) Milk holder for a beverage making machine
JP6150622B2 (en) Supercooling device, refrigeration device having the supercooling device, and supercooling method
JP3143183U (en) Cooling device for drinking water packaging containers
JP6326616B2 (en) refrigerator
JP6383936B2 (en) refrigerator
JP6402356B2 (en) refrigerator
CN104748505A (en) Drink quick-cooling cabinet
JP2022014324A (en) refrigerator
JP2007163007A (en) Electronic refrigerator
JP2005257172A (en) Preservation warehouse
JP2003343954A (en) Cold reserving vessel using refrigerator
JP2007101120A (en) Thermoelectric refrigerator
ES1064862U (en) Multiple cooler of packaged liquids (Machine-translation by Google Translate, not legally binding)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12759929

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137020793

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12759929

Country of ref document: EP

Kind code of ref document: A1